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TROPICAL AND NON-ARCHIMEDEAN LIMITS OF

DEGENERATING FAMILIES OF VOLUME FORMS

by Sébastien Boucksom & Mattias Jonsson

Abstract. — We study the asymptotic behavior of volume forms on a degenerating family of
compact complex manifolds. Under rather general conditions, we prove that the volume forms
converge in a natural sense to a Lebesgue-type measure on a certain simplicial complex. In
particular, this provides a measure-theoretic version of a conjecture by Kontsevich–Soibelman
and Gross–Wilson, bearing on maximal degenerations of Calabi–Yau manifolds.

Résumé (Limites tropicales et non archimédiennes de familles de formes volumes qui dégénèrent)
Nous étudions le comportement asymptotique de formes volumes dans une famille de variétés

complexes compactes qui dégénèrent. Sous des conditions assez générales, nous montrons que
les formes volumes convergent en un sens naturel vers une mesure du type de Lebesgue sur
un certain complexe simplicial. Ceci fournit en particulier une version en théorie de la mesure
d’une conjecture de Kontsevich–Soibelman et Gross–Wilson portant sur les dégénérescences
maximales de variétés de Calabi-Yau.
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88 S. Boucksom & M. Jonsson

Introduction

As is well-known, there is a natural bijection between (smooth, positive) volume
forms on a complex manifold and smooth Hermitian metrics on its canonical bundle.
Consequently, the data of a smooth family (νt)t∈D∗ of volume forms on a holomor-
phic family (Xt)t∈D∗ of compact complex manifolds is equivalent to that of a proper
holomorphic submersion π : X → D∗ together with a smooth metric ψ on the relative
canonical bundle KX/D∗ .

We say that the family (νt) has analytic singularities at t = 0 if the following
conditions hold:

(i) π : X → D∗ is meromorphic at 0 ∈ D in the sense that it extends to a proper,
flat map π : X → D, with X normal;

(ii) X can be chosen so that KX/D∗ extends to a Q-line bundle L on X , and ψ
extends continuously to L .

When (i) holds, we call X a model of X. Using resolution of singularities, we can
always choose X as an snc model, that is, X is smooth and X0 =

∑
i∈I biEi has

simple normal crossing support. To X is then associated a dual complex ∆(X ),
with one vertex ei for each Ei, and a face σ for each connected component Y of a
non-empty intersection EJ =

⋂
i∈J Ei with J ⊂ I.

In the spirit of the Morgan-Shalen topological compactification of affine vari-
eties [MS84], we introduce a natural “hybrid” space

X hyb := X
∐

∆(X )

associated to X ; it is equipped with a topology defined in terms of a tropicalization
map X → ∆(X ), measuring the logarithmic rate of convergence of local coordinates
compatible with X0.

Our first main result says that, after normalizing to unit mass, the volume forms νt
admit a “tropical” limit inside X hyb.

Theorem A. — Let (νt)t∈D∗ be a family of volume forms on a holomorphic family
X → D∗ of compact complex manifolds, with analytic singularities at t = 0. The
asymptotic behavior of the total mass of νt is then given by

νt(Xt) ∼ c|t|2κmin(log |t|−1)d

with c ∈ R∗+, κmin ∈ Q and d ∈ N∗, where d 6 n := dimXt. Further, given any snc
model X → D of X → D∗ such that KX/D∗ extends to a Q-line bundle on L on X

and ψ extends to a continuous metric on L , the rescaled measures

µt :=
νt

|t|2κmin(2π log |t|−1)d
,

viewed as measures on X hyb, converge weakly to a Lebesgue type measure µ0 on a
d-dimensional subcomplex ∆(L ) of ∆(X ).
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Tropical and non-Archimedean limits of volume forms 89

The invariant κmin and the subcomplex ∆(L ) only depend on L (and not on the
metric on L ). Consider the logarithmic relative canonical bundle

K log
X /D := KX + X0,red − π∗(KD + [0]) = KX /D + X0,red −X0

and write K log
X /D = L +

∑
i∈I aiEi with ai ∈ Q. Setting κi := ai/bi, we then have

κmin = mini∈I κi, and ∆(L ) is the subcomplex of ∆(X ) whose vertices ei correspond
to those i ∈ I achieving the minimum.

On the other hand, the limit measure µ0 does depend on ψ; it is given by

µ0 =
∑
σ

(∫
Yσ

ResYσ (ψ)

)
b−1
σ λσ.

Here, σ ranges over the d-dimensional faces of ∆(L ), with corresponding strata
Yσ ⊂ X0, ResYσ (ψ) is a naturally defined residual positive measure on Yσ, λσ is
the Lebesgue measure of σ normalized by its natural integral affine structure, and
bσ ∈ Z>0 is an arithmetic coefficient.

The study of the asymptotics of integrals is a very classical subject and has been
pursued by many people; see for example the book [AGZV12]. The assertions in
Theorem A are closely related to results by Chambert-Loir and Tschinkel (who also
worked over general local fields and in an adelic setting). Specifically, the estimate for
νt(Xt), suitably averaged over t, is essentially equivalent to [CLT10, Th. 1.2]. It also
appears in [KS01, §3.1] and is exploited in [BHJ16].

The convergence result for the measures µt is also closely related to [CLT10,
Cor. 4.8], where, however, the limit measure lives on X0 and not on ∆(X ).(1) The
main new feature of Theorem A is the precise and explicit convergence of the mea-
sure µt to a “tropical” limit µ0, living on a simplicial complex.

The following examples illustrate Theorem A. First consider the subvariety

X := {(zn+1
0 + · · ·+ zn+1

n ) + εtz0 · · · · · zn = 0} ⊂ C× Pn,

where 0 < ε � 1. Write X := pr−1
1 (C∗). The fiber Xt over t ∈ D∗ is a Calabi-

Yau manifold, and we can choose a nonvanishing holomorphic n-form ηt on Xt to
define a smooth metric ψ on KX/D∗ that extends continuously to L = KX /D. In the
terminology of Theorem A we have νt := 2−nin

2

ηt∧ ηt. Here X0 is smooth, so ∆(X )

is a single point. Thus νt(Xt) ∼ c for some c > 0, and the limit measure µ0 is a point
mass.

Now consider instead

X := {tε(zn+1
0 + · · ·+ zn+1

n ) + z0 · · · · · zn = 0} ⊂ C× Pn.

In this case, ∆(L ) = ∆(X ) is a union of (n+ 1) simplices of dimension n, and topo-
logically a sphere. We have νt(Xt) ∼ c(log |t|−1)n and the limit measure is a weighted
sum of Lebesgue measures on each simplex. In fact, it is clear by symmetry that the
weights are equal; this also follows from Theorem C below.

(1)A. Chambert-Loir has pointed out that [CLT10, Cor. 4.8] is sufficiently precise, so that when
applying it to toric blowups of X one can see the form of the limit measure µ0 in Theorem A.

J.É.P. — M., 2017, tome 4



90 S. Boucksom & M. Jonsson

We also prove a logarithmic version of Theorem A, for a log smooth klt pair (X,B),
and a metric ψ on K(X,B)/D∗ , see Theorem 8.4.

The space X hyb and the measure µ0 depend on the choice of snc model X . We
obtain a more canonical situation by considering all possible snc models simultane-
ously. Namely, the set of snc models of X is directed, and in §4 we define a locally
compact (Hausdorff) topological space

Xhyb := lim←−
X

X hyb,

fibering over D, with central fiber Xhyb
0 := lim←−∆(X ). For any X , the dual complex

∆(X ) embeds in the central fiber Xhyb
0 of Xhyb.

Corollary B. — With assumptions and notation as in Theorem A, the measures µt,
viewed as measures on Xhyb, converge weakly to a measure µ0. Further, µ0 is a
Lebesgue type measure on a d-dimensional complex in Xhyb

0 .

Now consider the case when X → D∗ is projective. As we now explain, the central
fiber ofXhyb is then a non-Archimedean space. Namely,X induces a smooth projective
variety XK over the non-Archimedean field K of complex formal Laurent series, to
which we can associate a Berkovich analytification Xan

K . Similarly, any projective snc
model X → D of X induces a projective model XR over the valuation ring R of K.
The dual complex ∆(X ) then has a canonical realization as a compact Z-PA subspace
Sk(X ) ⊂ Xan

K , the skeleton of X . In fact, it is well known (see e.g. [BFJ16]) that
there is a homeomorphism Xan

K
∼→ lim←−X

Sk(X ), so we can identify the central fiber of
the space Xhyb with the analytification Xan

K . In fact, as shown in Appendix A.6, using
ideas from [Ber09], we can view the restriction of Xhyb → D to a closed subdisc Dr
as the analytification of the base change of X to a suitable Banach ring Ar.

Assuming X → D∗ is projective, we can describe the limit measure µ0 and its
support Sk(L ) ' ∆(L ) inside Xan

K in more detail. The skeleton Sk(L ) is of purely
non-Archimedean nature, and can be seen as a mild generalization of the Kontsevich–
Soibelman skeleton introduced in [KS06] and studied in [MN15, NX16b, NX16a]. The
skeletal measure µ0, on the other hand, depends on both Archimedean and non-
Archimedean data. Namely, it is supported on the skeleton Sk(L ), but depends on
the choice of metric on the restriction of the line bundle L to the central fiber X0

(viewed as a complex space) of any snc model X .
We also study both the skeleton and the skeletal measure in the more general case

when the model X is allowed to have mild (dlt) singularities.
One major motivation for studying the above general setting comes from degener-

ations of Calabi–Yau manifolds. Thus suppose X → D∗ is a projective holomorphic
submersion, meromorphic at 0 ∈ D, such that KX/D∗ = OX . Any trivializing sec-
tion η ∈ H0(X,KX/D∗) then defines a family ηt := η|Xt of trivializations of KXt ,
and hence a smooth family of volume forms νt := |ηt|2 with analytic singularities at
t = 0. Indeed, for any snc model X → D, η extends to a nowhere vanishing section
of L := OX , and ψ := log |η| defines a smooth metric on L .
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Tropical and non-Archimedean limits of volume forms 91

The total mass νt(Xt) =
∫
Xt
|ηt|2 is then nothing but the L2 (or Hodge) metric

on the direct image of KX/D∗ , whose asymptotic behavior at t = 0 is described in a
very precise way by Schmid’s nilpotent orbit theorem [Sch73, Th. 4.9] (compare for
instance [GTZ16, Prop. 2.1]).

On the other hand, the skeleton Sk(L ) described above coincides in the current
context with the Kontsevich–Soibelman skeleton Sk(X) [KS06, MN15, NX16b]. Its
dimension d, which features as the exponent of the log term in the asymptotics of the
mass, measures how “bad” the degeneration is. Further, the family X → D∗ admits
a relative minimal model X , with certain mild (dlt) singularities [KNX15], and the
essential skeleton can be identified with the dual complex of X [NX16b]. In particular,
d = 0 if and only if X can filled in with a central fiber X0 which is a Calabi–Yau
variety with klt singularities.

At the other end of the spectrum, d = n = dimXt if and only if X is maximally
degenerate, i.e., a “large complex structure limit”. In that case, the essential skeleton
Sk(X) is shown to be a pseudomanifold in [NX16b]. Building on this, we prove:

Theorem C. — Let X → D∗ be a smooth projective family of Calabi–Yau varieties,
meromorphic at 0 ∈ D. Assume that X is maximally degenerate and has semistable
reduction. Then the skeletal measure µ0 is a multiple of the integral affine Lebesgue
measure on Sk(X).

This theorem also holds in the purely non-Archimedean setting of Calabi–Yau
varieties defined over the field of Laurent series. The semistable reduction condition
means that X admits an snc model X with X0 reduced. This condition is always
satisfied after a finite base change.

Theorem C describes measure-theoretic degenerations of Calabi–Yau varieties. Let
us briefly discuss the case of metric degenerations. Consider a smooth projective
family X → D∗ of Calabi–Yau varieties, meromorphic at 0 ∈ D, and suppose the
family is polarized, that is, we are given a relative ample line bundle A on X. By
Yau’s theorem [Yau78], each fiber Xt carries a unique Ricci-flat Kähler metric ωt in
the cohomology class of At.

By [Wan03, Tos15, Tak15], the diameterDt of (Xt, ωt) remains bounded if and only
if d = 0, that is, X admits a model X such that X0 has klt singularities. In this case,
it is shown in [RZ11, RZ13], building in part on [DS14], that (Xt, ωt) converges in
the Gromov-Hausdorff sense to the Calabi–Yau variety X0, endowed with the metric
completion of its singular Ricci-flat Kähler metric in the sense of [EGZ09].

The maximally degenerate case d = n is the object of the Kontsevich–Soibelman
conjecture [KS06](2), which states that (Xt, D

−2
t ωt) (which has diameter one)

converges in the Gromov-Hausdorff sense to the essential skeleton Sk(X) endowed
with a piecewise smooth metric of Monge-Ampère type, i.e., locally given as the
Hessian of a convex function satisfying a real Monge-Ampère equation. This conjecture

(2)Essentially the same conjecture was stated independently by Gross–Wilson [GW00] and
Todorov.
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92 S. Boucksom & M. Jonsson

has been verified for abelian varieties see e.g. [Oda14] but is largely open in general.
The “mirror” situation, when one fixes the complex structure and degenerates the
cohomology class of the Ricci-flat Kähler metric (along a line segment in the Kähler
cone), is better understood [GW00, Tos09, Tos10, GTZ13, GTZ16, HT15, TWY14].
By performing a “hyper-Kähler rotation”, this implies a version of the Kontsevich–
Soibelman conjecture for special cases of Type III degenerations of K3 sur-
faces [GW00].

Theorems A and C indicate a possible approach to the Kontsevich–Soibelman
conjecture. Indeed, recall that the metric ωt for t ∈ D∗ is constructed as the curvature
form of a smooth metric φt on At, where φt in turn is obtained as a solution of the
complex Monge-Ampère equation MA(φt) = µt.

On the central fiber Xhyb
0 = Xan

K of Xhyb, it was shown in [BFJ15] that there exists
a metric on the line bundle Aan

K , unique up to scaling, solving the non-Archimedean
Monge-Ampère equation MA(φ0) = µ0 (at least when X is defined over an alge-
braic curve). It is now tempting to approach the Kontsevich–Soibelman conjecture by
studying the behavior of φt as t→ 0. However, this seems to be a delicate issue since
there is no a priori reason why the weak continuity at t = 0 of t 7→ µt would imply
continuity of the solutions t 7→ φt.

Instead of Calabi-Yau manifolds, it would be interesting to study degenerating fam-
ilies X → D∗ of canonically polarized projective manifolds, where the metric on KXt

would be the Kähler-Einstein metric or the Bergman metric, and prove versions of
Theorems A and C in this context.

The paper is organized as follows. After recalling various facts in §1 we define in §2
the hybrid space X hyb associated to an SNC model X . The proof of Theorem A is
given in §3. In §4 we define the space Xhyb associated to a degeneration as an inverse
limit of the spaces X hyb, and prove Corollary B. Various notions of skeleta are defined
and studied in §5, and in §6 we formalize the notion of a residually metrized model
of the canonical bundle, and associate to such an object a positive measure on the
relevant Berkovich space. Degenerations of Calabi–Yau varieties are studied in §7
where we prove Theorem C. In §8 we study various extensions, and in the appendix
we recall the Berkovich analytification of a scheme over a Banach ring.

Acknowledgements. — We are very grateful to Johannes Nicaise and Chenyang Xu
for explaining the behavior of Poincaré residues in the present context. We also thank
Vladimir Berkovich, Antoine Chambert-Loir, Antoine Ducros and Charles Favre for
useful comments leading up to this work, Bernard Teissier for help with the Hironaka
flattening theorem, and Matt Baker and Valentino Tosatti for comments on a prelim-
inary version of this manuscript. Finally we thank the referees for useful comments.

1. Preliminaries

The goal of this section is to fix conventions and notation for metrics and measures,
and to recall a few basic facts on integral affine structures. We also make a few
calculations regarding tropicalizations that will be useful in the proof of Theorem A.
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1.1. Metrics. — We use additive notation for line bundles and metrics over an an-
alytic space X, both in the complex and non-Archimedean setting. This amounts to
the following two rules:

(i) if for i = 1, 2, φi is a metric on a line bundle Li and ai ∈ Z, then a1φ1 + a2φ2

is a metric on a1L1 + a2L2;
(ii) a metric on the trivial line bundle OX is of the form | · |e−φ for a function φ

on X, and we identify the metric with φ.
If s is a section of a line bundle L on X, then log |s| stands for the corresponding
(possibly singular) metric on L in which s has length 1. For any metric φ on L, the
above rules imply that log |s| − φ is a function on X, and

|s|φ := |s|e−φ = exp(log |s| − φ)

is the pointwise length of s in the metric φ.
A metric on a Q-line bundle L is a collection (φm)m of metrics on mL, for m

sufficiently divisible, such that φjm = jφm.
The line bundle OX(D) associated to any Cartier divisor D on X comes with a

canonical singular metric φD, smooth outside D. This fact extends to Q-divisors, by
interpreting φD as a metric on a Q-line bundle. In the complex case at least, the
curvature current of φD, correctly normalized, coincides with the integration current
on D.

1.2. Measures and forms. — Any finite-dimensional real vector space V comes
equipped with a Lebesgue (or Haar) measure λ, uniquely defined up to a multiplica-
tive constant. Any lattice Λ ⊂ V allows us to normalize λ by λ(V/Λ) = 1.

To any top-dimensional differential form ω on a C∞ manifold X is associated a
positive measure |ω| on X. For example, if Λ ⊂ V is a lattice as above, m1, . . . ,mn

is a basis of the dual lattice, then |dm1 ∧ · · · ∧ dmn| is a Lebesgue measure on V

normalized by Λ.
If X is a complex manifold of dimension n, and Ω is a section of KX , that is, a

holomorphic n-form, we define |Ω|2 as the positive measure

|Ω|2 :=
in

2

2n
|Ω ∧ Ω|.

