
Gaëtan Borot, Nitin Kumar Chidambaram, & Giacomo Umer
Whittaker vectors at finite energy scale, topological recursion and Hurwitz
numbers
Tome 12 (2025), p. 1503-1564.

https://doi.org/10.5802/jep.316

© Les auteurs, 2025.

Cet article est mis à disposition selon les termes de la licence
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses/by/4.0/

Publié avec le soutien
du Centre National de la Recherche Scientifique

Publication membre du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 2270-518X

https://doi.org/10.5802/jep.316
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org


Tome 12, 2025, p. 1503–1564 DOI: 10.5802/jep.316

WHITTAKER VECTORS AT FINITE ENERGY SCALE,

TOPOLOGICAL RECURSION AND HURWITZ NUMBERS

by Gaëtan Borot, Nitin Kumar Chidambaram
& Giacomo Umer

Abstract. — We upgrade the results of Borot–Bouchard–Chidambaram–Creutzig [BBCC24] to
show that the Gaiotto vector in 4d N = 2 pure supersymmetric gauge theory admits an analytic
continuation with respect to the energy scale (which can therefore be taken to be finite, instead
of infinitesimal), and is computed by topological recursion on the (ramified) half Seiberg–Witten
spectral curve. This has a number of interesting consequences for the Gaiotto vector: relations
to intersection theory on Mg,n in at least two different ways, Hurwitz numbers, quantum curves,
and (almost complete) description of the correlators as analytic functions of ℏ (instead of formal
series). The same method is used to establish analogous results for the more general Whittaker
vector constructed in the recent work of Chidambaram–Dołęga–Osuga [CDO24].

Résumé (Vecteurs de Whittaker à énergie finie, récurrence topologique et nombres de Hurwitz)
Nous améliorons les résultats de Borot–Bouchard–Chidambaram–Creutzig [BBCC24] en

montrant que le vecteur de Gaiotto pour la théorie de jauge pure N = 2 super-symétrique
en dimension 4 admet un prolongement analytique dans la variable d’énergie — qui peut donc
prendre une valeur finie plutôt qu’infinitésimale. Ce prolongement analytique se calcule par la
récurrence topologique sur une courbe spectrale ramifiée admettant un revêtement double par
la courbe spectrale de Seiberg–Witten. Plusieurs conséquences intéressantes pour le vecteur de
Gaiotto s’ensuivent : des représentations multiples en termes d’intersections dans Mg,n ainsi
qu’en termes de nombres de Hurwitz, l’existence d’une courbe quantique, et une description
complète (à une constante inconnue près) non-perturbative dans le paramètre quantique ℏ.
La même méthode permet d’établir des résultats analogues pour des vecteurs de Whittaker
plus généraux qui ont été introduits dans les travaux récents de Chidambaram–Dołęga–Osuga
[CDO24].
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1. Motivation and overview

Schiffmann–Vasserot [SV13] and Maulik–Okounkov [MO19] proved that the equi-
variant cohomology (suitably interpreted) of the moduli space of rank r torsion free
sheaves on P2 framed at infinity (a.k.a. the moduli space of instantons) is a Verma
module for the principal W(glr)-algebra. We consider the Whittaker vector in the
W(glr)-algebra module VΛ (where we adjoin a formal variable Λ to the Verma mod-
ule) satisfying
(1.1) ∀(i, k) ∈ [r]× Z>0, W i

k |G⟩ = δi,rδk,1Λ
r |G⟩ .

The equivariant parameters (ε1, ε2) for the action of the torus (C∗)
2 on P2 specify the

level of W(glr), and
ε1 = −ε2 = ℏ1/2

corresponds to the self-dual level. The equivariant parameters Q = (Q1, . . . , Qr) for
the action of the Cartan of glr specify the highest weight (Q/ε1 − Weyl vector). The
moduli space of sheaves with second Chern class d carries a fundamental class |1d⟩ in
equivariant cohomology, and it is encoded precisely in the Whittaker vector charac-
terised by (1.1)

|G⟩ =
∑
d⩾0

Λrd |1d⟩ .

In particular, the Whittaker vector exists in VΛ and is unique. These results pro-
vide a mathematical ground for the celebrated Alday–Gaiotto–Tachikawa conjec-
ture [AGT10], and |G⟩ is sometimes called the Gaiotto vector. The Poincaré pair-
ing in cohomology matches the Kac–Shapovalov form on the Verma module, and the
squared-norm reconstructs the (instanton part of the) Nekrasov partition function

ZNek = ⟨G |G⟩ =
∑
d⩾0

Λ2rd⟨1d |1d⟩ ,

which counts instantons in N = 2 pure supersymmetric gauge theory on R4 with
gauge group Ur. The SUr theory can be retrieved from the Ur theory by specialis-
ing to

∑r
a=1Qa = 0 and removing an explicit U1 contribution. We prefer to work

with Ur. In particular, we work with the W(glr)-algebra whose generators include
one of conformal weight i = 1 in (1.1) and we do not impose that the sum of the Qa

vanishes.
In gauge theory the parameter Λ is interpreted as an energy scale. The Gaiotto

vector |G⟩ and the Nekrasov partition function are thus proved to exist at least if Λ is
considered as a formal parameter near 0. Based on the well-known free field presen-
tation of W(glr), the Whittaker constraints (1.1) were realised as Airy structures in
[BBCC24], permitting the reconstruction of the all-order ℏ = (−ε1ε2) → 0 expansion
of the Gaiotto vector via a topological recursion. In the self-dual case, this is a vari-
ant of the Chekhov–Eynard–Orantin topological recursion on the unramified spectral
curve defined by

r∏
a=1

(
y − Qa

x

)
= 0,

see Section 2.
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Whittaker vectors at finite energy scale, topological recursion and Hurwitz numbers 1505

The purpose of this article is to extend these results in the self-dual case to under-
stand the analytic properties of the Gaiotto vector in the parameter Λ. In particular
we want to be able to set Λ to a finite non-zero value. We show in Theorem 2.3 (proved
in Section 3) that the coefficients in the ℏ-expansion of the Gaiotto vector are the
all-order series expansion of meromorphic multi-differentials on the algebraic curve

(1.2) SΛ :

r∏
a=1

(
y − Qa

x

)
+

(−Λ)r

xr+1
= 0.

which depends analytically on Λ ∈ C∗. Moreover, we show that these multi-differ-
entials are computed by the Chekhov–Eynard–Orantin topological recursion on the
ramified spectral curve defined by SΛ. We will refer to this curve SΛ as the half
Seiberg–Witten curve, following the terminology used in [DHS09].(1) A word of warn-
ing: in the gauge theory literature, our Coulomb branch parameters Q1, . . . , Qr are
usually denoted a1, . . . , ar.

A technical novelty is that we show directly that the W-constraints at finite Λ,
although they do not form an Airy structure, can still be solved by topological recur-
sion after analytic continuation. While the Whittaker constraints for formal Λ led to
topological recursion on an unramified spectral curve S0, at small enough non-zero Λ

they become W-constraints around x = ∞ on a ramified spectral curve SΛ which
imply (r − 1) copies of Virasoro constraints (one copy at each ramification point).
The latter form an Airy structure and its solution is precisely given by topological
recursion on SΛ. As the family SΛ depends analytically on Λ, we can then take Λ to
be any value in C∗. We comment more precisely on the role of analytic continuation
in Section 2.4.1.

The method of our proof can be adapted without difficulty for the other gauge
groups treated in [BBCC24]. The non self-dual case, more precisely for α = ε1 + ε2
finite and generic while ℏ = −ε1ε2 is kept formal, should also be governed by topo-
logical recursion where the spectral curve (1.2) is replaced by the D-module on P1

generated by

(1.3)
(
(ε1 + ε2)∂x − Q1 − (ε1 + ε2)

x

)
· · ·

(
(ε1 + ε2)∂x − Qr − (ε1 + ε2)

x

)
+

(−Λ)r

xr+1
.

This was established for formal Λ in [BBCC24], which involves the D-module (1.3)
where Λ is set to 0. The study of finite Λ for the non self-dual case is technically
more demanding as we have to deal with solutions of finite-order ODEs instead of
meromorphic functions on an algebraic curve. This is left for the future.

This technical novelty is interesting beyond gauge theory: it allows understand-
ing how (simpler) constraints at the ramification points can arise from (more com-
plicated) constraints at ∞ in various problems of enumerative geometry. Recently,
Chidambaram, Dołęga and Osuga constructed another Whittaker vector for W(glr)

defined for formal Λ (we call it the CDO vector) that encodes b-Hurwitz numbers,

(1)We note that the curve SΛ is neither the UV curve nor the Seiberg–Witten curve. Rather, SΛ

is a degenerate version of the Seiberg–Witten curve as we explain further in Remark 2.2.
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which are counts of so-called generalised branched covers of the 2-sphere [CD22].
Generalised branched covers allow for non-orientable coverings, and the count of ori-
entable branched covers, i.e., classical Hurwitz theory, corresponds to b = 0 and to
the self-dual level for W(glr). In this case, Theorem 2.6 shows the existence of ana-
lytic continuation to Λ ∈ C∗ and the computation of these Hurwitz numbers by the
topological recursion on the spectral curve

r∏
a=1

(Pa

x
+ y

)
+

1

Λr

r−1∏
a=1

(Qa

x
− y

)
= 0.

This result was announced as [CDO24, Th. 5.1] and we prove it in Section 4.
It was used in [CDO24] to give an alternative proof of the recent celebrated result
of [ACEH20, BDBKS24] that topological recursion computes rationally weighted
classical Hurwitz numbers.

For both the Gaiotto and the CDO vector, the added value of having established
topological recursion on ramified spectral curves is that we can benefit from a rich and
well-developed theory to derive several remarkable consequences. This is discussed in
Section 5. First, it allows us to give several representations of these vectors in terms of
intersection numbers on Mg,n (Section 5.1), and establish relations to Hurwitz theory
(Section 5.2 with Corollary 5.5 and Corollary 5.6). In particular, for r = 2 the Gaiotto
vector is very explicitly expressed in terms of intersection indices of triple Hodge
classes, or of the deformed Theta class, see Proposition 5.1. These relations can be
considered as a multifold interpretation of 4d supersymmetric gauge theory in terms
of curve counting; as we comment in Section 5.2.3, it is different in nature from the
2d Yang–Mills/Hurwitz theory correspondence studied by Gross and Taylor [GT93b,
GT93a] and more recently Novak [Nov24]. Second, we derive in Proposition 5.13
and Proposition 5.14 the quantum curves associated to those Whittaker vectors, and
we discuss in detail the construction of a basis of analytic solutions. The only step
which we do not complete is the analytic description of the connection coefficients, see
Remark 5.22. Third, we obtain determinantal formulae for the correlation functions
in Proposition 5.19, with kernels given in terms of the previously discussed bases of
functions in Proposition 5.21. Fourth, this analysis and the relation to gauge theory
leads us in Section 5.5 to formulate conjectures for the topological recursion free
energies of the half Seiberg–Witten and CDO spectral curves. These conjectures have
been proved by Hock [Hoc25] after the first version of this article was released.

Notations. — For any positive integer i, we use the notation [i] := {1, 2, . . . , i}.
We also use the notation z[i] to denote the set {z1, z2, . . . , zi}. The symbol ⊔ stands for
a disjoint union. The algebra of formal Laurent series in a variable, say ℏ, is denoted
C((ℏ)).

Acknowledgements. — We thank the anonymous referee for their careful reading of
the paper and the suggested improvements. We thank V. Bouchard and T. Creutzig
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for discussions on related topics, S. Shadrin for his remarks on integrability and deter-
minantal formulae, V. Fantini for remarks on asymptotics of solutions of generalised
hypergeometric differential equations, A. Giacchetto and D. Scazzuso for bringing rel-
evant references to our attention, and R. Kramer for his remark on the proof of the
main theorem.

2. Background and main results

2.1. W-algebras and formal Whittaker vectors

2.1.1. Heisenberg algebra and W(glr)-algebra. — Let r ⩾ 2. We work over the field of
Laurent series in the parameter ℏ. Let us consider r copies of the Heisenberg algebra,
generated by (Ja

k )
a∈[r]
k∈Z with relations

[Ja
k , J

b
ℓ ] = ℏkδa,bδk+ℓ,0.

We introduce the 1-form valued fields

J
(
a
x

)
=

∑
k∈Z

Ja
kdx

xk+1
.

The principal W(glr)-algebra at self-dual level is a vertex operator algebra freely and
strongly generated by fields Wi(x) with i ∈ [r] of conformal weight i. The Virasoro
field is W2(x). By convention these fields are forms of degree i:

Wi(x) =
∑
k∈Z

W i
k(dx)

i

xk+i
.

The generating fields Wi(x) can be realised in terms of the Heisenberg fields as ele-
mentary symmetric polynomials

Wi(x) =
∑

1⩽a1<···<ai⩽r

i∏
j=1

J
(
aj
x

)
,

or equivalently

(2.1)
r∏

a=1

(
u+ J

(
a
x

))
=

r∑
i=0

ur−iWi(x),

with the convention W0(x) = 1.

2.1.2. Gaiotto vector for Λ = O(ℏ1/2). — We consider the Verma module for the
Heisenberg and for the W(glr)-algebra

V = C(Q)[T ]
[[
(Ja

−k)
a∈[r]
k∈Z>0

]]
((ℏ1/2)),

where we let Ja
0 act by the scalar Qa for each a ∈ [r], and Q denotes the set of

variables {Q1, . . . , Qr}. This is a graded vector space with deg(Ja
k ) = deg(ℏ1/2) = 1.

J.É.P. — M., 2025, tome 12
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We denote V⩾0 (resp. V>0) the subspace generated by monomials of non-negative
(resp. positive) degrees. We first consider vectors in V⩾0 of the form

(2.2) |GT ⟩ = exp

( ∑
(g,n)∈ 1

2Z⩾0×Z>0

2g−2+n>0

ℏg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Fg,n

[ a1 ··· an

k1 ··· kn

] n∏
j=1

J
aj

−kj

kj

)
∈ 1 + V>0,

satisfying the Whittaker condition

(2.3) ∀(i, k) ∈ [r]× Z>0, W i
k |GT ⟩ = δi,rδk,1ℏr/2T |GT ⟩ .

Notice that we have set the energy scale to be Λr = ℏr/2T here.

2.1.3. Correlators and unramified topological recursion. — We consider the curve C =⊔r
a=1 C

a where Ca = P1, equipped with the forgetful maps x : C → P1 (which forgets
the label a) and c : C → [r] (which only remembers the label a). We view points
z ∈ C as pairs

( c(z)
x(z)

)
. We denote the point

(
a
∞
)

in C by ∞a. As the fibres of x play
a special role, we introduce the notation

f(z) = x−1(x(z)), f′(z) = f(z)∖ {z}.

If z1, . . . , zn is a n-tuple of points in C and J ⊆ [n], we denote zJ = (zj)j∈J .
The coefficients of |GT ⟩ can be repackaged in terms of a collection of generating

series, indexed by (g, n) ∈ Z⩾0 × Z>0 called correlators. They are defined as

(2.4) wg,n(z1, . . . , zn) =
∑

k1,...,kn∈Z>0

Fg,n

[
c(z1) ··· c(zn)
k1 ··· kn

] n∏
j=1

dx(zj)

x(zj)kj+1

+ δg,0δn,1Qc(z1)
dx(z1)

x(z1)
+ δg,0δn,2δc(z1),c(z2)

dx(z1)dx(z2)

(x(z1)− x(z2))2
.

We will also need the expressions

(2.5) Ŵg,i;n(z[i]; v[n]) =

no w0,1∑
L⊢i

N⊢L[n]
g:L→ 1

2Z⩾0

δg,i+
∑

L(gL−1)

∏
L∈L

wgL,#L+#NL
(zL, vNL

).

The notation L ⊢ [i] means that L is a set of pairwise disjoint non-empty subsets of [i]
whose union is [i]. The notation N ⊢L [n] means a map associating to each L ∈ L a
(possibly empty) subset NL ⊆ [n], such that the (NL)L∈L are pairwise disjoint and
their union is [n]. The logic behind these expressions becomes clear by writing them
for low values of i:

Ŵg,1;n(z; v[n]) = wg,1+n(z, v[n]),

Ŵg,2;n(z1, z2; v[n]) = wg−1,2+n(z1, z2, v[n])

+

no w0,1∑
g1+g2=g
J1⊔J2=[n]

wg1,1+#J1(z1, vJ1)wg2,1+#J2(z2, vJ2).

J.É.P. — M., 2025, tome 12
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The exclusion of w0,1 factors from the sum in (2.5) has the effect that Ŵg,i;n only
involves wh,m with 2h− 2 +m < 2g − 2 + (1 + n).

Theorem 2.1 ([BBCC24, Th. 5.10]). — Assume that Q1, . . . , Qr ∈ C are pairwise
distinct and T ∈ C. There exists a unique |GT ⟩ of the form (2.2) satisfying the
Whittaker constraints (2.3). The coefficients Fg,n

[ a1 ··· an

k1 ··· kn

]
vanish if (k1+· · ·+kn)r >

2g. In particular, for any (g, n) ∈ 1
2Z⩾0 × Z>0 the correlators wg,n defined in (2.4)

are meromorphic n-differentials on C. Besides, they are computed by the unramified
topological recursion for 2g − 2 + n > 0

wg,n(z1, . . . , zn) =

r∑
a=1

Res
z=∞a

∑
{z}⊆Z⊆f(z)

−
∫ z

∞a
w0,2(·, z1)∏

z′∈f(z)∖Z

(
w0,1(z′)− w0,1(z)

) Ŵg,#Z;n−1(Z; z2, . . . , zn),

+ δg,r/2δn,1
T∏

b̸=c(z1)
(Qb −Qc(z1))

dx(z1)

x(z1)2
,

where the factors in the denominator of the first line should be understood as

w0,1(z
′)− w0,1(z) = (Qc(z′) −Qc(z))

dx(z)

x(z)
,

since x(z) = x(z′) for z′ ∈ f(z).

This formula is indeed a recursion on 2g − 2 + n > 0.

2.1.4. Gaiotto vector for formal Λ. — As the energy scale in (2.3) has been set to
Λr = ℏr/2T , and ℏ is a formal parameter near 0, we are treating |GT ⟩ as a formal
expansion as Λ → 0. In this article, we would like to understand the analytic properties
of the Gaiotto vector as a function of the energy scale Λ. The first step is to consider Λ
directly as a formal parameter independently of ℏ. From the homogeneity of the
Whittaker constraints (2.3) it can be inferred [BBCC24, Lem. 4.5] that the coefficients
Fg,n

[ a1 ··· an

k1 ··· kn

]
are proportional to T k1+···+kn . As they vanish for (k1+ · · ·+kn)r > 2g,

we can define

(2.6) Φg,n

[ a1 ··· an

k1 ··· kn

]
= Λr(k1+···+kn) Fg+(k1+···+kn)

r
2 ,n

[ a1 ··· an

k1 ··· kn

]∣∣
T=1

.

As the only possible source of half-integer powers of ℏ in |GT ⟩ was the prefactor ℏr/2

of T in equation (2.3), the Φg,n vanish for non-integer g. With these coefficients we
can introduce the vector

(2.7) |ΓΛ⟩ = exp

( ∑
(g,n)∈Z⩾0×Z>0

ℏg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n

[ a1 ··· an

k1 ··· kn

] n∏
j=1

J
aj

−kj

kj

)

belonging to the Verma module

(2.8) VΛ = C(Q)
[[
(Ja

−k)
a∈[r]
k∈Z>0

]]
[[Λr]]((ℏ)).

J.É.P. — M., 2025, tome 12
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Note that we do not require |ΓΛ⟩ to live in the non-negative degree part of VΛ. This
vector satisfies the Whittaker condition

(2.9) ∀(i, k) ∈ [r]× Z>0, W i
k |ΓΛ⟩ = δi,rδk,1Λ

r |ΓΛ⟩ .

Two important differences with the vector |GT ⟩ from equation (2.2) are however that
• (g, n) = (0, 1) and (0, 2) do contribute to the sum, i.e., we have non-zero Φ0,1

and Φ0,2;
• Φg,n

[ a1 ··· an

k1 ··· kn

]
can be non-zero for infinitely many indices k1, . . . , kn ∈ Z>0.

The second condition forces us to treat Λ as a formal parameter. Despite these dif-
ferences, we can still use equation (2.4) to introduce the correlators

(2.10) ϕg,n(z1, . . . , zn) =
∑

k1,...,kn∈Z>0

Φg,n

[
c(z1) ··· c(zn)
k1 ··· kn

] n∏
j=1

dx(zj)

x(zj)kj+1

+ δg,0δn,1Qc(z1)
dx(z1)

x(z1)
+ δg,0δn,2δc(z1),c(z2)

dx(z1)dx(z2)

(x(z1)− x(z2))2
.

They are now defined as germs of meromorphic n-differentials in the n-th product
of the formal neighbourhood of L :=

⊔r
a=1{∞a} ⊂ C. More precisely, the ϕg,n for

2g − 2 + n > 0 are germs of holomorphic n-differentials, ϕ0,1 is the germ of a mero-
morphic differential having a simple pole with residue Qa at ∞a, and ϕ0,2 is the germ
of a meromorphic bi-differential with a double pole on the diagonal.

