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THE CAUCHY PROBLEM FOR
QUASI-LINEAR PARABOLIC SYSTEMS REVISITED

BY ISABELLE GALLAGHER & AymaN Moussa

Asstract. — We study a class of parabolic quasilinear systems, in which the diffusion matrix is
not uniformly elliptic, but satisfies the Petrovskii condition (positivity of eigenvalues’ real part).
Local well-posedness is known since the work of Amann in the 90s, by a semi-group method.
We first revisit these results in the context of Sobolev spaces modelled on L? and then explore
the endpoint Besov case Bz,/lp. We also exemplify our method on the SKT system, showing the
existence of local, non-negative, strong solutions.

Reésumi (Le probléme de Cauchy pour les systémes paraboliques quasi-linéaires : une nouvelle
approche)

Nous étudions une classe de systémes quasi-linéaires paraboliques, dans lesquels la matrice
de diffusion n’est pas uniformément elliptique mais satisfait la condition de Petrovskii (partie
réelle de toutes les valeurs propres strictement positive). Le caractére bien posé localement pour
de tels systéme a été établi par Amann dans les années 90, par une méthode de semi-groupe.
Nous revisitons d’abord ces résultats dans le contexte des espaces de Sobolev modelés sur L2
puis explorons le cas limite des espaces de Besov Bz,/ 1p . Nous illustrons également notre méthode
sur le systéeme SKT, en montrant localement ’existence de solutions fortes et positives.
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1634 I. GaLacer & A. Moussa

1. INnTRODUCTION

1.1. Mam~ resurts. — This article deals with local well-posedness for the following
quasilinear parabolic system, set on the d-dimensional torus T%:

d
0,U — O |A(U)ORU| = F,
(1) ;k[()k]

U‘t:() e UO.

In this system U : T¢ — RY and F : Ry x T¢ — RY are given, A : RY — My (R)
is a smooth matrix field and U : Rsg x T¢ — R¥ is the unknown. Our analysis will
rely on a detailed study of the linear case in which a matrix field M is given and one
searches for V solving

d
OV =Y 0 [MOV] =F,
(1.2) Pt

V|t:0 =V

As we shall see later on, this system already hides several difficulties in order to build
a well-posedness theory with propagation of Sobolev norms. As a matter of fact, the
following spectral condition will be of utmost importance in our construction (we refer
to Section C for more on that condition).

Derinirion 1.1 (Petrovskii condition). A matrix B € My (R) satisfies the Petro-
vskii condition if it belongs to &, where

(1.3) Z:= U Ps, withVoeR, Ps:= {B € My (R) : zeSp(B) = Re(z))d}.
6>0
With this Petrovskii condition at hand, we are in position to state our two main
results. We anticipate a notation that will be introduced in Section 1.4: for s € R
and T' > 0 we denote by E7 for the H® (T%)-energy space

%°([0,7); H*(T%)) N L(0, T; H**(T?))

that we equip with the norm

T 1/2
10155 = (100w iy + | VU@ ey dt)

We also define X5 := ¢°([0,T]; H*(T%)) and Y3 := L2(0,T; H*(T?)), as well as the
set Qr := [0,7T] x T

The initial data U° will be chosen in a Sobolev space H*(T%), while the force F
will correspondingly lie in Y;_l for some T > 0. We denote the functional framework
for the data by D := H*(T¢) x Y2~ and the size of the data is measured by

I©°, F)llpg. = |U°

T
e+ IPlhs + [ 1P at

We have denoted by (f) the average of any function f over T¢. Our main result is
the following.
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Tie CAUCHY PROBLEM FOR QUASI-LINEAR PARABOLIC SYSTEMS REVISITED 1635

Tueorewm 1 (Local well-posedness). Consider a smooth A: RN — & and s > d/2.
For any (U° F) belonging to DS, there exists T > 0 and a unique element U of E3.
which solves the parabolic Cauchy problem (1.1) on Q1. Moreover, if (UY, Fy), (US, F»)
lie in the ball of size R in DS, with Uy and Uy the respective solutions both belonging

to the ball of size R’ of ES. for some T > 0, then there is a constant C' depending
on R and R’ such that

(1.4) U1 — Uz s gOH(U?*Ungl*F?)HDST'

The restriction s >d/2 guarantees some Holder continuity in space (of order s—d/2)
of the initial data and the solution. It is to be compared with the restriction 1 > d/p
of the related work of Amann [1] in W' which we present in Section 1.2 below. It is
actually possible to reduce to a “scaling zero” result by resorting to Besov spaces: a
theorem in the framework of Bi/lp , for any finite p, is presented in Section 7.

With this (local in time) well-posedness setting we can define the lifetime of the
solution associated with (U°, F') € D2 for some s > d/2 by

T (U F):=sup{T >0 : 3U € E§ solving (1.1) on Qr}.

The construction leading to Theorem 1 provides a lifetime 777 which depends on the
data (U° F) not only through its size but also (in some sense) through its form.
Actually it is possible, thanks to a propagation of regularity result, to prove that the
lifetime actually only depends on the size of the data. Also, if the data is small enough
the lifetime is infinite. We have more precisely the following result.

Turorem 2 (Lifetime and blow-up). — Consider the assumptions of Theorem 1.

(i) There exists € > 0 depending only on A and s such that
|U°,F)llps, <& = TV, F) = o,

(ii) There exists a decreasing function ¢ such that T} (U, F) = o(|[(U°, F)|ps_)-
(iii) If TZ(U°, F) < 400, then limy_,7+ o py [|U(t) s (ray = 0.

Of course, in the previous results, lower order nonlinearities may be added with-
out changing the conclusion of these statements except point (i) of the second one
(unless structural assumptions on the lower order term are added). For instance, esti-
mate (1.4) of Theorem 1 allows for a direct use of Picard’s fixed-point theorem to
establish the following corollary, useful for cross-diffusion systems.

Cororrary 1.2. — Consider a smooth function R : RN — RN and the assumptions
of Theorem 1. All conclusions of Theorem 1 and Theorem 2 except point (i) of the
latter hold for the following system

d
U = > 0k[AU)OU] = F + R(U),
(1.5) —~

U|t:0 - UO.
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1636 I. Garracner & A. Moussa

1.2. STATE OF THE ART. In this article, we focus on parabolic systems, which must
be distinguished from their scalar counterparts (parabolic equations). For this reason,
the literature reviewed in this section concerns only systems. The difficulties encoun-
tered in the study of scalar parabolic equations are of a different nature; this is partly
due to the maximum principle which plays an important role in the scalar case, and
is absent in the case of systems. For the scalar case (specifically linear parabolic equa-
tions), we refer, for instance, to the classical work of Krylov [22], which is a standard
reference on the subject. Parabolic systems have been studied for a long time. The
pioneer contribution of Petrovskii [29] seems to be the starting point of the story. Back
then existence and uniqueness of solution for parabolic linear systems was yet to be
explored. The major step of Petrovskii in this context is the discovery of a condition

on those linear systems ensuring the existence and uniqueness of a global solution.
ke

For a parabolic system in divergence form (non-constant coefficients a;j, unknown

U := (u;)1<i<m considered on Ry X Td)

d M
(1.6) Oy — > 3 Ok |akfon;| =0,
k=1 j=1

Petrovskii’s condition requires that for all vectors ¢ € R? of euclidean norm 1, the
matrix field A¢ := (32, , affgkfg)ij has a spectrum lying in the set {z€C : Re(z)>0}.
In the literature some references can be found in which this previous condition is
replaced by (a¢X, X) > 0 which amounts to asking that the symmetric part of the
matrix field A satisfies Petrovskii’s condition. Exploring the very same linear system
of equations (1.6) with this latter assumption is by far more restrictive and actu-
ally flushes out all the subtlety of the problem, because under this condition the
system (1.6) has obvious energy estimates. As opposed to Petrovskii’s, this stronger
ellipticity condition s not intrinsic to the system for it depends on set of coordinates
chosen for U: one can clearly exhibit a symmetric positive matrix A and an invertible
matrix P for which PAP~! does not have a positive symmetric part. Let us make
precise that such a symmetry assumption on the same system (1.6) does not fall into
the scope of any symmetrization procedure (which usually changes the evolution form
of the system). We will elaborate on these transformations later on, when dealing with
the quasilinear setting. For the moment, let us proceed with the state of the art for
the linear case, focusing only in the literature which treat systems following Petro-
vskii’s condition. In [29], the tensor field A = (aff)i,j,kyg depends only on the time
variable and the setting is rather regular both for the data and the solution; existence
of a solution is obtained by means of a fundamental solution. Let us make precise,
however, that Petrovskii’s condition and construction also hold for higher order par-
abolic systems. In the two decades following [29], several contributions extended this
study of the Cauchy problem to more general systems and in less regular settings,
see [2, 24, 11] to cite a few. We also refer to the bibliographical remarks section
of the book [12] of Friedman and to the monograph [23], especially [23, Chap. VII,
§8] in which Petrovskii’s condition is stated for higher order systems together with
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Tie CAUCHY PROBLEM FOR QUASI-LINEAR PARABOLIC SYSTEMS REVISITED 1637

a comprehensive description of the existing literature at that time. All those cited
works rely on the condition exhibited by Petrovskii, with a construction of the fun-
damental solution (exception made of [27] which relies on semigroup theory). Further
generalizations of this condition encompassing even more general systems and sets of
functions have been explored, see for instance the review [28] on the Gel’fand-Shilov
theory for parabolic systems.

Leaving the realm of linear systems, the literature is by far less generous. For quasi-
linear parabolic systems, Amann’s work [1] seems to be the only reference covering
a variety of cases comparable to the Petrovskii theory for linear systems. Without
surprise, the work of Amann relies crucially on Petrovskii’s condition (Amann speaks
of the normal ellipticity condition). Instead of the linear system (1.6), Amann tackles
the following quasilinear one

(1.7) Dyu; — Z Zak[ U)ru;| =0,

k4=1j=1

where the tensor A := (aff )ij.k,e Now depends on as many variables as the system and
takes its values in the set of tensors satisfying Petrovskii’s condition. An important
remark is in order. Quite frequently, diffusive systems arising from physics, chemistry
or biology offer the dissipation of some functional (an entropy) along the flow of their
solution. It is also known, at least formally, that the existence of such an entropy
is equivalent to a symmetrization procedure for the system [9, 21, 20]. This type of
transformation allows to rewrite the system (1.7) for another set of unknowns (the
entropic variables) V := (v;); solving

(1.8) Z V), — Z Zak[ V)oru;] = 0.
j=1 k=1 j=1

In this new formulation, the matrix field C' := (c¢;5);; and the tensor field B :=
(bff)myk,g are symmetric—hence the term symmetrization. As noticed in [13], when-
ever this procedure can be carried out, Petrovskii’s condition is equivalent to the
positivity of the symmetric tensor B(V'). However, for the symmetrized system (1.8),
the positivity of B(V) is less useful — compared to that of A(U) in (1.7) — for the
construction of strong solutions. Indeed, the symmetrized formulation is particularly
well-suited for studying entropy dissipation or for applying perturbative methods to
construct local (or global) solutions near an equilibrium. On the other hand, it is less
appropriate than (1.7) for deriving energy estimates involving spatial derivatives of U,
or for using semigroup theory in the analysis of evolution equations. That is proba-
bly the main reason why, even though applying his theory to several physical models
enjoying a symmetrization property, Amann only focused on the formulation (1.7)
(under Petrovskii’s condition) to produce local well-posedness theorems leading to
Sobolev-valued solutions. More precisely, it is proved in [1] that given p > d and any
initial data in WP(T?) there exists a unique W1P(T4)-valued solution U to (1.7),
in a vicinity of the origin in R>¢; if the maximal lifetime of this solution is finite, then
blow-up occurs in the W?(T9) norm. As a matter of fact, Amann’s theory allows
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1638 I. Garracner & A. Moussa

for even more complicated systems: it encompasses the boundary-value problem on a
domain of R?, with extra dependence on t and z for the tensor A and more (lower
order) terms in the system. Amann’s theory is a highly complex machinery relying on
several non-trivial ingredients: general interpolation, maximal regularity and analytic
semigroup theory. We also mention that 10 years ago, Pierre-Louis Lions gave a series
of lectures on parabolic systems [26] in which part of the bibliographical material
that we have cited here is presented together with a possible strategy to build local
solutions.

