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IMPROVED CONVERGENCE RATES FOR

THE HELE-SHAW LIMIT IN THE PRESENCE OF

CONFINING POTENTIALS

by Noemi David, Alpár R. Mészáros & Filippo Santambrogio

Abstract. — Nowadays a vast literature is available on the Hele-Shaw or incompressible limit
for nonlinear degenerate diffusion equations. This problem has attracted a lot of attention due
to its applications to tissue growth and crowd motion modeling as it constitutes a way to link
soft congestion (or compressible) models to hard congestion (or incompressible) descriptions.
In this paper, we address the question of estimating the rate of this asymptotics in the presence
of external drifts. In particular, we provide improved results in the 2-Wasserstein distance which
are global in time thanks to the contractivity property that holds for strictly convex potentials.

Résumé (Meilleurs taux de convergence pour la limite de Hele-Shaw en présence de potentiels
de confinement)

Il existe aujourd’hui une vaste littérature sur la limite incompressible pour des équations
de diffusion non linéaires vers leur limite de type Hele-Shaw. Ce problème a suscité beaucoup
d’intérêt en raison de ses applications à la croissance des tissus et à la modélisation des mouve-
ments de foule, car il permet de relier des modèles compressibles à ceux, incompressibles, où les
effets de congestion sont traités par des contraintes. Dans cet article, nous abordons la question
de l’estimation du taux de cette convergence en présence d’advection externe. En particulier,
nous fournissons des résultats améliorés dans la distance Wasserstein-2 qui sont globaux en
temps grâce à ses propriétés de contractivité lorsque les potentiels sont strictement convexes.
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1. Introduction

Nonlinear partial differential equations such as

(1.1) ∂tϱm = ∆ϱmm +∇ · (ϱm∇V ), m > 1,

have been employed in a variety of applications such as, for instance, the description of
pedestrian motion and tissue growth modeling. The density of individuals (or cells) at
location x ∈ Rd at time t ∈ [0,∞) is denoted by ϱm(x, t), and evolves under the effect
of an external potential V : Rd → R and Darcy’s law. Indeed, the porous medium
term corresponds to ∇ · (ϱm∇pm) where the pressure satisfies the law

(1.2) pm = Pm(ϱm) :=
m

m− 1
ϱm−1
m , m > 1.

Later in the paper, we will also discuss the following pressure law

(1.3) pε = Pε(ϱε) := ε
ϱε

1− ϱε
, ε > 0.

The velocity field of the equation is then given by v = −∇pm − ∇V . It is well
known (see for instance [AGS08, Th. 11.2.8], [Ott01]) that under suitable assumptions
on the data equation (1.1) possesses a gradient flow structure with respect to the
2-Wasserstein distance associated to the energy

Em(ϱ) =

ˆ
Rd

ϱV dx+
1

m− 1

ˆ
Rd

ϱm dx.

In this manuscript, when speaking about the solution to (1.1), we will mean the
unique gradient flow given by [AGS08, Th. 11.2.8]. It is clear that, at least formally,
the functional Em should converge, as m→ ∞, to

E∞(ϱ) =


ˆ
Rd

ϱV dx, for ϱ ⩽ 1 a.e.,

+∞, otherwise.

The gradient flow associated with the limit energy functional E∞ has been extensively
analyzed in the context of crowd motion description due to its connection to the model
proposed in [MRCSV11], see also [MRCS10]. Here the authors proposed a model
in which rather than moving following the spontaneous velocity field, U , (namely
the velocity individuals would have in the absence of others), the crowd follows the
projection of U onto the space of admissible velocities, K, which are those that
preserve the constraint ϱ ⩽ 1 (for the detailed definition of K we refer the reader to
[MRCS10, MRCSV11]). This constraint on the density is of fundamental importance
in the modeling of crowd behaviour since, obviously, there is a maximum number of
individuals that are allowed to occupy the same position in space. The model reads

(1.4)


∂ϱ

∂t
−∇ · (ϱu) = 0,

u = PK(U).

Here, PK(U) stands for the projection operator onto the set K. In [MRCS10], the
authors show that when the velocity field has a gradient structure, namely U = −∇V ,
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Improved convergence rates for the Hele-Shaw limit in the presence of confining potentials 43

system (1.4) can be seen as the gradient flow associated to E∞. When the problem is
set in a bounded domain rather than the whole space, a classical example of poten-
tial V is the distance to a door (represented by a flat bounded region of the domain’s
boundary). The constraint on the density can be clearly noticed in the definition
of E∞ by the fact that the energy blows up when ϱ > 1. We also mention the related
works [MS16, DMM16], which also consider similar models with non-gradient drift,
in the presence of an additional linear diffusion.

However, the approximation of this problem with the porous medium equation (1.1)
was only suggested in [MRCSV11, MRCS10]. This open question was addressed in
[AKY14] where the authors show convergence of the solution to (1.1) to the gradient
flow associated to E∞, ϱ∞, in the 2-Wasserstein, distance as m→ ∞. The main goal
of [AKY14] is to show how the porous medium equation (1.1) is actually related to
the following free boundary problem of Hele-Shaw type

(1.5)
{
−∆p = ∆V, in Ω(t) := {p > 0},
vν = −∂νp− ∂νV, on ∂Ω(t),

where vν is the normal velocity of the free boundary. Since it is not clear how to
derive geometrical properties of the limit ϱ∞, together with the convergence in the
2-Wasserstein distance the authors show uniform convergence of ϱm to the solution of
(1.5) in the case in which the initial data is a patch, namely ϱ0 = 1Ω0

and the poten-
tial V is semi-convex with uniformly bounded and strictly positive ∆V . Consequently,
the two limits coincide almost everywhere and, in this case, we have ϱ∞ = 1Ω(t).

Let us stress that this link to the geometrical problem (1.5) already emerged in
[MRCSV11]. Indeed, the authors show that the velocity field u = PK(U) is actually
given by u = U −∇p, where the pressure p satisfies the complementarity relationˆ

Rd

u(x, t) · ∇p(x, t) dx = 0, for a.e. t > 0,

which, for gradient spontaneous velocity fields, U = −∇V , can be rewritten asˆ
Rd

p∆(p+ V ) dx = 0.

The rigorous proof of this relation in a distributional framework constitutes a question
that has been largely addressed in the literature, especially in relation to tissue growth
models. The first result is due to [PQV14], where the authors study the following
equation

(1.6) ∂ϱm
∂t

= ∆ϱmm + ϱmG(pm),

where the pressure is given by (1.2) and the pressure-dependent growth rate G is a
decreasing function representing the fact that proliferation decreases in regions with
higher congestion. This result was later extended to a variety of tissue growth models
involving different pressure laws, [HV17, DHV20], multiple species [BPPS20, LX21],
and Brinkman’s law [PV15, DS20, DPSV21]. The case in which, besides reactions, cells
also undergo an external drift has been addressed in [KPW19, DS24]. In particular,
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44 N. David, A. R. Mészáros & F. Santambrogio

in [DS24] the authors study the limit for weak solutions, proving the complementarity
relation also in the presence of reactions, ϱmG(pm). In this case, the weak limit ϱ∞
satisfies

(1.7)


∂ϱ∞
∂t

= ∆p∞ +∇ · (ϱ∞∇V ) +G(p∞),

0 = p∞(1− ϱ∞).

It is straightforward to notice the analogy to (1.5) for G = 0. Indeed, for ϱ∞ < 1 the
pressure term disappears and the equation is simply of transport type with velocity
field −∇V , while for p∞ > 0 (hence ϱ∞ = 1) one formally recovers the complemen-
tarity relation.

In many applications to cell movement, models usually include interaction poten-
tials describing nonlocal effects in addition to the local repulsion given by the porous
medium term

(1.8) ∂ϱm
∂t

= ∆ϱmm +∇ · (ϱm∇W ⋆ ϱm).

The energies associated with the gradient flows of (1.8) and the corresponding limit
equation are

Fm(ϱ) =
1

2

ˆ
Rd

ϱW ⋆ ϱ dx+
1

m− 1

ˆ
Rd

ϱm dx,

and

F∞(ϱ) =


1

2

ˆ
Rd

ϱW ⋆ ϱ dx, for ϱ ⩽ 1,

+∞ otherwise.

In [CKY18] the authors study the limit m → ∞ of solutions to equation (1.8) for
W = N, the Newtonian potential. Later, in [HLP23], the authors address the same
problem for a Patlak-Keller-Segel tumor growth model including an additional reac-
tion term. We also refer the reader to [CT20, CG21, CCY19] and references therein.

Although the incompressible limit has proven to be widely studied and employed in
various applications, it is interesting to notice how in the literature only a few results
on the convergence rate can be found. It is the goal of this paper is to contribute to
the investigation of this question by estimating the rate of convergence of the distance
W2(ϱm, ϱ∞) as m→ ∞.

1.1. Previous results on convergence rates. — The first known result for the con-
vergence rate of solutions to equation (1.1) as m→ ∞ is due to [AKY14]. The authors
exploit the fact that the solutions can be approximated by using a minimizing move-
ment scheme, the celebrated Jordan–Kinderlehrer–Otto (JKO) scheme. Then, they
compute the convergence rate for the discrete in time approximations. This translates
into a polynomial rate for the continuous solution, [AKY14, Th. 4.2.], that is

sup
t∈[0,T ]

W2(ϱm(t), ϱ∞(t)) ⩽
C(T )

m1/24
,
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where C is a positive constant depending on
´
Rd V ϱ

0 dx, ∥∆V ∥∞ and T . The result
is obtained under the following assumptions on the potential: there exists λ ∈ R such
that

D2V (x) ⩾ λId, ∀x ∈ Rd, inf
x∈Rd

V (x) = 0, ∥∆V ∥L∞(Rd) ⩽ C.

