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ENNOLA DUALITY FOR DECOMPOSITION OF
TENSOR PRODUCTS

BY EMMANUEL LETELLIER & FERNANDO RoDRIGUEZ VILLEGAS

Asstract. — Ennola duality relates the character table of the finite unitary group GUn, (Fq) to
that of GL,,(Fq) where we replace ¢ by —q (see [5] for the original observation and [21] for its
proof). The aim of this paper is to investigate Ennola duality for the decomposition of tensor
products of irreducible characters. It does not hold just by replacing g by —¢q. The main result of
this paper is the construction of a family of two-variable polynomials Ty (u, ¢) indexed by triples
of partitions of n which interpolates between multiplicities in decompositions of tensor products
of unipotent characters for GL, (Fq) and GU, (Fq). We give a module theoretic interpretation of
these polynomials and deduce that they have non-negative integer coefficients. We also deduce
that the coefficient of the term of highest degree in w equals the corresponding Kronecker
coefficient for the symmetric group and that the constant term in u give multiplicities in tensor
products of generic irreducible characters of unipotent type (i.e., unipotent characters twisted
by linear characters of GL1(Fg)).

Résumi (Dualité d’Ennola pour les décompositions de produits tensoriels)

La dualité d’Ennola relie la table des caractéres du groupe unitaire fini GU, (Fq) a celle de
GLR (Fq) en remplacant g par —g (voir [5] pour I'observation originale et [21] pour sa preuve).
L’objectif de cet article est d’étudier la dualité d’Ennola pour les décompositions des produits
tensoriels de caracteres irréductibles. Les multiplicités des caracteres irréductibles dans le pro-
duit tensoriel de deux caracteéres irréductibles sont des polyndémes en g a coefficients entiers.
Ces polyndémes ne vérifient pas la dualité en remplagant simplement g par —q. Le résultat prin-
cipal de cet article est la construction d’une famille de polynémes & deux variables T, (u,q)
indexés par des triplets de partitions de n qui déforment simultanément les multiplicités pour
les caractéres unipotents de GLy, (Fy) et celles pour les caractéres unipotents de GUj, (Fq). Nous
donnons une interprétation de ces polyndémes en terme de modules gradués pour les groupes
symétriques et en déduisons que ces polynémes sont & coefficients entiers positifs. Nous en dé-
duisons également que le coefficient du terme de plus haut degré en u est égal au coefficient
de Kronecker correspondant pour le groupe symétrique et que le terme constant en u donne
les multiplicités dans les produits tensoriels de caracteres irréductibles génériques de type uni-
potent (c’est-a-dire les caractéres unipotents tordus par des caractéres linéaires de GL1 (Fy)).
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1. INnTRODUCTION

Let G = GL,(F,) and consider the two geometric Frobenius endomorphisms
F:G— G, (gij)l—>(gfj) and F':G—G, g— F('g7").

One of the main goals of this work is to study decomposition of tensor products of
irreducible characters for the finite groups

GL,(F,) =G",  GU,(F,) =G,
and compare them.
Ennola duality states that one can obtain the character table of GU(F,) from that

of GL,(F,) by essentially replacing ¢ by —g. (Ennola’s conjecture was proved by
Lusztig and Srinivasan in [21]). A natural question is then:

To what extent does Ennola duality extend
to the character rings of GL,,(Fq) and GU,(F,)?
Examples show that simply replacing ¢ by —q does not preserve the multiplicities of
the tensor product of characters of GL,,(FF,) and their counterparts of GU,,(F,). For
example, for n = 4, thanks to the tables in [24], we see that

(St®St,St) e = ¢° +2¢ + 1, (St ® St, St) g = ¢+ 1,

where St denotes the Steinberg character. Therefore, if there is some extension of
Ennola duality to the character rings it must be more involved.
Since
(X1 ® X2, X3) = (X1 ® Xy @ X5, 1),
where X3 is the dual character, we will study multiplicities of the form (X;®- - -®Xy, 1)
for a k-tuple of irreducible characters of either GL,, (F,) or GU,(F,).

Our first result is that for generic k-tuples of irreducible characters the situation
is straightforward: the multiplicities for the tensor product of an arbitrary number of
such characters are given by certain polynomials V,,(q) and V/,(¢q) respectively, which
satisfy

Vi(a) = £V (—q)
with an explicit sign (see Corollary 2.13 for the precise formulation). As we see in the
above example, a formula of this sort does not hold for arbitrary characters.

Our second result (see Theorem 4.5) is that the polynomials V,,(¢) and V/,(t) are
obtained from a ¢-graded C[S,, x {¢)]-module M,
(Sn)F =8, x ---x S,. Namely,

M/ = H2t4(Q,,C) ® (%),

where ¢ is an involution and S,, :=

JEP — M., 2026, tome 13



514

FENNOLA DUALITY FOR DECOMPOSITION OF TENSOR PRODUCTS

S

where ¢ is the sign representation of S,, and where Q,, is a certain generic non-singular
irreducible affine algebraic (quiver) variety of dimension d,,.

In order to state our third main result we need to set some notation. For a par-
tition p of n let uH,u; be the corresponding unipotent character of G and G l
respectively (the Steinberg character corresponds to the partition (1™)). In [16] Letel-
lier proved that, for any multi-partition u = (u!, ..., u¥) of n the multiplicity

(1.1) Un(q) == (Upp @ -+ @ Uy, 1)
can be computed in terms of the master series  of [9] and [7] as follows
1+ Z Z Un(q) spT" = Exp(¥),

(1.2) n>0 p
U:=(¢—1)Log(Q) = Z ZVu(Q) s, T",

n>0 p

GF7

where p runs through k-tuples of partitions of n. Here V,(q) are the multiplicities
(as in (1.1)) for generic unipotent characters (i.e., twisted by appropriate 1-dimen-
sional characters) and s,, denote the multi-Schur function

Spot= S (@) s, (")

in the ring of symmetric function A = A(x!,..., ") in the k sets of infinitely many
variables x!,... ¥ (see Section 2.1).

To obtain the corresponding relation for GU,, (F,), we introduce an extra variable u
and define Ty, (x;u,q) € Afu, ¢] by

(1.3) Exp (u¥) = 1+uZ‘J’n(x;u, Q)T
n>=1

For convenience we also define

Tu(u,q) = (Tn(u, q), sp)

for a multipartition . We prove that Ty, (u, ¢) are polynomials in the variables v and ¢
with non-negative integer coefficients (see Formula (6.4)).
In this setup the identity (1.2) is the following statement (see Theorem 3.3(i))

Let now
be the multiplicities for unipotent characters of the unitary group GU, (F,).
Our third result is the following, which we can consider as the version of Ennola

duality for the character rings of GL,, and GU,, over finite fields. We have (see The-
orem 3.2)

U;L(Q) = iTu(*la —q)
(with an explicit formula for the sign).
As an illustration of our results, here is a list of a few values of

To i = (Tn, 510 (@) 510 (7))

JIP — M., 2026, tome 13



76 E. Lerertier & . Ropricuez ViLLEGas

with & = 3 (so a symmetric function in one remaining set of infinitely many variables).
We give these in two different formats for better readability.

Table 1

Tn

US2 + S12
u?s3 + (u+ 1)sa.q + (u+q)ss

udsy + (u? +u+1)s3.1 + 2u+ q)soz + (> +uqg+qg+u? +u+1)sg.2
+(ug +u+¢* + q)s1a

= W N3

Table 2

Tn

uUS2 + S12
u?s3 + u(s2.1 + 513) + qs13 + S2.1

u354 + u2(53.1 + 82.12) + uq(52,12 + 814) + U(Sg.l + 2892 + S9.12 + 514)
+¢*s10 + @912 + (S22 + S2.12 + 814) + $3.1 + S2.12

= W N3

For example, we have (74, s14(x®)) = uq + u + ¢® + ¢. Evaluating this polynomial
at u =0,1,—1 we find

u=0, ¢+¢ u=1 ¢+2+1 u=-1, ¢ -1,
matching the respective values of

V14,14714(q), U'14714714(q)7 —U{4’14714(_Q),

in the tables in Section 7.

In our fourth and final result, we show (see Theorem 3.3) that the coefficient of
u" ! in T, (u, q) (the largest possible power of u, so basically evaluating T,, at u = 00)
is independent of g and equals the Kronecker coefficient

<XM1 ®"'®X“k71>5na

where p = (p', ..., ") and where X“i denotes the irreducible character of S,, corre-
sponding to the partition u® (the character x(I") being the sign character).

