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SOLUBILITY OF A RESULTANT EQUATION AND
APPLICATIONS

BY Tim BrowNING & STEPHANIE CHAN

Asstract. — The large sieve is used to estimate the density of quadratic polynomials Q € Z[z],
such that there exists an odd degree polynomial defined over Z which has resultant +£1 with Q.
Given a monic polynomial R € Z[z] of odd degree, this is used to show that for almost all
quadratic polynomials @ € Z[z], there exists a prime p such that @ and R share a common
root in Fp. Using recent work of Landesman, an application to the average size of the odd part
of the class group of quadratic number fields is also given.

Risumi (Résolubilité d’une équation résultante et applications). — Le grand crible est utilisé
pour estimer la densité des polynémes quadratiques Q € Z[z] tels qu’il existe un polyndme de
degré impair défini sur Z dont le résultant avec Q est égal & +1. Etant donné un polynéme uni-
taire R € Z[z] de degré impair, on s’en sert pour montrer que, pour presque tous les polyndémes
quadratiques Q € Zl[z], il existe un nombre premier p tel que Q et R aient une racine commune
dans ﬁp. En utilisant des travaux récents de Landesman, on obtient également une application
concernant la taille moyenne de la partie impaire du groupe de classe des corps quadratiques.
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1. INnTRODUCTION

Let @Q € Z|z] be a quadratic polynomial and let R € Z[z] be a polynomial of
degree n. Associated to @ and R is the resultant Res(R, Q). This is a polynomial of
degree n + 2 in the coefficients of Q and R, which is defined over Z. Given any fixed
polynomial R € Z[z] of degree n > 5, it follows from work of Schmidt [16, Th. 1] that
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1678 T. BRowninG & S. Cnan

there are only finitely many irreducible quadratic polynomials @ € Z[z] such that
Res(R, Q) = £1. In this paper we shall concern ourselves with the opposite situation,
and attempt to assess the density of quadratic Q € Z[z] for which Res(R, Q) = +1,
for some R € Z[z] of odd degree. More specifically, we shall be interested in the size
of the counting function

|al, [b], || < B
(1.1) N(B) = #1 (a,b,c) € Z® : Res(R,az® + bx +¢c) = +1 ,
for some R € Z[z] of odd degree

as B — oo, with the aim of showing that N(B) = o(B?).
By using only mod p information, we shall apply the large sieve to prove the
following upper bound for N(B).

Turorem 1.1. — We have N(B) < B3/+/log B.

It is also interesting to ask about the behaviour of the function

lal, [0], || < B
(1.2) No(B) = #7- (a,b,c) € Z* : Res(R, ax? + bz + ¢) = £1 ,
for some R € Z[x] of degree n

for fixed n € N. Theorem 1.1 upper bounds N,,(B) when n is odd. Taking R(z) = 2™,
it is easily checked that Res(z",ax?® + bx + ¢) = ¢". Hence we have N, (B) > B?,
coming from triples (a, b, ¢) with ¢ = 1. In private communication with the authors,
Aaron Landesman has raised the following conjecture.

Consecrure 1.2 (Landesman). — Let n > 2. Then there exists m > 0 such that
N,.(B) < B*(log B)™.

One might even expect that this upper bound holds with m = 0 (at least when n is
odd). We shall give some evidence towards Conjecture 1.2, by relating it to standard
expectations around the typical size of m-torsion in the class group of imaginary
quadratic fields.

Suppose that we are given a monic polynomial R € Z[z] of odd degree, and a prime p.
Then, as is well-known, a quadratic polynomial @ € Z[z] will share a common root
in F, with R if and only if p | Res(R, Q). It follows that the quadratic polynomials
Q € Z[x] that share no common root with R in F, for any prime p, are precisely
the quadratic polynomials Q € Z[x] for which Res(R,Q) = +1. On appealing to
Theorem 1.1, we may conclude as follows.

Cororrary 1.3. — Let R € Z[z] be monic and of odd degree. Then almost all quadratic
polynomials Q € Z[x] share a common root with R in ?p, for some prime p.