2.2. Main results at finite Λ. — Our main result is that the correlators (2.10) up-
grade to meromorphic multi-differentials on a ramified, genus 0 spectral curve, which
we will refer to as the half Seiberg–Witten curve. Moreover, these multi-differentials
depend analytically on Λ ∈ C∗, and are computed by the usual Chekhov–Eynard–
Orantin topological recursion.

2.2.1. Ramified topological recursion. — We give a lightning introduction to the topo-
logical recursion in the form considered by Chekhov, Eynard and Orantin — for more
details, see [EO09]. In the rest of the text, topological recursion without further preci-
sion will always mean this version, and it should be distinguished from the unramified
topological recursion of Section 2.1.3.

The initial data is called a spectral curve, consisting of a quadruple (S, x, ω0,1, ω0,2),
where S is a Riemann surface, x is a meromorphic function on S that defines a
branched covering x : S → P1, ω0,1 is a meromorphic differential on S and ω0,2 is a
fundamental bi-differential, i.e., a symmetric meromorphic bi-differential on S2 with
a double pole having bi-residue 1 on the diagonal, and no other poles.

We define Ram(S) to be the set of all the ramification points of the branched
covering x : S → P1 except those that are also poles of ω0,1. We exclude the ramifica-
tion points that are also poles of ω0,1 from Ram(S) as they do not contribute in the
topological recursion formula. We further assume that Ram(S) only contains simple
ramification points. Then, near any ramification point ρ ∈ Ram(S), we have the local
involution which exchanges the two sheets, and we denote this by σρ.
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Given a spectral curve (S, x, ω0,1, ω0,2) the topological recursion constructs n-dif-
ferentials on S called ωg,1+n for any 2g − 2 + (1 + n) > 0 by the following formula

(2.11) ωg,1+n(ζ0, . . . , ζn)

=
∑

ρ∈Ram(S)

Res
ζ=ρ

1
2

∫ ζ

σρ(ζ)
ω0,2(·, ζ0)

ω0,1(ζ)− ω0,1(σρ(ζ))

(
ωg−1,2+n(ζ, σρ(ζ), ζ[n])

+

no ω0,1∑
g1+g2=g
J1⊔J2=[n]

ωg1,1+#J1(ζ, ζJ1)ωg2,1+#J2(σρ(ζ), ζJ2)

)
.

By construction, in each variable ζi, the ωg,n only have poles at the ramification
points.

The spectral curves considered in this article will always have genus 0, i.e., S ≃ P1

with ζ a global coordinate. Then, there is a unique fundamental bi-differential, namely

(2.12) ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2
.

The latter is invariant under changes of global coordinates on P1, i.e., action of
PSL2(C) by Möbius transformations. In this context, the data of two functions x(ζ),
y(ζ) fully specifies a spectral curve, by taking ω0,1(ζ) = y(ζ)dx(ζ) and ω0,2 equal to
(2.12).

2.2.2. Gaiotto vector and topological recursion. — Consider the analytic family(2) of
curves π : S → C∗

Λ defined by the vanishing locus in P1
x × P1

y × C∗
Λ of

(2.13)
r∏

a=1

(
y − Qa

x

)
+

(−Λ)r

xr+1
= 0.

Here, Λ is the parameter of the base of the family. The fibre SΛ over a fixed Λ ∈ C∗

is a smooth genus 0 curve, which can be uniformised by ζ ∈ P1:
x(ζ) = − Λr∏r

a=1(Qa − ζ)
,

y(ζ) =
ζ

x(ζ)
= − ζ

Λr

∏r
a=1(Qa − ζ).

We will refer to the fibre SΛ as the half Seiberg–Witten curve. The map x : SΛ → P1

defines a branched cover of degree r. Since Q1, . . . , Qr are pairwise distinct, x has
(r − 1) simple ramification points and a ramification point of index r at x = 0, and
x = ∞ is not a branch point. As defined earlier, Ram(SΛ) is the set of all ramification
points except the one at x = 0. The formal neighbourhood L ⊂ C mentioned in

(2)We consider Q1, . . . , Qr ∈ C to be fixed pairwise distinct, but we could equally well formulate
the results by letting them vary, using instead of S the larger family

Ŝ −→ {(Λ,Q) ∈ C∗ × Cr |
∏

b̸=a(Qb −Qa) ̸= 0
}
.
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Section 2.1.4 is canonically identified with the formal neighbourhood of x−1(∞) ⊂ SΛ

by considering 1/x(ζ) as a local coordinate near the latter.

Remark 2.2. — We note that the genus 0 half Seiberg–Witten curve SΛ is neither
the usual Seiberg–Witten curve of pure gauge theory (which is of genus r−1) nor the
genus 0 UV curve one that encounters in the class S construction of gauge theories.
The Seiberg–Witten curve of pure Ur gauge theory in our notation is defined by the
equation

r∏
a=1

(
y − Qa

x

)
+

(−Λ)r

xr+1
+

(−Λ)r

xr−1
= 0.

From this equation, we see that the half Seiberg–Witten curve can be realised as a
degenerate limit of the Seiberg–Witten curve.

The terminology half Seiberg–Witten curve can be motivated as follows. Following
the philosophy of [AGT10], one can view the theory associated to the Gaiotto state
to be “half of” pure gauge theory: we are looking at the theory on a genus 0 Riemann
surface with one irregular singularity (at ∞ say) instead of having two irregular
singularities (both at 0 and ∞). The half Seiberg–Witten curve appears naturally in
[DHS09] when trying to understand the instanton partition function in a free fermion
formalism.

Let Kπ be the sheaf of holomorphic differentials relative to π : S → C∗
Λ. Its local

sections are locally defined holomorphic differentials on SΛ varying analytically in
Λ ∈ C∗. If D ⊂ S is a divisor transverse to the fibres, then Kπ(D) is the sheaf
of meromorphic differentials relative to π with poles on D. Concretely, its global
sections are meromorphic differentials on SΛ with the location and maximal order of
poles specified by D. For instance, ydx defines an element of H0(Kπ(x

−1(∞)), S):
it is indeed a meromorphic differential on SΛ with simple poles at the r poles of x
(with residues −Q1, . . . ,−Qr) and varying analytically with Λ. If we want to allow
poles on D of arbitrary order, we use

Kπ(∗D) = lim
d→∞

Kπ(dD).

We are particularly interested in this sheaf when D is the ramification divisor.

Ram(S) =
⊔

Λ∈C∗
Ram(SΛ).

Let πn : S[n] → C∗
Λ be the fibre product of n copies of S over the base of the family, i.e.,

S[n] =
{
(s1, . . . , sn) ∈ Sn

∣∣ π(s1) = · · · = π(sn)
}
,

with πn being the obvious projection to the common value Λ = π(s1) = · · · = π(sn).
We define ∆ ⊂ S[2] to be the diagonal. If prm : S[n] → S is the projection on the
m-th factor and F is a sheaf on S, we use the notation F⊠n := pr∗1(F)⊗· · · pr∗n(F) for
its n-variable version.
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Our central result is the following.

Theorem 2.3. — Assume that Q1, . . . , Qr ∈ C are pairwise distinct. For any (g, n) ∈
Z⩾0 × Z>0, there exists ωg,n which is an element of

• H0
(
Kπ(x

−1(∞), S
)

if (g, n) = (0, 1);
• H0

(
K⊠2

π (2∆), S[2]
)

if (g, n) = (0, 2);
• H0

(
Kπ(∗Ram(S))⊠n, S[n]

)
if 2g − 2 + n > 0;

such that ϕg,n in (2.10) is the all-order series expansion of ωg,n as Λ → 0 and
z1, . . . , zn → x−1(∞) ∼= L using 1/x(ζj) as local coordinate. Besides, for any fixed
Λ ∈ C∗ we have

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2
,

and for 2g− 2+n > 0, the ωg,n are constructed by topological recursion (2.11) on the
half Seiberg–Witten spectral curve (2.13).

Remark 2.4. — Theorem 2.3 gives a gauge theory interpretation to the ωg,n ob-
tained by topological recursion on the half Seiberg–Witten spectral curve, i.e., they
essentially give the genus expansion of the Gaiotto vector |ΓΛ⟩. These correlators are
different from the topological recursion correlators of the Seiberg–Witten curve (see
Remark 2.2), whose gauge-theoretic interpretation is unknown. On the other hand,
the generating function of the free energies Fg constructed by topological recursion
on the Seiberg–Witten curve is expected to coincide with the (instanton part of the)
Nekrasov instanton partition function ZNek [HK10] (see also Section 5.5.2).

The proof is given in Section 3. The strategy is to start from the Whittaker con-
straints (2.9) for the Gaiotto vector |ΓΛ⟩ that we translate into certain constraints on
the ϕg,n. We then show by induction on 2g − 2 + n ⩾ −1 that these constraints have
a unique solution, and thus ϕg,n can be upgraded to a meromorphic n-differential on
the half Seiberg–Witten curve SΛ, and we locate all possible poles. Then, we show
that the Whittaker constraints after analytic continuation away from ∞ imply the
linear and quadratic loop equations of [BEO15, BS17]. As SΛ has genus 0, the loop
equations have a unique solution given by the topological recursion (2.11).

The Whittaker constraints (2.9) where Λr = O(ℏ) or Λ is a formal parameter
yields (shifted) Airy structures to which the Kontsevich–Soibelman theorem can be
applied to establish existence and uniqueness of the solution and its reconstruction by
topological recursion [KS18, ABCO24, BBC+24]. In contrast, the formalism of Airy
structures cannot be applied to understand whether this solution can be upgraded
to an analytic function of Λ. In other words, if we consider the constraints (2.9)
with Λ ∈ C∗, the solution cannot be constructed using Airy structures. The proof
of Theorem 2.3 shows how the analytic behaviour in such degree 0 terms can be
understood, and this involves analytic continuation of the correlators away from the
formal neighbourhood where they were initially defined (see Section 2.4.1 for more
details).
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2.3. Generalisation: the CDO vector. — The method we develop to prove Theo-
rem 2.3 is flexible enough to be applicable to other shifted Airy structures (i.e., ones
with degree 0 terms). As a demonstration of this principle, in Section 4 we obtain
an analogue of Theorem 2.3 for the Whittaker vector constructed in [CDO24] by
Chidambaram, Dołęga and Osuga that encodes b-Hurwitz numbers.

We restrict to the b = 0 case, which corresponds to the self-dual level for the
W-algebra. Consider two sets of parameters P ={P1, . . . , Pr} and Q={Q1, . . . , Qr−1},
and a certain representation ṼΛ = C((P ,Q,Λr))

[[
(Ja

−k)
a∈[r]
k∈Z>0

]]
((ℏ)) of W(glr), that is

defined using the assignment (4.1). Then, for any pairwise disjoint Q1, . . . , Qr−1 ∈ C,
[CDO24] constructed a Whittaker vector |ΓCDO

Λ ⟩ ∈ ṼΛ of the form

|ΓCDO
Λ ⟩ = exp

( ∑
(g,n)∈Z⩾0×Z>0

ℏg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n

[ a1 ··· an

k1 ··· kn

] n∏
j=1

J
aj

−kj

kj

)
,

satisfying the constraints

∀(i, k) ∈ [r]× Z⩾0, W̃ i
k |ΓCDO

Λ ⟩ = (−1)iei(P1, . . . , Pr)δk,0 |ΓCDO
Λ ⟩ ,

where W̃ i
k denote the modes of W(glr) in the representation ṼΛ and ei denotes the

i-th elementary symmetric polynomial in the entries.
To state our result we first describe the spectral curve. Consider the analytic family

of curves π : S → C∗
Λ cut out in P1

x × P1
y × C∗

Λ by
r∏

a=1

(Pa

x
+ y

)
+

1

Λr

r−1∏
a=1

(Qa

x
− y

)
= 0.

The fibre over a fixed Λ ∈ C∗ is a smooth genus 0 curve, which can be uniformised
by ζ ∈ P1:

(2.14)


x(ζ) = −Λr

∏r
a=1(Pa + ζ)∏r−1
a=1(Qa − ζ)

,

y(ζ) =
ζ

x(ζ)
= − ζ

Λr

∏r−1
a=1(Qa − ζ)∏r
a=1(Pa + ζ)

.

Remark 2.5. — The family of curves S defined by (2.14) also admits an interpreta-
tion as a half Seiberg–Witten curve for a different gauge theory. The Seiberg–Witten
family of curves for Ur−1 gauge theory with r fundamental hypermultiplets with mass
parameters P1, . . . , Pr and energy scale Λ−r is known to be (see [Tac15, §11.6] for the
SUr−1 version)

(−1)r
1

Λr2xr−2
+

r∏
a=1

(Pa

x
+ y

)
+

1

Λr

r−1∏
a=1

(Qa

x
− y

)
= 0.

From this, we clearly see that (2.14) can be obtained as a degenerate limit.

We have the following topological recursion result for the correlators defined from
|ΓCDO

Λ ⟩.
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Theorem 2.6. — Assume that P1, . . . , Pr, Q1, . . . , Qr−1 are generic (more precisely,
that they belong to the set introduced in Definition 4.2). For any (g, n) ∈ Z⩾0 × Z>0,
there exists ωg,n which is an element of

• H0
(
Kπ(x

−1(∞), S
)

if (g, n) = (0, 1);
• H0

(
K⊠2

π (2∆), S[2]
)

if (g, n) = (0, 2);
• H0

(
Kπ(∗Ram(S))⊠n, S[n]

)
if 2g − 2 + n > 0;

such that ϕg,n (defined in (4.4) from |ΓCDO
Λ ⟩ analogously to (2.10)) is the all-order

series expansion of ωg,n as Λ → 0 and z1, . . . , zn → x−1(∞) ∼= L using 1/x(ζj) as
local coordinate. Besides, for any fixed Λ ∈ C∗ we have

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2
,

and for 2g− 2+n > 0, the ωg,n are constructed by the topological recursion (2.11) on
the CDO spectral curve (2.14).

2.4. Comments. — There are several ways to look at this result in a broader context,
which make the technique of the proof of potential interest beyond the example of
the Gaiotto or CDO vectors.

2.4.1. Role of analytic continuation. — It may be useful to insist on the role of analytic
continuation, to explain in which sense the topological recursion statements of this
article are non-trivial and interesting.

On the one hand, partition functions of shifted Airy structures (i.e., with degree 0

terms), like Whittaker vectors, are of the form (2.7). From such partition functions,
one can define a system of correlators as in (2.10), that are meromorphic multi-
differentials on a (local) curve which is a finite collection of formal discs. We may ask
whether these correlators are the germs of meromorphic multi-differentials defined
on a (global) connected curve containing those formal discs. If this is the case, the
next question is to determine the location of the poles and the behaviour at these
poles. This is hopefully a step towards the reconstruction of the multi-differentials on
the global curve, from which the original partition function can be retrieved by series
expansion on the formal discs. Quite often, reconstruction is possible by the Chekhov–
Eynard–Orantin topological recursion (or some variants of it) on a ramified spectral
curve, and for this we can rely on the theory of abstract loop equations [BS17]. These
are the steps we follow to prove Theorem 2.3 and Theorem 2.6.

On the other hand, correlators generated by the topological recursion (ωg,n)g,n are
systems of meromorphic multi-differentials on the spectral curve (S, x, y, ω0,2), that
have poles at the divisor of ramification points Ram of x. If we choose a finite set of
points R ⊂ S and local coordinates η near these points, one can associate a partition
function ZR,η of the form (2.7) that faithfully encode the germ of ωg,n near R using
the chosen local coordinates. If we choose R = Ram, the ωg,n are characterised by the
property that ZRam,η is the partition function of an Airy structure [KS18, ABCO24,
BBC+24] (for any choice of local coordinate). For instance, if all the ramification
points are simple, the topological recursion is quadratic (see (2.11)) and ZRam,η is the
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solution of several copies — one for each ramification point — of Virasoro constraints.
Then, we say that topological recursion solves Virasoro constraints at the ramification
points.

An interesting feature is that, if the spectral curve is connected, the uniqueness of
analytic continuations implies that Z{p},η near some point p ∈ S fully determines ωg,n

and thus the ZR,η for any other choices of (R, η). It is often the case that the enu-
merative information in ωg,n is stored away from ramification points, e.g. in ZR,η

where R is a subset of the poles of x. A natural question is then to find constraints
directly on ZR,η that are implied by topological recursion for the ωg,n. If such con-
straints exist, we say that they live at R. Quite often, they are again W-constraints,
but possibly for a different W-algebra or a different representation of it. This means
that ZR,η generates a W-algebra module, which we can consider as being “obtained
by analytic continuation” from the W-algebra module generated by ZRam,η.

It is quite interesting to find the constraints at R where the enumerative informa-
tion is stored, precisely because they bear directly on the enumerative information.
Yet, deriving them from topological recursion can turn out to be a non-trivial task:
there is no general theory to do so and it strongly depends on the global geometry
of the spectral curve. The procedure of globalisation described in [BBC+25] for alge-
braic singularities goes in this direction, and [BBC+25, §1.4] describes some of the
new W-algebras and modules that can be obtained by analytic continuation. Another
example is the case of Virasoro constraints for the Gromov–Witten theory of P1 found
in [Giv01, OP06]. [BN19] showed how these Virasoro constraints for Gromov–Witten
theory P1 living at ∞ arise from topological recursion on a spectral curve with log-
arithmic singularities, and thus satisfy a different set of Virasoro constraints at the
ramification points.

In this language, Theorem 2.3 (resp. Theorem 2.6) shows that the W(glr)-
constraints at ∞ for the Gaiotto (resp. CDO) vector imply (r− 1) copies of Virasoro
constraints at the ramification points, and the solution of the latter is known to
be given by the topological recursion. The converse process of deriving back the
W(glr)-constraints at ∞ from the topological recursion is a priori not easy — in
particular, the limit Λ → 0 would not be covered by the results of [BBC+25]. But, it
can be done by following the proof of Section 3 (resp. Section 4) backwards.

2.4.2. Comparison to other models. — Our strategy of analytic continuation exhibits
similarities and differences with strategies previously employed in the study of matrix
models and Hurwitz theory.

In the 1-hermitian matrix model, the starting point (replacing the Whittaker con-
straints) is the Dyson–Schwinger equations (Virasoro constraints at ∞). From there,
analytic continuation on the spectral curve and then abstract loop equations from
which topological recursion follows, has been established in [ACM92, Eyn04, BEO15,
BS17]: this is how topological recursion was invented. But this case is easier to analyse
as these Schwinger–Dyson equations are only quadratic (instead of degree r). There
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exist matrix models satisfying W(glr)-constraints for r > 2, but we are not aware of
topological recursion being derived (directly) for them when r ⩾ 4.

In classical Hurwitz theory, several authors took the route of first proving analytic
continuation on the spectral curve starting from the cut-and-join equation (constraints
living at ∞, not necessarily quadratic), from which they deduced the abstract loop
equations and concluded that topological recursion holds. This strategy was employed
in [EMS11, BHSLM14, BKL+21, DBKPS23, DK18, BDK+23]. However, cut-and-join
equations are a priori quite different from W-constraints and do not give (shifted)
Airy structures per se. The relation between cut-and-join equations and W-constraints
has been better understood in the recent work of [CDO24], and provides a different
proof of topological recursion for weighted Hurwitz numbers, which is in line with the
philosophy of this paper.

3. The Gaiotto vector: proof of Theorem 2.3

In this section we show that the correlators ϕg,n, defined in (2.10) from the Gaiotto
vector |ΓΛ⟩ at self-dual level κ = 1, can be analytically continued to meromorphic
differential forms ωg,n on the half Seiberg–Witten curve SΛ and furthermore the latter
satisfy the Chekhov–Eynard–Orantin topological recursion.

3.1. W-constraints. — Recall that we have introduced the correlators ϕg,n from the
genus expansion of the Whittaker vector |ΓΛ⟩ in (2.10). These correlators ϕg,n are
germs of meromorphic n-differentials in the n-th product of the formal neighbourhood
of L :=

⊔r
a=1{∞a} ⊂ C, where C is the unramified curve of degree r defined in

Section 2.1.3.
The strategy of the proof consists is to use the W-constraints (2.9) to fix the

correlators ϕg,n uniquely. In addition, the W-constraints will give a formula for the
correlators ϕg,n implying that they analytically continue to meromorphic differentials
on the half Seiberg–Witten curve SΛ. Finally, by showing that these analytic contin-
uations satisfy the abstract loop equations, we use the results of [BEO15, BS17] to
prove that they coincide with the topological recursion correlators ωg,n.

In order to understand the implication of the W-constraints (2.9) for the correlators
ϕg,n we need to introduce some operators and notation. First, let us define the operator
adg,n following [BBCC24, §5.1.2] which transforms formal series into differentials on
the curve C.

Definition 3.1. — Consider a formal series f ∈ C
[[
(Ja

−k)
a∈[r]
k∈Z>0

]]
((ℏ)). We define

adg,n(f) = [ℏg]
∑

a1,...,an∈[r]
k1,...,kn∈Z>0

(
k1

∂

∂Ja1

−k1

· · · kn
∂

∂Jan

−kn

f
)
J

aj
−kj

=0

×
δc(w1),a1

dw1

wk1+1
1

· · ·
δc(wn),an

dwn

wkn+1
n

.
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The operator adg,n picks the terms of order ℏg that are homogeneous of degree n
in the variables J

aj

−kj
, and replaces these variables by the corresponding 1-forms

δc(wj),aj
kjdwj/w

kj+1
j on C. Then, we define the following combinations of the corre-

lators.

