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ENNOLA DUALITY FOR DECOMPOSITION OF

TENSOR PRODUCTS

by Emmanuel Letellier & Fernando Rodriguez Villegas

Abstract. — Ennola duality relates the character table of the finite unitary group GUn(Fq) to
that of GLn(Fq) where we replace q by −q (see [5] for the original observation and [21] for its
proof). The aim of this paper is to investigate Ennola duality for the decomposition of tensor
products of irreducible characters. It does not hold just by replacing q by −q. The main result of
this paper is the construction of a family of two-variable polynomials Tµ(u, q) indexed by triples
of partitions of n which interpolates between multiplicities in decompositions of tensor products
of unipotent characters for GLn(Fq) and GUn(Fq). We give a module theoretic interpretation of
these polynomials and deduce that they have non-negative integer coefficients. We also deduce
that the coefficient of the term of highest degree in u equals the corresponding Kronecker
coefficient for the symmetric group and that the constant term in u give multiplicities in tensor
products of generic irreducible characters of unipotent type (i.e., unipotent characters twisted
by linear characters of GL1(Fq)).

Résumé (Dualité d’Ennola pour les décompositions de produits tensoriels)
La dualité d’Ennola relie la table des caractères du groupe unitaire fini GUn(Fq) à celle de

GLn(Fq) en remplaçant q par −q (voir [5] pour l’observation originale et [21] pour sa preuve).
L’objectif de cet article est d’étudier la dualité d’Ennola pour les décompositions des produits
tensoriels de caractères irréductibles. Les multiplicités des caractères irréductibles dans le pro-
duit tensoriel de deux caractères irréductibles sont des polynômes en q à coefficients entiers.
Ces polynômes ne vérifient pas la dualité en remplaçant simplement q par −q. Le résultat prin-
cipal de cet article est la construction d’une famille de polynômes à deux variables Tµ(u, q)
indexés par des triplets de partitions de n qui déforment simultanément les multiplicités pour
les caractères unipotents de GLn(Fq) et celles pour les caractères unipotents de GUn(Fq). Nous
donnons une interprétation de ces polynômes en terme de modules gradués pour les groupes
symétriques et en déduisons que ces polynômes sont à coefficients entiers positifs. Nous en dé-
duisons également que le coefficient du terme de plus haut degré en u est égal au coefficient
de Kronecker correspondant pour le groupe symétrique et que le terme constant en u donne
les multiplicités dans les produits tensoriels de caractères irréductibles génériques de type uni-
potent (c’est-à-dire les caractères unipotents tordus par des caractères linéaires de GL1(Fq)).
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1. Introduction

Let G = GLn(Fq) and consider the two geometric Frobenius endomorphisms

F : G −→ G, (gij) 7−→ (gqij) and F ′ : G −→ G, g 7−→ F (tg−1).

One of the main goals of this work is to study decomposition of tensor products of
irreducible characters for the finite groups

GLn(Fq) = GF , GUn(Fq) = GF ′
,

and compare them.
Ennola duality states that one can obtain the character table of GU(Fq) from that

of GLn(Fq) by essentially replacing q by −q. (Ennola’s conjecture was proved by
Lusztig and Srinivasan in [21]). A natural question is then:

To what extent does Ennola duality extend
to the character rings of GLn(Fq) and GUn(Fq)?

Examples show that simply replacing q by −q does not preserve the multiplicities of
the tensor product of characters of GLn(Fq) and their counterparts of GUn(Fq). For
example, for n = 4, thanks to the tables in [24], we see that

⟨St⊗St,St⟩GF = q3 + 2q + 1, ⟨St⊗St,St⟩GF ′ = q3 + 1,

where St denotes the Steinberg character. Therefore, if there is some extension of
Ennola duality to the character rings it must be more involved.

Since
⟨X1 ⊗ X2,X3⟩ =

〈
X1 ⊗ X2 ⊗ X∗

3, 1
〉
,

where X∗
3 is the dual character, we will study multiplicities of the form ⟨X1⊗· · ·⊗Xk, 1⟩

for a k-tuple of irreducible characters of either GLn(Fq) or GUn(Fq).
Our first result is that for generic k-tuples of irreducible characters the situation

is straightforward: the multiplicities for the tensor product of an arbitrary number of
such characters are given by certain polynomials Vω(q) and V ′

ω(q) respectively, which
satisfy

V ′
ω(q) = ±Vω(−q)

with an explicit sign (see Corollary 2.13 for the precise formulation). As we see in the
above example, a formula of this sort does not hold for arbitrary characters.

Our second result (see Theorem 4.5) is that the polynomials Vω(t) and V ′
ω(t) are

obtained from a q-graded C[Sn×⟨ι⟩]-module M•
n, where ι is an involution and Sn :=

(Sn)
k = Sn × · · · × Sn. Namely,

Mj
n := H2j+dn

c (Qn,C)⊗ (ε⊠k),

J.É.P. — M., 2026, tome 13



Ennola duality for decomposition of tensor products 75

where ε is the sign representation of Sn and where Qn is a certain generic non-singular
irreducible affine algebraic (quiver) variety of dimension dn.

In order to state our third main result we need to set some notation. For a par-
tition µ of n let Uµ,U

′
µ be the corresponding unipotent character of GF and GF ′

respectively (the Steinberg character corresponds to the partition (1n)). In [16] Letel-
lier proved that, for any multi-partition µ = (µ1, . . . , µk) of n the multiplicity

(1.1) Uµ(q) :=
〈
Uµ1 ⊗ · · · ⊗ Uµk , 1

〉
GF ,

can be computed in terms of the master series Ω of [9] and [7] as follows

(1.2)
1 +

∑
n>0

∑
µ

Uµ(q) sµT
n = Exp(Ψ),

Ψ : = (q − 1) Log (Ω) =
∑
n>0

∑
µ

Vµ(q) sµT
n,

where µ runs through k-tuples of partitions of n. Here Vµ(q) are the multiplicities
(as in (1.1)) for generic unipotent characters (i.e., twisted by appropriate 1-dimen-
sional characters) and sµ denote the multi-Schur function

sµ := sµ1(x1) · · · sµk(xk)

in the ring of symmetric function Λ = Λ(x1, . . . ,xk) in the k sets of infinitely many
variables x1, . . . ,xk (see Section 2.1).

To obtain the corresponding relation for GUn(Fq), we introduce an extra variable u
and define Tn(x;u, q) ∈ Λ[u, q] by

(1.3) Exp (uΨ) = 1 + u
∑
n⩾1

Tn(x;u, q)T
n.

For convenience we also define

Tµ(u, q) := ⟨Tn(u, q), sµ⟩

for a multipartition µ. We prove that Tµ(u, q) are polynomials in the variables u and q
with non-negative integer coefficients (see Formula (6.4)).

In this setup the identity (1.2) is the following statement (see Theorem 3.3(i))

(1.4) Vµ(q) = Tµ(0, q), Uµ(q) = Tµ(1, q).

Let now
U ′
µ(q) :=

〈
U′

µ1 ⊗ · · · ⊗ U′
µk , 1

〉
GF ′

be the multiplicities for unipotent characters of the unitary group GUn(Fq).
Our third result is the following, which we can consider as the version of Ennola

duality for the character rings of GLn and GUn over finite fields. We have (see The-
orem 3.2)

U ′
µ(q) = ±Tµ(−1,−q)

(with an explicit formula for the sign).
As an illustration of our results, here is a list of a few values of

τn := ⟨Tn, s1n(x
1)s1n(x

2)⟩

J.É.P. — M., 2026, tome 13
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with k = 3 (so a symmetric function in one remaining set of infinitely many variables).
We give these in two different formats for better readability.

Table 1

n τn

2 us2 + s12

3 u2s3 + (u+ 1)s2·1 + (u+ q)s13

4 u3s4 + (u2 + u+ 1)s3·1 + (2u+ q)s22 + (q2 + uq + q + u2 + u+ 1)s2·12

+(uq + u+ q3 + q)s14

Table 2

n τn

2 us2 + s12

3 u2s3 + u(s2·1 + s13) + qs13 + s2·1

4 u3s4 + u2(s3·1 + s2·12) + uq(s2·12 + s14) + u(s3·1 + 2s22 + s2·12 + s14)

+q3s14 + q2s2·12 + q(s22 + s2·12 + s14) + s3·1 + s2·12

For example, we have ⟨τ4, s14(x3)⟩ = uq + u + q3 + q. Evaluating this polynomial
at u = 0, 1,−1 we find

u = 0, q3 + q; u = 1, q3 + 2q + 1; u = −1, q3 − 1,

matching the respective values of

V14,14,14(q), U14,14,14(q), −U ′
14,14,14(−q),

in the tables in Section 7.
In our fourth and final result, we show (see Theorem 3.3) that the coefficient of

un−1 in Tµ(u, q) (the largest possible power of u, so basically evaluating Tµ at u = ∞)
is independent of q and equals the Kronecker coefficient

⟨χµ1

⊗ · · · ⊗ χµk

, 1⟩Sn
,

where µ = (µ1, . . . , µk) and where χµi denotes the irreducible character of Sn corre-
sponding to the partition µi (the character χ(1n) being the sign character).

In this paper we are interested in the two extreme cases, namely the multiplici-
ties for generic characters and the multiplicities for unipotent characters (the least
generic). There are also the intermediate cases studied by T. Scognamiglio [29] who
introduced the technical notion of level of genericity (at least for the split charac-
ters). The introduction of the variable u make also sense for these intermediate cases.
This is not more complicated as what we do here for unipotent characters but these
intermediate cases are much more technical to define.

J.É.P. — M., 2026, tome 13
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A natural question (suggested by the results of this paper) is whether the polyno-
mials Tµ(u, q) are structure coefficients of some based ring, which would be a u-defor-
mation of the character ring of GLn(Fq). More precisely, by the previous work of
Hausel-Letellier-Villegas [8], Letellier [15, 16] and Scognamiglio [29] we may recon-
struct (the structure coefficients of) the character ring of the groups GLn(Fq) (where n
runs over N∗) from the generic structure coefficients of a given type (for instance the
semisimple regular, or the semisimple split, or the unipotent type). With this we
can define u-deformations of all the structure coefficients of the character ring of the
GLn(Fq)’s and speculate whether they are the structure coefficients of some based
ring.

As a further speculation, we may ask whether this u-deformation is related to that
between Bosons (u = 1) and Fermions (u = −1) in physics [34].

Acknowledgements: — A part of this work was done while the first author was visiting
the Sydney Mathematical Research Institute. The first author is grateful to the SMRI
for the wonderful research environment and their generous support. The second author
would like to thank the Université Paris Cité, where this work was started, for its
hospitality.