In this paper we are interested in the two extreme cases, namely the multiplici-
ties for generic characters and the multiplicities for unipotent characters (the least
generic). There are also the intermediate cases studied by T. Scognamiglio [29] who
introduced the technical notion of level of genericity (at least for the split charac-
ters). The introduction of the variable u make also sense for these intermediate cases.
This is not more complicated as what we do here for unipotent characters but these
intermediate cases are much more technical to define.

JE.P — M., 2026, tome 13
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A natural question (suggested by the results of this paper) is whether the polyno-
mials Ty, (u, ¢) are structure coefficients of some based ring, which would be a u-defor-
mation of the character ring of GL,,(F,). More precisely, by the previous work of
Hausel-Letellier-Villegas [8], Letellier [15, 16] and Scognamiglio [29] we may recon-
struct (the structure coefficients of) the character ring of the groups GL,,(F,) (where n
runs over N*) from the generic structure coefficients of a given type (for instance the
semisimple regular, or the semisimple split, or the unipotent type). With this we
can define u-deformations of all the structure coefficients of the character ring of the
GL,,(F,)’s and speculate whether they are the structure coefficients of some based

ring.

As a further speculation, we may ask whether this u-deformation is related to that
between Bosons (u = 1) and Fermions (u = —1) in physics [34].
Acknowledgements: — A part of this work was done while the first author was visiting

the Sydney Mathematical Research Institute. The first author is grateful to the SMRI
for the wonderful research environment and their generous support. The second author
would like to thank the Université Paris Cité, where this work was started, for its
hospitality.

2. PRELIMINARIES

Let G denotes GL,(F,) and consider the two Frobenius endomorphisms

F:G— G, (ay)— (af), F':G— G, (ay)r— t(agj)_l.
We let £ be a prime which does not divide q. We will consider representations of
finite groups over Q,-vector spaces and for a finite group H we denote by H its set of

irreducible characters. For a field k we denote by k* the group of non-zero elements.

2.1. CoMBINATORICS

Partitions, types, symmetric functions. — We denote by P the set of all partitions of
integers including the unique partition 0, by P,, the set of partitions of n. Partitions A
are denoted by A = (A, A\a,...), where A\; > A > -+ > 0. We will also write a
partition A as (1™1,2™2 .. .) where m,; denotes the multiplicity of ¢ in A.

For a partition A of n, we denote by x* the corresponding irreducible character
of S,, (the partition (n') corresponds to the trivial character and the partition (1")
corresponds to the sign character).

We will denote by [A| = >, A; the size of A and by A\* the dual partition of .
We will put

n(A) = Z(z — DA\
i>0
A type is a function
W Z>0 X (fP AN {0}) — Z>0

with finite support. We will write w as

w = {(di,w")™ }s,

JIP — M., 2026, tome 13



78 E. Lerertier & . Ropricuez ViLLEGas

where m; denotes the image of (d;,w®) € Zsg x (P~ {0}). The size of w is defined as
|w] := Zmidi|wi|.

and we denote by w* the dual type {(d;, w™)™};.
We denote by T,, the set of types of size n and for a type w = {(d;,w®)™}; we
introduce

(2.1) n(w) = Zmidm(wi), r(w) = n—!—z milw'|, (W) := [n/2] +Zmi|wi|.

For an infinite set of commuting variables x = {x1, 2, ...}, we denote by A(x) the
ring of symmetric functions in the variables of x. It is equipped with the Hall pairing
(, ) that makes the Schur symmetric functions {sy(z)} an orthonormal basis.
The transformed Hall-Littlewood symmetric function H)(x;q) € A(x) ®z Q(q) is
defined as
Hy (3 q) ZKVA

where IN(V,\(q) = "MK, \(¢"") are the transformed Kostka polynomials [22,
11 (7.11)).

Given a family of symmetric functions uy(x;q) € A(x) ®z Q(g) indexed by parti-
tions A (with ug = 1), we extend it to a type w = {(di,wi)mi} by

uwmq Huuﬂ 7q

where ¢ denotes the set of variables {z¢,zg,...}.

Consider now k separate sets @1,xs,...,x; of infinitely many variables and
denote by

A =Q(q) ®z A(x1) ®z - - - @z M)
the ring of functions separately symmetric in each set 1, xo, ...,z with coeflicients
in Q(q). Denote by (, ); the Hall pairing on A(x;) and consider the Hall pairing
(,):= H<7 )i
K3

on A.

Given a family of functions uy (@1, . . ., xk, q) € A indexed by partitions with ug = 1.
We extend its definition to a type 7 = {(d;, 7")™ }i=1,. » € Ty, by

Ur (@1, .., Tk, q) := Huﬂ(m‘fi,...,mzi,qdi).

Eaxp and Log. Consider
Yn  A[T] — A[T], f(z1,... k59, T) — f(x}, ..., 254", T").

The 1, are called the Adams operations.
Define W : TA[T] — TA[T] by

JEP — M., 2026, tome 13



FENNOLA DUALITY FOR DECOMPOSITION OF TENSOR PRODUCTS 79

Its inverse is given by

v () = Y uim 22l

n
n>1
where p is the ordinary Mébius function.
Define Log : 1 + TA[T] — TA[T] and its inverse Exp : TA[T] — 1+ A[T] as

Log(f) = ¥~ (log(f)) and Exp(f) = exp(¥(f))-
Remark 2.1. The map T +— —T is not preserved under Log and Exp as
L+¢'T) = (1-¢*T%)/(1 - ¢'T”).
For a type 7 = {(d;, 7")™} € T,,, we put

_1\yr—1 — |
) (-1 M(d)(T 1! if for all 4, d; = d,
(2.2) o = A11md
0 otherwise.

By [7, Eq. (2.3.9)] we have the following.

Prorosition 2.2. Assume given a family of functions uy = ux(x1,...,xK;q) € A
is indexed by partitions with ug = 1. Then

(2.3) Log (3 yep ua T = Z Cu, T,
T
where T runs over the set of types of size larger or equal to 1.

We also recall the following result of Mozgovoy [25, Lem. 22]. For h € A and n > 1
we put

o= 2 3 ()
d|n

This is the Mobius inversion formula of

Un(h) =Y d-hq.
d|n

Levmvia 2.3, — Let h € A and f1, fo € 1 + TA[T] such that

log (f1) =Y _ ha - log (¢a(f2))-

d=1
Then
Log(f1) = h - Log(f2).

Cauchy function. — The k-points Cauchy function is defined as

(24) Qg) = U,z T) =3 a:(q) (I, (@) T € 1+ TALT],
AEP

where a)(q) is a polynomial in ¢ which gives the cardinality of the centralizer of a
unipotent element of GL,,(F,) with Jordan form of type A [22, IV, (2.7)].
For a family of symmetric functions uy (x; ) indexed by partitions and a multi-type

k
w=(wi,...,wk) € (Tn) , we put
Uy 1= U, (T1,9) U, (Tk, q) € A.

JIP — M., 2026, tome 13
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For w = (wy,...,wi) € (Tn)k, with w; = {(dij,wf)m“ }i=1,...r:, define
He(q) := (¢ — 1) (Log 2(q); $w)
1 .
=(@-1)> & (TTey He (245.9), 50,

= Tar(g)

where (Log Q(q), s.,) is the Hall pairing of s,, with the coefficient of Log Q(q) in T™.
The term a,(q) = []; a-i(¢%) is the cardinality of the centralizer in GL;,(F) of an
element of type 7.

2.2. Tue cnaracters or GL, (F,) = GF

Conjugacy classes. Let = denote the set of F-orbits of FZ = GL;(F,) and for an
integer m > 0, we denote by P,,,(E) the set of all maps f: Z — P such that

=D A = m,
=
where |¢| denotes the size of the F-orbit . The set P, (Z) parametrizes naturally the
set of conjugacy classes of G using Jordan decomposition. For f € P,,(Z), we denote
by C the corresponding conjugacy class of GF'.
For instance, the conjugacy classes of

z 1 0 0
0Oz 0 O
00 27 1
00 0 a¢

with @ € Fp \ Fg, corresponds to & — P that maps the F-orbit {z,2?} to the
partition (2!) and the other F-orbits to 0.
For f € P,,(E) and a pair (d,A) € Zso x (P~ {0}), we put

max = #{0 € © | 0] = d, f(0) = A}.