Definition 3.2. — For any g, n, i ∈ Z⩾0, assuming that zj = ( aj
x ) for j ∈ [i], define

Ωg,i;n(z[i];w[n]) := adg,n

(
|ΓΛ⟩−1

(∏i
j=1 J

(
aj
x

))
|ΓΛ⟩

)
.

Given the form (2.7) of the vector |ΓΛ⟩ in the completed polynomial algebra in the
negative Js, it admits an inverse.

The differentials Ωg,i;n(z[i];w[n]) are (n+ i)-differentials on the (n+ i)-th product
of the formal neighbourhood of L in C. The purpose of defining them is to extract
finite combinations of the correlators from the W-algebra action on the Whittaker
vector |ΓΛ⟩.

Lemma 3.3. — We have the following explicit expression for the Ωg,i;n in terms of the
correlators ϕg,n,

(3.1) Ωg,i;n(z[i];w[n]) =
∑
L⊢[i]

⊔L∈LNL=[n]
i+

∑
L(gL−1)=g

∏
L∈L

ϕgL,#L+#NL
(zL, wNL

).

Proof. — We omit the proof as the statement is a slight variant of [BBCC24, Lem. 5.4]
to include the unstable ϕ0,1, ϕ0,2 terms which are present in the Whittaker vector |ΓΛ⟩.
See also [BBC+24, §2] and [BKS24, §4]. □

The formula (3.1) shows that Ωg,i;n contains precisely i summands that involve the
correlator ϕg,1+n. It will be useful in the following to consider the expression (3.1)
where we remove these terms. More precisely, we define Ω̂g,i;n as

(3.2) Ω̂g,i;n(z[i];w[n]) :=
∑
L⊢[i]

⊔L∈LNL=[n]
i+

∑
L(gL−1)=g

∏
L∈L

ϕgL,#L+#NL
(zL, wNL

)

−
i∑

j=1

ϕg,1+n(zj , w[n])
∏
ℓ ̸=j

ϕ0,1(zℓ),

so that it does not involve any correlators ϕg,1+n. The W-constraints (2.9) on |ΓΛ⟩
are equivalent to the following restrictions on the Ωg,i;n.

Lemma 3.4. — The Ωg,i;n satisfy the following condition for any i ∈ [r]:

(3.3)
∑

Z⊆f(z)
#Z=i

Ωg,i;n(Z;w[n]) = δg,0δi,rδn,0
(Λdx)r

xr+1
+O

(
(dx)i/xi

)
,

where x = x(z) and we recall that f(z) = x−1 (x(z)) is the full fibre over the point x(z).
By O

(
(dx)i/xi

)
we mean a quantity containing only terms of the form xk(dx)i for

k ⩾ −i; the O-notation is therefore understood as if the variable x were approaching 0.
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Proof. — The W-constraints (2.9) that the Whittaker vector |ΓΛ⟩ satisfies can be
written in the following compact form using the expression (2.1) for the generators
Wi(x) as elementary symmetric polynomials in the Heisenberg 1-forms J. For any
i ∈ [r], we have

(3.4) |ΓΛ⟩−1

( ∑
1⩽a1<···<ai⩽r

i∏
j=1

J ( aj
x )

)
|ΓΛ⟩ = δi,r

(Λdx)r

xr+1
+

(
(dx)

i
/xi

)
.

Applying the operator adg,n to the above equation, and using the definition of Ωg,i;n

from Definition 3.2 proves the lemma. □

3.2. The spectral curve. — Let us treat the unstable correlators ϕ0,1 and ϕ0,2 first
in order to obtain the spectral curve. Recall the family of curves over Λ ∈ C∗ that we
have considered previously in (2.13):

(3.5)
r∏

a=1

(
y − Qa

x

)
+

(−Λ)r

xr+1
= 0.

If Q1, . . . , Qr are pairwise distinct, the fibre SΛ known as the half Seiberg–Witten
curve is a smooth curve of genus zero which admits the following explicit parametri-
sation with coordinate ζ ∈ P1.

(3.6) x(ζ) = − Λr∏r
a=1(Qa − ζ)

, y(ζ) = − ζ

Λr

r∏
a=1

(Qa − ζ).

Recall that to complete the description of the spectral curve, we define

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2
.

We denote the ramification points of the branched covering x : SΛ → P1 excluding the
one of index r at x = 0 by Ram(SΛ) ⊂ SΛ. These ramification points are all simple
as long as Q1, . . . , Qr are pairwise distinct. For each ramification point ρ ∈ Ram(SΛ),
we denote the associated deck transformation (of degree two) by σρ.

With this setup, we show that the unstable correlator ϕ0,1 can be analytically
continued to the meromorphic differential ω0,1 on the half Seiberg–Witten curve SΛ.

Lemma 3.5. — Assume that Q1, . . . , Qr are pairwise distinct. The all-order series
expansion of the meromorphic form ω0,1(ζ) on SΛ when ζ is near x−1(∞) ∼= L with
1/x(ζ) as a local coordinate, and then all-order series expansion as Λ → 0, is given
by ϕ0,1(ζ). Explicitly, we have

ω0,1(ζ) ≈ ϕ0,1
( c(ζ)
x(ζ)

)
,

where ≈ is our notation to indicate an identity of all-order expansions.

Proof. — If g = 0 and n = 0, for any i ∈ [r], Lemma 3.4 gives the following relation

(3.7)
∑

1⩽a1<···<ai⩽r

i∏
j=1

ϕ0,1
(
aj
x

)
= δi,r

(Λdx)r

xr+1
+O

(
(dx)i/xi

)
,
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where we have used the explicit expression for Ω0,i;0 from Lemma 3.3 and we recall
that the O(· · · ) here means terms of the form (dx)ixk for k ⩾ −i. As ϕ0,1

(
a
x

)
=

Qadx/x + · · · is a formal power series in 1/x, we can determine the right-hand side
of (3.7) explicitly. Indeed, the coefficient of the term of order (dx)i/xi is precisely
the elementary symmetric polynomial ei(Q1, . . . , Qr) and there are no terms of lower
order. Thus, (3.7) becomes∑

1⩽a1<···<ai⩽r

i∏
j=1

ϕ0,1
(
aj
x

)
= δi,r

(Λdx)r

xr+1
+ ei(Q1, . . . , Qr)

(dx)i

xi
,

which can be put into generating series form as

(3.8)
r∏

a=1

(
u+ ϕ0,1

(
a
x

))
=

(Λdx)r

xr+1
+

r∏
a=1

(
u+

Qadx

x

)
.

By substituting u = −ϕ0,1
(
b
x

)
for any b ∈ [r], we obtain the following equation

0 =
(−Λdx)r

xr+1
+

r∏
a=1

(
u′ − Qadx

x

)
,

whose r independent solutions are given by u′ = ϕ0,1
(
b
x

)
for any b ∈ [r]. As the above

equation gives a formula for the ϕ0,1 in terms of x(z), we see that it analytically
continues to a meromorphic differential on the curve SΛ. To show that the analytic
continuation of ϕ0,1 matches ω0,1, note that (3.5) provides a set of r independent
solutions as well — indeed, take u′ = ω0,1(ζ), where ω0,1 is considered as an expansion
in 1/x(ζ) with ζ near x−1(∞) ∼= L. These two different sets of r solutions must
coincide, and by analysing the leading coefficient in the expansion of ω0,1, we get the
claim. □

Let us turn now to the statement for (g, n) = (0, 2). It will turn out to be useful
to define the following projection operators.

Definition 3.6. — For i ∈ Z, define the projection operator
p⩾−i : C

[[
x(z)±1

]]
(dx(z))i −→ C

[[
x(z)±1

]]
(dx(z))i∑

n∈Z
x(z)n(dx(z))i 7−→

∑
n⩾−i

x(z)n(dx(z))i.

It acts on a formal power series in x(z)±1 and keeps only the terms of order x(z)−i

and higher. Analogously, we define the projection operator p⩽−i which keeps only the
terms of order x(z)−i and lower.

Lemma 3.7. — Assume that the Q1, . . . , Qr are pairwise distinct. The series expansion
of ω0,2(ζ1, ζ2) as ζ1, ζ2 are near x−1(∞) ∼= L with 1/x(ζ1), 1/x(ζ2) as a local coordinate
is given by ϕ0,2(ζ1, ζ2):

ω0,2(ζ1, ζ2) ≈ ϕ0,2
( c(ζ1) c(ζ1)
x(ζ1) x(ζ2)

)
,

where ω0,2(ζ1, ζ2) is considered as an expansion in 1/x(ζi) near ζi = Qai
.
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Proof. — Lemma 3.4 when (g, n) = (0, 1), in combination with the explicit formula
for Ω0,i;2 proved in Lemma 3.3, imposes the following restriction on the correlator
ϕ0,2 for any i ∈ [r]:

(3.9)
∑

Z⊆f(z)
#Z=i
z′∈Z

ϕ0,2(z
′, w)

∏
z′′⊆Z∖{z′}

ϕ0,1(z
′′) = O

( (dx(z))i
x(z)i

)
.

We consider the left-hand side of the above equation as a formal series in x(z′)

(= x(z)), where we first expand in x(w) near ∞, and then in x(z) near ∞. In other
words, we expand in the region |x(z)| < |x(w)|. Our goal is to determine the right-
hand side of (3.9) explicitly. Applying the projection operator p⩾−i to the left-hand
side of (3.9) yields

(3.10) p⩾−i

( ∑
{z′}⊆Z⊆f(z)

#Z=i
c(z′)=c(w)

dx(z′)dx(w)

(x(z′)− x(w))2

∏
z′′∈Z∖{z′}

ϕ0,1(z
′′)

)
,

which follows from the simple observations

p⩾−(i−2)

( ∏
z′′∈Z∖{z}

ϕ0,1(z
′′)
)
= 0,

p⩾−1 (ϕ0,2(z
′, w)) = p⩾−1

(
δc(z′),c(w)

dx(z′)dx(w)

(x(z′)− x(w))2

)
.

Thus, all the other terms disappear upon applying the projection p⩾−i. For any subset
Z ⊆ f(z), we denote c(Z) = {c(z) | z ∈ Z}. Then, given a non-empty subset Z ⊆ f(z)

and an element z′ ∈ Z, we decompose∏
z′′⊆Z∖{z′}

ϕ0,1(z
′′)

dx(z′′)
=

∑
j⩾#Z−1

c
c(Z),c(z′)
j x(z)−j .

The coefficients cc(Z),c(z′)
j only depend on the set c(Z) and the element c(z′), and not

directly on Z or z′. Using this notation, we rewrite the right-hand side of (3.10) as
follows:

(3.11) p⩾−i

[
(dx(z))

i

dw

( ∑
Z⊆f(z)
#Z=i

∑
z′∈Z

c(z′)=c(w)

∑
j⩾i−1

c
c(Z),c(z′)
j

(x(z)−j − x(w)−j

x(z)− x(w)
+

x(w)−j

x(z)− x(w)

))]
.

Recall that we always expand in the region |x(z)| < |x(w)|, and hence the last term
remains unchanged after applying the projection p⩾−i with i ⩾ 1. Let us compute the
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result of applying the projection to the first term. We have

p⩾−i

[ ∑
j⩾i−1

c
c(Z),c(z′)
j

x(z)−j − x(w)−j

x(z)− x(w)

]
= p⩾−i

[ ∑
j⩾i−1

c
c(Z),c(z′)
j

x(w)j
1

x(z)j
x(w)j − x(z)j

x(z)− x(w)

]

=

( ∑
j⩾i−1

c
c(Z),c(z′)
j

x(w)j

)
1

x(z)i
x(w)i − x(z)i

x(z)− x(w)
,

where in order to get the last line, we simply remove all the terms of order strictly
lower than x(z)−i. Applying this simplification to (3.11) gives the following simplified
expression for the right-hand side of (3.9)

(dx(z))
i
dw

( ∑
{w}⊆W⊆f(w)

#W=i

( ∏
w′′∈W∖{w}

ϕ0,1(w
′′)

dx(w′′)

) x(w)i

x(z)i(x(z)− x(w))

)
,

where we have replaced the sum over Z ⊆ f(z) by a sum over subsets W ⊆ f(w), as
the coefficients cj do not directly depend on the Z as previously noted. Thus, we have
fully determined the right-hand side of (3.9), and equation (3.9) takes the following
equivalent form:

∑
Z⊆f(z)
#Z=i
z′∈Z

ϕ0,2(z
′, w)

dx(z′)

∏
z′′∈Z∖{z′}

ϕ0,1(z
′′)

dx(z′′)

= dx(w)

( ∑
{w}⊆W⊆f(w)

#W=i

( ∏
w′′∈W∖{w}

ϕ0,1(w
′′)

dx(w′′)

) x(w)i

x(z)i(x(z)− x(w))

)
.

Finally, just as we did in Lemma 3.5, we consider the generating series by applying∑r
i=1 u

r−i to the above equation and specialise the equation to u = −ϕ0,1(z)/dx(z),
which gives

(3.12) ϕ0,2(z, w)

dx(z)

∏
z′′∈f′(z)

(ϕ0,1(z′′)− ϕ0,1(z)

dx(z)

)
= dw

(
x(w)

x(z)r(x(z)− x(w))

∏
w′′∈f′(w)

(x(w)ϕ0,1(w′′)

dx(w′′)
− x(z)ϕ0,1(z)

dx(z)

))
.

This equation gives an expression for ϕ0,2(z, w) entirely in terms of ϕ0,1 and x.
As Lemma 3.5 states that ϕ0,1 analytically continues to the meromorphic differen-
tial ω0,1 on the half Seiberg–Witten curve SΛ, and x analytically continues to the
function x(ζ) on SΛ by definition, we conclude that ϕ0,2(z, w) analytically continues
to a meromorphic bi-differential on SΛ, say ϕ̃0,2(ζ1, ζ2).

There are two ways to show that ϕ̃0,2 coincides with the bi-differential ω0,2(ζ1, ζ2) =

dζ1dζ2/(ζ1 − ζ2)
2. The first way is to check that the pole structure match, i.e., the

only pole is a double pole on the diagonal with bi-residue 1. Here we prefer a second
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way, which is a direct computation. Using x(ζ)y(ζ) = ζ we can rewrite

ϕ̃0,2(ζ1, ζ2) =
∏

ζ′
1∈f′(ζ1)

1

y(ζ ′1)− y(ζ1)
· dζ2

( dx(ζ1)x(ζ2)

x(ζ1)r(x(ζ1)− x(ζ2))∏
ζ′
2∈f′(ζ2)

(x(ζ ′2)y(ζ
′
2)− x(ζ1)y(ζ1))

)

=
∏

ζ′
1∈f′(ζ1)

1

ζ ′1 − ζ1
· dζ2

( dx(ζ1)x(ζ2)

x(ζ1)(x(ζ1)− x(ζ2))

∏
ζ′
2∈f′(ζ2)

(ζ ′2 − ζ1)
)
,

where the notation f′(ζ) now means x◦x−1(ζ)∖{ζ} and x is the meromorphic function
on SΛ from (3.5). Setting D(ζ) =

∏r
a=1(Qa − ζ) we have x(ζ) = −Λr/D(ζ), and thus

x(ζ1)− x(ζ2) =
Λr(D(ζ2)−D(ζ1))

D(ζ1)D(ζ2)
= − Λr

D(ζ1)D(ζ2)

∏
ζ′
2∈f(ζ2)

(ζ ′2 − ζ1)

dx(ζ1) = dζ1 lim
ζ2→ζ1

x(ζ1)− x(ζ2)

ζ1 − ζ2
=

Λrdζ1
D(ζ1)2

∏
ζ′
1∈f′(ζ1)

(ζ ′1 − ζ1).

Then:

ϕ̃0,2(ζ1, ζ2) =
Λrdζ1

D(ζ1)2dx(ζ1)
dζ2

(dx(ζ1)D(ζ1)

D(ζ2)

−D(ζ1)D(ζ2)

Λr(ζ2 − ζ1)

)
=

dζ1dζ2
(ζ1 − ζ2)2

. □

This completes the proof of Theorem 2.3 for the unstable correlators.

3.3. Stable correlators and topological recursion. — Finally, we turn to the sta-
ble correlators ϕg,n where 2g − 2 + n > 0. We proceed in two steps. First, we show
that the correlators ϕg,n analytically continue to meromorphic differentials on the
half Seiberg–Witten curve SΛ with poles only at the ramification points Ram(SΛ).
Second, we show that these analytically continued correlators satisfy the linear and
quadratic abstract loop equations. Then, as the system of correlators ωg,n constructed
by the topological recursion is the unique solution to the abstract loop equations
[BEO15, BS17, BBC+25], we conclude that the analytic continuation of the stable
ϕg,n coincides with ωg,n.

Proposition 3.8. — Assume that Q1, . . . , Qr are pairwise distinct. If 2g − 2 + n > 0,
then the correlators ϕg,n which are n-differentials on a formal neighbourhood of L ∼=
x−1(∞) in C admit an analytic continuation as meromorphic n-differentials on the
half Seiberg–Witten curve SΛ. Moreover, these analytic continuations, denoted ϕ̃g,n,
only have poles at the ramification points Ram(SΛ) of the spectral curve.

Proof. — Let us start by extracting the terms containing ϕg,1+n from the Ωg,i;n using
the Ω̂g,i;n defined in equation (3.2). For any 2g− 2+ (1+n) > 0, and i ∈ [r], we have
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for a fixed z∑
Z⊆f(z)
#Z=i

Ωg,i;n(Z;w[n]) =
∑

{z}⊆Z⊆f(z)
#Z=i

ϕg,1+n(z, w[n])
∏

z′∈Z∖{z}

ϕ0,1(z
′)

+
∑

Z⊆f(z)
#Z=i

Ω̂g,i;n(Z;w[n]).

The first sum on the right-hand side involving the ϕg,1+n vanishes upon applying
the projection p⩾−i. This means that the constraints of Lemma 3.4 can be written
explicitly as

(3.13)
∑

{z}⊆Z⊆f(z)
#Z=i

ϕg,1+n(z, w[n])
∏

z′∈Z∖{z}

ϕ0,1(z
′) = −p⩽−i−1

[ ∑
Z⊆f(z)
#Z=i

Ω̂g,i;n(Z;w[n])

]
.

The usual trick of applying
∑r

i=1 u
r−i to the above equation to get the generating

series, and then specialising to u = −ϕ0,1(z) gives the following equation

(3.14) ϕg,1+n(z, w[n])

=
−1∏

z′∈f′(z) (ϕ0,1(z
′)− ϕ0,1(z))

r∑
i=1

(−ϕ0,1(z))r−i
p⩽−i−1

[ ∑
Z⊆f(z)
#Z=i

Ω̂g,i;n(Z;w[n])

]
.

We can rewrite the projection appearing on the right-hand side as

p⩽−i−1

[ ∑
Z⊆f(z)
#Z=i

Ω̂g,i;n(Z;w[n])

]
= (dx(z))i

∮
γ

dx(v)

x(z)− x(v)

(
x(v)

x(z)

)i ∑
V⊆f(v)
#V=i

Ω̂g,i;n(V ;w[n])

(dx(v))i
,

where we choose the contour γ in the x(v)-plane to be centred at x(v) = ∞ such
that |x(v)| < |x(z)|, i.e., the point x(z) lies inside the contour γ. Also recall our
standing assumption on Ω̂g,i;n(V ;w[n]) that |x(v)| < |x(wj)| for any j ∈ [n], which
implies that x(wj) are inside this contour γ. From this rewriting as a contour integral,
we see from (3.14) that ϕg,1+n can be expressed in terms of x and ϕg′,1+n′ with
2g′−2+(1+n′) < 2g−2+(1+n). We know from Lemma 3.5 and Lemma 3.7 that the
unstable correlators ϕ0,1, ϕ0,2 analytically continue to the meromorphic differentials
ω0,1, ω0,2 respectively. Thus, by induction on (2g− 2+ n), we see that ϕg,1+n(z, w[n])

analytically continues to a meromorphic n-differential on the curve SΛ. Let us denote
these analytically continued differentials by ϕ̃g,1+n(ζ0, ζ[n]),

(3.15) ϕ̃g,1+n(ζ0, ζ[n]) =

y(ζ0)
rdx(ζ0)∏

ζ′
0∈f′(ζ0)

(y(ζ0)− y(ζ ′0))

r∑
i=1

∮
γ

dx(ζ)

x(ζ0)− x(ζ)

(−x(ζ)
ζ0

)i ∑
Z⊆f(ζ)
#Z=i

Ω̂g,i;n(Z; ζ[n])

(dx(ζ))i
,
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where we have used the fact that x(ζ)y(ζ) = ζ. In this formula Ω̂g,i;n is a combination
of the ϕ̃g′,1+n′ with 2g′ − 2 + (1 + n′) < 2g − 2 + (1 + n), and the contour γ is now a
contour in the x(ζ)-plane centred at x(ζ) = ∞ such that |x(ζ)| < |x(ζ0)|.