A later result was established in [DDP23, Th. 1.1] and gives a much faster polyno-
mial rate in the Ḣ−1-norm

sup
t∈[0,T ]

∥ϱm(t)− ϱ∞(t)∥Ḣ−1(Rd) ⩽
C(T )

m1/2
.

We underline that it is in general possible to include in the estimate the possibility
to have different initial data for the equation with power m and the limit equation,
and that indeed the result in [DDP23] includes this possibility and more precisely
provides the following estimate

sup
t∈[0,T ]

∥ϱm(t)− ϱ∞(t)∥Ḣ−1(Rd) ⩽
C(T )

m1/2
+ ∥ϱm,0 − ϱ0∥Ḣ−1(Rd).

Even though equation (1.1) is not a gradient flow with respect to the Ḣ−1-norm,
this choice allows the authors to account for linear reaction terms, ϱG(x, t). Since
conservation of mass does not hold, in this case, it would not be possible to employ
the classical 2-Wasserstein distance. The strategy of [DDP23] relies on computing the
differential equation satisfied by ∥ϱm(t)−ϱ∞(t)∥Ḣ−1 and using Grönwall’s lemma upon
controlling the nonlinear diffusion and convective terms using integration by parts and
Sobolev’s and Young’s inequalities. The result of [DDP23] is valid whenever V has
bounded second derivatives. More precisely, the constant C(T ) depends on the lower
bound λ ∈ R such that the potential satisfies

(1.9) D2V − ∆V

2
Id ⩾ λId.

Note that this can be obtained when we have lower bounds on D2V and upper bounds
on ∆V .

Moreover, the authors assume that the equation is equipped with non-negative
initial data ϱm,0 ⩾ 0 such that there exists a compact set K ⊂ Rd and a function
ϱ0 ∈ L1(Rd) satisfying

spt(ϱm,0) ⊂ K, pm,0 = Pm(ϱm,0) ∈ L∞(Rd),

ϱm,0 ∈ L1(Rd), ∥ϱm,0 − ϱ0∥L1(Rd) −→ 0.
(1.10)

The assumption on the compact support of the initial data is needed in order to
ensure that the pressure satisfies an L∞ uniform bound, namely, there exists a positive
constant pM = pM (T ) such that

(1.11) 0 ⩽ pm ⩽ pM , for all t ∈ [0, T ].

We refer the reader to [KPW19, Lem. A.10] for the local in time L∞ uniform bound
on the pressure for an equation including reaction terms. Let us point out that if the
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reaction rate is pressure dependent as in (1.6), G = G(p), under suitable assumptions
on G the bound (1.11) can be proven to be global in time.

In [DDP23], the authors also treat the case of the so-called singular pressure (1.3).
This pressure law is frequently used in the modeling of crowd motion or tissue growth,
see for instance [HV17, BDDR08, DHV20, DH13], as it has the crucial advantage of
accounting for the fact that already at the level ε > 0 the density cannot overcome
a certain threshold. Indeed, the solution, ϱε of equation (1.1) with pressure law (1.3)
always satisfies ϱε < 1. As ε → 0 the equation also converges to equation (1.7),
therefore this singular limit is also referred to as incompressible limit. In [DDP23] the
authors establish a rate of at least

√
ε in the H−1 norm.

Finally, in [CKY18] the authors find an explicit polynomial rate of convergence
as m → ∞ for a porous medium equation with Newtonian interaction of the order
m−1/144, using the JKO scheme as done in [AKY14] for local drifts.

1.2. Summary of the strategy and main contributions. — The main contribution of
this paper is to provide a new result on the convergence of ϱm to ϱ∞ as m→ ∞ in
the 2-Wasserstein distance. Unlike [AKY14], our strategy does not rely on employing
a time discretization but is rather based on the same idea used in [DDP23] for the
Ḣ−1-norm – we compute the time derivative of the square of the distance between ϱm1

and ϱm2
(solutions of equation (1.1) for 1 < m1 < m2), we exploit the obtained differ-

ential inequality using Grönwall’s lemma, and then we let m2 → ∞. Computing this
time derivative is a well-known tool in optimal transport theory, and it is a powerful
argument to prove the uniqueness of solutions, as also applied in [DMM16] to prove
the uniqueness of solutions to the limit Hele-Shaw problem. We refer also to the more
classical results [CMV06, BGG12, BGG13] where similar in spirit computations have
been exploited to show convergence to equilibrium of various drift-diffusion models.
The novelty here is that ϱm1 and ϱm2 do not satisfy the same equation, and there-
fore we need finer arguments to estimate the contributions coming from the nonlinear
diffusion part of the equation, which will yield the polynomial rate.

This method allows us to obtain a better result for the 2-Wasserstein distance.
Moreover, the fact that for convex potentials the 2-Wasserstein distance is contractive
allows us to infer a convergence result that is global in time which constitutes the main
novelty of this paper. We also account for interaction potentials, equation (1.8), and
we actually present the result in a unified way, hence for an equation which includes
both effects (see equation (2.1) below) where the pressure p is given either by (1.2)
or (1.3). A joint convexity condition on V +W will yield the result globally in time.

Rate inW2. — We first estimate the convergence rate of ϱε solution of (2.1) as ε→ 0

in W2 for the singular pressure law (1.3). Let us stress that in [DDP23] the authors do
not need any assumption on the support of the initial data for this kind of pressure law
since it already implies a uniform bound ϱε < 1 for all ε > 0. Here we observe that this
property implies that rather than computing the time derivative of W2(ϱε1 , ϱε2), for
ε1 < ε2 and taking ε1 → 0, we can directly compute the time derivative of W2(ϱε, ϱ∞),
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where ϱ∞ is the gradient flow solution associated to the limit energy. We obtain the
same polynomial rate of

√
ε. Also for the porous medium case, namely (2.1) with (1.2),

we obtain a polynomial rate of 1/
√
m. Let us stress that even if the rate is the

same as the one found for the Ḣ−1-norm in [DDP23], our strategy is independent of
the inequalities which exist between the two distances. Indeed, let us recall that the
negative Sobolev norm can be bounded by theW2 distance when densities are bounded
from above and that the converse inequality is true when densities are bounded from
below by a strictly positive constant (see [Pey18] or [San15, §5.5.2]). Since a common
lower bound away from zero is obviously not attainable on Rd for measures with
finite mass, it is impossible to deduce an estimate in terms of W2 from that in terms
of Ḣ−1. On the other hand, an upper bound could be satisfied, locally in time, under
suitable conditions on the potentials V,W , but this only shows that the estimate in
the present paper is stronger than that in [DDP23].

Relaxed assumptions on the initial data. — Let us point out that we also introduce a
technical change with respect to the proof of [DDP23, Th. 1.1], specifically, we per-
form a different treatment of the porous medium part of the equation. To deal with
this term, in [DDP23] the authors imposed assumptions (1.10) on the initial data
in order to control the pressure uniformly in m, see bound (1.11). We are able to
relax these assumptions, in particular, considering initial data that are not com-
pactly supported, since our argument does not rely on any L∞ control of pm, but
rather on proving the integrability of ϱ2m−1

m . Let us stress, however, that in the
absence of reaction, as is the case for equation (1.1), it would still be possible to
infer p∞ ∈ L∞(0,∞;L∞(Rd)) without any assumption on the support of ϱm,0, but
rather asking a control on maxx V −minx V . However being interested in accounting
for convex potentials (such as V (x) = |x|2), on the whole space Rd, this assumption
would not be suitable in our context, and moreover such an estimate holds for m = ∞
but in general cannot be obtained on pm for finite m in a way which is uniform in m.

Rate in L1 and W2 for stationary states. — The fact that we obtain an estimate that
is global in time easily implies that the same rate of convergence holds for stationary
states. The very same rate can be computed by using the shape of such stationary
states by exploiting some geometric properties of the 2-Wasserstein distance. Indeed,
first we compute a convergence rate in L1 for the stationary states of equation (1.1)
and then we translate it into a W2 rate. Moreover, under certain conditions on the
confining potential V , we show that for stationary solutions the rate in W2 is actually
faster than 1/

√
m. This leaves the question of whether our convergence rate is sharp

or not for the evolution problem open.
Let us emphasize that using W2 yields a global-in-time result under more natural

assumptions than those that would be required in the Ḣ−1-norm. This is linked to
the fact that, unlike for the W2 distance, the drift part of equation (1.1) is not a
gradient flow with respect to the H−1 norm. In order to have a global rate in H−1,
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one would need to have λ > 0 in (1.9), and this does not hold for convex poten-
tials which represent, from the point of view of applications, the most relevant cases.
Indeed, when V is convex the attractive nature of the potential “competes” with the
repulsion given by the porous medium term. Moreover, in dimension d = 2, condi-
tion (1.9) can never be satisfied for λ > 0. Although for d ⩾ 3 there exist potentials
for which the condition holds – for instance potentials for which all the eigenvalues of
the Hessian matrix are negative – we remark that we would also need the assumption
|∇V |2 ⩽ CV to have the global result, which is not compatible with concave poten-
tials. This condition is required to ensure that the energy is controlled and that we
can bound ϱ2m−1

m uniformly in L1 as shown in Proposition 3.5. We conclude that W2

allows to treat the most interesting cases and yields additional properties thanks to
the gradient flow structure of the equation. It remains an open question to investigate
whether it is possible to establish a global-in-time convergence rate in the Ḣ−1-norm
for convex potentials. We would like to emphasize that the rate of convergence in this
norm would be a direct consequence of the convergence rate in W2, as long as one
would be able to guarantee uniform upper bounds on the densities, globally in time.
This, however, seems to be an open question for unbounded potentials. It is worth
mentioning that these uniform upper bounds can be guaranteed locally in time, and
so, these will give the desired convergence rates as well.