Systems like (1.7) (quite often with a non-vanishing source term) arise naturally
in several contexts as a model of diffusion in a multicomponent setting. The choice
of a diagonal diffusion tensor A (that is A?f = 0 for k # {) corresponds to standard
or isotropic diffusion while non-diagonal diffusion tensor corresponds to anisotropic
diffusion. The latter case can be preferred when the quantities at stake evolve in a
highly heterogeneous environment in which the Brownian motion from which (1.7)
originates is not completely symmetric in all directions. These types of models do exist
(see for instance [6] or [32]) but their use is rather limited in comparison with the
isotropic case. For this reason and because this work originates from questions arising
in population dynamics (see the SKT model below) we have chosen to focus here only
on systems of the form (1.1), that is exactly the case of isotropic diffusion. This class
of systems already contains a large number of models, the mathematical analysis of
which is highly non-trivial. This includes renowned cases of models describing chemical
concentrations, cell density, gas mixtures or population densities. All those systems,
originally introduced in a modeling purpose, offered to the mathematical community
genuine and challenging questions about their behavior, be it existence and uniqueness
of solutions, blow-up or long-time behavior. For instance, the sole case of gaseous
mixtures via fully coupled nonlinear models — such as the Maxwell-Stefan system
— has given rise to a substantial literature. We can cite for instance the pioneering
works [13, 14], which established well-posedness near equilibrium or more recently, the
works of [5] and [19] who extended this analysis in non-perturbative regimes: one using
Amann’s theory to construct local solutions, the other relying on entropy dissipation
methods to obtain global weak solutions. For a more comprehensive description of
those diffusive models and the associated references, we refer to [18, Chap. 4] or the
recent lecture notes [17].

A common feature shared by those models is their cross-diffusion aspect: even
though the diffusion operator used on each component is isotropic, several compo-
nents of the system undergo the influence of other components on the intensity of its
diffusion. It is a remarkable fact that even if the environment in which the compo-
nents evolve is completely isotropic, the sole mutual influence on the intensity of their
diffusion can lead to asymmetric patterns. A spectacular instance of this phenomenon
is observable in the SKT (for Shigesada, Kawaski and Teramoto) model introduced
in [31]. In this cross-diffusion system (which falls into the scope of (1.1)), even though
the diffusion is isotropic, stable segregation steady states are possible corresponding
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Tie CAucHY PROBLEM FOR QUASI-LINEAR PARABOLIC SYSTEMS REVISITED 163()

to cases in which each of the species shares out the available space, in some sense.
The SKT model and its generalizations are iconic examples of the possible use of
Amann’s theory. If global weak solutions are known to exist thanks to the (rather
lately discovered) entropy structure for those systems (see [7, 10] and the references
therein), as far as our knowledge goes the only way to build (local) strong solutions
is to rely on Amann’s theory (as noticed by Amann himself in [1]). From this step,
a considerable amount of attempts to prove the existence of global strong solutions
to the SKT system (or its variants) emerged (see [16, 15] and the references therein
for the most recent improvements). In all those works, Amann’s theory is used as a
black box and the quest is reduced to the denial of the blow-up criterion which holds
in case of finite lifetime, as established by Amann.

This work aims at proposing an alternative approach to the construction of local
strong solutions for quasilinear parabolic system like (1.1) (satisfying Petrovskii’s con-
dition), using relatively few elaborate tools, in comparison with Amann’s construction.
From this point of view, our approach differs from [1] by the fact that we do not use
any abstract result on parabolic equations (no semi-group theory nor maximal reg-
ularity) but we rely instead on Fourier analysis and the paraproduct of Bony [4] to
treat the most severe non-linearities of the system. In this way, we manage to build
solutions in a finer scale of spaces, but yet comparable: our solutions live in H*(T%)
for s > d/2 whereas Amann’s in W1?(T?) for p > d. In the specific example of the
SKT model, we hope that this new path will shed some light on the question of the
possible blow-up of these solutions, at least in the periodic setting that we consider.

1.3. SIGN-PRESERVING PROPERTY AND APPLICATION TO THE SK'T MODEL. As repeatedly
noticed by Amann [1] and contrary to the scalar case, parabolic systems satisfying
Petrovskii’s condition do not offer any maximum principle. When dealing with dif-
fusive models aiming at describing the evolution of densities, the non-negativity of
the solution is a crucial property of the model that one would like to propagate from
the initial data. This is not a harmless detail from the point of view of mathemati-
cal analysis either as it may happen (see below for some examples) that Petrovskii’s
condition is only satisfied on the cone of non-negative vectors. This transference of
non-negativeness (component-wise) from the initial data to the solution on its whole
lifetime is tightly linked to the structure of the system. We give below a sufficient con-
dition on the matrix field to ensure this propagation. This condition was originally
suggested at the formal level in [26] for the general case of parabolic systems that we
consider in this article; note that an analogous condition has also been introduced in
the specific case of multicomponent gas models in [13, §7.3.3]. In order to motivate
the following definition, notice that in the case of systems, the non-negativity of the
diagonal part of the operator alone does not ensure the preservation of the sign of
the solution, due to the presence of lower-order terms. These terms will not affect the
preservation of sign only if they are themselves in some sense diagonal, as presented
in the coming Definition 1.3. Proposition 1.4 and Theorem 3 below enlighten the
relevance of that definition in our setting of solutions.

JE.P.— M., 2095, tome 12



1640 I. Garracner & A. Moussa
|

For V € RY the notation diag(V) refers to the diagonal square matrix of size N
with entries given by the components of V. The partial order > on RY or My (R) has
to be understood component-wise.

Derivition 1.3, — A matrix field 4 : RY — My (R) is said to be sign-preserving if
there exist smooth maps D : RY — diag(RY) and B : RY — My(R) such that

« A(U) =D(U) + diag(U)B(U);

« for some nonnegative real number a and any U > 0 one has D(U) > aly.

The relevance of that definition stems from the following proposition, proved in
Section 6.

Prorosition 1.4. — Fizs > d/2+2. Let p : RY — RY be a given smooth function and
define R(U) := diag(U)p(U). Consider a smooth sign-preserving matriz field A, and a
solution U to the Cauchy problem (1.5) in E% associated with non-negative (U°, F) €
Ds.. Then U is non-negative on [0,T).

Finally let us state the following theorem, which is a consequence of our main result
and Proposition 1.4, and will be applied to the SKT system below. Its proof can also
be found in Section 6.

Turorem 3. — Fiz s > d/2. Let p : RY — RY be a given smooth function and
define R(U) := diag(U)p(U). Consider a smooth sign-preserving matriz field A sat-
isfying A(Rgo) C 2, and non-negative (U°, F) € DS_. There exists T > 0 and a
unique element U of Ef which solves the Cauchy problem (1.5). Moreover, we have
the stability estimate (1.4) and points (i) and (iii) of Theorem 2; point (i) holds if p
vanishes identically. Finally, U is non-negative on its whole lifetime.

Remark 1.5. — As compared to Theorem 1 and Theorem 2, Petrovskii’s condition is
here only required to be satisfied on the cone Rgo.

Our interest in this question originates from the study of the SKT model [31].
We end this paragraph by an example of use of Theorem 3 on this specific system.
In its original form, the SKT model writes

(19) Oyur — Al(dy + ar1ur + argug)ur] = ur(ry — s11u; — s12u2),

. Orug — A[(dg + as1uq + a22U2)U2] = U2(7“2 — S21U1 — 822“2)7

where the unknowns wui,us : Ry X Td — Ry are density population and all the
coeflicients a;j, i, s;; are nonnegative while the d;’s are positive. Such a system can
be written in the form (1.5) for U := “(uy,uz),

R(U) = up 0 r1 — S11U1 — S12U2
0 wup/) \re — sa1u1 — S22U2

Uy dy + 2a11u1 + a12uz aialy
a1U2 do + ag1uy + 2a2us)

and the matrix field

(110) ASKT : (

U2
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Writing
di + ajous 0 2a11u1  ajpu
ASKT(U) ( 1 1 ) ( 11U1 12U1 )7

0 do + aziuy ao1uz  2a22Uz

we see that this matrix field is indeed sign-preserving in the sense of Definition 1.3.
Lastly, we have that Agkr(R>o X Ryo) C &: it can be readily checked that
det AskT(u1,us) and Tr Agskr(ui,us) are both positive for uy,us > 0 (because the
d;’s are positive), so either the eigenvalues are not real and share a positive real
part, or they are both real and have the same (positive) sign. Theorem 3 therefore
applies to produce local strong and non-negative solutions to the SKT system. Let
us however note that

det(Asgr + "Askr)(u1,us) = (di + 2a11u1 + a12uz)(da + aziur + 2a20uz)

— (a12uy + a21u2)2

may become negative on R>g x Rxg. For instance for a1; = a2 = 0, this expression
becomes negative on the two fundamental axes, far from the origin (and therefore
also near those axes). This simple example explains why Petrovskii’s condition is
indeed crucial for the study of parabolic systems and was already pointed out by
Amann [1]. Surprisingly enough, for generalizations of the SKT model to the case
of multiple populations (more than two species), it has been noticed only recently
that a similar analysis can be carried on (see [8, §7]): for an arbitrary number N
of population species, the corresponding generalization of the SKT model (see [8])
satisfies Agkr (Rgo) C & and our Theorem 3 applies to this setting as well.

1.4. Norarions. — In the following we denote Py := Id —(-) the orthogonal projection
from L2(T¢) onto mean free functions. For T > 0, we note Q7 the (periodic) closed
cylinder Q7 := [0,7] x T¢. For 1 < p < oo the LP(T9) and LP(Qr) norms will
be noted |||, (if there is no ambiguity), while we will generally use ||-||x for the
norm of some functional space X. We shall sometimes use the shorthand notation L%,
for LP(0,T).

For any real number s we recall that X3 is the space €°([0,T]; H*(T%)) and Y. is
the space L2(0,T;H*(T%)); we then define the energy space Ei = X35 N Y;'H that
we equip with the norm V (HVH%(T + HVVH%,;)UQ.

For T > 0, a € [0,1] and k € N we denote by €*<(Qr) the space of k times
continuously differentiable functions, whose partial derivatives of order k are a-Hoélder
continuous and we denote by ||-||*.«(g,) the corresponding norm. We simply note
€*(Qr) when a = 0 and sometimes specify the set of values X writing €% (Qr; X).

We fix a norm |-| on CV and the subordinate norm || - ||| on My(C). For a con-
tinuous matrix field M € €°(Qr; 2), || M|l will refer to the uniform norm of M
(with ||| - ||| at arrival). For such a matrix field M, there exists n(M) > 0 such that
M € €°(Qr; Pyar))- We refer to Appendix C for the definition and properties of this
function 7. For a € [0,1] and a matrix field M € €%%(Qr; &), we will use repeatedly
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1642 I. Garracuer & A. Moussa

the following notation
(1.11) [M]o = [ M||g0.a (@) +n(M).
Finally if C1,...,C}, is a collection of positive numbers, we write
AZe,...c, B
if there is an increasing function g such that
A<g(Crt+ -+ Co)B.

Such a function does not depend on any other relevant variable and it is liable to
change from line to line. We will in general not track it.

1.5. MAIN RESULTS IN THE LINEAR SETTING. Theorem 1 will be obtained thanks to
a detailed study of the linear setting, that is of system (1.2) where M is a given
matrix field. We collect in this paragraph some results which will be useful in the
proof of Theorem 1 and Theorem 2 and, even though focusing on the linear setting,
are interesting for their own sake. We will often use the notation Lj; for the linear
differential operator applied to V' in the left-hand side of (1.2):

d
LyV =0,V =) ok [MoV].
k=1
Well-posedness for (1.2) will be established under adequate assumptions on M and
thanks to the following a priori estimates in the H*(T9) setting for s > d/2. As will
be shown later, one can assume without loss of generality that the functions under
study are mean free.