2. Preliminaries

Let G denotes GLn(Fq) and consider the two Frobenius endomorphisms

F : G −→ G, (aij) 7−→ (aqij), F ′ : G −→ G, (aij) 7−→ t(aqij)
−1.

We let ℓ be a prime which does not divide q. We will consider representations of
finite groups over Qℓ-vector spaces and for a finite group H we denote by Ĥ its set of
irreducible characters. For a field k we denote by k∗ the group of non-zero elements.

2.1. Combinatorics

Partitions, types, symmetric functions. — We denote by P the set of all partitions of
integers including the unique partition 0, by Pn the set of partitions of n. Partitions λ
are denoted by λ = (λ1, λ2, . . . ), where λ1 ⩾ λ2 ⩾ · · · ⩾ 0. We will also write a
partition λ as (1m1 , 2m2 , . . . ) where mi denotes the multiplicity of i in λ.

For a partition λ of n, we denote by χλ the corresponding irreducible character
of Sn (the partition (n1) corresponds to the trivial character and the partition (1n)

corresponds to the sign character).
We will denote by |λ| =

∑
i λi the size of λ and by λ∗ the dual partition of λ.

We will put
n(λ) :=

∑
i>0

(i− 1)λi.

A type is a function
ω : Z>0 × (P∖ {0}) −→ Z⩾0

with finite support. We will write ω as

ω = {(di, ωi)mi}i,

J.É.P. — M., 2026, tome 13



78 E. Letellier & F. Rodriguez Villegas

where mi denotes the image of (di, ωi) ∈ Z>0 × (P∖ {0}). The size of ω is defined as

|ω| :=
∑
i

midi|ωi|.

and we denote by ω∗ the dual type {(di, ωi∗)mi}i.
We denote by Tn the set of types of size n and for a type ω = {(di, ωi)mi}i we

introduce
(2.1) n(ω) :=

∑
i

midin(ω
i), r(ω) := n+

∑
i

mi|ωi|, r′(ω) := ⌈n/2⌉+
∑
i

mi|ωi|.

For an infinite set of commuting variables x = {x1, x2, . . . }, we denote by Λ(x) the
ring of symmetric functions in the variables of x. It is equipped with the Hall pairing
⟨ , ⟩ that makes the Schur symmetric functions {sλ(x)} an orthonormal basis.

The transformed Hall-Littlewood symmetric function H̃λ(x; q) ∈ Λ(x) ⊗Z Q(q) is
defined as

H̃λ(x; q) :=
∑
ν

K̃νλ(q)sν(x),

where K̃νλ(q) = qn(λ)Kνλ(q
−1) are the transformed Kostka polynomials [22,

III (7.11)].
Given a family of symmetric functions uλ(x; q) ∈ Λ(x) ⊗Z Q(q) indexed by parti-

tions λ (with u0 = 1), we extend it to a type ω = {(di, ωi)mi} by

uω(x; q) =
∏
i

uωi(xdi ; qdi)mi ,

where xd denotes the set of variables {xd1, xd2, . . . }.
Consider now k separate sets x1,x2, . . . ,xk of infinitely many variables and

denote by
Λ = Q(q)⊗Z Λ(x1)⊗Z · · · ⊗Z Λ(xk)

the ring of functions separately symmetric in each set x1,x2, . . . ,xk with coefficients
in Q(q). Denote by ⟨ , ⟩i the Hall pairing on Λ(xi) and consider the Hall pairing

⟨ , ⟩ :=
∏
i

⟨ , ⟩i

on Λ.
Given a family of functions uλ(x1, . . . ,xk, q) ∈ Λ indexed by partitions with u0 = 1.

We extend its definition to a type τ = {(di, τ i)mi}i=1,...,r ∈ Tn by

uτ (x1, . . . ,xk, q) :=

r∏
i=1

uτ i(xdi
1 , . . . ,x

di

k , q
di).

Exp and Log. — Consider

ψn : Λ[[T ]] −→ Λ[[T ]], f(x1, . . . ,xk; q, T ) 7−→ f(xn
1 , . . . ,x

n
k ; q

n, Tn).

The ψn are called the Adams operations.
Define Ψ : TΛ[[T ]] → TΛ[[T ]] by

Ψ(f) =
∑
n⩾1

ψn(f)

n
.

J.É.P. — M., 2026, tome 13
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Its inverse is given by
Ψ−1(f) =

∑
n⩾1

µ(n)
ψn(f)

n
,

where µ is the ordinary Möbius function.
Define Log : 1 + TΛ[[T ]] → TΛ[[T ]] and its inverse Exp : TΛ[[T ]] → 1 + Λ[[T ]] as

Log(f) = Ψ−1
(
log(f)

)
and Exp(f) = exp

(
Ψ(f)

)
.

Remark 2.1. — The map T 7→ −T is not preserved under Log and Exp as
1 + qiT j = (1− q2iT 2j)/(1− qiT j).

For a type τ = {(di, τ i)mi} ∈ Tn, we put

(2.2) coτ :=


(−1)r−1µ(d)(r − 1)!

d
∏

imi!
if for all i, di = d,

0 otherwise.

By [7, Eq. (2.3.9)] we have the following.

Proposition 2.2. — Assume given a family of functions uλ = uλ(x1, . . . ,xk; q) ∈ Λ

is indexed by partitions with u0 = 1. Then
(2.3) Log

(∑
λ∈P uλT

|λ|) = ∑
τ

coτuτT
|τ |,

where τ runs over the set of types of size larger or equal to 1.

We also recall the following result of Mozgovoy [25, Lem. 22]. For h ∈ Λ and n ⩾ 1

we put
hn :=

1

n

∑
d|n

µ(d)ψn/d(h).

This is the Möbius inversion formula of
ψn(h) =

∑
d|n

d · hd.

Lemma 2.3. — Let h ∈ Λ and f1, f2 ∈ 1 + TΛ[[T ]] such that

log (f1) =

∞∑
d=1

hd · log (ψd(f2)).

Then
Log(f1) = h · Log(f2).

Cauchy function. — The k-points Cauchy function is defined as

(2.4) Ω(q) = Ω(x1, . . . ,xk, q;T ) :=
∑
λ∈P

1

aλ(q)

(∏k
i=1 H̃λ(xi, q)

)
T |λ| ∈ 1 + TΛ[[T ]],

where aλ(q) is a polynomial in q which gives the cardinality of the centralizer of a
unipotent element of GLn(Fq) with Jordan form of type λ [22, IV, (2.7)].

For a family of symmetric functions uλ(x; q) indexed by partitions and a multi-type
ω = (ω1, . . . , ωk) ∈

(
Tn

)k, we put

uω := uω1
(x1, q) · · ·uωk

(xk, q) ∈ Λ.

J.É.P. — M., 2026, tome 13



80 E. Letellier & F. Rodriguez Villegas

For ω = (ω1, . . . , ωk) ∈
(
Tn

)k, with ωi = {(dij , ωj
i )

mij}j=1,...,ri , define

Hω(q) := (q − 1) ⟨LogΩ(q), sω⟩

= (q − 1)
∑
τ∈Tn

coτ
1

aτ (q)

〈∏k
i=1 H̃τ (xi; q), sω

〉
,

where ⟨LogΩ(q), sω⟩ is the Hall pairing of sω with the coefficient of LogΩ(q) in Tn.
The term aτ (q) =

∏
i aτ i(qdi) is the cardinality of the centralizer in GL|τ |(Fq) of an

element of type τ .

2.2. The characters of GLn(Fq) = GF

Conjugacy classes. — Let Ξ denote the set of F -orbits of F∗
q = GL1(Fq) and for an

integer m ⩾ 0, we denote by Pm(Ξ) the set of all maps f : Ξ → P such that

|f | :=
∑
ξ∈Ξ

|ξ| |f(ξ)| = m,

where |ξ| denotes the size of the F -orbit ξ. The set Pn(Ξ) parametrizes naturally the
set of conjugacy classes of GF using Jordan decomposition. For f ∈ Pn(Ξ), we denote
by Cf the corresponding conjugacy class of GF .

For instance, the conjugacy classes of
x 1 0 0

0 x 0 0

0 0 xq 1

0 0 0 xq


with x ∈ Fq2 ∖ Fq, corresponds to Ξ → P that maps the F -orbit {x, xq} to the
partition (21) and the other F -orbits to 0.

For f ∈ Pm(Ξ) and a pair (d, λ) ∈ Z>0 × (P∖ {0}), we put

md,λ := #{θ ∈ Θ | |θ| = d, f(θ) = λ}.

The collection of the multiplicities md,λ defines a type t(f) ∈ Tm called the type of f .
For example, the elements of T2 are (1, 1)2, (2, 1), (1, 12) and (1, 21) and are the

types of the following kind of matrices (up to conjugacy in GL2(Fq))(
a 0

0 b

)
,

(
x 0

0 xq

)
,

(
a 0

0 a

)
,

(
a 1

0 a

)
,

where a ̸= b ∈ F∗
q , x ∈ Fq2 ∖ Fq.

Irreducible characters. — We now review the parametrization of the irreducible char-
acters. For each integer r > 0 we denote by Fqr the unique subfield of Fq of cardinal-
ity qr. For integers r and s such that r | s we have the norm map

Nr,s : (Fqs)
∗ −→ (Fqr )

∗, x 7−→ x(q
s−1)/(qr−1),

which is surjective.

J.É.P. — M., 2026, tome 13



Ennola duality for decomposition of tensor products 81

It induces an injective map F̂∗
qr → F̂∗

qs and we consider the direct limit

Γ = lim−→ F̂∗
qr

of the F̂∗
qr via these maps. The Frobenius automorphism F acts on Γ by α 7→ αq and

we denote by Θ the set of F -orbits of Γ.
For an integer m ⩾ 0, we denote by Pm(Θ) the set of all maps f : Θ → P such that

|f | :=
∑
θ∈Θ

|θ| |f(θ)| = m,

where |θ| denotes the size of the F -orbit θ. As for Pm(Ξ), we define a type t(f) ∈ Tm

for any f ∈ Pm(Θ).
The irreducible complex characters of GF are naturally parametrized by the set

Pn(Θ) as we now recall. For f ∈ Pn(Θ), we recall (see [21]) the construction of the
corresponding irreducible character Xf using Deligne-Lusztig theory.

Consider
LF
f :=

∏
θ∈Θ,f(θ)̸=0

GL|f(θ)|(Fq|θ|).

