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SPECTRAL GAP AND STABILITY FOR GROUPS AND

NON-LOCAL GAMES

by Mikael De La Salle

Abstract. — The word ‘stable’ is used to describe a situation when mathematical objects that
almost satisfy an equation are close to objects satisfying it exactly. We study operator-algebraic
forms of stability for unitary representations of groups and quantum synchronous strategies for
non-local games. We observe in particular that simple spectral gap estimates can lead to strong
quantitative forms of stability. For example, we prove that the direct product of two (flexibly)
Hilbert-Schmidt stable groups is again (flexibly) Hilbert-Schmidt stable, provided that one of
them has Kazhdan’s property (T). We also provide a simple form and simple analysis of a non-
local game with few questions, with the property that synchronous strategies with large value
are close to perfect strategies involving large Pauli matrices. This simplifies one of the steps
(the question reduction) in the recent announced resolution of Connes’ embedding problem by
Ji, Natarajan, Vidick, Wright and Yuen.

Résumé (Trou spectral et stabilité pour les groupes et les jeux non locaux)
Le terme « stable » est utilisé pour décrire une situation où des objets mathématiques satis-

faisant presque une équation sont proches d’objets la satisfaisant exactement. Nous étudions des
formes de stabilité de nature algèbres d’opérateurs pour les représentations unitaires de groupes
et les stratégies quantiques synchrones pour les jeux non locaux. Nous observons en particulier
que des estimées simples de trou spectral peuvent conduire à de fortes formes quantitatives
de stabilité. Par exemple, nous prouvons que le produit direct de deux groupes (flexiblement)
Hilbert-Schmidt stables est à nouveau (flexiblement) Hilbert-Schmidt stable, à condition que
l’un d’eux possède la propriété de Kazhdan (T). Nous fournissons également une forme et une
analyse simples d’un jeu non local comportant peu de questions, avec la propriété que les stra-
tégies synchrones de grande valeur sont proches des stratégies parfaites impliquant de grandes
matrices de Pauli. Cela simplifie l’une des étapes (la réduction des questions) de la résolution
récemment annoncée du problème de plongement de Connes par Ji, Natarajan, Vidick, Wright
et Yuen.
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1418 M. De La Salle

The aim of this note is to present, in Theorem 3.11, the construction of a 2-player
non-local game with O(N2) questions and 2N answers where any quantum synchro-
nous strategy with value 1− ε is O(ε)-close to a synchronous startegy involving Pauli
matrices of size 2N (see Section 3 for the precise definitions). This can be used to
simplify the analysis of the Pauli basis test from [11], generalize it and provide better
quantitative bounds. The proof does not use a specific quantum soundness property
of any specific code, and the result is the particular case (applied to asymptotically
good codes) of a general construction that takes as input any linear error-correcting
code, see Example 3.10. The main originality in this work is Theorem 2.1, which is a
very easy consequence of a simple spectral gap argument (Lemma 2.2). As in previous
work of Vidick [21], the proof also relies on a general form of stability in average for
representations of finite groups, but there is a new input in Lemma 1.7.

It turns out that the same idea has a consequence about Hilbert-Schmidt stability
that was apparently not known, although similar ideas are also present in the work
of Ioana [9]. See Section 4 for the terminology and a more precise and quantitative
statement, that is also relevant for finite groups.

Theorem 0.1. — Let G and H be two countable groups, one of which has property (T).
• If G and H are both Hilbert-Schmidt stable, then so is G×H.
• If G and H are both Hilbert-Schmidt flexibly stable, then so is G×H.

The property (T) assumption is crucial, as Ioana recently proved [10] that the
direct product of two finitely generated non-abelian free groups is not flexibly Hilbert-
Schmidt stable, whereas free groups are obviously Hilbert-Schmidt stable.