The collection of the multiplicities mq, x defines a type t(f) € T,, called the type of f.
For example, the elements of Ty are (1,1)%, (2,1), (1,1?) and (1,2') and are the
types of the following kind of matrices (up to conjugacy in GLa(F,))

a 0 z 0 a 0 a 1
0b)’ 0 z¢)’ 0 a)’ 0 a/’
where a #b € Fy, v € Fz N Ty

Irreducible characters. — We now review the parametrization of the irreducible char-
acters. For each integer 7 > 0 we denote by F, the unique subfield of F, of cardinal-
ity ¢". For integers r and s such that r | s we have the norm map

Npst (Fgs)" — (Fgr)*, z+— x(qs_l)/(qr—l)’

which is surjective.

JE.P — M., 2026, tome 13



FENNOLA DUALITY FOR DECOMPOSITION OF TENSOR PRODUCTS 81

It induces an injective map E;T — IB:;;\S and we consider the direct limit
= ligIFZT
of the E;\T via these maps. The Frobenius automorphism F' acts on I' by a — o and

we denote by © the set of F-orbits of T'.
For an integer m > 0, we denote by P,,,(0) the set of all maps f : © — P such that

71= D2 011 = m,
0co
where |6] denotes the size of the F-orbit 0. As for P,,,(E), we define a type t(f) € Ty,
for any f € P,,,(©).

The irreducible complex characters of G are naturally parametrized by the set
P,(0) as we now recall. For f € P,(0), we recall (see [21]) the construction of the
corresponding irreducible character Xy using Deligne-Lusztig theory.

Consider

Li= 1 Gl Egm).
€O, f(0)#0
This is the group of F,-points of an F-stable Levi subgroup Ly of (some parabolic
subgroup of) GL, (F,). Choose a representative f of each § € © such that f(6) # 0.
The collection of the @ composed with the determinant defines a linear character 6
of Lff while the collection of partitions f(¢) define a unipotent character Uy of Lf; as
follows.
We get the corresponding unipotent character U,, of GL,(F,) as

1 F
(2.5) U, = 5. > x“(w)R%’"(l),

WESy,
where T, is an F-stable maximal torus of GL,, obtained by twisting the torus of
diagonal matrices by w and where Rglgi(l) is the Deligne-Lusztig induced of the
trivial character. Then Uy is the external tensor product of the Uy ) where 6 runs
over the set {6 € © | f(0) # 0}.
By [21] we have the following:

(2.6) Xy = (—1)’"(f)R§? 05 - Uy),

where r(f) := r(t(f)) is given by Formula (2.1) and where for any F-stable Levi
subgroup L of GG, we denote by Rf; the Lusztig induction studied for instance in [4].
Notice that ), [f(6)| is the Fg-rank of Ly and that the right hand side of (2.6) does
not depend on the choice of the representatives 6. We will say that (L?, 07, Uy) is a
triple defining X;.

For any irreducible character X = X, with h € P,(©), we define the character

X = (=1)"M RS, (Uy).
h
It does not depend on 6}, (it depends only on the type of h), it is not irreducible in

general and takes the same values as X at unipotent elements.

JIP — M., 2026, tome 13



82 E. Lerertier & . Ropricuez ViLLEGas

Turorem 2.4. Let X be an irreducible character of type w.

(1) For any conjugacy class C of type T, we have

X(C) = (~1)" N (Ho(@;9), 50 ().

(2) In particular
~ n(@) TT™ (gt —

q [l (¢ —1)

X(1) =X(1) = : ,
)= H. ()

where for a partition X\, Hx(q) = Hsek(qh(s) — 1) is the hook polynomial [22, Chap. ]I,
Part 3, Ex. 2].

If d; = 1 for all i, the first assertion of the Theorem is [8, Th.2.2.2], otherwise
the same proof works with slight modifications. The second assertion is standard [22,
Chap. IV, (6.7)].

m /
2.3. Tue cnaracrers or GU,(F,) = GF

Conjugacy classes. — Denote by E' the set of F’-orbits of Ej = GL1(F,) and for
¢ € 2/, denote by [¢] the cardinal of £. The set of conjugacy classes of GF is in
bijection with the set

Pu(E) = {f 2 = P| Leea [E1£(E)] = n}.

For f € P,(2), we let C} be the corresponding conjugacy class of GF'. As in Sec-
tion 2.2 we can associate to any f € P,(Z') a type t(f) € T,,.

For example, the types (1,1)2, (2,1), (1,1%) and (1,2') are respectively the types
of the following kind of matrices (up to conjugacy in GLa(F,))

G0 (6. 6o ()

where a # b € g1, © € Fopigr1.
For a type 7 of size n, we define the polynomial

(2.7) al (t) := (=1)"a,(-t).
By Wall (see [33, Prop. 3.2]), the evaluation a’ (q) is the cardinality of the centralizer
of an element of GF of type 7.

Irreducible characters. Let us now give the construction of the irreducible charac-
ters of GE'.

For a positive integer, we consider the multiplicative group
My, = {z € FZ | 29" = J;(*l)m}.
We have M, = ]F;m if m is even and M,, = pgmy1 if m is odd.

If r | m, then the polynomial |M,| divides |M,,| and we have a norm map
M, — M,, x — g Mml/1Mr]
We may thus consider the direct limit

T’ .= lim M,,
_>

JE.P — M., 2026, tome 13
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of the character groups ]\/4,: The Frobenius F’ : z — 79 on F; preserves the sub-
groups M, and so acts on IV. We denote by ©’ the set of F’-orbits of T".

We denote by P,,,(0’) the set of all maps f : © — P such that

fl= " 1611£(6)] =
0O’

As in Section 2.2, we can associate to any f € P,,(©’) a type t(f) € T,,. The
irreducible characters of GF are naturally parametrized by the set P,,(6) (the trivial
unipotent character corresponds to the partition (n')).

For f € P,(©’), we construct the associated irreducible character Xy in terms of
Deligne-Lusztig theory as follows. Define

ri = I Glygen@pe) [T GUisoy(Fgm).
6€0’,f(0)#0 0€©’,f(0)#0
|6] even |6] odd

This is the group of Fg-points of some F’-stable Levi subgroup Ly of G. For each
0 € © such that f(0) # 0, choose a representative 6 of 6. The collection of the 0
composed with the determinant defines a linear character 9’ of L¥ 7 " and the partitions

f(0) defines an almost unipotent character U’ of L]If using Formula (2.5) for both F'
and F”.

For example, assume that n = 2. If t(f) = (1,1)2, then f is supported on two
orbits of ©’ of size one, say {a} and {8} with «, € g1, Lf/ gt X pg1 and
0r(a,b) = a(a)B(b). If wy = (2,1), then f is supported on one orbit {n,n "} € © of
size 2 with n € Fr,, LY ~ GLy(Fy2), and 60} = a.

Remark 2.5. From [21], the virtual character U is up to a sign a true unipotent
character of L? " which we denote by u}. For a partition p of n we have

W, = (—1Hm=u.
The values of U'f’ at unipotent elements are obtained from those of Uy essentially by
replacing ¢ by —q.
Tueorewm 2.6 (Lusztig-Srinivasan [21]). We have

7’/ * F’
x’f =(-1) (H)+n(f )Rf?, (9} .u;ﬁ)7

where ' (f) == r'(¢(f)) is given by Formula (2.1), f* € P,(0') is obtained from f

by requiring that f*(0) is the dual partition f(0)* for each 0, and where for any f,
we put n(f) = n(t(f)).

In [21], it is proved that RY (0} -U%) is an irreducible true character up to a sign.

Ly
The explicit computation of the sign in the above theorem is done in [33, Th.4.3].
For an irreducible character X’ = X; of G, deﬁne

X = (=1)" HHnls )RG (u”)

We have the following theorem analogous to Theorem 2.4 with the Frobenius F’
instead of F.
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Turorem 2.7 (Ennola duality). Let X' and X be irreducible characters respectively
of GF' and GF both of type w.
(1) For any conjugacy class C' of G and C of GF of type 7, we have
X(0") = (~1)" R X(O) ()
= ()" O H, (@5 —q), 50 (2)).

(2) In particular
! X'(1) = (~1)"«+G) x(1) ().

Proof. — Using the character formula for Deligne-Lusztig induction [4, §10.1], the
proof of the theorem reduces to Ennola duality for unipotent characters. O

Remark 2.8. — Note that as we know from Ennola duality that X'(1) and X(1)(—q)
differ by a sign and that X’(1) is positive we can easily compute the sign in (1) and
in Theorem 2.6 from Theorem 2.4(2).

2.4. ENNOLA DUALITY FOR GENERIC MULTIPLICITIES. — In [7, Def. 4.2.2] we define the
notion of generic k-tuple of irreducible characters of G¥'. We define generic k-tuple of
irreducible characters of G’ exactly in the same way. We do not give the definition
as we will only use the theorem below. However to give a taste of what it is we give
the definition for irreducible characters whose type is a partition of n (i.e., unipotent
characters tensored by a linear character of G¥').