To understand the poles of the ϕ̃g,1+n, we flip the contour to evaluate the residues
outside γ. By the induction hypothesis, the only possible poles in the integrand of
(3.15) in the variable ζ that are outside the contour γ are at the ramification points
– i.e., the points Ram(SΛ) and the index r ramification point at x(ζ) = 0. The other
possible poles are at x(ζ) = x(ζj) for j ∈ 0∪ [n], all of which lie inside the contour γ.
Moreover, by induction the integrand does not have a pole at the point x(ζ) = 0

where ζ = ∞. Indeed, as the ϕ̃g′,1+n′ with 2g′ − 2 + (1 + n′) < 2g − 2 + (1 + n)

are assumed to be holomorphic at ζ = ∞, near ζ = ∞ (where x = 0) the integrand
behaves as

dζ

ζr+1
× 1

ζri
× ζi(r+1)

ζ2i
=

dζ

ζr+i+1
,

as x(ζ) behaves as 1/ζr. Thus the integrand is holomorphic at the ramification point
x = 0. Finally, by evaluating the contour integral, we see that the differential ϕ̃g,1+n

only has poles at the ramification points Ram(SΛ) in the variables ζ0 and ζ[n]. □

Let us now show that the analytically continued correlators ϕ̃g,n on the spectral
curve SΛ satisfy the abstract loop equations, as considered in [BS17, BEO15].

Proposition 3.9. — For any g, n ⩾ 0, and any ramification point ρ ∈ Ram(SΛ) of
the spectral curve SΛ, the analytically continued correlators ϕ̃g,1+n satisfy the linear
and quadratic loop equations, i.e., the two expressions

ϕ̃g,1+n(ζ0, ζ[n]) + ϕ̃g,1+n(σρ(ζ0), ζ[n]),

ϕ̃g−1,2+n(ζ0, σρ(ζ0), ζ[n]) +
∑

g1+g2=g
J1⊔J2=[n]

ϕ̃g1,1+#J1(ζ0, ζJ1)ϕ̃g2,1+#J2(σρ(ζ0), ζJ2),

are holomorphic as ζ0 approaches Ram(SΛ).

Proof. — The i = 1 case of the constraints on Ωg,i;n obtained in (3.13) gives∑
z′∈f(z)

ϕg,1+n(z
′, w[n]) = 0.

Passing to the analytic continuation, we can write for each ramification point ρ ∈
Ram(SΛ):

ϕ̃g,1+n(ζ0, ζ[n]) + ϕ̃g,1+n(σρ(ζ0), ζ[n]) = −
( ∑

ζ′
0∈f′(ζ0)∖{σρ(ζ0)}

ϕ̃g,1+n(ζ
′
0, ζ[n])

)
.

As the ϕ̃g,n only have poles at the ramification points, the right-hand side clearly has
no poles at ζ = ρ, and this proves the linear loop equation.
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Let us turn to the quadratic loop equation now. Consider the analytic continuation
of the statement of Lemma 3.4 for i = 2:
(3.16) 1

2

∑
ζ′
0,ζ

′′
0 ∈f(ζ0)

ζ′
0 ̸=ζ′′

0

ϕ̃g−1,2+n(ζ
′
0, ζ

′′
0 , ζ[n])

+
1

2

∑
ζ′
0,ζ

′′
0 ∈f(ζ0)

ζ′
0 ̸=ζ′′

0

∑
g1+g2=g
J1⊔J2=[n]

ϕ̃g1,1+#J1
(ζ ′0, ζJ1

)ϕ̃g2,1+#J2
(ζ ′′0 , ζJ2

)

= δg,0δr,2δn,0
Λr(dx(ζ0))

2

x(ζ0)3
+O

( (dx(ζ0))2
x(ζ0)2

)
.

The factor of 2 is due to the fact that we sum over ordered pairs ζ ′0, ζ ′′0 instead of
pairs {ζ ′0, ζ ′′0 }. We claim that the right-hand side is regular at any ramification point
ρ ∈ Ram(SΛ), as there are no terms of order (dx(ζ))2/x(ζ)k for any k ⩾ 4. Indeed,
the series expansion at x(ζ) = ∞ of a pole at any ramification point (note that x = ∞
is not a branch point), would create holomorphic terms of the form (dx(ζ))2/x(ζ)k

for arbitrarily large k ≫ 0. Now, we consider the terms of interest for the quadratic
loop equations appearing in the left-hand side of equation (3.16). The first sum can
be split into

ϕ̃g−1,2+n(ζ0, σρ(ζ0), ζ[n]) +
1

2

∑
ζ′
0,ζ

′′
0 ∈f′(ζ0)∖{σρ(ζ0)}

ζ′
0 ̸=ζ′′

0

ϕ̃g−1,2+n(ζ
′
0, ζ

′′
0 , ζ[n])

+
∑

ζ′
0∈f′(ζ0)∖{σρ(ζ0)}

(
ϕ̃g−1,2+n(ζ0, ζ

′
0, ζ[n]) + ϕ̃g−1,2+n(σρ(ζ0), ζ

′
0, ζ[n])

)
,

where the second line is regular at the ramification point ρ as the ϕ̃g−1,2+n only have
poles at the ramification points, and the third line is regular at ρ thanks to the linear
loop equation. The second sum in (3.16) now, which can be rewritten in a similar
fashion:∑
g1+g2=g
J1⊔J2=[n]

(
ϕ̃g1,1+#J1

(ζ0, ζJ1
)ϕ̃g2,1+#J2

(σρ(ζ0), ζJ2
)

+
1

2

∑
ζ′
0,ζ

′′
0 ∈f′(ζ0)∖{σρ(ζ0)}

ζ′
0 ̸=ζ′′

0

ϕ̃g1,1+#J1
(ζ ′0, ζJ1

)ϕ̃g2,1+#J2
(ζ ′′0 , ζJ2

)

+
∑

ζ′
0∈f′(ζ0)∖{σρ(ζ0)}

ϕg1,1+#J1(ζ
′
0, ζJ1)

(
ϕ̃g2,1+#J2(ζ0, ζJ2) + ϕ̃g2,1+#J2(σρ(ζ0), ζJ2)

))
.

Again, the second line is clearly regular at ρ, while the third line is regular thanks to
the linear loop equation. Putting this together proves the quadratic loop equation. □

Proof of Theorem 2.3. — We are now in position to finish the proof. For the unstable
correlators, i.e., (g, n) = (0, 1) and (g, n) = (0, 2), we have already proved the theorem
in Lemma 3.5 and Lemma 3.7 respectively. As for the stable correlators ϕg,1+n with
2g−2+(1+n) > 0, we proved in Proposition 3.8 that they admit analytic continuations
ϕ̃g,1+n with poles only at the ramification points Ram(SΛ). In Proposition 3.9 we
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showed that the correlators ϕ̃g,1+n satisfy the abstract loop equations. Besides, the
linear loop equation implies that for any ramification point ρ ∈ Ram(SΛ)

(3.17) Res
ζ=ρ

ϕ̃g,1+n(ζ, ζ[n]) = 0

for reasons of parity with respect to σρ. Since SΛ ≃ P1, we have by the Cauchy residue
formula

ϕ̃g,1+n(ζ0, ζ[n]) =
∑

ρ∈Ram(SΛ)

Res
ζ=ρ

dζ0

( 1

ζ0 − ζ
− 1

ζ0 − ρ

)
ϕ̃g,1+n(ζ, ζ[n])

=
∑

ρ∈Ram(SΛ)

Res
ζ=ρ

(∫ ζ

ρ

ω0,2(·, ζ0)
)
ϕ̃g,1+n(ζ, ζ[n]).

(3.18)

where the term 1/(ζ0 − ρ) does not contribute to the residue due to (3.17). According
to [BEO15, BBC+25], meromorphic differentials with poles only at the ramification
points that satisfy the abstract loop equations and the normalisation property (3.18)
are uniquely reconstructed by the topological recursion. Hence, the differentials ϕ̃g,1+n

coincide with the topological recursion correlators ωg,1+n. □

4. The CDO vector: proof of Theorem 2.6

In this section, we study a different set W-constraints that are relevant for Hurwitz
theory. These constraints can be viewed as a generalisation of the ones characterising
the Gaiotto vector that we studied previously in Section 3, and we will prove that
the associated partition function can be computed via the topological recursion on a
ramified spectral curve. The half Seiberg–Witten curve (2.13) of pure gauge theory
can be recovered as a limiting case.

4.1. The Airy structure. — We describe the Airy structure with degree zero terms
constructed and studied in [CDO24] by Chidambaram, Dołęga and Osuga, based on
the modes of the W-algebra W(glr). While the Airy structure exists at arbitrary
shifted level κ — and this is crucial for the study of b-Hurwitz numbers in [CDO24]
— we restrict here to the case of self-dual level κ = 1.

Consider two tuples of parameters P = (P1, . . . , Pr) and Q = (Q1, . . . , Qr−1) and
introduce the automorphism of the Heisenberg VOA which sends the modes Ja

k to J̃a
k

with

(4.1) J̃a
k =



Ja
k k > 0,

Ja
k + (−Λ)−rδa,rδk,−1 k < 0,

Qa k = 0 and a ∈ [r − 1],

−
(
|P |+ |Q|

)
k = 0 and a = r,

where we denote |P | = e1(P ) =
∑r

a=1 Pa and likewise for |Q|. We consider a variant
of the Verma module (2.8) where we allow Λ to be inverted

ṼΛ = C((P ,Q,Λr))
[[
(Ja

−k)
a∈[r]
k∈Z>0

]]
((ℏ)).
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We let the Heisenberg algebra act on ṼΛ with the modified modes (4.1), and this
restricts to a representation of the W(glr)-algebra by the modes

W̃ i
k =

∑
1⩽a1<···<ai⩽r

∑
k1,...,ki∈Z

k1+···+ki=k

J̃a1

k1
· · · J̃ai

ki
.

From this representation, after shifting the modes W̃ i
0 to W̃ i

0 + (−1)i+1ei(P ), the
authors of [CDO24] construct a shifted Airy structure. More precisely, applying the
fundamental theorem of Airy structures, they obtain the following result.

Theorem 4.1. — Assume that Q1, . . . , Qr−1 are pairwise distinct. There exists a
unique |ΓCDO

Λ ⟩ ∈ ṼΛ of the form

(4.2) |ΓCDO
Λ ⟩ = exp

( ∑
(g,n)∈Z⩾0×Z>0

ℏg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n

[ a1 ··· an

k1 ··· kn

] n∏
j=1

J
aj

−kj

kj

)
,

satisfying the constraints

(4.3) ∀(i, k) ∈ [r]× Z⩾0, W̃ i
k |ΓCDO

Λ ⟩ = (−1)iei(P )δk,0 |ΓCDO
Λ ⟩ .

Moreover, the coefficients Φg,n

[ a1 ··· an

k1 ··· kn

]
belong to the ring C(Q)[P ][[Λr]]. In partic-

ular, the Φg,n are formal power series in Λr (not just Laurent series).

Proof
This is [CDO24, Th. 3.10 & Cor. 3.12] specialised to the case Li = (−1)iei(P ). □

A few remarks are in order. The vector |ΓCDO
Λ ⟩ is not the highest weight vector

in the representation ṼΛ, but rather a Whittaker-type vector. These Whittaker con-
straints (4.3) bear on the action of all non-negative modes of the W-algebra, while
(2.9) involved only the positive modes. The (i, k) = (1, 0) constraint is trivially satis-
fied since

W̃ i
0 =

r∑
a=1

J̃a
0 = −

r∑
a=1

Pa = −e1(P ),

but the other ones are non-trivial and determine |ΓCDO
Λ ⟩. Besides, |ΓCDO

Λ ⟩ has unstable
terms as well, i.e., non-zero terms Φ0,1 and Φ0,2. Then, we can construct correlators

(4.4) Φg,n(z1, . . . , zn) =
∑

k1,...,kn∈Z>0

Φg,n

[
c(z1) ··· c(zn)
k1 ··· kn

] n∏
j=1

dx(zj)

x(zj)kj+1

+ δg,0δn,1

(
J̃0

c(z1) dx(z1)

x(z1)
+ (−Λ)−rdx(z1)

)
+ δg,0δn,2δc(z1),c(z2)

dx(z1)dx(z2)

(x(z1)− x(z2))2
.

As in (2.10), they are germs of meromorphic n-differentials in the n-th product of the
formal neighbourhood of L ∼= x−1(∞) =

⊔r
a=1{∞a} in C, where C is the same unram-

ified curve of degree r that appears in Section 2.1.3 in the context of the Gaiotto vector.
More precisely, the ϕg,n for 2g − 2 + n > 0 are germs of holomorphic n-differentials,
ϕ0,1(z) is the germ of a meromorphic differential having a simple pole with residue
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given by the scalar J̃a
0 at z = ∞a, and ϕ0,2 is the germ of a meromorphic bi-differential

with a double pole on the diagonal.

4.2. The spectral curve. — As in the case of the Gaiotto vector |ΓΛ⟩, we can prove
that the correlators ϕg,n defined in (4.4) from |ΓCDO

Λ ⟩ analytically continue to mero-
morphic multi-differentials on a certain family of spectral curves and that the latter
are computed by topological recursion on this spectral curve. We first describe the
relevant family of spectral curves.

Assuming that the Q1, . . . , Qr−1 are pairwise disjoint, we look at the locus S ⊂
P1
x × P1

y × C∗
Λ cut out by the equation

(4.5)
r∏

a=1

(Pa

x
+ y

)
+

1

Λr

r−1∏
a=1

(Qa

x
− y

)
= 0.

The map S → C∗
Λ defines an analytic family of algebraic curves. In particular, the

fibre SΛ over any fixed Λ ∈ C∗ is a smooth genus 0 curve admitting the following
uniformisation by ζ ∈ P1

(4.6)


x(ζ) = −Λr

∏r
a=1(Pa + ζ)∏r−1
a=1(Qa − ζ)

,

y(ζ) =
ζ

x(ζ)
= − ζ

Λr

∏r−1
a=1(Qa − ζ)∏r
a=1(Pa + ζ)

.

Definition 4.2. — Let R be the set of tuples (P1, . . . , Pr, Q1, . . . , Qr−1) ⊂ C2r−1 such
that

• Q1, . . . , Qr−1 are pairwise distinct;
• Qa ̸= Pb for any a ∈ [r − 1] and b ∈ [r];
• The branched covering defined by x : SΛ → P1 has only simple ramification

points.

If (P ,Q) ∈ R, then x always has degree r on SΛ and x = ∞ is not a branch point.
We complete the description of the spectral curve by defining as usual ω0,1 and ω0,2

on a fibre SΛ as

ω0,1(ζ) = y(ζ)dx(ζ), ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1 − ζ2)2
.

Then, we have the following lemma, which shows that the correlator ϕ0,1 analytically
continues to the meromorphic differential ω0,1 on the curve SΛ.

Lemma 4.3. — Assume (P ,Q) ∈ R. The all-order series expansion of the meromor-
phic 1-form ω0,1(ζ) on SΛ as ζ is near x−1(∞) ∼= L, with 1/x(ζ) used as local coor-
dinate, and then the all-order series expansion as Λ → 0, is given by ϕ0,1. In other
words:

ω0,1(ζ) ≈ ϕ0,1
( c(ζ)
x(ζ)

)
.
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Proof. — As the proof closely follows the proof of Lemma 3.5 for the half Seiberg–
Witten curve, we will be brief. By extracting the (0, 1)-terms from the constraints of
Theorem 4.1 we get the following expression:

r∏
a=1

(
u+

ϕ0,1
(
a
x

)
dx

)
=

r∑
i=0

ur−i
(
(−1)i

ei(P )

xi
+O

(
1/xi−1

))
.

The terms of order O
(
1/xi−1

)
can only come from the first two terms appearing in

the definition (4.4) of ϕ0,1, i.e., the terms of order x0dx and x−1dx. This gives
r∏

a=1

(
u+

ϕ0,1
(
a
x

)
dx

)
=

r∑
i=0

ur−i
(
(−1)i

ei(P )

xi
+ (−1)r

ei−1(Q)

Λrxi−1

)
.

If we substitute u = −ϕ0,1
(
a
x

)
/dx for any a ∈ [r], we get the following algebraic

equation for ϕ0,1
r∑

i=0

(
ϕ0,1

(
a
x

))r−i
(
(−1)r

ei(P )

xi
+ (−1)i

ei−1(Q)

Λrxi−1

)
(dx)i = 0.

Summing over i we get

(−1)r
r∏

b=1

(
ϕ0,1

(
a
x

)
+ Pb

dx

x

)
− 1

Λr

r−1∏
b=1

(
ϕ0,1

(
a
x

)
−Qb

dx

x

)
= 0,

which matches the equation for ω0,1 from the definition of the family (4.5). Thus, ω0,1

is the analytic continuation of ϕ0,1 to SΛ. □

Let us turn to the other unstable case where (g, n) = (0, 2).

Lemma 4.4. — Assume (P ,Q)∈R. The all-order series expansion of the bi-differential
ω0,2(ζ1, ζ2) on SΛ when ζ1, ζ2 is near x−1(∞) ∼= L, with 1/x(ζi) used as local coor-
dinate, and then the all-order series expansion as Λ → 0, is given by ϕ0,2. In other
words:

ω0,2(ζ1, ζ2) ≈ ϕ0,2
( c(ζ1) c(ζ2)
x(ζ1) x(ζ2)

)
.

Proof. — The proof closely follows the proof for the half Seiberg–Witten curve given
in Lemma 3.7. In the first half of the proof of Lemma 3.7 we showed that the ϕ0,2
admits an analytic continuation by finding an explicit formula for the ϕ0,2 in terms of
the ϕ0,1 and x(z). An analogue of this explicit formula (3.12) holds in this case as well,
although the proof needs to be slightly modified. As the analogue of the constraints
(3.9) has O

(
(dx(z))

i
/x(z)i−1

)
on the right-hand side (instead of O

(
(dx(z))

i
/x(z)i

)
),

we need to take the projection p⩾−(i−1) in (3.10). The rest of the proof goes through
with minor changes, and we get the analytic continuation ϕ̃0,2, defined as

(4.7) ϕ̃0,2(ζ1, ζ2) =
∏

ζ′
1∈f′(ζ1)

1

ζ ′1 − ζ1
· dζ2

( dx(ζ1)

(x(ζ1)− x(ζ2))

∏
ζ′
2∈f′(ζ2)

(ζ ′2 − ζ1)
)
.

Finally, let us evaluate ϕ̃0,2 explicitly. Using the notation D(ζ) =
∏r−1

a=1(Qa − ζ) and
N(ζ) =

∏r
a=1(Pa + ζ), we have x(ζ) = −ΛrN(ζ)/D(ζ). As N(ζ) is a polynomial of
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degree r with leading term ζr and D is a polynomial of degree r−1 with leading term
(−1)r−1ζr−1, we find

x(ζ1)− x(ζ2) =
Λr

(N(ζ2)
D(ζ2)

D(ζ1)−N(ζ1)
)

D(ζ1)
=

−(−Λ)r

D(ζ1)

∏
ζ′
2∈f(ζ2)

(ζ ′2 − ζ1),

dx(ζ1) = dζ1 lim
ζ2→ζ1

x(ζ1)− x(ζ2)

ζ1 − ζ2
= dζ1

(−Λ)r

D(ζ1)

∏
ζ′
1∈f′(ζ1)

(ζ ′1 − ζ1).

Thus, we can evaluate (4.7) as

ϕ̃0,2(ζ1, ζ2) =
(−Λ)rdζ1
D(ζ1)dx(ζ1)

dζ2

(
dx(ζ1)

D(ζ1)

−(−Λ)r(ζ2 − ζ1)

)
=

dζ1dζ2
(ζ1 − ζ2)2

. □

4.3. Stable correlators and topological recursion

Proof of Theorem 2.6. — In view of Lemma 4.3 and Lemma 4.4, it remains to show
that the stable correlators ϕg,n of (4.4) admit an analytic continuation on the CDO
spectral curve (4.5), which has poles only at the ramification points and satisfies
the abstract loop equations. This is done exactly as in the proof Proposition 3.8
for the analytic continuation, and Proposition 3.9 for the location of the poles and
the abstract loop equations: the proofs indeed only used the general structure of the
Whittaker constraints and is not affected by the form of the spectral curve. □

Remark 4.5. — Note that the CDO spectral curve (4.6) appearing in this section is
a generalisation of the half Seiberg–Witten curve (3.6). Indeed, we can take the limit
P1, . . . , Pr → ∞ and Λ → 0 such that Λr · P1 · · ·Pr → (Λ′)r in the CDO curve to
recover the half Seiberg–Witten curve at energy scale Λ′. In fact, this limit falls into
the class of allowed limits based on the results of [BBC+25]. This means that the limit
of the correlators ωg,n constructed by topological recursion on the curve (4.6) matches
the correlators ωg,n constructed by topological recursion on the (3.6). However, it is
not clear how to take the above limit of the W(glr)-module defined by (4.1) and the
Whittaker conditions in Theorem 4.1 characterising |ΓCDO

Λ ⟩ directly, in order to get
the Whittaker conditions (2.9) defining the Gaiotto vector.

5. Consequences

Starting from Theorem 2.3 and Theorem 2.6, we can exploit the theory of the
topological recursion on ramified spectral curves to derive either properties and new
interpretations of the correlators, or even, directly of the Whittaker vectors under
consideration. Here we focus on: two expressions in terms of intersection numbers on
Mg,n, a relation to weighted Hurwitz numbers, quantum curves, and a discussion on
free energies.