This is the group of Fq-points of an F -stable Levi subgroup Lf of (some parabolic
subgroup of) GLn(Fq). Choose a representative θ̇ of each θ ∈ Θ such that f(θ) ̸= 0.
The collection of the θ̇ composed with the determinant defines a linear character θf
of LF

f while the collection of partitions f(θ) define a unipotent character Uf of LF
f as

follows.
We get the corresponding unipotent character Uµ of GLm(Fq) as

(2.5) Uµ =
1

|Sm|
∑

w∈Sm

χµ(w)R
GLF

m

TF
w

(1),

where Tw is an F -stable maximal torus of GLm obtained by twisting the torus of
diagonal matrices by w and where R

GLF
m

TF
w

(1) is the Deligne-Lusztig induced of the
trivial character. Then Uf is the external tensor product of the Uf(θ) where θ runs
over the set {θ ∈ Θ | f(θ) ̸= 0}.

By [21] we have the following:

(2.6) Xf = (−1)r(f)RGF

LF
f
(θf · Uf ),

where r(f) := r(t(f)) is given by Formula (2.1) and where for any F -stable Levi
subgroup L of G, we denote by RGF

LF the Lusztig induction studied for instance in [4].
Notice that

∑
θ |f(θ)| is the Fq-rank of Lf and that the right hand side of (2.6) does

not depend on the choice of the representatives θ̇. We will say that (LF
f , θf ,Uf ) is a

triple defining Xf .
For any irreducible character X = Xh, with h ∈ Pn(Θ), we define the character

X̃ := (−1)r(h)RGF

LF
h
(Uh).

It does not depend on θh (it depends only on the type of h), it is not irreducible in
general and takes the same values as X at unipotent elements.
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Theorem 2.4. — Let X be an irreducible character of type ω.
(1) For any conjugacy class C of type τ , we have

X̃(C) = (−1)r(ω)
〈
H̃τ (x; q), sω(x)

〉
.

(2) In particular

X(1) = X̃(1) =
qn(ω)

∏n
i=1(q

i − 1)

Hω(q)
,

where for a partition λ, Hλ(q) =
∏

s∈λ(q
h(s) − 1) is the hook polynomial [22, Chap. I,

Part 3, Ex. 2].

If di = 1 for all i, the first assertion of the Theorem is [8, Th. 2.2.2], otherwise
the same proof works with slight modifications. The second assertion is standard [22,
Chap. IV, (6.7)].

2.3. The characters of GUn(Fq) = GF ′

Conjugacy classes. — Denote by Ξ′ the set of F ′-orbits of F∗
q = GL1(Fq) and for

ξ ∈ Ξ′, denote by |ξ| the cardinal of ξ. The set of conjugacy classes of GF ′ is in
bijection with the set

Pn(Ξ
′) :=

{
f : Ξ′ → P

∣∣ ∑
ξ∈Ξ′ |ξ| |f(ξ)| = n

}
.

For f ∈ Pn(Ξ), we let C ′
f be the corresponding conjugacy class of GF ′ . As in Sec-

tion 2.2 we can associate to any f ∈ Pn(Ξ
′) a type t(f) ∈ Tn.

For example, the types (1, 1)2, (2, 1), (1, 12) and (1, 21) are respectively the types
of the following kind of matrices (up to conjugacy in GL2(Fq))(

a 0

0 b

)
,

(
x 0

0 x−q

)
,

(
a 0

0 a

)
,

(
a 1

0 a

)
,

where a ̸= b ∈ µq+1, x ∈ Fq2µq+1.
For a type τ of size n, we define the polynomial

(2.7) a′τ (t) := (−1)naτ (−t).

By Wall (see [33, Prop. 3.2]), the evaluation a′τ (q) is the cardinality of the centralizer
of an element of GF ′ of type τ .

Irreducible characters. — Let us now give the construction of the irreducible charac-
ters of GF ′ .

For a positive integer, we consider the multiplicative group

Mm :=
{
x ∈ F∗

q | xq
m

= x(−1)m
}
.

We have Mm = F∗
qm if m is even and Mm = µqm+1 if m is odd.

If r | m, then the polynomial |Mr| divides |Mm| and we have a norm map

Mm −→Mr, x 7−→ x|Mm|/|Mr|.

We may thus consider the direct limit
Γ′ := lim−→ M̂m
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of the character groups M̂m. The Frobenius F ′ : x 7→ x−q on F∗
q preserves the sub-

groups Mm and so acts on Γ′. We denote by Θ′ the set of F ′-orbits of Γ′.
We denote by Pm(Θ′) the set of all maps f : Θ′ → P such that

|f | :=
∑
θ∈Θ′

|θ| |f(θ)| = m.

As in Section 2.2, we can associate to any f ∈ Pm(Θ′) a type t(f) ∈ Tm. The
irreducible characters of GF ′ are naturally parametrized by the set Pn(Θ

′) (the trivial
unipotent character corresponds to the partition (n1)).

For f ∈ Pn(Θ
′), we construct the associated irreducible character X′

f in terms of
Deligne-Lusztig theory as follows. Define

LF ′

f :=
∏

θ∈Θ′,f(θ)̸=0
|θ| even

GL|f(θ)|(Fq|θ|)
∏

θ∈Θ′,f(θ)̸=0
|θ| odd

GU|f(θ)|(Fq|θ|).

This is the group of Fq-points of some F ′-stable Levi subgroup Lf of G. For each
θ ∈ Θ′ such that f(θ) ̸= 0, choose a representative θ̇ of θ. The collection of the θ̇
composed with the determinant defines a linear character θ′f of LF ′

f and the partitions
f(θ) defines an almost unipotent character U′′

f of LF ′

f using Formula (2.5) for both F
and F ′.

For example, assume that n = 2. If t(f) = (1, 1)2, then f is supported on two
orbits of Θ′ of size one, say {α} and {β} with α, β ∈ µ̂q+1, LF ′

f ≃ µq+1 × µq+1 and
θf (a, b) = α(a)β(b). If ωf = (2, 1), then f is supported on one orbit {η, η−q} ∈ Θ′ of
size 2 with η ∈ F̂∗

q2 , LF ′

f ≃ GL1(Fq2), and θ′f = α.

Remark 2.5. — From [21], the virtual character U′′
f is up to a sign a true unipotent

character of LF ′

f which we denote by U′
f . For a partition µ of n we have

U′
µ = (−1)n(µ

∗)U′′
µ.

The values of U′′
f at unipotent elements are obtained from those of Uf essentially by

replacing q by −q.

Theorem 2.6 (Lusztig-Srinivasan [21]). — We have
X′

f = (−1)r
′(f)+n(f∗)RGF ′

LF ′
f

(θ′f · U′′
f ),

where r′(f) := r′(t(f)) is given by Formula (2.1), f∗ ∈ Pn(Θ
′) is obtained from f

by requiring that f∗(θ) is the dual partition f(θ)∗ for each θ, and where for any f ,
we put n(f) = n(t(f)).

In [21], it is proved that RGF ′

LF ′
f

(θ′f ·U′′
f ) is an irreducible true character up to a sign.

The explicit computation of the sign in the above theorem is done in [33, Th. 4.3].
For an irreducible character X′ = X′

f of GF ′ , define

X̃′ = (−1)r
′(f)+n(f∗)RGF ′

LF ′
f

(U′′
f ).

We have the following theorem analogous to Theorem 2.4 with the Frobenius F ′

instead of F .
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Theorem 2.7 (Ennola duality). — Let X′ and X be irreducible characters respectively
of GF ′ and GF both of type ω.

(1) For any conjugacy class C ′ of GF ′ and C of GF of type τ , we have

X̃′(C ′) = (−1)n(ω
∗)+(n2) X̃(C)(−q)

= (−1)r
′(ω)+n(ω∗)

〈
H̃τ (x;−q), sω(x)

〉
.

(2) In particular
X′(1) = (−1)n(ω

∗)+(n2) X(1)(−q).

Proof. — Using the character formula for Deligne-Lusztig induction [4, §10.1], the
proof of the theorem reduces to Ennola duality for unipotent characters. □

Remark 2.8. — Note that as we know from Ennola duality that X′(1) and X(1)(−q)
differ by a sign and that X′(1) is positive we can easily compute the sign in (1) and
in Theorem 2.6 from Theorem 2.4(2).

2.4. Ennola duality for generic multiplicities. — In [7, Def. 4.2.2] we define the
notion of generic k-tuple of irreducible characters of GF . We define generic k-tuple of
irreducible characters of GF ′ exactly in the same way. We do not give the definition
as we will only use the theorem below. However to give a taste of what it is we give
the definition for irreducible characters whose type is a partition of n (i.e., unipotent
characters tensored by a linear character of GF ).

If U1, . . . ,Uk are unipotent characters of GF and if α ∈ ̂GL1(Fq) is of order n, then
(U1, . . . ,Uk−1, (α ◦ det) · Uk)

is a generic k-tuple of irreducible characters of GF .

Remark 2.9. — For any multi-type ω = (ω1, . . . , ωk) ∈ (Tn)
k, there always exist

generic k-tuples of irreducible characters of GF (or GF ′) of type ω as long as the
characteristic is large enough. The existence is equivalent to that of the existence of
generic k-tuple of conjugacy classes (see [18, Prop. 8.1.2]) and the condition on the
characteristic for the existence of generic k-tuple of conjugacy classes is explained in
[17, see above Prop. 3.4].

We have the following technical result:

Theorem 2.10
(1) Let (X1, . . . ,Xk) be a generic k-tuple of irreducible characters of GF of type

ω = (ω1, . . . , ωk). Let τ ∈ Tn and denote by Cτ a conjugacy class of GF of type τ .
Then ∑

f∈Pn(Ξ)
t(f)=τ

k∏
i=1

Xi(Cf ) = (q − 1)coτ

k∏
i=1

X̃i(Cτ )

= (q − 1)coτ (−1)r(ω)
k∏

i=1

〈
H̃τ (xi; q), sωi

〉
,

where r(ω) =
∑

i r(ωi).
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(2) Let (X′
1, . . . ,X

′
k) be a generic k-tuple of irreducible characters of GF ′ of type

ω = (ω1, . . . , ωk). Let τ ∈ Tn and denote by C ′
τ a conjugacy class of GF ′ of type τ .

Then ∑
f∈Pn(Ξ

′)
t(f)=τ

k∏
i=1

X′
i(C

′
f ) = (q + 1)coτ

k∏
i=1

X̃′
i(C

′
τ )

= (q + 1)coτ (−1)r
′(ω)+n(ω∗)

k∏
i=1

〈
H̃τ (xi;−q), sωi

〉
.

where r′(ω) :=
∑k

i=1 r
′(ωi) and n(ω∗) :=

∑k
i=1 n(ω

∗
i ).