In this note, we start from scratch and prove every statement that we need
(we sometimes refer to [19], but the results that rely on it are not used in the proof
of the main theorem). So, a significant part of the note consists of known facts, either
classical or borrowed from [11].

The paper is organized as follows. In Section 1, we present some preliminary facts
on Fourier transform for abelian groups, spectral gaps and flexible stability for finite
groups. In particular, we prove some variants of results of Gowers and Hatami [7].
In Section 2 we prove the main result in terms of stability for direct products of finite
groups. In Section 3, we translate this result in terms of non-local games. Section 4,
completely independent from the rest of the paper (except for the use of Lemma 2.2),
is devoted to the proof of Theorem 0.1.

Acknowledgements. — I thank Adrian Ioana, Thomas Vidick and Henry Yuen for
useful discussions and comments on a preliminary form of this note. I also thank the
anonymous referee for many constructive comment, and for suggesting Remark 1.5.

1. Preliminaries

1.1. Matrix and von Neumann algebras notation. — We recall a few basic facts
about von Neumann algebras. For proofs and much more, we refer the reader to
standard texts such as [20], or the modern book project [2].

J.É.P. — M., 2025, tome 12



Spectral gap and stability for groups and non-local games 1419

A von Neumann algebra is a self-adjoint subalgebra of the algebra B(H) of bounded
operators on a complex Hilbert space H that is equal to its bicommutant. Here the
commutant of a subset A ⊂ B(H) is the algebra

A′ := {X ∈ B(H) | ∀Y ∈ A, XY = Y X},

and its bicommutant is the commutant of its commutant. Every von Neumann algebra
is uniquely a dual space [20, Cor. III.3.9], which allows us to talk about its weak-*
topology.

A state on a von Neumann algebra M is a linear form M → C that is positive,
meaning that τ(x∗x) ⩾ 0 for every x ∈ M, and normalized by τ(1) = 1. It is called
faithful if τ(x∗x) = 0 holds only if x = 0. It is called normal if it is continuous for the
weak-* topology, and it is called a trace if τ(ab) = τ(ba).

In the whole note, we denote by (M, τ) a von Neumann algebra with a normal
faithful tracial state. The main case of interest in M = Mn(C) for large n and τ is
the normalized trace tr = 1

n Tr. The reader can safely assume throughout the paper
that we are in this situation.

We will denote ∥x∥2 =
(
τ(x∗x)

)1/2 for the L2 norm on M. The completion of M
for this norm is denoted L2(M, τ). We also use the notation ∥x∥q =

(
τ((x∗x)q/2)

)1/q
for the Lq norm and 1 ⩽ q <∞, and ∥x∥∞ for the operator norm.

If (M, τ) is a von Neumann algebra with a faithful normal tracial state and if N ⊂ M

is an inclusion of von Neumann algebras, we obtain that L2(N, τ) ⊂ L2(M, τ). The
orthogonal projection L2(M, τ) → L2(N, τ) turns out to map M into N, and the
corresponding map is called the conditional expectation from M to N [2, §9] or [20,
Prop. V.2.36].

We also denote M∞ = M⊗B(ℓ2) with (infinite) trace τ∞ := τ ⊗ Tr. We often
identify M with M⊗ e1,1 ⊂ M∞ (with a different unit 1M = 1⊗ e1,1 than 1M∞), and
often use the same letter τ to denote the amplified trace τ∞. We also use the notation
∥x∥2=

(
τ∞(x∗x)

)1/2 for x∈M∞, but in this situation the norm can take the value ∞.
A PVM (positive valued measure), on a Hilbert space H and indexed by a finite

set I is a family (Pi)i∈I of self-adjoint projections such that
∑

i Pi = 1. We talk about
PVMs in M if M ⊂ B(H) and (Pi)i∈I is a PVM on H with Pi ∈ M for every i.