5.1. Relation to intersection theory on Mg,n

5.1.1. Intersection theory and topological recursion. — The correlators (ωg,n)g,n pro-
duced by the topological recursion on a spectral curve (S, x, ω0,1, ω0,2) can be quite
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generally expressed in terms of intersection theory on Mg,n [Eyn14, DOSS14, BKS24].
For our purposes, it is sufficient to summarise the theory for spectral curves for
which dx is meromorphic on a compact Riemann surface and only has simple ze-
ros at which dy has neither a zero nor a pole(3). The master formula reads

(5.1) ωg,n(z1, . . . , zn)

=
∑

ρ1,...,ρn∈Ram(S)
λ1,...,λn∈Ram(S)

m1,...,mn⩾0

(∫
Mg,n

Ωg,n;ρ1,...,ρn

n∏
i=1

ψmi
i Rρi,λi

(ψi)

) n∏
i=1

dΞλi,mi
(zi).

It involves two ingredients constructed from the spectral curve: a basis of meromorphic
1-forms dΞλ,m on which we decompose the correlators, and a collection of tautological
classes Ωg,n;ρ1,...,ρn ∈ H•(Mg,n) that we call the TR class (the Rρ,λ factor will be
defined along with them). For i ∈ [n], ψi ∈ H2(Mg,n) denotes the standard ψ-class
which is defined as the first Chern class of the cotangent line bundle at the i-th marked
point. In this setting, the TR class is known to form a semi-simple (perhaps without
unit) cohomological field theory as it can be constructed by a certain Givental action
on the trivial cohomological field theory.

A. The basis of differentials. — Let us fix a choice of square root

ηλ(z) =
√

2(x(z)− x(λ)),

giving a local coordinate near λ ∈ Ram(S). The meromorphic 1-forms are defined by
induction on m ∈ Z⩾0. We set

(5.2) dΞλ,0(z) = Res
z′=λ

ω0,2(z, z
′)

ηλ(z)
, dΞλ,m+1 = −d

(Ξλ,m

dx

)
.

The primary differential dΞλ,0 has a double pole at λ only, the descendant differential
dΞλ,k has a pole of order (2k + 2) at λ and poles at λ′ ∈ Ram(S) ∖ {λ} of order at
most 2k.

B. The TR class. — The tautological classes are constructed from formal Laplace
transforms using the spectral curve data. Recalling that ω0,1 = ydx, we introduce
for ρ, λ ∈ Ram(S)

Tρ(u) =
1√
2π u

∫
γρ

e(x(ρ)−x(z))u−1

dy(z),

Rρ,λ(u) =
1√

2π u−1

∫
γρ

e(x(ρ)−x(z))u−1

dΞλ,0(z),

where γρ are steepest descent paths for Re(x/u). We are only interested in the defi-
nition of Tρ(u) and Rρ,λ(u) as formal power series in u: this is only sensitive to the
germ of γρ around ρ, and for this we can take u > 0 and take x(z) − x(ρ) ∈ R⩾0

(3)We also assume that the ramification points taken into account in (2.11) occur at finite values
of x. One can reduce to this case by using a twist (x, y) 7→ (x−1,−yx2), see paragraph D.
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along γρ (for Rρ,ρ we slightly push this contour off the pole at ρ). The orientation is
chosen consistently with the choice of square root so that we have

(5.3) ∀k ∈ Z⩾0,
1√
2πu

∫
γρ

e(x(ρ)−x(z))u−1

(ηρ(z))
2kdηρ(z) = −(2k − 1)!!uk,

with the convention (−1)!! = 1. The assumptions on the spectral curves are known
to imply that

(5.4) Tρ(0) ̸= 0 and
∑

λ∈Ram(S)

Rρ1,λ(u)Rρ2,λ(−u) = δρ1,ρ2 .

Then, it makes sense to introduce the formal power series∑
m⩾0

tρ,mu
m = − lnTρ(u),

Bρ1,ρ2
(u1, u2) =

δρ1,ρ2
−

∑
λ∈Ram(S)Rρ1,λ(u1)Rρ2,λ(u2)

u1 + u2
.

(5.5)

The tautological class appearing in (5.1) is then obtained in two steps. First, one
constructs from Tρ(u) a cohomology class indexed by a single ρ ∈ Ram(S)

Υg,n;ρ = exp
(∑
m⩾0

tρ,mκm

)
∈ H

•
(Mg,n).

Since κ0 = (2g − 2 + n) ∈ H0(Mg,n), the determination of the logarithm is irrelevant
in (5.5).

For the second step, we recall that for each stable graph G of genus g with n

labelled leaves, we have an inclusion of boundary strata

ȷG :
∏

vertex v

Mg(v),n(v) ↪−→ Mg,n.

For each half-edge h incident at a vertex v, we have a corresponding psi-class ψh ∈
H2(Mg(v),n(v)). We consider the set Stabg,n(ρ1, . . . , ρn) of stable graphs of genus g,
whose half-edges h are decorated by ρ(h) ∈ Ram(S) such that all half-edges incident
to the same vertex v have the same decoration (denoted ρ(v)), and with n labelled
leaves carrying the decorations ρ1, . . . , ρn.

(5.6) Ωg,n;ρ1,...,ρn

=
∑

G∈Stabg,n

1

#Aut(G) (ȷG)∗
( ∏

vertex v

Υg(v),n(v);ρ(v)

∏
edge {h,h′}

Bρ(h),ρ(h′)(ψh, ψh′)

)
.

This definition makes sense for any power series Tρ(u) and Rρ1,ρ2(u) with indices ρ
in a given set and satisfying the admissibility condition (5.4), even if they do not
come from the Laplace transform of a spectral curve data. In fact, this formula can
be viewed as a special case of the Givental action on CohFTs [Giv01].
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C. Expansion coefficients. — From the master formula (5.1), we can easily extract the
coefficients of the series expansion of the ωg,n near any point: it suffices to know the
series expansion for the basis of 1-forms. Following [BKS24, §7.5.5], we discuss the
case of expansion near a pole of order dp (or zero of order −dp) of dx, using a local
coordinate X centred near p such that

(5.7) dx =


cp

dX

X
if dp = 1,

dX

Xdp
if dp ̸= 1.

The only task is in fact to compute the series expansion of the primary differentials
as z → p

dΞλ,0(z) ≈ d

(∑
k⩾1

Sλ,0
[ p
k

]Xk

k

)
.

Then, by construction of the descendant differentials in (5.2), we have the following
expansion [BKS24, Lem. 7.31]:

dΞλ,m(z) ≈ d

(∑
k⩾1

Sλ,m
[ p
k

]Xk

k

)
.

If dp = 1, we have a simple expression

(5.8) Sλ,m
[ p
k

]
= (−k/cp)m · Sλ,0

( p
k

)
.

while if dp ̸= 1, we have

(5.9) Sλ,m
[ p
k

]
= k(k − (dp − 1)) · · · (k − (m− 1)(dp − 1)) · Sλ,0

[ p
k−m(dp−1)

]
,

with the convention that Sλ,m
[ p
k

]
= 0 for k ⩽ 0.

D. Twisted TR class. — The topological recursion (2.11) only depends on the data
of x through the ramification points and the local involution. As a result, we can find
transformations of the spectral curve that have no effect on the (ωg,n)g,n computed by
the topological recursion: we call them twists. Given a spectral curve (S, x, ω0,1, ω0,2)

with ω0,1 = ydx, examples of twists are (x̃, ỹ) = (f(x), y/f ′(x)), where f(x) is such
that f ′(x) is a rational function that does not vanish at branch points of x — observe
that ω0,1 = ydx = ỹdx̃. Since they affect x and therefore T (u) and R(u), twists can
radically affect the basis of differentials and the TR class, and this leads to many
different intersection-theoretic representations of the same correlators.

The twist (x̃, ỹ) = (lnx, xy) has the interesting property that it converts poles
of dx into simple poles of dx̃ = dx/x. Then, we are in the simplest case to express the
expansion coefficients of ωg,n near poles of x in terms of intersection indices. Indeed,
consider a spectral curve (S, x, ω0,1, ω0,2) such that x is meromorphic on a compact
Riemann surface, and denote op the order of a pole p of x. The local coordinate realis-
ing (5.7) near this pole is X = (−opx)−1/op . Let (ωg,n)g,n be the correlators computed
by topological recursion. Then, let Ť (u),Ř(u) the formal series, Ω̌g,n;ρ1,...,ρn

the TR
class, and Šλ,0 the expansion coefficients of the primary differentials for the spectral
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curve (S, lnx, ω0,1, ω0,2). With the help of (5.8), we get the following expansion for
the correlators as zi approaches a pole pi of x:

(5.10) ωg,n(z1, . . . , zn)

≈ d1 · · · dn
[ ∑
ρ1,...,ρn∈Ram(S)
λ1,...,λn∈Ram(S)

k1,...,kn⩾1

(∫
Mg,n

Ω̌g,n;ρ1,...,ρn

n∏
i=1

Řρi,λi
(ψi)

1− o−1
pi kiψi

) n∏
i=1

Šλi,0

[ pi

ki

]Xki
i

ki

]
.

5.1.2. Properties and remarkable TR classes. — In this section we consider situations
where R and T have no indices, i.e., ones corresponding to spectral curves with a single
ramification point or to CohFTs of rank 1. We mention properties of the construction
of Section 5.1.1 and examples of TR classes that have a geometric meaning and that
will be used to study Gaiotto vectors in Section 5.1.3.

A. Multiplicativity. — Here we consider situations without indices. Consider formal
power series T (u) and R(u) such that

(5.11) T (0) ̸= 0 and R(u)R(−u) = 1.

Then, we can write

T (u) = exp
(
−

∑
m⩾0

tmu
m
)
, R(u) = exp

(
r(u)

)
,

where r(u) is an odd formal power series. The combinatorics of self-intersections of
boundary strata in Mg,n imply that the TR class (5.6) can be written

(5.12) Ωg,n ·
n∏

i=1

R(ψi) = exp

(∑
m⩾0

tmκm +

n∑
i=1

r(ψi)−
1

2

∑
∆

(ȷ∆)∗
r(ψ′) + r(ψ′′)

ψ′ + ψ′′

)
,

where the sum ranges over boundary divisors of Mg,n, ȷ∆ is the natural inclusion
map and ψ′, ψ′′ are the ψ-classes on the two sides of the node — see e.g. [ABC+23,
Lem. 3.10].

This leads to an interesting multiplicativity property of TR classes. Imagine that
we have formal power series T (i)(u), R(i)(u) for i = 1, 2 satisfying (5.11), and we have
constructed the corresponding TR classes Ω

(i)
g,n. Then, the TR class associated to the

products T (u) = T (1)(u) · T (2)(u) and R(u) = R(1)(u) · R(2)(u) is the product TR
class

Ωg,n = Ω(1)
g,n · Ω(2)

g,n ∈ H
•
(Mg,n).

B. The deformed Θ class. — The Theta class Θg,n, introduced by Norbury in [Nor23]
based on the work of Chiodo [Chi08], is constructed using the Euler class of a vector
bundle on the moduli space of twisted 2-spin curves M

(2)

g,n. We do not dwell on the
details of the construction here, but we note the following key properties:

• Θg,n ∈ H2(2g−2+n)(Mg,n) for any 2g − 2 + n > 0;
• The family (Θg,n)g,n forms a non-semisimple CohFT without a flat unit.
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These properties, and an explanation of what they mean, can be found in [Nor23,
CGFG25]. A specific deformation of the Theta class Θg,n[ε], depending on a parameter
ε2 ∈ C was constructed and studied in [CGFG25]. The deformed Theta class satisfies
the following properties:

• Θg,n[ε = 0] = Θg,n.
• Θg,n[ε] ∈ H•(Mg,n) is a polynomial of degree 2g−2+n in ε2, and the coefficient

of ε2m belongs to H2(2g−2+n−m)(Mg,n).
• The family (Θg,n[ε])g,n forms a semisimple CohFT without a flat unit, for any

ε ̸= 0.
If we introduce

exp
(
−

∑
m⩾1

smu
m
)
=

∑
m⩾0

(−1)m(2m+ 1)!!um,

an explicit formula for the deformed Theta class, found in [CGFG25, Cor. 3.25] is

Θg,n[ε] = (−ε2)2g−2+n exp
(∑
m>0

sm(−ε2)−mκm

)
∈ H

•
(Mg,n).

This formula has the required properties, in particular it is polynomial in ε for each
g, n due to certain tautological relations between κ classes, anticipated in [KN24].
In other words, Θε

g,n is the TR class associated with

(5.13) T (u) =
∑
m⩾0

(2m+ 1)!!

(−ε2)m+1
um and R(u) = 1.

C. The Hodge class. — The Hodge class Λ[ε] =
∑g

i=0 ε
iλi is the Chern polynomial of

the Hodge bundle of holomorphic 1-forms (we use bold symbols to avoid confusion
with the letter Λ used for the energy scale). It has the property that Λ[ε]Λ[−ε] = 1 ∈
H0(Mg,n). Mumford [Mum83] expressed it as

(5.14) Λ[ε] = exp

(∑
m⩾1

Bm+1ε
m

m(m+ 1)

×
(
κm −

n∑
i=1

ψm
i +

∑
∆

1

2
(ȷ∆)∗

(ψ′)2m+1 + (ψ′′)2m+1

ψ′ + ψ′′

))
,

where (Bm)m⩾1 are the Bernoulli numbers defined by the power series expansion
t

et − 1
=

∑
m⩾0

Bk

k!
tk.

Only odd m appear in (5.14) as Bk = 0 for odd k ⩾ 3. Recalling the Stirling expansion
as u→ 0

Γ(u−1) ≈
√
2π e(u

−1−1/2) ln(u−1)−u−1

Γreg(u
−1),

where
Γreg(u

−1) = exp
(∑
m⩾1

Bm+1u
m

m(m+ 1)

)
.
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Comparing with (5.12), we see that the Hodge class can be realised from the TR class
as follows.

T (u) = R(u) =
1

Γreg(ε−1u−1)

TR class
=⇒ Ωg,n ·

n∏
i=1

R(ψi) = Λ[ε].

This was first observed in [Eyn14].

5.1.3. Gaiotto vector for r = 2. — If the spectral curve has a single ramification point,
the intersection-theoretic representation are simpler as all indices ρ, λ can be dropped
(we keep them in dΞ and S but drop them from the other notations). This happens
for the r = 2 half Seiberg–Witten curve,(4) and we now focus on this case.

Proposition 5.1. — For rank r = 2, the coefficients of the Gaiotto vector (2.7) satisfy
for any (g, n) ∈ Z⩾0 × Z>0 such that 2g − 2 + n > 0 and a1, . . . , an ∈ {1, 2} and
k1, . . . , kn ∈ Z>0

Φg,n

[ a1 ··· an

k1 ··· kn

]
= 22g−2+n(Q1 −Q2)

2−2g−n−2(k1+···+kn)Λr(k1+···+kn)(−1)a1+···+an

×
( ∑

m1,...,mn⩾0

∫
Mg,n

Θg,n[1]

n∏
i=1

(−1)mi(2ki + 2mi)!

2mi (ki +mi)!(ki − 1)!
ψmi
i

)
= 23g−3+n(Q1 −Q2)

2−2g−n−2(k1+···+kn)Λr(k1+···+kn)(−1)a1+···+an

×
∫
Mg,n

exp

(∑
m⩾1

(−1)m+1

m 2m
κm

)
Λ[−1]2Λ

[
1
2

] n∏
i=1

ki
(
2ki

ki

)
1− kiψi

.

(5.15)

Proof. — Recall the half Seiberg–Witten curve for r = 2:

x(ζ) = − Λ2

(Q1 − ζ)(Q2 − ζ)
, y(ζ) =

ζ

x(ζ)
, ω0,2(ζ1, ζ2) =

dζ1dζ2
(ζ1 − ζ2)2

.

The unique ramification point that is relevant in the topological recursion Theorem 2.3
is located at ρ = 1

2 (Q1 +Q2).
We first apply the twist (x̃, ỹ) = (x−1,−x2y). The advantage in doing so is that

the Laplace transforms defining R and T reduce to Gaussian integrals with respect
to ζ. The associated primary differential is

(5.16) dΞ̃ρ,0(ζ) = Res
ζ′=ρ

dζdζ ′

(ζ − ζ ′)2
1√

x̃′′(ρ) (ζ ′ − ρ) + o(ζ ′ − ρ)
=

√
−Λr/2 dζ

(ζ − ρ)2
.

The function x̃ has a simple zero at ζ = Qa (that is, d̃Qa
= 0), so the local coordinate

of (5.7) is X̃ = x̃ = x−1. The expansion coefficient of the primary differentials using

(4)The half Seiberg–Witten curve has also a ramification point at ζ = ∞, but it does not appear
in the topological recursion of Theorem 2.3 and can be ignored.
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this coordinate are

S̃ρ,0
[
Qa

k

]
= Res

ζ=Qa

√
−Λr/2 dζ

(ζ − ρ)2
(x̃(ζ))−k = −

√
−Λr/2 Res

ζ=Qa

kx̃′(ζ)

ζ − ρ
(x̃(ζ))−(k+1)

=
√
−2Λr Res

ζ=Qa

k (−Λr)k dζ

((ζ −Q1)(ζ −Q2))k+1

= (−1)a−1

√
−2Λr

Q1 −Q2

( Λr

(Q1 −Q2)2

)k (2k)!

k!(k − 1)!
.

From (5.9) we deduce

S̃ρ,m
[
Qa

k

]
=

(k +m− 1)!

(k − 1)!
· S̃ρ,0

[
Qa

k+m

]
= (−1)a−1 ·

√
−2Λr

Q1 −Q2

( Λr

(Q1 −Q2)2

)k+m (2k + 2m)!

(k +m)!(k − 1)!
.

Now we turn to the associated formal series T̃ (u) and R̃(u). We compute

T̃ (u) =
1√
2πu

∫
γρ

e(x
−1(ρ)−x−1(ζ))u−1

dỹ =
1

u
√
2πu

∫
γρ

exp
( (ζ − ρ)2

Λru

)
ỹdx̃

=
1

u
√
2πu

∫
γρ

exp
( (ζ − ρ)2

Λru

) 2ζ(ρ− ζ)dζ

(Q1 − ζ)(Q2 − ζ)

= − 1

u
√
2πu

∫
γρ

exp
( (ζ − ρ)2

Λru

) ∑
m⩾0

( 2

Q1 −Q2

)2m+2

(ζ − ρ)2(m+1)dζ

=
√
−Λr/2

∑
m⩾0

( −2Λr

(Q1 −Q2)2

)m+1

(2m+ 1)!!um,

where we used (5.3). After integration by parts, R̃(u) is precisely a Gaussian integral,
and since we know that R̃(u) = 1+O(u), we must have R̃(u) = 1 (this can be checked
by direct computation). Comparing with (5.13), the associated TR class is

Ω̃g,n = (−Λr/2)1−g−n/2 ·Θg,n

[
Q1−Q2√

2Λr

]
.

Putting all ingredients in (5.1) and comparing its series expansion as ζi → Qai in the
coordinate x−1 with the definition of the correlators from the Gaiotto vector in (2.10),
we arrive at

Φg,n

[ a1 ··· an

k1 ··· kn

]
=∑

m1,...,mn⩾0

n∏
i=1

( (−1)ai−1
√
−2Λr

Q1 −Q2

( Λr

(Q1 −Q2)2

)ki+mi (2ki + 2mi)!

(ki +mi)!(ki − 1)!

)
×
(
− Λr

2

)1−g−n/2
∫
Mg,n

Θg,n

[
Q1−Q2√

2Λr

] n∏
i=1

ψmi
i .

The coefficient of ε2m in the deformed Theta class Θg,n[ε] has cohomological degree
2(2g − 2 + n − m), hence must be completed by a total of

∑n
i=1mi = g − 1 + m

classes ψ in order to give a non-zero contribution. Therefore, the total power of Λr is
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(k1+ · · ·+ kn), and the power of (Q1−Q2) is 2− 2g−n− 2(k1+ · · ·+ kn). Collecting
the powers of (−1) and 2 as well, we can replace the argument of the deformed Theta
class by ε = 1 to arrive at (5.15).

The second representation comes from the TR class after logarithmic twist. Let
x̌(ζ) = lnx(ζ) and y̌(ζ) = x(ζ)y(ζ) = ζ. As ζ → ρ we have

x̌(ζ) = − ln x̃(ζ) = − ln
(
x̃(ρ) +

1

2
x̃′′(ρ)(ζ − ρ)2 + o(ζ − ρ)2

)
= − ln x̃(ρ)− x̃′′(ρ)

2x̃(ρ)
(ζ − ρ)2 + o(ζ − ρ)2.

This implies that primary differential after the logarithmic twist is a simple rescaling
of (5.16):

dΞ̌ρ,0(ζ) =
√
−x̃(ρ) dΞ̃ρ,0(ζ) =

Q1 −Q2

2
√
2

dζ

(ζ − ρ)2
.

As we are looking at simple poles of x, we are in the case ďQa = 1 and čQa = −1

in (5.7). This leads to

(5.17) Šρ,m
[
Qa

k

]
=

√
−x̃(ρ) km S̃ρ,0

[
Qa

k

]
= km

(−1)a−1

√
2

( Λr

(Q1 −Q2)2

)k (2k)!

k!(k − 1)!
.