Proof. — The assertion (1) follows from [7, Lem. 2.3.5, Th. 4.3.1] and the proof of the
assertion (2) is completely similar. □

Theorem 2.11
(1) Let (X1, . . . ,Xk) be a generic k-tuple of irreducible characters of GF of type

ω ∈ (Tn)
k. We have

Vω(q) := ⟨X1 ⊗ · · · ⊗ Xk, 1⟩GF = (−1)r(ω)Hω(q).

(2) Let (X′
1, . . . ,X

′
k) be a generic k-tuple of irreducible characters of GF ′ of type

ω ∈ (Tn)
k. We have

V ′
ω(q) := ⟨X′

1 ⊗ · · · ⊗ X′
k, 1⟩GF ′ = (−1)r

′(ω)+n(ω∗)+n+1Hω(−q).

Remark 2.12. — According to Remark 2.9, generic k-tuples of irreducible characters
of type ω may not exist in small characteristics, however the polynomials on the right
hand side of the above equalities always exist and will be denoted by Vω(q) and V ′

ω(q)

in small characteristics.

The theorem says in particular that the generic multiplicities depend only on the
types and not on the choice of the irreducible characters of a given type. Note that
Hω(q) is clearly a rational function in q with rational coefficients. By the above theo-
rem, it is also an integer for infinitely many values of q. Hence Hω(q) is a polynomial
in q with rational coefficients. We will see that it has integer coefficients.

Corollary 2.13 (Ennola duality for generic multiplicities)

V ′
ω(q) = (−1)r

′(ω)+r(ω)+n(ω∗)+n+1Vω(−q).

In particular if ω is a multi-partition µ = (µ1, . . . , µk), i.e., each coordinate ωi is
of the form (1, µi), then

V ′
µ(q) = (−1)k(n+⌈n/2⌉)+n(µ∗)+n+1Vµ(−q).

Proof of Theorem 2.11. — Assertion (1) was stated without proof in [15]. We prove
the assertion (2) for the convenience of the reader.

We have

⟨X′
1 ⊗ · · · ⊗ X′

k, 1⟩GF ′ =
∑
C′

|C ′|
|GF ′ |

k∏
i=1

X′
i(C

′),
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where the sum is over the set over conjugacy classes. The quantity |C ′|/|GF ′ | depends
only on the type of C ′, more precisely, see Formula (2.7),

|C ′
f |

|GF ′ |
= a′t(f)(q)

−1.

We thus have

⟨X′
1 ⊗ · · · ⊗ X′

k, 1⟩GF ′ =
∑
τ∈Tn

1

a′τ (q)

∑
f∈Pn(Ξ′),t(f)=τ

k∏
i=1

X′
i(C

′
f ).

Using Theorem 2.10(2) we get that

⟨X′
1 ⊗ · · · ⊗ X′

k, 1⟩GF ′ = (−1)r
′(ω)+n(ω∗)+n(q + 1)

〈 ∑
τ∈Tn

coτ
1

aτ (−q)

k∏
i=1

H̃τ (xi;−q), sω
〉

= (−1)r
′(ω)+n(ω∗)+n+1Hω(−q). □

Remark 2.14. — Notice that the map q 7→ −q is not preserved under Log (see Re-
mark 2.1) and so we do not get Hω(−q) as (−q − 1)⟨Log(Ω(−q)), sω⟩.

3. Ennola duality for tensor products of unipotent characters

3.1. Infinite product formulas. — For a multi-partition µ = (µ1, . . . , µk) of n,
we consider the polynomials in q

Uµ(q) :=
〈
Uµ1 ⊗ · · · ⊗ Uµk , 1

〉
GF , U ′

µ(q) :=
〈
U′

µ1 ⊗ · · · ⊗ U′
µk , 1

〉
GF ′ .

Let Φd(q), resp. Φ′
d(q), be the number of F -orbits, resp. F ′-orbits, of F∗

q of size d ⩾ 1.

Proposition 3.1
(1) We have

(3.1) 1 +
∑
n>0

∑
µ∈(Pn)k

Uµ(q)sµT
n =

∏
d⩾1

Ω(xd
1, . . . ,x

d
k, q

d;T d)Φd(q),

where Ω(x1, . . . ,xk, q;T ) is given by Formula (2.4).
(2) We have

(3.2) 1 +
∑
n>0

∑
µ∈(Pn)k

(−1)
1
2dµ+1+nU ′

µ(q)sµ T
n =

∏
d⩾1

Ω(xd
1, . . . ,x

d
k, (−q)d;T d)Φ

′
d(q),

where
dµ := n2(k − 2)−

∑
i,j

(µi
j)

2 + 2.

Proof. — Formula (3.1) is proved in [16, Proof of Prop. 25]. Let us prove the second
formula.

By Theorem 2.7(1), for a partition µ of size n and conjugacy class C ′ of GF ′ we
have

U′
µ(C

′) = (−1)n+⌈n/2⌉+n(µ∗)
〈
H̃t(C′)(x;−q), sµ(x)

〉
.
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Therefore by Equation ( 2.7) we have

1 +
∑
n>0

∑
µ∈(Pn)k

(−1)
1
2dµ+1+nU ′

µ(q)sµ T
n =

∑
f∈P(Ξ′)

1

at(f)(−q)

k∏
i=1

H̃t(f)(xi;−q)T |t(f)|

as
1

2
dµ + 1 ≡ k(n+ ⌈n/2⌉) + n(µ∗) mod 2.

If ω = {(di, ωi)mi} is a type, then

aω(q) =
∏
i

aωi(qdi)mi ,

but bω(q) := aω(−q) does not satisfy such an identity. Indeed bωi(qdi) = aωi(−qdi)

for both odd and even di while

bω(q) =
∏

i, di even
aωi(qdi)mi

∏
i, di odd

aωi(−qdi)mi .

Therefore we consider the partition

Ξ′ = Ξ′
e

∐
Ξ′
o

into orbits of even and odd size respectively. Then

P(Ξ′) = P(Ξ′
e)× P(Ξ′

o)

and

1 +
∑
n>0

∑
µ∈(Pn)k

(−1)
1
2dµ+1+nU ′

µ(q)sµ T
n

=

( ∑
f∈P(Ξ′

e)

1

at(f)(q)

k∏
i=1

H̃t(f)(xi; q)T
|t(f)|

)( ∑
f∈P(Ξ′

o)

1

at(f)(−q)

k∏
i=1

H̃t(f)(xi;−q)T |t(f)|
)

=
∏
ξ∈Ξ′

e

Ω
(
x
|ξ|
1 , . . . ,x

|ξ|
k , q|ξ|;T |ξ|) ∏

ξ∈Ξ′
o

Ω
(
x
|ξ|
1 , . . . ,x

|ξ|
k ,−q|ξ|;T |ξ|)

hence the result. □

3.2. Ennola duality for tensor products of unipotent characters. — By Möbius
inversion formula we have

Φd(q) =
1

d

∑
r|d

µ(r)(qd/r − 1), Φ′
d(q) =

1

d

∑
r|d

µ(r)(qd/r − (−1)d/r).

We introduce a new variable u and we define a common u-deformation of Φd(q) and
Φ′

d(q) as

Φd(u, q) :=
1

d

∑
r|d

µ(r)ud/r(qd/r − 1).

Indeed
Φd(1, q) = Φd(q), Φd(−1,−q) = Φ′

d(q).
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For a multi-partition µ, define polynomials Tµ(u, q) by the formula

(3.3)
∏
d⩾1

Ω(xd
1, . . . ,x

d
k, q

d;T d)Φd(u,q) = 1 + u
∑
n>0

∑
µ∈(Pn)k

Tµ(u, q)sµT
n.

From Proposition 3.1 we have the following.

Theorem 3.2 (Ennola duality). — We have

Uµ(q) = Tµ(1, q), U ′
µ(q) = (−1)

1
2dµ+nTµ(−1,−q).

We will also prove in Section 6.3 the following result.

Theorem 3.3
(i) We have

Vµ(q) = Tµ(0, q), V ′
µ(q) = (−1)

1
2dµ+n Tµ(0,−q).

(ii) For a multi-partition µ = (µ1, . . . , µk), the coefficient of the term of Tµ(u, q)

of degree n− 1 in u is independent of q and equals the Kronecker coefficient

⟨χµ1

⊗ · · · ⊗ χµk

, 1⟩Sn .

4. Module theoretic interpretation of the generic multiplicities

4.1. Quiver varieties. — Let K be an algebraically closed field (C or Fq). Fix a
generic k-tuple (C1, . . . ,Ck) of semisimple regular adjoint orbits of gln(K), i.e., the
adjoint orbits C1, . . . ,Ck are semisimple regular,

k∑
i=1

Tr(Ci) = 0,

and for any subspace V of Kn stable by some Xi ∈ Ci for each i we have
k∑

i=1

Tr(Xi|V ) ̸= 0

unless V = 0 or V = Kn (see [7, Lem. 2.2.2]). In other words, the sum of the eigenval-
ues of the orbits C1, . . . ,Ck equals 0 and if we select r eigenvalues of Ci for each i with
1 ⩽ r < n, then the sum of the selected eigenvalues does not vanish. Such a k-tuple
(C1, . . . ,Ck) always exists.

Consider the affine algebraic variety

Vn :=
{
(X1, . . . , Xk) ∈ C1 × · · · × Ck

∣∣ ∑
iXi = 0

}
.

The diagonal action of GLn(K) on Vn by conjugation induces a free action of PGLn(K)

(in particular all GLn-orbits of V are closed), see [7, §2.2], and we consider the GIT
quotient

Q = Qn := Vn//PGLn(K) = Spec
(
K[Vn]

PGLn(K)
)
.

This is a non-singular irreducible affine algebraic variety (see [7, Th. 2.2.4]) of dimen-
sion

(4.1) dimQ = n2(k − 2)− kn+ 2.
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Crawley-Boevey [1] makes a connection between the points of Q and representations
of the star-shaped quiver with k-legs of length n from which the variety Q can be
realized as a quiver variety (see [7] and references therein for details).

Denote by H∗
c (Q) the compactly supported cohomology of Q (if K = C, this is the

usual cohomology with coefficients in C and if the characteristic of K is positive this
is the ℓ-adic cohomology with coefficients in Qℓ). The variety Q is cohomologically
pure and has vanishing odd cohomology (see [2, §2.4] and [7, Th. 2.2.6]).