Tueorem 4. — Let T > 0, a € (0,1], s > d/2 and consider a matriz field M €
EO(Qr; P) which belongs furthermore to Y. For any V in E3 such that V(0) €
H(T9), Ly V € Y3~ and (V(t)) = 0 for all t € [0,T], one has actually that V
belongs to B3N €Y% (Qr) for some as € (0,1) which depends only on s and

(1.12) IVilzs + IVIigoes @) STiaala,imll, i VO ls (ray + ILarV a1

T
Remark 1.6. — The proof Theorem 4 can easily be adapted to the case when T' = oo,
provided the matrix field M converges as time goes to infinity towards a stationary
matrix field M € €°(T¢; 2).

Building on this a priori estimate, we have the following well-posedness result for
the Cauchy problem (1.2).

Tucorem 5. — Fiz T > 0, s > d/2 and o € (0,1]. For M € €%%(Qr; 2) N Y
and (VO F) € D, the Cauchy problem (1.2) is well-posed E and its solution belongs
furthermore to €%% (Qr), for some as € (0,1).
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1.6. PLAN OF THE PAPER. In the coming Section 2 we prove Theorem 4, which
concern a priori estimates. This will lead, in Section 3, to the proof of the linear
well-posedness Theorem 5. The proof of the nonlinear well-posedness Theorem 1 is
provided in Section 4 while Theorem 2 is proved in Section 5. Finally Theorem 3 is
proved in Section 6. Section 7 is devoted to the end-point case in Besov spaces (see
Theorem 6). Four appendixes are devoted to some classical results on Sobolev spaces,
to basics of Littlewood-Paley theory, to important facts related to the Petrovskii
condition, and to a technical but useful retraction result, of RY on Rgo, respectively.

Acknowledgements. The authors would like to thank Pierre-Louis Lions for his
inspiring on-line lectures [26], and also for several fruitful discussions and his aware-
ness concerning a previous (false) proof of Proposition 2.1. They also thank Vincent
Boulard for pointing out a mistake in the previous proof of Proposition 1.4. Finally
they extend their gratitude to the two anonymous referees, whose suggestions and
remarks greatly improved the presentation and the results of this paper.

2. ESTIMATES IN THE LINEAR CASE

We start by studying the case of a matrix field independent of the space variable
(see Section 2.2), first in the constant coefficient case (Proposition 2.1), and then in
the time-dependent case (Corollary 2.2). We explain then in Section 2.3 how the proof
of Theorem 4 can be reduced to a simpler result (Lemma 2.3) and then prove this
lemma in Section 2.4.

2.1. THE CASE OF A CONSTANT MATRIX FIELD. — In this paragraph we treat the simplest
case in which the matrix field is constant. Well-posedness is obtained in E7 for s > 0
together with an estimate.

Prorosition 2.1. Fix 6 > 0 and B € 5, as well as s € R and T > 0. For
(VO, F) € D having both vanishing spatial mean, the Cauchy problem
0;V — BAV = F,
‘/\t:O = VO?

is well-posed in the energy space Ej. with the following energy estimate

1
(2.1) IVIE; + 319V < Cos (IVO e (ray + 5 IFIZ.1),
with
B N
(2.2) Cps = ay (1 + u) ,

and ay a constant depending only on the dimension N of the system.

Proof. — The Schur decomposition ensures that there is a unitary matrix U € Uy (C)
such that T := UBU* is upper triangular with diagonal terms dy,...,dx of real part
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larger than ¢ and super-diagonal terms denoted r; ; (and R is the corresponding
matrix). Let us set V := U*V and F := U*F. Then

oV —TAV =F,
and since T is upper triangular in particular the last component satisfies
8Vy —dyAVy = Fy.

An energy estimate in H*(T?) on this equation provides directly

 + Redy [V Viv || o) < [ Fw]

i [V Pl oy,

2
ST ()

hence in particular

Vv l3e;, + 8IIVVN I, S IV (0)]F ||FN||ys .

Now we argue by iteration: there holds
OVNn_1—dy_1AVN_1 = Fxy_1 + TN—1,NA‘7N

so again

th”VN V() pay + OV Vv [ (pay < [ Fv— [ 1HVVN 1

Hs(T4)

@ [V V[l vy,
and finally

> = = 1= IR o
V=1 ()5 + 8l V113 S IVN—1(0)[[fre ooy + SHFN71| ff;—l + THVVN| Vi

It follows that

> = > IHR|||
IVn—1l%s +0IIVVN-1ll3: S IVN-1(0)lI3 (re) IV (0) s ¢
e |||RH|
+g||FN—1‘Y;71 —1
Arguing similarly at each step gives finally
171, + 319713 < (1+ ) (170) ooy + S1FU2, ).

Xz v S 5 Hs (T4) vt
Estimate (2.1) is proved. O
2.2, THE CASE OF A HOMOGENEOUS IN SPACE MATRIX FIELD. In this paragraph we focus

on the case when M does not depend on the space variable but may depend on time:
using Proposition 2.1, we can actually indeed recover a similar result for a class of
non autonomous systems.

CoroLrary 2.2, Let s € R, a > 0 and M € €°*([0,T); ). For any V € ES
having vanishing spatial mean at all times and such that LV € Y;_l there holds

(2.3) Ve S [1V(0)]

we () + [ LarV]ly -1

JEP. — M., 2095, tome 12



Tie CAucHY PROBLEM FOR QUASI-LINEAR PARABOLIC SYSTEMS REVISITED IG/I:j

Proof. — We consider a subdivision tg = 0 < t; < -+ < ¢, = T of [0,7], such
that each subinterval has size smaller than 7'/« with & to be determined. Using the
notation introduced in Corollary C.2, we see that each matrix M (t;) belongs to 2, ).
So writing

0,V — M(tz)AV =LyV + (M — M(tz))AV,

we get from Proposition 2.1 for ¢ € [¢t;,t;41], shifting the initial time to ¢;
t

IVIE o (t, 5110 payy +0 M) [ IVV )]

ti

e (e A

< Coreynan IV ()]

Caret) v ¢
2 qray + ) )/ NLarV ()1 pay A
ti

n(M)
CMW”””/WMﬂwAﬂtmwvvwn
n(M) t; '
Now, returning to the definition (2.2) of Cp s and recalling notation (1.11), we can
rewrite the previous inequality as

+

fte (ray At

t
IV oo (162,170 () +/t IVV ()| (pay A’

S 1V ()]

t
2, ray + /t VEarV ()2 gy

+ [ 1) - P19V )

e ay At

We recall that <ppy, stands for multiplication by g([M],) with g increasing. If we
choose x large enough so that

1
2.4 T/k)** | M||%0.a <
( ) ( / ) ” ”(KO ([0,17) 29([M]a>
then recalling that |t; — ;41| < T/k for all ¢ € [0, x — 1], we have in particular
1
Vie[o.k—1],  sup [|M(t) - M(E)|* < s -
te(ti,tit1) 29([M]Ot)

The inequality on [t;, ¢;11] becomes

1 t
Ve + 5 [ IVVE gyt

S 1V ()]

t
%IS(’]I‘d) + / ||LMV(t/)| 1215*1('11“1) dt/
123

Summing this estimate with ¢ = 0 and ¢ = ¢; with the one for i = 1 and ¢ € [t1, 2]
we get in particular

1 t
IV E) e (ray + IV I (g2 1.0 (ay) + 5/0 IVV () I (pay A’

t
Sl 1V O pay + 11V (01 (o) +/() LV (t) g1 gpay At
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Recalling that <), stands for multiplication by Kus := g([M]), we have therefore

IV oo + 3 [ 19V @ ey o
< Kat IV () gy + (Kt = DIV () ey + Ko / 1 EarV () sy
which implies eventually on [0 tg]
IV o (0,185 (Tay) + / IVV () I5gs (ray dt’
2 IV (0) [0y + Ko / VLAtV () [ gy
Iterating, we recover on [0,t,] = [0, 7]

1 T
VI +5 [ I9VEIR

Hs( Td) dt

T
SV O e gy + Ko / VEarV () B gy

The proof is over once noticed that the condition (2.4) required on x can indeed be

satisfied choosing k = §(T + [M],) with g some increasing function. O

2.3. Repucrion oF THEOREM 4 TO A SINGLE LEMMA. In this subsection we explain
how the estimate of Theorem 4 can be recovered by the following (seemingly) weaker
result.

Lemva 2.3, — Fiz T > 0, s > d/2, a € (0,1) and M € €%*(Qr; Z)NY: a
matriz field which is furthermore assumed to belong to X%‘H. For any V € E} such
that LV € Y271 and (V(1)) = 0 for all t € [0,T], one has

IVlles S, IVOleo + 1ZuVllyz + (14 1M 0 )IV]

Yi-

Admitting for the moment the previous lemma, Theorem 4 can be proved thanks
to an approximation argument. First notice that owing to Lemma A.2, we only need
to prove the E7 part of the estimate as the Holder one follows then immediately.

If M € €%(Qr; Z)N Y;H, usual convolution properties lead to the existence of
Lipschitz matrix-valued functions (M. ). for which

(2.5) [ Mc[lgo.(@r) < [|M]lg0.0(Qr),

(2.6) [M = Mel|oo < [[M]lg0.0(@r)€”
(2.7) HMEHY:;“ < ||M||Y;+1a

(2.8) 1Ml yorr < (L4 CFV) M|

Because of (2.6) and the continuity of n (see Section 1.4 for the definition of 7,
and Corollaries C.2 and C.3 for its properties), for £ small enough we have
n(M.) = n(M)/2 so that [M.]o < [M]s and we can thus infer from Lemma 2.3 that

~

for any V € E3 such that Ly, V € Y3~ and (V(¢)) = 0 for all ¢ € [0, 7],
(29) V] ey + 1 Ear Vil + (14 1Mol g ) IV

Bz ST, M. [V (0)] Y-
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Now, since
d

LaV = LyV =Y 0 [(Mz — M)o:V],
k=1

we have thanks to (2.6) and the product rule given in Proposition B.1

T
I(Zar = LapVIe s S eMIIMII?go,a(QT)/O IV V() [y (pay it

T
+ / 1M = MYOIess o IV () )

so the estimate (2.9) becomes, using (2.8)

V1B, + I9VI3 S VO gy + [ LarV]

+ (14e720H) / : 140]

2
yoo!

T
o (pay dt + €2 /o IVV ()1 (pay dt

T
+ / 1Mz = MY s o IV () gy .

Since the multiplicative constant behind Sp a7, is an increasing function g(T+[M],),
if we take € small enough so as

1
(2.10) (T + [M]a)e** < 3
the previous estimate implies

211) V] + IVVIZ

T
So il IV O e pay + 120V szsfl +(1 +5_2(8+1))/0 IV (8) 1 pay dt

T
+ UL = D0 s a1V Ol .
Recalling the definition of X3 and using (2.7) we are just off one Gronwall lemma
of ending the proof of Theorem 4, provided € can be replaced by some decreas-
ing function of T + [M],: let us track the precise dependence of e with respect
to M. The only two conditions on ¢ are sufficient smallness for (2.10) to hold, and
for n(M:) = n(M)/2 to be satisfied. For the first condition, it is clearly satisfied if ¢
is replaced by some decreasing function of T'+ [M],. The second condition is trickier.
As | M|loo + (M)~ < [M]a, we rely on Corollary C.3 to infer the existence of an

non-increasing function f such that
e < f(M]o) = n(Me) = n(M)/2,

and we can thus replace € by some non-increasing function of [M], in the previous
computations. Theorem 4 is proved. O
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|

2.4. Proor or Lemma 2.3. In this subsection we prove Lemma 2.3 which, due to
the argument of Section 2.3 implies Theorem 4. The idea is to reduce to the case of
a constant in space matrix field considered in Section 2.2, namely Corollary 2.2, by a
partition of unity of T¢.

We start with a localization lemma.

Lemma 2.4. — Consider the assumptions of Lemma 2.3. For € small enough, and
depending decreasingly on T + [M],, the following holds. For any V € E% such that
LV belongs to Yj‘f_l and any smooth bump function 6 supported in a ball of T¢ of
radius €, there holds

IPo(OV) 5. Sria1e 10]l7m (7a) [HPO(@V)(O)HHS(W) FILamVlys—r + 1M ||y a0 [|V]

Yjﬁ:| )
where Py is the L2(T?) projection onto vanishing mean functions, St ). @ symbol

depending only increasingly in T + [M]q, and m a natural integer depending only on s
and d.