To get the TR class, we compute

Ť (u) =
1√
2πu

∫
γρ

(−4(ζ −Q1)(ζ −Q2)

(Q1 −Q2)2

)u−1

dζ

= − (Q1 −Q2)4
u−1

√
2πu

∫
γρ

ζ̃u
−1

(1− ζ̃)u
−1

dζ̃

= − (Q1 −Q2)4
u−1

√
2πu

(
Γ(u−1 + 1)

)2
Γ(2u−1 + 2)

= −Q1 −Q2

2
√
2

1

1 + u/2

(
Γreg(u

−1)
)2

Γreg(2u−1)
,

In the line before the last, we use the integral representation of the beta function.(5)

Finally, using integration by parts and x′(ζ)/x(ζ) = −2(ζ −Q1)/(ζ −Q1)(ζ −Q2),
we compute

Ř(u) =
Q1 −Q2

2
√
2

1√
2πu−1

∫
γρ

(x(ρ)
x(ζ)

)u−1
dζ

(ζ − ρ)2

=
Q1 −Q2√

2

1√
2πu

∫
γρ

(x(ρ)
x(ζ)

)u−1
dζ

(ζ −Q1)(ζ −Q2)

=
Q1 −Q2√

2

( −4

(Q1 −Q2)2

)u−1
1√
2πu

∫
γρ

(
(ζ −Q1)(ζ −Q2)

)u−1−1
dζ

=
4u

−1

2
√
πu

(
Γ(u−1)

)2
Γ(2u−1)

=

(
Γreg(u

−1)
)2

Γreg(2u−1)
.

(5)The orientation of the contour should be chosen such that Ř(u) = 1 + O(u) in the next
computation.
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Except for the extra factor (1+u/2)−1 in Ť (u), we recognise products of the R and T
series that appeared for the Hodge class. Using the multiplicativity properties of TR
classes, we get

Ω̌g,n

n∏
i=1

Ř(ψi) =
(
−Q1 −Q2

2
√
2

)2−2g−n

exp

(∑
m⩾1

(−1)m+1

m 2m
κm

)
Λ[−1]2Λ

[
1
2

]
.

Putting this together with (5.17) in the master formula yields the second claim. □

Remark 5.2. — Proposition 5.1 can also be derived by combining Theorem 2.3 with
the results of [YZ24, AN24, CGFG25], and applying the techniques described in part
C of Section 5.1.1. First, the correlators of the generalised BGW τ -function introduced
by [Ale18] can be obtained by expanding the topological correlators ωg,n on the r = 2

half Seiberg–Witten curve at the point ζ = ∞ with the identification of parameters
s = Q1 − Q2, as proved in [AN24, §5]. (It would be possible to give a proof of
the aforementioned statement using the techniques developed in this paper, as the
generalised BGW τ -function satisfies a full set of Virasoro constraints.) Second, the
generalised BGW correlators are proved to admit an interpretation in terms of triple
Hodge integrals Λ[−1]2Λ

[
1
2

]
in [YZ24]. Third, the expansion coefficients of the ωg,n

near the ramification point ζ = Q1+Q2

2 encode descendant integrals of the deformed
Theta class [CGFG25]. Combining all these results, Proposition 5.1 can be proved by
relating the expansion coefficients in different bases of expansion using the techniques
described in part C of Section 5.1.1.

Remark 5.3. — As alluded to in the previous remark, it is worth stressing that the
very same ωg,n on the r = 2 half Seiberg–Witten curve (up to twisting) calculates the
Gaiotto vector correlators, triple Hodge integrals, deformed Theta integrals or gener-
alised BGW correlators depending on whether one expands at ζ = Qa, ζ = Q1+Q2

2 ,
ζ = Q1+Q2

2 or ζ = ∞ respectively, in an appropriate basis of differentials.

5.2. Relation to Hurwitz theory

5.2.1. Hurwitz theory and topological recursion. — Let us briefly review the formal-
ism of weighted Hurwitz numbers. We refer the reader to [GPH17] for more details.
Consider a formal power series of the form

G(ζ) =
∑
m⩾0

Gmζ
m, G0 ̸= 0.

Weighted single Hurwitz numbers HG;g(µ1, . . . , µn) of genus g ⩾ 0 with µ1, . . . , µn ∈
Z>0 are weighted sums of ramified coverings of P1 by a smooth genus g curve of
degree d =

∑n
i=1 µi with prescribed ramification profile {µ1, . . . , µn} over ∞ ∈ P1.

The weight depends on the profile of the other ramification points in a way specified
by G.
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To define them, we start by defining the disconnected weighted single Hurwitz
numbers via the following calculation in the centre of the group algebra of Sd

H
•
G;χ(µ1, . . . , µn) =

1

d!
[βχ+n−d · id]Cµ

d−1∏
i=1

G(βJi),

where Ji =
∑

j<i(j i) are the Jucys–Murphy elements, Cµ the indicator of the conju-
gacy class of a permutation with cycles of lengths µ1, . . . , µn, and [βb.id] extracts the
coefficient of βb.id from the expression to its right. The interpretation as enumeration
of branched covers of P1 of Euler characteristic χ is well-known. The (connected)
weighted single Hurwitz numbers HG;g(µ1, . . . , µn) are then defined by inclusion-
exclusion from the disconnected ones. Classical choices of weights are

• G(ζ) = exp(ζ): simple Hurwitz numbers with simple ramification away from ∞;
• G(ζ) = 1/(1− ζ): strictly monotone Hurwitz numbers;
• G(ζ) = (1 + ζ): weakly monotone Hurwitz numbers, closely related to dessins

d’enfants or bipartite maps.
Weighted Hurwitz numbers are governed by topological recursion: this has been

proved in [ACEH20] for polynomial G and in [BDBKS24] in largest possible generality,
including rational-exponential G. For rational G, an alternative proof that relates the
cut-and-join equation for rationally weighted Hurwitz numbers with W-constraints
also appeared recently in [CDO24]. The precise statement is the following.

Theorem 5.4 ([ACEH20, BDBKS24]). — Assume that G is an exponential times a
rational function, and let (ω̂g,n)g,n be the correlators constructed by running topolog-
ical recursion on the spectral curve P1 parametrised as

(5.18) x̂(ζ) =
ζ

γG(ζ)
, ŷ(ζ) =

ζ

x̂(ζ)
,

and equipped with ω̂0,1 = ŷdx̂ and ω̂0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1−ζ2)2
, assuming that x̂ has simple

ramification points. Then, we have for any g, n the all-order series expansion as ζi → 0

in the variable xi = x(ζi):

ω̂g,n(ζ1, . . . , ζn)−
δg,0δn,2dx̂1dx̂2
(x̂1 − x̂2)2

≈
∑

µ1,...,µn∈Z>0

#Aut(µ) · γµ1+···+µn ·HG;g(µ1, . . . , µn)

n∏
i=1

d(x̂(zi)
µi).

The factor #Aut(µ) =
∏

i⩾1 i
mimi! with mi = #{j | µj = i} is necessary for

the comparison with the normalisation of HG;g in [GPH17]. The assumption that the
spectral curve has simple ramification points can be waived using the limit arguments
of [BBC+25].

5.2.2. Application to |ΓΛ⟩ and |ΓCDO
Λ ⟩. — Combining Theorem 5.4 and our main

results Theorem 2.3 and Theorem 2.6, we can give a Hurwitz theory interpretation
to a part of the two Whittaker vectors, after specialisation to the parameter Q1 = 0.
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Let us start with the Gaiotto vector |ΓΛ⟩, whose expansion coefficients were denoted
Φg,n in (2.7). We have the following corollary of Theorem 2.3 — its assumption at
Q1 = 0 imposes that the other Qs are non-zero and pairwise distinct.

Corollary 5.5. — Consider the Gaiotto vector |ΓΛ⟩, and substitute Q1 = 0. Then,
for any pairwise distinct Q2, . . . , Qr ∈ C∗, any (g, n) ∈ Z⩾0 × Z>0 and µ ∈ Zn

>0,
we have

Φg,n

[
1 ··· 1
µ1 ··· µn

]
= µ1 · · ·µn ·#Aut(µ) · Λr(µ1+···+µn) ·HG;g(µ1, . . . , µn),

with the weight generating series

G(ζ) =
1∏r

a=2(Qa − ζ)
.

Corollary 5.6. — Consider the Whittaker vector |ΓCDO
Λ ⟩ with r ⩾ 2 and substitute

Q1 = 0. Then, for any (P1, . . . , Pr, 0, Q2, . . . , Qr−1) in the set R of Definition 4.2,
and (g, n) ∈ Z⩾0 × Z>0 and µ ∈ Zn

>0, we have

Φg,n

[
1 ··· 1
µ1 ··· µn

]
= µ1 · · ·µn ·#Aut(µ) · Λr(µ1+···+µn) ·HG;g(µ1, . . . , µn),

with the weight generating series

G(ζ) =

∏r
a=1(Pa + ζ)∏r−1
a=2(Qa − ζ)

.

Proof. — For Corollary 5.5, consider the correlators ϕg,n defined in (2.10) using the
coefficients Φg,n of |ΓΛ⟩. Theorem 2.3 states that these correlators can be analytically
continued to the curve defined by

x(ζ) = − Λr∏r
a=1(Qa − ζ)

, y(ζ) =
ζ

x(ζ)
= − ζ

Λr

r∏
a=1

(Qa − ζ), ζ ∈ P1.

and their analytic continuations coincide with the correlators (ωg,n)g,n of the topo-
logical recursion on this curve, considered as a spectral curve with ω0,1 = ydx and
ω0,2(ζ1, ζ2) = dζ1dζ2/(ζ1 − ζ2)

2. Setting Q1 = 0 and define x̂ = x−1 and ŷ =

x2y recovers the curve (5.18) associated to weighted Hurwitz numbers with G(ζ) =

1/
∏r

a=2(Qa − ζ) and γ = Λr. Let ω̂g,n be the topological recursion correlators on this
curve.

Since ydx = −ŷdx̂ and the ramification points of x are those of x̂, the recursive
definition (2.11) implies ωg,n = (−1)2g−2+nω̂g,n = (−1)nωg,n. Then, for any g, n and
µ1, . . . , µn > 0 we have

Φg,n

[
1 ··· 1
µ1 ··· µn

]
=

Th. 2.3
(−1)n Res

ζ1=0
· · · Res

ζn=0
ωg,n(ζ1, . . . , ζn)

n∏
i=1

x(ζi)
µi

= Res
ζ1=0

· · · Res
ζn=0

ω̂g,n(ζ1, . . . , ζn)

n∏
i=1

x̂(ζi)
−µi

=
Th. 5.4

µ1 · · ·µn ·#Aut(µ) · Λr(µ1+···+µn) ·HG;g(µ1, . . . , µn).

The proof of Corollary 5.6 is similar and omitted. □
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Remark 5.7. — The presence of the prefactor µ1 · · ·µn is due to the choice of nor-
malisation in the definition of the coefficients of the Whittaker vectors, see e.g. (2.7).
The choice of setting Q1 = 0 in the above Corollary 5.5 and Corollary 5.6 is arbitrary.
Indeed, if one were to set one of the other Qa to 0 instead, the only difference in
the corollaries would be that the Hurwitz numbers would appear as Φg,n

[
a ··· a
µ1 ··· µn

]
instead of Φg,n

[
1 ··· 1
µ1 ··· µn

]
.

5.2.3. Comments on gauge/Hurwitz correspondences. — In this section, we comment
on the relation between gauge theory and Hurwitz theory that has appeared pre-
viously in the physics literature [GT93b, GT93a]. Gross and Taylor consider the
large N expansion of two-dimensional UN Yang–Mills theory on a target Riemann
surface, and interpret the expansion coefficients as certain Hurwitz numbers counting
branched coverings of the target Riemann surface. A precise mathematical statement
of the former is proved in the recent paper [Nov24]. On the other hand, the large N
limit of two-dimensional UN Yang–Mills theory on S2 can be interpreted as the in-
stanton partition function for four-dimensional N = 2 supersymmetric gauge theories
[MMO05]. Putting these two facts together gives a Hurwitz-theoretic interpretation
of the Nekrasov instanton partition function.

The connection between gauge theory and Hurwitz theory that we proved in
the previous section Section 5.2.2 is different from the aforementioned one derived
from two-dimensional Yang–Mills theory. Indeed, Corollary 5.5 shows that the ex-
pansion coefficients of the Gaiotto vector themselves coincide with certain rationally-
weighted Hurwitz numbers, as opposed to the instanton partition function (which
is the squared-norm of the Gaiotto vector). In the specific case of two-dimensional
Yang–Mills theory on S2, which corresponds to our case of interest, the associated
Hurwitz numbers are (simple) double Hurwitz numbers, see [Nov24, Th. 4.4]. It may
be possible to recover this result from our Corollary 5.5, but we are not aware of a
derivation of Corollary 5.5 from the observations of Gross and Taylor.

5.3. Quantum curves

5.3.1. Background and definitions. — The Gaiotto and the CDO curves belong to the
class of spectral curves for which Bouchard and Eynard have constructed associated
quantum curves in [BE17], so we can directly apply their results. We first review the
context.

A. Wave functions and quantum curves. — Given the correlators (ωg,n)g,n constructed
by topological recursion on a genus zero spectral curve, say S, uniformised by the
coordinate ζ ∈ P1, we can define the associated wave function (sign +) and the dual
wave function (sign −)
(5.19) ψ±

β :=

exp

( ∑
g∈Z⩾0

n∈Z>0

(−1)nℏ2g−2+n

n!

∫ ζ

β

· · ·
∫ ζ

β

(
ωg,n(ζ1, . . . , ζn)− δg,0δn,2

dx(ζ1)dx(ζ2)

(x(ζ1)− x(ζ2))2

))
.
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It depends on the choice of a base point β ∈ S, which is typically chosen in x−1(∞).
The integral

∫ ζ

β
ω0,1 may need to be regularised (see Definition 5.8). The dual wave

function is obtained from the wave function by replacing ℏ with −ℏ.
A quantisation of the spectral curve whose underlying defining polynomial is given

by P (x, y) = 0 is a differential operator P̂ (ℏ, x, ℏ d
dx ) which is polynomial in ℏ, and

whose symbol — obtained by replacing ℏ d
dx by y and then setting ℏ to 0 — is the

polynomial P (x, y). There is no unique way to upgrade P (x, y) to a quantum curve
as there are always issues of ordering — in particular xy − yx = 0 gets quantised
to xℏ d

dx − ℏ d
dxx ̸= 0. The main theorem of [BE17] is that, as long as the curve is

of genus 0 and satisfies a key admissibility condition (which is valid for the Gaiotto
and CDO curves), there exists a differential operator which is a quantisation of the
original spectral curve and whose solution — considered as a formal expansion as
ℏ → 0 — is the wave function ψ±

β . Such a quantisation is usually called a quantum
curve, and [BE17] provides an explicit algorithm to compute it.

B. Wave functions for Whittaker vectors. — Recall that the Gaiotto vector takes the
form

|ΓΛ⟩ = exp

( ∑
(g,n)∈Z⩾0×Z>0

ℏg−1

n!

∑
a1,...,an∈[r]
k1,...,kn∈Z>0

Φg,n

[ a1 ··· an

k1 ··· kn

] n∏
i=1

J
aj

−kj

kj

)
.

Consider as well the correlators ωg,n of the associated spectral curve, related to the
Gaiotto vectors by (2.10). If we introduce the algebra homomorphism called principal
specialisation

(5.20) ev±
a :

Jb
−k 7−→ ∓ℏδa,bkx−k

ℏ 7−→ ℏ2
,

we then have as ζ → Qa for each a ∈ [r]

(5.21) ψ±
a (ζ) := ψ±

Qa
(ζ)≈ ev±

a (|ΓΛ⟩) .

The same holds for the CDO vector, provided we take the convention Qr = ∞ in
(5.21) for the remaining pole of x.

C. The (0, 1) and (0, 2) terms. — The (0, 1) and (0, 2) terms in the wave functions
(5.19) must be carefully examined due to the singularities in the integrand. We explain
the regularisation for (0, 1), that should be part of the definition (5.19) for (5.21) to
hold, and show that the (0, 2) term is well-defined. This will also be useful to evaluate
the asymptotics of the wave functions as ζ approaches the r poles of x (Corollary 5.11
and 5.12).

In the Gaiotto case, we have x−1(∞) = {Q1, . . . , Qr} and ω0,1 = ydx has a
simple pole at ζ = Qa, with residue −Qa. For the CDO case, we have x−1(∞) =

{Q1, . . . , Qr−1,∞} and ω0,1 has a simple pole at ζ = Qa with residue −Qa for
a ∈ [r − 1]. At ζ = ∞ we rather have a double pole with behaviour

ω0,1(ζ) =
(
(−Λ)−r − |P |+ |Q|

x(ζ)
+O

(
x(ζ)−2

))
dx(ζ).
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Therefore, we take the following definition of the regularised integrals.

Definition 5.8. — For the (0, 1) term in the wave function (5.19) for the half Seiberg–
Witten curve, we take

(5.22)
∫ ζ

Qa

ω0,1 := Qa ln(x(ζ)) +

∫ ζ

Qa

(
ω0,1 −

Qadx

x

)
,

and in the CDO case∫ ζ

∞
ω0,1 := (−Λ)−rx(ζ)− (|P |+ |Q|) lnx(ζ)+

∫ ζ

∞

(
ω0,1−

(
(−Λ)−r − |P |+ |Q|

x

)
dx

)
.

Since ωg,n for 2g − 2 + n > 0 only has poles at ramification points, those multiple
integrals in (5.19) are well-defined. The double integral of ω0,2 is also well-defined and
explicitly computable.

Lemma 5.9. — We have∫ ζ

Qa

∫ ζ

Qa

(
ω0,2(ζ

′, ζ ′′)− dx(ζ ′)dx(ζ ′′)

(x(ζ ′)− x(ζ ′′))2

)
= ln

( Aa

x′(ζ)(ζ −Qa)2

)
with

(5.23) Aa = − Λr∏
b̸=a(Qb −Qa)

or Aa = −Λr

∏r
b=1(Pb +Qa)∏
b ̸=a(Qb −Qa)

.

And, in the CDO case:∫ ζ

∞

∫ ζ

∞

(
ω0,2(ζ

′, ζ ′′)− dx(ζ ′)dx(ζ ′′)

(x(ζ ′)− x(ζ ′′))2

)
= ln

( (−Λ)r

x′(ζ)

)
.

Proof. — Since ω0,2(ζ1, ζ2) =
dζ1dζ2

(ζ1−ζ2)2
= dζ1dζ2 ln(ζ1 − ζ2), we have

∫ ζ1

ζ2

∫ ζ3

ζ4

(
ω0,2(ζ

′, ζ ′′)− dx(ζ ′)dx(ζ ′′)

(x(ζ ′)− x(ζ ′′))2

)
= ln

( ζ1 − ζ3
x(ζ1)− x(ζ3)

ζ2 − ζ4
x(ζ2)− x(ζ4)

x(ζ1)− x(ζ4)

ζ1 − ζ4

x(ζ2)− x(ζ3)

ζ2 − ζ3

)
.

Taking ζ1 = ζ3 = ζ and ζ2 = ζ4 = β yields∫ ζ

β

∫ ζ

β

(
ω0,2(ζ

′, ζ ′′)− dx(ζ ′)dx(ζ ′′)

(x(ζ ′)− x(ζ ′′))2

)
= ln

( 1

x′(β)x′(ζ)

(x(ζ)− x(β))2

(ζ − β)2

)
.

As β → Qa we have x(β) ∼ −Aa/(β −Qa) for Aa ∈ C∗ as given in (5.23), and thus∫ ζ

Qa

∫ ζ

Qa

(
ω0,2(ζ

′, ζ ′′)− dx(ζ ′)dx(ζ ′′)

(x(ζ ′)− x(ζ ′′))2

)
= ln

( Aa

x′(ζ)(ζ −Qa)2

)
.

In the CDO case, as β → ∞ we have x(β) ∼ (−Λ)rβ and this leads to the second
claim. □
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D. Asymptotics of wave functions near poles of x

Definition 5.10. — The stable part of the wave function is

ψ̃±
a (ζ) = exp

( ∑
(g,n)∈Z⩾0×Z>0

2g−2+n>0

(±ℏ)2g−2+n

n!

∫ ζ

Qa

· · ·
∫ ζ

Qa

ωg,n

)
.

In other words, it is (5.19) where we omit the (0, 1) and the (0, 2) terms. The
properties of the ωg,n for 2g − 2 + n > 0 imply that the expression inside is a formal
power series in ℏ of meromorphic functions of ζ, with poles only at the ramification
points. By construction, ψ̃±

a (Qa) = 1 for any a ∈ [r].

Corollary 5.11. — For the Gaiotto wave functions, for any a, b ∈ [r] we have

ψ+
a (ζ) ∼

ζ→Qb

Ba,b · ψ̃+
a (Qb) · (x(ζ))ℏ

−1Qb−δb ̸=a ,

where

Ba,b − δa,b = ±δa ̸=b · i(Λr)ℏ
−1(Qa−Qb)+1 · eℏ

−1r(Qa−Qb) · (Qa −Qb)
2ℏ−1(Qb−Qa)−2

×
∏

c ̸=a,b

(Qc −Qa)
ℏ−1(Qc−Qa)−1/2(Qc −Qb)

ℏ−1(Qb−Qc)−1/2.