Elements of the class group of a quadratic number field K/Q of discriminant Dg
are in bijection with equivalence classes of binary quadratic forms of discriminant D .
This can be used to handle the average size of the class number h(K), if one orders
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SOLUBILITY OF A RESULTANT EQUATION AND APPLICATIONS 167()

the quadratic number fields by discriminant. Thus it follows from Dirichlet’s class
number formula that

(1.3) > WE) < X2
K/Q quadratic

|[Di|<X
It is much more challenging to assess the typical size of hoqq(K), which is defined
to be the odd part of the class number, or even that of h,(K), for fixed n, which is
defined to be size of the n-torsion subgroup of the class group. In his thesis work [15],
Landesman provided a new geometric description of the n-torsion elements of the class
groups of quadratic number fields, for a fixed n. Thus it follows from [15, Th. 1.1] that
a binary quadratic form ¢ corresponds to an odd order element in the class group if
and only if there exists an odd integer n and a degree n polynomial whose resultant
with ¢ is +1. Combining this with the proof of Theorem 1.1, we will deduce the
following result in Sections 5.1 and 5.2.

CoRroLLARY 1.4. We have

K/Q quadratic
Dk [<X

It is also possible to arrive at this upper bound using Gauss’ genus theory, which
yields the lower bound h(K) = hegd(K)hge (K) > hoqa(K)2¢Px)=1 for the class
number. But then, on restricting to negative discriminants Dy < —4, it follows from
Dirichlet’s class number formula that

(1.4) Z hoaa(K) < % Z m

2w(Dxk) ’
K/Q quadratic K/Q quadratic
—X<Dg<—-4 —X<Dg<—-4

L)_

where L(s, x) is the Dirichlet L-function with primitive real character x(s) = (
The sum on the right hand side can be estimated in a variety of ways, but recent
work of Wilson [17, Cor. 1.6] yields an upper bound for (1.4) that matches the one
in Corollary 1.4. For real quadratic fields K/Q one can argue similarly, but this time
taking the trivial lower bound Ry >> log|Dg| for the regulator of K in Dirichlet’s
class number formula. In this way it is possible to obtain the improvement

3 vDk L(1,%) X3/2

hoad (K .
2, foaalK) < (log D) 2°P) < (log X)972

K/Q quadratic K/Q quadratic
0<Dr<X 0<Dr<X

Gerth’s [10, 11] extension of the Cohen-Lenstra heuristics to the 2-part of the class
group implies that the upper bound in Corollary 1.4 is tight.

For a fixed positive integer n, there are many results in the literature that provide
upper bounds for the average of h, (K) that save a power of X, rather than a power

JE.P. — M., 2095, tome 12



1680 T. BRowninG & S. Cnan

of log X. After significant contributions by Heath-Brown—Pierce [12], by Ellenberg—
Pierce-Wood [5], and by Frei-Widmer [8], the best general bound is currently

Z hn(K) < )(3/2—1/(77,+1)+57
K/Q quadratic
[Di|<X
for any € > 0, and is due to Koymans—Thorner [14]. Note that any argument that
yields a power-saving over the trivial bound for N,,(B) ought to yield a corresponding
power-saving for the average of h,, (K). In Section 3 we shall discuss some of the issues
involved when n = 3.
As a special case of the Cohen—Lenstra heuristics [4], it is widely believed that

X if n is odd,
(1.5) Z ho(K) < { o
K/Q quadratic Xlog X if nis even.

Dk |<X

It turns out that by using Landesman’s correspondence, we can apply this bound
to deduce an upper bound for the variant N, (B) of N,(B) in (1.2), in which a
restriction to quadratics with negative discriminants is imposed. We shall prove the
following result in Section 5.1, the second part of which gives strong evidence towards
Conjecture 1.2.

Tueorem 1.5

(1) We have N;; (B) <. B3~2/("tD+e for any ¢ > 0.
(2) Assume that (1.5) holds. Then N,; (B) < B?(log B)?.

Unfortunately it seems difficult to establish similar upper bounds for the counting
function N, (B), since for quadratics with positive discriminant we are required to
estimate the number of distinct integers with absolute value up to x that are repre-
sented by a binary quadratic form with positive discriminant close to =2, and such a
bound would inevitably depend on the size of the fundamental unit.

Acknowledgements. — The authors are very grateful to Aaron Landesman for drawing
their attention to this problem and for sharing some useful remarks. Special thanks
are due to Fabian Gundlach for pointing out an error in an earlier version of this
paper and for sharing helpful comments. Thanks are also due to Christopher Frei and
the anonymous referee for useful feedback.