Proof. — For the moment, let us start the computation with an arbitrary € > 0 (yet
to be fixed) with # supported in the ball of center z* € T? and radius ¢ > 0. For
M* :t+— M(t,x*) we have for all ¢ € [0, T

(2.12) Vo € Suppb, M (L x) — M*(0)]] < | M|go ().
Next we compute
d
(2.13) Ly (0V) := 0,(0V) = M*A(OV) = 0LpV + Y (0 Rie + Sk,
k=1
where we noted
(214) Rk = (M - M*)@k(QV),
Sk,l Sk,2
(2.15) Si =20, (MVOy0) + VO MO + MV O30 .

Noticing Py Ly« = Lps+Pg and using Corollary 2.2 we have therefore
IPo(0V)| £5. Sr,jar). Po(0V)(0)]
Sty IPo(0V)(0)]

He(Te) + HPOLM*(QV)H}/;*I
o) + PO(OLarV )y
d

+ > IR

k=1

vi + [PoSklly.z-1.

Now, as 6 is supported on a ball B of radius e, if 9 is another [0, 1]-valued bump
function equaling 1 on B and vanishing outside the ball B of same center but twice
radius, we infer from the definition (2.14) of Ry and the product rule Proposition B.1

[ Bllv; = [10(M — M*)0r(0V)]|v;:
S etl|M

0.0 (Q) [0k (OV) [l + 10(M — M) || xe42[|0V vz,
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where we used estimate (2.12) in the second line. Now, as ] equals 1 on B and vanishes
outside B, there holds [|6]|ys+1(pa) = f(e~") where f is some non-decreasing function
that we do not compute. Using the algebra structure of H**1(T%), we infer

IPo(0V)l| 25 S, 1an1. [IPo(OV)(0)|1re ey + [Po(OLarV)lyar + D [PoSkllyz
k=1
+e|V(OV)llvz + FETDIM | o 10V vz

At this point, we fix the smallness of € so as to absorb [[V(0V)]|y: in the norm
[Po(0V)| 3. of the left hand side. As the symbol Sr[as),, refers to some non-decreasing
function of T + [M],, this procedure can indeed be carried on with a choice of ¢ as a
non-increasing function of T' + [M],. We have therefore

[Po(OV)| 5. S, a1 [Po(0V)(0)]

He(T4) + ||P0(9LMV)||YT§*1

d
vit Y [PoSkly-1-
k=1

+ 1M o [0V

Owing to the algebra structure of H*(T%), we have

ey (IV(0)]

and for an integer m large enough (see for instance the proof of [3, Th. 1.62]) depending
only on s and d we have

IPo(OLarV)lyz—2 S N6l ey | Lar V]

[P0 (6V)(0)]

we (1) + |0V Iy <[]0

~

oo + Vi),

s—1.
YT

At the end of the day, it only remains to handle the Sy terms to conclude. Turning
back to the decomposition Sy = Sk 1 + Sk,2 given in (2.15), we note on the one hand
that due to the algebra structure of H*(T¢), there holds

1BoSiily- < [MV,b]ly;

4

SOl as+r eray [[M ] 2 1V [l vz

For the 0 order terms, we can just write ||PoSk 2llys—1 < [|Sk2[ly; and invoke once
T

more the algebra structure of H¥(T9) to infer

[1Sk,2llvz < 116]

o2 [ M|yt [V [l vz

The proof of Lemma 2.4 is over. (|

We now proceed to the proof of Lemma 2.3. We fix ¢ > 0 as in Lemma 2.4 and
decompose T¢ into a finite union of essentially disjoint hypercubes denoted (K?)1< <y,
centered at points z; € K, J, with side lengths ¢. This implies that Jy; is of the order
of 1/e?. We then consider a partition of unity (6?)1<;<s,, where each ¢! is com-
pactly supported in a ball B of T? of radius e containing strictly K7, and takes it
values in [0, 1]. We assume in particular that for any multi-index o € N?, there is a
constant C, such that for any 1 < j < Jy, any € > 0 and any ¢ > 0

(2.16) |D26200 < Cae™.
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We first invoke the local estimate Lemma 2.4 for each of these bump functions 7.
We have therefore, for some integer m € N

IPo(62V))

5 S 162z [IVO) st czoy + 1 LarVlyzos + 1M o [V

Y;i| )
for Sppar., a non-decreasing function of T'4-[M],. Thanks to (2.16), since ¢ is chosen

as non-increasing function of T+ [M],, we can actually simply the previous estimate
and write

217)  IPo(62V)l ez St V(O]
As Py is linear and PoV =V, we have for all t € [0, T]

Tnt
Z Po(61V)

j=1

o re) + [1LaVlye -1 + 1M oo [V[lvz-

JM
<Y IPo(02V)]| 5.
By j=1

IVIEs =

Summing over j € [1, Jys] inequalities (2.17) we recover

IVlle; S Tu[IVO)]

o re) T [[1LaVlye-r + (IM | e [V[lv; |

which ends the proof of Lemma 2.3 because Jy; ~ ¢~ % with € a non-increasing
function of T + [M],.

2.5. A useruL cororrLary. — We end this series of a priori estimates with a corollary
of Theorem 4 which will be useful when M is of the form A(U) with A : RN — & a
smooth matrix field, as this is the case in Theorem 1. Having estimate (1.12) in mind,
it is natural to introduce for any s > d/2 and T' > 0 the following space

(2.18) G5 = E5 N6 (Qr).
We have then, the following result.

CoroLLARY 2.5. Fiz s > d/2 and T > 0. Consider U : Qr — RY belonging to G5
and A : RN — & a smooth matriz field. For any V in Ej such that V(0) € H*(T?),
LaanV € Y27 and (V(t)) = 0 for all t € [0,T], one has actually that V belongs
to G5 and

(2.19) V]

|VO||HS(1rd) + ||LA(U)V||Y;‘17
as + A

By + Voo @) Sves,

where the symbol St ||y gs. s @ non-decreasing function of T + ||U|
T

Proof. Of course the proof reduces to justifying the use of Theorem 4 for M = A(U)
and to replace the dependence T + [A(U)], + ||A(U)||Y;+1 by the above one for the
symbol STﬁl\UHGsH appearing in the estimate.

We first note that A being smooth, it stabilizes Sobolev spaces and induces locally
a Lipschitz map. More precisely, since U € E5 — L*°(Qr), we use Lemma A.3 with
d=A, f=U,g=0and o =5+ 1 to recover A(U) € Y2 with a bound

(2.20) [A(U) = A(0)] Ul

<
vzt Siulles, 1Ullyz+-
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Also, since A is locally Lipschitz, the a-Holder regularity of U is inherited by A(U)
with an estimate of the form [|A(U)|%o.o(@.) < g([|U]|40.2(01)), With g an increasing
function. We are now in position to invoke Theorem 4 which states exactly

WVlles Sria@la @l VOl ray + |1 Lan Vlys-1-

Recalling the definition of [A(U)], in Section 1.4, we only need to handle n(A(U))~?.
For this, we use Corollary C.2 to see that A maps the ball of radius R of RY into
some P;, with 6p decreasing in R, so that n(A(U))~! is indeed bounded by some
increasing function of ||U||oc < [|U]|0.a(q,). Corollary 2.5 is proved. O

3. EXISTENCE THEORY AND PARABOLIC REGULARIZATION IN THE LINEAR CASE

In this short section we first prove Theorem 5 thanks to the a priori estimates
Theorem 4 established in Section 2, and then state and prove as a corollary of these
results a propagation of regularity result.

3.1. Proor or Turorem 5. — Uniqueness is a straightforward consequence of esti-
mate (1.12), so we focus only on the existence part starting. Without loss of generality
we only need to establish this existence result replacing F' by PoF and VO by PyV0:
if a solution is built in this vanishing mean setting, adding to it

(V) + / (F()) dt’

we will recover a solution in the general case.

The set €% (Qr; &) is path-connected for the €% (Qr; My (R)) topology as is
star-shaped with respect to the constant identity matrix map.

Define . as the subset of €% (Qr; ) N Y:,fﬂ constituted of all those matrix-
fields for which the problem (1.2) (for arbitrary data (V°, F) € D% with vanishing
mean) has a solution in Ef. The set . is closed in €%%(Qr; &) N Y31, Indeed,
should (My), € N converge uniformly to M € €%%(Qr; &), this is already suf-
ficient to ensure (see Corollary C.2) that (n(My)), converges to n(M) > 0, so that
the whole sequence satisfies n(M},) > ¢ for some § > 0. Now, as (M) is bounded in
€%%(Qr; &) and lim;n(M},) > 0, we infer that limy[My], < +o0o. We thus infer uni-
formity in k for the a priori estimate (1.12) of Theorem 4 satisfied by the solutions Vj
associated with M}, (such solutions V}, exist precisely because the sequence (Mj)y lies
in .#N). The equation being linear, we recover in this way by a weak(-x) compactness
argument first a solution in L°(0,7;H*(T%)) N Y2 which in fact belongs to Ej,
using the equation to control the time derivative and the standard Lemma A.1. The
subset . is also open in €%%(Qr; Z) N ij“. Indeed, for M € . and £ > 0 to be
defined later, let’s consider M € €2(Qr; Z) N YT such that

IM — Moo + 1M — M|y <.
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One can define the map from E3 to itself which sends V to the solution V of (taking V°

as initial data)
d d

OV =3 O [MoRV] =F+> " 0c[(M — M)dV].
k=1 k=1
The existence of V is due to the fact that M has been chosen in .%. Linearity and
the a priori estimate (1.12) of Theorem 4 provide

T —_—
by S, [ 1= S0 = Vo)) ey -

Owing to the product rule of in Proposition B.1 we infer from the previous inequality
the following

Vi = Vall g, §T7[M]u;\|M\IY;+1 [M =Moo |[Vi=Vallyztr + [M =My [Vi=Va| x;

V2 — V2l

ST Ml 10 €1V2 = Vel

Choosing ¢ small enough implies that the map V — V is a contraction from the
Banach space Ef. to itself, thus . contains M. Finally, we proved that . is open
and closed in €°(Qr; &) which is connected; the set . is non empty (constant
matrices belong to .7 thanks to Proposition 2.1) so .7 = €%%(Qr; 2).

3.2. ProracaTiON OF REGULARITY. — Let us prove the following result.

Cororrary 3.1. Let s > d/2 and (V°,F) € Di. Consider V € Ej the associate
solution to (1.2) as given by Theorem 5. Let s € [s,s + 1] be given and assume
furthermore that (V°, F) belongs to D%/, Then V' actually belongs to EJS: and satisfies

3.1 V1

By STl Ml [V F)llpy-

Proof. — Thanks to the well-posedness setting of Theorem 5 we only need to prove
the estimate with smooth V and F. We have, thanks to estimate (1.12),
Vs Sriaaa,ivil, oo (VO F)lps..
T

Using the interpolation H¥ (T%) = [H*(T%), H*T1(T%)]y for s < §' < s + 1, an inter-
polation argument shows that it is enough to prove (3.1) for s’ = s + 1. Now, for any

spatial derivative dy, we note that Z, := 9,V solves
d d

OhZy = Ok [MOWZe) = 0F + Y Ok [0:MORV].
k=1 k=1
Using the assumption on M and that VV € L2(0,T;H*(T%)), the previous equality
already implies that 0,7, € L*(0,T; H*(T%)) which implies Z, € €°([0, T]; H*(T%));
this establishes that V' € €°([0, T]; H¥**(T%)). Then, we use once more estimate (1.12)
for each ¢ to infer, after summation using the algebra structure of H*(T4), for t < T,

T
IVV O, Sriani, o [TV VE) oy + / VMO IV ()]

and the conclusion follows by Gronwall’s inequality. |

%_Is-i—l(']:[‘d) dt
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4. Proor or THEOREM 1

Now that we have a clear setting of well-posedness for the linear problem (1.2),
in order to prove Theorem 1 we aim to solve (1.1) for a given (U°, F) € D3, on a
small interval [0, Tp], by means of a Picard scheme. For s > d/2 and a; € (0,1) given
by Lemma A.2, we will use again in this paragraph the space G%. introduced in (2.18)
and by a small abuse of notation we will write G5.(U°) for the (closed) affine subspace
of G%. constituted of those vector fields U satisfying U(0) = U°. Note that G5.(U°) is
a complete metric space.