1.3. Structure of the rest of the paper. — In the following section we state the
assumptions and the main results. Section 3 is devoted to recalling the definition
and properties of the 2-Wasserstein distance and to proving some preliminary results.
Section 4 contains the proofs of the main result, Theorem 2.4. The proofs of the results
concerning the the stationary states, Theorem 2.6 and Proposition 2.7, are the object
of Section 5.

2. Assumptions and main results

Here we state the main results of the paper concerning the rate of convergence in
the 2-Wasserstein distance for local and non-local drifts and the improved results for
the stationary states.

2.1. Results in the 2-Wasserstein distance. — We will consider the following equa-
tion involving both local and nonlocal drifts

(2.1) ∂ϱ

∂t
= ∇ · (ϱ(∇p+∇V +∇W ⋆ ϱ))

and the corresponding limiting problem

(2.2)

∂tϱ = ∆p∞ +∇ · (ϱ∞(∇V +∇W ⋆ ϱ∞)),

0 = p∞(1− ρ∞).

Assumption 2.1 (Assumptions on the potentials). — Let

V : Rd −→ R+, W : Rd −→ R+,
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Improved convergence rates for the Hele-Shaw limit in the presence of confining potentials 49

be such that W (x) =W (−x) and

αI ⩽ D2V ⩽ AI, for some α,A ∈ R

βI ⩽ D2W ⩽ BI, for some β,B ∈ R.

Assumption 2.2 (Assumptions for global result). — Let V : Rd → R+, W : Rd → R+

satisfy Assumption 2.1, and let α, β satisfy either
(i) α > 0 and α+ β > 0, or
(ii) V = 0 and β > 0.

Remark 2.3 (Conservation of the center of mass). — Let us recall that, for V = 0,
equation (2.1) preserves the center of mass. Indeed, the equation can be written in
the form

∂ϱ

∂t
= ∆Q(ϱ) +∇ · (ϱ∇W ⋆ ϱ),

where the function Q : [0,+∞) → R is either Q(ϱ) = ϱm in the porous medium case,
or Q(ϱ) = εH(ϱ) for the singular pressure law, with H defined in (4.2). By integration
by parts, we have

d

dt

ˆ
Rd

xϱ dx =

ˆ
Rd

x∆Q(ϱ) dx+

ˆ
Rd

x∇ · (ϱ∇W ⋆ ϱ) dx = −d
ˆ
Rd

ϱ∇W ⋆ ϱ dx.

Since by assumption W is even, the last integral is also equal to zero by the following
computation¨

Rd×Rd

ϱ(x)∇W (x− y)ϱ(y) dx dy = −
¨

Rd×Rd

ϱ(x)∇W (y − x)ϱ(y) dxdy

= −
ˆ
Rd

ϱ∇W ⋆ ϱ dy,

hence
´
Rd xϱ(t) dx =

´
Rd xϱ0 dx for almost every t > 0. Let us notice that the preser-

vation of the center of mass is independent of the parameters m > 1 and ε > 0 in the
pressure laws (1.2) and (1.3).

We now state the main result of the paper. For the sake of simplicity, we write
one statement for both the case of singular pressure law (1.3) and power law (1.2).
Therefore, we indicate the solution, ϱm, with the same index and in the statement
1/m = ε.

Theorem 2.4 (Rate of convergence in W2). — Let ϱm be the solution of (2.1) coupled
with either (1.2) or (1.3) and endowed with initial data ϱ0 ∈ P2(Rd),

´
Rd xϱ0 dx = 0,

∥ϱ0∥∞ ⩽ 1. For all T > 0, under Assumption 2.1 there exists ϱ∞ ∈ C(0, T ;P2(Rd))

such that ϱm(·, t) converges to ϱ∞(·, t) in the 2-Wasserstein distance as m → ∞
uniformly in time with the following convergence rate

sup
t∈[0,T ]

W2(ϱm(t), ϱ∞(t)) ⩽
C(T )√
m
,
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where C is a uniform positive constant depending on the final time T . Moreover,
if Assumption 2.2 holds, then the result holds globally in time, hence there exists
ϱ∞ ∈ C(0,∞;P2(Rd)) and C > 0 such that

sup
t∈[0,∞)

W2(ϱm(t), ϱ∞(t)) ⩽
C√
m
.

In both cases, there exist the corresponding pressure functions p∞ : (0, T ) × Rd →
[0,∞), and p∞ : (0,∞) × Rd → [0,∞), respectively, such that the pair (ϱ∞, p∞) is
the unique weak solution to (2.2) with initial condition ϱ0.

Remark 2.5 (General sequence of initial data). — Let us notice that, for the global
result of Theorem 2.4, in the porous medium case, the condition ∥ϱ0∥∞ ⩽ 1 can be
relaxed. We may take any sequence of initial data ϱ0,m ∈ P2(Rd)∩L1(Rd), such that
there exists ϱ0 ∈ P2(Rd), ϱ0 ⩽ 1, and

W2(ϱ0,m, ϱ0) −→ 0, as m −→ ∞.

In this case, if ϱm is the solution of (2.1) with initial data ϱ0,m and ϱ∞ is the limit flow
with initial data ϱ0, by the triangular inequality between ϱm, ϱ∞, and the solution ϱ̃m
of equation (2.1) with initial data ϱ̃m(·, 0) = ϱ0, we have

sup
t∈[0,∞]

W2(ϱm(t), ϱ∞(t)) ⩽ sup
t∈[0,∞]

(W2(ϱ̃m(t), ϱ∞(t)) +W2(ϱm(t), ϱ̃m(t)))

⩽
C√
m

+W2(ϱ0,m, ϱ0),

where we used the contractivity in the 2-Wasserstein distance of each porous
medium equation for any m and Theorem 2.4. Note that, in general, for the
porous medium equation with a semi-convex potential V one has W2(ϱm(t), ϱ̃m(t))

⩽ eλtW2(ϱm(0), ϱ̃m(0)), with an exponentially growing factor, but the assumptions
guaranteeing the validity of Theorem 2.4 also imply that we can replace this factor
by the constant 1. Hence the rate is the worst between the rate of convergence of the
initial data and 1/

√
m.

2.2. Results for the stationary states. — Let us now consider the equation with
only a local potential, equation (1.1). As already mentioned in the introduction, it is
well known that under suitable assumptions on V , in particular for convex potentials,
the solution to equation (1.1) converges exponentially to the unique stationary state
as t→ ∞. For m > 1 the global minimizer of Em(ϱ) has the following form

(2.3) ϱm(x) =
(m− 1

m
(Cm − V (x))+

)1/(m−1)

,

where Cm is a positive constant such thatˆ
Rd

(m− 1

m
(Cm − V (x))+

)1/(m−1)

dx = 1,

while for m = ∞ the stationary state is the characteristic function

(2.4) ϱ∞(x) = 1{C∞>V (x)},
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where C∞ = limm→∞ Cm and the measure of the set {x ∈ Rd : C∞ > V (x)} is equal
to 1.

Theorem 2.6 (Polynomial convergence rate in the L1-norm for the stationary states)
Let ϱm, ϱ∞ be the global minimizers of Em and E∞ defined in (2.3) and (2.4),

respectively. Then, there exists a uniform positive constant, C, such that

∥ϱm − ϱ∞∥L1(Rd) ⩽
C

m
.

Finally, we also provide examples of stationary solutions for which it can be shown
that the rate of convergence in the 2-Wasserstein distance is actually faster than
1/

√
m. The condition under which we are able to find a finer estimate concerns the

supports of the stationary solutions. In particular, we need the supports of ϱm to be
included in spt(ϱ∞) for all m > 1. As we will show in Section 4, such solutions exist,
provided that the potential V is not “too flat”.

Theorem 2.7 (Faster W2-rate for some stationary solutions). — Let V satisfy Assump-
tion 2.1 with α > 0, and be such that the stationary solutions ϱm and ϱ∞ defined in
(2.3)–(2.4) satisfy spt ϱm ⊂ spt ϱ∞, for m ≫ 1. Then, for any parameter q > d,
denoting κ := (d+ q)/q(d+ 2), we have

(2.5) W2(ϱm, ϱ∞) ⩽ Cm−1/2(1−κ).

From (2.5) it is clear that the rate is improved since 0 < κ < 1/2, and hence the
rate as m→ ∞ belongs to the interval (1/2, 1). The fastest rate in this range seems to
be almost achieved for d = 2. In this case, taking p = 2 + δ > d, with δ ≪ 1, we find

1

2(1− κ)
= 1− O(δ).

3. Preliminaries and preparatory results

3.1. Optimal transport toolbox. — Here we recall some basic definitions and tools
from the theory of optimal transport that we will use later on. We refer the reader
to [San15, Vil03] for more details. Given two probability measures µ, ν ∈ P2(Rd), the
2-Wasserstein distance is defined as

(3.1) W2(µ, ν) = inf

{¨
Rd×Rd

|x− y|2 dγ(x, y), γ ∈ Π(µ, ν)

}1/2

,

where
Π(µ, ν) :=

{
γ∈ P2(Rd × Rd) : (πx)#γ = µ, (πy)#γ = ν

}
and πx, πy : Rd × Rd → Rd are the canonical projections from Rd × Rd to Rd. More-
over, under the assumption that µ ≪ Ld (where Ld denotes the Lebesgue measure
supported on Rd) it is known that the optimal transport plan γ is induced by a
map T : Rd → Rd which is the gradient of a convex function, T = ∇u. This means
γ = (id, T )#µ. The function u : Rd → R is given by u(x) = |x|2/2 − φ(x), where φ
is the so-called Kantorovich potential for the transport between µ and ν, and is the
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solution of the dual problem to (3.1). Let us recall also that the map T is in fact the
solution to

inf

{ˆ
Rd

|x− T (x)|2 dµ : T#µ = ν

}1/2

,

and it can be written as T = id−∇φ. Equivalently, there exists ψ such that T−1 =

id−∇ψ, and, equivalently, we can summarize these properties as follows

(id−∇φ)#µ = ν, (id−∇ψ)#ν = µ.