The normalization is chosen so that the measure associated to the form dz = dx+ idy

on C is Lebesgue measure |dz|2 = |dx ∧ dy| on C ' R2.
This construction induces a natural bijection between smooth metrics on the canon-

ical bundle KX and (smooth, positive) volume forms on X, which associates to a
smooth metric ψ on KX the volume form e2ψ locally defined by

e2ψ :=
in

2 |Ω ∧ Ω|
2n|Ω|2ψ

=
|Ω|2

|Ω|2e−2ψ

for any local section Ω of KX . If ψ′ is another metric on KX , then

e2ψ′ = e2(ψ′−ψ)e2ψ,

J.É.P. — M., 2017, tome 4



94 S. Boucksom & M. Jonsson

where e2(ψ′−ψ) is the usual exponential of the smooth function 2(ψ′ − ψ) ∈ C∞(X).
This can be used to make sense of e2ψ as a positive measure for any (possibly singular)
metric ψ onKX . Similarly, e2ψ/m is a volume form for every metric ψ onmKX ,m ∈ Z.

Now assume (X,B) is a pair in the sense of the Minimal Model Program, i.e., X
is a normal complex space and B is a (not necessarily effective) Q-Weil divisor on X
such that

K(X,B) := KX +B

is a Q-line bundle. Denote by φB the canonical singular metric on B|Xreg
, viewed as

a Q-line bundle. If ψ is smooth metric on the Q-line bundle K(X,B), then ψ − φB is
a smooth metric on KXregrB , and e2(ψ−φB) is thus a volume form on Xreg rB.(3)

A pair (X,B) is subklt if for some (or, equivalently, any) log resolution ρ : X ′ → X

of (X,B), the unique Q-divisor B′ such that ρ∗K(X,B) = K(X′,B′) and ρ∗B′ = B has
coefficients < 1. The pair (X,B) is klt if B is further effective.

Lemma 1.1. — For any continuous metric ψ on K(X,B), (X,B) is subklt if and only
if the measure e2(ψ−φB) has locally finite mass near each point of X.

Proof. — With the above notation it is immediate to check that

ρ∗e2(ψ−φB) = e2(ρ∗ψ−φB′ ).

We are thus reduced to a log smooth pair (X ′, B′), i.e., X ′ is smooth and B′ has snc
support, and the proof is then trivial. �

When (X,B) is subklt, we may thus view e2(ψ−φB) as a finite positive (Radon)
measure on X, putting no mass on Zariski closed subsets. Such measures are called
adapted in [EGZ09, BBE+16].

1.3. Integral piecewise affine spaces. — The following discussion roughly fol-
lows [KKMSD73, p. 59] and [Ber04, §1].

If P is a rational polytope in Rn, that is, the convex hull of a finite subset of Qn,
denote byMP ⊂ C0(P ) the finitely generated free abelian group obtained by restrict-
ing to P affine functions with coefficients in Z (constant term included). Denote by 1P
the constant function on P with value 1, and set

→
MP := MP /MP ∩Q1P .

Denote also by bP ∈ N the greatest integer such that b−1
P 1P ∈MP .

The data of (P,MP ) modulo homeomorphism is called an (abstract) Z-polytope.
The functions in MP are called integral affine, or Z-affine.

The evaluation map defines a canonical realization P ↪→ (MP )
∨

R as a codimension
one rational polytope, with tangent space TP identified with (

→
MP )

∨

R. Further, the
lattice TP,Z := Hom(

→
MP ,Z) ⊂ TP yields a normalized Lebesgue measure λP on P .

The main example for us is as follows.

(3)Here and in what follows, we writeXrD for the complement of the support of a (not necessarily
reduced) divisor D in a complex space X.
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Lemma 1.2. — Given b0, . . . , bp ∈ N∗, view

σ =
{
w ∈ Rp+1

+

∣∣ ∑p
i=0 biwi = 1

}
as a Z-simplex. Then bσ = gcd(bi), and

Vol(σ) =
bσ

p!
∏
i bi

.

Proof. — Note that Tσ,Z = {w ∈ Zp+1 | ∑i biwi = 0}. The linear isomorphism
φ : Rp+1 → Rp+1 given by φ(wj) = (bjwj) takes σ to the standard simplex

σ′ =
{
w′ ∈ Rp+1

+

∣∣ ∑
i w
′
j = 1

}
,

and hence
[Tσ′,Z : φ(Tσ,Z)] Vol(σ) = Vol(σ′) =

1

p!
.

Write Tσ′,Z as the kernel of χ : Zp+1 → Z defined by χ(w′) =
∑
i w
′
i. Then

φ(Tσ,Z) = kerχ ∩ φ(Zp+1), χ(φ(Zp+1)) = gcd(bi)Z,

and the exact sequence

0 −→ kerχ

kerχ ∩ φ(Zp+1)
−→ Zp+1

φ(Zp+1)
−→ Z

χ(φ(Zp+1))
−→ 0

gives as desired

[Tσ′,Z : φ(Tσ,Z)] =

∏
i bi

gcd(bi)
.

Finally, the first assertion is clear. �

Remark 1.3. — By setting w0 = b−1
0 (1 −∑p

i=1 biwi), we can identify σ with the
simplex

∑p
1 biwi 6 1 in Rp+. The normalized Lebesgue measure on σ is then given by

λσ = b−1
σ |dw1 ∧ · · · ∧ dwp|.

A compact rational polyhedron K in Rn is a finite union of rational polytopes Pi,
which may then be arranged so that Pi ∩ Pj is either empty or a common face of Pi
and Pj . We then say that (Pi) is a subdivision of K, and call the subdivision simplicial
if each Pi is a simplex. A continuous function on K is integral piecewise affine (Z-PA
for short) if f |Pi ∈MPi for some subdivision of K. These functions form a subgroup
PAZ(K) ⊂ C0(K), and the data of (K,PAZ(K)) modulo homeomorphism is called a
compact Z-PA space.

The normalized Lebesgue measure of K is defined as

λK =
∑

dimPi=dimK

1PiλPi

for some (and hence any) subdivision into Z-polytopes.
Note that a Z-polytope P can be regarded as a Z-PA space and thatMP ⊂ PAZ(P ).
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1.4. Tropicalizations and polar coordinates. — The material in this section is
surely well known, but we include the details for lack of a suitable reference. The
calculations here are used in the proof of Theorem 3.4 (which implies Theorem A).

Let N ' Zp+1 be a lattice, M = Hom(N,Z) the dual lattice, C[M ] the semigroup
ring and T = SpecC[M ] = N ⊗ C∗ the algebraic torus. A basis for N induces a dual
basis (m0, . . . ,mp) for M and elements zi ∈ C[M ], 0 6 i 6 p, such that C[M ] =

C[z±1
0 , . . . , z±1

p ] and T ' (C∗)p+1.
Let Ω ∈ H0(T,KT ) be the T -invariant global section given in coordinates by

Ω =
dz0

z0
∧ · · · ∧ dzp

zp
.

Note that Ω is independent of the choice of coordinates, up to a sign. Its associated
measure

ρ := |Ω|2

is T -invariant, and hence a Haar measure on T .
We can write this measure in (logarithmic) polar coordinates via the canonical

tropicalization map L : T → NR, given in the basis above by

L = (− log |z0|, . . . ,− log |zp|).
Note that L sits in the exact sequence 1 → K → T → NR obtained by tensoring
with N the exact sequence 1 → S1 → C∗ → R → 0 induced by z 7→ − log |z|.
In particular, K = N ⊗ S1 ' (S1)p+1 is a compact torus, and L : T → NR is a
principal K-bundle.

On the one hand, let ω be the translation invariant real (p+1)-form on the tropical
torus NR ' Rp+1 given by

ω = dm0 ∧ · · · ∧ dmp.

This form is again independent of the choice of basis, up to a sign, and its associated
measure λ := |ω| is the Lebesgue (or Haar) measure on NR normalized by N .

On the other hand, since L : T → NR is a principal K-bundle, each fiber Kw =

L−1(w) has a unique K-invariant probability measure ρw. Then ρ has a fiber decom-
position

ρ = (2π)p+1λ(dw)⊗ ρw,
i.e.,

(1.1)
∫
T

f dρ = (2π)p+1

∫
NR

(∫
Kw

f dρw

)
λ(dw),

for any f ∈ C0
c (T ). Concretely, we can use logarithmic polar coordinates on T :

zj = exp(−wj + 2πiθj)

for 0 6 j 6 p; then ρw = |dθ0 ∧ · · · ∧ dθp|, and

ρ =

∣∣∣∣dz0

z0
∧ · · · ∧ dzp

zp

∣∣∣∣2 = (2π)p+1|dw1 ∧ · · · ∧ dwn| ⊗ ρw.
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We will need the same analysis on certain subgroups of T . Fix an element m ∈M
and let χ = χm : T → C∗ be the corresponding character. Let b ∈ Z>0 be the largest
integer such that b−1m ∈ M . In the bases above, we can write m =

∑p
i=0 bimi and

χ =
∏
i z
bi
i , where bi ∈ Z; then b = gcdi bi. On the other hand, we can pick a basis

such that m = bm0 and χ = zb0. This is useful for computations.
For t ∈ C∗, Tt := χ−1(t) is a complex manifold with b connected components. Note

that T ′ := X1 is an algebraic subgroup of T and that Tt is a torsor for T ′ for any
t ∈ C∗. The T -invariant (p + 1)-form Ω induces in a canonical way a T ′-invariant
p-form Ωt on Tt, obtained as the restriction to Tt of any choice of holomorphic
p-form Ω′ on T such that dχ

χ ∧ Ω′ = Ω. In general coordinates as above, we can
pick

Ω′ =
1

#J

∑
j∈J

(−1)j

bj

dz0

z0
∧ · · · ∧ d̂zj

zj
∧ · · · ∧ dzp

zp
,

where J = {j | bj 6= 0}. In special coordinates, so that m = bm0 and χ = zb0, we then
have Ω′ = 1

b
dz1
z1
∧ · · · ∧ dzp

zp
, and hence

Tt =
⋃
ub=t

{z0 = u} and Ωt =
1

b

dz1

z1
∧ · · · ∧ dzp

zp

∣∣∣∣
Tt

.

Note that ρ1 := |Ω1|2 is Haar measure on T ′, whereas ρt := |Ωt|2 is a T ′-invariant
measure on Tt. In the special case p = 0, Tt consists of b points, and ρt gives mass 1/b2

to each of them.
Next we study the analogous situation in the tropical torus NR. Viewing m as a

linear form on NR, set Hs := m−1(s) for s ∈ R. The lattice N ′ = Kerm ⊂ N defines
an integral affine structure on Hs, and hence a normalized Lebesgue measure λs. Note
that

|ω′|Hs | =
1

b
λs

for any choice of p-form ω′ on NR such that dm ∧ ω′ = ω. In general coordinates, we
pick

ω′ =
1

#J

∑
j∈J

(−1)j

bj
dm0 ∧ · · · ∧ d̂mj ∧ · · · ∧ dmp,

where J = {j | bj 6= 0}. In special coordinates, ω′ = (1/b)dm1 ∧ · · · ∧ dmp.
Finally we describe ρt in polar coordinates. The tropicalization map L : T → NR

induces a principal T ′ ∩K-bundle Tt → Hs with s = − log |t|, and hence an invariant
probability measure on ρt,w on each fiber Kt,w := Tt ∩Kw. We claim that

ρt =
(2π)p

b
λs(dw)⊗ ρt,w,

i.e.,

(1.2)
∫
Tt

f dρt =
(2π)p

b

∫
Hs

(∫
Kt,w

f ρt,w

)
λs(dw),

for any f ∈ C0
c (Tt), where s = log |t|−1.
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The proof is essentially the same as that of (1.1). We work in special coordinates,
so that χ = zb0 and m = bm0. Then Tt = {zb0 = t} has b connected components T (`)

t ,
1 6 ` 6 b, and

ρt = |Ωt|2 =
1

b2

∣∣∣∣dz1

z1
∧ · · · ∧ dzp

zp

∣∣∣∣2 .
The restriction of the tropicalization map to T (`)

t amounts to the change of coordinates
zj = u

(`)
j exp(−wj + 2πiθj) for 1 6 j 6 p, where the u(`)

j are constants with |u(`)
j | = 1.

In these coordinates,

ρt|T (`)
t

=
(2π)p

b2
|dm1 ∧ · · · ∧ dmn| ⊗ |dθ1 ∧ · · · ∧ dθp|.

Here (1/b)|dθ1∧· · ·∧dθp| induces the measure ρt,w on Kt,w, whereas |dm1∧· · ·∧dms|
is Lebesgue measure λs on Hs. Hence (1.2) follows.

2. The hybrid space associated to an snc model

In this section, we show how to perform a topological surgery in a complex manifold,
replacing a simple normal crossing divisor with its dual complex. Our construction
is similar to the one used by Morgan-Shalen in [MS84, §I.3], and can even be traced
back to the pioneering work of Bergman [Ber71].

2.1. The dual complex. — Let D be an effective divisor with simple normal crossing
(snc) support in a complex manifold X . By definition, D =

∑
i∈I biEi with bi ∈ N∗

and (Ei)i∈I a finite family of smooth irreducible divisors such that

EJ :=
⋂
i∈J

Ei

is either empty or smooth of codimension |J | (with finitely many connected com-
ponents) for each ∅ 6= J ⊂ I. A connected component Y of a non-empty EJ
is called a stratum. Together with X r D = E∅, the locally closed submanifolds
Y̊ := Y r

⋃
i∈IrJ Ei define a partition of X .

The dual complex ∆(D) is the simplicial complex(4) defined as follows: to each
stratum Y corresponds a simplex

σY =
{
w ∈ RJ+ |

∑
i∈J biwi = 1

}
,

and σY is a face of σY ′ if and only if Y ′ ⊂ Y . This description equips ∆(D) with
an integral affine structure, by which we mean a compatible choice of integral affine
structures on each simplex σ. This further induces a Z-PA structure on ∆(D).

We write Yσ for the stratum of a face σ. Each point ξ ∈ D belongs to Y̊ξ for a
unique stratum Yξ, obtained as the connected component of EJξ containing ξ, with
Jξ = {i ∈ I | ξ ∈ Ei}. We denote by σξ := σYξ the corresponding face of ∆(D).

(4)This is understood in the slightly generalized sense that the intersection of two faces is a union
of common faces.
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2.2. The hybrid topology. — Next we define a natural topology on the disjoint union

X hyb := (X rD)
∐

∆(D).

Consider a connected open set U ⊂ X meeting D and local coordinates z =

(z0, . . . , zn) on U . We say that the pair (U , z) is adapted (to D) if the following
conditions hold:

(i) if E0, . . . , Ep are the irreducible components of D intersecting U , then
U ∩ E0 ∩ · · · ∩ Ep, if nonempty, equals U ∩ Y̊ for a component Y of E0 ∩ · · · ∩ Ep;

(ii) zi is an equation of Ei ∩U with |zi| < 1, 0 6 i 6 p.
We call Y = YU the stratum of U , and denote by

σU =
{
w ∈ Rp+1 |∑p

i=0 biwi = 1
}

the corresponding face of ∆(D). The function fU ,z :=
∏p
i=0 z

bi
i is an equation of D

in U , with |fU ,z| < 1, and we get a continuous map LogU : U rD → σY by setting

LogU =

(
log |zi|

log |fU |

)
06i6p

.

For any two adapted coordinate charts (U , z), (U ′, z′), with the same stratum Y ,
we have z′i = uizi with ui nonvanishing on U ∩U ′, for i = 0, . . . , p (after a possible
reindexing); it follows that

(2.1) LogU ′ = LogU +O

(
1

log |fU ,z|−1

)
locally uniformly on U ∩U ′. We next show how to globalize this construction.

Proposition 2.1. — There exists an open neighborhood V ⊂X of D and a continuous
map LogV : V rD → ∆(D) such that for each adapted coordinate chart (U , z) with
U ⊂ V we have LogV (U rD) ⊂ σU and

(2.2) LogV = LogU +O

(
1

log |fU ,z|−1

)
uniformly on compact subsets of U .

This will be accomplished by means of a partition of unity, using the following
elementary special case of [Cle77, Th. 5.7].

Lemma 2.2. — There exists a family ((Vα, zα))α∈A of adapted coordinate charts, such
that (Vα)α forms a locally finite covering of D and such that the strata Yα of the Vα
satisfy

(2.3)
⋂
β∈B

Vβ 6= ∅ =⇒ ⋂
β∈B

Yβ 6= ∅

for every finite B ⊂ A.
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Proof of Proposition 2.1. — Pick an open cover (Vα)α as in Lemma 2.2, and denote by
Logα : Vα rD → σα the corresponding maps. Set V :=

⋃
α Vα, and pick a partition

of unity (χα) subordinate to (Vα). We claim that for each ξ ∈ V there exists an open
neighborhood W of ξ and a face σW of ∆(D) such that

W ∩ suppχα 6= ∅ =⇒ σα ⊂ σW
for any α ∈ A. Indeed, using (2.3) it is easy to see that

W :=
⋂

α|ξ∈Uα

Vα r
⋃

α|ξ/∈suppχβ

suppχβ

satisfies this property. By convexity of σW , it follows that LogV :=
∑
α χα LogVα is

well-defined on W rD, and hence yields a continuous map LogV : V rD → ∆(D).
The last property is a direct consequence of (2.1). �

We extend the previous map as

LogV : V hyb := (V rD) ∪∆(D) −→ ∆(D)

by setting LogV = id on ∆(D).