4.1. EXISTENCE AND UNIQUENESS IN A SMALL BALL oF G5(U?). — Given (U°, F) € DS,
we consider the following map
0:G5 — G5 (UY
Ur— U™,

where U* is the only element (existence and uniqueness stem from Theorem 5) of
G5.(U°) solving Lao@yU* = F. The use of Theorem 5 is justified because U € G5
implies A(U) € G%, using Lemma A.3 with ® = A, f = U and g = 0. Just as we
did in the proof of Corollary 2.5 in Section 2.5 we recover in this way that A(U) €
YA N%%* (Qr). To see that A(U) belongs to X3 we rely on Lemma A.3 (with f = U
and g = 0) using X% — L>®(Qr).

Now that © is well-defined for all 7" > 0, we hope to find a time small enough so
as © becomes a contraction. Since

d
Lawy) (Ut = U3) = > 0k[(A(U7) — A(U2))0kU3 ],
k=1
we infer from Corollary 2.5
1UT = U |les. §T,\|U1HG§- [A(UL) — A(U2)]| xz,
Thanks to Lemma A.3 we have

(4.1) VU,Uz € X7, ||A(Ur) — A(U2)lIxz < p(|Urllxz + [|U2]x2)|Ur = Uzl x5,

VU lv;-

where ¢ is some increasing function related to A, so
(4.2) IUF = Uslles Srpvnlios ivalcs 101 = Uallxz [VU3 [y

It seems clear, due to the presence of the multiplicative constant, that no global
contraction rate can be achieved for © and we need to localize this map on some ball
of G% to hope for a contraction. On the other hand ||VU2*||§/; will indeed tend to be
small as T'— 0, but with a decay which will depend on Us and not only on the data
of the problem. The strategy is thus to choose as fixed profile Ur € G5(U°) around
which the fixed-point will be searched. More precisely, we have the following lemma,
recalling here the notation

T
IO, Pl = 0oy + [Pl + [ 1P )]t

to keep track of the data’s size.
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Lemma 4.1. Fiz s > d/2 and data (U°,F) € DS,. For any T > 0 there exists a
unique Up € G5(UY) such that LaoyUr = F and it satisfies the following estimate

(4.3) 1Urlles < IU° F)lipg,

where < depends only on the matriz A(0). Furthermore, there exists an increasing
function g such that, for any v € (0,1] and T > 0, the closed ball Bgs (Up,7) is
stabilized by © as soon as T and r satisfy

(4.4) 9T +1+[(U°, F)|lps.)

|VUF|

ve ST

Under this condition, © is Lipschitz on BG%(UF, r) with a Lipschitz constant bound-
ed by

9T +1+ (U’ F)|lps ) (r + [|[VUF|

vi)-

Proof. — We note that Up is in fact nothing more than ©(0), so its existence and
uniqueness are not new since we already proved that © is well-defined. However, the
symbol < in estimate (4.3) is independent of the time variable, and this is important.
To obtain this, we rely on the setting for constant matrix fields given in Proposi-
tion 2.1, using Lemma A.2 to add the Holder norm in the estimate and adding the
time evolution of the spatial average as we did in the beginning of Section 3. This
proves (4.3).

For any r € (0,1}, if Uy belongs to Bg: (Up,r), we infer from (4.2) applied
with Us = 0 and Uy = ©(0) = Ur that

(4.5) IUT = Ur|

Gz STUes 1 1ULx2IVUR vz
Using [|U; —Ur|lgs, <7 <1 together with (4.3), we get, for some increasing function g1,

U7 = Uplles < gu(T+ 1+ (U, F)llpg.)

|VUF|

Y-
Now if indeed T is small enough so as
g (T + 1+ [[(U% F)|lp) [ VUE|

we have that ©(U;) = U7 lies in Bgs (Ur, 1) so that this closed ball is indeed pre-
served by O. Finally to evaluate the Lipschitz constant of © on this ball, we use once
more (4.2) with Uy, Us € Bgs (U, 7) and the triangular inequality to infer, for some
increasing function go

vg ST

|UT = U3

92(T +2||Ur||gs. + 2r) IV Uz|ly: [|Ur — Us|
g3(T+ 1+ |[(U°, F)|lps ) (r + [[VUFE|

Gt Gr

|Ur — Us

NN

in) G5

where we used (4.3), 7 < 1 and g3(z) := g2(22). The proof follows for g := max(g1, g3).
O

The proof of Theorem 1 will now follow from Lemma 4.1 and Picard’s fixed-point
theorem. For any T > 0, if we choose

r=rr:=g(T+1+[(U° F)|ps)

IVUF v,
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where ¢ is the increasing function of Lemma 4.1, estimate (4.5) is automatically
satisfied and BGST(UF, rr) is thus preserved by ©. For this choice r = rp, the bound
of the Lipschitz constant given in Lemma 4.1 becomes strictly less than 1 as soon as
1
(T+1+((U°, F)llps)’

7”T+||VUF|

vi = [1+g(T+1+[(U°, F) 03] VU vz < J

which ultimately takes the form
1
WT + 14 [[(U, F)llps.)’

for yet another increasing function h. This ends the proof of local existence for The-

(4.6) [VUF|lyz <

orem 1 because

T
VUl = [ IVUR)

tends to 0 as T — 0, so we recover indeed for 7" small enough that © induces a
contraction map on Bg: (Ur,rr) and have thus a fixed-point.

1245(1rd) dt

4.2. GLOBAL UNIQUENESS AND STABILITY. — In the previous paragraph, we have shown
the existence of a solution on some small time interval. We have also, by construction,
proved its uniqueness but only in an appropriate neighborhood of Ug. In this short
paragraph, we establish global uniqueness (as stated in Theorem 1) of this solution
in E5 by means of the stability estimate (1.4) (which obviously implies uniqueness).
To prove this estimate, we rely once more on Theorem 4.

We consider therefore U; and Uz two solutions, associated with data (UY, Fy)
and (US, F») respectively, and let T > 0 be a common time of existence; both so-
lutions are in E by assumption and since their time derivatives belong to Yj‘f717
we have of course that both of them are in G% (see Lemma A.2), just as the solutions
we built above.

We set V' := U; — Us and notice that

d
LawyV =Y 0k([A(U1) — A(U2)]0xUs) + Fy — Fy.
k=1
Since L)V = Po Law,)V = Law,)PoV, we infer from Corollary 2.5, using that
H*(T9) is an algebra,

2
He (T4)

[PoV(0)]

IPVIIEs. Srvvn gy,
T
+/0 IAU) () = AU2) () [71e ¢y VU2 () e (ay Ut

T
+/ HP(](Fl _FQ)(IJ))Hf_Is—l(Td) dt
0

Using once more the Lipschitz estimate of Lemma A.3 with ® = A, f = U; and
g = Us, we infer as G — X5 — L*®°(Qr), after adding

W= (won+ (5 -rww)’
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on both sides and replacing T' by an arbitrary ¢ € [0, 7]

V()]

t
2, oy + /0 IV () e oy
t
2. oy + / V()|

+/Ot IPo(Fy — Fa)(t') I3 (pay dt' + (/Ot<Fl _ F2>(t')dt’)2_

Gronwall’s lemma allows to conclude and establish (1.4). Theorem 1 is proved. O

[V(0)]

B ey | VO2()]

< 2
ST llas, Uz a5, 1 (pe) 4

5. Proor or THEOREM 2

In this last section, we prove Theorem 2. The three coming paragraphs respectively
focus on points (i), (ii) and (iii) in the statement of the theorem.

5.1. GLOBAL SOLUTIONS FOR SMALL DATA. — We rely, just as we did in Section 4.1, on a
Picard scheme. We use the same map © : U — U™ introduced at the beginning of
Section 4.1 and defined on G%.(U?). Instead of ©(0) = Up, we shall choose 0 as center
of the ball. We first note for any U € G5.(U°) that

d
(5.1) LaoU* =Y _ 0 ([A(U) — A(0)]0xU*) + F.
k=1

Now recall the existence of an increasing function ¢ depending only on A and satis-
fying (4.1). Together with the algebra structure of H*(T¢), we then write

|[aw) - ao]a | <14W) - AO)1x;

vU*|

Y7

U g

< elUNx2) U | x5,
< U~

e(lU]les) U]

Then, returning to (5.1), the point is, instead of using Corollary 2.5, to rely on Propo-
sition 2.1, for which the estimate is independent of the time variable. More precisely,
just as we did for Up in the proof of Lemma 4.1, using Lemma A.2 to add the Holder

Gy Gr-

norm in the estimate and adding the time evolution of the spatial average, we infer
(52)  10les < Cao (IO F) e, +e(IUlle3) 10Nl 107l )

where C4(p) depends only on the matrix A(0) and [|(U°, F)||ps_ is finite by assump-
tion. Now, fix 7 € (0,1] such that rCa)¢(1) < 1. For any U € Bgs.(0,7), esti-
mate (5.2) implies

Ca(0)
1=rp(1)Cao)

In particular, for any r as above, if

10" llgs. < 1@, F)llps,

1
A(0)

(5.3) |00, F)llpe, <r(G——re(D),
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we have just proved that for all times T" the closed ball Bgs (0,7) is preserved by ©.
What about the Lipschitz constant of © in that ball ? Just as in (5.1) we rely on the
flow of the constant matrix field A(0) writing for Uy, Uz in Bgs (0, C4(0)/2)

Law(U z 21 ([AW) — A))ax[Ut - Uz*])
+ Zak( — A(U2)]0nU5 ).

We use as above Proposition 2.1 together with Lemma A.2 to estimate the full G
norm, and (4.1) just as above with the pair (Uy,0) and (U, Us): since Uf —U3 vanishes
at the initial time, we obtain that for the same increasing function ¢ as before

1Ut = U llos. < Ca (#0101 xp) 10 xz 107 = Us l,
Y;+1>.

Since Uy, Uz and U3 both belong to Bgs (0,7) with G7 — XN Yt (with operator
norm less than 1), and r € (0,1] is such that rC4)(1) < 1, we get

Ca)¢(2)

1—=7rCa(0)p(1)

So we first choose r € (0,1 A (Ca(oyp(1))~!) small enough so as
Ca)p(2)

1 —7CA(0)p(1)

and this defines the threshold (5.3) for [[(U°, F)||ps. below which we have a solution

for all times, thanks to Picard’s fixed-point theorem. Point (i) of Theorem 2 is proved.

§+l

+o(|Utllxz + U2 xz)

|Ur — Uzl xs.

Us|

[UF = Uslles <7 U1 — Us|

G35

<1,

5.2. FINER DESCRIPTION OF THE LIFETIME. — Let us prove point (ii) of Theorem 2.
We consider (UY, F) in D3 . We recall the sufficient condition (4.6) for a solution
to exist in B (where h is some increasing function). For any T > 0 satisfying this
condition, we have TF > T. Now consider o any real number in (d/2,s) such that
s < o+ 1. Using the interpolation H?(T9) = [H°~1(T%),H*(T%)]s we can write for
some 6 € (0,1)

IVUe@)llse ey < IVUR 101y | VTR () 1520y
< NUp )| 2y VU () [ 35= -
‘We have thus
VU vz

<
< I, )HD;TW27

where we used ¢ < s and (4.3). Now let us explore the sufficient condition (4.6) in
the HY(T?) setting: we see that it is satisfied as soon as
1 1

T9/2 .
(U, F)llpg. AT + 1+ [[(U°, F)llpg)
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Using again [|(U°, F)||ps <[[(U, F)||ps., the previous inequality is satisfied as soon as
T<OT+1+[(U% F)ll»s),

where ®(z) = 2=%/%h(2)72/%. Since ® is decreasing, it is also the case of the func-
tion @1 and ¥ : 2z +— ®71(2) — 2 — 1, and we find that

T;(U°F) = o(|(U%, F)|lps)

where ¢ := U1 is indeed decreasing. It now suffices to prove that T*(U° F) >
Tx(U° F) (note that the reverse inequality is obvious). But this is actually an imme-
diate consequence of the propagation of regularity result stated in Corollary 3.1,
so point (ii) of Theorem 2 is proved.

5.3. Brow-up ror FiNiTE LiFETIME. — This follows directly from (iii).

6. SIGN PRESERVATION

In this section we prove Proposition 1.4 and Theorem 3, which in particular leads
to a well-posedness result of the SKT system as explained in the introduction of this

paper.