2. RESULTANTS

Let Q(x) = az? + bz + ¢ be a quadratic polynomial with a,b,c € Z, and let
R(z) = roa™ + 112" ! + .-+ + r, be a polynomial of degree n also defined over Z.
The resultant of R and @ is defined to be the determinant of the (n + 2) x (n + 2)

JIEP. — M., 2095, tome 12



SOLUBILITY OF A RESULTANT EQUATION AND APPLICATIONS 1681

matrix M, where

0 0 a 0 0 0
rn 19 b a 00
ro r ¢ b 0 0

M = T3 T2 0 ¢ 0 0
Tm Th—1 0 0 -+ ¢ O
0 r, 00 -+ 0

In this section our main goal is to prove a formula for Res(R, Q) = det M which
is tailored to the problem of estimating N, (B) in (1.2). For any positive integer k,
let Ay be the (k4 2) x k matrix

a 0 0
b a 0
c b 0
(21) Ak == O c a
Do b
0 0 c

In what follows, we shall denote by By, ; ; the k x k matrix formed by removing the i-th
and j-th row from Ay, for any 1 <i < k+ 2 and 1 < j < k. With the notation (2.1),
if ¢ = (rg,...,7n), then the first two columns of M are given by (¢,0)” and (0,¢)?,
respectively, and the remaining n columns are given by A,,.

We begin by using elementary row operations to clear all but two of the entries
from the first two columns of the matrix whose determinant is being taken.

Levmma 2.1, — Let 1 <4 < j < n+ 1. Then there exist X,Y € Q[rg,...,Tn,a,b,]
depending on the choice of i,j such that

X 0
0 X
Res(R,Q) =det | : A, )
Y 0
0 Y

where X appears in the (i,1)-entry and (i + 1,2)-entry of the matriz, and Y appears
in the (j,1)-entry and (j + 1,2)-entry.

Proof. — Let 4,7 be fixed, with 1 < ¢ < j < n+ 1. Let ¢ be the column vector
(roy ... ,rn)T and let ¢; ; denote the column vector formed by removing the -th and
Jj-th entries from c. Recalling the definition (2.1) of Ay, and the subsequent definition
of By, ; j, we claim that we can find a linear combination over Q of the columns of A4,

JE.P. — M., 2095, tome 12



1689, T. BRowninG & S. Cnan

to clear any n — 1 of the n+ 1 non-trivial entries of the first column. Indeed, we begin

by solving

Bn_1,ijA = ¢ j,
for a vector A = (A1,...,An_1)T € Q"~1. We then proceed to perform the col-
umn operation which subtracts A, (A1,..., \,—1,0)T from the first column of M,

or A,(0,A1,...,An_1)T from the second column of M. The n + 2 rows of A, are
given by

and
ar=(0,...,0,¢,b,a,0,...,0),

for 3 < k < n, where ¢,b,a occur in the k — 2,k — 1, k-th entry, respectively. In con-

clusion, the procedure we have described produces X,Y € Q[ro,...,T,a,b,c], given
by
A
X =ri_1—a; 0) =i~ cAi—oliz3 —bAi_11liz0 —aXilign_1,

A
Y = Tj—1— aj <O> =Tj-1— C)\j_g]_j)g - b>\j—1]—j<n - aAjljgn_l,
such that the statement of the lemma holds. O

Using this expression for the resultant we are now in a position to compute the
determinant.

Lemma 2.2, — Let 1 < i< j < n—+1. Then there exist X,Y € Q[rg,...,rn,a,b, ¢
depending on the choice of i,j such that

Res(R,Q) = a' 1" T (7' X? + (—1) 7 (dj—i — acdj—;—2) XY +a’7'Y?),

where d_1 =0, dg = 1, and dy is the k x k determinant

b a O
c b a 0
0 ¢ b
di=det|: i 1o
b a O
0 c b a
0 ¢ b

for k e N.