If Uy, ..., U, are unipotent characters of G and if a € Gﬁq) is of order n, then

Uy, ..o, Ug—1, (@ odet) - Uy)
is a generic k-tuple of irreducible characters of GF'.

Remark 2.9. — For any multi-type w = (wy,...,wx) € (T,)¥, there always exist
generic k-tuples of irreducible characters of G¥' (or G¥' /) of type w as long as the
characteristic is large enough. The existence is equivalent to that of the existence of
generic k-tuple of conjugacy classes (see [18, Prop.8.1.2]) and the condition on the
characteristic for the existence of generic k-tuple of conjugacy classes is explained in
[17, see above Prop. 3.4].

We have the following technical result:

Taeorem 2.10

(1) Let (X1,...,X) be a generic k-tuple of irreducible characters of GY of type
w = (w1,...,wy). Let 7 € T,, and denote by C, a conjugacy class of G of type T.
Then

k k
Z Hxl(Cf) = (qf 1)021_[‘%1(07)
feEP,L(B)i=1 =1
()= koo
= (q - 1)63—(_1)T(w) H<H'r(wz7 q)7 Swi>a
i=1

where r(w) =Y. r(w;).
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(2) Let (Xq,...,X}) be a generic k-tuple of irreducible characters of GF' of type
w = (wi,...,wx). Let 7 € T,, and denote by C.. a conjugacy class of GI of type 7.
Then

k k
> JIxics =@+ ne ] X
FeP, (8" =1 i=1
t(f)=" , LA
= (q + 1)02(_1)7” (w)+n(w™) H<H‘F<wi; _q)’ Swi>-
i=1

where ' (w) 1= Zle r(w;) and n(w*) := Zle n(wy).

Proof. — The assertion (1) follows from [7, Lem. 2.3.5, Th. 4.3.1] and the proof of the
assertion (2) is completely similar. ]

Tueorem 2.11
(1) Let (Xi,...,X) be a generic k-tuple of irreducible characters of GY of type
w € (T,)*. We have

V(@) == (X1 ® -+ @ X, Dgr = (—1)" @ Hy, (q).

(2) Let (Xq,...,X}) be a generic k-tuple of irreducible characters of GE' of type
w € (T,)*. We have

V‘L(q) = <x’1 R ® :X:;w 1>GF’ — (_1)7~’(w)+n(w*)+n+le(_q).

Remark 2.12. — According to Remark 2.9, generic k-tuples of irreducible characters
of type w may not exist in small characteristics, however the polynomials on the right
hand side of the above equalities always exist and will be denoted by V,,(¢) and V,(q)
in small characteristics.

The theorem says in particular that the generic multiplicities depend only on the
types and not on the choice of the irreducible characters of a given type. Note that
H,,(q) is clearly a rational function in ¢ with rational coefficients. By the above theo-
rem, it is also an integer for infinitely many values of q. Hence Hy,(¢) is a polynomial
in g with rational coefficients. We will see that it has integer coefficients.

Cororrary 2.13 (Ennola duality for generic multiplicities)

V! (q) _ (_1)r'(w)+r(w)+n(w*)+n+lVw(_q)'

In particular if w is a multi-partition g = (p, ..., "), i.e., each coordinate w; is
of the form (1, u*), then
V’:(q) _ (_1)k(n+[n/2])+n(”*)+n+1VM(_q>.

Proofof Theorem 2.11. — Assertion (1) was stated without proof in [15]. We prove
the assertion (2) for the convenience of the reader.
We have
<] 1
/ / _ 1 (v
(X1 ®- @ Xy, D) gr = ;ngz(c)a
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where the sum is over the set over conjugacy classes. The quantity |C’|/|GF"| depends
only on the type of C’, more precisely, see Formula (2.7),

€51 1
W = a’t(f) (@)
We thus have
k
1
<3C’1®-~-®3C§€,1)pr = Z r(q) HDC;(C})
7eT,, T n ]

Using Theorem 2.10(2) we get that

<x’1 R ® X;C, 1>GF’ - (_1)T/(w)+n(u*)+n(q + 1)< Z ©

T7€T,
_ (_1)r/(w)+n(w*)+n+1Hw(_q).

Remark 2.14. — Notice that the map ¢ — —g is not preserved under Log (see Re-
mark 2.1) and so we do not get Hy,(—¢q) as (—g — 1)(Log(2(—q)), Sw)-

3. ENNOLA DUALITY FOR TENSOR PRODUCTS OF UNIPOTENT CHARACTERS

3.1. InveiNiTE PRODUCT FORMULAS. — For a multi-partition g = (p1,...,ux) of n,
we consider the polynomials in ¢

Un(q) == (Upp @+ @ Uy, 1) Up(q) = (Ua @ - @ U, 1) -

GF7
Let ®4(q), resp. ®/,(q), be the number of F-orbits, resp. F’-orbits, of FZ of sized > 1

Prorosition 3.1
(1) We have
(3.1) 14+ Z Z Up(q)s T = H Q(w‘f, e wi, qd;Td)(bd(q),
n>0 pe (P, )k d>1

where Q(x1, ..., xk, q;T) is given by Formula (2.4).

(2) We have
(32) 1+3 S (—eng (s, T = [ Qat, .. 2, (—g) TP,
n>0 pe(Pn)* d>1
where

dy =n’(k—2) = > (u5)* +2.
,J
Proof. — Formula (3.1) is proved in [16, Proof of Prop. 25]. Let us prove the second
formula.
By Theorem 2.7(1), for a partition p of size n and conjugacy class C’ of GF' we
have

W, (C") = (1)t M2 (o (25 —q), 5, ()).
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Therefore by Equation ( 2.7) we have

1-‘1-2 Z (_1)%du+l+nUL(q)8uTn: Z HHt(f T‘t(f”

n>0 pe(P,)k feP(E) t(f)
as

%du +1=k(n+[n/2]) +n(p*) mod 2.

If w = {(d;,w®)™i} is a type, then
- H Qi (qdl)ml s

but b, (q) := a,(—q) does not satisfy such an identity. Indeed b, (¢%) = ay:(—q%)
for both odd and even d; while

nh
bw(CI) = H H aw — .
i,d; even i,d; odd

Therefore we consider the partition

/

[1]
[1]
[1]

!/
o

e 11
into orbits of even and odd size respectively. Then
PE") =P(E) x P(E)

and

143 > ()Rt (g)s, T

n>0 pe(Pp)*

:( ! ﬁﬁt(f)(wi;q)Tf(fN)( T HHt<f Tt<f>|)

foP(:’ )at(f)(q) 1=1 feg)('—‘/) t(f) 7q =1

H 0 x‘f‘,..., | glél: Tlél) H Q(x |£| ..7w\l€\7_q|£|;T\£\)
==
hence the result. O
3.2. ENNOLA DUALITY FOR TENSOR PRODUCTS OF UNIPOTENT CHARACTERS. By Mabius

inversion formula we have
1 s T T
== ulr)(@”" = 1), == Zu (g™ = (=1)¥").
r|d r|d

We introduce a new variable u and we define a common u-deformation of ®4(q) and

' (q) as
Z/u' d/r d/r _ 1)
r|d
Indeed
D4(1,q) = Palq),  Pa(—1,—q) = P)(q).
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For a multi-partition p, define polynomials T, (u,q) by the formula
33)  J]Q@l.. 2l ek T) ) = 14w N Ty(uq)su T
d>1 n>0 pe(P,)k

From Proposition 3.1 we have the following.
Turorem 3.2 (Ennola duality). — We have
Un(@) = Tu(l,0),  Upla) = (-1 Tu(=1, ).
We will also prove in Section 6.3 the following result.

Tueorem 3.3

(i) We have
1
V/.L(Q) = rJ.’M(qu)7 V;:(q) = (_1)2du+n (‘T;L(Ov_q)
(ii) For a multi-partition p = (ut, ..., u*), the coefficient of the term of T,,(u,q)
of degree n — 1 in u is independent of q and equals the Kronecker coefficient
1 k
X @-ex" s,
4. MODULE THEORETIC INTERPRETATION OF THE GENERIC MULTIPLICITIES

4.1. Quiver varieries. — Let K be an algebraically closed field (C or F,). Fix a
generic k-tuple (Cq,...,Ck) of semisimple regular adjoint orbits of gl,(K), i.e., the
adjoint orbits Cy, ..., G are semisimple regular,

k
> Tr(€) =0,
i=1

and for any subspace V of K" stable by some X; € C; for each ¢ we have

k

> Tr(Xily) #0

i=1
unless V =0 or V = K" (see [7, Lem. 2.2.2]). In other words, the sum of the eigenval-
ues of the orbits Cy, ..., Gy equals 0 and if we select r eigenvalues of C; for each ¢ with
1 < 7 < n, then the sum of the selected eigenvalues does not vanish. Such a k-tuple
(Cq,...,Ck) always exists.