4.2. Action of S′
n on cohomology. — Let K be either C or Fq. Consider the involu-

tions GLn(K) → GLn(K), g 7→ tg−1 and gln(K) → gln(K), x 7→ −tx which we both
denote by ι. Notice that

ι(gxg−1) = ι(g)ι(x)ι(g)−1

for any g ∈ GLn(K) and x ∈ gln(K).
Notice also that ι fixes permutation matrices of GLn(K) which are identified

with Sn. Consider the finite group

S′
n := Sn × ⟨ι⟩.

where Sn := (Sn)
k.

In this section we construct an action of S′
n on the cohomology H∗

c (Q) (notice
that Sn and ⟨ι⟩ do not act on Q).

The construction of the Sn-action is done in [9] (this is a particular case of the
action of Weyl groups on the cohomology of quiver varieties as studied by many
authors including Nakajima [26, 27], Lusztig [20] and Maffei [23]). The Sn-module
structure does not depend on the choice of the eigenvalues of the orbits C1, . . . ,Ck

(as long as this choice is generic).
Let tn ⊂ gln be the closed subvariety of diagonal matrices and let tgenn be the open

subset of tkn of generic regular k-tuples (σ1, . . . , σk), i.e., for each i = 1, . . . , k, the
diagonal matrix ti has distinct eigenvalues and if Oi denotes the GLn-orbit of ti, then
the k-tuple (O1, . . . ,Ok) is generic.

Let Tn ⊂ GLn be the closed subvariety of diagonal matrices and put

Gn = (GLn)
k, T n = (Tn)

k, gn = (gln)
k.

Consider the GIT quotient

Q̃n :=
{
(X, gT n, σ) ∈ gn × (Gn/T n)× tgenn

∣∣ g−1Xg = σ,
∑

iXi = 0
}//

Gn,

where Gn acts by conjugation on gn and by left multiplication on Gn/T n.
The group Sn acts on Gn/T n as s · gT n := gs−1T n where we regard elements

of Sn as permutation matrices in GLn. It acts also on tgenn by conjugation from which
we get an action of Sn on Q̃n.

The projection
p : Q̃n −→ tgenn
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is then Sn-equivariant for these actions. It is also ⟨ι⟩-equivariant for its action on Q̃

given by
ι(X, gT , σ) := (ι(X), ι(g)T , ι(σ)).

As ι acts trivially on Sn we get an action of S′
n on Q̃n and p is S′

n-equivariant.

Lemma 4.1. — If the Gn-conjugacy class of σ ∈ tgenn in gn is C1 × · · · × Ck, the
projection

Qσ := p−1(σ) −→ Q, (X, gT , σ) 7−→ X

is an isomorphism.

For σ ∈ tgenn and w′ ∈ S′
n, denote by w′ : Qσ → Qw′·σ the isomorphism given by

(X, gT n, σ) 7→ w′ · (X, gT n, σ).

Theorem 4.2 ([9, Th. 2.3]). — Assume that K = Fq with char(K) ≫ 0 or K = C and
let κ be Qℓ if K = Fq (with ℓ ∤ q) and let κ be C if K = C. The sheaf Rip!κ is constant.

Therefore, for any σ, τ ∈ tgenn , there exists a canonical isomorphism iσ,τ : Hi
c(Qσ) →

Hi
c(Qτ ) such that

iσ,τ ◦ iζ,σ = iζ,τ

for all σ, τ, ζ ∈ tgenn . Since p is S′
n-equivariant, the isomorphisms iσ,τ are compatible

with the action of S′
n.

We define a representation

ρj : S′
n −→ GL

(
H2j

c (Qσ)
)

by ρj(w′) = iw′·σ,σ ◦(w′−1)∗. Thanks to Lemma 4.1, we get an action of S′
n on Hi

c(Q).

4.3. Multiplicities and quiver varieties

Preliminaries. — For a partition µ of n we denote by Mµ an irreducible Qℓ[Sn]-mod-
ule corresponding to µ. For a type ω = {(di, ωi)mi}i=1,...,r ∈ Tn, we consider the
subgroup

Sω =
∏
i

(S|ωi|)
di × · · · × (S|ωi|)

di︸ ︷︷ ︸
mi

of Sn and the Sω-module

Mω :=
r⊗

i=1

(T diMωi ⊗ · · · ⊗ T diMωi︸ ︷︷ ︸
mi

),

where T dV stands for V ⊗ · · · ⊗ V (d times).
The permutation action of Sdi

on the factors of (S|ωi|)
di and T diMωi induces an

action of
∏

i(Sdi
)mi on both Sω and Mω and so we get an action of Sω ⋊

∏
i(Sdi

)mi

on Mω.
We may regard Sω ⋊

∏
i(Sdi)

mi as a subgroup of the normalizer NSn(Sω). Any
Sn-module becomes thus an Sω ⋊

∏
i(Sdi

)mi-module by restriction.
Let now N be any Sn-module. We get an action of

∏
i(Sdi

)mi on

HomSω
(Mω, N)
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(where N is considered as an Sω ⋊
∏

i(Sdi
)mi -module by restriction) as

(r · f)(v) = r · (f(r−1 · v))

for any f ∈ HomSω
(Mω, N) and r ∈

∏
i(Sdi

)mi .
Let vω be the element of

∏
i(Sdi

)mi whose coordinates act by circular permutation
of the factors on each T diMωi and put

cω(N) := Tr
(
vω

∣∣ HomSω (Mω, N)
)
.

Lemma 4.3
(1) The function sω decomposes into the following sum of Schur functions as

sω =
∑
µ∈Pn

cω(Mµ)sµ.

(2) We have
cω(Mµ∗) = (−1)r(ω)cω∗(Mµ).

Proof. — The first assertion is [15, Prop. 6.2.5]. Let us prove the second assertion.
To alleviate the notation, we assume (without loss of generality) that all mi = 1 i.e.,
ω = {(di, ωi)}i=1,...r. By [15, Prop. 6.2.4] we have

cω(Mµ) =
∑
ρ

χµ
ρ

∑
α

(∏r
i=1 z

−1
αi χ

ωi

αi

)
,

where the second sum runs over all α = (α1, . . . , αr) ∈ P|ω1| × · · · × P|ωr| such that⋃
i di ·αi = ρ (recall that d ·µ is the partition obtained from µ by multiplying all parts

of µ by d).
Using that χµ∗

= ε⊗ χµ where ε is the sign character, we are reduced to proving
the following identity

(4.2) ε(ρ) = (−1)n+
∑

i |α
i|

r∏
i=1

ε(αi)

whenever
⋃

i di · αi = ρ. We have

ε(ρ) =
∏
i

ε(di · αi).

Since n =
∑

i di|αi| the identity (4.2) is a consequence of the following identity

ε(d · λ) = (−1)(d+1)|λ|ε(λ),

where d is a positive integer and λ a partition. □

Main result. — We can generalize this to a multi-type ω = (ω1, . . . , ωk) with all ωi of
same size n, by replacing Sω, Mω and vω by

Sω := Sω1 × · · · × Sωk
, Mω :=Mω1 ⊠ · · ·⊠Mωk

, vω = (vω1 , . . . , vωk
)

and for any Sn-module N we define

cω(N) := Tr
(
vω

∣∣ HomSω (Mω, N)
)
.
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Remark 4.4. — If N is of the form N1 ⊠ · · ·⊠Nk with Ni any Sn-module, then

cω(N) = cω1
(N1) · · · cωk

(Nk).

Let now N be an S′
n-module. We extend trivially the action of NSn(Sω) on Mω

to an action of NS′
n
(Sω) = NSn

(Sω) × ⟨ι⟩ on Mω. We thus get an action of
NS′

n
(Sω)/Sω = (NSn

(Sω)/Sω)× ⟨ι⟩ on HomSω (Mω, N), and we define

c′ω(N) := Tr
(
vω ι

∣∣ HomSω (Mω, N)
)
.

Let Qn be the quiver variety defined in Section 4.1 and let M•
n be the graded S′

n-mod-
ule defined by

Mi
n = H2i+d

c (Qn)⊗ (ε⊠k),

where ε⊠k = ε⊠ · · ·⊠ ε with ε the sign representation of Sn.

Theorem 4.5. — Let ω ∈ (Tn)
k.

(1) We have

Vω(q) = (−1)r(ω)
∑
i

cω(Mi
n) q

i.

(2) We have

V ′
ω(q) = (−1)n(ω

∗)+r(ω)
∑
i

c′ω(Mi
n) q

i.

From the above theorem and Theorem 2.11(2) we have

Hµ(−q) = (−1)r
′(µ)+r(µ)+n+1

∑
i

c′µ(Mi
n) q

i

and from Theorem 2.11(1) we also have

(4.3) Hµ(q) =
∑
i

cµ(Mi
n) q

i,

from which we deduce the following formula as

r(µ) + r′(µ) ≡ k(⌈n/2⌉+ n) mod 2.

Corollary 4.6. — c′µ(Mi
n) = (−1)i+k(⌈n/2⌉+n)+n+1cµ(Mi

n).

5. Proof of Theorem 4.5

When ω is a multi-partition, the assertion (1) is proved in [16, End of proof of
Th 2.3]. We will prove the assertion (2) first in the case of multi-partitions and then
deduce from it the case of arbitrary multi-types. The reduction of the general case to
the multi-partition case is completely similar for GF and GF ′ .
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5.1. Quiver varieties and Fourier transforms. — In this section, K = Fq, G =

GLn(K) and g = gln(K). We denote by F : g → g the standard Frobenius that raises
matrix coefficients to their q-th power. We also denote by F ′ : g → g, X 7→ −tF (X).

The conjugation action of G on g is compatible with both Frobenius endomor-
phisms F and F ′, i.e.,

F (gXg−1) = F (g)F (X)F (g−1), F ′(gXg−1) = F ′(g)F ′(X)F ′(g−1)

for any g ∈ G and X ∈ g, and so GF (resp. GF ′) acts on gF (resp. gF ′).

5.1.1. Quiver variety. — Since for all x ∈ g, the stabilizer CG(x) is connected, the set
of GF -orbit of gF (resp. the set of GF ′ -orbits of gF ′) is naturally in bijection with the
set of F -stable (resp. F ′-stable) G-orbits of g, i.e., if O is a G-orbit of g stable by the
Frobenius, then any two rational elements of O are rationally conjugate.