Let us now recall the following important property of the Wasserstein distance, which
relies on the c-cyclical monotonicity condition of the support of the optimal plan
γ = (id, T )#µ, see [BJR07].

Lemma 3.1. — Let x ∈ Rd be such that |T (x) − x| > 0. There exists Ω ⊂ Rd and
C > 0 such that x ∈ Ω, |Ω| ⩾ C|T (x)− x|d, and

|T (y)− y| ⩾ |T (x)− x|
2

for all y ∈ Ω.

We recall a well-known formula from optimal transport theory which is very useful
in applications to evolution PDEs. This is a corollary of [AGS08, Th. 8.4.7].

Lemma 3.2. — Let ϱi : (0, T ) → P2(Rd) be absolutely continuous curves and

vi : (0,+∞)× Rd −→ Rd

Borel vector fields satisfying
∂ϱi
∂t

+∇ · (ϱivi) = 0,

in the sense of distributions, i = 1, 2. Suppose that ϱi(t) ≪ Ld for every t. Then, the
following formula holds

(3.2) d

dt

(1
2
W 2

2 (ϱ1(t), ϱ2(t))
)
=

ˆ
Rd

∇φt(x) · v1(t, x) dϱ1(t)

+

ˆ
Rd

∇ψt(x) · v2(t, x) dϱ2(t),

for L1-a.e. t ∈ (0,+∞), where (φt, ψt) is any pair of Kantorovich potentials in the
optimal transport problem of ϱ1(t) onto ϱ2(t), in particular ϱ2(t) = (id−∇φt)#ϱ1(t)

and ϱ1(t) = (id−∇ψt)#ϱ2(t).

3.2. Preparatory results. — We show that even if we do not control the norm of
ϱm−1
m in L∞, we can still infer a uniform control of the L2m−1-norm of ϱm(t) by a

locally integrable function of time. This result will be employed in the proof of the
main result to treat the porous medium term.

Proposition 3.3. — Let ϱm be the solution of equation (2.1) with (1.2) and initial
data ϱ0, satisfying the assumptions of Theorem 2.4. Let the function f : (0,+∞) →
[0,+∞) be defined as

(3.3) f(t) :=

ˆ
Rd

ϱm(t)|∇pm(t) +∇V +∇W ⋆ ϱm(t)|2 dx.
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Then f is uniformly bounded in L1(0,∞) (independently of m). Moreover, for any
T > 0, there exists C > 0 independent of m such that for almost every t ∈ (0, T )

it holds

(3.4)
ˆ
Rd

ϱm(t)|∇pm(t)|2 dx ⩽ f(t) + C.

Moreover, if α, β satisfy either (i) or (ii) in Assumption 2.2, the above bound holds
globally in time, namely for almost every t > 0.

Proof. — Let us compute the dissipation of the energy associated to equation (2.1),
namely

Em(ϱm) :=
1

m− 1

ˆ
Rd

ϱmm dx+

ˆ
Rd

ϱmV dx+
1

2

ˆ
Rd

ϱmW ⋆ ϱm dx.

We integrate in time to find
d

dt
Em(ϱm) = −

ˆ
Rd

ϱm|∇pm +∇V +∇W ⋆ ϱm|2 dx,

and integrate in time to find the following energy equality
ˆ t

0

ˆ
Rd

ϱm|∇pm +∇V +∇W ⋆ ϱm|2 dxdτ + 1

m− 1

ˆ
Rd

ϱmm(t) dx

+

ˆ
Rd

ϱm(t)V dx+
1

2

ˆ
Rd

ϱm(t)W ⋆ ϱm(t) dx

=
1

m− 1

ˆ
Rd

ϱm0 dx+

ˆ
Rd

ϱ0V dx+
1

2

ˆ
Rd

ϱ0W ⋆ ϱ0 dx.

We remark that all these calculations are meaningful because of [AGS08, Th. 11.2.8].
Since we assumed that both V and W are nonnegative, and by assumption ∥ϱ0∥∞ ⩽ 1,
from the above equality, we deduce

(3.5)
ˆ ∞

0

f(t) dt <∞,

ˆ
Rd

ϱm(t)V dx <∞,

ˆ
Rd

ϱm(t)W ⋆ ϱm(t) dx <∞,

uniformly in m. Since D2V,D2W are both uniformly bounded by assumption, we have

(3.6)
ˆ
Rd

ϱm(t)(|∇V |2 + |∇W ⋆ ϱm|2) dx ⩽ C

ˆ
Rd

ϱm(t)(|x|2 + 1) dx.

Now let us show that, under Assumption 2.1, the equation preserves the control on
the second moment locally in time. We compute

d

dt

ˆ
Rd

|x|2ϱm dx =

ˆ
Rd

|x|2∇ · (ϱm(∇pm +∇V +∇W ⋆ ϱm)) dx

= 2

ˆ
Rd

ϱmx · (∇pm +∇V +∇W ⋆ ϱm) dx

⩽
ˆ
Rd

|x|2ϱm dx+ f(t).

By Grönwall’s lemma we conclude ϱm|x|2 ∈ L∞(0, T ;L2(Rd)) uniformly in m, and so
we have shown the first part of the thesis of this proposition.
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To conclude the proof we show that under Assumption 2.2 the result holds globally
in time. If (i) holds, then α > 0 and from (3.6) and (3.5), we have

ˆ
Rd

ϱm(t)(|∇V |2 + |∇W ⋆ ϱm|2) dx ⩽ C

ˆ
Rd

ϱm(t)(|x|2 + 1) dx

⩽ C

ˆ
Rd

ϱm(t)(V + 1) dx

⩽ C.

If (ii) holds, namely V = 0 and β > 0, we have
ˆ
Rd

ϱm(t)|∇W ⋆ ϱm(t)|2 dx ⩽ C

ˆ
Rd

ϱm(t)W ⋆ ϱm(t) dx ⩽ C.

Thanks to the above estimate, we have
ˆ
Rd

ϱm(t)|∇pm(t)|2 dx ⩽
ˆ
Rd

ϱm(t)|∇pm(t) +∇V +∇W ⋆ ϱm(t)|2 dx+ C

⩽ f(t) + C,

and this concludes the proof. □

Let us recall a useful property that will be employed in the proof of Proposition 3.5.

Lemma 3.4. — Let u : Rd → R be a nonnegative function such that
´
Rd u(x) dx = 1.

For all r, p such that 1 < r < p we have
ˆ
Rd

ur(x) dx ⩽

(ˆ
Rd

up(x) dx

)(r−1)/(p−1)

.

Proof. — The result is a simple consequence of the Hölder inequality applied to the
function ur−1 integrated against the measure du(x). □

Combining Lemma 3.4 and Proposition 3.3 we are able to prove a technical result
that will be crucial in the proof of the main result. In particular, it will help us
control the term coming from the porous medium part in the estimate of the dis-
tance W2(ϱ1, ϱ2) between two solutions of equation (1.1) with different exponents
1 < m1 < m2.

Proposition 3.5. — Let m1 > 1 and set m2 := 2m1 − 1. Let ϱ1, ϱ2 be solutions of
equation (2.1) with pressure law (1.2) with exponents m1,m2, respectively. There exist
uniform positive constants C and C1 such that

ˆ
Rd

ϱm2
1 (t) dx+

ˆ
Rd

ϱm1
2 (t) dx ⩽ C1(C + f1(t) + f2(t)),

where fi, associated to ϱi for i = 1, 2, is given by (3.3).
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Proof. — We may use Lemma 3.4 with r = 2m1 − 1 and p = 2∗(m1 − 1/2) to find

(3.7)

ˆ
Rd

ϱ2m1−1
1 (t) dx ⩽

(ˆ
Rd

ϱp1(t) dx

)(r−1)/(p−1)

⩽ CS

(ˆ
Rd

∣∣∣∇ϱm1−1/2
1 (t)

∣∣∣2 dx)2∗(r−1)/2(p−1)

,

where in the last line we used the Sobolev inequality. Since∣∣∣∣ 2m1

2m1 − 1
∇ϱm1−1/2

1

∣∣∣∣2 = ϱ1 |∇p1|2 ,

we may use the control given by equation (3.4) in (3.7) to inferˆ
Rd

ϱ2m1−1
1 (t) dx ⩽ CS

(
C + f1(t)

)2∗(r−1)/2(p−1)
.

From now on C denotes a positive constant whose value may change from line to line.
By definition of r and p we have

2∗(r − 1)

2(p− 1)
=

2∗(2m1 − 2)

2∗(2m1 − 1)− 2
⩽ 1,

thus, taking C large enough we haveˆ
Rd

ϱ2m1−1
1 (t) dx ⩽ CS

(
C + f1(t)

)
.

Let us notice that by arguing in the same way we may findˆ
Rd

ϱ2m2−1
2 (t) dx ⩽ CS

(
C + f2(t)

)
.

Using again Lemma 3.4 with r = (m2 + 1)/2 and p = 2m2 − 1, we obtainˆ
Rd

ϱm1
2 (t) dx =

ˆ
Rd

ϱ
(m2+1)/2
2 (t) dx ⩽

(ˆ
Rd

ϱ2m2−1
2 (t) dx

)q

⩽
(
CS(f2(t) + C)

)q
⩽ Cq

S(f2(t) + C),

where q = 1/4, and we again assumed that the constant C is large enough. □

4. Rate of convergence in the 2-Wasserstein distance

We now prove the main result of the paper, namely that the rate of convergence
in the 2-Wasserstein distance for the incompressible limit is at least polynomial with
exponent 1/2.