Consider the affine algebraic variety

Vi = {(X1,..., Xg) €C1 x -+ x € | 3, X; =0}.

The diagonal action of GL,,(K) on V,, by conjugation induces a free action of PGL,, (K)
(in particular all GLy-orbits of V are closed), see [7, §2.2], and we consider the GIT
quotient

Q=10, :="V,//PGL,(K) = Spec(K[V, |7t ®)),
This is a non-singular irreducible affine algebraic variety (see [7, Th. 2.2.4]) of dimen-

sion

(4.1) dim Q = n?(k —2) — kn + 2.
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Crawley-Boevey [1] makes a connection between the points of Q and representations
of the star-shaped quiver with k-legs of length n from which the variety Q can be
realized as a quiver variety (see [7] and references therein for details).

Denote by H(Q) the compactly supported cohomology of Q (if K = C, this is the
usual cohomology with coefficients in C and if the characteristic of K is positive this
is the f-adic cohomology with coefficients in @Q,). The variety Q is cohomologically
pure and has vanishing odd cohomology (see [2, §2.4] and [7, Th. 2.2.6]).

4.2, Action or S, on conomorocy. — Let K be either C or F,. Consider the involu-
tions GL,(K) — GL,(K), g — '¢~! and gl,(K) — gl,(K), = — —'r which we both
denote by ¢. Notice that

gzg™") = ug)ulz)u(g) ™
for any g € GL,(K) and z € g, (K).

Notice also that ¢ fixes permutation matrices of GL,(K) which are identified
with S,,. Consider the finite group

where S, := (S,)".

In this section we construct an action of S/, on the cohomology H;(Q) (notice
that S, and () do not act on Q).

The construction of the S, -action is done in [9] (this is a particular case of the
action of Weyl groups on the cohomology of quiver varieties as studied by many
authors including Nakajima [26, 27], Lusztig [20] and Maffei [23]). The S,-module
structure does not depend on the choice of the eigenvalues of the orbits Cy,...,Cy
(as long as this choice is generic).

Let t, C gl,, be the closed subvariety of diagonal matrices and let t$°" be the open
subset of t& of generic regular k-tuples (oy,...,0%), i.e., for each i = 1,...,k, the
diagonal matrix ¢; has distinct eigenvalues and if O; denotes the GL,,-orbit of ¢;, then
the k-tuple (04, ...,0Of) is generic.

Let T;, C GL,, be the closed subvariety of diagonal matrices and put

G, = (GLn)kv T, = (Tn)kv 9n = (g[n)k
Consider the GIT quotient
Q= {(X, 9T, 0) € 8, x (Gn/T) x t&" | g7 Xg =0, 3, X; = 0} /G,

where G,, acts by conjugation on g,, and by left multiplication on G,,/T,.

The group S,, acts on G,,/T,, as s - gT,, := gs~1T,, where we regard elements
of S,, as permutation matrices in GL,,. It acts also on t&8" by conjugation from which
we get an action of S, on én

The projection

p:9Q, — &
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is then S,-equivariant for these actions. It is also (1)-equivariant for its action on Q
given by

U(X,9T,0) := (u(X),(g)T,(c)).
As ¢ acts trivially on S,, we get an action of S, on Qn and p is S’ -equivariant.

Lemva 4.1. If the G, -conjugacy class of o € 8" in g, is C1 X --- X Cy, the

projection
Q, :=p (o) — Q, (X,gT,0) — X

s an isomorphism.

For o € 8 and w’ € S/, denote by w’ : Q, — Q,., the isomorphism given by
(X, 9Tn,0) =~ w' - (X, 9Ty, 0).
Throrem 4.2 ([9, Th.2.3]). — Assume that K = F, with char(K) > 0 or K = C and
let k be Qp if K =T, (with £ q) and let x be C if K = C. The sheaf R'pik is constant.

Therefore, for any o, 7 € £8°" there exists a canonical isomorphism i, . : H:(Q,) —

Hi(Q,) such that
loyr 0 l¢,o = i¢,r

for all o, 7,( € 2. Since p is S/ -equivariant, the isomorphisms i, , are compatible
with the action of S),.

We define a representation

p’ 8, — GL (HY(Q,))

by o/ (W) = iy .00 0 (W' ~1)*. Thanks to Lemma 4.1, we get an action of S, on HE(Q).

4.3. MULTIPLICITIES AND QUIVER VARIETIES
Preliminaries. — For a partition u of n we denote by M,, an irreducible Q,[S,,]-mod-
ule corresponding to . For a type w = {(dhwi)mi}i:l,mm € T,,, we consider the

subgroup
S = [T (Sjwi)® x -+ x (S ™

)

m;

of S,, and the S, -module

My = @I My: - © T%M,:),
i=1
where T9V stands for V®---® V (d times).

The permutation action of Sy, on the factors of (S),i)% and T% M, induces an
action of [[,(Sg4,)™ on both S, and M,, and so we get an action of S, x [[,(Sq,)™
on M,,.

We may regard S, x [[,(Sq,)™ as a subgroup of the normalizer Ng, (S,). Any
Sp-module becomes thus an S, % [],(Sq,)™-module by restriction.

Let now N be any S,-module. We get an action of [],(Sq,)™ on

Homg, (M, N)
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where N is considered as an S, % |[.(S4, )" -module by restriction) as
7 %

(r-Hw)y=r-(fr" )
for any f € Homg, (M, N) and r € [[,(Sq,)™.
Let v, be the element of [[,(Sq4,)™ whose coordinates act by circular permutation
of the factors on each T% M,,; and put

cw(N) :=Tr(v, | Homg, (M., N)).

Lemma 4.3
(1) The function s, decomposes into the following sum of Schur functions as

S = Z Cw(My)s,,.

HEPy
(2) We have
Cw(My-) = (_1)T(w)cw*(Mu)-
Proof. — The first assertion is [15, Prop. 6.2.5]. Let us prove the second assertion.

To alleviate the notation, we assume (without loss of generality) that all m; =1 i.e.,
w = {(di,w") }i=1...r- By [15, Prop. 6.2.4] we have

co(My) =Y 3 Y (T 70t X)),
P @

where the second sum runs over all a = (al,...,a") € Pt x -+ X Py such that
U, di-o" = p (recall that d- p is the partition obtained from p by multiplying all parts
of p by d).

Using that x** = ¢ ® x* where ¢ is the sign character, we are reduced to proving
the following identity

(4.2) e(p) = (~) =l T e(a)
i=1

whenever | J; d; - o' = p. We have

e(p) = Hs(di at).

i
Since n = Y, d;|a’| the identity (4.2) is a consequence of the following identity
() = (-1,

where d is a positive integer and A a partition. g

Main result. — We can generalize this to a multi-type w = (w1, . ..,ws) with all w; of
same size n, by replacing S,,, M, and v, by

Sw i=Swy X o X Sy, My, =M, K- -KM,,, Vo = (Viwg s+ + s Uy, )
and for any S,,-module N we define

cw(N) :=Tr(ve | Homg,, (M, N)).
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ReEmARK 4.4. If N is of the form Ny X --- X Ny with N; any S,-module, then

CW(N) = cwl(Nl) "'ka(Nk)'

Let now N be an S/-module. We extend trivially the action of Ng,(S,) on M,
to an action of Ng/ (S,) = Ng,(Su) x (1) on M,. We thus get an action of
Ng: (80)/Sw = (Ns,, (Sw)/Sw) x (1) on Homg,, (M,,, N), and we define
y(N) := Tr(ve ¢ | Homg,, (Mo, N)).

w

Let Q,, be the quiver variety defined in Section 4.1 and let M, be the graded S/,-mod-
ule defined by

M, = H2(Qq) ® (),

where ¢®% = ¢ X ... K e with ¢ the sign representation of S,,.

Turorem 4.5. — Let w € (T,)k.
(1) We have

V() = (1) Z cw(M5,) ¢'.
(2) We have

Vi(g) = (=1)" @@y 7o (M) o

From the above theorem and Theorem 2.11(2) we have
Hy(—q) = (-1)7 W00t S Tl (M) ¢
and from Theorem 2.11(1) we also have
(43) Halo) = 3 (M) o'
from which we deduce the following formula as
() +7'(p) = k([n/2] +n) mod 2.