1.2. Reminders on Fourier transform. — Groups appearing in this paper will be
denoted multiplicatively. We will often denote by G arbitrary groups and by A abelian
groups, except in the last section where the letter A will be reserved to answers. If a
group G is finite, we will denote PG the uniform probability measure on G and
Egf(g) the integration with respect to it. When several groups enter the picture and
precisions are needed, we sometimes write Eg∈Gf(g). We will write L2(G) and ℓ2(G)
for the functions G→ C with norms

∥f∥L2
=

(
Eg|f(g)|2

)1/2 and ∥f∥ℓ2 =
(∑
g∈G

|f(g)|2
)1/2

respectively. Of course, L2(G) will only make sense for finite groups.

J.É.P. — M., 2025, tome 12



1420 M. De La Salle

Let A be a finite abelian group. Recall that a character on A is a group homomor-
phism A → {z ∈ C | |z| = 1}. The set of all characters of A, denoted Â, is a finite
group for the operation of pointwise multiplication called the (Pontryagin) dual of A.
Moreover, the dual of the dual of A identifies naturally with A.

The Fourier transform, which implements an isometry between L2(A) and ℓ2(Â),
also implements a correspondence between unitary representations of A and PVMs
on Â.

Lemma 1.1. — For every Hilbert space H, the following maps, inverse of each other,
are bijections between unitary representations of A on H and PVMs on H indexed
by Â:

U 7−→ (Pχ = Eaχ(a)U(a))χ∈Â ,

(Pχ)χ∈Â 7−→
(
U : a 7→

∑
χ

χ(a)Pχ

)
.

Proof. — This is well-known and follows from the orthogonality of characters. □

1.3. Spectral gap preliminaries. — Let G be a countable group (for example a finite
group). If µ is a symmetric probability measure on G with generating support, then
for every unitary representation (π,H), π(µ) :=

∑
g µ(g)π(g) is a self-adjoint operator

of norm ⩽ 1, whose eigenspace for the eigenvalue 1 is the space of invariant vectors
Hπ = {ξ ∈ H | ∀g ∈ G, π(g)ξ = ξ} (this uses that the support of µ generates the whole
group G). We say that µ has spectral gap is there is a positive real number κ such
that for every unitary representation (π,H) of G, the spectrum of π(µ) in contained
in [−1, 1−1/κ]∪{1}, or equivalently is the restriction of π(µ) to the orthogonal of Hπ

has spectrum contained in [−1, 1− 1/κ]. The smallest such κ is denoted by κ(µ), it is
the inverse of the spectral gap. If µ does not have spectral gap, we set κ(µ) = ∞.
The reason for this parametrization of the spectral gap is because it is proportional
to the constant appearing in the Poincaré inequalities, and is related to the Kazhdan
constants. Specifically, κ(µ) is the smallest real number such that, for every unitary
representation (π,H) of G, and every vector ξ ∈ H,

(1.1) ∥ξ − PHπξ∥2 ⩽
κ

2

∫
G

∥π(g)ξ − ξ∥22 dµ(g).

Here PHπ is the orthogonal projection on Hπ. Let us justify this characterization of κ.
Indeed, by expanding the square norms, (1.1) is equivalent to the inequality

∥ξ∥2 ⩽ κ(∥ξ∥2 − ⟨π(µ)ξ, ξ⟩) ∀ξ ∈ (Hπ)⊥,

or in other words (Rayleigh quotients) the spectrum of π(µ) restricted to (Hπ)⊥ =

ker(π(µ)−1)⊥ consists of real numbers λ satisfying 1 ⩽ κ(1−λ), that is, λ ⩽ 1−1/κ.
For a given group G, µ has spectral gap if and only if G has Kazhdan’s property (T).

In particular, the property that κ(µ) is finite does not depend on µ. But it will be
useful, in particular for finite groups, to study measures with good spectral gap. The

J.É.P. — M., 2025, tome 12



Spectral gap and stability for groups and non-local games 1421

extreme case is when µ = PG is the uniform probability on G. In that case, π(PG) is
the orthogonal projection on Hπ and therefore κ(µ) = 1 (if G is not the group {0}).