Definition 2.3. — The hybrid topology on X hyb := (X rD) ∪∆(D) is defined as
the coarsest topology such that:

(i) X rD ↪→X hyb is an open embedding;
(ii) For every open neighborhood V of D in X , the set (V rD) ∪∆(X ) is open

in X hyb;
(iii) LogV : V hyb → ∆(D) is continuous.

Using (2.2), this definition is easily seen to be independent of the choice of map
LogV . If D is compact and K ⊂X is a compact neighborhood of D, then one easily
checks that the corresponding subset Khyb = (KrD)∪∆(D) is compact (Hausdorff).
When D = b0E0 has only one irreducible component, Khyb is simply the Tychonoff
one-point compactification of K rD.

Example 2.4. — Set X = D2 and D = E0 + E1 the union of the coordinate axes,
with coordinates (z0, z1). Then U = X is itself an adapted coordinate chart. In these
coordinates, LogU : U r D → σU becomes the map (D∗)2 → [0, 1] sending (z0, z1)

to log |z1|/ log |z0z1|. As a consequence, given ζ ∈ R∗+ and 0 < ε � 1, the closure in
X hyb of the closed subset

Fε := {0 < |z0|, |z1| 6 ε, |z0|ζ+ε 6 |z1| 6 |z0|ζ−ε} ⊂ D2

is given by F ε = Fε ∪ Iε, where

Iε :=
{
w ∈ [0, 1]

∣∣∣ ζ − ε
1 + ζ − ε 6 w 6

ζ + ε

1 + ζ + ε

}
.

Further, the sets F ε, for 0 < ε� 1 form a basis of closed neighborhoods of the point
ζ/(1 + ζ) ∈ [0, 1] in X hyb. See Figure 2.1.
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log z0

log z1

z0

z1||
||
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||

Figure 2.1. The figure shows the closed subset Fε in Example 2.4.

3. Proof of Theorem A

In this section, we describe in more detail the objects involved in Theorem A, and
then provide a proof. We work purely in the complex analytic category here.

3.1. Residual measures. — Let π : X → D be an snc degeneration, i.e., a proper,
surjective holomorphic map from a connected complex manifold to the unit disc in C,
whose restriction to X := π−1(D∗) is a submersion and such that X0 := π−1(0) =∑
i∈I biEi has snc support. Note that Xt := π−1(t) is non-singular for t ∈ D∗. The

dual complex ∆(X ) is defined as that of X0; it is equipped with its natural Z-PA
structure. The logarithmic canonical bundle of X is

K log
X := KX + X0,red.

Setting K log
D := KD + [0], we define the relative logarithmic canonical bundle as

K log
X /D := K log

X − π∗K log
D = KX /D + X0,red −X0.

Now suppose we are given a Q-line bundle L on X extending KX/D∗ . We then have
a unique decomposition

K log
X /D = L +

∑
i∈I

aiEi

with ai ∈ Q. Set κi := ai/bi and κmin := mini κi.

Definition 3.1. — We denote by ∆(L ) the subcomplex of ∆(X ) such that a face σ
of ∆(X ) is in ∆(L ) if and only if each vertex of σ achieves mini κi.

In general, ∆(L ) is neither connected nor pure dimensional. We say that a face of
∆(L ) is maximal if it is not contained in a larger face of ∆(L ).

Lemma 3.2. — Let Y ⊂X0 be a stratum corresponding to face σ of ∆(X ), and denote
by J ⊂ I the set of irreducible components Ei cutting out Y . Then

BL
Y :=

∑
i/∈J

(1− (ai − κminbi))Ei|Y

is a Q-divisor on Y with snc support, and we have a canonical identification

L |Y = K(Y,BL
Y ) := KY +BL

Y

J.É.P. — M., 2017, tome 4



102 S. Boucksom & M. Jonsson

as Q-line bundles. If we further assume that σ is a maximal face of ∆(L ), then BL
Y

has coefficients < 1, so the pair (Y,BL
Y ) is subklt.

Proof. — The first point is a simple consequence of the triviality of the normal bundle
OX0(X0) together with the adjunction formula

KY = (KX +
∑
i∈J

Ei)|Y ,

canonically realized by Poincaré residues once an order on J has been chosen. When σ
is a maximal face of ∆(L ), each Ei meeting Y properly satisfies κi > κmin, which
implies that BL

Y has coefficients < 1. �

If ψ is a continuous metric on L , ψ|Y may thus be viewed as a metric on K(Y,BL
Y ).

When σ is a maximal face of ∆(L ), the pair (Y,BL
Y ) is subklt, and Lemma 1.1

applies. This leads to the following notion.

Definition 3.3. — Let Y be a stratum corresponding to a maximal face of ∆(L ).
The residual measure on Y of a continuous metric ψ on L is the (finite) positive
measure on Y defined by

ResY (ψ) := exp
(
2(ψ|Y − φBL

Y
)
)
.

This measure can be more explicitly described as follows. At each point ξ ∈ Y ,
pick local coordinates (z0, . . . , zn) such that z0, . . . , zp are local equations for the
components E0, . . . , Ep of X0 that pass through ξ, indexed so that J = {0, . . . , d},
where 0 6 d 6 p, and such that t =

∏p
j=0 z

bj
j The logarithmic form

Ω :=
dz0

z0
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

is a local trivialization ofK log
X , hence induces a local trivialization Ωrel = Ω⊗ (dt/t)−1

of K log
X /D. We may then view τ :=

∏p
i=0 z

ai
i Ωrel as a local Q-generator of L . Under

the identification L |Y = K(Y,BL
Y ), we have

τ |Y =

p∏
i=d+1

zai−κminbi
i ResY (Ω)

with

ResY (Ω) =
dzd+1

zd+1
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

∣∣∣∣
Y

.

We infer

(3.1) ResY (ψ) = |τ |−2
ψ

p∏
i=d+1

|zi|2(ai−κminbi−1)

∣∣∣∣ n∧
i=d+1

dzi

∣∣∣∣2.
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3.2. Statement and first reductions. — It will be convenient to introduce the quan-
tity

λ(t) := (log |t|−1)−1,

for t ∈ D∗. Note that λ(t)→ 0 as t→ 0.
Let X hyb := X

∐
∆(X ) be the locally compact hybrid space constructed in §2.

It comes with a proper map π : X hyb → ∆ extending π : X → D∗ and such that
∆(X ) = π−1(0). The next result implies Theorem A in the introduction.

Theorem 3.4. — Let π : X → D be an snc degeneration, L a Q-line bundle on X

extending KX/D∗ , and ψ a continuous metric on L . Define κmin as above, and set
d := dim ∆(L ). Then, viewed as measures on X hyb,

µt :=
λ(t)d

(2π)d|t|2κmin
e2ψt

converges weakly to

µ0 :=
∑
σ

(∫
Yσ

ResYσ (ψ)

)
b−1
σ λσ,

where σ ranges over the d-dimensional faces of ∆(L ). Here λσ denotes normalized
Lebesgue measure on σ and bσ = gcdi∈J bi, where X0 =

∑
i biEi and Ei, i ∈ J are

the divisors defining σ.

We start by making a few reductions. First, we may—and will—assume in what
follows that κmin = 0. Indeed, t defines a nonvanishing section of OX (X0), and
hence a smooth metric log |t|, so we may replace L and ψ with L − κminX0 and
ψ − κmin log |t|, respectively, and end up with κmin = 0.

Since mini ai/bi = κmin = 0, we then have ai > 0, with equality if and only if Ei
corresponds to a vertex of ∆(L ).

Next we reduce the assertion of Theorem 3.4 to a local problem. Let Y ⊂X0 be the
stratum of an arbitrary face σ of ∆(X ), and denote by E0, . . . , Ep the components
of X0 cutting out Y , ordered so that

κ0 = · · · = κq < κq+1 6 · · · 6 κp.

We can then make the identification

σ =
{
w ∈ Rp+1

+

∣∣ b · w = 1
}

with b = (b0, . . . , bp) ∈ Zp+1
>0 . Set b′ = (b0, . . . , bq) ∈ Zq+1

>0 and

σ′ :=
{
w′ ∈ Rq+1

+

∣∣ b′ · w′ = 1
}
.

Then σ′ is a face of σ under the embedding Rq+1
+ ↪→ Rp+1

+ given by w′ → (w′, 0). Let
Y ′ ⊃ Y be the corresponding stratum of X0.

Note that σ contains a face of ∆(L ) if and only if κ0 = 0; in that case, the face is
unique, equal to σ′ (which then implies q 6 d).
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Pick x ∈ Y̊ , and choose local coordinates z = (z0, . . . , zn) at x such that zi is
a local equation of Ei for 0 6 i 6 p and

t =

p∏
i=0

zbii .

We may assume that z is defined on a polydisc U ' D(r)p+1×Dn−p with 0 < r � 1.
Decompose

z = (z0, . . . , zn) ∈ U ' D(r)p+1 × Dn−p

as
z = (z′, z′′, y) ∈ D(r)q+1 × D(r)p−q × Dn−p,

where we view y as a point of U ∩ Y ' Dn−p, and (z′′, y) as a point of U ∩ Y ′ '
D(r)p−q × Dn−p.

The coordinate chart (U , z) is adapted to X0 in the sense of §2.2, with

LogU : U r X0 −→ σ

given by

LogU =

(
log |zi|
log |t|

)
06i6p

.

We aim to establish the following result.

Lemma 3.5. — Pick χ ∈ C0
c (U ). If κ0 = 0 and q = d, then

lim
t→0

(LogU )∗(χµt) =

(∫
Y ′
χResY ′(ψ)

)
b−1
σ′ λσ′

in the weak topology of measures on σ, with σ′ the unique d-dimensional face of ∆(L )

contained in σ. Otherwise (i.e., if κ0 > 0 or q < d) (LogU )∗(χµt)→ 0.

Granted this result, let us show how to prove Theorem 3.4. For 0 < r � 1,
V := π−1(Dr) ⊂X is an compact neighborhood of X0 with a map LogV : V hyb →
∆(X ) as in Proposition 2.1. We will use

Lemma 3.6. — Let µt, t ∈ Dr be a family of probability measures on X hyb such that
µt is supported on Xt. Then limt→0 µt = µ0 if and only if limt→0(LogV )∗µt = µ0.
Here the limits are in the sense of weak convergence of measures on X hyb and ∆(X ),
respectively.

By Lemma 3.6 we must show that

(LogV )∗µt −→ µ0 =
∑
σ′

(∫
Y ′

ResY ′(ψ)

)
b−1
σ′ λσ′ ,

where σ′ ranges over d-dimensional simplices in ∆(L ). But this is easily seen to follow
from Lemma 3.5, using a partition of unity argument as in the proof of Proposition 2.1.
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Proof of Lemma 3.6. — The direct implication follows from the continuity of LogV .
For the reverse implication, assume that limt→0(LogV )∗µt = µ0 and consider the
following three subsets of C0(V ): A1 is the set of functions of the form Log∗V ϕ, where
ϕ ∈ C0(∆(X )); A2 is the set of functions of the form π∗g, where g ∈ C0(Dr); and
A3 = C0

c (V r ∆(X )) together with the constant function 1. Then the real vector
space A ⊂ C0(V ) spanned by functions of the form f1f2f3, with fi ∈ Ai is easily
seen to be an R-algebra that separates points and contains all constant functions.
By the Stone-Weierstrass Theorem, A is dense in C0(V ), so it suffices to prove that
lim
∫
fµt =

∫
fµ0 for f ∈ A. By linearity, we may assume f = f1f2f3 with fi ∈ Ai.

We may further assume f3 = 1. Write f1 = Log∗V ϕ and f2 = π∗g. Then

lim
t→0

∫
Xt

fµt = lim
t→0

g(t)

∫
Xt

ϕ ◦ LogV µt

= lim
t→0

g(t)

∫
∆(X )

ϕ (LogV )∗µt = g(0)

∫
∆(X )

ϕµ0 =

∫
fµ0,

which completes the proof. �

3.3. Proof of Lemma 3.5. — As in §3.1, we introduce the logarithmic form

Ω :=
dz0

z0
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn,

and the corresponding local trivialization Ωrel = Ω⊗ (dt/t)−1 of K log
X /D. The restric-

tion Ωt of Ωrel to the fiber Ut := Xt ∩ U is a trivializing section of KUt , explicitly
given by

Ωt =
1

p+ 1

p∑
j=0

(−1)j

bj

dz0

z0
∧ · · · ∧ d̂zj

zj
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

∣∣∣∣
Ut

.

For t ∈ D∗ close to 0, consider the map Logt : Ut → σ × (Y ∩U ) defined by

Logt = (LogU , y) =

(
log |z0|
log |t| , . . . ,

log |zp|
log |t| , zp+1, . . . , zn

)
.

Note the similarity to the situation considered in §1.4. More precisely, view U :=U ∩X
as embedded in T×Cn−p, where T =(C∗)p+1, and consider the character χ=

∏p
i=0 z

bi
i

on T . If L : T → Rp+1 is the tropicalization map, then

Logt = (λ(t)−1L(z′, z′′), y).

Each fiber Log−1
t (w, y) is a torsor for the (possibly disconnected) compact Lie group

K =
{
θ ∈ (R/Z)p+1 |∑i biθi = 0

}
;

hence carries a unique K-invariant probability measure ρt,w,y.
The analysis in §1.4 now gives the following expression for the volume form |Ωt|2

on Ut in logarithmic polar coordinates:
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Lemma 3.7. — For h ∈ C0
c (U ) and t ∈ D∗ close to 0, we have

(3.2)
∫
Ut

h|Ωt|2 = (2π)pλ(t)−p
∫
σ×(Y ∩U )

b−1
σ λσ(dw)⊗ |dy|2

∫
Log−1

t (w,y)

h ρt,w,y,

where dy := dzp+1 ∧ · · · ∧ dzn.

As before, view τ :=
∏p
i=0 z

ai
i Ωrel as a local Q-generator of L , and set

g := − log |τ |ψ ∈ C0(U ).

By definition, we have µt = (2π)−dλ(t)d|Ωt|2/|Ωt|2ψt , and hence

(3.3) (2π)d−pλ(t)p−d|t|−2κ0

∫
Ut

hµt

=

∫
σ×(Y ∩U )

|t|2
∑p
i=q+1 biwi(κi−κ0)b−1

σ λσ(dw)⊗ |dy|2
∫
he2g ρt,w,y

=

∫
σ×(Y ∩U )

e−2λ(t)−1 ∑p
i=q+1 biwi(κi−κ0)b−1

σ λσ ⊗ |dy|2
∫
he2g ρt,w,y

for every h ∈ C0
c (U ), thanks to Lemma 3.7.

We use the following change of variables. For t ∈ D∗, consider the polytope

σt :=
{

(w′, x′′) ∈ Rq+1
+ × Rp−q+

∣∣ b′ · w′ = 1, b′′ · x′′ 6 λ(t)−1
}
⊂ σ′ × Rp−q+ ⊂ Rp+1

+ ,

where b′ = (b0, . . . , bq) and b′′ = (bq+1, . . . , bp).

Lemma 3.8. — The continuous map Qt : σt → σ defined by

Qt(w
′, x′′) =

(
(1− λ(t)b′′ · x′′)w′, λ(t)x′′

)
restricts to a homeomorphism between the interior of σt and the interior of σ. Further,
its inverse maps the Lebesgue measure b−1

σ λσ on σ to the measure

(Q−1
t )∗b

−1
σ λσ =

(
1− λ(t)b′′ · x′′

)q
λ(t)p−qb−1

σ′ λ
′
σ′ ⊗ |dx′′|,

on σt, where |dx′′| is Lebesgue measure on Rp−q normalized by Zp−q.

Proof. — The first statement is elementary. To prove the second, we must make sure
to handle the “multiplicities” bσ and bσ′ correctly. Parametrize the interior of σ by
coordinates (w1, . . . , wp) using w0 = b−1

0 (1−∑p
1 biwi). By Remark 1.3 we have

bσλσ = |dw1 ∧ · · · ∧ dwp|.

Similarly, we parametrize the interiors of σ′ and σt using coordinates (w1, . . . , wq)

and (w1, . . . , wq, x
′′
q+1, . . . , x

′′
p), respectively. Then

bσ′λσ′ = |dw1 ∧ · · · ∧ dwq|.

The required formula now follows from an elementary computation. �
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Using the map Qt and the fact that κi − κ0 > 0 for i > q, it is easy to see that∫
σ

e−2λ(t)−1 ∑p
i=q+1 biwi(κi−κ0)λσ(dw) = O(λ(t)p−q).

By (3.3), it follows that

(3.4) µt(Ut) = O(λ(t)d−q|t|2κ0),

and hence µt(Ut) → 0 unless κ0 = 0 and q = d, which we henceforth assume. Given
ϕ ∈ C0(σ), our goal is now to show

(3.5)
∫
Ut

(ϕ ◦ LogU )χµt −→
(∫

σ′
ϕb−1

σ′ λσ′

)
.

(∫
Y ′
χResY ′(ψ)

)
.

Let us first express both sides of (3.5) in logarithmic polar coordinates. We start by
the left-hand side. Set f := χe2g ∈ C0(U ). By (3.3) and Lemma 3.8 we have

(3.6) (2π)d−p
∫
Ut

(ϕ ◦ LogU )χµt

= λ(t)d−p
∫

σ×(Y ∩U )

ϕ(w)e−2λ(t)−1a′′·w′′b−1
σ λσ(dw)⊗ |dy|2

∫
f ρt,w,y

=

∫
σ′×Rp−d+ ×(Y ∩U )

Ht(w
′, x′′)b−1

σ′ λσ′(dw
′)⊗ |dx′′| ⊗ |dy|2

∫
f ρt,w′,x′′,y,

where
Ht(w

′, x′′) = 1σtϕ(Qt(w
′, x′′))e−2a′′·x′′(1− λ(t)b′′ · x′′)d,

and ρt,w′,x′′,y is the same measure as ρt,w,y via the identification Qt(w′, x′′) = w.
Note that limt→0Qt(w

′, x′′) = (w′, 0), so

lim
t→0

Ht(w
′, x′′) = 1σ′×Rp−d+

ϕ(w′, 0)e−2a′′·x′′ .