Proof. — Recall the definition (2.1) of Ay, and the subsequent definition of By ; ;.
(In particular dy, = det By, 1 k42 in this notation, for k > 1.) Let 4, j be fixed such that
1<i<j<n+1. Then it follows from Lemma 2.1 that

Res(R, Q) = (—1)""' X det M; ; + (—=1)" 'Y det M; 1,

JIEP. — M., 2095, tome 12



SOLUBILITY OF A RESULTANT EQUATION AND APPLICATIONS 1683

where My, 1 is the (n 4+ 1) x (n + 1) matrix by removing the k-th row and the first
column. Now the matrix M, ; has an X in its (4, 1)-entry and a Y in its (4, 1)-entry, so

det Mi71 = (71)i+1X det Bn,i,i+1 —+ (71)j+1Y det Bn,i,j—i—l-

Similarly, the matrix M, has an X inits (¢ +1,1)-entry if j > i+ 1, and a Y in its
(4, 1)-entry, so

det Mj1 = (1) X151 det By iy + (—1)7 7Y det By j 1.
Putting everything together, we obtain
(2.2) Res(R,Q) = X%det By, i i+1 + Y?det B, jj11
+ (—l)j_i (det Brij+1 — 15441 det Bn,i+1,j) XY.

It remains to compute det B,, ; j+1 for integers 1 <4 < j <n-+1.Ifi > 1, Laplace
expansion along the first row of B, ; j11 gives

det By, ;s j+1 = adet Bp_q ;-1 ;-
If j < n, Laplace expansion along the final row of By, ; j11 gives
det By, ; j+1 = cdet Bp_1,i j+1-
Applying these relations recursively, we easily obtain
det By i j+1 = a' 1 det Br_iti11,j—it2 = a' eI det Bj_i1,j—ito.
Recalling the definition of dj from the statement, we see that
det B, ;j41 = a  tc" Iy,

which easily leads to the statement of the lemma, on insertion into (2.2). |

Each dj is a homogeneous polynomial of degree k in a,b,c and can be evaluated
as follows.

Levmma 2.3. — Assume that b — 4ac # 0. Then for any k € N, we have

1 (<b+\/b2 4ac>k+1 (b V2 4ac>k+1>
Vb?% — 4ac 2 2 .
Furthermore, for k > 2, we have

b4 Vb2 — 4ac>k N (b V= 4ac)k
2 9 '

dy, =

dk — CLCdk,Q = (

Proof. — This follows easily from the recurrence relation dj, = bdy_1 — acdy—2, and
the initial conditions d; = b and dy = b* — ac. O

JE.P. — M., 2095, tome 12



1684 T. BrowninG & S. Craan

3. THE CUBIC CASE: A WORKED EXAMPLE

In this section we discuss the counting function N3(B) in (1.2), which we shall use
to illustrate the calculations in the preceding section. When R € Z[z] is cubic we have

ro 0 a 0 0
rn rg b a 0
Res(R,Q)=det |3 71 ¢ b a
r3 ro 0 ¢ b
0 r 0 0 c

= a’r3 — a®brors — 2a*crrs + a*ers 4 ab®ryrs + 3aberors

— aberyry — 2actrory + aczrf — b3rors + blergre — beror, + cgrg.
The points (a, b, ¢, 79,71, 72,73) on the hypersurface Res(R, Q) = —1 are in bijection

with the points (—a, —b, —¢, g, r1,72,73) on the hypersurface Res(R, Q) = 1, and so
we may focus our attention on the latter equation. This defines a quintic hypersurface

in AT = A%, x A} and has the structure of a quadric bundle over A3, | the
fibres of which are quadrics in Aﬁo,m,’r‘a' In this way we can interpret N3(B) as counting

3
a,b,c

However, it turns out that these quadrics are all degenerate and we are led to study
the existence of integral points in families of irreducible affine conics.

integral points of height at most B in A for which the fibre has an integral point.

We can get explicit equations for the relevant conics by revisiting the calculations
in Lemma 2.1. The set {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} comprises the set of
allowable indices (4, j), so that we always have j —i € {1,2,3}. If (,5) = (1,2), then

XLQ 0 a 0 O
Yio Xi2 b a 0
Res(R,Q)=det | 0 Yio ¢ b a|=c*(cXi,—bX12Y10+aY?),
0 0 0 ¢ b
0 0 00 ¢

where

G =()-6 oG = G O0)-=0)

If (4,7) = (1,3), then Res(R, Q) is

X173 0 a 0 0
0 X1,3 b a O
det | Yig 0 ¢ b a|= c(c2X12,3 + (b* — 2ac) X1 3Y1 3 + aQYl%s),
0 Y1’3 0 ¢ b
0 0 0 0 ¢

TE0CI = €66

JIEP. — M., 2095, tome 12
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If (4,7) = (1,4), then Res(R, Q) is
X4y 0 a 00
0 X1’4 b a 0
det | 0 0 ¢ b al=X7,— 0% —3abe)X14Y14 +a®YYy,
}/174 0 0 ¢ b
0 Y4 00 ¢

where

Q

X1,4 _(To . 0 )\1 and b a )\1 (T2
Y1,4 o 71 C )\2 c b /\2 o T3 )
These calculations are all consistent with Lemmas 2.2 and 2.3.