If µ is a not-necessarily symmetric probability measure on G with support still
generating, we define κ(µ) as κ(ν) where ν is the symmetric measure

ν(g) =
1

2
(µ(g) + µ(g−1).

It is also the smallest constant such that (1.1) holds.

1.4. Probability measures with spectral gap and small support. — If A is a finite
abelian group and µ is a probability measure on A, denote by µ̂ : Â → C its Fourier
transform µ̂(χ) =

∫
χ(a) dµ(a). By Fourier transform, the spectral gap constant κ(µ)

is simply expressed in terms of µ̂ by

(1.2) κ(µ) = max
χ∈Â∖{1}

1

1−ℜµ̂(χ)
.

In the particular case of A = (Z/2Z)N and of uniform measures on finite sets, the
spectral gap can be expressed in the language of error-correcting codes, and measures
with small spectral gap constant (respectively small support) are the same as linear
codes with large distance (respectively large dimension). We recall that in the next
example, and refer for example to [16] or [8] for the vocabulary. I thank Jason Gaitonde
for pointing out to me on Mathoverflow this connection with error-correcting codes [6].

Example 1.2. — Let A = (Z/2Z)N and let µ be the uniform probability measure
on a generating family a1, . . . , aK . Define C ⊂ (Z/2Z)K the subgroup generated by
b1, . . . , bN where bj(i) = ai(j). Then

(1.3) κ(µ) =
1

2min{dH(x, 0) | x ∈ C ∖ {0}}
.

Here dH is the normalized Hamming distance on (Z/2Z)K

dH(x, y) =
1

K

K∑
i=1

1x(i)̸=y(i).

In the vocabulary of error correcting codes, C is a [K,N,K/2κ(µ)]-linear binary code.
Here K is the length, N is the dimension and K/2κ(µ) is the distance of the code
(and 1/2κ(µ) is the relative distance).

Conversely, if C is a binary linear code of length K, dimension N and distance d,
any choice of a basis b1, . . . , bN of C gives rise to a subset of cardinality K of (Z/2Z)N
with spectral gap constant 2K/d. More generally, let q be a prime power and C be
a [K,N, d]q-code, that is C ⊂ FK

q is a linear subspace of dimension N and distance
d = minx∈C∖{0} #{i ⩽ K | xi ̸= 0}. Any choice of a basis b1, . . . , bN of C allows us
to define a subset of cardinality (q − 1)K of F̂N

q :{
y ∈ FN

q 7→ χ
(∑

j yjbj(i)
)
| χ ∈ F̂q ∖ {1}, 1 ⩽ i ⩽ K

}
.

The uniform probability measure µ on this finite set has spectral gap constant

(1.4) κ(µ) =
q − 1

q
· K
d
.

J.É.P. — M., 2025, tome 12



1422 M. De La Salle

Proof. — In the construction of the binary code from the family a1, . . . , aK , the
assumption that a1, . . . , aK generates (Z/2Z)N is equivalent to b1, . . . , bN being lin-
early free. So (1.3) is a particular case of (1.4) for q = 2, and all we have to do is
justify (1.4). By (1.2), we have

1

κ(µ)
= min

y∈FN
q ∖{0}

1− 1

(q − 1)K

∑
χ∈F̂q∖{0},i⩽K

χ
(∑

j yjbj(i)
)

= min
y∈FN

q ∖{0}

q

q − 1

(
1− 1

K

∑
i⩽K

1∑
j yjbj(i)=0

)
=

q

q − 1
· d
K
.

The second inequality is because, for every z ∈ Fq,

1

q − 1

∑
χ∈F̂q∖{0}

χ(z) =
1

q − 1

(
−1 +

∑
χ∈F̂q

χ(z)
)
= − 1

q − 1
+

q

q − 1
1z=0. □

The following is a a result by Alon and Roichman [1], see also [15] for a simple
proof. By the previous example, it generalizes to arbitrary finite groups the classical
fact that there exist asymptotically good binary linear codes, that is linear codes with
both dimension and distance proportional to the length.