Proof of Theorem 2.4. — We begin by proving the result on the singular pressure
law (1.3). The main difference consists in the fact that for this law we can directly
compute the distance between ϱε (solution of (2.1)) and ϱ∞ solution of the limit
equation

∂ϱ∞
∂t

= ∆p∞ +∇ · (ϱ∞(∇V +∇W ⋆ ϱ∞)),

p∞(1− ϱ∞) = 0.
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This is possible due to the fact that ϱε < 1 almost everywhere in (0,∞)×Rd, for all
ε > 0, while it is not true for the porous medium law (1.2). We will underline in the
proof where this fact is used.

Singular pressure law. — By the formula recalled in the previous section, see (3.2),
we have

(4.1) d

dt

(1
2
W 2

2 (ϱε(t), ϱ∞(t))
)
=

ˆ
Rd

∇φt · vtε dϱε(t) +
ˆ
Rd

∇ψt · vt∞ dϱ∞(t),

where (φt, ψt) is a pair of Kantorovich potentials in the transport between ϱε(t) and
ϱ∞(t) with quadratic cost and

vtε = −∇pε(t)−∇V −∇W ⋆ ϱε(t), and vt∞ = −∇p∞(t)−∇V −∇W ⋆ ϱ∞(t).

Let us recall that this is true since ∇p∞(t) = ϱ∞(t)∇p∞(t). The optimal transport
map in the transport between ϱε(t) and ϱ∞(t) is given by T = id−∇φt, with id−∇ψt

the inverse transport map. Let us note that the nonlinear diffusion part of the equation
can be written as the Laplacian of a positive function H : [0, 1) → R defined as

(4.2) H(ϱ) =
ϱ

1− ϱ
+ ln(1− ϱ),

hence (2.1) can be written as

∂ϱε
∂t

= ε∆H(ϱε) +∇ · (ϱε(∇V +∇W ⋆ ϱε)).

After integration by parts, from (4.1) we obtain

(4.3) d

dt

(1
2
W 2

2 (ϱε(t), ϱ∞(t))
)
⩽
ˆ
Rd

(
ε∆φtH(ϱε(t)) + ∆ψtp∞(t)

)
dx

−
ˆ
Rd

(∇φt · ∇V ϱε(t) +∇ψt · ∇V ϱ∞(t)) dx

−
ˆ
Rd

(∇φt · ϱε(t)∇W ⋆ ϱε(t) +∇ψt · ϱ∞(t)∇W ⋆ ϱ∞(t)) dx.

Let us recall that the Laplacian of the Kantorovich potentials is a measure on Rd.
However, we know that the singular part of these measures is negative, while H(·) ⩾ 0

and p∞ ⩾ 0. Therefore, the first inequality in (4.3) results from dropping the singular
part of the measures (for the sake of readability we still denote ∆φt,∆ψt the abso-
lutely continuous part of the measures). The integrability of the term ∆φtH(ϱε(t))

will follow from the computations below, see (4.6).
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Drift part. — Let us now treat the term involving the potential V . Since ∇ψ(T (x)) =
−∇φ(x), using the fact that ϱ∞(t) = T#ϱε(t), we have

−
ˆ
Rd

∇φt(x) · ∇V (x)ϱε(t, x) dx−
ˆ
Rd

∇ψt(y) · ∇V (y)ϱ∞(t, y) dy

= −
ˆ
Rd

∇φt(x) · ∇V (x)ϱε(t, x) dx−
ˆ
Rd

∇ψt(T (x)) · ∇V (T (x))ϱε(t, x) dx

= −
ˆ
Rd

∇φt(x) · (∇V (x)−∇V (T (x))ϱε(t, x) dx

=

ˆ
Rd

(T (x)− x) · (∇V (x)−∇V (T (x))ϱε(t, x) dx

⩽ −α
ˆ
Rd

|T (x)− x|2 dϱε(t, x) = −αW 2
2 (ϱε(t), ϱ∞(t)),

where we used the fact that

(T (x)− x) · (∇V (T (x))−∇V (x)) ⩾ α|T (x)− x|2,

since, by assumption, D2V ⩾ αI.

Interaction potential part. — For the nonlocal term we argue as follows

−
ˆ
Rd

∇φt(x) · ∇W ⋆ ϱε(t, x)ϱε(t, x) dx

−
ˆ
Rd

∇ψt(y) · ∇W ⋆ ϱ∞(t, y)ϱ∞(t, y) dy

=−
ˆ
Rd

∇φt(x) · ∇W ⋆ ϱε(t, x)ϱε(t, x) dx

+

ˆ
Rd

∇φt(x) · ∇W ⋆ ϱ∞(T (x))ϱε(t, x) dx

=

ˆ
Rd

∇φt(x) · (∇W ⋆ ϱ∞(t, T (x))−∇W (x) ⋆ ϱε(t, x))ϱε(t, x) dx.

(4.4)

We now compute
(∇W ⋆ ϱ∞(t, T (x))−∇W (x) ⋆ ϱε(t, x))

=

ˆ
Rd

∇W (T (x)− z)ϱ∞(t, z) dz −
ˆ
Rd

∇W (x− y)ϱε(t, y) dy

=

ˆ
Rd

∇W (T (x)− T (y))−∇W (x− y))ϱε(t, y) dy.

Coming back to (4.4), we find¨
Rd×Rd

(x− T (x)) · (∇W (T (x)− T (y))−∇W (x− y))ϱε(t, y)ϱε(t, x) dy dx

=

¨
Rd×Rd

(x− y − (T (x)− T (y))) · (∇W (T (x)− T (y))−∇W (x− y))

× ϱε(t, y)ϱε(t, x) dy dx

+

¨
Rd×Rd

(y − T (y)) · (∇W (T (x)− T (y))−∇W (x− y))ϱε(t, y)ϱε(t, x) dy dx.
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The last integral in the right-hand side is exactly equal to the opposite of the left-hand
side since W (x) =W (−x) (and hence ∇W (x) = −∇W (−x)). Therefore, we obtain
¨

Rd×Rd

(x− T (x)) · (∇W (T (x)− T (y))−∇W (x− y))ϱε(t, y)ϱε(t, x) dy dx

=
1

2

¨
Rd×Rd

(x− y − (T (x)− T (y))) · (∇W (T (x)− T (y))−∇W (x− y))

× ϱε(t, y)ϱε(t, x) dy dx

⩽ −β
2

¨
Rd×Rd

|x− y − (T (x)− T (y))|2ϱε(t, y)ϱε(t, x) dy dx,

thanks to the assumption D2W ⩾ βId. It now remains to compute the last integral

−β
2

¨
Rd×Rd

|x− y − (T (x)− T (y))|2ϱε(t, y)ϱε(t, x) dy dx

= −β
2

ˆ
Rd

|x− T (x)|2ϱε(t, x) dx− β

2

ˆ
Rd

|y − T (y)|2ϱε(t, y) dy

+ β

¨
Rd×Rd

(x− T (x)) · (y − T (y))ϱε(t, y)ϱε(t, x) dy dx

= −βW 2
2 (ϱε(t), ϱ∞(t)) + β

ˆ
Rd

(x− T (x))ϱε(t, x) dx

ˆ
Rd

(y − T (y))ϱε(t, y) dy

= −βW 2
2 (ϱε(t), ϱ∞(t)) + β|bar(ϱε(t))− bar(ϱ∞(t))|2,

where bar(ϱ) ∈ Rd denotes the center of mass of ϱ. Therefore, we conclude

−
ˆ
Rd

∇φt(x) · ∇W ⋆ ϱε(t, x)ϱε(t, x) dx−
ˆ
Rd

∇ψt(y) · ∇W ⋆ ϱ∞(t, y)ϱ∞(t, y) dy

⩽ −βW 2
2 (ϱε, ϱ∞) + β|bar(ϱε(t))− bar(ϱ∞(t))|2.

Coming back to (4.3), we find

(4.5) d

dt

(1
2
W 2

2 (ϱε(t), ϱ∞(t))
)
⩽
ˆ
Rd

(
ε∆φtH(ϱε(t)) + ∆ψtp∞(t)

)
dx

−(α+ β)W 2
2 (ϱε(t), ϱ∞(t)) + β|bar(ϱε(t))− bar(ϱ∞(t))|2︸ ︷︷ ︸

I

.

Now we treat the term coming from the degenerate diffusion.

Nonlinear diffusion part. — By the Monge–Ampère equation, we have

det(I −D2φt(x)) =
ϱε(t, x)

ϱ∞(t, T (x))
, ϱε(t, ·)− a.e.,

det(I −D2ψt(y)) =
ϱ∞(t, y)

ϱε(t, T−1(y))
ϱ∞(t, ·)− a.e.
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We use the inequality between the arithmetic and geometric means, namely tr(A) ⩾
ddet(A)1/d for any symmetric positive semi-definite matrix A, to find

∆φt(x) ⩽ d

(
1−

( ϱε(t, x)

ϱ∞(t, T (x))

)1/d
)
,

∆ψt(y) ⩽ d

(
1−

( ϱ∞(t, y)

ϱε(t, T−1(y))

)1/d
)
,

where the two inequalities take place pointwise a.e. on the supports of the corre-
sponding measures. First of all, we notice that if p∞(t) > 0 then ∆ψt ⩽ 0 since
ϱ∞(t) = 1 > ϱε(t) (we see that we use here the inequality ϱε < 1). Thus we haveˆ

Rd

(ε∆φtH(ϱε(t)) + ∆ψtp∞(t)) dx

⩽ dε

ˆ
Rd

(
1−

( ϱε(t, x)

ϱ∞(t, T (x))

)1/d
)
H(ϱε(t, x)) dx

= dε

ˆ
{ϱε(t)⩾ϱ∞(t)◦T}

(
1−

( ϱε(t, x)

ϱ∞(t, T (x))

)1/d
)
H(ϱε(t, x)) dx

+ dε

ˆ
{ϱε(t)<ϱ∞(t)◦T}

(
1−

( ϱε(t, x)

ϱ∞(t, T (x))

)1/d
)
H(ϱε(t, x)) dx.