6.1. Proor or Prorosition 1.4. — Let us consider A a smooth sign-preserving matrix
field in the sense of Definition 1.3, and U a smooth solution to (1.5) (namely in E%.
for s > d/2 + 2). We assume that the data U° € H*(T¢) and F in Y5 ! are non-
negative. Consider the set {t € [0,T] : U(s) > 0, Vs € [0,¢]} which is non-empty
(it contains 0 by assumption), and let’s assume that its supremum ¢, is strictly less
than T'. By the sign-preserving property, we know that A(U) = D(U)+diag(U)B(U),
where D(U) > aly whenever U > 0. In particular, by a standard continuity argument
we have the existence of t* € (t.,T) such that D(U) > 0 on [0, t*].

Since R(U) = diag(U) (U), we can write for all 4 € [1, N], with obvious notations

Opu; — Zak akuz Zzakr u;b 2] aku]i = fi ‘i‘UzP(U)

k=1 j=1
For a real function f, we note f~ = —fly.¢ its negative part and recall that when-
ever f has WH1(T?) regularity, the formula holds V£~ = —1;.0V f. Multiplying the

previous equation by —u; we infer after integration on [O t] x T? for t € [0, t*]

]
Hu DI + // Va2 deds = - ||u 02 - /u fidads

// dxds—ZZ//u Oy bij(U)Oku; dz ds.
’]I‘d

k=1 j=1
Using U° = U(0) > 0, F > 0, p(U) € L™®(Qr) and d;(U) = 0 (because t € [0,t*]),
we get by another integration by parts to handle the last term

1, _ t
Sl @13 < 1p(0) e cn) / g ()13 ds
0 1A N
T 9 ZZ/ /Ed(u;)zak [bij(U)akUj] dx ds.
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The fact that s > 2 + d/2 is enough to justify all the previous computations and
claim furthermore that 0y [b;;(U)9xu;] belongs to L>(Qr). This leads eventually to
an estimate of the form

t
a7 (O Sponey [ laF (9]3ds,
0

and Grénwall’s inequality leads to the fact that w; = 0 on [0,#*] which is in clear
contradiction with the definition of t,, so t, = T'. Proposition 1.4 is proved. O

6.2. Proor or Turorem 3. — The proof consists in transforming system (1.5) into

one for which one can apply Proposition 1.4.

First let us check that one can assume without loss of generality that s > d/2 + 2.
A consequence of Corollary 1.2 is indeed the following. Pick U° € H*(T¢) and F
in Y21 with s > d/2, and consider smooth approximations UY and F. of U° and F
respectively in H*(T?) and Y2 !. Fix any time T < T7(U° F). Combining esti-
mate (1.4) of Theorem 1 and point (iii) of Theorem 2, we have for ¢ small enough
TX(UY F.) > T and (U.). — U in E3 as € goes to zero. As the previous convergence
preserves non-negativeness, we can therefore assume without loss of generality that s
is as large as needed.

Now, Theorem 3 follows from Proposition D.1 of Appendix D. Indeed, since &
is open (see Lemma C.1) that’s also the case of  := A71(%) and, by assumption,
Q) contains Rgo. Thanks to Proposition D.1 we have therefore a smooth function h
sending RY on Q and leaving all points of Rgo unchanged. Corollary 1.2 applies to find
a solution U to the system (1.5) where A is replaced by A o h. Moreover since Ao h
is sign-preserving in the sense of Definition 1.3, Proposition 1.4 shows that U > 0
on its lifetime so that Ao h(U) = A(U) and we have built a non-negative solution
to the original problem (1.5). Thanks to the uniqueness offered by our setting, this
construction (and the corresponding maximal lifetime) is independent of the map h
that we choose to define the solution. ]

7. THE END-POINT BESOV CASE

As pointed out in the introduction, we wish to achieve the critical setting, where no
assumption is made on the Holder regularity of the initial data. To achieve this aim
we shall resort to Besov spaces, the definition of which may be found in Appendix B.

We define, for any given T > 0 and p € [1,00), the analogue of the solution
space E7 in the Besov setting:

E5 := €%([0,T); By ;) NLY(0,T; By H?)
and the analogue of the exterior force space Y;:
Y5 :=LY(0,T;Bj ).
For any matrix-valued function M on @ we define the quantity

(7.1) [M]o := || M| (@ry +n(M) ™",
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and wys the modulus of continuity of M on Qr:

wnr(r) i=sup{ [IM (1) = M(z2)ll, 2 € Qr, |21 — 22l <7}
Now let us set data space D‘:ip/ P= Bi/lp X Yf}/ P Notice that in particular the initial

data U is continuous by the embedding of the set Bz’/lp(']l‘d) into C°(T4), but no more
Holder regularity holds in general. The size of the data is measured by

T
IO Plagre = 10N+ 1Py + | PO} .

We shall prove the following result. Note that for simplicity we do not prove in this
setting all the results obtained in the previous Sobolev setting, but it should be clear
from the proof of the result below that there would be no difficulty in doing so.

Tueorem 6 (Local well-posedness). Consider a smooth A : RN — 2. For any
(U°, F) belonging to D/P for some p € [1,00) there exists T > 0 and a unique
element U of ]EdT/p which solves the parabolic Cauchy problem (1.1) on Qr.

The proof of that result relies on the following linear estimate, which will be used
to implement a fixed point argument.

Turorem 7. — Let T > 0 and consider a matriz field M € €°(Qr; 2) N ]EdT/p. For
any V such that V(0) € Bz’/lp, LyV e YdT/p and (V(t)) =0 for all t € [0,T], one has

(7.2) IV |tz ST,[M]O,wM,HMHE%/p ||VOHBZ(1p F N La Ve

In the above lemma, S7,,, (Mo, M|| /v means a multiplicative constant which is

an increasing function of T + wys + [M ]0 + ||M||]Ed/p

7.1. THE CONSTANT COEFFICIENT CASE IN B ;. Let us prove the following result.

Prorosition 7.1. — Let M € P for some d > 0. Consider any s € R and p € [1,0),
and fix VO € B, 1, F € Y}. The Cauchy problem

8,V — MAV = F,
‘/|t:O = VO?

is well-posed in B and moreover for all t = 0 there holds for all T > 0

S
p,1’

[
IVl oz o+ 1V s osramziy < (1475 )" (v

By, Il or55,) )

Proof. — We shall only prove the a priori estimate, and leave the well-posedness
result to the reader. Similarly to the proof of Proposition 2.1, we use the Schur
decompomtlon to write T := UMU* with T upper triangular and U unitary. Let us
set V := U*V and F := U*F. Then applying the Littlewood-Paley operator A; to
the equation implies that

AV — TANV = AjF,
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and since T is upper triangular in particular the last component satisfies
AV — dyAA;Vy = AjFy.

Then we write

t
AV (t) = eIB A VN (0) +/0 e AN P (t) dt,
and we can use (B.3) to infer that
. ~ t ; ’ ~
18T Oll < AN Ol + [ e T O A By (e o

0

Taking the sup norm in ¢ € [0, 7] and using Young’s inequality in time for the second
term on the right-hand side provides

185V [l o,r1iee) < 1A VN (0)llp + 1A Fn (lLr jo,7:Lr) s

while taking the L' norm in time gives
—2j

~ ) ~ ~
185V e omyin < = (18T @l + 18,Fv s o.rian)-

Finally multiplying both inequalities by 27 and summing over j gives

- - C /o~ -
(73) IV llue o, 0 HIVN s o,y ma) < E(WN(O” B, I Fwllqoryss ) ).

Now we argue by iteration: there holds
atAij,1 — delAAijfl = AjﬁN,1 + TNflAAij
so as above and using (B.2) to bound ||AAj‘~/N||p by C’22j||Aj‘~/1\/||p7 we get

. ~ t j ’ ~
1A VN1 @y S €27 A Vx4 (0)]] +/ e N2 A By (8)]] 4
0

t o _
b [ et ORI AT ()]
0
Again using twice Young’s inequality to deal with the time integrals, we find
||VN—1||L°°([07T];B§,1) + ”VN—l”Ll([o,T];B;f)
C

< o (17w Oy, + 1Fxllusorrimg o + 1V s o sy )

Plugging (7.3) into this inequality provides
||VN—1||L°°([07T];B;,1) + ||VN—1||L1([(),T];B;§2)
C ~ ~ C = ~
S dv (”VN(O)HBz,l + [1EN L o,11;5,) + E(HVJ\/(O)HB;,1 + HFNHLl([O,T];B;J)))-
The proposition follows by iterating the argument. O

7.2, Tue TIME-DEPENDENT case IN By ;. — This case is dealt with exactly as in the
Sobolev case thanks to Proposition 7.1.
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- d
7.3. THE VARIABLE COEFFICIENT CASE IN Bp/lp

7.3.1. Reduction to a single lemma. — In this paragraph we explain how Theorem 7
can be recovered by the following weaker result, by adapting the reasoning carried
out in the Sobolev case above.

Lemva 7.2, — For any map M € €°(Q7; 22)NL>([0,T]; Bz(,fl{p)H) and anyV € EdT/p
such that Ly V € Y;/p and (V(t)) =0 for allt € [0,T], one has

Vllagro Sreom sy IVOl e + 12 Vllggro + (1 1M1 Ly 1 scames, IVl

Admitting for the moment the previous lemma, Theorem 7 can be proved thanks to
an approximation argument. If M € €°(Qr; 2) N E;l/ P usual convolution properties
lead to the existence of matrix-valued functions (M), for which

(7. [ Mello@ry < 1M |lgo@r)s

4)
(7.5) [Mellycarmea < 1M ][|yerm+2,
(7.6) lim || M — M,||oc =0,
e—0
( 7) ||M5||Lw([O’T];B;‘?{P)+2) < (1 +5_2)”MHLOO([O,T];BZGP)'

Because of (7.6) and the continuity of 7, for € small enough we have n(M.) > n(M)/2
so that [M.]o < [M]o and we thus can infer from Lemma 7.2 that for any V € IEdT/p

~

such that Ly V € Y¥? and (V(t)) = 0 for all ¢ € [0, 7],
IVllgaro Sraoneiaio 1V Ol garp +1EasVllyaro + (1 IME? oy ooy IV g

Now, since
d

LaV = LyV =Y 0 [(Mz — M)oiV],
k=1
we have thanks to Proposition B.2

I(Ear, = L)V g

T
SIMe = M= [Vlggrme + [ [(Me = M)(O)| gagm2 IV (E)]| gasp dt-
e o BYY BY/]

so the estimate above becomes thanks to (7.6), recalling that the multiplicative con-
stant behind g a7, is an increasing function g(7 4 was + [M]o),

||V||E§/P ST,UJIVL[M]O ||V( )HBz/lp + ”LMV”Y;/P

T
[ QM@ gorsa + 1MLOl o) VO g

(1 + || M. ||Lx([0 T),B/ P+ )HVHY;/;?.

The result is proved thanks to (7.5), (7.7) and Gronwall’s lemma, provided & can be
replaced by some decreasing function of T'+wps + [M]o: that was done in the Sobolev
case and the proof is identical here. O

JIP. — M., 2095, tome 12



Tie CAUCHY PROBLEM FOR QUASI-LINEAR PARABOLIC SYSTEMS REVISITED 1663

7.3.2. Proof of Lemma 7.2. — The idea, as in the Sobolev case, is to reduce to the
case of a constant in space matrix field by a partition of unity of T¢.
We start with a localization lemma.

Lemva 7.3. — Fiz v € (0,1), M € €°(Qr; 2) OLOO([O,T];BI()‘fl/p)H). For & small
enough so that wyr(€) is smaller than a decreasing function of T +[M]o, the following
holds. For any V € ]ng/p such that Ly V' belongs to Yg/p and any smooth bump
function @ supported in a ball of T® of radius €, there holds

IPo(0V)llgare S,iao (1+ ||9H,23<d1/p>+z) (HPOV(O)HB;}/IP L Vllyas
1 2
FNVllgrma + = (LM pagmea) IV Irn)

Proof. As in the proof of Lemma 2.4, we consider M™* : ¢ — M(t, z*) for which we
have for all ¢t € [0, T

(7.8) Vo € Suppb, |[[M(t,z) — M*(t)]| < w(e),
and we write
d
(7.9) Lar (0V) := 0,(0V) = M*A(OV) = 0La/V + > _ (R} + St).-
k=1

Using Proposition 7.1, we get

Po(OV)gare S anto 1Po(OVI(O) garp + [PoLig (OV)lgasv-
Using (7.9) we thus have
(7.10) [Po(0V)llgase S arto Po(OV)(O)l| gare + [Po(OLarV)llgarr

d
+ ;(nakRkHEdT/p + IPoSE /e ).