Consider the tropicalization map

S : Y ′ ∩U −→ Rp−d+ × (Y ∩U )

given by S = (− log |zd+1|, . . . ,− log |zp|, y). Each fiber S−1(x′′, y) is a torsor for the
compact torus (R/Z)p−d and hence carries a unique invariant probability measure
ρx′′,y. As t→ 0, the probability measure ρt,w′,x′′,y converges weakly to ρx′′,y for any
w′ ∈ σ′.

By dominated convergence it follows that

(3.7) lim
t→0

(2π)d−p
∫
Ut

(ϕ ◦ LogU )χdµt

=

∫
σ′×Rp−d+ ×(Y ∩U )

ϕ(w′, 0)e−2a′′·x′′b−1
σ′ λσ′(dw

′)⊗ |dx′′| ⊗ |dy|2
∫
f ρx′′,y

=

(∫
σ′
ϕb−1

σ′ λσ′

)(∫
Rp−d+

e−2a′′·x′′ |dx′′|
∫
Y ∩U

|dy|2
∫
f ρx′′,y

)
.
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It only remains to compare the second factor of (3.7) to the second factor in (3.5).
To this end, we again use logarithmic polar coordinates. We have

(3.8) χResY ′(ψ) = f

p∏
i=d+1

|zi|2ai−2|dz′′|2 ⊗ |dy|2.

For d < j 6 p, set zj = e−xj+2πiθj with x′′ ∈ Rp−d+ and θ′′ ∈ (R/Z)p−d. Then

(3.9)
∫
Y ′∩U

χResY ′(ψ) = (2π)p−d
∫
Rp−d+

e−2a′′·x′′ |dx′′|
∫
Y ∩U

|dy|2
∫
f ρx′′,y,

which completes the proof of (3.5), and hence of Theorem 3.4.

4. The limit hybrid model

Let π : X → D∗ be a proper submersion, withX a connected complex manifold. As-
sume that π is meromorphic over 0 ∈ D in the sense that it admits a model π : X →D,
that is, X is a normal complex space, π is a flat proper map, and we are given an
isomorphism X ' π−1(D∗) over D∗. We say that X is an snc model (of X) if X is
smooth and the Cartier divisor X0 := π−1(0) has simple normal crossing support.
Such models always exist by Hironaka’s theorem.

To any snc model X we can associate as in §2 a hybrid space X hyb, that of course
depends on X . In this section we define a canonical hybrid space Xhyb, obtained
as the inverse limit of the X hyb, that does not have this defect. We then prove
Theorem B from the introduction.

In the projective case, we show that the both the central fiber Xhyb
0 and the closed

subset Xhyb

Dr
can be viewed as analytifications in the sense of Berkovich.

4.1. Snc models and simple blowups. — Given any two models X , X ′ of X, there
is a canonical bimeromorphic map X ′ 99K X , and we say that X ′ dominates X

if this map is a morphism. Any two models X , X ′ are dominated by a third, for
instance the normalization of the graph of X 99K X ′. By Hironaka’s theorem, any
model is dominated by an snc model. Thus the set of models forms a directed set, in
which snc models are cofinal.

Suppose X is an snc model and that X ′ is another model that dominates X via
ρ : X ′ → X . As in [KS06, Def. 22] we say that ρ is a simple blowup if it is a blowup
along a smooth, connected complex subspace W of X0 meeting transversely (or not
at all) every irreducible component of X0 that does not contain it. In this case, X ′

is also an snc model.

Lemma 4.1. — Suppose X and X ′ are snc models, and that X ′ dominates X via
ρ : X ′ →X . Then there exists a third snc model X ′′ dominating X ′, such that the
induced map X ′′ →X is a composition of simple blowups.

We are grateful to Bernard Teissier for help with the following argument.
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Proof. — By Hironaka’s version of the Chow theorem (in turn a consequence of the
flattening theorem), see [Hir75, Cor. 2], there exists a complex manifold X ′′ and a
projective bimeromorphic morphism X ′′ → X such that X ′′ dominates X ′. Since
X ′ →X is an isomorphism above X, the construction in [Hir75] further guarantees
that X ′′ → X is an isomorphism above X. Indeed, the proof proceeds by blow-
ing up well-chosen smooth centers contained in the non-flat locus of X ′ → X , see
Déf. 4.4.3 (2) in loc. cit.

We may therefore assume that X ′ →X itself is projective, and more precisely the
blowup of an ideal I cosupported on X0. By the principalization theorem for ideals,
there exists a projective bimeromorphic morphism X ′′ → X that is a composition
of simple blowups, such that the pullback of I to X ′′ is a principal ideal, see [Kol07,
Th. 3.45] or [Wło09, Th. 2.0.3]. In particular, X ′′ dominates X ′. �

4.2. Induced maps between dual complexes. — Suppose X ′ and X are snc models
with X ′ dominating X via ρ : X ′ →X . There is then an integral affine map

rX X ′ : ∆(X ′) −→ ∆(X ),

defined as follows. Consider any simplex σ′ of ∆(X ′) and let Y ′ be the corresponding
stratum. There exists a unique minimal stratum Y of X0 such that ρ(Y ′) ⊂ Y . Let
σ = σY be the corresponding simplex. Let Ei, 0 6 i 6 p (resp. E′j , 0 6 j 6 p′) be the
irreducible components of X0 cutting out Y (resp. Y ′). Then

ρ∗Ei =

p′∑
j=0

aijE
′
j ,

for 0 6 i 6 p, where aij ∈ Z>0.
We can realize the simplex σ (resp. σ′) as the subset {∑p

i=0 biwi = 1} ⊂ Rp+1
+

(resp. {∑p′

j=0 b
′
jw
′
j = 1} ⊂ Rp

′+1
+ ), where bi (resp. b′j) is the multiplicity of Ei in X0

(resp. of E′j in X ′
0 ). The restriction of rX X ′ to σ′ is then given by

(4.1) wi =

p′∑
j=0

aijw
′
j .

for 0 6 i 6 p. It is clear that rX X ′ defines a continuous, integral affine map from
∆(X ′) to ∆(X ). Further, if X , X ′ and X ′′ are snc models with X ′′ dominat-
ing X ′, and X ′ dominating X , then rX X ′ ◦ rX ′X ′′ = rX X ′′ .

In general, it may happen that ρ(Y ′) is a strict subvariety of Y , and the linear map
defining rX X ′ |σ′ could fail to be injective or surjective.

Definition 4.2. — With notation as above, we say that σ′ is active for rX X ′ if the
restriction ρ|Y ′ : Y ′ → Y is a bimeromorphic morphism and the Q-linear map defining
rX X ′ |σ′ is an isomorphism. In this case, σ′ and σ have the same dimension, and rX X ′

maps σ′ homeomorphically onto a Z-subsimplex of σ of the same dimension.

Denote by AX X ′ the union of all simplices in ∆(X ′) that are active for rX X ′ .
Our goal in this subsection is to prove the following result.

Proposition 4.3. — Let X and X ′ be snc models, with X ′ dominating X . Then
rX X ′ maps AX X ′ homeomorphically onto ∆(X ).
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Corollary 4.4. — The images under rX X ′ of the active simplices in ∆(X ′) form a
simplicial Z-subdivision of ∆(X ). As a consequence, there exists a unique, Z-PA map
iX ′X : ∆(X )→ ∆(X ′) such that iX ′X (∆(X )) = AX X ′ and rX X ′ ◦ iX ′X = id.

When π, π′ and ρ are projective, one can prove Proposition 4.3 using the algebraic
tool of valuations. Here we follow an ad hoc approach, based on Lemma 4.1.

Lemma 4.5. — Suppose X , X ′ and X ′′ are snc models, with X ′ dominating X

and X ′′ dominating X ′. Let σ′′ be a simplex of ∆(X ′′), and let σ′ be the smallest
simplex of ∆(X ′) containing rX ′X ′′(σ′′). Then σ′′ is active for rX X ′′ iff σ′′ is active
for rX ′X ′′ and σ′ is active for rX X ′ . As a consequence,

AX X ′′ = AX ′X ′′ ∩ r−1
X ′X ′′(AX X ′).

Proof. — To ease notation, set r′ := rX ′X ′′ and r := rX X ′ . Let σ be the smallest
simplex of ∆(X ) containing r(σ′). Write Y , Y ′ and Y ′′ for the strata of X0, X ′

0

and X ′′
0 corresponding to σ, σ′ and σ′′, respectively. The restrictions r′|σ′′ : σ′′ → σ′

and rσ′ : σ′ → σ are given byQ-linear maps, and we have induced morphisms Y ′′ → Y ′

and Y ′ → Y .
First suppose that σ′′ is active for r′ and σ′ is active for r. Then r′|σ′′ and r|σ′

are given by Q-linear isomorphisms; hence so is the composition rX X ′′ |σ′′ . Similarly,
the maps Y ′′ → Y ′ and Y ′ → Y are bimeromorphic morphisms; hence so is the
composition Y ′′ → Y . It follows that σ′′ is active for rX X ′′ .

Conversely, suppose σ′′ is active for rX X ′′ . Since the map Y ′′ → Y is a bimeromor-
phic morphism, the map Y ′′ → Y ′ (resp. Y ′ → Y ) must be injective (resp. surjective).
In particular, dimY ′′ 6 dimY ′ and dimY 6 dimY ′. Similarly, since the Q-linear map
defining rX X ′′ |σ′′ = r|σ′ ◦ r′|σ′′ is an isomorphism, the Q-linear map defining r′|σ′′
(resp. r|σ′) must be injective (resp. surjective). In particular, dimσ′′ 6 dimσ′ and
dimσ 6 dimσ′. Now

dimY ′′ + dimσ′′ = dimY ′ + dimσ′ = dimY + dimσ = n− 1,

so we infer that dimY ′′ = dimY ′ = dimY and dimσ = dimσ′ = dimσ′′. This further
implies that the maps Y ′′ → Y ′ and Y ′ → Y are bimeromorphic morphisms, and that
the Q-linear maps defining r′|σ′′ and r|σ′ are isomorphisms. Hence σ′′ and σ′ are
active for r′ and r, respectively. �

Lemma 4.6. — Suppose X , X ′ and X ′′ are snc models, with X ′ dominating X

and X ′′ dominating X ′.
(a) If rX X ′′ : AX X ′′ → ∆(X ) is surjective, then so is rX X ′ : AX X ′ → ∆(X ).
(b) If rX X ′′ : AX X ′′ → ∆(X ) is injective and rX ′X ′′ : AX ′X ′′ → ∆(X ′) is

surjective, then rX X ′ : AX X ′ → ∆(X ) is injective.
(c) If rX X ′ : AX X ′ → ∆(X ) and rX ′X ′′ : AX ′X ′′ → ∆(X ′) are both surjective,

then so is rX X ′′ : AX X ′′ → ∆(X ).
(d) If rX X ′ : AX X ′ → ∆(X ) and rX ′X ′′ : AX ′X ′′ → ∆(X ′) are both injective,

then so is rX X ′′ : AX X ′′ → ∆(X ).

J.É.P. — M., 2017, tome 4



Tropical and non-Archimedean limits of volume forms 111

Proof. — This is formal consequence of the relations rX X ′′ = rX X ′ ◦ rX ′X ′′

and AX X ′′ = AX ′X ′′ ∩ r−1
X ′X ′′(AX X ′). For example, let us prove (a). Pick any

point w ∈ ∆(X ). The assumption implies that we can find w′′ ∈ AX X ′′ with
rX X ′′(w′′) = w. Then w′ := rX ′X ′′(w′′) ∈ AX X ′ and rX X ′(w′) = w. Thus (a)
holds. The proofs of (b)–(d) are similar and left to the reader. �

Lemma 4.7. — The assertions of Proposition 4.3 hold when ρ is a simple blowup.

Proof. — This is well known (see e.g. [KS06, p. 381]) but we supply a proof for the
convenience of the reader. To simplify notation, we set r := rX X ′ , A := AX X ′ ,
∆ := ∆(X ) and ∆′ := ∆(X ′).

Let W be the center of the blowup ρ, and Z the smallest stratum of X0 contain-
ing W . Let Ei, i ∈ I be the irreducible components of X0, J ⊂ I the subset such
that Z is an component of EJ , and σZ the simplex defined by Z. Let E′i, i ∈ I be
the strict transform of Ei to X ′. Finally, let E′ be the exceptional divisor of ρ. It
corresponds to a vertex v′ = v′E′ of ∆′.

First assume W ( Z. In this case, ∆′ is obtained from ∆ by “raising a tent over
the simplex σZ”. Let us be more precise. Consider a simplex σ of ∆, corresponding to
a stratum Y of X0. By the definition of a simple blowup, W meets every irreducible
component of X0 transversely (if at all). It follows that Y cannot be contained in W ,
so ρ is a biholomorphism above a general point of Y . Thus the strict transform Y ′ of Y
defines a stratum of X ′

0 as well as a simplex σ′ of ∆′, whose vertices correspond to the
strict transforms of the vertices of σ. In this case, r maps σ′ onto σ, and ρ : Y ′ → Y

is a bimeromorphic morphism, so σ′ is active for r.
This proves that r : A→ ∆ is surjective. To prove injectivity, consider a stratum Y ′

of X ′
0 , with corresponding simplex σ′ of ∆′. If Y ′ is not contained in E′, then ρ is

a biholomorphism at the general point of Y ′, Y := ρ(Y ′) is a stratum of X0 of
the same dimension as Y ′, and Y ′ is the strict transform of Y . Thus we are in the
situation above. On the other hand, if Y ′ is contained in E′, then there exist irreducible
components Ei, i ∈ J of X0, having strict transforms E′i, i ∈ J , such that σ′ has v′
and v′i, i ∈ J as vertices. Since W is not a stratum of X0, the smallest stratum Y

containing ρ(Y ′) is cut out by Ei, i ∈ J . It follows that r maps the simplex σ′ onto the
lower-dimensional simplex σ, so σ′ is not active for r. Hence r : A→ ∆ is injective.

Now assume W = Z is stratum of X0, defining a simplex σ with vertices vi, i ∈ J .
In this case, ∆′ is obtained from ∆ by a barycentric subdivision of the simplex σZ .
Again, let us be more precise. The same argument as above shows that if Y is a
stratum of X0 that is not contained in W , and Y ′ is the strict transform, then the
simplex σ′Y ′ is active for r and r(σ′Y ′) = σY . Further, σ′Y ′ is the unique simplex in X ′

0

that is active for r and whose image under r meets the interior of σY .
It remains to consider strata of X0 contained in Z. This becomes a toroidal calcu-

lation. Let Y be such a stratum, cut out by Ei, i ∈ K, where J ⊂ K. Then ρ−1(Y )

consists of |J | strata Y ′i , i ∈ J , each cut out by E′ and E′j , j ∈ K r {i}. The restric-
tion ρ|Y ′i : Y ′i → Y is a bimeromorphic morphism, and the corresponding simplex σ′i
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is active for r and maps homeomorphically onto a simplex contained in σY . Further,
these simplices r(σ′i) have disjoint interiors and cover σY . Finally, if Y ′ is a stratum
of X ′

0 contained in E = ρ−1(Z), then Y = ρ(Y ′) is a stratum contained in Z, hence
Y ′ = Y ′i is one of the strata above. This completes the proof. �

Proof of Proposition 4.3. — Since rX X ′ is continuous, AX X ′ is compact, and ∆(X )

is Hausdorff, it suffices to prove that rX X ′ : AX X ′ → ∆(X ) is bijective.
Using Lemma 4.6 (c)–(d) and Lemma 4.7, one proves by induction on the number

of blowups that rX X ′ : AX X ′ → ∆(X ) is bijective when X ′ →X is a composition
of simple blowups.

Now consider the general case. Using Lemma 4.1 we find an snc model X ′′ dom-
inating both X and X ′ and such that the morphism X ′′ → X is a composition
of simple blowups. Thus rX X ′′ : AX X ′′ → ∆(X ) is bijective. By Lemma 4.6 (a), it
follows that rX X ′ : AX X ′′ → ∆(X ) is surjective. Since X and X ′ were arbitrary
snc models with X ′ dominating X , it follows that rX ′X ′′ : AX ′X ′′ → ∆(X ) is
also surjective. It now follows from Lemma 4.6 (b) that rX X ′ : AX X ′′ → ∆(X ) is
injective, which completes the proof. �

4.3. Induced maps between hybrid spaces. — To any snc model X of X we associ-
ated in §2 a hybrid space X hyb = X

∐
∆(X ). Let us briefly recall the topology on

X hyb in the present context. Extend π : X → D∗ to a map

π : X hyb −→ D

by declaring π = 0 on ∆(X ). For 0 < r 6 1, define XDr := π−1(Dr). The construction
in §2 yields, for 0 < r � 1, a tropicalization map

logX : XDr −→ ∆(X )

uniquely defined up to an additive error term of size O((log |t|)−1). The topology
on X hyb is the coarsest one such that logX is continuous, π is continuous, and the
inclusion X ⊂X hyb is an open embedding.

Now suppose X ′ and X are snc models, with X ′ dominating X via ρ : X ′ →X .
Define the map ρhyb : X ′hyb →X hyb to be the identity on X ⊂X ′ and equal to the
map rX X ′ on ∆(X ′) defined in §4.2.