CoroLrary 4.6. — ¢, (M) = (=1)7FR(In/2IEm4ntle (M),

5. Proor or THEOREM 4.5

When w is a multi-partition, the assertion (1) is proved in [16, End of proof of
Th2.3]. We will prove the assertion (2) first in the case of multi-partitions and then
deduce from it the case of arbitrary multi-types. The reduction of the general case to
the multi-partition case is completely similar for G and G .
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5.1. Quiver VARIETIES AND FOURIER TRANSFORMS. In this section, K = F,, G =
GL,(K) and g = gl,,(K). We denote by F': g — g the standard Frobenius that raises
matrix coefficients to their g-th power. We also denote by F' : g — g, X — —'F(X).

The conjugation action of G on g is compatible with both Frobenius endomor-
phisms F and F’, i.e.,

F(gXg™) = F(9F(X)F(g™"),  F'(9Xg™")=F(9)F' (X)F'(g7")
for any g € G and X € g, and so G (resp. GF/) acts on g (resp. gF/).

5.1.1. Quiver variety. — Since for all z € g, the stabilizer Cg(x) is connected, the set
of GF-orbit of g¥' (resp. the set of GF'-orbits of gF/) is naturally in bijection with the
set of F-stable (resp. F’'-stable) G-orbits of g, i.e., if O is a G-orbit of g stable by the
Frobenius, then any two rational elements of O are rationally conjugate.

Denote by Z (resp. Z') the set of F-orbits (resp. F'-orbits) of K. Analogously to
conjugacy classes of GF and GF’, the set of F-stable (resp. F'-stable) G-orbits of g is
in bijection with the set P,,(Z) (resp. Pn(Z')) of all maps f : 2 — P (resp. f : &/ — P)
such that

1=Kl =n,
3

where |¢| denotes the size of the orbit &.

As for conjugacy classes, we can associated to any f € P, (E) (resp. f € P, (Z')) a
type t(f) € T,,.

The types of the F’-stable semisimple regular G-orbits of g are of the form

{(d;, 1)™} with
Zdimi =n,

and are therefore parametrized by the partitions of n and so by the conjugacy classes
of S, : the partition of n corresponding to {(d;,1)™}; is

;di—i—“i—kdi.

For example, the types (1,1)? and (2, 1) are the types of the orbits of

63 25

where a # b € {29 = —z}, and x € Fjp2 \ {29 = —z}, corresponding respectively to
the trivial and non-trivial element of Ss.

For short we will say that an F’-stable semisimple regular G-orbit of g is of type
w € S, if its type corresponds to the conjugacy class of w in S,,.

For a k-tuple w = (wy,...,wg) € S,, we choose a generic k-tuple C¥ =
(Cwr ..., C"*r) of F’'-stable semisimple regular G-orbit of g of type w and we consider
the associated quiver variety

Qv .= V¥ // PQL,,
where V¥ := {(X1,...,X}) € C¥ x -+ x € | 3, X; = 0}.
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5.1.2. Introducing Fourier transforms. For the definition and properties of these
Fourier transforms we follow G. Lehrer [11].

Denote by G(gF/) the Q,-vector space of functions gF/ — Qg constant on GF' -orbits
which we equip with (, ) defined by

i fo) oo = ﬁ S A@h@)
zegF’

for any f1, fo € C(gF,) where Q, — Q, z + T is the involution corresponding to the
complex conjugation under an isomorphism Q, ~ C we have fixed. Fix a non-trivial
additive character ¢ : F, — Q. Notice that the trace map Tr on g satisfies

Tr(F'(2)F'(y)) = Tr(zy)*
for all ,y € g. Define the Fourier transform 9 : €(gF") — €(g"") by
FUNHy) = > ¢(Tr(yx))f(x)
ngF/

for any y € g& and f € C(g¥"). Consider the convolution product x on C(gf")
defined by

(fixf)@) = > AWf(2),

Yy+z=x
for z € g¥', f1, f2 € C(g""). We have the following straightforward proposition.
Prorosition 5.1
(1) We have
FUfr* fa) = Ff1)F°(f2)
for all fi, f> € C(g™).
(2) For f € €(g"") we have

g™ £0) = D FUS)(@)-

wEgF’

For a GF -orbit O of &, let 1o € G(gF,) denote the characteristic function of O,

ie.,
10(1’)—{1 if:z:GQ
0 otherwise.
Prorosirion 5.2. — We have
Q)| = (‘fgiﬁ) (T, T gy ) 1),
Proof. — Since PGL,,(K) is connected and acts freely on V¥, we have

‘(Qw)F'| _ |('\7w)F’| _ (q + 1)|(Vw)FI|
| PGL,, (K)F| | GLn (K) 7|
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On the other hand
(V| = #{(X1,..., Xp) € (€)F x - x (€r)F | 2, X; = 0}
= (1(ew1)F’ Kook 1(ewk)F’)(0)

|F’| Z 1_[5t (Lewiyer)(@)- -

eF’zl

5.2. FOURIER TRANSFORMS AND IRREDUCIBLE CHARACTERS: SPRINGER’S THEORY

Counsider a type of the form w = {(d;,1)™ };=1,...» € Ty, (we call types of this form
reqular semisimple), and denote by

= [ onEa™ [ GUiEw)™

i,d; even i,d; odd

its associated rational maximal torus. An irreducible character X; of GF" of type
t(f) = w is called regular semisimple. We have

(5.1) Xy =(— )’(“)RTW (0r)

for some linear character 8 of TX" (see Theorem 2.6). Moreover, for all g € GF with
Jordan decomposition g = gsg,, we have the following character formula [3, Th. 4.2]

1 Cealge
(5.2) TF’ (Hf)() Calg) ™ Z Qh;g}h 1(9u)9f(h 'gsh),
’ {heGF'|g,enT, ,h—1}

where

Calgs)" Calgs
Qe = R 1)

is the so-called Green function defined by Deligne-Lusztig [3].
Denote by t, the Lie algebra of T,,. In [13], we defined a Lie algebra version of
Deligne-Lusztig induction, namely we defined a Q,-linear map

RfF/ Le(th) — e(g™)
by the same formula as (5.2), i.e

63  RL M@= S QU @) n(h )

F
Calas) |{h€GF/|3:g€htwh*1}
for z € g¥ " with Jordan decomposition x = x4 + x, and where
Cyzs)™ Calgs
Qe () 1= QLS (e + 1),
We have the following special case of [14, Th. 7.3.3].
Tueorem 5.3. — Let @y, be a reqular semisimple orbit of & of type t(h) = w, then
r’ / 277’7, F!
79 (1e,) = (-1 g 2R (),

where < tF — Q, 2 — (Tr(zx)) with x € 5 a fived representative of €y, in t5
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The above formula shows that the computation of the values of Fa” (le,;) and Xy is
identical. This connection between Fourier transforms and characters of finite reduc-
tive groups was first observed and investigated by T. A. Springer [31, 30, 10] and later
by G.Lusztig [19] and G.I. Lehrer [11, 12]. As a consequence we get the additive
version of Theorem 2.10(2).

Tueorem 5.4. — Assume that (Cy,...,Cr) is a generic tuple of F'-stable regular
semisimple orbz’ts of gF/ of type w = (w1, ...,wk). Then for any type 7 € T,, we have
(5.4) Z Hff CF/ e/ _ (k(n 7n)+2)/2 o( (w)H Nz —q 5w,;>7
FePL(E) =
t(f)=r

where (‘,"f denotes the GF' -orbit of gF/ corresponding to f.

Proof. — In the LHS of Formula (5.4) we first replace F9(1 eF’) by RtF' (n;) (see

Theorem 5.3). Using Formula (5.3), the proof is completely similar to its multlphcatlve
version (Theorem 2.10(2)). For more details see the proof of the analogous statement
in the case of the Frobenius endomorphism F, [7, Lem. 6.2.3]. O

Tueorem 5.5. — Let (X7,...,X}) be a generic k-tuple of reqular semisimple irre-
ducible characters of GF' and let (C1,...,Cx) be a generic k-tuple of F’-stable reqular
semisimple orbits of g¥' of same type as (X4, ..., X). Then

q“<n FI(Lr),1) o

Proof. — The analogous formula in the case of the standard Frobenius F' instead
of F’ is a particular case of [15, Th.6.9.1] and the proof for F” is completely similar.