Denote by Ξ̃ (resp. Ξ̃′) the set of F -orbits (resp. F ′-orbits) of K. Analogously to
conjugacy classes of GF and GF ′ , the set of F -stable (resp. F ′-stable) G-orbits of g is
in bijection with the set Pn(Ξ̃) (resp. Pn(Ξ̃

′)) of all maps f : Ξ̃ → P (resp. f : Ξ̃′ → P)
such that

|f | :=
∑
ξ

|ξ| |f(ξ)| = n,

where |ξ| denotes the size of the orbit ξ.
As for conjugacy classes, we can associated to any f ∈ Pn(Ξ̃) (resp. f ∈ Pn(Ξ̃

′)) a
type t(f) ∈ Tn.

The types of the F ′-stable semisimple regular G-orbits of g are of the form
{(di, 1)mi} with ∑

i

dimi = n,

and are therefore parametrized by the partitions of n and so by the conjugacy classes
of Sn : the partition of n corresponding to {(di, 1)mi}i is∑

i

di + · · ·+ di︸ ︷︷ ︸
mi

.

For example, the types (1, 1)2 and (2, 1) are the types of the orbits of(
a 0

0 b

)
,

(
x 0

0 −xq

)
,

where a ̸= b ∈ {zq = −z}, and x ∈ Fq2 ∖ {zq = −z}, corresponding respectively to
the trivial and non-trivial element of S2.

For short we will say that an F ′-stable semisimple regular G-orbit of g is of type
w ∈ Sn if its type corresponds to the conjugacy class of w in Sn.

For a k-tuple w = (w1, . . . , wk) ∈ Sn, we choose a generic k-tuple Cw =

(Cw1 . . . ,Cwk) of F ′-stable semisimple regular G-orbit of g of type w and we consider
the associated quiver variety

Qw := Vw//PGLn,

where Vw :=
{
(X1, . . . , Xk) ∈ Cw1 × · · · × Cwk

∣∣ ∑
iXi = 0

}
.
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5.1.2. Introducing Fourier transforms. — For the definition and properties of these
Fourier transforms we follow G. Lehrer [11].

Denote by C(gF
′
) the Qℓ-vector space of functions gF ′ → Qℓ constant on GF ′ -orbits

which we equip with ⟨ , ⟩ defined by

⟨f1, f2⟩gF ′ =
1

|GF ′ |
∑

x∈gF ′

f1(x)f2(x),

for any f1, f2 ∈ C(gF
′
) where Qℓ → Qℓ, x 7→ x is the involution corresponding to the

complex conjugation under an isomorphism Qℓ ≃ C we have fixed. Fix a non-trivial
additive character ψ : Fq → Qℓ. Notice that the trace map Tr on g satisfies

Tr(F ′(x)F ′(y)) = Tr(xy)q

for all x, y ∈ g. Define the Fourier transform Fg : C(gF
′
) → C(gF

′
) by

Fg(f)(y) =
∑

x∈gF ′

ψ(Tr(yx))f(x)

for any y ∈ gF
′ and f ∈ C(gF

′
). Consider the convolution product ∗ on C(gF

′
)

defined by
(f1 ∗ f2)(x) =

∑
y+z=x

f1(y)f2(z),

for x ∈ gF
′ , f1, f2 ∈ C(gF

′
). We have the following straightforward proposition.

Proposition 5.1
(1) We have

Fg(f1 ∗ f2) = Fg(f1)F
g(f2)

for all f1, f2 ∈ C(gF
′
).

(2) For f ∈ C(gF
′
) we have

|gF
′
| · f(0) =

∑
x∈gF ′

Fg(f)(x).

For a GF ′ -orbit O of gF ′ , let 1O ∈ C(gF
′
) denote the characteristic function of O,

i.e.,

1O(x) =

{
1 if x ∈ O

0 otherwise.

Proposition 5.2. — We have

|(Qw)F
′
| = (q + 1)

|gF ′ |
〈∏k

i=1 F
g(1(Cwi )F ′ ), 1

〉
gF ′ .

Proof. — Since PGLn(K) is connected and acts freely on Vw, we have

|(Qw)F
′
| = |(Vw)F

′ |
|PGLn(K)F ′ |

=
(q + 1)|(Vw)F

′ |
|GLn(K)F ′ |

.
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On the other hand

|(Vw)F
′
| = #

{
(X1, . . . , Xk) ∈ (Cw1)F

′ × · · · × (Cwk)F
′ ∣∣ ∑

iXi = 0
}

=
(
1(Cw1 )F ′ ∗ · · · ∗ 1(Cwk )F ′

)
(0)

=
1

|gF ′ |
∑

x∈gF ′

k∏
i=1

Fg(1(Cwi )F ′ )(x). □

5.2. Fourier transforms and irreducible characters: Springer’s theory

Consider a type of the form ω = {(di, 1)mi}i=1,...,r ∈ Tn (we call types of this form
regular semisimple), and denote by

TF ′

ω =
∏

i, di even
GL1(Fqdi )

mi

∏
i, di odd

GU1(Fqdi )
mi

its associated rational maximal torus. An irreducible character Xf of GF ′ of type
t(f) = ω is called regular semisimple. We have

(5.1) Xf = (−1)r(ω)RGF ′

TF ′
ω

(θf )

for some linear character θf of TF ′

ω (see Theorem 2.6). Moreover, for all g ∈ GF ′ with
Jordan decomposition g = gsgu, we have the following character formula [3, Th. 4.2]

(5.2) RGF ′

TF ′
ω

(θf )(g) =
1

|CG(gs)F
′ |

∑
{h∈GF ′ |gs∈hTωh−1}

Q
CG(gs)

F ′

hTF ′
ω h−1 (gu)θf (h

−1gsh),

where
Q

CG(gs)
F ′

hTF ′
ω h−1 := R

CG(gs)
F ′

hTF ′
ω h−1 (1{1})

is the so-called Green function defined by Deligne-Lusztig [3].
Denote by tω the Lie algebra of Tω. In [13], we defined a Lie algebra version of

Deligne-Lusztig induction, namely we defined a Qℓ-linear map

RgF ′

tF ′
ω

: C(tF
′

ω ) −→ C(gF
′
)

by the same formula as (5.2), i.e.,

(5.3) RgF ′

tF ′
ω

(η)(x) =
1

|CG(xs)F
′ |

∑
{h∈GF ′ |xs∈htωh−1}

Q
Cg(xs)

F ′

htF ′
ω h−1 (xn) η(h

−1gsh)

for x ∈ gF
′ with Jordan decomposition x = xs + xn and where

Q
Cg(xs)

F ′

htF ′
ω h−1 (xn) := Q

CG(gs)
F ′

hTF ′
ω h−1 (xn + 1).

We have the following special case of [14, Th. 7.3.3].

Theorem 5.3. — Let Ch be a regular semisimple orbit of gF ′ of type t(h) = ω, then

FgF ′

(1Ch
) = (−1)r

′(ω)q(n
2−n)/2RgF ′

tF ′
ω

(ηh),

where ηh : tF
′

ω → Qℓ, z 7→ ψ(Tr(zx)) with x ∈ tF
′

ω a fixed representative of Ch in tF
′

ω .
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The above formula shows that the computation of the values of FgF ′

(1Cf
) and Xf is

identical. This connection between Fourier transforms and characters of finite reduc-
tive groups was first observed and investigated by T. A. Springer [31, 30, 10] and later
by G. Lusztig [19] and G. I. Lehrer [11, 12]. As a consequence we get the additive
version of Theorem 2.10(2).

Theorem 5.4. — Assume that (C1, . . . ,Ck) is a generic tuple of F ′-stable regular
semisimple orbits of gF ′ of type ω = (ω1, . . . , ωk). Then for any type τ ∈ Tn we have

(5.4)
∑

f∈Pn(Ξ̃
′)

t(f)=τ

k∏
i=1

Fg(1CF ′
i
)(C′

f ) = q(k(n
2−n)+2)/2coτ (−1)r

′(ω)
k∏

i=1

〈
H̃τ (xi;−q), sωi

〉
,

where C′
f denotes the GF ′-orbit of gF ′ corresponding to f .

Proof. — In the LHS of Formula (5.4) we first replace Fg(1CF ′
i
) by RgF ′

tF ′
ωi

(ηi) (see
Theorem 5.3). Using Formula (5.3), the proof is completely similar to its multiplicative
version (Theorem 2.10(2)). For more details see the proof of the analogous statement
in the case of the Frobenius endomorphism F , [7, Lem. 6.2.3]. □

Theorem 5.5. — Let (X′
1, . . . ,X

′
k) be a generic k-tuple of regular semisimple irre-

ducible characters of GF ′ and let (C1, . . . ,Ck) be a generic k-tuple of F ′-stable regular
semisimple orbits of gF ′ of same type as (X′

1, . . . ,X
′
k). Then

⟨X′
1 ⊗ · · · ⊗ X′

k, 1⟩GF ′ = q−1/2 dimQ (q + 1)

|gF ′ |
〈∏

i F
g(1CF ′

i
), 1

〉
gF ′ .

Proof. — The analogous formula in the case of the standard Frobenius F instead
of F ′ is a particular case of [15, Th. 6.9.1] and the proof for F ′ is completely similar.
However, since the proof of [loc. cit.] simplifies in the regular semisimple case, we give
it for the convenience of the reader.

For each i = 1, . . . , k, let ωi be the common type of X′
i and Ci. Then〈∏

i F
g(1CF ′

i
), 1

〉
=

1

|GF ′ |
∑

x∈gF ′

∏
i

Fg(1CF ′
i
)(x) =

∑
f∈Pn(Ξ̃′)

1

a′f (q)

∏
i

Fg(1CF ′
i
)(C′

f ),

where for f ∈ Pn(Ξ̃
′), C′

f is the associated GF ′ -orbit of gF ′ and a′f (q) the size of the
stabilizer in GF ′ of an element of C′

f . We thus have〈∏
i F

g(1CF ′
i
), 1

〉
=

∑
τ∈Tn

1

a′τ (q)

∑
f∈Pn(Ξ̃

′)
t(f)=τ

∏
i

Fg(1CF ′
i
)(C′

f )

= q(k(n
2−n)+2)/2(−1)r

′(ω)+n
∑
τ∈Tn

1

aτ (−q)
coτ

k∏
i=1

〈
H̃τ (xi;−q), sωi

〉
=
q(k(n

2−n)+2)/2(−1)r
′(ω)+n+1

q + 1
Hω(−q)

=
q(k(n

2−n)+2)/2

q + 1
⟨X′

1 ⊗ · · · ⊗ X′
k, 1⟩.
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The second equality is a consequence of Theorem 5.4 and the last equality follows
from Theorem 2.11(2) and so Theorem 5.5 follows from (4.1). □

5.3. Proof of Theorem 4.5. — We first prove the theorem when each coordinate of ω
is a regular semisimple type. We then deduce the case where ω is a multi-partition,
i.e., each coordinate of ω is of the form (1, µ) with µ a partition. We finally deduce
the general case from the multi-partition case.