Proposition 4.8. — The map ρhyb is continuous and surjective. Further, we have

(4.2) LogX ◦ρhyb = rX X ′ ◦ LogX ′ +O((log |t|)−1)

on XD∗r for 0 < r � 1.

Proof. — Surjectivity follows from Proposition 4.3, and continuity from (4.2) after
unwinding the definitions. It remains to establish (4.2). Consider any point ξ′ ∈ X0

and set ξ = π(ξ′). We can find adapted coordinate charts (U ′, z′) at ξ′ on X ′ and
(U , z) at ξ on X such that ρ(U ′) ⊂ U and such that the following holds: t =

∏p
i=0 z

bi
i

in U , t =
∏p′

j=0(z′j)
b′j in U ′ and ρ∗zi =

∏
j(z
′
j)
aij . Since the map rX X ′ is given

by (4.1), the result now follows from Proposition 2.1. �
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4.4. The limit hybrid space. — Proposition 4.8 allows us to introduce

Definition 4.9. — The hybrid space associated to X is the topological space

Xhyb := lim←−
X

X hyb,

where X runs over all snc models of X.

Here Xhyb is equipped with the inverse limit topology. The maps π : X hyb → D
define a continuous and proper map

π : Xhyb −→ D.

We can identify X with the open subset π−1(D∗). Similarly, the compact subset
Xhyb

0 := π−1(0) can be identified with lim←−X
∆(X ). For every snc model X we have,

by the definition of the inverse limit, a continuous proper map rX : Xhyb →X hyb. We
also have an embedding iX : ∆(X )→ Xhyb of ∆(X ) onto a closed subset of Xhyb

0 .
It satisfies rX ◦ iX = id on ∆(X ).

Remark 4.10. — It is not clear how to define a map Log : Xhyb → lim←−X
∆(X ), since

each tropicalization map LogX is only defined on XD∗(r), where r = rX depends
on X . See §4.6 for a substitute in the projective case.

4.5. Convergence of measures. — For any locally compact Hausdorff space Z, let
M (Z) denote the space of signed Radon measures on Z. By definition we haveXhyb =

lim←−X
X hyb, and this induces a homeomorphism

M (Xhyb)
∼−→ lim←−

X

M (X hyb).

Theorem 3.4 now implies the following result, which is equivalent to Corollary B in
the introduction.

Corollary 4.11. — Let π : X → D∗ be a proper submersion that is meromorphic at
0 ∈ D, and let ψ be a continuous metric on KX/D∗ with analytic singularities. Then
there exists a positive measure µ0 on Xhyb

0 such that if µt := λ(t)de2ψt/|t|2κmin(2π)d,
then limt→0 µt = µ0 in the sense of weak convergence of measures on Xhyb. Further,
there exists a snc model X → D and a Q-line bundle L on X extending KX/D∗ such
that ψ extends to a smooth metric on L , and

µ0 :=
∑
σ

(∫
Yσ

ResYσ (ψ)

)
b−1
σ λσ,

where σ ranges over the d-dimensional faces of ∆(L ). Here λσ denotes normalized
Lebesgue measure on σ and bσ = gcdi∈J bi, where X0 =

∑
i biEi and Ei, i ∈ J are

the divisors defining σ.
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4.6. The projective case. — Now consider the case when X → D∗ is projective.(5)

As we now explain, we can then view Xhyb and its central fiber as analytic spaces.
The projectivity assumption means that X can be viewed as a smooth subspace

PN ×D∗, defined by homogeneous polynomials with coefficients that are holomorphic
functions on D∗ and meromorphic at 0 ∈ D.

We can view these coefficients as complex formal Laurent series, that is, elements
of the field K := C((t)). Given r ∈ (0, 1), this field admits a natural non-Archimedean
absolute value that is trivial on C∗ and normalized by |t| = r. In other words, we have
|∑j ajt

j | = rmin{j|aj 6=0}.
Further, the equations defining X now define a smooth projective variety XK over

the field K. To this variety we can associate a non-Archimedean space Xan
K , namely

the Berkovich analytification of XK with respect to non-Archimedean norm on K.
This is a connected and locally connected compact (Hausdorff) space.

We claim that Xhyb
0 is homeomorphic on Xan

K . To see this, we note that, for the
same reasons as above, every projective snc model X → D of X defines a projective
snc model XR ofXK over the valuation ring R = C[[t]] ofK. Further, the dual complex
∆(X ) of X can be identified with the dual complex ∆(XR) of XR. Now, there exists
a canonical retraction map rX : XK → ∆(XK), and we have

(4.3) Xan
K

∼−→ lim←−
X projective snc

∆(X ).

This was announced in [KS06, Th. 10, p. 383]; see e.g. [BFJ16, Cor. 3.2] for details.
On the other hand, Lemma 4.1 implies that in Xhyb

0 = lim←−X
∆(X ), we may take the

limit over projective snc models. This implies that Xhyb
0 ' Xan

K .
Next we analyze the space Xhyb itself, using the appendix. Fix 0 < r < 1 and

consider the Banach ring

Ar :=
{
f =

∑
α∈Z cαt

α ∈ C((t))
∣∣ ‖f‖hyb :=

∑
α∈Z ‖cα‖hybr

α < +∞
}
,

where ‖ · ‖hyb is the maximum of the usual norm and the trivial norm on C. The
Berkovich spectrum M (Ar) of Ar is homeomorphic to Dr.

Every function that is holomorphic on D∗ and meromorphic at 0 ∈ D defines an
element of Ar. Hence we can define the base change XAr ⊂ PNAr using the same
homogeneous equations as above. Then XAr is a scheme of finite type over Ar,
so its analytification XAn

Ar
is a compact Hausdorff space with a continuous map πr

onto (SpecAr)
An = M (Ar) ' Dr. (In Appendix A.6, this analytification is denoted

by Xhyb, but here we use XAn
Ar

for clarity.) We have a homeomorphism

(4.4) τ∗ : π−1
r (D∗r)

∼−→ XD∗r
∼−→ Xhyb

D∗r
and another homeomorphism
(4.5) τ0 : π−1(0)

∼−→ Xhyb
0

∼−→ Xan
K .

We glue these together to a map τ : XAn
Ar
→ Xhyb

Dr
.

(5)In the projective case, the existence of the spaces X hyb and Xhyb was observed by Kontsevich
and Soibelman, see [KS06, p. 383].
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Proposition 4.12. — The map τ : XAn
Ar
→ Xhyb

Dr
is homeomorphism.

Proof. — It follows from (4.4) and (4.5) that τ is a bijection. Since XAn
Ar

is compact
and Xhyb

Dr
is Hausdorff, it only remains to prove that τ is continuous. It suffices to

show that the corresponding map τX : XAn
Ar
→ X hyb

Dr
is continuous for a given snc

model X . For this, in turn, it suffices to show that LogX ◦τX is continuous near the
central fiber.

Consider a coordinate chart (U , z) adapted to X0 in the sense of §2.2. Let
E0, . . . , Ep be the irreducible components of X0 intersecting U . Let Û ⊂ XAn

Ar
be

the set of seminorms satisfying |zi| < 1 for 0 6 i 6 p. Then we have

LogX ◦τX =

(
log |zi|∞
log |t|∞

)
06i6p

+O((log |t|∞)−1)

= (log |zi|−1)06i6p +O((log |t|∞)−1)

on Û r π−1(0). Now the function (log |zi|−1)i is continuous on Û with values in the
simplex σ = Rp+1

+ ∩ {∑p
0 biwi = 1} ⊂ ∆(X ). This completes the proof, since we can

cover a neighborhood of the central fiber in XAn
Ar

with sets of the type Û . �

5. Berkovich spaces and skeleta

Our goal in this section and the next is to study the limit measure µ0 appearing in
Corollary B in more detail. This measure lives on a Berkovich space and its support
has an integral piecewise affine structure.

In this section we undertake a fairly general study of metrics on the canonical
bundle of a projective variety defined over a discretely valued field of residue char-
acteristic zero. To such a metric is associated a skeleton, a subset of the underlying
Berkovich space. In the setting of Corollary B, the skeleton will be the support of the
measure µ0.

The material here has overlap with [MN15, NX16b] and also draws on [Tem16],
but we present some details for the convenience of the reader.

Until further notice, X denotes a smooth, proper, geometrically connected variety
over the field K := k((t)) of formal Laurent series with coefficients in an algebraically
closed field k of characteristic 0. We set n := dimX and denote by Xan the Berkovich
analytification of X with respect the non-Archimedean absolute value | · | = rord0

on K, for some fixed r ∈ (0, 1).
While Xan comes equipped with a structure sheaf, we shall merely consider it as a

topological space. Since X is proper, Xan is compact. There is a natural continuous
surjective map Xan → X such that the preimage of a (scheme) point ξ ∈ X is
identified with the set of real-valued valuations(6) v on the residue field of ξ satisfying
v|k∗ ≡ 0 and v(t) = 1. In particular, the preimage Xval of the generic point of X
consists of real-valued valuations of the function field F (X).

(6)Here we use additive terminology; the multiplicative norm associated to v is rv .
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5.1. Models. — Set S := Spec k[[t]]. Following the convention of [MN15], we define a
model of X to be a normal separated scheme X , flat and of finite type (but possibly
non-proper) over S, together with an identification of the generic fiber of the structure
morphism π : X → S with X.

For any two models X , X ′, the identifications of the generic fibers with X induces
a unique birational map X ′ 99K X . We say that X ′ dominates X if this map is a
proper morphism. Any two models can be dominated by a third.

For any model X and every irreducible component E of X0, we set bE := ordE(t),
and view the divisorial valuation

vE := b−1
E ordE

as an element of Xval ⊂ Xan. The set of such points is a dense subset X÷ ⊂ Xan.
We usually denote by X0 =

∑
i∈I biEi the irreducible decomposition of the central

fiber, and write EJ :=
⋂
i∈J Ei for J ⊂ I. We say that X is snc if (X is regular and)

X0,red has simple normal crossing support. Since k has characteristic 0, this means
that each non-empty EJ is smooth over k, of codimension |J | in X .

More generally, a model X is toroidal if X rX0 ⊂X is a strict toroidal embedding
in the sense of [KKMSD73], i.e., is formally isomorphic, at each closed point of X0,
to the inclusion of Gn+1

m,k in a toric k-variety, and such that each Ei is normal (which
then implies that each non-empty EJ is normal).

Every model X contains a largest snc Zariski open subset Xsnc ⊂ X . By
Hironaka’s theorem, X is dominated by an snc model X ′ such that the induced
birational morphism µ : X ′ →X is projective, and an isomorphism over Xsnc.

If X is a model of X, the set X an ⊂ Xan of semivaluations that admit a center
(or reduction) on X0 is a closed subset; it can be viewed as the generic fiber of a
suitable formal scheme [MN15, 2.2.2]. By the valuative criterion of properness, we
have X an = X ′an for each proper morphism of models X ′ → X , and X an = Xan

if X is proper (over S, that is). The reduction map cX : X an → X0, taking a
semivaluation to its center, is anticontinuous.(7)

The set X ÷ := X an∩X÷ consists of all divisorial valuations v on F (X ) = F (X)

that are centered on X0, trivial on k and such that v(t) = 1.

5.2. Model metrics. — If L is a line bundle on X, a model L of L is a Q-line
bundle L on a proper model X , together with an identification L |X = L. It defines
a model metric φL on the Berkovich analytification Lan of L. If L ′ is another model
of L, determined on a proper model X ′ of X, then φL = φL ′ if and only if the
pull-backs of L and L ′ to some higher model X ′′ coincide.

A model of OX is given by a Q-Cartier divisor D supported on the central fiber of
a proper model X ; the corresponding model metric will then be identified with the
model function φD : Xan → R defined by φD(v) = v(D). It satisfies
(5.1) inf

Xan
φD = min

E
φD(vE),

where E runs over the irreducible components of X0.

(7)Anticontinuity means that the inverse image of an open set is closed.
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5.3. Log canonical divisors. — If X is a regular model, π : X → S is a locally
complete intersection morphism, so the dualizing sheaf ωX /S is a well-defined line
bundle (see [MN15, §4.1] for a more detailed discussion). For an arbitrary (normal)
model, we may thus introduce the relative canonical divisor (class) KX /S as the Weil
divisor class on X such that OXreg

(KX /S) = ωXreg/S . We then define:
(i) the canonical divisor KX := KX /S + π∗KS ;
(ii) the log canonical divisor K log

X := KX + X0,red;
(iii) the relative log canonical divisor

K log
X /S := K log

X − π∗K log
S = KX /S + X0,red −X0.

Note that K log
X is Q-Cartier if and only if K log

X /S is Q-Cartier.

Example 5.1. — Assume that X is snc, and write as above X0 =
∑
i∈I biEi. Pick a

closed point ξ ∈ X0, and denote by J = {0, . . . , p} ⊂ I the set of components of X0

passing through ξ. We may choose a regular system of parameters z0, . . . , zn ∈ OX ,ξ

such that zi is a local equation of Ei for 0 6 i 6 p, i.e., t = uzb00 . . . z
bp
p for some unit

u ∈ O∗X ,ξ. The logarithmic form

Ω :=
dz0

z0
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

is then a local generator of K log
X , and induces a local generator

Ωrel := Ω⊗ (dt/t)−1

of K log
X /S .

Remark 5.2. — When X is snc, OX (K log
X /S) coincides with the relative logarith-

mic dualizing sheaf ωX +/S+ of [NX16b, (3.2.2)]. When X is regular, OX (KX ) is
described in [dFEM11, App.A] as the determinant of the locally free sheaf Ω′X /k ⊂
Ω1

X /k of special differentials, corresponding to derivations D of OX such that D(f) =

f ′(t)dt for f ∈ k[[t]].

5.4. Log discrepancies. — We refer to [dFKX12], [NX16b, §2.2] and [KNX15] for
more details and references on what follows.

Let X be a model with K log
X Q-Cartier, and recall that X ÷ denotes the set of

divisorial valuations v on X such that v(t) = 1. We define the log discrepancy AX (v)

as the log discrepancy of v with respect to the pair (X ,X0,red), in the usual sense of
the Minimal Model Program.

The log discrepancy function AX : X ÷ → Q is characterized by the following
property: if X ′ is a model over X with proper birational morphism ρ : X ′ → X ,
then

(5.2) K log
X ′ = ρ∗K log

X +
∑
E

bEAX (vE)E,

with E running over the irreducible components of X ′
0 .
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We say that a model X is log canonical (lc for short) and divisorially log termi-
nal (dlt) if the pair (X ,X0,red) has the corresponding property, in the sense of the
Minimal Model Program.

Since the generic fiber X is smooth, a model X is thus lc if and only if K log
X is

Q-Cartier, with log discrepancy function AX : X ÷ → Q taking non-negative values.
If X is lc, then the center cX (v) ∈ X0 of a valuation v ∈ X ÷ with AX (v) = 0 is
called an lc center of X , and an lc model X is dlt if and only if Xsnc contains all
lc centers. The irreducible components of each non-empty EJ are then normal, with
generic point contained in Xsnc [Kol13, 4.16].

Example 5.3. — Assume that dimX = 1, and let X be a dlt model. Each irreducible
component Ei is then a smooth curve. At a point ξ ∈ Ei ∩ Ej , i 6= j, X is snc. At a
closed point ξ ∈ E̊i, X is either regular, or has a cyclic quotient singularity.

Example 5.4. — If X is toroidal, then X is lc, and X is dlt if and only if it is snc.
Following [dFKX12, KNX15], we could say that an lc model X is qdlt (for quotient
of dlt) if its lc centers are contained in a toroidal open subset U ⊂X .

Example 5.5. — If X is any model such that X0 has klt singularities (and hence is
reduced), then X is dlt, by inversion of adjunction.

5.5. The skeleton of a dlt model. — The dual complex ∆(X ) of an snc model X

is defined as the dual complex of the snc divisor X0 =
∑
i∈I biEi, as in §2.1. It is

equipped with a natural integral affine structure, in which the face σ corresponding
to a component Y of a non-empty EJ is identified with the simplex

σ =
{
w ∈ RJ+ |

∑
i∈J biwi = 1

}
,

in such a way that Mσ = ZJ .
As explained in [BFJ16, §3] and [MN15, §3], there is a natural embedding

embX : ∆(X ) −→X an

that takes a point w ∈ σ to the corresponding monomial valuation. In particular, the
vertex corresponding to Ei is sent to the divisorial valuation vEi = b−1

i ordEi . The
value group of a valuation v = embX (w), w ∈ σ, is given by

v(F (X)∗) = Mσ(w) := {f(w) | f ∈Mσ}.

Further, if w ∈ σ̊, then Yσ is the closure of the center of embX (w).
The resulting subspace Sk(X ) := embX (∆X) ⊂X an ⊂ Xan is called the skeleton

of X . It is naturally a Z-PA space, the Z-PA functions on Sk(X ) being precisely the
restrictions of model functions φD determined by a Cartier divisor D on some proper
modification X ′ →X .

We further have a natural retraction rX : X an → Sk(X ), mapping a valuation v
centered on X0 to the monomial valuation rX (v) taking the same values on the Ei’s.
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These retractions induce a homeomorphism

Xan ∼−→ lim←−
X

Sk(X ),

where X runs over all proper (or projective) snc models, compare (4.3).
If X ′ →X is a proper morphism of snc models, then, by [MN15, 3.1.7],

Sk(X ) ⊂ Sk(X ′) ⊂X ′an = X an,

the first inclusion being Z-PA. Further,⋃
X snc

Sk(X ) ⊂ Xan

coincides with the set of (quasi)monomial, or Abhyankar, valuations.
For a dlt model X , the dual complex ∆(X ) and skeleton Sk(X ) ⊂ Xan are

simply defined as those of Xsnc, cf. [NX16b]. The retraction rX : X an → Sk(X ) can
be defined as above when X is Q-factorial, but its existence is otherwise unclear
(at least to us!).