Proposition 1.3 ([1]). — There is a constant C such that, for every finite group G,
there is a subset F ⊂ G of size K ⩽ C log |G| such that µ, the uniform probability
measure on F , has spectral gap constant κ(µ) ⩽ 2.

In this proposition, the logarithmic dependence between G and K is clearly optimal
(if G = (Z/2Z)N , F has to contain a basis). But for interesting groups, (for example,
finite simple groups [14]), much stronger results are known, and there exist measures
of bounded support with uniform spectral gap.

1.5. Average Gowers-Hatami theorem. — Some of the results in this subsection
are probably well-known (except for Lemma 1.7 that seems to be new), but we do
not know whether they appear explicitly in the literature. A form of the following
theorem appears for example in [21]. The case p = ∞ is contained in [5], which
was itself a generalization of [7]. For unitary groups replaced by permutation groups,
similar results also appear in [3]. The results of [5] and [3] are also valid for amenable
discrete groups.

Following the terminology in [5], we call a unitarily invariant semi-norm on M∞
any semi-norm that is defined on an ideal of M∞ and that is invariant by left and
right multiplication by unitaries, and that is by convention put to be equal to ∞
outside of this ideal. Later, we will only use the 2-norm. Note that we do not ask that
the ideal contains M.

J.É.P. — M., 2025, tome 12
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Theorem 1.4. — Let G be a finite group, 1 ⩽ p < ∞ and φ : G → U(M) be a map.
Let ∥·∥ be a unitarily invariant semi-norm on M∞. Assume that

(Eg,h∈G∥φ(gh)− φ(g)φ(h)∥p)1/p ⩽ ε.

Then there is a projection P ∈ M∞, a unitary representation π : G → U(PM∞P )

and an isometry w ∈ PM∞1M such that

(Eg∥φ(g)− w∗π(g)w∥p)1/p ⩽ 13ε,(1.5)
∥P − ww∗∥ ⩽ 4ε.(1.6)

By isometry we mean w∗w = 1M. As a consequence, if ∥·∥ is the norm in Lq(M, τ),
(1.6) is equivalent to τ(P ) ⩽ 1 + (4ε)q.

Remark 1.5 (suggested by the referee). — It is possible to arrange w = 1M in
the conclusion of Theorem 1.4, so that P becomes a projection ⩾ 1M such that
∥P − 1M∥ ⩽ 4ε. Indeed, replace P by U∗PU and π(g) by U∗π(g)U , where U ∈ M∞
is a unitary such that w = PU1M, for example,

U =

(
w 1∞ − ww∗

1∞ − w∗w w∗

)
∈M2(M∞) ≃ M∞.

This theorem follows by the same proof as in [5]. We provide a detailed proof for
completeness, with slightly better constants. We first prove an intermediary state-
ment, with better constants but the isometry w replaced by a contraction.

In the proof, we use two general facts about unitarily invariant norms [5, Prop. 2.6]:

∀X ∈ M, ∥X∗X∥ = ∥XX∗∥,(1.7)
0 ⩽ A ⩽ B =⇒ ∥A∥ ⩽ ∥B∥.(1.8)

Lemma 1.6. — Let G be a finite group, 1 ⩽ p <∞ and φ : G→ U(M) be a map. Let
∥·∥ be a unitarily invariant semi-norm on M∞. Assume that

(Eg,h∈G∥φ(gh)− φ(g)φ(h)∥p)1/p ⩽ ε.