We notice that H is always nonnegative on [0, 1), and therefore, the first contribution
on the right-hand side of the previous equality can be neglected. Therefore, we obtainˆ

Rd

(ε∆φtH(ϱε(t)) + ∆ψtp∞(t)) dx

⩽ dε

ˆ
{ϱε(t)<ϱ∞(t)◦T}

(
1−

( ϱε(t, x)

ϱ∞(t, T (x))

)1/d
)
H(ϱε(t, x)) dx

⩽ dε

ˆ
{ϱε(t)<ϱ∞(t)◦T}

(
1−

( ϱε(t, x)

ϱ∞(t, T (x))

)1/d
)

ϱε(t, x)

1− ϱε(t, x)
dx.

So, we have

dε

ˆ
{ϱε(t)<ϱ∞(t)◦T}

(
1−

( ϱε(t, x)

ϱ∞(t, T (x))

)1/d
)

ϱε(t, x)

1− ϱε(t, x)
dx

⩽ dε

ˆ
Rd

ϱε(t, x) dx

= dε,

(4.6)

where the last inequality follows by observing that, since a < b ⩽ 1, we have(
1− a

b

) 1

1− ad
⩽ 1.

Let us come back to (4.5). We notice that we can bound the term I on the right-hand
side in the following way

I ⩽ −γW 2
2 (ϱε(t), ϱ∞(t)), with γ :=


α+ β, if β ⩽ 0,

α, if β > 0,

β, if V = 0.
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This follows by the fact that |bar(ϱε(t))− bar(ϱ∞(t))|2 ⩽W 2
2 (ϱε(t), ϱ∞(t)), and that

if V = 0, the center of mass is preserved, see Remark 2.3, hence
|bar(ϱε(t))− bar(ϱ∞(t))|2 = 0.

Indeed, to see the inequality involving the barycenters, we could argue as follows. For
any two measures µ, ν ∈ P2(Rd), consider π0 ∈ Π(µ, ν) any optimal transport plan
for the distance W2. Then, we have

|bar(µ)− bar(ν)| =
∣∣∣∣ˆ

Rd

xdµ(x)−
ˆ
Rd

y dν(y)

∣∣∣∣
=

∣∣∣∣¨
Rd×Rd

x dπ0(x, y)−
¨

Rd×Rd

y dπ0(x, y)

∣∣∣∣
⩽
¨

Rd×Rd

|x− y|dπ0(x, y) ⩽W2(µ, ν),

where in the last inequality we have used the Cauchy–Schwarz inequality.
Therefore, we obtain

d

dt

(1
2
W 2

2 (ϱε(t), ϱ∞(t)
)
⩽ −γW 2

2 (ϱε(t), ϱ∞(t)) + dε.

By Grönwall lemma we conclude the proof since γ > 0 under the assumption
imposed on α and β in the statement of Theorem 2.4.

Let us now prove the result for the porous medium equation, namely (2.1)
with (1.2).

Porous medium equation. — Let m1,m2 > 1 and ϱ1, ϱ2 be solutions to equation (2.1)
with exponent m1 and m2, respectively. We have

d

dt

(1
2
W 2

2 (ϱ1(t), ϱ2(t))
)
=

ˆ
Rd

∇φt · vt1 dϱ1(t) +
ˆ
Rd

∇ψt · vt2 dϱ2(t),

where (φt, ψt) is the pair of Kantorovich potentials in the transport between ϱ1(t)

and ϱ2(t) with quadratic cost and vti = −∇pi(t) − ∇V − ∇W ⋆ ϱi(t), for i = 1, 2.
Arguing in the same way as before, we obtain
d

dt

(1
2
W 2

2 (ϱ1(t), ϱ2(t))
)
=

ˆ
Rd

(
∆φtϱm1

1 (t) + ∆ψtϱm2
2 (t)

)
dx

−
ˆ
Rd

(∇φt · ∇V ϱ1(t) +∇ψt · ∇V ϱ2(t)) dx

−
ˆ
Rd

(∇φt · ϱ1(t)∇W ⋆ ϱ1(t) +∇ψt · ϱ2(t)∇W ⋆ ϱ2(t)) dx

⩽
ˆ
Rd

(
∆φϱm1

1 (t) + ∆ψϱm2
2 (t)

)
dx− γW 2

2 (ϱ1(t), ϱ2(t)),

where γ is defined as before. Now we treat the porous medium part of the equation.
Let us recall the Monge–Ampère equations

det(I −D2φt(x)) =
ϱ1(t, x)

ϱ2(t, T (x))
, ϱ1(t)− a.e.

det(I −D2ψt(y)) =
ϱ2(t, y)

ϱ1(t, T−1(y))
, ϱ2(t)− a.e.,
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and that we have

∆φt(x) ⩽ d

(
1−

( ϱ1(t, x)

ϱ2(t, T (x))

)1/d
)
, ∆ψt(y) ⩽ d

(
1−

( ϱ2(t, y)

ϱ1(t, T−1(y))

)1/d
)
,

pointwise a.e. on the supports of the corresponding measures. Note that here, the fact
that we do not know that solutions with m > 1 are smaller than 1 makes the proof
more complicated compared to the singular pressure case. Thus, we can estimate the
integral as follows
ˆ
Rd

(
∆φtϱm1

1 (t) + ∆ψtϱm2
2 (t)

)
dx ⩽ d

ˆ
Rd

(
1−

( ϱ1(t, x)

ϱ2(t, T (x))

)1/d
)
ϱm1
1 (t, x) dx

+ d

ˆ
Rd

(
1−

( ϱ2(t, y)

ϱ1(t, T−1(y))

)1/d
)
ϱm2−1
2 (t, y)ϱ2(t, y) dy

= d

ˆ
Rd

ϱ1(t, x)

(
1−

( ϱ1(t, x)

ϱ2(t, T (x))

)1/d
)
ϱm1−1
1 (t, x) dx

+ d

ˆ
Rd

ϱ1(t, x)

(
1−

(ϱ2(t, T (x))
ϱ1(t, x)

)1/d
)
ϱm2−1
2 (t, T (x)) dx.

Let us denote a = a(t, x) := ϱ1(t, x)
1/d and b = b(t, x) := ϱ2(t, T (x))

1/d. The last two
integrals can be rewritten as

d

ˆ
Rd

ϱ1(t, x)
[ (

1− a

b

)
ad(m1−1)︸ ︷︷ ︸

=:I1

+
(
1− b

a

)
bd(m2−1)︸ ︷︷ ︸

=:I2

]
dx = d

ˆ
Rd

ϱ1(t, x)(I1 + I2) dx.

A direct computation shows that if a ⩾ b, then I1 ⩽ 0 and

max
b

I2 =
1

d(m2 − 1) + 1
ad(m2−1)

( d(m2 − 1)

d(m2 − 1) + 1

)d(m2−1)

⩽ C
1

d(m2 − 1) + 1
ad(m2−1),

while if b ⩾ a, then I2 ⩽ 0 and

max
b

I1 =
1

d(m1 − 1) + 1
bd(m1−1)

( d(m1 − 1)

d(m1 − 1) + 1

)d(m1−1)

⩽ C
1

d(m1 − 1) + 1
bd(m1−1).

Thus
d

dt

(1
2
W 2

2 (ϱ1(t), ϱ2(t))
)
⩽−γW 2

2 (ϱ1(t), ϱ2(t))

+
C

dmin{m1,m2}+ 1

ˆ
Rd

ϱ1(t, x)
{
ϱm2−1
1 (t, x) + ϱm1−1

2 (t, T (x))
}
dx,

Therefore, the argument boils down to estimating the two integralsˆ
Rd

ϱm2
1 (t, x) dx, and

ˆ
Rd

ϱ1(t, x)ϱ
m1−1
2 (t, T (x)) dx.
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Notice that the second integral is
ˆ
Rd

ϱ1(t, x)ϱ
m1−1
2 (t, T (x)) dx =

ˆ
Rd

ϱm1
2 (t, x) dx,

therefore, assuming m2 = 2m1 − 1, the bound is given by Proposition 3.5. We see
here the reason for using two finite exponents m1,m2: we need to guarantee the
summability of the solution of one equations raised to a different power than m itself,
and the estimate of Proposition 3.5 requires to use a power which is not too large
compared to m, making it impossible to directly compare a solution to ϱ∞. Therefore
we have proven the following inequality

d

dt

(1
2
W 2

2 (ϱ1(t), ϱ2(t))
)
⩽ −γW 2

2 (ϱ1(t), ϱ2(t)) +
C1(f(t) + C)

m1
,

for some C1, C > 0, and where f := f1+f2. Without loss of generality we can assume
C1 = 1. Now we conclude by using Grönwall’s lemma. For the sake of clarity let us
write the full argument. We denote

X(t) :=W 2
2 (ϱ1(t), ϱ2(t)), g(t) := 2(f(t) + C).

Then we have

X ′(t) ⩽ −2γX(t) +
g(t)

m1
.

By computing (e2γtX(t))′ and integrating in time between 0 and t we have

X(t) ⩽
e−2γt

m1

ˆ t

0

e2γsg(s) ds,

since we chose for simplicity ϱ0 to be independent of the exponent of the porous
medium term, and hence X(0) = 0. For γ > 0 (which is true under the assumptions
on α and β of Theorem 2.4) we get

X(t) ⩽
2

m1

(ˆ t

0

f(s) ds+
C

γ

)
⩽

C

m1
,

where C is independent of the final time T . Otherwise, for γ < 0 we have

X(t) ⩽
e−2γt

m1

ˆ t

0

g(s) ds ⩽
C(T )

m1
.