But we have, using (7.8) along with Proposition B.2,
10 RE Lyare < 1R300

T
SIIM = M| < [[V(OV) [y carm 1 +/ 1M = M) ()| a2 |0V (£)]] gase dt
T 0 p,1 p,1

T
STVl + 100y [ IOl gggorallVOl g

p,1

In particular, if € is small enough (depending only on T + [M]y), estimate (7.10)
becomes

(7-11)  [Po(OV)llgare S,a)o ||IP’0(6V)(0)||B§/1P +[Po(0LarV)llyarv
' d

T
+ / 1M Bl a2 IV (Bl sy dt+; B0 7 a0
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1664 I. GaLacer & A. Moussa

Now let us estimate the other terms on the right-hand side of (7.11). First, we notice
that since Bgﬁp is an algebra, then

[Po(0LarV)llyare < N10LarVlyarv
<

|
161 5075 12V 8 g

For the first term involving Sj we write

T
B0 (M (DY (1)(D40) | are < ||V0||Bd/p/0 106V ()| g M @) sy

T
1/2 1/2
S I8l [ VI IV OI ol MOl g

by interpolation, whence for any v > 0

B0 (M @1V (1)) (010))

T
SV llygarmee + = |\9||B<d/p>+1/0 IV gare I M2 )IIQBS/lp dt.

The two other terms are simply estimated by

T
BV g < 1800 gy [ IV 1210

T
S 16l [ IV 1O g

and
T
[Po((Ok M)V (040)) || yar» < ||V9||Bd/p/ IV @)l garp VM @) par» dt
0 ., :
< HHHBS{”)“/O VN garp 1M @)1 oy dt.
Finally, going back to (7.11), the proof of Lemma 7.3 is over. O

We now proceed to the proof of Lemma 7.2, using the notation of the proof of
Lemma 2.3. We apply the result of Lemma 7.3 with § = 62, for 1 < j < Jj;. We have
thus

1o (02V) s Sz (1+ WHmez) (HV(O)IIBZQP FNLa Vil

1
F NV lygrmrsa + = (U IMIE L pagmsa) IV ln)

Note that the constant behind Sp g, is increasing with T+ [M]o and does not
depend on j. Using that wps(g) can be chosen as a decreasing function of T + [M]o
we find

||P0(9§V)|\EdT/p St o VOl gary + L2V |y

+ ’V‘|V||Ygfl/p)+2 + - (1 + HM||LooB(d/p)+2) HV”Y;/P'
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Then we use the fact that V = PV and that the family (67)1<;<,, is a partition of
unity, so

Wila = > o020 < D 1B (O2V)llso
1<i<Im T I AS Y4

and thus
IVlegss St oo Iar (IV Ol are + 1LarVllyas

1
FV lygurmen + = (DM armrsa) IV e

and we conclude by choosing v small enough (depending only on Jy, T + [M]o),
recalling that Jy; ~ e~ Lemma 7.2 is proved. |

7.4. ConcLusion. — To conclude the proof we shall use the linear estimate provided
by Theorem 7 to implement a fixed point argument. Let us set

d
Gy :=E7" N €°(Qr).
Given (UY, F) € Bi/lp N Y;l/p, we consider the following map
0:Gh — EY?
U— U™,
where U* is the only element of E;/p solving L 4/ U* = F with U(0) = Uo.

Before starting the fixed point procedure, let us check that © maps G#. onto itself.
We recall that U* := O(U) solves

HU* = Zak U)oxU*) +

and we know that F' belongs to YT/ P Let us prove that the same information holds
for 91, (A(U))8,U*). We write
O (A(U)ORU*) = A(U)RU* + A'(U)0, U U*

and we know that smooth functions are continuous over Bi/lp , so since Bgﬁp is an
algebra, it follows that
2
1A@)RU [yas» < AW e (11 10U a0 S DUV e (g U™ ygarmrsa
with ® smooth and increasing. Similarly

HAI 8kU8kU*HYd/p ~ ||A/ )HL%O(Bd/lp)||akU||L2T(Bédl/p)+1)||8kU*HL2T(BI()d1/p)+1).

We thus find that 9;U* belongs to L' (0, T’ Bd/p)7 which implies the expected result

since Bpflp is embedded in the space of continuous functions.

Now let Up := ©(0) and fix r € (0, 1]. We start by checking that for » small enough
(depending only on T" and HUF||E%/1,) the ball in Ei/ P centered at U and of radius r
is stabilized by ©.
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Consider U; € EdT/p such that ||U; — Up||za/» < 7 and set V := U — Ur. The same
T
argument as in the Sobolev space allows to replace the continuity constant [A(Ur)]o
by [[Up||gz, so that

Vllgarr STiwpicy wop. VOl gare + I La@e) Vg

and since

Lawe)V =Law,)V + Y 0x(A(Uh) — A(Ur)) kU
we find thanks to Proposition B.2 that '
Vligae Sr0slcp wup 1La@nVlgae +I1AUL) = AUR) Lo @) IV [lygarm+2
[ 1) ~ AT oIV Ot
It follows that if 7 is small enough (depending only on T" and Up) then
||V||EdT/p ST,HUF‘|G%1WUF HLA(Ul)VHIE;/P

T
+ [ 1A@D) ~ AT g5V Ol

But
Lawy)V =Y 0k(A(U1) = A(0)) kU,
k

so again
”VH]E;/p ST,HUF”GI%,UJUF ||A(U1) — A(O)”LOC(QT)HUF||Y§7/P)+2

T
+ /(; H(A(Ul) - A(O)(t)) ||Bz(9<jl1/p>+2 HV(t)HBZ{f’ dt

T
+ [ 1@ = AW g2V Ol .

Finally we conclude thanks to a Gronwall estimate and we can find 7" small enough
so that [|V|za/» < 7.
T

To conclude we need to prove that © is Lipschitz on the ball of EdT/ P centered
at Ur and of radius r with a Lipschitz constant smaller than one (for r and T small
enough). This follows the same lines as the above computations: we fix Uy and Us
such that ||U; — UF||EdT/p < r and we note that thanks to Proposition B.2

T
107 = Uslags Sravitogan, [ A1) = AQO) g 105 Ol g

T
4 [ IA@D) = AU O) e 103 0oy e
0 P,
ST,r,HUFHGg’wUF U1 — UQH]E;{/;) (r+ HUF”LlTBf{p)”)

UL = Uallgay (v + [UF 1 giame),
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where we have used that, since |U; — UF||E§/p < r, then in particular for any (¢, z)
and (¢,2’) in Qr there holds
|Ui(t,z) — UL (t',2")| < 2r + |Up(t,z) — Up(t',2")],
whence
wy, T+ wup-

The result follows choosing r and 7' small enough. |

APPENDIX A. SOBOLEV ESTIMATES

Let us start by stating this very classical lemma, the proof of which is recalled for
the convenience of the reader.

Lemva AT, Fir s € R. If f € L0, T; H(TY) N Y3+ with 0, f € Y51, then
feXs.

Proof. — Recalling the definition of X%, we only need to prove continuity in time
with values in H*(T9). If (f,), is a sequence of smooth functions approaching f in
Y:,fﬂ such that (9¢f,)n converges to d;f in Y:,ffl and (fy,)n is uniformly bounded in
L>°(0,T; H*(T%)), a direct computation gives for n,k € N and ¢,r € [0, 7]

[fn(t) = fi(t)]

foray = 1fn(r) = frlr) e (ay
t
2 [ (U = B, Oufo = 0Ly

where (-, -)ys(ay denotes the scalar product in H* (T?). Expressing this dot product
in terms of Fourier coefficients and using Cauchy-Schwarz’s inequality, we infer for

any ¢,% € €>°(T%) that [(f, g)us(rey| < | fllae+s (ra)llg]
using another time Cauchy-Schwarz’s inequality (for the time integral)
10 (8) = frOlfzs pay < Wfa(r) = fu@) ey + 20 Fa = Frllysr 10 fn = Oeficlly o1
Integrating in r € [0,T] we get
T Fa(0) = 1O gray < 1o = Sl + 2T f = Fillyo |0cfu = Dufilyss.

from which we infer that (f,), is a Cauchy sequence in €°([0, T]; H*(T¢)), because
it is the case for (f,), in Y;H and (O fn)n in Y;fl. This entails the announced
regularity for f. O

Ho-1(T4)- We have therefore,

Lemva A2, — Fiz s > d/2. There exists as € (0,1) such that any f € X3 satisfying
that 0y f € Y5~ ' actually belongs to €% (Qr) with an estimate

[fllgo.es@r) Ss 1fllxs + 100 f [y

Proof. — Using Cauchy-Schwarz’s inequality and the assumption on the time deriv-
ative, we have

[ f(t1) — f(t2)]

ty
e (ndy < / 18, (r)|
to

He-1 1y dr < [t — t2|1/2”5tf\|y;—17

JE.P.— M., 2095, tome 12



1668 I. Garracner & A. Moussa

which establishes that f belongs to the space €%/2([0,T];H*~(T%)). We now
choose o in (d/2,s) such that ¢ > s — 1 so that by interpolation

HO(T4) = [H*~ (1), H* (7))
We have thus for t; # t5 € [0, 7]
1£(#1) = f(t2)llme ey < LF(E) = F ) Fremr oay | (1) = F(E2) g (e
< It = 13l 00 e o2 I
so that
W= e <o

and the conclusion follows using the Sobolev embedding H? (T9) < €8 (T?) which
holds for some g3 € (0, 1). O

me-1(re) + || fllxz

Lemya A3, — For o > d/2 and ® a smooth function, there exists an increasing
function @ for which, for any elements f,g € H?(T?)

(A1) [2(F) = 2(9)llnrcxe) < 9011l + llglloe)
% [I1£ = gl zoy + (1 o ooy + I lsse )1 = glloo.
Proof. — See for instance [3, Cor. 2.91]. O

Appenpix B. LittLEwoop-PALEY THEORY

B.1. Derintrions. — In this section we present the elements of Littlewood-Paley the-
ory that are used in this study. We recall (see for instance [3] where the construction
is carried out in R? but is easily adapted to the periodic case) that the basic idea is
to consider a dyadic partition of unity in R?
=3+ Y a7

J=20
where X and @ (the Fourier transforms of two smooth functions x and ¢) are smooth,
radial functions, taking values in [0, 1] and supported respectively in the ball B(0,4/3)
and the ring [3/4,8/3]. We set for any integer j > 0 and any function f defined on T¢

(B.1) Ajf = fx20p(20)
and
A_1f:=f*x.
Note that in particular
> A =1d.
j=—1

Finally for j < —1 we set A; =0 and
j—1
V] 2 O, Sj = Z Aj/.
j'=—1
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Writing these formulas in Fourier space we see that the support of the Fourier trans-
form of A f lies in a ring of size 27 if j > 0 and in the unit ball if j = —1 (this cor-
responds therefore to the average of f). Moreover the functions ¥ and ¢ are designed
so as to have

i—i'1>2 = Supp@2 ) NSuppp(27) = &
and
j=>1 = SuppXNSuppp(27/:) = 2.
The following Bernstein inequality is used many times in this paper
(B.2) Ya € N% Vp,q € [1,00] with p < ¢, H@O‘Aijq < 2j(|a‘+d(1/1’_1/®) HAijp.