When one makes all these substitutions for X; ;,Y; ; one see that N3(B) is bounded
by the number of (a,b,c) € Z* for which |al, |b],|c| < B and the equations

o

2 2 2
cry — bxays + ay; = c°,

a3 4 (b — 2ac)w3ys + a*yi = bc,
At — (b — 3abe)ways + aPyi = (b* — ac)?,
each admit a solution (z;,y;) € Z?, for 2 < j < 4. Testing for solubility of generalised

Pell equations presents a formidable challenge, as exemplified in recent work [3, 6, 7,
13] on the solubility of the negative Pell equation.

4. THE LARGE SIEVE

We now turn to the task of estimating the counting function N(B) that was defined
in (1.1). Note that there are O(B?) choices of (a,b,c) with abc = 0. Moreover, the
resultant Res(R, ax? + bx + ¢) is homogeneous of odd degree in the coefficients a, b, c.
Hence, on replacing (a, b, c¢) by (—a, —b, —c), we have

0 < al, 0], |c| < B
N(B) < 2# < (a,b,¢) € Z* : Res(R,az? + bz +c¢) =1 +O(B?).
for some R € Z[z] of odd degree

We now suppose that Res(R, axz? + bz +c) = 1 for some R € Z[z] of odd degree n > 3.
Then, for any choice of indices (¢, j) with 1 <14 < j < n+1, it follows from Lemma 2.2
that there exist X,Y € Q such that

ai_lc"_j'H (Cj_iX2 + (—].)j_i(dj,i — acdjﬂ-,g)XY + CL‘j_iY2) = ].,

where formulae for d;_; and d;_;_» are given by Lemma 2.3 in terms of a, b, c. Letting
k = j — i, we may conclude that the conic C; ; C P? has a rational point, where C; ;
is given by

X2 (=D — acdp_o) XY +ad"Y? = a1t 22,

Unfortunately, there is no advantage to be gained from examining the existence of
rational points on more than one conic. Taking (4,7) = (1,2) and making an obvious

JE.P. — M., 2095, tome 12



1686 T. BRowninG & S. Cnan

change of variables, we see that C1 2(Q) # @ if and only if the conic
C: X?—(*—4ac)Y? =cZ?

has a Q-point. It is worth highlighting that this is the key step at which our assumption
on the parity of the degree of R enters the argument. We conclude that

(4.1) N(B) < 2N, (B) + O(B?),
with
N4 (B) = #{(a,b,c) € Z* : 0 < |al, |b],|c| < B, C(Q) # &}

If C(Q) # @ then necessarily (£) # —1 for any prime p such that vp(b? — dac) = 1.
Thus

(4.2) N.(B)<T(B,B,B),
where if By, By, B3 > 1 we put
T(B1732>B3) = #{(a>b7 C) S Q . |a‘ < B17 |b| < 327 ‘C| < B3}7

where
0= {(a,b,c) € 7% :vy(b* —4dac) =1 = <;) # —1 for all primes p}.

We shall approach the problem of estimating the right hand side via the large sieve,
in the form [1, Lem. 6.3]. We first record an upper bound for the size of the reduction
modulo p? of Q.

Levva 4.1, — Then #(2 mod p?) < (1 — wy,)p8, where w, = 1/2p + O(1/p?).