Let ϱm be the solution of equation (1.1). Thanks to the above estimates, we can
conclude by noticing that the triangle inequality yields that

W 2
2 (ϱm(t), ϱ∞(t))⩽ 2

∞∑
k=0

W 2
2 (ϱ2km(t), ϱ2k+1m−1(t)) ⩽

∞∑
k=0

C

2km
⩽
C

m
,

where the bound is local or global in time for γ < 0 and γ > 0, respectively. □
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5. Rate of convergence for stationary states

5.1. Rate in the L1 norm. — Let us now discuss some results on the convergence
of the stationary solutions of equation (1.1) for convex potentials, namely α > 0

in Assumption 2.1. In this section, we are interested in bounding the W2 distance
between two stationary states via a general estimate which allows us to bound this
distance in terms of the L1 distance. For this reason, we named this section “Rate in
the L1 norm”, because what we essentially do is to obtain a bound in L1.

Remark 5.1. — Let V satisfy Assumption 2.1 with α > 0 (therefore the assump-
tion infx V (x) = V (0) = 0 is no longer restrictive). This implies there exist positive
constants k1 > k2 such that

• |∇V |2 ⩽ A2|x|2 ⩽ k1V,

• |∇V |2 ⩾ α2|x|2 ⩾ k2V.

We underline that from here until the end of the manuscript the interaction potential
is taken to be constant zero, i.e. W ≡ 0.

Let us recall that the stationary states for m > 1 and m = ∞ have the following
explicit forms

(5.1) ϱm(x) =
(m− 1

m
(Cm − V (x))+

)1/(m−1)

, ϱ∞(x) = 1{C∞>V (x)}.

Indeed, these formulas are simple consequences of the fact that ϱm and ϱ∞ are the
global minimizers of the free energies Em and E∞, respectively, and we can derive
them from the the first order optimality conditions. Here Cm and C∞ are explicit
constants which make both ϱm and ϱ∞ probability measures.

Lemma 5.2. — Consider the stationary states defined in (5.1). Then there exists a
constant C > 0 independent of m such that

∥∂mϱm∥L1 ⩽
C

(m− 1)2
and

∣∣∂mW 2
2 (ϱm, ϱ∞)

∣∣ ⩽ C

(m− 1)2
.

Proof. — We start by computing ∥∂mϱm∥L1 . In order to ease this computation,
we begin with the following observation. Since the mass is conserved, we have

d

dm

ˆ
Rd

ϱm(x) dx = 0,

which is equivalent to

0 =
1

m− 1

ˆ
Rd

(m− 1

m
(Cm − V (x))+

)(2−m)/(m−1)

×
(m− 1

m
C ′

m1{Cm>V (x)} +
(Cm − V (x))+

m2

)
dx

− 1

(m− 1)2

ˆ
Rd

(m− 1

m
(Cm − V (x))+

)1/(m−1)

ln
(m− 1

m
(Cm − V (x))+

)
dx
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=
1

m− 1

ˆ
Rd

(m− 1

m
(Cm − V (x))+

)(2−m)/(m−1)

×
(m− 1

m
C ′

m1{Cm>V (x)} +
(Cm − V (x))+

m2

)
dx

− 1

m− 1

ˆ
Rd

(m− 1

m
(Cm − V (x))+

)1/(m−1)

ln
(m− 1

m
(Cm − V (x))+

)1/(m−1)

dx.

After rearranging this yields

1

m− 1

ˆ
Rd

(ϱm)2−m
(m− 1

m
C ′

m1{Cm>V (x)} +
(ϱm)m−1

m(m− 1)

)
dx

=
1

m− 1

ˆ
Rd

ϱm ln ϱm dx,

and finallyˆ
Rd

(ϱm)2−mC
′
m

m
1{Cm>V (x)}︸ ︷︷ ︸

=:hm(x)

dx =
1

m− 1

ˆ
Rd

ϱm ln ϱm dx− 1

m(m− 1)2

ˆ
Rd

ϱm dx.

This computation implies in particular that

∂mϱm(x) = hm − 1

m− 1
ϱm(x) ln ϱm(x) +

1

m(m− 1)2
ϱm(x).

Since C ′
m is independent of x, for any fixed m the function hm has a sign which

matches the sign of the constant C ′
m. Let us assume, for instance, that hm is positive.

Then, we have

ˆ
Rd

|∂mϱm|dx =

ˆ
Rd

∣∣∣hm − 1

m− 1
ϱm ln ϱm +

1

m(m− 1)2
ϱm

∣∣∣dx
=

ˆ
Rd

∂mϱm dx+ 2

ˆ
Rd

(
hm − 1

m− 1
ϱm ln ϱm +

1

m(m− 1)2
ϱm

)
−
dx

⩽ 2

ˆ
Rd

(
− 1

m− 1
ϱm ln ϱm +

1

m(m− 1)2
ϱm

)
−
dx

⩽ 2

ˆ
Rd

∣∣∣ 1

m− 1
ϱm ln ϱm

∣∣∣ dx+ 2
1

m(m− 1)2

ˆ
Rd

ϱm dx,

(5.2)

where we have used the fact |f | = f + 2(f)− and
´
Rd ∂mϱm dx = 0. The same works

if hm is negative using |f | = −f + 2(f)+.
We may use a corollary of the co-area formula (see [EG92, §3.4.4, Prop. 3]) to

compute the L1-norm of ϱm ln ϱm as follows
ˆ
Rd

|ϱm(x) ln ϱm(x)|dx =
1

m− 1

ˆ Cm

0

ˆ
{V (x)=s}

(m− 1

m
(Cm − s)+

)1/(m−1)

×
∣∣∣ln(m− 1

m
(Cm − s)+

)∣∣∣ 1

|∇V (x)|
dσ(x) ds,

where we use the shorthand notation σ := Hd−1 (the (d − 1)-dimensional Hausdorff
measure). Now we use the assumptions on the potential V , in particular to handle
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the potentially vanishing term 1/|∇V (x)|. Since αI ⩽ D2V ⩽ AI, V is convex,
|∇V | ⩾ α|x|, and {V (x) = s} ⊂ B√

s/α
. Therefore Per{V (x) = s} ⩽ Cs(d−1)/2.

Moreover, the upper bound on the Hessian implies V ⩽ (A/2)|x|2, thus

1

m− 1

ˆ Cm

0

ˆ
{V (x)=s}

(m− 1

m
(Cm − s)+

)1/(m−1)∣∣∣ln(m− 1

m
(Cm − s)+

)∣∣∣
× 1

|∇V (x)|
dσ(x) ds

⩽
1

m− 1

ˆ Cm

0

(m− 1

m
(Cm − s)+

)1/(m−1)∣∣∣ln(m− 1

m
(Cm − s)+

)∣∣∣
×
ˆ
{V (x)=s}

1

α|x|
dσ(x) ds

⩽
1

m− 1

ˆ Cm

0

(m− 1

m
(Cm − s)

)1/(m−1)∣∣∣ln(m− 1

m
(Cm − s)

)∣∣∣
×
ˆ
{V (x)=s}

√
A

α
√
2V

dσ(x) ds

⩽
C

m− 1

ˆ Cm

0

(m− 1

m
(Cm − s)

)1/(m−1)∣∣∣ln(m− 1

m
(Cm − s)

)∣∣∣s(d−2)/2ds

⩽
C

m− 1
.

The last inequality here is the consequence of two facts: first, the constants Cm are
uniformly bounded with respect to m and second, the uniform boundedness of the
integral. Indeed, since s 7→ s(d−2)/2 is uniformly bounded on [0, Cm], we have

1

m− 1

ˆ Cm

0

(m− 1

m
(Cm − s)

)1/(m−1)∣∣∣ln(m− 1

m
(Cm − s)

)∣∣∣s(d−2)/2 ds

⩽
C

m− 1

ˆ Cm

0

(m− 1

m
(Cm − s)

)1/(m−1)∣∣∣ln(m− 1

m
(Cm − s)

)∣∣∣ds
= C

ˆ Cm

0

(m− 1

m
s
)1/(m−1)∣∣∣ln(m− 1

m
s
)1/(m−1)∣∣∣ds

= C

ˆ (m−1
m Cm)1/(m−1)

0

r| ln r| m

m− 1
rm−1 dr,

where we have used the change of variable formula r := (m−1
m s)1/(m−1). Again, as

(m−1
m Cm)1/(m−1) is uniformly bounded with respect to m and the function r 7→ r| ln r|

is uniformly bounded on the domain of integration, by increasing potentially the value
of C, we find that the previous integral is bounded above by

C
m

m− 1

ˆ (m−1
m Cm)1/(m−1)

0

rm−1 dr = C
m

(m− 1)m

(m− 1

m
Cm

)m/(m−1)

,

and so the claim follows.
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Finally, coming back to (5.2), we have

(5.3) ∥∂mϱm∥L1 ⩽
C

(m− 1)2
+

2

m(m− 1)2
⩽

C

(m− 1)2
,

which concludes the first inequality in the statement of this lemma.
For the second inequality, we compute the derivative with respect to m of the

square of the W2 distance. This is a direct consequence of the first variation formula
presented in [San15, Prop. 7.17], which implies that

(5.4)

∂mW
2
2 (ϱm, ϱ∞) = ∂m

(ˆ
Rd

φϱm(x) dx+

ˆ
Rd

ψϱ∞(x) dx

)
=

ˆ
Rd

φ∂mϱm(x) dx

⩽ ∥φ∥L∞∥∂mϱm∥L1 .