Then there is a projection P ∈ M∞, a unitary representation π : G → U(PM∞P )

and an element X ∈ PM∞1M of operator norm ∥X∥∞ ⩽ 1 such that

(Eg∥φ(g)−X∗π(g)X∥p)1/p ⩽ 5ε,(1.9)
∥1M −X∗X∥ ⩽ 4ε,(1.10)

and

∥P −XX∗∥ ⩽ 4ε,(1.11)

Proof. — Let H be the Hilbert space on which M is realized. Define V : H →
L2(G,H) by (V ξ)(g) = φ(g−1)ξ. It is clear that V x = (1L2(G) ⊗ x)V for every
x ∈ M′, so (if we identify L2(G) with a subspace of ℓ2 with orthogonal projection Q),
V is an isometry in QM∞1M. Its adjoint is V ∗f = Egφ(g

−1)∗f(g), so that

V ∗(λ(g)⊗ 1H)V = Ehφ(h)
∗φ(hg) =: φ̃(g).

J.É.P. — M., 2025, tome 12



1424 M. De La Salle

Observe that

Eg∥φ(g)− φ̃(g)∥p ⩽ Eg,h∥φ(g)− φ(h)∗φ(hg)∥p ⩽ εp.

We are almost done, except that τ∞(Q) = |G|. If V V ∗ did commute with the rep-
resentation λ ⊗ 1H, we would be done with X = V and P = V V ∗ and π(g) =

(λ(g)⊗ 1H)V V ∗. In general, we define X = PV and π to be the restriction of λ⊗ 1H
on the image of P , where P is the spectral projection χ[1/2,1](A), for A the conditional
expectation of V V ∗ on M⊗ λ(G)′, that is

A := Egλ(g)V V
∗λ(g−1).

It remains to justify (1.9), (1.10) and (1.11). To do so we first observe that, writing
1− φ̃(g)∗φ̃(g) = φ(g)∗(φ(g)− φ̃(g)) + (φ(g)− φ̃(g))∗φ̃(g), we can bound by Hölder’s
inequality

(1.12) Eg∥1− φ̃(g)∗φ̃(g)∥ ⩽ 2Eg∥φ(g)− φ̃(g)∥ ⩽ 2ε.

We deduce
∥1− V ∗AV ∥ = ∥Eg(1− φ̃(g)∗φ̃(g))∥ ⩽ 2ε.

Therefore (using that λ(g) commutes with
√
1−A and (1.7)),

∥A−A2∥ = ∥
√
1−AEgλ(g)V V

∗λ(g)
√
1−A∥

⩽ ∥
√
1−AV V ∗√1−A∥ = ∥V ∗(1−A)V ∥ ⩽ 2ε.

We now prove (1.10). Using (1− P ) ⩽ 2(1−A) and (1.8), we have

∥1M −X∗X∥ = ∥V ∗(1− P )V ∥ ⩽ 2∥V ∗(1−A)V ∥ ⩽ 4ε.

We can now turn to (1.9). By the triangle inequality,

(Eg∥φ(g)−X∗π(g)X∥p)1/p ⩽ (Eg∥φ(g)− φ̃(g)∥p)1/p + (Eg∥φ̃(g)−X∗π(g)X∥p)1/p.

The first term is ⩽ ε. The second term is (by [5, Cor. 2.8])

(Eg∥V ∗(1− P )λ(g)V ∥p)1/p ⩽ ∥V ∗(1− P )V ∥ ⩽ 4ε.

The last inequality is the already proved (1.10).
Finally, we prove (1.11). Using that P ⩽ 2A,

∥P −XX∗∥ = ∥P (1− V V ∗)P∥
= ∥(1− V V ∗)P (1− V V ∗)∥
⩽ 2∥(1− V V ∗)A(1− V V ∗)∥.