Corollary 5.12. — In the CDO case, for any a, b ∈ [r − 1] we have

ψ+
a (ζ) ∼

ζ→Qb

Ba,b x
ℏ−1Qb−δb̸=a ,

where

Ba,b − δa,b = ±δa ̸=b · ieℏ
−1(Qb−Qa) · (Λr)ℏ

−1(Qa−Qb)+1 · (Qa −Qb)
2ℏ−1(Qb−Qa)−2

×
∏

c̸=a,b

(Qc −Qa)
ℏ−1(Qc−Qa)−1/2(Qc −Qb)

ℏ−1(Qb−Qc)−1/2

×
r∏

c=1

(Qb + Pc)
−ℏ−1(Qb+Pc)+1(Qa + Pc)

ℏ−1(Qa+Pc) × ψ̃+
a (Qb).

For a ∈ [r − 1] and b = r, we have

ψ+
a (ζ) ∼

ζ→∞
Ba,r e

ℏ−1(−Λ)−rx x−ℏ−1(|P |+|Q|)−1,

where

Ba,r = ±i(−Λr)ℏ
−1(Qa+|P |+|Q|)+1e−ℏ−1Qa

×
∏
c̸=a

(Qa −Qc)
ℏ−1(Qc−Qa)−1/2

r∏
c=1

(Pc +Qa)
ℏ−1(Pc+Qa)+1/2 · ψ̃+

a (∞).

For a = r and b ∈ [r − 1], we have

ψ+
r (ζ) ∼

ζ→Qb

Br,b x
ℏ−1Qb−1,
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where

Br,b = ±ieℏ
−1(|P |+|Q|+Qb) ((−Λ)r)−ℏ−1(|P |+|Q|+Qb)+1

×
∏
c̸=b

(Qb −Qc)
ℏ−1(Qb−Qc)−1/2 ·

r∏
c=1

(Qb + Pc)
−ℏ−1(Qb+Pc)+1/2 · ψ̃+

r (Qb).

For a = b = r, we have

ψ+
r (ζ) ∼

ζ→∞
Br,re

ℏ−1(−Λ)−rx x−ℏ−1(|P |+|Q|),

with Br,r = 1.

Proof. — Both corollaries follow immediately from Definition 5.8 and Lemma 5.9. □

5.3.2. Application to Gaiotto and CDO vectors. — The half Seiberg–Witten and CDO
spectral curves are of genus 0 and all the poles of x are simple. Therefore, we can
apply [BE17, Lem. 5.14] to obtain the quantum curves. It turns out that these are
generalised hypergeometric differential equations. We denote D = ℏx∂x and introduce
the Pochhammer symbol

[x]k = x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)
.

We also note that
x(x− 1) · · · (x− k + 1) = (−1)k[−x]k.

The following propositions give quantum curves for the Gaiotto and CDO wave-
functions respectively.

Proposition 5.13. — The Gaiotto wave functions satisfy the differential equations,(6)

for any a ∈ [r]

(5.24)
( r∏

c=1

(Qc + ℏδc,a −D) +
Λr

x

)
xψ+

a = 0.

For b ∈ [r], this function has the explicit series representation as ζ → Qb

(5.25) ψ+
a ≈


xℏ

−1Qa

(
1 +

∑
k⩾1

(−Λr)k

k! (ℏrx)k
1∏

c ̸=a

[
Qc−Qa

ℏ
]
k

)
if b = a,

Ba,b x
ℏ−1Qb−1

(
1 +

∑
k⩾1

(−Λr)k

k! (ℏrx)k
1[

Qa−Qb

ℏ + 2
]
k

υa,bk

)
if b ̸= a,

with
υa,bk =

1∏
c̸=a,b

[
Qc−Qb

ℏ + 1
]
k

,

and the constants Ba,b appearing in Corollary 5.11.

(6)A different quantum curve (without the term ℏδc,a in (5.24)) in the Gaiotto case appears in
[DHS09] where the authors use the corresponding wave function to build the dual Nekrasov instanton
partition function for pure gauge theory.
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The series in brackets in (5.25) define entire functions of x−1, namely the following
generalised hypergeometric functions:

r−1F0

[ ∅(
ℏ−1(Qc−Qa)

)
c ̸=a

](
− ℏ−rΛrx−1

)
for b = a,

r−1F0

[ ∅(
ℏ−1(Qb−Qa)+1+δc,b

)
c ̸=a

](
− ℏ−rΛrx−1

)
for b ̸= a.

Therefore, the right-hand sides of (5.25) — indexed by b ∈ [r] — provide a basis
of analytic solutions of (5.24) in the domain C ∖ γ for any fixed choice of path γ

between 0 and ∞. The presence of the branch cut γ is solely due to the power of x in
the prefactor.

Proposition 5.14. — The CDO wave functions satisfy the differential equations for
any a ∈ [r − 1]

(5.26)
(r−1∏

c=1

(Qc + ℏδc,a −D) · x+ Λr
r∏

c=1

(Pc +D)

)
ψ+
a = 0.

We have the explicit series representation as ζ → Qb for any b ∈ [r−1], or as ζ → ∞:
(5.27)

ψ+
a ≈



xℏ
−1Qa

(
1 +

∑
k⩾1

(−ℏ(−Λ)r)k

k!xk

∏r
c=1

[
− Pc+Qa

ℏ
]
k∏

c̸=a

[
Qc−Qa

ℏ
]
k

)
if b = a,

Ba,b x
ℏ−1Qb−1

(
1 +

∑
k⩾1

(−ℏ(−Λ)r)k

k!xk
ĉa,bk

)
if b ̸= a,

Ba,r e
ℏ−1(−Λ)−rxx−ℏ−1(|P |+|Q|)−1

(
1 +

∑
k⩾1

cak

(ℏ(−Λ)r

x

)k
)

if b = r,

with

ĉa,bk =

∏r
c=1

[
− Pc+Qb

ℏ + 1
]
k∏

c ̸=b

[
Qc−Qb

ℏ + 1 + δc,a
]
k

,

and

(5.28) cak =
∑

k1,...,kr−1⩾0
k1+···+kr−1=k

∏r−1
c=1

[Pc+2+Qc

ℏ + δa,c
]
kc

k1! · · · kr−1!

×
[
k1 + · · ·+ kc−1 +

c∑
d=1

(Pd+1 +Qd

ℏ
+ δd,a

)]
kc

,

where we take Pr+1 := P1 by convention.
For a = r, we rather have the differential equation:

(5.29)
(r−1∏

c=1

(Qc −D) · x+ Λr
r∏

c=1

(Pc +D)

)
ψ+
r = 0.
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We have the following explicit series representation as ζ → x−1(∞):
(5.30)

ψ+
r ≈


Br,bx

ℏ−1Qb−1

(
1 +

∑
k⩾1

(−ℏ(−Λ)r)k

k!xk

∏r
c=1

[
− Pc+Qb

ℏ + 1
]
k∏

c̸=b

[
Qc−Qb

ℏ + 1
]
k

)
if ζ → Qb,

eℏ
−1(−Λ)−rxx−ℏ−1(|P |+|Q|)

(
1 +

∑
k⩾1

ck,r

(ℏ(−Λ)r

x

)k
)

if ζ → ∞,

with

ck,r =
∑

k1,...,kr−1⩾0
k1+···+kr−1=k

∏r−1
c=1

[Pc+2+Qc

ℏ
]
kc

[
k1 + · · ·+ kc−1 +

∑c
d=1

Pd+1+Qd

ℏ
]
kc

k1! · · · kr−1!
,

where we take Pr+1 := P1 by convention in the above formula.

In contrast with the Gaiotto case, now the series in brackets in the first two lines
of (5.27) and the first line of (5.30) have zero radius of convergence, and they corre-
spond to generalised hypergeometrics rFr−2. In principle, a Borel resummation would
be necessary to construct analytic solutions. This is related to the fact that ω0,1 has a
double pole at a simple pole of x, and thus the differential equations have an irregular
singularity at ∞. However, the quantum curve (5.26) for a ∈ [r−1] admits an explicit
basis of solutions, indexed by b ∈ [r]

(5.31) x−ℏ−1Pb
(r−1)F(r−1)

[ (
1−δc,a−ℏ−1(Pb+Qc)

)r−1

c=1(
1−ℏ−1(Pb−Pc+δc⩾b

)
)r−1

c=1

]
(ℏ−1(−Λ)−rx).

The differential equation (5.29) also admits an explicit basis of solutions, indexed by
b ∈ [r]

x−ℏ−1Pd
(r−1)F(r−1)

[ (
1−ℏ−1(Pb+Qc)

)r−1

c=1(
1−ℏ−1(Pb−Pc+δc⩾b

)
)r−1

c=1

]
(ℏ−1(−Λ)−rx).

To summarise, we obtain a basis of analytic solutions for the differential equations
(5.26) and (5.26) in C ∖ γ for a fixed choice of a branch cut γ between 0 and ∞.
As before, the branch cut γ is only due to the power of x in the prefactor. We discuss
the relation between this analytic basis and the formal basis obtained from wave
functions in Section 5.3.3.

r + 1

r

r + 1

r

half SW CDO

Figure 1. Newton polygons of the half Seiberg–Witten and CDO curves.
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Proof of Proposition 5.13. — The equation for the half Seiberg–Witten curve reads

P (x, y) =

r∑
i=0

yr−ipi(x) = 0 with pi(x) = (−1)r−ixr−i+1ei(Q) + δi,rΛ
r.

For a ∈ {0} ∪ [r], we need to calculate the αi defined in [BE17, §2.2], which is the
height of the leftmost point in the Newton polygon (see Figure 1). For the half Seiberg–
Witten curve, this is αi = (1 + 1/r)i and thus ⌊αi⌋ = i + δi,r for any i ∈ {0} ∪ [r].
Then, [BE17, Lem. 5.14] yields

(5.32)
(
pr(x) +

r∑
i=1

Di−1x−ipr−i(x)D −
r−1∑
i=1

Cr−i(Qa)D
i−1ℏx

)
ψ+
Qa

= 0,

with the constants:

(5.33) Cr−i(Qa) = lim
ζ→Qa

x−i

(r−i∑
ℓ=1

pr−i−ℓ(x)y
ℓ

)
=

r−i∑
ℓ=1

(−1)ℓ+iQℓ
aer−i−ℓ(Q),

recalling that xy = ζ. Introducing Q[a] = (Qb)b̸=a and writing

ek(Q) = Qaek−1(Q
[a]) + ek(Q

[a]) with e−1 = 0,

we recognise in (5.33) a telescopic sum:

Cr−i(Qa) = (−1)i−1
r−i∑
ℓ=1

(
(−Qa)

ℓ+1er−1−i−ℓ(Q
[a])− (−Qa)

ℓer−i−ℓ(Q
[a])

)
= (−1)i−1Qaer−1−i(Q

[a]).

We insert this in (5.32). Then, writing xD = Dx− ℏx in the first sum, we obtain(
Λr +

r∑
i=0

(−1)ier−i(Q)Dix−
r∑

i=1

(−1)iDi−1
(
er−i(Q)−Qaer−1−i(Q

[a])
)
ℏx

)
ψ+
a = 0,

Therefore:(
Λr

x
+

r∑
i=0

(−1)ier−i(Q)Di − ℏ
r∑

i=1

(−1)iDi−1er−i(Q
[a])

)
xψ+

a = 0.

which can be re-summed as

(5.34)
(
Λr

x
+

r∏
b=1

(Qb −D) + ℏ
r∏

b=1
b̸=a

(Qb −D)

)
xψ+

a = 0.

From Definition 5.8, Lemma 5.9 and (5.21), the wave function has an expansion as
ζ → Qa in the local coordinate x−1, of the form

ψ+
a ≈ xℏ

−1Qa

(∑
k⩾0

ckx
−k

)
, c0 = 1,
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with ck a formal Laurent series in ℏ. Inserting this in the differential equation (5.34)
we get for any k ∈ Z⩾0

Λrck +

( r∏
b=1

(Qb −Qa + ℏk) + ℏ
∏
b ̸=a

(Qb −Qa + ℏk)
)
ck+1 = 0.

In other words
ck+1 =

−Λrck
ℏ(k + 1)

∏
b ̸=a(Qb −Qa + ℏk)

.

With the initial condition c0 = 1, we get

ck =
(−Λr)k

k! ℏr
1∏

b ̸=a

∏k−1
ℓ=0 (Qb −Qa − ℏℓ)

=
Λrk

k! ℏkr
1∏

b ̸=a

[
Qb−Qa

ℏ
]
k

.

Near ζ → Qb for b ̸= a, the wave function rather has an expansion in the local
coordinate x−1 of the form

ψ+
a ≈ Ba,bx

ℏ−1Qb−1

(∑
k⩾0

ckx
−k

)
, c0 = 1.

Inserting this expansion in the differential equation (5.34) leads again to a recursion
for ck which can be solved explicitly and gives the announced result. □

Proof of Proposition 5.14. — As the proof is similar to the Gaiotto case, we will be
brief. The equation for the CDO curve reads

P (x, y) =

r∑
i=0

yr−ipi(x) = 0 with pi(x) = (−1)r−ixr+1−iei−1(Q) + xr−iΛrei(P ).

We first observe that αi = i for i ∈ {0} ∪ [r], hence Di = ℏx∂x := D. For a ∈ [r − 1]

we compute the constants

Cr−i(Qa) = lim
ζ→Qa

(r−1−i∑
ℓ=0

pr−1−i−ℓ(x)y
r−i−ℓx−(i+1)

)

=

r−1−i∑
ℓ=1

(−1)r−ℓQr−i−ℓ
a eℓ−1(Q)

=

r−i−2∑
ℓ=0

(−1)r−1−ℓQr−i−1−ℓ
a

(
eℓ(Q

[a]) +Qaeℓ−1(Q
[a])

)
= (−1)i−1Qaer−i−2(Q

[a]).

(5.35)

Then, the differential equation for the wave function is [BE17, Lem. 5.14]

(5.36)
(
pr(x) +

r∑
i=1

Di−1x−ipr−i(x)D −
r−1∑
i=1

Di−1Cr−i(Qa)ℏx
)
ψ+
a = 0.

Writing ℏx = Dx−xD, the last sum combines with the second sum, and easy algebraic
manipulations lead to the differential equations (5.26). For a = r, we rather need the
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constants

Cr−i(∞) = lim
ζ→∞

r−1−i∑
ℓ=0

pℓ(x)y
r−i−ℓx−(i+1)

= lim
ζ→∞

r−1−i∑
ℓ=0

ζr−i−ℓ
(
(−1)r−ℓeℓ−1(Q) + Λrx−1eℓ(P )

)
= lim

ζ→∞

∑r−1−i
ℓ=0

(
(−1)r−ℓeℓ−1(Q)

∏r
a=1(ζ + Pa)− eℓ(P )

∏r−1
a=1(Qa − ζ)

)∏r
a=1(Pa + ζ)

= lim
ζ→∞

1∏r
a=1(ζ + Pa)

( ∑
0⩽j⩽r

0⩽ℓ⩽r−i−2

−
∑

0⩽j⩽r−i−1
0⩽ℓ⩽r−1

)
ej(P )eℓ(Q)ζ2r−1−i−j−ℓ

= (−1)i−1er−i−1(Q).

Inserting this into (5.36) and using the previous tricks yields the differential equation
(5.29).

It is then straightforward to compute the basis of series solutions for those corre-
sponding the expansions as ζ → Qa with a ̸= r. As for the expansion of ψ+

a when
ζ → ∞, we first notice that a solution to the differential equation (5.26) is given by
the function

x−ℏ−1P1
(r−1)F(r−1)

[ (
1−δℓ,a−ℏ−1(P1+Qb)

)r−1

b=1(
1−ℏ−1(P1−Pb+1)

)r−1

b=1

]
(ℏ−1(−Λ)−rx).

Indeed, conjugating (5.26) by x−ℏ−1P1 yields precisely the differential equation satis-
fied by the generalised hypergeometric series above which is an analytic function in x.
Then, the asymptotic expansion of (r−1)F(r−1) as x → ∞ is computed in [VW14,
Th. 4.1], and plugging in the exponentially growing term in the asymptotic expansion
yields the result. The calculation for the expansion of ψ+

r as ζ → ∞ is analogous –
the relevant analytic solution of the differential equation is

x−ℏ−1P1
(r−1)F(r−1)

[ (
1−ℏ−1(P1+Qc)

)r−1

c=1(
1−ℏ−1(P1−Pc+1)

)r−1

c=1

]
(ℏ−1(−Λ)−rx). □

5.3.3. Relating the formal and analytic bases of CDO differential equations

Fix a ∈ [r]. For the a-th CDO differential equation of Proposition 5.14 we have
encountered two bases of solutions. We focus on the case a ∈ [r−1], as the a = r case
is similar.

The first one is a formal WKB solution given by the wave function ψ+
a (ζ): it is

a formal series of exponential type in the formal parameter ℏ whose coefficients are
meromorphic functions of ζ on the CDO curve, and we obtain locally in the x-plane r
solutions by choosing ζ among the r preimages of x in the CDO curve. In particular,
doing so in a neighbourhood of x = ∞ gives (r−1) solutions that are up to a (explicit)
power of x and (not explicit) constants Ba,b in prefactor generalised hypergeometric
series rFr−2 in the variable 1/x, while the last one is more complicated. These r series
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have zero radius of convergence. Up to a change of normalisation indicated in (5.37)
below, we denote (ψa,b(x))

r
b=1 this basis, given for b ∈ [r − 1] by

ψa,b(x) = (−1)δb ̸=a

∏
c ̸=b Γ

(
Qb−Qc

ℏ + δb,a − δc,a
)∏r

c=1 Γ
(
Qb+Pc

ℏ + δb,a
) ( x

ℏ(−Λ)r

)ℏ−1Qb−1

× rFr−2

[ (
−Qb+Pc

ℏ +1−δb,a

)r

c=1(
Qc−Qb

ℏ +1+δc,a−δb,a

)
c ̸=b

] (
−ℏ(−Λ)rx−1

)
and for b = r by

ψa,r(x) = eℏ
−1(−Λ)−rx

( x

ℏ(−Λ)r

)−ℏ−1(|P |+|Q|)−1 ∞∑
k=0

cak

(ℏ(−Λ)r

x

)k

with the constants cak introduced in (5.28). The new normalisation was chosen so that,
for ζ → Qb

(5.37) ψ+
a (ζ) ≈


Ba,b ·

∏r
c=1 Γ

(
Qb+Pc

ℏ + δb,a
)∏

c ̸=b Γ
(
Qb−Qc

ℏ + δb,a − δc,a
) ·

ψa,b(x)

(ℏ(−Λ)r)
1−ℏ−1Qb

if b ∈ [r − 1],

Ba,r

(
ℏ−1(−Λ)−r

)ℏ−1(|P |+|Q|)+1 · ψa,r(x) if b = r.

The second one is a basis of analytic solutions (χa,b(x))
r
b=1, which is an entire

function of x multiplied by a power of x that creates a branch cut from 0 to ∞.
The entire functions in question are generalised hypergeometric functions (r−1)F(r−1).
Here, ℏ can take any value in C∗. We choose to normalise this basis as

χa,b(x) =

∏r−1
c=1 Γ

(
1− Pb+Qc

ℏ − δc,a
)r−1

c=1∏
c̸=b Γ

(
1− Pb−Pc

ℏ
) ( x

ℏ(−Λ)r

)−ℏ−1Pb

× (r−1)F(r−1)

[ (
1−δc,a−ℏ−1(Pb+Qc)

)r−1

c=1(
1−ℏ−1(Pb−Pc+δc⩾b

)
)r−1

c=1

]( x

ℏ(−Λ)r

)
.

The all-order asymptotic expansion of this basis as x → ∞ must be a linear com-
bination of the formal basis (ψa,b(x))

r
b=1. With the asymptotic expansion of the hy-

pergeometric functions (r−1)F(r−1)(z) as z → ∞ found in [DLM, Ch. 16.11], we find
as x→ ∞

(5.38) χa,b(x) ≈ ψa,r(x) +

r−1∑
d=1

π e−iπℏ−1(Pb+Qd)

sin
(π(Pb+Qd)

ℏ
) ψa,d(x),

where we have used the reflection formula Γ(z)Γ(1− z) = π/sin(πz). Upon inversion
of this linear system, we obtain analytic functions (instead of formal series) that are
asymptotic to the formal series specified by the wave functions.

Proposition 5.15. — As x→ ∞, we have for b ∈ [r − 1]

ψa,b(x) ≈
1

π

r∑
d=1

e−2iπℏ−1Qb ·
∏r−1

c=1 sin
(π(Pd+Qc)

ℏ
)
·
∏r

c=1 sin
(π(Pc+Qb)

ℏ
)

sin
(π(Pd+Qb)

ℏ
)
·
∏

c̸=b sin
(π(Qb−Qc)

ℏ
)∏

c ̸=d sin
(π(Pc−Pd)

ℏ
) · χa,d(x),
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and for b = r:

ψa,r(x) ≈
r∑

d=1

e−iπℏ−1(|P |+|Q|) ·
∏r−1

c=1 sin
(π(Pd+Qc

ℏ
)∏

c̸=d sin
(π(Pd−Pc)

ℏ
) · χa,d(x).

Proof. — Let us introduce pc = eiπℏ
−1Pc and qc = eiπℏ

−1Qc . The linear system (5.38)
takes the form

χa,b(x) ≈
r∑

d=1

Mb,dψa,d(x),

with the matrix

Mb,d =


2iπ

p2b − q2d
if d ∈ [r − 1],

1 if d = r.