5.3.1. Semi-simple regular case. — We saw in Section 5.1.1, that regular semisimple
types in Tn are parametrized by the conjugacy classes of Sn. Assume that all coor-
dinates of ω = (ω1, . . . , ωk) are regular semisimple. The element vω ∈ Sn defined in
Section 4.3 is an element in the corresponding conjugacy class of Sn.

Let (X′
1, . . . ,X

′
k) be a k-tuple of irreducible characters of GF ′ of type ω. From

Theorem 5.5 and Proposition 5.2, we get the following identity

⟨X′
1 ⊗ · · · ⊗ X′

k, 1⟩GF ′ = q−dimQ/2|(Qvω )F
′
|.

On the other hand we can follow line by line the proof of [9, Th. 2.6] to get the following
one.

Theorem 5.6. — We have

|(Qvω )F
′
| =

∑
i

Tr
(
vωι | H2i

c (Q)
)
qi.

As
ε⊠k(vω) = (−1)r(ω),

we have

|(Qvω )F
′
| = qdimQ/2(−1)r(ω)

∑
i

Tr
(
vωι | Mi

n

)
qi

= qdimQ/2(−1)r(ω)
∑
i

c′ω(Mi
n) q

i

as Mω is trivial. We thus get Theorem 4.5 in the regular semisimple case as n(ω∗) = 0.

5.3.2. Multi-partition case. — First of all notice that if λ is a partition

λ1 + · · ·+ λ1︸ ︷︷ ︸
m1

+λ2 + · · ·+ λ2︸ ︷︷ ︸
m2

+ · · ·

with λi ̸= λj for i ̸= j, then
pλ = sω,

where ω is the regular semisimple type {(λi, 1)mi}. In the following we will write [λ]

for the regular semisimple type associated to a partition λ.
Assume now that ω is a multi-partition µ = (µ1, . . . , µk), i.e., the i-coordinate of ω

is the type (1, µi). Decomposing Schur functions into power sums functions pλ, we get

Hµ(−q) =
∑
λ

z−1
λ χµ

λ H[λ](−q).
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Using the theorem for regular semisimple types together with Theorem 2.11(2), we get

Hµ(−q) =
∑
λ

z−1
λ χµ

λ(−1)r
′([λ])+r([λ])+n+1

∑
i

c′[λ](M
i
n)q

i

= (−1)n+1
∑
i

(∑
λ

z−1
λ χµ

λ(−1)r
′([λ])+r([λ]) Tr(v[λ] ι | Mi

n)
)
qi.

Therefore,

(−1)r
′(µ)+n(µ∗)+n+1Hµ(−q)

= (−1)n(µ
∗)
∑
i

(∑
λ

z−1
λ χµ

λ(−1)r
′([λ])+r′(µ)+r([λ]) Tr(v[λ] ι | Mi

n)
)
qi.

However,
(−1)r

′(µ∗)+r′([λ]) = (−1)r([λ]),

and so

(−1)r
′(µ)+n(µ∗)+n+1Hµ(−q) = (−1)n(µ

∗)
∑
i

(∑
λ

z−1
λ χµ

λ Tr(v[λ] ι | Mi
n)
)
qi

= (−1)n(µ
∗)
∑
i

Tr
(
ι | HomSn

(Mµ,Mi
n)
)
qi

= (−1)n(µ
∗)
∑
i

c′µ(Mi
n) q

i,

hence the result for multi-partitions by Theorem 2.11(2), as r(µ) is even.

5.3.3. General case. — Assume now that ω ∈ (Tn)
k is arbitrary. By Lemma 4.3

we have

Hω(−q) =
∑

µ∈(Pn)k

cω(Mµ)Hµ(−q)

=
∑
µ

cω(Mµ)(−1)r
′(µ)+n+1

∑
i

c′µ(Mi
n)q

i

= (−1)n+1
∑
i

∑
µ

(−1)r
′(µ)cω(Mµ)c

′
µ(Mi

n)q
i.

We thus have

(−1)r
′(ω)+n(ω∗)+n+1Hω(−q) = (−1)n(ω

′)+r′(ω)
∑
i

∑
µ

(−1)r
′(µ)cω(Mµ)c

′
µ(Mi

n)q
i

= (−1)n(ω
′)+r(ω)

∑
i

∑
µ

cω(Mµ)c
′
µ(Mi

n)q
i,

since
r′(µ) + r′(ω) ≡ r(ω) mod 2.

By Theorem 2.11(2), to complete the proof of Theorem 4.5 we are thus reduced to
proving the identity

(5.5)
∑
µ

cω(Mµ)c
′
µ(Mi

n) = c′ω(Mi
n).
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The S′
n-module Mi

n decomposes as

Mi
n =

⊕
µ∈(Pn)k

HomSn(Mµ,Mi
n)⊗Mµ,

where Sn acts on Mµ and ⟨ι⟩ acts on HomSn
(Mµ,Mi

n). Hence

HomSω (Mω,Mi
n) ≃

⊕
µ

(
HomSω (Mω,Mµ)⊗Qℓ

HomSn(Mµ,Mi
n)
)
,

and the action of vω∗ ι on the left corresponds to vω∗ ⊗ ι on the right, hence the
identity (5.5).

6. Module theoretic interpretation of Tµ(u, q)

6.1. Exp of graded modules. — Assume given a module

H•
=

⊕
n⩾1

H•
n,

where H•
n is a q-graded finite-dimensional Sn-module and denote by

ch(H•
) :=

∑
n⩾1

∑
µ∈(Pn)k

∑
i

cµ(Hi
n)q

isµT
n

its q-graded Frobenius characteristic function. For each n > 0 define the q-graded
Sn-module

(6.1) H̃•
n :=

⊕
λ∈Pn

IndSn

Nλ
(H•

λ),

where for a partition λ = (1r1 , 2r2 , . . . ) of n we put

Nλ :=
(∏

i

(Si)
ri
)
⋊

∏
i

Sri , H•
λ := ⊠i (H•

i )
⊠ri ,

and Sri acts by permutation of the coordinates on (Si)
ri and (H•

i )
⊠ri . Notice that Nλ

can be seen as a subgroup of the normalizer of
∏

i(Si)
ri in Sn (and so is a subgroup

of Sn).
Following Getzler [6] we can prove the following result.

Theorem 6.1. — Put
Exp(H•

) :=
⊕
n⩾0

H̃•
n.

Then
ch (Exp(H•

)) = Exp(ch(H•
)).

Let now L be the non-trivial irreducible module of Z/2Z = ⟨ι⟩ and define the
q-graded S′

n-module H
•
n as

H
•
= L⊠H•

.

Extend the definition of the q-graded Frobenius characteristic map ch to S′
n-modules

by mapping the irreducible modules L⊠Hµ to usµ. Then

(6.2) ch(H
•
) = u ch(H•

).
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Replacing H•
λ by H

•
λ in (6.1) we get

H̃
•

n : =
⊕

λ∈Pn

IndSn

Nλ
(H

•
λ)

=
⊕

λ∈Pn

Lℓ(λ) ⊠ IndSn

Nλ
(H•

λ).

Put
Exp(H

•
) :=

⊕
n⩾0

H̃
•

n.

Then
ch(Exp(H

•
)) =

∑
n⩾0

∑
µ∈(Pn)k

∑
λ∈Pn

∑
i

uℓ(λ)cµ
(
IndSn

Nλ
(Hi

λ)
)
qisµT

n.

Theorem 6.1 extends as

(6.3) ch(Exp(H
•
)) = Exp(ch(H

•
)).

6.2. Module theoretic interpretation of the unipotent multiplicities

In this section we apply the results of the above section with H• = M•.

Theorem 6.2. — We have

ch(Exp(M
•
)) = 1 + u

∑
n>0

∑
µ∈(Pn)k

Tµ(u, q)sµT
n,

and so

(6.4) Tµ(u, q) =
∑
λ∈Pn

∑
i

uℓ(λ)−1cµ
(
IndSn

Nλ
(Mi

λ)
)
qi.

In particular the polynomials Tµ(u, q) have non-negative integer coefficients.

Proof. — Applying log to Formula (3.3) we get∑
d⩾1

Φd(u, q) log
(
Ω(xd

1, . . . ,x
d
k, q

d;T d)
)
= log

(
1 + u

∑
n>0

∑
µ∈(Pn)k

Tµ(u, q)sµT
n
)
.

We apply Lemma 2.3 with h = u(q − 1) so that hd = Φd(u, q), and we deduce that

u(q − 1) Log (Ω(q)) = Log
(
1 + u

∑
n>0

∑
µ∈(Pn)k

Tµ(u, q)sµT
n
)

and so
1 + u

∑
n>0

∑
µ∈(Pn)k

Tµ(u, q)sµT
n = Exp

(
u(q − 1) LogΩ(q)

)
.

The theorem is thus a consequence of Formula (6.3) together with the following the-
orem. □

Theorem 6.3. — We have

ch (M
•
) = u(q − 1) LogΩ(q).
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Proof. — By Formula (6.2) we are reduced to proving that

(6.5) ch(M•
) = (q − 1) LogΩ(q).

We have
ch(M•

) =
∑
n⩾1

∑
µ∈(Pn)k

∑
i

cµ(Mi
n)q

isµT
n,

and so Formula (6.5) follows from Formula (4.3). □

From Theorem 6.2 together with Theorem 3.2 we deduce the following.

Theorem 6.4. — For any multi-partition µ ∈ (Pn)
k we have

Uµ(q) =
∑
λ∈Pn

∑
i

cµ
(
IndSn

Nλ
(Mi

λ)
)
qi,

(−1)
1
2dµ+nU ′

µ(q) =
∑
λ∈Pn

∑
i

(−1)ℓ(λ)+i−1cµ
(
IndSn

Nλ
(Mi

λ)
)
qi.

6.3. Proof of Theorem 3.3. — The constant term in u in (6.4) corresponds to the
partition λ = (n1) and

IndSn

N(n1)
(M•

(n1)) = M•
n.

The assertion (i) follows thus from Proposition 6.2 together with Theorem 4.5.
The term of degree n − 1 in u in Tµ(u, q) corresponds to the longest partition

λ = (1n). In this case M•
λ is the trivial module of N (1n) ≃ Sn (embedded diagonally

in Sn) and so cµ
(
IndSn

N(1n)
(M•

(1n))
)

is the Kronecker coefficient ⟨χµ1 ⊗· · ·⊗χµk

, 1⟩Sn
,

where (µ1, . . . , µk) = µ.