By the triangle inequality, this is less than

2Eg∥(1− V V ∗)λ(g)V V ∗λ(g)∗(1− V V ∗)∥
= 2Eg∥V ∗λ(g)∗(1− V V ∗)λ(g)V ∥ = 2Eg∥1− φ̃(g)∗φ̃(g)∥,

which is less than 4ε by (1.12). □
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Proof of Theorem 1.4. — Let X,P, π be given by Lemma 1.6. Write X = w0|X| the
polar decomposition of X. We can find a partial isometry such w1 ∈ M∞ such that
w∗

0w0+w
∗
1w1 = 1M and w1w

∗
1 is orthogonal to P . Define P ′ = P+w1w

∗
1 , and extend π

to a unitary representation on P ′M∞P
′ by declaring that π(g) is the identity on w1w

∗
1 .

If we define w = w0 + w1, w is then an isometry in P ′M∞1M such that X = w|X|.
We can then bound

∥w −X∥ = ∥1M − |X|∥ ⩽ ∥1M −X∗X∥ ⩽ 4ε,

where the first inequality (1.8) is because 1 − t ⩽ 1 − t2 for every t ∈ [0, 1], and the
second inequality is (1.10). Moreover, by (1.11) we have

∥P ′ − ww∗∥ = ∥P − w0w
∗
0∥ ⩽ ∥P −XX∗∥ ⩽ 4ε.

Therefore, we obtain
(Eg∥φ(g)− w∗π(g)w∥p)1/p ⩽ (Eg∥φ(g)−X∗π(g)X∥p)1/p + 2∥X − w∥.

This is less than 13
√
ε by (1.9). □

The next lemma shows that, if φ is assumed to behave well on a subgroup, then φ
and w∗πw are close on this subgroup. The lemma is clearly false without the addi-
tional assumption (1.13) or (1.14): if H has very small index, perturbing arbitrarily φ
on H will not affect much the hypothesis nor the conclusion of Theorem 1.4, but the
conclusion of the lemma cannot hold.

Lemma 1.7. — Let G, φ, ε, P , π and w be as in the hypothesis and conclusion of
Theorem 1.4. Let H < G is a subgroup, and assume either
(1.13) ∀h ∈ H, ∀g ∈ G, φ(hg) = φ(h)φ(g)

or
(1.14) ∀h ∈ H, ∀g ∈ G, φ(gh) = φ(g)φ(h).

Then
(Eh∈H∥φ(h)− w∗π(h)w∥p)1/p < 38ε.

An inspection of the proof reveals that the statement holds (with 38 replaced by
another constant) if (1.13) is replaced by the weaker hypothesis that
(Eh∈H,g∈G∥φ(hg)− φ(h)φ(g)∥p)1/p + (Eh∈H,h′∈H∥φ(hh′)− φ(h)φ(h′)∥p)1/p = O(ε).

Proof. — Assume (1.13). The case when we assume (1.14) is proved in the same way
and left to the reader. Define ψ(g) = w∗π(g)w. This is not a representation of G, but
almost: for every g1, g2 ∈ G,
(1.15) ∥ψ(g1g2)− ψ(g1)ψ(g2)∥ = ∥w∗π(g1)(P − ww∗)π(g2)w∥ ⩽ ∥P − ww∗∥ ⩽ 4ε.

The last inequality is the assumption (1.6). So it follows from (1.13) and the triangle
inequality that
(Eg∈GEh∈H∥φ(h)φ(g)− ψ(h)ψ(g)∥p)1/p

⩽ 4ε+ (Eg∈GEh∈H∥φ(hg)− ψ(hg)∥p)1/p ⩽ 17ε.
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The last inequality is (1.5) because, for fixed h ∈ H, hg is uniformly distributed in G
when g is. In particular, there is X of operator norm ⩽ 1 (namely X = ψ(g)φ(g)−1

for some g) such that

(1.16) (Eh∈H∥φ(h)− ψ(h)X∥p)1/p ⩽ 17ε.