If we introduce an auxiliary variable qr and the Cauchy matrix of size r

M̃b,d =
1

p2b − q−2
d

,

we observe that

M = lim
qr→0

M̃ ·K, where K = diag(2iπ, . . . , 2iπ,−q−2
r ).

Using the well-known formula for the inverse of Cauchy matrices, we get

(M̃ ·K)−1
d,b = K−1

d,d · (p2b − q−2
d )

r∏
c=1
c ̸=b

p2b − q−2
c

q−2
c − q−2

d

r∏
c=1
c̸=b

−q−2
b + p2c
p2b − p2c

.

Taking the limit qr → 0 yields

M−1
d,b =



p2b − q−2
d

2iπ

∏r−1
c=1
c̸=d

p2b − q−2
c

−q−2
d + q−2

c

∏r
c=1
c ̸=b

−q−2
d + p2c
p2b − p2c

if d ∈ [r − 1],

∏r−1
c=1(p

2
b − q−2

c )∏r
c=1
c̸=b

(p2b − p2c)
if d = r.

This rational expression can be simplified back to trigonometric functions and leads
to the claimed formulae. □

5.3.4. Lax form. — In this section, we write down the quantum curves obtained for
the Gaiotto and CDO curves in Proposition 5.13 and Proposition 5.14 in Lax form, i.e.,
as first-order matrix-valued linear ordinary differential equations. For this purpose,
consider the column vector

Ψ+
a =

(
ψ+,1
a (ζ), ψ+,2

a (ζ), . . . , ψ+,r
a (ζ)

)T
,

where ψ+,r
a (ζ) = ψ+

a (ζ) is the wave function obtained from topological recursion as
defined in (5.21). The other functions ψ+,1

a (ζ), . . . , ψ+,r−1
a (ζ), are defined in terms of

the ωg,n following [BE17, §5.2], but we do not recall the precise form here — it can
be deduced from the proof of Proposition 5.16 — as we will not use it. From the
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following Lax form of the quantum curve, one can easily write ψ+,j
a (ζ) for j ̸= r in

terms of the ψ+
a (ζ) and its derivatives. Recall the notation Q[a] for the tuple (Qb)b ̸=a.

Applying the results of [BE17], we obtain the following Lax forms.

Proposition 5.16. — In the Gaiotto case, for any a ∈ [r] we have

DΨ+
a =



e1(Q
[a]) 1 0 · · · 0

−e2(Q[a]) 0
. . .

...
...

... 1 0

(−1)rer−1(Q
[a]) 0 · · · 0 −Λr

(−1)rx−1 0 · · · 0 Qa


Ψ+

a .

In the CDO case, for a ∈ [r − 1] we have

DΨ+
a =



(−Λ)−re0(Q
[a])x− e1(P ) 1 0 · · · (−1)r−1Qae0

(
Q[a]

)
x

−(−Λ)−re1(Q
[a])x− e2(P ) 0

. . .
...

...
... 1 Qaer−3

(
Q[a]

)
x

(Λ)−rer−1(Q
[a])x− er−1(P ) 0 · · · 0 −xer−1(Q)− Λrer(P )

Λ−r 0 · · · 0 0


Ψ+

a ,

while for a = r we have

DΨ+
r =



−e1(P ) 1 0 · · · (−1)r−1 (e1(Q) + e1(P ))x

−e2(P ) 0
. . .

...
...

... 1 (−1)r−1
(
er−2(P ) + (−1)r−1er−2(Q)

)
x

−er−1(P ) 0 · · · 0
(
(−1)r−1er−1(P )− er−1(Q)

)
x− Λrer(P )

Λ−r 0 · · · 0 (−Λ)−rx


Ψ+

r .

Proof. — We start with the Lax form of the quantum curve obtained by Bouchard
and Eynard in [BE17, Th. 5.11] for the half Seiberg–Witten curve with the choice of
base point β = Qa:

D



φ1

φ2

...
φr−1

φr


=



e1(Q) 1 0 · · · −ℏ xC1(Qa)
xer(Q)+Λr

−e2(Q) 0
. . .

...
...

... 1 0

(−1)rer−1(Q) 0 · · · 0 1− ℏ xCr−1(Qa)
xer(Q)+Λr

(−1)r+1xer(Q)+Λr

x 0 · · · 0 ℏ xer(Q)
xer(Q)+Λr




φ1

φ2

...
φr−1

φr

 ,
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where φr := −(xer(Q) + Λr)ψ+
a (ζ). The remaining φi for i ∈ [r − 1] are defined in

[BE17, §5.2] — where they are denoted as ψm(x;D) with the divisor D = [ζ]− [Qa].
Also recall the constants Ci(Qa) for i ∈ [r − 1] calculated in (5.33). By defining

Ψ+
a :=



C1(Qa)x
xer(Q)+Λr

...
Cr−1(Qa)x
xer(Q)+Λr

− 1
xer(Q)+Λr

Idr−1

0




φ1

...
φr−1

φr

 ,

the differential equation for Ψ+
a takes the claimed Lax form, after some simplifications

arising from the form of the Ci(Qa).
In the CDO case, with base point β = Qa and a ∈ [r − 1], we get

D



φ1

φ2

...
φr−1

φr


=



− p1(x)
xr−1Λr 1 0 · · · −ℏxC1(Qa)

pr(x)

− p2(x)
xr−2Λr 0

. . .
...

...
... 1 0

−pr−1(x)
xΛr 0 · · · 0 1− ℏxCr−1(Qa)

pr(x)

−pr(x)
Λr 0 · · · 0 ℏxer−1(Q)

pr(x)





φ1

φ2

...
φr−1

φr


,

where φr := −pr(x)ψ+
a (ζ). Again, the remaining φi for i ∈ [r − 1] are defined in

[BE17, §5.2]. Also recall the Ci(Qa) for i ∈ [r − 1] calculated in (5.35) and that

∀i ∈ {0} ⊔ [r] pi(x) = (−1)r−ixr+1−iei−1(Q) + xr−iΛrei(P ).

With the definition

Ψ+
a :=



xC1(Qa)
pr(x)

...
xCr−1(Qa)

pr(x)

− 1
pr(x)

Idr−1

0




φ1

...
φr−1

φr

 ,

we obtain the claimed Lax form. We omit the details in the case with base point
β = ∞, which is similar. □

5.4. Determinantal formulae. — The partition function of topological recursion on
genus 0 spectral curves, which includes the half Seiberg–Witten and CDO spectral
curves, satisfies KP integrability. More precisely, we have

Proposition 5.17. — The Gaiotto and the CDO vectors are ℏ-KP tau functions,
separately for each a ∈ [r] in the series of times (Ja

−k)k∈Z>0
.

Proof. — For the half Seiberg–Witten or CDO spectral curve, x(ζ) is a rational func-
tion and x(ζ)y(ζ) = ζ. The series expansions of

(
ωg,n : (g, n) ∈ Z⩾0×Z>0

)
for these
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spectral curves at ζ = Qa in the variable x(ζ) is encoded in |ΓΛ⟩ seen as a generat-
ing series in the formal variables (Ja

−k)k∈Z>0 . ℏ-KP integrability is then covered by
[ABDB+25] — see also [Zho15]. □

This has several remarkable consequences which we now explain.

5.4.1. Bispinor in terms of wave functions

Definition 5.18. — We define the bispinor

K(ζ1, ζ2) =

√
dζ1dζ2
ζ1 − ζ2

exp

(
ℏ−1

∫ ζ1

ζ2

ω0,1 +
∑

(g,n)∈Z⩾0×Z>0

ℏ2g−2+n

n!

∫ ζ1

ζ2

· · ·
∫ ζ1

ζ2

ωg,n

)
.

There is an analogue of the Christoffel–Darboux formula for this bispinor.

Proposition 5.19. — For the half Seiberg–Witten or the CDO spectral curve, we have

K(ζ1, ζ2) = −
∑r

a=1 ψ
+
a (ζ1)ψ

−
a (ζ2)

√
dx(ζ1)dx(ζ2)

x(ζ1)− x(ζ2)
.

Proof. — According to [BE12, Conj. 7.4], the partition function of topological recur-
sion for compact spectral curves with x and y meromorphic satisfies Hirota bilinear
difference equations. Since ℏ-KP integrability is known to be equivalent to Hirota
bilinear difference equations, Proposition 5.17 justifies that the conjecture holds for
the Gaiotto and CDO spectral curves (since these curves have genus 0, all Theta
corrections in [BE12] can be ignored). Therefore, we can use [BE12, Th. 8.3], which
shows that the bispinor can be expressed as a bilinear expression in the wave function
and the dual wave function(7)

K(ζ1, ζ2) = −
∑r

a=1 ψ
+
a (ζ1)Aa,bψ

−
a (ζ2)

√
dx(ζ1)dx(ζ2)

x(ζ1)− x(ζ2)
,

where

(5.39) A−1
a,b =

∑
ζ∈x−1(x0)

ψ+
a (ζ)ψ

−
b (ζ)

is a matrix which is independent of x0 ∈ P1. Recall that ψ−
a is simply ψ+

a with ℏ
replaced by −ℏ. We compute the matrix A by evaluating the right-hand side of (5.39)
as x0 → ∞ using Corollaries 5.11 and 5.12. For b ̸= a or for b = a but ζ not
approaching Qa, we have ψ+

a (z)ψ
−
b (z) = O(1/x0) as x0 → ∞. Therefore A is a

diagonal matrix and the only term surviving for a = b is the one corresponding to
ζ → Qa: it involves the product of constants Ca,a ·Ca,a|ℏ 7→−ℏ which is always 1. Thus
A = Id. □

Definition 5.20. — The correlators are defined at least as formal series in ℏ as

ωn(ζ1, . . . , ζn) =
∑
g⩾0

ℏ2g−2+nωg,n(ζ1, . . . , ζn).

(7)There is a missing minus sign in [BE12, Th. 8.3] — compare to [BE12, Prop. 3.5] where the
sign appears correctly.
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The disconnected correlators are then defined as formal Laurent series in ℏ
ω

•
n(ζ1, . . . , ζn) =

∑
L⊢[n]

∏
L∈L

ω|L|(ζL).

Proposition 5.21. — For the half Seiberg–Witten or the CDO spectral curve, we have
for n ⩾ 2

ωn(ζ1, . . . , ζn) = (−1)n+1
∑

σ=n-cycle

n∏
i=1

K(ζi, ζσ(i))

in terms of the bispinor of Proposition 5.19. For n = 1, the bispinor is singular on
the diagonal so this formula would not make sense, but a regularisation of it holds

ω1(ζ) = ℏ−1ω0,1(ζ) +

(
lim
ζ′→ζ

ψ(ζ ′, ζ)e−ℏ−1
∫ ζ′
ζ

ω0,1√
dx(ζ)dx(ζ ′)

− 1

x(ζ)− x(ζ ′)

)
dx(ζ).

For the disconnected correlators, this leads to the determinantal formulae
ω

•
n(ζ1, . . . , ζn) = : det

1⩽i,j⩽n
K(ζi, ζj) :,

where the colons indicate that all the factors K(ζi, ζi) appearing in the determinant
should be replaced by ω1(ζi).

Proof. — For n = 1 this is e.g. [BE12, Lem. 8.1]. For n ⩾ 2 this is [BE12, Th. 8.1]
conditionally to [BE12, Conj. 7.4], but the conjecture holds in our case as explained
in the proof of Proposition 5.19. Alternatively: the determinantal formulae are known
by [ABDB+25, §3.1 and 3.2] to be equivalent to the ℏ-KP integrability stated in
Proposition 5.17. □

Remark 5.22. — In the Gaiotto case, Propositions 5.19 and 5.21 together with the
comment after Proposition 5.13 would offer a complete description of the correla-
tors ωn as analytic functions of ℏ, if the constants Ba,b of Corollary 5.12 could be
explicitly computed. In the CDO case, one should rather use Proposition 5.15 for the
analytic description, but again, the constants Ba,b of Corollary 5.12 would have to
be computed. These constants are expressed in terms of the connection coefficients
ψ̃+
a (Qb) and have to do with the way the wave function computed by topological

recursion is normalised. As of writing, we do not know how to obtain a description
of the connection coefficients as analytic functions of ℏ or how to compute them, but
we will relate them to the topological recursion free energies in Proposition 5.23.

5.5. Free energies

5.5.1. In topological recursion

A. Definition. — Given a spectral curve (S, x, y, ω0,2), besides the correlators, the
topological recursion also has a natural definition of free energies Fg = ωg,0 [EO09]:

(5.40) ∀g ∈ Z⩾2 Fg =
1

2− 2g

∑
ρ∈Ram(S)

Res
ζ=ρ

[(
1

2

∫ ζ

σρ(ζ)

ω0,1

)
ωg,1(ζ)

]
.

The free energies F0 and F1 are defined differently, see [EO09].
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B. Deformations. — The free energies satisfy a functional equation that relate them
to the connection matrix ψ̃+

a (Qb) that appeared in Definition 5.10 and Corollary 5.11
or 5.12.

Proposition 5.23. — Let Fg = Fg(Q) be the topological recursion free energies of
the half Seiberg–Witten or the CDO spectral curve, seen as functions of the Q =

(Q1, . . . , Qr). Let e1, . . . , er denote the standard basis of Cr. For any a ̸= b,

ψ̃+
a (Qb) = ψ̃−

b (Qa) = exp
(∑
g⩾2

ℏ2g−2
(
Fg(Q+ ℏ(eb − ea))− Fg(Q)

))
.

Proof. — We use the properties of topological recursion under deformations of spec-
tral curves. For a ∈ [r], we introduce the operator

∇af =
d

dQa
f
∣∣∣
x fixed

,

which acts on functions or n-differentials on the Gaiotto (or CDO) curve. In contrast,
we will use ∂Qa to denote the partial derivative at fixed ζ. Since ω0,1(ζ) = ζ d lnx(ζ)

in both the Gaiotto or the CDO case, we compute

Ωa(ζ) := ∇Qaω0,1(ζ) = −(∂Qa lnx)dz =
dz

Qa − z
=

∫ ∞

Qa

ω0,2(z, ·),

where we recall that ω0,2(ζ1, ζ2) = dζ1dζ2/(ζ1 − ζ2)
2. By [EO07, Th. 5.1], we have for

any (g,m) ∈ Z2
⩾0

(5.41) ∇Qaωg,m(ζ1, . . . , ζm) =

∫ ∞

Qa

ωg,m+1(·, ζ1, . . . , ζm),

where for (g,m) = (0, 0) one should use the regularised integral of ω0,1 from Defini-
tion 5.8 on the right hand side. The x-projection of the integration path from ζ ′ = Qa

to ζ ′ = ∞ is a loop based at x = ∞. Therefore, deforming Qa does not act on the
integration contour and we can iterate (5.41) to obtain for any m ∈ Z⩾0

∇n
Qa
ωg,m(ζ1, . . . , ζm) =

∫ ∞

Qa

· · ·
∫ ∞

Qa

ωg,m+n(·, ζ1, . . . , ζm).

The same formulae hold for ∇Qb
−∇Qa

if we rather integrate from Qb to Qa. We apply
this to Fg = ωg,m=0 for g ⩾ 2. These are analytic functions of Q1, . . . , Qr in the
domain where they are pairwise distinct, and by Taylor expansion we find

Fg

(
Q+ ℏ(eb − ea)

)
= Fg(Q) +

∞∑
n=1

ℏn

n!

∫ Qa

Qb

· · ·
∫ Qa

Qb

ωg,n.

Multiplying by ℏ2g−2 and summing over g ⩾ 2 gives the claim after comparison with
Definition 5.10. □

In view of Propositions 5.19-5.21 and 5.23 it would be interesting to find the Stokes
matrices, the connection coefficients ψ̃+

a (Qb) and perform the resurgence analysis for
the solutions of the differential equations of Propositions 5.13-5.14. In particular, this
would give analytic solutions that can be used for non-perturbative (with respect
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to ℏ) computations of the wave functions, the bispinor, the correlators and the free
energies. Conversely, if we had closed formulae for the free energies, we could obtain
information about the connection coefficients ψ̃+

a (Qb).

5.5.2. In gauge theory. — The instanton (or non-perturbative) part of the Nekrasov
partition function is obtained from the Gaiotto vector by computing the square-norm:

ZNek = ⟨ΓΛ|ΓΛ⟩ .

The full partition function of the underlying N = 2 supersymmetric gauge theory also
has a perturbative part:

ZNek = exp
(∑
g⩾0

ℏ2g−2F pert
g

)
· ZNek.

The expression for the perturbative part can be found in [NO06, Eq. 3.5 & 3.8] — see
also [NY04], but beware of the opposite global sign compared to [NO06]. To compare
our notations and the notations between the different references: our r is also r in
[NY04] but N in [NO06], our ℏ is their ℏ2 (the transformation was already met in
(5.20)), our (Q1, . . . , Qr) is their (a1, . . . , ar), and comparing the degenerate limit of
their Seiberg–Witten curve with our half Seiberg–Witten curve (2.13), our Λr is their
(−1)N+1ΛN . With our notations, the expressions in [NO06] yield

F pert
0 =

∑
1⩽a<b⩽r

(Qa −Qb)
2
[3
2
+

1

2
ln
(
− Λr

(Qa −Qb)2

)]
,

F pert
1 = −

∑
1⩽a<b⩽r

1

12
ln
(
− Λr

(Qa −Qb)2

)
,

F pert
g = −

∑
1⩽a<b⩽r

2B2g(Qa −Qb)
2−2g

2g(2g − 2)
.

(5.42)

Although the Whittaker vectors have been normalised in (2.7) to have no constant
terms, a more natural normalisation from the topological recursion perspective is
given as

|Γ̃Λ⟩ = exp
(∑
g⩾0

ℏg−1Fg

)
|ΓΛ⟩ ,

where Fg are the free energies of the spectral curve. This would give

⟨Γ̃Λ|Γ̃Λ⟩ = exp
(∑
g⩾0

ℏg−12Fg

)
ZNek.

We expect that this agrees with the partition function of the supersymmetric gauge
theory — up to the change ℏ 7→ ℏ2 already met in (5.20). In other words, we expect
(5.43) ∀g ∈ Z⩾0, F pert

g = 2Fg.

5.5.3. Comparisons and, conjectures. — The half Seiberg–Witten and CDO curves for
r = 2 already appeared in disguise in [IKT19], where their topological recursion
free energies are computed. In the half Seiberg–Witten case, the results match the
expectation from (5.42)–(5.43).
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Proposition 5.24. — For the r = 2 half Seiberg–Witten curve (3.6), we have

F0 =
3

4
(Q1 −Q2)

2 +
(Q1 −Q2)

2

4
ln
( Λ2

(Q1 −Q2)2

)
,

F1 = − 1

24
ln
( Λ2

(Q1 −Q2)2

)
,

and for g ⩾ 2

Fg = −B2g(Q1 −Q2)
2−2g

2g(2g − 2)
.

Proposition 5.25. — For the r = 2 CDO curve (4.6), we have

F0 =
3

4

(
(P1 − P2)

2 − (Q1 − P1)
2 − (Q1 − P2)

2
)
+

1

4

[
(P1 − P2)

2 ln
( Λ2

(P1 − P2)2

)
− (Q1 − P1)

2 ln
( Λ2

(Q1 − P1)2

)
− (Q1 − P2)

2 ln
( Λ2

(Q1 − P2)2

)]
,

F1 =
1

24
ln
( Λ2(P1 − P2)

2

(Q1 − P1)2(Q1 − P2)2

)
,

and for g ⩾ 2:

Fg =
B2g

2g(2g − 2)

(
(Q1 + P1)

2−2g + (Q1 + P2)
2−2g − (P1 − P2)

2−2g
)
.

Proof. — Up to a change of variables, the half Seiberg–Witten curve coincides with
the Bessel curve with the parameter λ0 = Q1−Q2

2 , cf. [IKT19, Table 1.2 & §2.3.5].(8)

Taking into account the extra minus sign in the definition of the Fg in (5.40) and
the Λ in the half Seiberg–Witten curve gives the result. Likewise, up to a change of
variables, the CDO curve is identified with the Kummer curve with λ0 = P1−P2

2 and
λ∞ = Q1− P1+P2

2 , for which the free energy appears in [IKT19, Tables 1.1 & 1.2]. □

For r > 2, closed formulae for the topological free energy for the Gaiotto or the
CDO curves are not available. Based on the expectation (5.42)–(5.43) for the half
Seiberg–Witten curve, we are led to propose the following conjecture.

Conjecture 5.26. — For the half Seiberg–Witten curve, we have

F0 =
∑

1⩽a<b⩽r

3

4
(Qa −Qb)

2 +
1

4
(Qa −Qb)

2 ln
( Λr

(Qa −Qb)2

)
,

F1 = −
∑

1⩽a<b⩽r

1

24
ln
( Λr

(Qa −Qb)2

)
,

and for g ⩾ 2:

Fg = − B2g

2g(2g − 2)

∑
1⩽a<b⩽r−1

(Qa −Qb)
2−2g.

(8)Note that the Bessel curve is defined as y2 = (x+ 4λ2
0)/4x

2 in [IKT19, §2.3.5], but there is a
typo in [IKT19, Table 1.1] where the curve appears as y2 = (x+ λ2

0)/4x
2.
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