For the convenience of the reader let us recall how to prove this inequality: we consider
a smooth, compactly supported function ¢ such that @ = 1 and we note that

Ajf = Dy f x 293(20.).
Then we write
O*NGf = A f x 2 (9°5) (271

and we conclude by Young’s inequality

o2 £, < 2o ag £, o7 @ (2]

T

1 1 1
, I+ ==4-
¢ p T

and the result (B.2) follows. It is also useful to note (see for instance [3, Lem. 2.4])
that there is a constant ¢ > 0 such that

(B.3) V>0, Vpellodl, [l A f]], S e ]|,

'
With this construction, Sobolev spaces can be defined by the equivalent norm

1 ie ~ {| 2740123 £ leey

and the Besov spaces dealt with in this paper are given, for any p € [1,00) and s € R
by the norm

ez’

/]

B = Y 20 fllue(ra-

jz=1
It is well-known (see [3]) that any function in Bg/lp is continuous.
One major interest of this theory is the paraproduct algorithm due to Bony [4]:
decomposing formally any two tempered distributions f and g as

F=)_Aif and g=3 Ajg,
J J
then the product fg can formally be decomposed into three parts
f9=Trg+Tyf + R(f.9), Tpg:=) Si1fDjg, R(f,9):= Y AjfApg.
J li—4"1<1
On the Fourier side, thanks to the support properties of ¢ and x, each term S;_1 fA;g

of the paraproduct Tg is supported in a ring of size 27 (hence the sum is well defined
under mild assumptions on f and g: for instance f bounded and g in any Sobolev or
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1670 I. Garracner & A. Moussa

Holder space). The remainder term R(f, g) however is not always well defined. On the
Fourier side, each term A;fAj g is supported in a ball of size 27 (since j ~ j’) and
the sum only makes sense if the regularities of f and ¢ sum up to a positive number.
We refer to [3] for instance for more on this.

In this paper we sometimes use a less sharp decomposition, writing formally

F9=51FDjg+ > A;fSjtag.
i i

B.2. A propucr taw. — Let us start by proving the following useful estimate.

Prorosition B.1. — The following estimate holds, for any smooth enough f and g,
and for s > d/2:

1 f9lles (ray S N flloollgllms (ray + [1£]

HS+1(’H‘d)||g||HS—1(Td)~
Proof. — As usual we treat adequately each term of the decomposition
f9="Trg+Tyf + R(f,9)-
For any natural integer j there holds ||.S;_1f]|oc < |||l so that
IT¢gllasray < [ flloollglls (re)

follows directly. We aim to bound the two other terms by ||f|lgs+1(ra)l|g|les—1(1a)-
First, as each term of the sum defining T} f is localized around 27, we have for any

natural integer k using Bernstein’s inequality
25| AR Ty fll2 = 25 ) 115-194; f
Gk
4
S28 3 272 Ajgla)l A fl2
J'Sirk =g, =1
—_— ———
= ks Z 93" (d/2—=(s—1)) 2j/(s_l)||Aj/g||2 277+ 27D A £l
J'Sink
S Z 2-0 g, f;,
3’ Si~k
where we crucially used s > d/2, 7 < j and j ~ k for the last inequality. Since

the (*(Z) norms of (g;); and (f;); are respectively ||g|lys—1(pe) and ||f]
we have first by Cauchy-Schwarz inequality
ey 3 S

ATy flle s D 270 g =D (D 27 g ) 1 S gl

3'Sink i~k §'<d g~k

He+1(Td),

and taking the £2(Z) norm in k we recover

1Ty /]

For the remainder term R(f, g) each term composing this sum has frequencies in the

o (re) S Ngllms—1(ray | f g+ (1) -
ball of radius 2/, whence again by Bernstein’s inequality (we use it here on the f’s
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blocks instead of the g¢’s)
2|AGR(f,9)le S 27 Y 228 gl1A £l

3'~iZk
= ks Z 2j(d/2—(3+1))2—j’(3—1)gj,fj
3'~iRk
S Y 270 Mg,
J'~ik

where we used s > d/2, j' ~ j and j 2 k in the last line. We have therefore

:=h;
. .
AR S Y 2 gty =30 (Y gy ) 270N,
J'~iZk ik 3~

which is nothing else than the discrete convolution of (h; f;); with (27%71;>);, where
j 2 0 is related to the signification of j 2 k and thus completely harmless here. Using
Young’s inequality for (discrete) convolution we infer

IR(f, llascray S N fi)illerzy < I1(Rg)jllez2zy1(Fi)glle2zy S llgl

and the proof is over. O

wo—1 (1) || f | 1e+1 (7ay 5

A similar argument leads to the following inequality.

Prorosition B.2. — The following estimate holds, for any smooth enough f and g:

10kl e S 112 1Vg] pasm
p,1 p,1

o+ min (I g v2 gl s 1 a1 g agonsn )

Proof. — We use again the paraproduct algorithm and write

forg = Ti0kg + To,ef + R(f,019).
On the one hand
HTfakg||B(dl/p)+l S Z 1Sj—1fll ||Ajakg||Lp2j((d/p)+1)

j
< Il poe Z ||AjngLp2j((d/p)+2) — Hf||Loo||VgHBédl/p)+1.
- :
On the other hand
1 Torg fll peasmer S > 18 Okgllpe | A £l Lp2(H/PIHD
" i'<i
S 3 P DD gl | A, £ 2 P+
§'<i

which can be bounded directly by

1Torgfll giaymes S IFll geazmsllgl giameas
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or by
IToeafl peamss S 0 2 U gl o2 P2 A, ] 127~
: i'si
S ”f”B;fll/sz HgHij{f'
Finally

|R(f, 8kg)f||B(d1/p)+1 < Z 2jd/P||Aj/8kg||Lp ||Aj/f||Lp2j((d/p)+1)
‘ is

can be bounded by

1R(S, Org) fll peaymr
< Z 93((2d/p)+1) 95" ((d/p)+1) ||Aj,gHLp2j'((d/p)+1) ||Aj,f||Lp2*j'((2d/P)+1)
i<y’
Sl ameallgll peagms
or by
| R(f, akg)f\\B;le/p>+1
< Z Qj((2d/p)+1)2j'd/pHAJ_,g”Lij’((d/p)H) ||Aj,fHLp27j'((2d/p)+1)
iZi’
S Al a2 llgll gare-

Proposition B.2 is proved. |

AI’PENI)IX C PE'I‘ROVSKII CONDITION, HU RWITZ MATRICES AND SPECTRAL RADIUS

For B in My(C) we denote by Sp(B) the set of all its eigenvalues; the spectral
radius p(B) of B is then defined by p(B) = maxycsp(p) |A|- For any § € R we denote
by Ps the set of matrices B for which Sp(B) C {z € C : Re(z) > 6}.

The matrix B is said to satisfy the Petrovskii condition if Sp(B) C Rsg + iR, that
is if B belongs to & := (Js-, #s. Note that in control theory and dynamical systems,
the denomination Hurwitz matriz also exists, but refers instead to a matrix whose
spectrum lies in Ry 4 ¢R; we will not use this terminology here.

The results below, even though elementary, are of crucial importance in our anal-
ysis.

B) s continuous from My(C) to R.
Furthermore we have 2 = v~ (Rso) and B € P.(p), for any matriz B.

Lemva C.1. — The map v : B — —lnp(e”

Proof. — The map B — Sp(B) is continuous, for the (modified) Hausdorff distance on
finite sets dy at arrival (see [30, Th. 5.2]). In particular, since p(B) = du(Sp(B), {0}),
the spectral radius map B +— p(B) is continuous and therefore so is y because p is
positive on GLy (R). For the remaining part of the statement, the proof is ended once
noticed that for any matrix B one has p(e %) = Maxesp(B) € Re(N) "s0 that v(B) is
actually the lowest real part among all eigenvalues of B. |
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Cororrary C.2. Consider K a metric compact space and €°(K; My (R)) equipped
with the uniform topology. The map
n:¢°(K;My(R)) — R
M — m}%n'y oM

is well-defined and continuous. In particular, €°(K; ) is open and lies in the
set Usso CO(K; Ps), where each €°(K; Ps) is closed.

Proof. The map is well-defined because v o M is continuous and reaches therefore
its minimum on K. If (My)y converges uniformly to M, then so does (v o My),
to v o M because v is continuous and My (R) locally compact; this classically implies
the convergence of n(Mj,) towards n(M). By continuity if M € ¢°(K;Z?), then
n(M) >0 and M(K) C &) In particular ¢°(K; 2) = n~'(Rs) is indeed open
and each €°(K; Z5) = n~ ' (Rxs) is closed. O

Cororrary C.3. Consider K a metric compact space. There exists a non-increasing
function f : Rsg — Rsq such that for any M in the space €°(K; P) and any H
in €°(K; My (R)) the following implication holds

IM = Hljoo < f(IM oo +n(M)™") = n(H) >n(M)/2.

Proof. — The continuous map - is uniformly continuous on the My (R) ball of radius
Ryr =14 ||M||s- Thus, there exists a < 2Ry such that, for any two matrices By
and By within this ball, the following implication holds

[B1— Bzl < a = |y(B1) —v(B2)| < n(M)/2.

The supremum ay; of all those a is a well defined real number and non-increasing in
| Moo while non-decreasing in (M) so at the end non-increasing in || M || oo +n(M) 1.
To conclude the proof, we thus only have to check the following implication holds for
any matrix field H € ¢°(K; My (R))

IM = Hlloo < min(1,an) = n(H) = n(M)/2.

Since ||M — H||oo < 1, we see that H takes its values in the My (R) ball of radius Ras
defined above, and the previous uniform continuity can be invoked for an arbitrary
z € K and two matrices By = M (z), By = H(z). We have therefore, since y(B;) >
n(M) and | M — Hl||s < ap,

V(H(z)) = n(M)/2,
and this lower-bound being uniform in z we have indeed n(H) > n(M)/2. O
Arpexpix D. Smoorn (anmost) reTraction or RY on RY;
We prove in this paragraph the following proposition.
Prorosition D.1. — For any open neighborhood Q of Rgo, there exists a smooth

function h : RN — Q such that its restriction to Rgo is the identity map.
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Let us first recall the smooth Urysohn lemma.

Levva D.2 (Smooth Urysohn). — For two disjoints and closed sets Fy and Fy
of RN there exists a smooth function ¢ : RN — [0,1] such that p=1({1}) = Fy and
¢~ ({0}) = Fo.

Proof. — First use [25, Th.2.29] to find for k€ {0, 1} smooth functions 1, : RY — R
(easily chosen non-negative) such that v; '({0}) = Fj and then letting ¢(z) :=
1/ (Yo + 1) does the trick. O

We will deduce Proposition D.1 from the following lemma.

Lemma D.3. — For any open neighborhood Q of Rgo there is an open set Q such that
Rgo cQc Q, and which is furthermore infinitely diffeomorphic to RY .

Proof. — Consider ¢ the function given by Lemma D.2, associated with the (disjoint)
closed sets Fy := RN \ Q and F := Rgo. Let 1 be the vector of RY with entries all
equal to 1. For any initial data at time ¢ = 0, the differential equation

V= —p(V)1

has a unique maximal solution, which is global since ¢ takes it values in [0, 1]. One
can therefore define for all v € RY a smooth curve V, : R — RY cqual to v at
time ¢ = 0 and solving that equation. Since ¢ vanishes outside of €, for v € Q) there
holds V,(R) C Q and flow lines passing through a point of Q do not exit 2. For all
t > 0, the flow ®; : RN — R which maps v to V,(t) is a ¢°°-diffeomorphism. It is
easy to see that F is infinitely diffeomorphic to R¥, and that is therefore also the
case for t > 0 of the open set () := @t(}%l). The set € is contained in Q (since curves
stemming from F} do not exit Q) and finally Q contains Fy since @ is equal to 1 on Fj.
Lemma D.3 is proved. O

Proof'of Proposition D.1. Using Lemma D.3, one can assume without loss of gener-
ality that € is infinitely diffeomorphic to RY. Thanks to that, we infer the existence
of a smooth function v : [0,1] x © — € such that v(0,-) = 0 and v(1,-) = Idg. Indeed,
if @ = RN then ~(t,v) := exp (%) v does the job and the general case follows by
diffeomorphism.

Now, consider an open neighborhood €' of Rgo whose closure is contained
in Q, and ¢ the function given by Lemma D.2, associated with the (disjoint) closed
sets Fy := RV Q' and Fy = Rgo. The function h : v — y(p(v),v) is smoothly defined
on . Since it vanishes identically on Q ~ €', it can be extended smoothly to RY by
zero. The function h thus extended takes its values in 2 and if v € Rgo = Fi, then
©(v) =1 so h(v) = v. Proposition D.1 is proved. O
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