By [KKMSD73], any toroidal model X has a dual complex ∆(X ) endowed with
a natural integral affine structure. This dual complex is canonically realized as a sub-
space Sk(X ) ⊂ Xan, for instance by setting Sk(X ) := Sk(X ′) for any toroidal
modification X ′ → X with X ′ snc. Thus Sk(X ) is equipped with a Z-PA struc-
ture.

5.6. From log discrepancies to Temkin’s metric. — As noted in [FJ04, BFJ08,
JM12] in increasing order of generality, log discrepancy functions extend in a natural
way to Berkovich spaces. More precisely, let X be any model of X such that K log

X

is Q-Cartier, with log discrepancy function AX : X ÷ → Q. For each snc model X ′

properly dominating X , a simple computation going back (at least) to [Kol97,
Lem. 3.11] shows the following:

(i) the restriction of AX to Sk(X ′) is Z-affine on each face of ∆(X ′);
(ii) we have AX > AX ◦ rX ′ , the inequality being strict outside Sk(X ′).

We may thus extend AX to an lsc function AX : X an → [0,+∞] by setting

(5.3) AX (v) := sup
X ′

AX (rX ′(v))

for any v ∈ X an. When X is dlt, the log discrepancy function AX determines the
skeleton as follows.

Proposition 5.6. — If X is dlt, then Sk(X ) = {v ∈X an | AX (v) = 0}.

Lemma 5.7. — Assume that X is lc, and pick v ∈X an with AX (v) = 0. Then cX (v)

is an lc center of X .

Proof. — We claim that, for every sufficiently high snc model X ′ proper over X ,
v′ := rX ′(v) and v have the same center on X . Indeed, the center of v on X ′ is a
specialization of that of rX ′(v), and hence cX (v) ∈ cX (rX ′(v)). On the other hand,
we have limX ′ rX ′(v) = v. Since cX : X an →X0 is anticontinuous, c−1

X ({cX (v)}) is
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open, and hence contains v′ := rX ′(v) for some snc model X ′ proper over X . As a
result, cX (v′) is a specialization of cX (v), and the claim follows.

By (5.3), we have AX (v′) = 0, and it is thus enough to prove the result for
v′ ∈ Sk(X ′). If σ is the unique face of ∆(X ′) containing v′ in its interior, then
AX ≡ 0 on σ, since AX is non-negative and affine on σ. For any divisorial point w
in the relative interior of σ, we thus have AX (w) = 0 and cX ′(v′) = cX ′(w), which
shows that cX (v′) = cX (w) is an lc center. �

Proof of Proposition 5.6. — When X is snc, the result is a direct consequence of (i)
and (ii) above. When X is dlt, we have by definition

Sk(X ) = Sk(Xsnc) ⊂X an
snc ⊂X an,

and AX =AXsnc on X an
snc. It is thus enough to show that any v∈X an with AX (v)=0

belongs to X an
snc, i.e., satisfies cX (v) ∈Xsnc. But cX (v) is an lc center by Lemma 5.7,

and hence cX (v) ∈Xsnc by definition of dlt singularities. �

Let X be a proper model with K log
X /S Q-Cartier. Viewed as a Q-line bundle, the

latter is then a model of KX , and hence defines a model metric φKlog
X /S

on Kan
X .

Further, (5.2) shows that the lsc metric

(5.4) AX := φKlog
X /S

+AX

on Kan
X is independent of X . This is a special case of Temkin’s canonical metrization

of the canonical bundle [Tem16].(8) The weight function of [MN15] associated to a
pluricanonical form ω ∈ H0(X,mKX) is the function AX − 1

m log |ω| on Xan.

5.7. The skeleton of a metric on KX . — The purpose of this section is to introduce
and study a slight generalization of the Kontsevich–Soibelman skeleton introduced
in [KS06] and further analyzed in [MN15, NX16b].

Definition 5.8. — If ψ is a continuous (or usc) metric on Kan
X , set κ := AX −ψ and

κmin := infXan κ. The skeleton of ψ is the compact set

Sk(ψ) = {x ∈ Xan | κ(x) = κmin} .

Note that κ is an lsc function Xan → (−∞,+∞], and hence achieves its infimum.

Definition 5.9. — Let L be a model of KX determined on a proper dlt model X .
We denote by ∆(L ) the subcomplex of ∆(X ) such that a face σ of ∆(X ) is in ∆(L )

if and only if each vertex of σ achieves mini κ(vi) with κ = AX − φL .

Concretely, the values κ(vi) are computed as follows: we have

K log
X /S = L +

∑
i∈I

aiEi

(8)That we obtain Temkin’s metric follows from [Tem16, Th. 8.1.2]. Note that Temkin uses mul-
tiplicative terminology.
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with ai ∈ Q, and κ(vEi) = ai/bi. Note that each face of ∆(X ) contains at most one
maximal face of ∆(L ).

Proposition 5.10. — Assume that ψ is a model metric on Kan
X , determined by

a model L of KX on a proper dlt model X of X. Then Sk(ψ) ⊂ Sk(X ), and
κ = AX − ψ is affine on each face of ∆(X ). In particular,

(5.5) κmin = min
i
κ(vi),

where vi runs over the vertices in ∆(X ), and Sk(ψ) is the subset of Sk(X ) ⊂ Xan

corresponding to the subcomplex ∆(L ) of ∆(X ).

Proof. — Since the relative log canonical divisor K log
X /S and L are both models

of KX , D := K log
X /S −L is a Q-Cartier divisor supported on X0. The corresponding

model function φD satisfies κ = AX + φD, which shows that κ|Sk(X ) = φD|Sk(X ) is
affine on each face of ∆(X ). Now pick v ∈ Sk(ψ). By (5.1), we get

κ(v) = AX (v) + φD(v) > inf φD = min
i
φD(vi) = min

i
(AX + φD)(vi) > inf

Xan
κ.

It follows that AX (v) = 0, and hence v ∈ Sk(X ), by Proposition 5.6. �

5.8. Residual boundaries. — The following construction plays a crucial role for the
understanding of the limit measure appearing in Corollary B.

Consider a model metric L of KX defined on a proper dlt model X . Follow-
ing §3.1 we explain how to associate a subklt pair (Y,BL

Y ) to each stratum Y of X0

corresponding to a maximal simplex in ∆(L ).
Let us first recall a few facts about adjunction. When X is an snc model, each

stratum Y comes with a boundary BY :=
∑
i/∈JY Ei ∩Y . Here (Y,BY ) is log smooth,

and

(5.6) K log
X /S

∣∣
Y

= K(Y,BY ) := KY +BY ,

the identification being provided by Poincaré residues. When X is merely dlt, each
stratum Y is normal, and comes with a canonically defined effective Q-divisor BY
such that (Y,BY ) is dlt and still satisfies (5.6) (cf. [Kol13, 4.19]). We have

BY =
∑
i/∈JY

Ei ∩ Y +B′Y ,

where B′Y is an effective Q-divisor supported in the complement of Xsnc.

Example 5.11. — For each i, Ei∩(X rXsnc) contains finitely many prime divisors Fik
of Ei. At the generic point of Fik, X has cyclic quotient singularities, and

BEi =
∑
j 6=i

Ej ∩ Ei +
∑
k

(
1− 1

mik

)
Fik

with mik the order of the corresponding cyclic groups, cf. [Kol13, 3.36.3].
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Now let ψ be a model metric on Kan
X , determined by a model L of KX on a proper

dlt model X of X. Introduce as before the function κ := AX − ψ on Xan, and note
that the Q-Cartier divisor

D := K log
X /S −L − κminX0 =

∑
i

(κ(vEi)− κmin)biEi

is effective.

Lemma 5.12. — If Y is a stratum of X0 corresponding to a face σ of ∆(L ), then
Y 6⊂ suppD. It follows that the Q-Cartier divisor

BL
Y := BY −D|Y

is well-defined, and we have a canonical identification L |Y = K(Y,BL
Y ) as Q-line

bundles. Further, if σ is a maximal face of ∆(L ), then the pair (Y,BL
Y ) is subklt.

We emphasize that BL
Y is not effective in general.

Proof. — The first two points are clear. When σ is a maximal face, each Ei meeting Y
satisfies κ(vEi) > κmin. As a result, D|Y contains each lc center Ei ∩ Y of (Y,BY ),
which yields the last assertion. �

5.9. Skeleta and base change. — Now we study how skeleta of snc models and of
metrics behave under base change.

For m ∈ Z>0 consider the Galois extension K ′ := k((t1/m)) of K = k((t)), with
Galois group G = Z/mZ, and set X ′ = XK′ . Then G acts on X ′an and the canonical
map p : X ′an → Xan induces a homeomorphism

X ′an/G
∼−→ Xan.

If X is a model of X, then its normalized base change yields a model X ′ of X ′
with a finite morphism ρ : X ′ → X . If D is a Q-divisor on X defining a model
function φD on Xan, then

(5.7) φρ∗D = mp∗φD.

When X is an snc model, X ′ is toroidal, by [KKMSD73, pp. 98–102]. The following
rather detailed description will be useful later on.

Lemma 5.13. — We have p−1(Sk(X )) = Sk(X ′). Further, for each face σ of ∆(X ),
there exist positive integers eσ, fσ and gσ satisfying

eσ =
m

gcd(m, bσ)
and fσgσ = gcd(m, bσ)

and such that the following properties hold: p−1(σ) is a union of gσ faces σ′α of ∆(X ′),
and these are permuted by G. For each α:

(a) p induces a Q-affine isomorphism σ′α
∼→ σ;

(b) p induces a generically finite map Yσ′α → Yσ, of degree fσ;
(c) mp∗Mσ ⊂Mσ′α

, and [Mσ′α
: mp∗Mσ] = eσ.
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Furthermore, we have:
(i) Mσ′α

= p∗ (mMσ + Z1σ);
(ii) Vol(σ′α) = mdimσ Vol(σ);
(iii) bσ′α = bσ/ gcd(m, bσ).

Proof. — The proof uses the toroidal theory of [KKMSD73] together with elementary
ramification theory of valuations [ZS75].

Let σ be the face of ∆(X ) corresponding to an irreducible component Y of
E0 ∩ · · · ∩ Ep. Set bi = ordEi(t). With the identification

σ = {w ∈ Rp+1
+ |∑i biwi = 1},

the integral affine structure Mσ is given by the lattice Zp+1. Note that bσ = gcdi bi.
Given a closed point ξ ∈ Y̊ , we can find local coordinates z0, . . . , zn in the for-

mal completion ÔX ,ξ ' k[[z0, . . . , zn]] such that t =
∏p
i=0 z

bi
i . A toric computa-

tion (cf. [KKMSD73, pp. 98–102]) shows that ξ has gcd(m, bσ) preimages ξ′α in X ′
0 ,

with X ′ formally isomorphic, at each ξ′α, to the product of An−pk with the affine toric
k-variety corresponding to the cone Rp+1

+ ⊂ Rp+1 with lattice

M ′ := Zp+1 + Z (b0/m, . . . , bp/m) .

It follows that p−1(σ) is the union of the corresponding faces σ′α of ∆(X ′), each
isomorphic to

σ′ =
{
w′ ∈ Rp+1

+

∣∣ ∑
i biw

′
i = m

}
,

with integral affine structure induced by M ′. Now p restricts to a homeomorphism
σ′α

∼→ σ given by w = w′/m. Thus Mσ′α
= mp∗Mσ + Z1σ′α . This implies (i), and

(ii)–(iii) easily follow.
Now note that

[M ′σ′α : mp∗Mσ] = [mp∗Mσ + Z1σ′α : mp∗Mσ]

= [Zp+1 + Z(b0/m, . . . , bp/m) : Zp+1] =
m

gcd(m, bσ)
=: eσ.

It remains to analyze the degree fσ of the restriction Yσ′α → Yσ. For this we use
ramification theory.

The function field F (X ′) = F (X)(t1/m) is a Galois extension of F (X) of degree m,
with Galois group G. For any valuation v′ ∈ X ′ val, we have v′|F (X) = mp(v′).

Let v ∈ Xan be a valuation corresponding to a point w ∈ σ. Assume w is “general”
in the sense that dimQ

∑p
i=0 Qwi = p. The point w has gσ preimages w′α under p, one

in each σ′α, and the valuations v′α := m−1w′α are all the extensions of v to F (X ′). Let
us compute the residue degree and ramification index of these extensions.

The residue fields of v and v′α are exactly the function fields of Y and Y ′α, respec-
tively, so the residue degree of the extension v′α of v is equal to fσ.

The value group Γv = v(F (X)) of v is given by Γv =
∑p
i=0 Zwi. Similarly, the

value group of v′α is given by Γv′α = 1
mZ + 1

m

∑p
i=0 Zw′i = 1

mZ +
∑p
i=0 Zwi. It follows
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that the ramification index of the extension v′α of v is given by

[Γv′α : Γv] =
[

1
mZ+

∑p
i=0 Zwi :

∑p
i=0 Zwi

]
= gcd(Z∩m∑p

i=0 Zwi) =
m

gcd(m, bσ)
= eσ.

By [ZS75, p. 77] we now have eσfσgσ = m, which completes the proof. �

Next we study skeleta of metrics. Generalizing [NX16b, Lem. 4.1.9], we prove:

Lemma 5.14. — Let ψ be a continuous metric on Kan
X , ψ′ the metric on Kan

X′ ' p∗Kan
X

corresponding to p∗ψ, and set κ′ := AX′ − ψ′. Then κ′ = mp∗κ. As a consequence,
Sk(ψ′) = p−1 Sk(ψ) and κ′min = mκmin.

Proof. — By [Gub98, Th. 7.12] (see also [BFJ16, Cor. 2.3]), model metrics are dense
in the set of continuous metrics on Kan

X . Hence we may assume ψ is a model metric.
Using (5.3), it is enough to show that κ′(v′) = mκ(p(v′)) for a divisorial valuation
v′ ∈ X ′÷. Let X be an snc model with p(v′) ∈ Sk(X ), and such that ψ = φL for a
model L of KX on X . Since the normalized base change X ′ of X is toroidal, we
can choose a toroidal modification X ′′ → X ′ with X ′′ snc. The induced morphism
ρ : X ′′ →X is toroidal; hence it satisfies the log ramification formula

mK log
X ′′/S′ = ρ∗K log

X /S .

By (5.7), we infer φKlog

X ′′/S′
−ψ′ = p∗(φKlog

X /S
−ψ), which gives the desired result since

v′ ∈ Sk(X ′′), p(v′) ∈ Sk(X ) imply AX ′′(v′) = AX (p(v′)) = 0. �

6. Skeletal measures

From now on, we assume that k = C, and that X is a smooth, projective, geomet-
rically connected variety over the non-Archimedean field K = C((t)). Our goal is to
construct measures of the types appearing in Theorem A and Corollary B.

6.1. Residually metrized models. — As explained above, to any model L of a line
bundle L on X, defined on a proper dlt model X of X, we can associate a skeleton
Sk(L ) ⊂ Sk(X ) ⊂ Xan. To produce a measure on Sk(L ) we need additional data.

Definition 6.1. — Let L be a line bundle on X. A residually metrized model of L
is a pair L # = (L , ψ0) where L is a model of L, determined on a proper dlt
model X of X, and ψ0 is a continuous Hermitian metric on L0 := L |X0 , viewed as
a holomorphic line bundle over the complex space X0. A residually metrized model
metric ψ# on L is an equivalence class of such pairs, modulo pull-back to a higher
model.

Example 6.2. — If L is trivial, then any choice of trivialization s ∈ H0(X,L) defines a
residually metrized model metric ψ# on L, determined on any model X by L = OX

and ψ0 the trivial metric on OX0
.

J.É.P. — M., 2017, tome 4



Tropical and non-Archimedean limits of volume forms 125

6.2. Residual measures. — Let L # = (L , ψ0) be a residually metrized model
of KX , determined on a proper dlt model X . If Y is a stratum corresponding to a
top-dimensional face of ∆(L ), Lemma 5.12 shows that the restriction of ψ0 to L |Y
induces a Hermitian metric ψY on K(Y,BL

Y ) := KY + BL
Y , with (Y,BL

Y ) subklt. By
Lemma 1.1, we may thus introduce:

Definition 6.3. — Let Y be a stratum corresponding to a top-dimensional face of
∆(L ). The residual measure of L # on Y is the (finite) positive measure

ResY (L #) := exp
(
2(ψY − φBL

Y
)
)
.

This definition is of course compatible with one in §3.1, and can be more explicitly
described as follows. Let ξ be a (closed) point of Y ∩ Xsnc, index the irreducible
components E0, . . . , Ep passing through ξ so that Y is a component of

⋂
06i6dEi

with d = dim ∆(L ) 6 p. In the notation of Example 5.1, the Poincaré residue

ResY (Ω) =

(
dzd+1

zd+1
∧ · · · ∧ dzp

zp
∧ dzp+1 ∧ · · · ∧ dzn

) ∣∣∣∣
Y

is a generator of K(Y,BY ) = K log
X /S

∣∣
Y
. Setting ai := κ(vEi)bi ∈ Q, we have

K log
X /S = L +

∑
i

aiEi,

and we may thus view

τ := tκmin

p∏
i=0

zai−κminbi
i Ωrel = tκmin

p∏
i=d+1

zai−κminbi
i Ωrel

as a local Q-generator of L . Further, BL
Y =

∑p
i=d+1(1− (ai− κminbi))Ei|Y , and τ |Y

corresponds to
p∏

i=d+1

zai−κminbi
i ResY (Ω)

under the identification L |Y = K(Y,BL
Y ). We arrive at

ResY (L #) =

∏p
i=d+1 |zi|2(ai−κminbi)∣∣∣tκmin
∏p
i=d+1 z

ai−κminbi
i Ωrel

∣∣∣2
ψ0

|ResY (Ω)|2

=

∏p
i=d+1 |zi|2(ai−κminbi−1)∣∣∣tκmin
∏p
i=d+1 z

ai−κminbi
i Ωrel

∣∣∣2
ψ0

|dzd+1 ∧ · · · ∧ dzn|2.(6.1)

6.3. Measures on dual complexes. — We now define measures associated to residu-
ally metrized model metrics.

Definition 6.4. — Let L # be a residually metrized model of KX , determined on
a proper dlt model X of X. To L # we associate a positive measure µL # on
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∆(L ) ⊂ ∆(X ) defined by

µL # =
∑
σ

(∫
Yσ

ResYσ (L #)

)
b−1
σ λσ,

where σ runs over the top-dimensional faces of ∆(L ).