7. Examples

In this section we give a few explicit values for the polynomials Vµ(q), V ′
µ(q),

Uµ(q), U ′
µ(q) for small values of n. Note that of the first two we only need to list

Vµ(q) since we easily obtain V ′
µ(q) by Ennola duality (see Corollary 2.13). To com-

pute these polynomials we implement in PARI-GP [28] the infinite products (3.1)
and (3.2) involving the series Ω(x, q;T ) (here x stands collectively for the k set of
infinite variables (x1, . . . ,xk)). The series Ω(x, q;T ) itself was computed using code
in Sage [32] written by A. Mellit. The values we obtain for Uµ(q), U

′
µ(q) match those

in the tables in [24] (but see Remark 7.1 below).
Concretely, define the rational functions Rn(x, q) ∈ Λ via the expansion

log Ω(x, q;T ) =
∑
n⩾1

Rn(x, q)T
n.

Then by (3.1) and (3.2) we have

(7.1) log
(
1 +

∑
n>0

∑
µ∈(Pn)k

Uµ(q)sµT
n
)
=

∑
n⩾1

∑
d|n

Φd(q)Rn/d(x
d, qd)Tn
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and
(7.2) log

(
1 +

∑
n>0

∑
µ∈(Pn)k

U ′
µ(q)sµT

n
)

=
∑
n⩾1

∑
d|n

(−1)n/dΦ′
d(q)Rn/d(x

d,−qd)Tn +
∑
n⩾1

∑
d|n

Φ′
2d(q)Rn/d(x

2d, q2d)T 2n

−
∑
d|n

(−1)n/dΦ′
2d(q)Rn/d(x

2d,−q2d)T 2n.

Remark 7.1. — As Lübeck points out the polynomials U ′
µ(q) do not in general have

non-negative coefficients. However, their values at powers of primes must be non-
negative as they give multiplicities of tensor product of characters of a finite group.
Hence, the coefficient of the highest power of q must be positive.

Table 3. Explicit values for the polynomials Vµ(q)

(12) (12) (12) 1

(13) (13) (13) q

(13) (13) (2, 1) 1

(14) (14) (14) q3 + q

(14) (14) (212) q2 + q + 1

(14) (14) (22) q

(14) (14) (3, 1) 1

(14) (212) (212) q + 1

(14) (212) (22) 1

(212) (212) (212) 1

(15) (15) (15) q6 + q4 + q3 + q2 + q

(15) (15) (213) q5 + q4 + 2q3 + 2q2 + 2q + 1

(15) (15) (221) q4 + q3 + 2q2 + 2q + 1

(15) (15) (312) q3 + q2 + 2q + 1

(15) (15) (3, 2) q2 + q + 1

(15) (15) (4, 1) 1

(15) (213) (213) q4 + 2q3 + 3q2 + 4q + 2

(15) (213) (221) q3 + 2q2 + 3q + 2

(15) (213) (312) q2 + q + 2

(15) (213) (3, 2) q + 1

µ1 µ2 µ3 Vµ

Continued on next page
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Table 3. Explicit values for the polynomials Vµ(q) (Continued)

(15) (221) (221) q2 + 2q + 2

(15) (221) (312) q + 1

(15) (221) (3, 2) 1

(213) (213) (213) q3 + 3q2 + 4q + 4

(213) (213) (221) q2 + 3q + 3

(213) (213) (312) q + 1

(213) (213) (3, 2) 1

(213) (221) (221) q + 2

(213) (221) (312) 1

(221) (221) (221) 1

µ1 µ2 µ3 Vµ

Table 4. Explicit values for the polynomials Uµ(q)

(1) (1) (1) 1

(12) (12) (12) 1

(12) (12) (2) 1

(2) (2) (2) 1

(13) (13) (13) q + 1

(13) (13) (2, 1) 2

(13) (13) (3) 1

(13) (2, 1) (2, 1) 2

(2, 1) (2, 1) (2, 1) 2

(2, 1) (2, 1) (3) 1

(3) (3) (3) 1

(14) (14) (14) q3 + 2q + 1

(14) (14) (212) q2 + 2q + 3

(14) (14) (22) q + 2

(14) (14) (3, 1) 3

µ1 µ2 µ3 Uµ

Continued on next page
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Table 4. Explicit values for the polynomials Uµ(q) (Continued)

(14) (14) (4) 1

(14) (212) (212) 2q + 6

(14) (212) (2, 2) 3

(14) (212) (3, 1) 3

(14) (22) (22) 2

(14) (22) (3, 1) 1

(212) (212) (212) q + 9

(212) (212) (22) 5

(212) (212) (3, 1) 4

(212) (212) (4) 1

(212) (22) (22) 1

(212) (22) (3, 1) 2

(212) (3, 1) (3, 1) 2

(22) (22) (22) 2

(22) (22) (3, 1) 1

(22) (22) (4) 1

(22) (3, 1) (3, 1) 1

(3, 1) (3, 1) (3, 1) 2

(3, 1) (3, 1) (4) 1

(4) (4) (4) 1

(15) (15) (15) q6 + q4 + 2q3 + q2 + 3q + 1

(15) (15) (213) q5 + q4 + 3q3 + 3q2 + 6q + 4

(15) (15) (221) q4 + q3 + 3q2 + 5q + 5

(15) (15) (312) q3 + 2q2 + 4q + 6

(15) (15) (3, 2) q2 + 2q + 5

(15) (15) (4, 1) 4

(15) (15) (5) 1

(15) (213) (213) q4 + 3q3 + 5q2 + 11q + 12

µ1 µ2 µ3 Uµ

Continued on next page
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Table 4. Explicit values for the polynomials Uµ(q) (Continued)

(15) (213) (221) q3 + 3q2 + 8q + 12

(15) (213) (312) 2q2 + 4q + 12

(15) (213) (3, 2) 2q + 8

(15) (213) (4, 1) 4

(15) (221) (221) q2 + 4q + 12

(15) (221) (312) 3q + 9

(15) (221) (3, 2) 7

(15) (221) (4, 1) 2

(15) (312) (312) q + 6

(15) (312) (3, 2) 3

(15) (3, 2) (3, 2) 2

(213) (213) (213) 2q3 + 6q2 + 16q + 28

(213) (213) (221) 2q2 + 10q + 26

(213) (213) (312) q2 + 6q + 21

(213) (213) (3, 2) q + 15

(213) (213) (4, 1) 6

(213) (213) (5) 1

(213) (221) (221) 4q + 22

(213) (221) (312) 2q + 18

(213) (221) (3, 2) 10

(213) (221) (4, 1) 4

(213) (312) (312) 2q + 12

(213) (312) (3, 2) 8

(213) (312) (4, 1) 3

(213) (3, 2) (3, 2) 4

(213) (3, 2) (4, 1) 1

(221) (221) (221) q + 17

(221) (221) (312) q + 13

µ1 µ2 µ3 Uµ

Continued on next page

J.É.P. — M., 2026, tome 13



106 E. Letellier & F. Rodriguez Villegas

Table 4. Explicit values for the polynomials Uµ(q) (Continued)

(221) (221) (3, 2) 8

(221) (221) (4, 1) 4

(221) (221) (5) 1

(221) (312) (312) 11

(221) (312) (3, 2) 6

(221) (312) (4, 1) 2

(221) (3, 2) (3, 2) 4

(221) (3, 2) (4, 1) 2

(312) (312) (312) q + 10

(312) (312) (3, 2) 7

(312) (312) (4, 1) 4

(312) (312) (5) 1

(312) (3, 2) (3, 2) 3

(312) (3, 2) (4, 1) 2

(312) (4, 1) (4, 1) 2

(3, 2) (3, 2) (3, 2) 3

(3, 2) (3, 2) (4, 1) 2

(3, 2) (3, 2) (5) 1

(3, 2) (4, 1) (4, 1) 1

(4, 1) (4, 1) (4, 1) 2

(4, 1) (4, 1) (5) 1

(5) (5) (5) 1

µ1 µ2 µ3 Uµ

Table 5. Explicit values for the polynomials U ′
µ(q)

(1) (1) (1) 1

(12) (12) (12) 1

(12) (12) (2) 1

µ1 µ2 µ3 U ′
µ

Continued on next page
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Table 5. Explicit values for the polynomials U ′
µ(q) (Continued)

(2) (2) (2) 1

(13) (13) (13) q + 1

(13) (13) (3) 1

(2, 1) (2, 1) (3) 1

(3) (3) (3) 1

(14) (14) (14) q3 + 1

(14) (14) (212) q2 + 1

(14) (14) (22) q + 2

(14) (14) (3, 1) 1

(14) (14) (4) 1

(14) (212) (22) 1

(14) (212) (3, 1) 1

(14) (22) (22) 2

(14) (22) (3, 1) 1

(212) (212) (212) q + 1

(212) (212) (22) 1

(212) (212) (4) 1

(212) (22) (22) 1

(22) (22) (22) 2

(22) (22) (3, 1) 1

(22) (22) (4) 1

(22) (3, 1) (3, 1) 1

(3, 1) (3, 1) (4) 1

(4) (4) (4) 1

(15) (15) (15) q6 + q4 + q2 + q + 1

(15) (15) (213) q5 − q4 + q3 − q2

(15) (15) (221) q4 − q3 + q2 + q + 1

(15) (15) (312) q3 + 2q + 2

µ1 µ2 µ3 U ′
µ

Continued on next page
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Table 5. Explicit values for the polynomials U ′
µ(q) (Continued)

(15) (15) (3, 2) q2 + 1

(15) (15) (5) 1

(15) (213) (213) q4 − q3 + q2 − q

(15) (213) (221) q3 − q2

(15) (221) (221) q2

(15) (221) (312) q + 1

(15) (221) (3, 2) 1

(15) (312) (312) q + 2

(15) (312) (3, 2) 1

(213) (213) (312) q2 + 1

(213) (213) (3, 2) q + 1

(213) (213) (5) 1

(213) (312) (4, 1) 1

(213) (3, 2) (4, 1) 1

(221) (221) (221) q + 1

(221) (221) (312) q + 1

(221) (221) (5) 1

(221) (312) (312) 1

(312) (312) (312) q + 2

(312) (312) (3, 2) 1

(312) (312) (5) 1

(312) (3, 2) (3, 2) 1

(3, 2) (3, 2) (3, 2) 1

(3, 2) (3, 2) (5) 1

(3, 2) (4, 1) (4, 1) 1

(4, 1) (4, 1) (5) 1

(5) (5) (5) 1

µ1 µ2 µ3 U ′
µ
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