Proof. — We may clearly assume that p > 2. We have #({2 mod p?) = p® — S,,, where
S, is the number of (a,b,c) € (Z/p*Z)? for which v,(b* — 4ac) = 1 and (£) = —1.

c
P
Clearly

C

S, > p*# {(a,b,c) € IF?) (b2 —dac =0, (p> = —1}
—#{(a,b,c) € (Z/p°Z)* : b* — dac = 0 mod p° }.
The first summand is %p‘l (p—1) and the second summand is O(p*). Hence we deduce
that S, > %p‘r’ + O(p*), which concludes the proof. O
It now follows from [1, Lem. 6.3] that

Bi + Q") (B + Q*)(Bs + Q*)
L(Q) ’

T(By, By, Bs) < (

for any @ > 1, where

JEP. — M., 2095, tome 12
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for an appropriate absolute constant C' > 1. A straightforward application of
[9, Th. A.5] now yields L(Q) > v/log @, from which it follows that
B1By B3

4.3 T(B1,B>,B3) < ,
(4:3) (B, Bz, By) \/logmin{Bl,Bg,Bg}

on taking Q) = min{Bl,Bg,B3}1/4. Theorem 1.1 now follows on taking B; = By =
B3 = B and inserting this into (4.1) and (4.2).

5. ORDERING BY DISCRIMINANT

5.1. NEGATIVE DISCRIMINANT. — Let

STX)= > hoaa(K),
K/Q quadratic
—X<d<0

where d = D is the discriminant of K. In this section we shall compare S~ (X) with
variants of the counting function
lal, [b], |c| < B, b* < 4ac
(5.1) N~(B) =#7X (a,b,c) € Z* : Res(R, azx® + bz +¢) = +1 )
for some R € Z[x] of odd degree
in which a restriction to negative discriminants is imposed in the counting func-

tion (1.1). We begin by proving the following result, which takes care of the negative
discriminants in Corollary 1.4.

Lemma 5.1. — We have

Proof. — As described by Buell [2, Prop. 6.20], there is an isomorphism between the
set of equivalence classes of primitive binary quadratic forms of discriminant d and
the narrow ideal class group of K. A quadratic form ¢(z,y) = ax? + bxy + cy? with
discriminant d < 0 is reduced (in the sense of [2, Eq. (2.1)]) if

bl <a<e.

Any binary quadratic form with discriminant d is equivalent to a reduced quadratic
form of discriminant d by [2, Th.2.3]. In the light of the work by Landesman [15,
Th. 1.1], the sum S~ (X) is bounded by the number of reduced primitive positive def-
inite quadratic forms ¢ of discriminant d € (—X,0) for which there exists polynomial
R € Z[z] of odd degree whose resultant with g(z, 1) is £1. If |d| = 4ac — b* > 3a?, so
that a < Vd < VX. If [b] < X1/271/10 then |d| < X implies that ac < X. Drop-
ping the resultant condition, we see that the overall contribution to S~ (X) from such
binary quadratic forms is O(X?3/271/19]og X), which is satisfactory. Therefore we can
proceed under the assumption that |[b| > X1/2-1/10  Since b* < a? < |d|, we have
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ac < |d| 4+ b* < X. We therefore concentrate on the set of (a,b,¢) € Zso X Z X Zxo
which are constrained by the inequalities

1
X1/2-1/10 b < a < VX and a<c< -X.
a
It will be convenient to sort the contribution into dyadic intervals, with
(5.2) A<a<24, B <2B, C<e<2C,

where A, B, C run over powers of 2 and satisfy
1
(5.3) X2V« B A< VX and A< O 5%

Let S~(A, B, C) denote the overall contribution to S~(X) from the binary quadratic

forms ax? +bxy + cy? whose coefficients are constrained by (5.2). Then it follows from
(4.3) that
ABC ABC

< )
ViegB  +/logX
since C' > A > B> X'/2-1/10 Tt remains to sum this estimate for A, B, C' running
over powers of 2 that are constrained by the inequalities in (5.3). This yields

S7T(A,B,C) <

A2C
STX)< Y STABO) <Y
A,B,C A,C Viog X

X
e A
< Jigx 2

A<VX
X3
< Tax
which thereby completes the proof of the lemma. O

The latter result shows how an upper bound for a variant of the counting func-
tion (5.1), in which lop-sided box sizes are allowed, can be used to provide an upper
bound for S~ (X). Fixing a choice of integer n € N, our next result reverses the process
and shows how N, (B) can be bounded in terms of the sum

SiX) = Y ha(K),
K/Q quadratic
—X<d<0

Lemva 5.2. — Let n € N. Then
2log, B4+O(1)

_ S (27)
2 n
N;(B)< B > TR
=0
Proof. Note that we can trivially impose that ged(a,b,c) = 1, because we al-

ways have ged(a,b,c)” | Res(R,az? + bx + ¢) for any R € Z[z] with degree n. The
discriminant of ¢(z,y) = az? + bry + cy? can be written as Dr?, where D is a fun-
damental discriminant and r € Z is non-zero. In particular |D| < |D|r? < B?, since
max{|al, ||, |c|} < B.
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By [2, Prop. 7.1], there exists a form f of discriminant D, and «, 8,7, € Z, such
that f(ax+ By, vz +dy) = q(x,y) and ad — By = r. The condition |a|, |¢| < B implies
that

(5.4) |f(e,7)| =lal < B, and [f(B,6)| = |c[] < B.