Here, (φ,ψ) is a pair of Kantorovich potentials in the optimal transport of ϱm onto ϱ∞.
Let us notice that Kantorovich potentials are unique up to additive constants. Because
of this, without loss of generality one might always assume that φ(0) = 0. Thus,

|φ(x)| = |φ(x)− φ(0)| ⩽ ∥∇φ∥L∞ |x|.

Since spt(ϱm) and spt(ϱ∞) are uniformly bounded, for allm > 1, we find that ∥∇φ∥L∞

and |x| are uniformly bounded for all m and all x ∈ spt(ϱm). Therefore, ∥φ∥L∞ is
uniformly bounded. From (5.4) we deduce∣∣∂mW 2

2 (ϱm, ϱ∞)
∣∣ ⩽ C

(m− 1)2
,

which concludes the proof of the lemma. □

Corollary 5.3. — The second inequality in the statement of Lemma 5.2 readily
implies that for these stationary states we have

W2(ϱm, ϱ∞) ⩽
C√
m
.

Indeed, this is since

W 2
2 (ϱm, ϱ∞) = −

ˆ ∞

m

∂sW
2
2 (ϱs, ϱ∞) ds ⩽

ˆ ∞

m

C

s2
ds =

C

m
.

Thanks to the bound on ∂mϱm established in Lemma 5.2 it is immediate to deduce
a rate of convergence in the L1 norm.

Proof of Theorem 2.6. — We compute

|∂m∥ϱm − ϱ∞∥L1 | =
∣∣∣∣∂m ˆ

Rd

|ϱm − ϱ∞|dx
∣∣∣∣ ⩽ ˆ

Rd

|∂mϱm|dx,

and thus from (5.3) we have ∣∣∂m∥ϱm − ϱ∞∥L1

∣∣ ⩽ C

m2
,

which implies ∥ϱm − ϱ∞∥L1 ⩽ C/m. □
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It is worth stressing that finding a rate in L1 for general non-stationary solutions,
even locally in time, is non-trivial. As shown in [DDP23], through interpolation with
the BV -norm – which requires stronger assumptions on the potential – one can infer
rates in some Lp space for p > 1, but in general rates obtained by interpolation are
far from being optimal.

5.2. Improved W2 rate. — We now prove that stationary solutions can converge
faster than 1/

√
m in the W2 distance as m → ∞. This will be the case whenever we

can guarantee that the support of the stationary states at level m is contained in the
support of the stationary state ϱ∞. Clearly, this property does not always hold – for
instance in the case of V very “flat”. However, if the second derivative of the potential
is large enough, there exist examples for which it can be shown

{x : ϱm(x) > 0} ⊂ {x : ϱ∞(x) > 0}

for all m≫ 1. We will see later in which cases this holds.
Now we prove Theorem 2.7, namely that the rate in W2 can be improved for

stationary solutions satisfying spt(ϱm) ⊂ spt(ϱ∞). First of all, we recall a well-known
property of the 2-Wasserstein distance that holds when the measures are defined
on a bounded convex open subset of Rd, and one of the two measures is absolutely
continuous with density bounded away from zero, see [BJR07] for the original and
more general result. Since ϱ∞ is the characteristic function of a ball an analogous
result holds for ϱ∞, ϱm if we impose an inclusion constraint on the supports of ϱm, as
stated in the following lemma.

Lemma 5.4. — Let ϱm, ϱ∞ be defined by (2.3) and (2.4), and such that spt(ϱm) ⊂
spt(ϱ∞). Let (φ,ψ) be the pair of Kantorovich potential between ϱm and ϱ∞. Then,
it holds

∥∇φ∥L∞(Rd) = ∥∇ψ∥L∞(spt(ϱ∞)) ⩽ C(d)W2(ϱm, ϱ∞)2/(d+2).

Proof. — The proof of this result is a direct consequence of Lemma 3.1, and so,
we omit it. □

Proof of Theorem 2.7. — The argument relies on refining the estimate used to prove
the convergence rate of the stationary states in the proof of Theorem 2.4. For the
sake of simplicity, let us denote K := spt(ϱ∞). We recall that (φ,ψ) is the pair of
Kantorovich potentials for the transport from ϱm to ϱ∞. Analogously to (5.4) we
compute

(5.5)

∂mW
2
2 (ϱm, ϱ∞) =

ˆ
spt (ϱm)

φ(x)∂mϱm(x) dx =

ˆ
K

φ(x)∂mϱm(x) dx

⩽ ∥φ∥L∞(K)∥∂mϱm∥L1(K) = ∥ψ∥L∞(K)∥∂mϱm∥L1(K)

⩽
1

m2
∥ψ∥L∞(K).
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We used here the relation between φ and ψ in order to estimate ∥φ∥L∞ with ∥ψ∥L∞ .
We have φ(x) = infy

1
2 |x− y|2 − ψ(y). From this we infer

φ(x) ⩾ inf
y
−ψ(y) ⩾ −∥ψ∥L∞

and, using y = x, φ(x) ⩽ −ψ(y) ⩽ ∥ψ∥L∞ . It is important here to assume spt(ϱm) ⊂
spt(ϱ∞) in order to take y = x. Then, instead of simply controlling ∥ψ∥∞ by a uniform
constant we use the Sobolev inequality to find

∥ψ∥L∞(K) ⩽ C

(ˆ
K

|∇ψ(x)|q dx
)1/q

,

with q > d. Using the definition of W2(ϱm, ϱ∞), we have

∥ψ∥L∞(K) ⩽ C∥∇ψ∥(q−2)/q
∞

(ˆ
K

|∇ψ(x)|2 dx
)1/q

⩽ C∥∇ψ∥(q−2)/q
∞ W2(ϱm, ϱ∞)2/q

⩽ CW2(ϱm, ϱ∞)2(q−2)/q(d+2)+2/q,

where in the last inequality we used Lemma 5.4. Coming back to (5.5), we have

∂mW
2
2 (ϱm, ϱ∞) ⩽

C

m2
W 2κ

2 (ϱm, ϱ∞),

with κ = (d+ q)/q(d+ 2), which is an exponent in (0, 1) since q > d. Using similar
arguments, we deduce also that

∂mW
2
2 (ϱm, ϱ∞) ⩾ − C

m2
W 2κ

2 (ϱm, ϱ∞).

This latter inequality implies that

W2(ϱm, ϱ∞) ⩽
C

m1/2(1−κ)
,

which is a direct consequence of a Grönwall type argument. Indeed, by setting f(t) :=
W 2

2 (ϱt, ϱ∞), we have the differential inequality f ′(t) ⩾ −(C/t2)f(t)κ on the interval
(m,+∞), and limt→+∞ f(t) = 0. This gives the desired bound, and this concludes
the proof. □

We now want to show examples where the inclusion spt(ϱm) ⊂ spt(ϱ∞) holds for
large values of m. Let the potential be defined as the simple quadratic function

V (x) = A|x|2,

and let A be a positive constant such that

(5.6) A > ω
2/d
d exp

(
−d
ˆ 1

0

log(1− s2)sd−1 ds

)
,

where ωd denotes the volume of the unit ball in Rd. The right-hand side in the
inequality above is a dimension-dependent constant.

Claim. — Under assumption (5.6), spt(ϱm) ⊂ spt(ϱ∞), for m≫ 1.
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Proof. — Since ϱm is defined as in (2.3), an easy computation gives the value of Cmˆ
Rd

(
m− 1

m

(
Cm −A|x|2

)
+

)1/(m−1)

dx = 1,(m− 1

m
Cm

)1/(m−1)(Cm

A

)d/2
ˆ
{1>|x|2}

(1− |x|2)1/(m−1) dx = 1,

ωd

(m− 1

m
Cm

)1/(m−1)(Cm

A

)d/2

d

ˆ 1

0

(1− s2)1/(m−1)sd−1 ds = 1.

By definition (2.3), the support of ϱm is the ball B(0,
√
Cm/A), while the support

of ϱ∞ is the ball B(0, R0) where ωdR
d
0 = 1, i.e., R0 = ω

−1/d
d . We write Cm/A = R2

and we want to guarantee R ⩽ R0. From the above equality, we have

R−d
0

(m− 1

m

)1/(m−1)

(AR2)1/(m−1)Rdd

ˆ 1

0

(1− s2)1/(m−1)sd−1 ds = 1,

and we suppose by contradiction R > R0, which implies(m− 1

m

)1/(m−1)

(AR2
0)

1/(m−1)d

ˆ 1

0

(1− s2)1/(m−1)sd−1 ds ⩽ 1.

Then, we take the logarithm of the above inequality and we use the Jensen inequality

log

(
d

ˆ 1

0

f(s)sd−1 ds

)
⩾ d

ˆ 1

0

log f(s)sd−1 ds,

which holds since log is concave and d
´ 1
0
sd−1 ds = 1. Thus, we find

1

m− 1
log

(m− 1

m

)
+

1

m− 1
log(AR2

0) + d

ˆ 1

0

1

m− 1
log(1− s2)sd−1 ds ⩽ 0.

Note that d
´ 1
0

1
m−1 log(1−s

2)sd−1 ds is a finite value, since s 7→ log(1−s2) is integrable
and s 7→ sd−1 is bounded on [0, 1]. We then obtain, by multiplying the previous
inequality by (m− 1),

log
(m− 1

m

)
+ log(AR2

0) + d

ˆ 1

0

log(1− s2)sd−1 ds ⩽ 0.

Taking the limit m → ∞, since the first term in the right-hand side tends to 0,
we obtain the condition

A ⩽ R−2
0 exp

(
−d
ˆ 1

0

log(1− s2)sd−1 ds

)
,

which is a contradiction with (5.6). □
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