(X @ @ X, g =g~ /289

However, since the proof of [loc. cit.] simplifies in the regular semisimple case, we give
it for the convenience of the reader.
Foreachi=1,...,k, 1et w; be the common type of X} and €;. Then

1 /
(IT; 79(1er ). 1) GF' > [I7°a er)(@) = > Tngg(lef')(ef)’
| :DEGF, 3 feP (éz) f(q> [

where for f € P, (E’), €’ is the associated GF' _orbit of gt and as(q) the size of the
stabilizer in GF" of an element of €. We thus have

0= 7o 3 TI70e(€)

T7€T, fe g>n(:/) 7
t(f)=7
q(k(nz—n)+2)/2(_1)r’(w)+n Z C?_ H :L,” . Sw >
T7€T, T i=1
(k(n?=n)+2)/2 -1 r (w)+n+1
= 1 ( ) Hw(_Q)

q+1

q(k(71,2—n)+2)/2 , ,
= T<x1®'“®xk71>~
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The second equality is a consequence of Theorem 5.4 and the last equality follows
from Theorem 2.11(2) and so Theorem 5.5 follows from (4.1). O

5.3. Proor or Turorem 4.5. — We first prove the theorem when each coordinate of w
is a regular semisimple type. We then deduce the case where w is a multi-partition,
i.e., each coordinate of w is of the form (1, ) with p a partition. We finally deduce
the general case from the multi-partition case.

5.3.1. Semi-simple regular case. — We saw in Section 5.1.1, that regular semisimple
types in T,, are parametrized by the conjugacy classes of S,,. Assume that all coor-
dinates of w = (wy,...,wy) are regular semisimple. The element v,, € S,, defined in
Section 4.3 is an element in the corresponding conjugacy class of S.,.

Let (X},...,X}) be a k-tuple of irreducible characters of GF of type w. From
Theorem 5.5 and Proposition 5.2, we get the following identity

<:X:/1 ®--- ®x;c71>GF' _ qfdimQ/Q‘(Qvu)F'L

On the other hand we can follow line by line the proof of [9, Th. 2.6] to get the following
one.

TueoreMm 5.6. We have

(@) = DT (vt | HE(Q) o'

As
e (vy,) = (1)),
we have

()| = g1 /(1)) S Ty (vt | M) o
— qdim Q/2(_1>r(w) ZCL’(M;) qi
i

as M, is trivial. We thus get Theorem 4.5 in the regular semisimple case as n(w*) = 0.

5.3.2. Multi-partition case. — First of all notice that if X is a partition

Mt M+ 4+ Ao+

mi ma

with A; # A; for ¢ # j, then
Px = Sw,
where w is the regular semisimple type {(A;,1)™i}. In the following we will write [A]
for the regular semisimple type associated to a partition A.
Assume now that w is a multi-partition u = (u!, ..., u¥), i.e., the i-coordinate of w
is the type (1, u*). Decomposing Schur functions into power sums functions py, we get

Hyu(—q) =Y 25 ' x4 Hix(—q)-
A
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Using the theorem for regular semisimple types together with Theorem 2.11(2), we get

ZZ)\ X r ([AD+r((A])+n+1 Zc N )q1
= (—1)"*+! Z(zz D+ Ty (| MZ)) 7.

Therefore,

(= 1) )t (—q)
= (—1)"#) Z(Z (= 1) D @)+ Ty (g | M;)) g

i A
However,

(_1)r’(u*)+r’([>\]) = (—1)" (D,
and so

(—1)7 )t (—g) = (—1)m0) Z(Z 23Xk Tr(vp ¢ | ML)) ¢
7 A

= (—1)™*#") ZTI‘(L | Homg,, (M, M},)) ¢'

= (1" e, (M) ¢

hence the result for multi-partitions by Theorem 2.11(2), as () is even.

5.3.3. General case. Assume now that w € (T,)* is arbitrary. By Lemma 4.3
we have

Hey(—q) = Z Cw(Mu)Hu(_CI)
_ Z Cw n)+n+1 Z ¢ Mz i
= ”‘H Z Z (“')Cw ) (Mt e i

We thus have
(71)r/(w)+n(w*)+n+1Hw(7 ) _ ( n(w +7'(w) ZZ (p.) ) (MZ) i

:(_ n(w +r w)zzcw u cu n)qi7
i M

since
r'(pu) + 7' (w) = r(w) mod 2.
By Theorem 2.11(2), to complete the proof of Theorem 4.5 we are thus reduced to
proving the identity

(5:5) D co(Mu)e, (M) = ¢, (M,).
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The S/,-module M?, decomposes as

M, = @ Homs, (M, M,)® M,,
HE(Py)E
where S,, acts on M,, and (1) acts on Homg, (M, MY,). Hence
Homs,, (Ma, M) = @ (Homs,, (Mo, M) &g, Homs, (M, My,) ),
M

and the action of v« ¢ on the left corresponds to v,+ ® ¢ on the right, hence the
identity (5.5).

6. MODULE THEORETIC INTERPRETATION OF T (u, q)

6.1. Exp oF GRADED MODULES. — Assume given a module
L] L]
H" = @ H;,,
n>1

where H; is a ¢-graded finite-dimensional S,,-module and denote by
ch(H*) := Z Z Zcﬂ(Hz)qisuTn
n>lpe(Po)k i

its g-graded Frobenius characteristic function. For each n > 0 define the g-graded
S,,-module

(6.1) M, == @ Ind3y (H3),
AEP,
where for a partition A = (1™,272...) of n we put

Ny = (T(s07) = [1s. =)™,

?

and S, acts by permutation of the coordinates on (S;)" and (H})®":. Notice that N
can be seen as a subgroup of the normalizer of [[,(S;)™ in S, (and so is a subgroup
of S,,).

Following Getzler [6] we can prove the following result.

Turorem 6.1. Put
Exp(H") := € H,.
Then
ch (Exp(H")) = Exp(ch(H")).

Let now £ be the non-trivial irreducible module of Z/2Z = (1) and define the
g-graded S’,-module H, as
H =LXH".
Extend the definition of the g-graded Frobenius characteristic map ch to S7,-modules
by mapping the irreducible modules £ X H,, to us,. Then

(6.2) ch(H") = u ch(H").
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Replacing H3 by HY in (6.1) we get

H,:= @ Ind} (H})
AEP,
= @ £V RIdYy (H).
AEP, *
Put
Exp(H'):= @ H..
n=0
Then

ch(Exp(H Z Z Z Zu )‘)cﬂ Indyy (]HIZ))q s, T™.

n20 pe(P,)k XeP, i

Theorem 6.1 extends as

(6.3) ch(Exp(H")) = Exp(ch(H?")).

6.2. MODULE THEORETIC INTERPRETATION OF THE UNIPOTENT MULTIPLICITIES

In this section we apply the results of the above section with H®* = M°.

TueoreMm 6.2. We have
ch(Exp(M —1—|—UZ Z w(u,q)s, T,
n>0 pe(P,)k
and so
(6.4) =3 ) w7 e, (Indy (MY)) g
AEP, 1

In particular the polynomials Ty, (u,q) have non-negative integer coefficients.
Proof. — Applying log to Formula (3.3) we get

Z D4(u, q)log (s, ...,z ¢4 T) =log(1+ud, - Do pe(P )k Tu(u, q)s,TT).
=1

We apply Lemma 2.3 with A = u(q — 1) so that hqy = ®4(u, q), and we deduce that
u(g — 1) Log (2(q)) = Log (1 +u X, 20 X e, yr Tults @)suT™)

and so

14+u Z Z Tu(u,q)s, T" = Exp(u(q — 1) Log Q(q)).

n>0 pe(P,)k

The theorem is thus a consequence of Formula (6.3) together with the following the-
orem. ]

TueoreMm 6.3. We have

ch (M*) = u(q — 1) Log Q(q).
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Proof. — By Formula (6.2) we are reduced to proving that

(6.5) ch(M") = (g — 1) Log (q)-

We have
=2 > D culM)d s T,

n>=1 ;LE 93 )R 7
and so Formula (6.5) follows from Formula (4.3). O

From Theorem 6.2 together with Theorem 3.2 we deduce the following.

Turorem 6.4. — For any multi-partition p € (P,)* we have
Sn (i ) 4
= > 2 cu(lndyy, (M3))d',
AEP, i
( 1) +d +nU/ Z Z é()\)-H 1 (Indin)\(Mi\))qz
XEP, i
6.3. Proor or Tueorem 3.3. The constant term in u in (6.4) corresponds to the

partition A = (n') and

Indin(nl) (M[f,,1)) = M.
The assertion (i) follows thus from Proposition 6.2 together with Theorem 4.5.