By Lemma 1.2, we have

µL #(σ) =

∫
Yσ

ResYσ (L #)

d!
∏
i∈J bi

for each face σ corresponding to a component of some EJ .

6.4. Skeletal measures on Berkovich spaces. — Now consider a residually metrized
model metric ψ# on KX . Pick any representative L # = (L , ψ0) for ψ#, where L

is a model of KX determined on a proper dlt model X of X, and where ψ0 is a
continuous metric on L0 := L |X0 .

Definition 6.5. — The skeletal measure µψ# is the image of the measure µL # under
the embedding ∆(L ) ↪→ Xan. We view it as a positive measure on Xan, supported
on the skeleton Sk(ψ#) := Sk(φL ).

This definition makes sense, in view of the following result.

Lemma 6.6. — The skeletal measure µL # is independent of the choice of representa-
tive L # for ψ#.

Proof. — Let X , X ′ be proper dlt models of X, with X ′ dominating X via a
proper birational morphism ρ : X ′ →X . Let L # = (L , ψ0) be a residually metrized
model of KX consisting of a model L of KX determined on X and a continuous
metric ψ0 on L0. Set L ′ = ρ∗L , ψ′0 = ρ∗ψ0 and L ′# = (L ′, ψ′0). We must prove
that µL ′# = µL # .

Let σ′ be a top-dimensional face of ∆(L ′), Y ′ the associated stratum of X ′
0 , Y the

minimal stratum of X0 containing ρ(Y ′) and σ = σY the associated simplex of ∆(X ).
Then σ and σ′ have the same dimension, and if we (somewhat abusively) identify σ
and σ′ with their images in Sk(φL ) ⊂ Xan, then σ′ is a rational subsimplex of σ. It
suffices to prove that µL ′#(σ′) = µL #(σ′).

Now ρ restricts to a birational morphism of Y ′→Y , so since λσ|σ′=λσ′ and bσ=bσ′ ,
it suffices to prove that ResY ′(L ′#) = ρ∗ResY (L #). But this is formal. Indeed, we
have (ρ|Y )∗(B

L ′

Y ′ ) = BL
Y and we can identify (ρ|Y )∗K(Y,BL

Y ) with K(Y ′,BL ′
Y ′ ) in such

a way that the restriction of ψ′0 to L ′|Y ′ = K(Y ′,BL ′
Y ′ ) coincides with the pullback

under ρ|Y ′ of the restriction of ψ0 to L |Y = K(Y,BL
Y ). �
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6.5. Behavior under base change. — Fix m ∈ Z>0. As before, denote by X ′ the
base change of X to K ′ = C((t1/m)), with induced map p : X ′an → Xan.

Theorem 6.7. — Let ψ# be a residually metrized model metric on KX , and let ψ′#
be its pull-back to X ′. Then

p∗µψ′# = mdµψ#

with d = dim Sk(ψ#).

Proof. — Pick a representative L # = (L , ψ0) of ψ# such that L is defined on a
proper snc model X . Let X ′ be the normalized base change by t = t′m.

Let σ be a d-dimensional face of ∆(L ). By Lemma 5.13, p−1(σ) is the union of gσ
distinct isomorphic faces σ′α of ∆(X ) such that

bσ′α = bσ/ gcd(m, bσ)(6.2)

Vol(σ′α) = md Vol(σ).(6.3)

Further, the induced map Y ′σ′α → Y is generically finite, of degree fσ independent of α,
and we have fσgσ = gcd(m, bσ). Pick a toroidal modification X ′′ → X ′ with X ′′

snc, denote by ρ : X ′′ →X the composition, and set L ′′ := ρ∗L .
Each face σ′α above is subdivided into simplices σ′′αβ of ∆(L ′′) of dimension d, each

corresponding to a stratum Y ′′αβ of X ′′
0 , and ρ|Y ′′αβ : Y ′′αβ → Y is generically finite, of

degree fσ. Further, (6.2) implies that

(6.4) bσ′′αβ = bσ′α = bσ/ gcd(m, bσ) for all α, β.

We shall need the following result:

Lemma 6.8. — With notation as above, we have, for all α, β:

ResY ′′αβ (L ′′#) = gcd(m, bσ)−2ρ∗ResY (L #).

Grant this result for the moment. Lemma 6.8 implies∫
Y ′′αβ

ResY ′′αβ (L ′′#) = fσ gcd(m, bσ)−2

∫
Y

ResY (L #),

and hence

(p∗µ
′)(σ) =

∑
α,β

µ′(σ′′αβ) =
∑
α,β

(∫
Y ′′αβ

ResY ′′αβ (L ′′#)

)
b−1
σ′′αβ

Vol(σ′′αβ)

= fσ gcd(m, bσ)−2

(∫
Y

ResY (L #)

)
b−1
σ gcd(m, bσ)

∑
α

Vol(σ′α)

= md

(∫
Y

ResY (L #)

)
b−1
σ Vol(σ) = mdµ(σ),

thanks to (6.3) and (6.4). �
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Proof of Lemma 6.8. — Pick a closed point ξ′′ ∈ Y̊ ′′ and set ξ = ρ(ξ′′) ∈ Y̊ . We use
the notation at the end of §6.2 with p = d. Namely, pick local coordinates (zi)06i6n

at ξ and (z′′j )06j6n at ξ′′ such that Ei = {zi = 0} for 0 6 i 6 d and E′′j = {z′′j = 0}
for 0 6 j 6 d. We have ρ∗zi = ui

∏d
j=0(z′′j )cij for 0 6 i 6 d, where cij ∈ Z>0 and

ui ∈ OX ′′,ξ′′ is a unit. Further, by Lemma 5.13, the matrix (cij) has determinant ±eσ,
where eσ = m/ gcd(m, bσ).

Set
Ω1 :=

dz0

z0
∧ · · · ∧ dzd

zd
and Ω2 := dzd+1 ∧ · · · ∧ dzn,

and define Ω′′1 , Ω′′2 similarly. Then Ω := Ω1 ∧ Ω2 and Ω′′ := Ω′′1 ∧ Ω′′2 are local Q-gen-
erators of K log

X and K log
X ′′ at ξ and ξ′′, respectively. Further,

ResY (Ω) = Ω2|Y and ResY ′′(Ω
′′) = Ω′′2 |Y ′′ .

Now
ρ∗Ω1 = ±eσΩ′′1 +

1

z′′0 . . . z
′′
d

Ω̃′′1 ,

where Ω̃′′1 is a regular (d+ 1)-form vanishing at ξ′′, and

ρ∗Ω2 = qΩ′′2 + Ω̃′′2 ,

where q ∈ OX ,ξ′′ and Ω̃′′2 is a regular (n− d)-form at ξ′′ satisfying Ω′′1 ∧ Ω̃′′2 = 0. On
the one hand, this leads to

(ρ|Y ′′)∗ResY (Ω) = (ρ|Y ′′)∗(Ω2|Y ) = qΩ′′2 |Y ′′ = qResY ′′(Ω
′′).

On the other hand, we also get

ρ∗Ω = ±qeσ(1 + h)Ω′′,

with q as above and h ∈ OX ′′,ξ′′ vanishing along Y ′′.
Define Ωrel and Ω

′′rel by dt
t ⊗ Ωrel = Ω and dt′

t′ ⊗ Ω
′′rel = Ω′′, respectively. Then

m
dt′

t′
⊗ ρ∗Ωrel = ρ∗

(dt
t

)
⊗ ρ∗Ωrel = ρ∗Ω = ±qeσ(1 + h)Ω′′ = ±qeσ(1 + h)

dt′

t′
⊗Ω

′′rel,

so that
ρ∗Ωrel = ±eσ

m
q(1 + h)Ω

′′rel.

As a consequence,

ρ∗|tκminΩrel|ψ0
=
eσ
m
|q| |(1 + h)| |(t′)κ′minΩ

′′rel|ψ′0 .

Since h vanishes along Y ′′, this finally leads to

(ρ|Y ′′)∗ResY (L #) =
(ρ|Y ′′)∗|ResY (Ω)|2
(ρ|Y ′′)∗|tκminΩrel|2ψ0

=
|(ρ|Y ′′)∗(Ω2|Y )|2

(e2
σ/m

2)|q|2|(t′)κ′minΩ′′rel|2ψ′0
=
(m
eσ

)2 |ResY ′′(Ω
′′)|2

|(t′)κ′minΩ′′rel|2ψ′0
=
(m
eσ

)2

ResY ′′(L
′′#),

which completes the proof since eσ = m/gcd(bσ,m). �
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7. The Calabi–Yau case

As in §6, we assume thatX is a smooth, projective, geometrically connected variety
over C((t)). Now we further assume that KX is trivial. Pick a trivializing section
η ∈ H0(X,KX), and denote by log |η| the associated model metric onKan

X , determined
on any model X by L = OX , with η providing the identification L |X ' KX . Denote
also by log |η|# the residually metrized model metric induced by the trivial Hermitian
metric ψ0 = 0 on OX0

.
The function κ := AX − log |η| = − log |η|AX coincides with the weight function

of [MN15, NX16b]. By definition, the Kontsevich–Soibelman skeleton ofX is Sk(X) :=

Sk(log |η|#). It is indeed independent of the choice of η, since any other trivializing
section of KX is of the form η′ = fη with f ∈ C((t))∗, and hence κ′ = κ+ ord0(f).

7.1. Topology of the skeleton. — By [NX16b, Th. 4.2.4], the Z-PA-space Sk(X) is
connected, of pure dimension d, and is a deformation retract of Xan. Further, Sk(X) is
a pseudomanifold with boundary, i.e., for some (or, equivalently, any) triangulation ∆

of Sk(X), we have:
(a) Non-branching property: every (d − 1)-simplex of ∆ is contained in at most

two d-simplices
(b) Strong connectedness: every pair of n-simplices σ, σ′ is joined by a chain of

n-simplices σ = σ1, . . . , σN = σ′ with σi and σi+1 sharing a common (n− 1)-face.
In the maximally degenerate case d = n, if X has semistable reduction, then Sk(X)

is even a pseudomanifold, i.e., (a) is replaced by
(a’) every (n− 1)-simplex of ∆ is contained in exactly two n-simplices.

See also [KX16] for even more precise results on the structure of Sk(X). For example,
Sk(X) is homeomorphic to a sphere if n 6 3 (still in the maximally degenerate case
and X having semistable reduction).

7.2. The skeletal measure. — Consider the skeletal measure µlog |η|# on Sk(X).
Choose an snc model X , and write as usual X0 =

∑
i∈I biEi. The form η defines an

identification K log
X /S =

∑
i∈I aiEi, and Proposition 5.10 yields

(7.1) κmin = min
i

ai
bi
.

If κmin ∈ Z, then

ω :=
dt

tκmin+1
∧ η

is a logarithmic form on X . For each face σ of ∆(L ), ordering the set J ⊂ I of
components cutting out the stratum Y = Yσ yields a well-defined Poincaré residue
ResY (ω). By Lemma 5.12, ResY (ω) is a rational section of KY , with divisor

−BL
Y =

∑
i/∈J

(ai − κminbi − 1)Ei|Y .
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When σ is a maximal face, ResY (ω) is thus a holomorphic form on Y ; using the
formulas in §6.2, it is easy to see that the residual measure on Y is given by

ResY (log |η|#) = |ResY (ω)|2.

The following result corresponds to Theorem C in the introduction.

Theorem 7.1. — Assume that X is maximally degenerate, i.e., dim Sk(X) = n, and
that X has semistable reduction, Then the skeletal measure µlog |η|# is a multiple of
the integral Lebesgue measure of Sk(X).

Proof. — Let X be a semistable model, i.e., X is snc with X0 reduced. By (7.1), we
have κmin ∈ Z. Since some non-empty EJ might have several components, the dual
complex ∆(X ) is possibly not a triangulation of Sk(X). However, the barycentric
subdivision ∆′ of ∆(X ) is a triangulation; the corresponding toroidal modification X ′

is snc, with X ′
0 is possibly non-reduced, but bσ = 1 for each n-simplex σ of ∆′.

Applying the above discussion to X ′, we infer

µlog |η|# =
∑
σ

|Resyσ (ω)|2λσ,

with σ ranging over the n-dimensional faces of ∆′, with corresponding strata yσ ∈X ′
0

reduced to single points. It will thus be enough to show that |Resyσ (ω)| is independent
of σ.

By the strong connectedness property, any two n-simplices σ, σ′ of ∆′ can be
joined by a chain of n-simplices σ = σ1, . . . , σN = σ′ with σi and σi+1 sharing
a common (n − 1)-face τi. Denoting by yi = yσi and Yi = Yτi the corresponding
strata in X ′, we thus have yi, yi+1 ∈ Yi. Further, the Poincaré residue ResYi(ω) has
poles precisely at yi, yi+1, since any other pole would correspond to an n-simplex
of ∆′ containing τi, contradicting the non-branching property. Since Resyi ResY (ω) =

Resyi(ω), the residue theorem applied to the Riemann surface Yi yields Resyi(ω) +

Resyi+1(ω) = 0, and hence |Resy1(ω)| = · · · = |ResyN (ω)|. �

Remark 7.2. — Theorem 7.1 fails in general when X does not have semistable
reduction. Indeed, the semistable reduction theorem [KKMSD73] shows that the
base change p : X ′ → X to C((t1/m)) has semistable reduction for some m divisi-
ble enough. By Lemma 5.14, dim Sk(X ′) = n, and µlog |η′|# is thus a multiple of
the integral Lebesgue measure λ′ of Sk(X ′), by Theorem 7.1. By Theorem 6.7,
µlog |η|# = m−np∗λ

′. However, p∗λ′ is not proportional to the integral Lebesgue
measure λ of Sk(X) in general. Indeed, for each n-simplex σ of ∆(L ), Lemma 5.13
shows that (p∗λ

′)σ = mnbσλσ, and bσ is in general not independent of σ.
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8. Extensions

In this section we extend the main results in various directions.

8.1. A singular version of Theorem A. — Let π : X → D be a projective, flat
holomorphic map of a normal complex space onto the disc, withX := π−1(D∗) smooth
over D∗. Since π is projective, it defines a smooth projective variety XC((t)) over C((t)),
as well as a model XC[[t]].

Let L be a Q-line bundle on X extending KX/D∗ , and ψ a continuous Hermitian
metric on L . This data induces a continuous Hermitian metric ψt on KXt for t ∈ D∗,
as well as a residually metrized model L # of KXC((t)) , the model given by LC[[t]] and
the metric by the restriction of ψ to L0 = L |X0 . Thus we obtain a skeletal measure
µL # on Xan

C((t)).
Denote by L ′ (resp. ψ′) the pull-back of L (resp. ψ) to a log resolution X ′→X .

By invariance of skeletal measures under pull-back, we have µL ′# = µL # , and The-
orem 3.4 therefore implies:

Theorem 8.1. — The rescaled measures

µt :=
e2ψt

|t|2κmin(2π log |t|−1)d
,

viewed as measures on X ′hyb, converge weakly to µL # .

Corollary 8.2. — If X (i.e., the pair (X ,X0,red)) is dlt, then

lim
t→0

∫
Xt
e2ψt

|t|2κmin(2π log |t|−1)d
=
∑
σ

(∫
Yσ

ResYσ (L #)

)
b−1
σ Vol(σ),

where σ runs over the d-dimensional faces of ∆(L ).

When d = 0, this implies the following slight generalization of [Li15, Lem. 1].

Corollary 8.3. — Assume that X0 has klt singularities (and hence X is dlt by
inversion of adjunction). Let ψ be a continuous metric on KX /D. Then t 7→

∫
Xt
e2ψt

is continuous at t = 0.

8.2. Corollary B for pairs. — Suppose (X,B) is a projective subklt pair over D∗

that is meromorphic at 0 ∈ D.
By Bertini’s theorem (see [Kol97, 4.8] and also below), the pair (Xt, Bt) is subklt for

all t ∈ D∗ outside a discrete subset Z. Let ψ be a continuous metric on K(X,B)/D∗ . As
explained in §1.2, ψ induces a finite positive measure e2(ψt−φBt ) on Xt for t ∈ D∗rZ.

Assume that ψ has analytic singularities in the sense that there exists a flat pro-
jective map X → D extending X → D∗, with X normal, and a Q-line bundle L

on X extending K(X,B)/D∗ such that ψ extends continuously to L .
Our assumptions imply that X is defined over the Banach ring Ar described in

the appendix for 0 < r � 1. Let Xhyb be the analytification of the base change XAr .
Recall that Xhyb naturally fibers over Dr, with Xhyb

D∗r
' XD∗r

and Xhyb
0 ' Xan

C((t)).
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Theorem 8.4. — The pair (Xt, Bt) is subklt for 0 < |t| � 1. Further, there exist
κmin ∈ Q and d ∈ N∗ such that the rescaled measures

µt :=
e2ψt

|t|2κmin(2π log |t|−1)d
,

viewed as measures on Xhyb, converge weakly, as t→ 0, to a finite positive measure µ0

on Xhyb
0 = Xan

C((t)).