Without loss of generality, we can take f(z,y) = agz? + bozy + coy? to be a reduced
form, so that in particular 0 < ap < /|D| < B. Since D = b — dagcy < 0, we must
have agcy # 0. Thus, on writing

1
flzy) = ((2apz + boy)* + |Dy?),
ag

we see that | f(z,y)| < B implies that |y| < \/4agB/|D| and |2+ (bo/2a0)y| < \/B/ao.

Therefore

. a8 ( [B B
o) €22 (el < By £ 0 < | 200 a0+1)<<m.

By symmetry, it follows that

Hiwn) €2 @I < B, () # 0.0} < o
Given f, we may conclude that there are O(B?/|D|) choices of (a,v) and (3, ) that
satisfy (5.4).
The condition that Res(R,q) = £1 for some R € Z[z] of degree n implies that
Res(R(dx — b, —cz + a), f(x)) = Res(R(z), f(ax + b, cx + d)) = £1. Appealing to [15,
Th. 1.1], given any fundamental discriminant D < 1, we have the upper bound

lal, [b], || < B ,
b2 — 4ac = Dr? for some r € Z B
b VAR —h,(Q(VD)).
# (@b € Res(R,az® + bx + ¢) = +1 < |D| (@(vVD)

for some R € Z[z] of degree n

Finally we sum over all D in dyadic intervals up to D < B? to conclude that

hy, D S—(X
D<0 D] X =2/ B2 X
|D|<B? -
as claimed in the lemma. O

Using this result we may easily complete the proof of Theorem 1.5. The second
part is a direct consequence of (1.5), since j = O(log B). For the first part we apply
the work of Koymans and Thorner [14], which gives

N, (B) <. B? Z (29)1/2-1/ (1) +e o p3=2/(nt1)42e,
21 < B2

for any € > 0.
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5.2. POSITIVE DISCRIMINANT. Let

S+(X) = Z hodd(K)a
K/Q quadratic
0<d<X

where d = Dy is the discriminant of K. In this section we shall prove the following
result, which completes the proof of Corollary 1.4, once combined with Lemma 5.1.

Lemva 5.3. — We have

We shall prove this result by relating S*(X) to the counting function

lal, [b], |c] < B, b* > 4ac
NT(B) =#- (a,b,c) € Z* : Res(R,azx? +bx +¢) = +1 ,
for some R € Z[z] of odd degree

in which a restriction to positive discriminants is imposed in (1.1). Thus, since
NT(B) < N(B), Lemma 5.3 is a direct consequence of applying Theorem 1.1 in the
following result.

Levma 5.4. We have ST(X) < NT(VX).

Proof. We adapt the arguments in the previous section to deal with quadratic
number fields of positive discriminant. A quadratic form q(x,y) = ax? + bxy + cy?
with discriminant d > 0 is reduced (in the sense of [2, Eq. (3.1)]) if

0<b<Vd, Vd—b<2lal<Vd+b.
Moreover, a reduced form with discriminant d > 0 further satisfies
Vd—b< 2] <Vd+b,
by [2, Prop. 3.1]. Thus

la| <Vd, 0<b<Vd, |c<Vd,

for any reduced binary quadratic form ¢(z,y) with discriminant d > 0.

Any binary quadratic form with discriminant d is equivalent to a reduced qua-
dratic form of discriminant d by [2, Prop. 3.3]. It follows from the work of Landesman
[15, Th. 1.1] that the sum S*(X) is bounded by the number of reduced primitive pos-
itive definite quadratic forms ¢ of discriminant d € (0, X), for which there exists an
odd degree polynomial R € Z[x] whose resultant with ¢(x,1) is £1. Hence, in order to
bound ST (X), we can restrict to triples (a,b,c) € Z in the range max{|al, |b], |c|} <
VX and the statement easily follows. a
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