The term of degree n — 1 in u in T, (u,q) corresponds to the longest partition
A = (1"). In this case M is the trivial module of N 1=y ~ S, (embedded diagonally
in S,,) and so ¢, (Indf{ﬁln) (M{;n) ) is the Kronecker coefficient ' ® ', s,

where (p!, ..., pu*) = p.

7. ExAMPLES

In this section we give a few explicit values for the polynomials V. (q), V},(q),

Uu(q), U,,(q) for small values of n. Note that of the first two we only need to list
Vy.(q) since we easily obtain V},(¢) by Ennola duality (see Corollary 2.13). To com-
pute these polynomials we implement in PARI-GP [28] the infinite products (3.1)
and (3.2) involving the series Q(x,¢;T) (here x stands collectively for the k set of
infinite variables (x1,...,x)). The series Q(x, ¢; T) itself was computed using code
in Sage [32] written by A.Mellit. The values we obtain for Uy, (q), U,,(q) match those
in the tables in [24] (but see Remark 7.1 below).

Concretely, define the rational functions R, (x,q) € A via the expansion

log Q(x,q; T ZR x,q)T

n>1

Then by (3.1) and (3.2) we have
(71) 10g(]. + Zn>0 ZHG(Tn)k Uu(q) qu)d n/d 7qd)Tn

n=1dn
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and
(7.2) log(l + D00 Zue(ﬂ’ ) U’( )Su T”)

= Y (=)™ (q)Rja(x®, —q)T™ + > Dhy(q) Ryal@™, 4T

n=1dn n=1d|n

- e T

Remark 7.1. As Liibeck points out the polynomials U,,(q) do not in general have
non-negative coefficients. However, their values at powers of primes must be non-
negative as they give multiplicities of tensor product of characters of a finite group.
Hence, the coefficient of the highest power of ¢ must be positive.

Table 3. Explicit values for the polynomials V,(q)

pt p? I Va

(1%) (1%) (1%) 1

(1%) (1) (1%) q

(1%) (1%) (2,1)

(1) (1) (1) @ +q

(1%) (1%) (21%) P4q+1

(1) (1) (2%) q

(1%) (1) (3:1) 1

(14 (21%) (21%) g+1

(1) (21%) (2%) 1

(212) (212) (212) 1

(1°) (1°) (1°) CHt+E++g
(15) (15) (21%) P +at+2¢3+2¢ +2¢+1
(15) (15) (221) ¢+ +2¢%+2¢+1
(15) (15) (312) e+ +20+1

(1°) (1°) (3,2) ¢ +q+1

(1°) (1°) (4,1) 1

(1%) (21%) (213) ¢t +2¢® +3¢° +4q + 2
(1°) (21°) (2°1) ¢® +2¢° +3q +2
(1°) (21%) (31%) *+q+2

(1°) (21%) (3,2) g+1

Continued on next page

JE.P — M., 2026, tome 13



103

FENNOLA DUALITY FOR DECOMPOSITION OF TENSOR PRODUCTS

Table 3. Explicit values for the polynomials V,,(¢) (Continued)

@ +2q+2

(2°1)
q+1

(2°1)

(31%)
(3,2)

(2°1)

(1%)

(2°1)

(1%)

¢ +3¢2+49+4
@ +3¢+3

q+1

(21°)
(2°1)

(21°)
(21°)
(21°)
(21°)
(2%1)

(21°)
(21°)
(21°)
(21°)
(21°)
(21%)
(2%1)

(317)
(3,2)

q+2

(2°1)

(31%)
(2°1)

(2°1)

(2°1)

Table 4. Explicit values for the polynomials Uy (q)

(1%)

(1%)

q+1

(1)

(1)

(1%)

(2,1) (2,1)

(1%)

(2,1)
(3)

(2,1)

(2,1)

(2,1)

(2,1)

¢®+2¢+1

> +2q¢+3
q+2

(21%)

(1)

(3,1)

(1)

Continued on next page
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Table 4. Explicit values for the polynomials U, (g) (Continued)

2¢+6

(212)
(2,2)

(21%)
(212)
(212)
(2%)

(3,1)

(%)

(2%) (3,1)

(1%)

q+9

(212)
(2%)

(21%)
(21%)
(21%)
(21%)
(2%)

(21%)
(21%)
(21%)
(21%)
(21%)

3,1

(3,1) (3,1)

(212)
(2%)

(2%)

(2%)

3,1 3,1

(2%)

(3,1)
(4)

(3,1)

(3,1)

3,1)

3,1)

S+t +2¢3+¢*+3¢+1
@ +q*+3¢3+3¢>+6g+4

¢+ +3¢2+5¢+5
¢’ +2¢° +4g+6

¢°+2q+5

(1%)

(1%)

(21°)
(2°1)

(1%)

(1%)

(1%)

(312)
(3,2)

(1%)

(1%)

(4,1)

(1)

(1°)

¢* +3¢3+5¢% +11g + 12

(21%)

(21%)

Continued on next page
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Table 4. Explicit values for the polynomials U, (g) (Continued)

¢ +3¢% + 8¢+ 12
2¢% +4q + 12

(2%1)
29+ 8

(21°)

(312)
(3,2)

(21%)
(21°)

(4,1)

(21°)
(2°1)

g% +4q +12

3¢g+9

(2°1)

(1%)

(312)
(3,2)

(2°1)

(2°1)

(1%)

(1%)

(4,1)

(2°1)
(31%)

q+6

(312)
(3,2)

(1°)

(31%)
(3,2)

(1°)

(3,2)

(1°)

2¢% + 6¢% + 16q + 28

2¢° + 10q + 26
q> +6q+21

q—+15

(21%)
(2°1)

(21%)
(21%)

(21°)
(21°)
(21°)
(21°)
(21%)
(21°)
(21%)
(21°)
(21°)
(21°)
(21°)
(21°)
(21°)
(21°)
(21%)
(2°1)

(312)
(3,2)

(21°)
(21°)
(21°)
(21°)
(2°1)

(4,1)

4q + 22

(2°1)

2q + 18
10

(31%)

(3,2)

(2°1)

(2°1)

(4,1)

(2°1)

2q + 12

(312)
(3,2)

(312)
(312)
(312)
(3,2)

(4,1)

(3,2)

(4,1)

(3,2)

(221) q+17

(2°1)

(221) (312) q+13

(2°1)

Continued on next page
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Table 4. Explicit values for the polynomials U, (g) (Continued)

(2%1) (3,2)

(2°1)

(4,1)
(5)

(2°1)

(2°1)

(2°1)

(2°1)

11

(312)
(3,2)

(312)
(317)
(31%)
(3,2)

(2°1)

(2°1)

(4,1)

(2°1)

(3,2)

(2°1)

(4,1)

(3,2)
(31%)
(31%)
(31%)
(31%)

(2°1)

q+10

(312)
(3,2)

(31%)
(31%)
(31%)
(31%)

(4,1)

(3,2) (4,1)

(31%)
(312)

(4,1)

(4,1)

(4,1)
(5)

(3,2)

(3,2)

(3,2)

(3,2)

(4,1) (4,1)

(3,2)

(4,1)
(5)

(4,1)

(4,1)

(4,1)

(4,1)

Table 5. Explicit values for the polynomials U,,(q)

Continued on next page
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(¢) (Continued)

/
©n

Table 5. Explicit values for the polynomials

q+1

(2,1)

(2,1)

¢’ +1
¢ +1
q+2

(21%)

(3,1)

(21%)
(21%)

(3,1)

(3,1)

q+1

(212)

(212)
(212)
(212)

(212)
(21%)
(212)
(212)

(3,1)

(3,1)

(3,1)

(3,1)

3,1

S+ttt +qg+1

-+

(21%)
(2°1)

=P+ +g+1

@ +2q+2

(312)

Continued on next page
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(¢) (Continued)

/
©n

Table 5. Explicit values for the polynomials

@ +1

(3,2)

-+ —q

(21°)
(2°1)

(21%)
(21%)
(221)

(2°1)

(31%) q+1

(3,2)

(2°1)

(2°1)

q+2

(31%)
(3,2)

(31%)

(31%)
(31%)
(21°)
(21°)
(21°)
(31%)

?+1
q+1

(21°)
(21°)
(21°)
(21°)
(21%)
(2°1)

(4,1)

(4,1)

g+1
qg+1

(2°1)

(2°1)

(31%)

(2°1)

(2°1)

(2°1)

(2°1)

(31%)
(31%)
(3,2)

(317)
(31%)
(317)
(317)
(3,2)

(2°1)

q+2

(31%)
(312)
(317)
(312)
(3,2)

(3,2)

(3,2)

(3,2)

(3,2)

(3,2)

(4,1)

(4,1)

(3,2)

(4,1)

(4,1)
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