A special case of Theorem 8.4 is the log Calabi–Yau setting, when the Q-line bundle
K(X,B)/D∗ is trivial. In general, we are not able to give a very precise description of
the limit measure µ0, but the proof will show that µ0 is a skeletal measure when the
pair (X,B) is log smooth.

Proof of Theorem 8.4. — Let us first treat the case when (X,B) is log smooth. In
this case we need not assume that X → D∗ is projective. It follows from the normal
crossings condition that (Xt, Bt) is subklt for 0 < |t| � 1. After reparametrizing we
may assume this is true for all t ∈ D∗, that is, Z = ∅. Set

νt = e2(ψt−φBt ).

This is a positive measure on Xt, smooth outside the support of Bt. Pick an snc
model (X ,B) of (X,B), where B is the closure of B in X , such that ψ extends to
a continuous metric on a Q-line bundle L on X extending K(X,B)/D∗ .

We can then prove a version of Theorem A inside the hybrid space X hyb. By
letting X vary, we obtain Theorem 8.4 as a consequence, just as Corollary B follows
from Theorem A.

The proof is very similar to the proof of Theorem A, so we will only indicate the
modifications needed. Let us write

K log
(X ,B)/D = L +

∑
i∈I

aiEi

with ai ∈ Q. Set κi := ai/bi and κmin := mini κi. Here X0 =
∑
i biEi as before.

Define ∆(L ) as the subcomplex of ∆(X ) spanned by the vertices such that κi =

κmin. This will be the support of the measure µ0. For every stratum Y corresponding
to a maximal face of ∆(L ), define a subklt pair (Y,BL

Y ) using

BL
Y := B|Y +

∑
i/∈J

(1− (ai − κminbi))Ei|Y .

The residual measure ResY (ψ) is given by

ResY (ψ) := exp
(
2(ψ|Y − φBL

Y
)
)
.

Finally set
µ0 :=

∑
σ

(∫
Yσ

ResYσ (ψ)

)
b−1
σ λσ,

where σ ranges over the d-dimensional faces of ∆(L ), with d = dim ∆(L ).
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We then prove a version of Theorem 3.4. Namely, if

µt :=
λ(t)d

(2π)d|t|2κmin
e2(ψt−φBt ).

then we show that µt converges to µ0 in X hyb as t → 0. This is done via a local
convergence result as in Lemma 3.5. Namely, given a point ξ ∈ X0, we choose local
coordinates (z0, . . . , zn) at ξ as in §3.2, but further require that these coordinates also
cut out the irreducible components of B containing ξ. More precisely, there exist m
with p 6 m 6 n such that these irreducible components are given by Bi = {zi = 0}
for p < i 6 m. Also set ci := ordBi(B) < 1.

A local Q-generator for L at ξ is then given by

τ =

p∏
i=0

zaii

m∏
i=p+1

z−cii Ωrel,

with Ωrel as before. For a stratum Y corresponding to a d-dimensional simplex in
∆(L ), the residual measure is given by

(8.1) ResY (ψ) = |τ |−2
ψ

p∏
i=d+1

|zi|2(ai−κminbi−1)
m∏

i=p+1

|zi|−2ci

∣∣∣∣ n∧
i=d+1

dzi

∣∣∣∣2.
The measure µt can be written near ξ as

µt =
λ(t)d

(2π)d

∏m
i=p+1 |zi|−2ci |Ωt|2∣∣∏m
i=p+1 z

−ci
i Ωt

∣∣2
ψt

.

The proof now proceeds exactly as in §3.3 except that we need to insert a factor∏m
i=p+1 |zi|−2ci in the last two lines of (3.3) and (3.6), the second line and the second

factor of the last line of (3.7), and the right-hand sides of (3.8) and (3.9). This
completes the proof in the log smooth case.

Now we consider the general case, assuming X → D∗ is projective. Pick a log
resolution q : (X ′, B′) → (X,B). Since (X ′t, B

′
t) is subklt for 0 < |t| � 1, the same

is true for (Xt, Bt). We have an induced continuous map qhyb : (X ′)hyb → Xhyb. By
what precedes, there exist κ ∈ Q and d ∈ N such that the measure

µ′t :=
e

2(ψ′t−φB′t )

|t|2κmin(2π log |t|−1)d

on X ′t = Xhyb converges to a nonzero positive measure µ′0 on (X ′)hyb. By continuity,
it follows that µt = qhyb

∗ µ′t converges to the nonzero positive measure µ0 = qhyb
∗ µ′0

on Xhyb. This completes the proof. �

8.3. Degenerations of Ricci-flat Kähler manifolds. — Let M be a Ricci-flat
Kähler manifold, i.e., a compact Kähler manifold with trivial first Chern class
c1(M) ∈ H2(M,C). Then M carries a canonical probability measure µ, given by
µ = e2ψ/

∫
M
e2ψ where ψ is a Hermitian metric on KM with curvature 0 (and hence

unique up to a constant).
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By the Calabi-Yau theorem, each Kähler (1, 1)-class onM further contains a unique
Ricci-flat Kähler metric ω, characterized by

ωn∫
M
ωn

= µ.

Recall also that KM is torsion, i.e., rKM ' OM for some positive integer r. Indeed,
this is a consequence of the Beauville-Bogomolov theorem [Bea83, Bog74], which
implies that M admits a finite étale cover p : M ′ → M with KM ′ = p∗KM trivial.
A trivializing section η of rKM defines a metric ψ = (1/r) log |η| on KM as above,
and hence µ = |η|2/r/

∫
|η|2/r.

As a consequence of Theorem A, we shall prove:

Theorem 8.5. — Let π : X → D∗ be a holomorphic family of Calabi-Yau Kähler man-
ifolds Xt, meromorphic at t = 0, and let µt be the corresponding family of canonical
probability measures. For any snc model X , µt converges in X hyb to a skeletal mea-
sure µ0 supported in ∆(X ).

Proof. — As recalled above, KXt is torsion for each fixed t. Equivalently,

h0(Xt, rKXt) = 1 for some positive integer r.

Since t 7→ h0(Xt, rKXt) is upper semicontinuous in the Zariski topology, it follows
that rKXt is trivial for a fixed r independent of t. Given any snc model π : X → D,
π∗O(rKX /D) is torsion free of rank one, and hence a line bundle. The choice of a
trivializing section yields a holomorphic section η of KX /D, inducing a holomorphic
family ηt of trivializing sections of rKXt for t 6= 0. As a consequence, the family of
volume forms νt := |ηt|2/r has analytic singularities at t = 0, and the result is thus a
consequence of Theorem A, since µt = νt/νt(Xt). �

Appendix. Berkovich spaces over Banach rings

In this appendix we review the construction of the analytification of a scheme of
finite type defined over a Banach ring. The main reference for this is [Ber09]; see
also [Poi10, Poi13, Jon16]. For suitable choices of Banach rings, this leads to spaces
that contain both Archimedean and non-Archimedean data.

A.1. Berkovich spectra. — Let A be a Banach ring, that is, a commutative ring that
is complete with respect to a submultiplicative norm ‖ · ‖. The Berkovich spectrum
M (A) is the set of all bounded multiplicative seminorms on A. In other words, a point
x ∈M (A) corresponds to a function | · |x : A→ R>0 such that | · |x 6 ‖ · ‖, |1|x = 1,
|f + g|x 6 |f |x + |g|x and |fg|x = |f |x|g|x for f, g ∈ A. The spectrum is a nonempty,
compact Hausdorff space with respect to the topology of pointwise convergence.

For x ∈M (A), denote by px the kernel of | · |x. This is a prime ideal of A, and | · |x
defines a multiplicative norm on A/px. The completion of the fraction field of A/px
with respect to this norm is a valued field H (x). We write f(x) for the image of f ∈ A
in H (x); then |f(x)| = |f |x. The assignment x 7→ px yields a map M (A)→ Spec(A)

that is continuous for the Zariski topology Spec(A).
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Example A.1. — If k is a valued field (i.e., a field with a multiplicative norm), then
M (k) is a singleton.

Example A.2. — When A is a complex Banach algebra, the Gelfand-Mazur Theorem
implies that the Berkovich spectrum agrees with the maximal ideal spectrum.

A.2. Analytification of a scheme. — To any scheme X of finite type over a Banach
ring A, Berkovich associates an analytification(9) XAn, a locally compact topological
space with a continuous morphism XAn →M (A), defined as follows.

When X = SpecB is affine, with B a finitely generated A-algebra, XAn is defined
as the set of multiplicative seminorms | · |x on B whose restriction to A is bounded
by the given norm on A, i.e., belongs to M (A). The topology on XAn is the weakest
one for which x 7→ |f |x = |f(x)| is continuous for every f ∈ B.

In the general case, the analytification XAn is defined by gluing together the
analytifications of an affine open cover, and yields a covariant functor X 7→ XAn.
If X ↪→ Y is an open (resp. closed) embedding, then so is XAn ↪→ Y An. If X → Y is
surjective, then so is XAn → Y An.

The topological spaceXAn is Hausdorff (resp. compact) ifX is separated (resp. pro-
jective). The assignment x 7→ px above globalizes to a continuous map

π : XAn −→ X,

where X is equipped with the Zariski topology.
When A is a valued field, it is more common to write Xan instead of XAn [Ber90].

Example A.3. — For A = C, the Gelfand-Mazur theorem shows that XAn coincides
with the usual analytification of X, i.e., the set X(C) of complex points of X endowed
with the euclidean topology.

A.3. The hybrid norm on C. — Denote by Chyb the Banach field (C, ‖ · ‖hyb), where
the hybrid norm is defined as

‖ · ‖hyb := max{| · |0, | · |∞},
with | · |0 the trivial absolute value and | · |∞ the usual absolute value.

The elements of the Berkovich spectrum M (Chyb) are of the form |·|ρ∞ for ρ ∈ [0, 1],
interpreted as the trivial absolute value | · |0 for ρ = 0. This yields a homeomorphism
M (Chyb) ' [0, 1].

A.4. Hybrid geometry over C. — If X is a scheme of finite type over C, we denote
by Xhol = X(C) its analytification with respect to the usual absolute value | · |∞,
by Xan

0 its analytification with respect to the trivial absolute value, and by Xhyb its
analytification with respect to the hybrid norm ‖ · ‖hyb.

From the structure morphism X → SpecC we obtain a continuous map λ : Xhyb →
M (Chyb) ' [0, 1]. The fiber λ−1(ρ) is equal to the analytification of X with respect

(9)We use the term analytification even though we shall only consider XAn as a topological space.
In particular, XAn only depends on the reduced scheme structure of X.
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to the multiplicative norm | · |ρ∞ on C. In particular, we have canonical identifica-
tions λ−1(1) ' Xhol and λ−1(0) ' XAn

0 . For 0 < ρ 6 1, the fiber λ−1(ρ) is also
homeomorphic to Xhol. In fact, we have a a homeomorphism

λ−1 ((0, 1]) ' (0, 1]×Xhol,

see [Ber09, Lem. 2.1].

A.5. The hybrid circle. — Now consider the hybrid circle of radius r ∈ (0, 1), that
is, Chyb(r) := {|t| = r} ⊂ A1,hyb = (SpecC[t])hyb. By [Poi10, Prop. 2.1.1], this is
compact and realized as the Berkovich spectrum of the Banach ring

Ar :=
{
f =

∑
α∈Z cαt

α ∈ C((t))
∣∣ ‖f‖hyb :=

∑
α∈Z ‖cα‖hybr

α < +∞
}
.

Since ‖cα‖hyb > |cα|∞, every f ∈ Ar defines a continuous function fhol on the punc-
tured closed disc D∗r that is holomorphic on D∗r and meromorphic at 0.

Proposition A.4. — There is a homeomorphism Dr
∼→M (Ar) ' Chyb(r), that maps

z ∈ Dr ⊂ C to the seminorm on Ar defined by

(A.1) |f | =
{
rord0(f) if z = 0,

rlog |fhol(z)|∞/log |z|∞ otherwise,

and via which the map λ : Chyb(r)→ [0, 1] is given by λ(z) = log r/log |z|∞.

Proof. — The map τ : Dr →M (Ar) given by (A.1) is clearly well defined. It is also
continuous on D∗r . To prove continuity at 0, we note that for each f ∈ Ar, we can write
fhol = zord0(f)u, where u is a continuous function on Dr that is holomorphic on Dr
with u(0) 6= 0. As a consequence, we get limz→0 log |fhol(z)|∞/log |z|∞ = ord0(f).

Now, for each ρ ∈ (0, 1], λ−1(ρ) ⊂ Chyb(r) can be identified with the circle of
radius r with respect to the absolute value | · |ρ∞, while λ−1(0) is the non-Archimedean
absolute value r− ord0 on C((t)). This proves that the map τ above is bijective, and
hence a homeomorphism by compactness. �

Remark A.5. — When r < s, the identity gives a bounded map from As to Ar, and
lim−→r→0

Ar is the fraction field of OC,0, i.e., the ring of meromorphic germs at the
origin of C.

A.6. Geometry over the hybrid circle. — Let now X be a scheme of finite type
over Ar. We will associate to X three kinds of analytic spaces.

First, since X is obtained by gluing together finitely many affine schemes cut out
by polynomials with coefficients holomorphic on D∗r ⊂ C and meromorphic at 0, we
can associate to X in a functorial way a complex analytic space Xhol over D∗r , which
we call its holomorphic analytification.

Second, since Ar is contained in C((t)), we may also consider the base change XC((t))

and its non-Archimedean analytification Xan
C((t)) with respect to the non-Archimedean

absolute value rord0 on C((t)).
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Third, we denote byXhyb the analytification ofX as a scheme of finite type over the
Banach ring Ar, and call it the hybrid analytification of X. In view of Proposition A.4,
it comes with a continuous structure map

π : Xhyb −→ Dr 'M (Ar),

Recall further that Xhyb is locally compact, Hausdorff if X is separated, and compact
if X is proper over Ar. The discussion above implies:

Lemma A.6. — We have canonical homeomorphisms

(A.2) π−1(0) ' Xan
C((t)) and π−1(D∗r) ' Xhol

compatible with the projection to Dr.

In §4 we give a topological description of Xhyb.

References
[AGZV12] V. I. Arnold, S. M. Gusein-Zade & A. N. Varchenko – Singularities of differentiable maps.

Vol. 1, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012.
[Bea83] A. Beauville – “Variétés kähleriennes dont la première classe de Chern est nulle”, J. Dif-

ferential Geom. 18 (1983), no. 4, p. 755–782.
[Ber71] G. M. Bergman – “The logarithmic limit-set of an algebraic variety”, Trans. Amer. Math.

Soc. 157 (1971), p. 459–469.
[Ber90] V. G. Berkovich – Spectral theory and analytic geometry over non-Archimedean fields,

Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Prov-
idence, RI, 1990.

[Ber04] , “Smooth p-adic analytic spaces are locally contractible. II”, in Geometric as-
pects of Dwork theory, Walter de Gruyter GmbH & Co., Berlin, 2004, p. 293–370.

[Ber09] , “A non-Archimedean interpretation of the weight zero subspaces of limit mixed
Hodge structures”, in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin.
Vol. I, Progress in Math., vol. 269, Birkhäuser Boston, Boston, MA, 2009, p. 49–67.

[BBE+16] R. J. Berman, S. Boucksom, Ph. Eyssidieux, V. Guedj & A. Zeriahi – “Kähler-Einstein
metrics and the Kähler-Ricci flow on log Fano varieties”, J. reine angew. Math. (2016),
online, arXiv:1111.7158.

[Bog74] F. A. Bogomolov – “On the decomposition of Kähler manifolds with trivial canonical
class”, Math. USSR-Sb. 22 (1974), p. 580–583.

[BFJ08] S. Boucksom, Ch. Favre & M. Jonsson – “Valuations and plurisubharmonic singularities”,
Publ. RIMS, Kyoto Univ. 44 (2008), no. 2, p. 449–494.

[BFJ15] , “Solution to a non-Archimedean Monge-Ampère equation”, J. Amer. Math.
Soc. 28 (2015), no. 3, p. 617–667.

[BFJ16] , “Singular semipositive metrics in non-Archimedean geometry”, J. Algebraic
Geom. 25 (2016), no. 1, p. 77–139.

[BHJ16] S. Boucksom, T. Hisamoto & M. Jonsson – “Uniform K-stability and asymptotics of energy
functionals in Kähler geometry”, to appear in J. Eur. Math. Soc. (JEMS), arXiv:
1603.01026, 2016.

[CLT10] A. Chambert-Loir & Yu. Tschinkel – “Igusa integrals and volume asymptotics in analytic
and adelic geometry”, Confluentes Math. 2 (2010), no. 3, p. 351–429.

[Cle77] C. H. Clemens – “Degeneration of Kähler manifolds”, Duke Math. J. 44 (1977), no. 2,
p. 215–290.

[DS14] S. Donaldson & S. Sun – “Gromov-Hausdorff limits of Kähler manifolds and algebraic
geometry”, Acta Math. 213 (2014), no. 1, p. 63–106.

[EGZ09] Ph. Eyssidieux, V. Guedj & A. Zeriahi – “Singular Kähler-Einstein metrics”, J. Amer.
Math. Soc. 22 (2009), no. 3, p. 607–639.

J.É.P. — M., 2017, tome 4

http://arxiv.org/abs/1111.7158
http://arxiv.org/abs/1603.01026
http://arxiv.org/abs/1603.01026


138 S. Boucksom & M. Jonsson

[FJ04] Ch. Favre & M. Jonsson – The valuative tree, Lect. Notes in Math., vol. 1853, Springer-
Verlag, Berlin, 2004.
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