We deduce

(Eh∥φ(h)− ψ(h)∥p)1/p = (Eh1,h2
∥φ(h1)φ(h2)− ψ(h1)φ(h2)∥p)1/p

⩽ 17ε+ (Eh1,h2∥φ(h1h2)− ψ(h1)ψ(h2)X∥p)1/p

⩽ 21ε+ (Eh1,h2
∥φ(h1h2)− ψ(h1h2)X∥p)1/2

⩽ 38ε.

The first inequality is the unitary invariance of the ∥·∥-norm, the second is (1.13) and
(1.16), the third is (1.15) and the last is (1.16) again. This concludes the proof of the
lemma. □

We will use the following consequences. For simplicity we restrict to the 2-norm.

Corollary 1.8. — Let A,B be two finite groups and U : A → U(M) and V : B →
U(M) be two group homomorphisms. If they satisfy

Ea∈A,b∈B∥[U(a), V (b)]∥22 ⩽ ε,

then there is a projection P ∈ M∞, unitary representation Ũ : A → U(PM∞P ) and
Ṽ : B → U(PM∞P ) with commuting ranges, and an isometry w ∈ PM∞1M such
that

Ea∈A∥U(a)− w∗Ũ(a)w∥22 < 1444ε,

Eb∈B∥U(b)− w∗Ṽ (b)w∥22 < 1444ε,

τ∞(P ) ⩽ 1 + 16ε.

Proof. — Consider G = A×B and define φ : A×B → U(M) by φ(a, b) = U(a)V (b).
Then for g = (a, b) and h = (a′, b′), by unitary invariance of the ∥·∥2-norm

∥φ(gh)− φ(g)φ(h)∥2 = ∥U(aa′)V (bb′)− U(a)V (b)U(a′)V (b′)∥2
= ∥[U(a′), V (b)]∥2,

so the assumption is exactly that

Eg,h∥φ(gh)− φ(g)φ(h)∥22 ⩽ ε.

By applying Theorem 1.4 for the norm on L2(M∞, τ∞) and p = 2, we obtain a
projection P and, an isometry w and a representation π : A × B → U(PM∞P )

satisfying
τ(P ) ⩽ 1 + 16ε

and

(1.17) Eg∥φ(g)− w∗π(g)w∥22 ⩽ 169ε.
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If we define Ũ(a) = π(a, 1) and Ṽ (b) = π(1, b), these are unitary representations with
commuting ranges. Moreover, since φ(ag) = φ(a)φ(g) for every a ∈ A, g ∈ G, and
similarly for B on the right, Lemma 1.7 concludes the proof. □

Corollary 1.9. — Let A,B be two finite groups and γ : A×B → {−1, 1} a map such
that γ(a1a2, b1b2) =

∏
i,j γ(ai, bj).(1) Let U : A → U(M) and V : B → U(M) be two

group homomorphisms. Assume that they satisfy

Ea∈A,b∈B∥U(a)V (b)− γ(a, b)V (b)U(a)∥22 ⩽ ε.

There is a projection P ∈ M∞, unitary representations Ũ : A → U(PM∞P ) and
Ṽ : B → U(PM∞P ) and a partial isometry w ∈ PM∞1M such that

Ũ(a)Ṽ (b) = γ(a, b)Ṽ (b)Ũ(a) ∀a ∈ A, b ∈ B,

Ea∈A∥U(a)− w∗Ũ(a)w∥22 < 30000ε,

Eb∈B∥U(b)− w∗Ṽ (b)w∥22 < 30000ε,

τ∞(P ) ⩽ 1 + 16ε.

Proof. — Consider G, the central extension of A× B by {−1, 1} given by γ. This is
a Weyl-Heisenberg-type group, that is the set A×B ×Z/2Z for the group operation

(a, b, z)(a′, b′, z′) = (aa′, bb′, γ(b, a′)zz′).

We shall identify A, B and {−1, 1} with the subgroups

{(a, 1, 1) | a ∈ A}, {(1, b, 1) | b ∈ b} and {(1, 1, 1), (1, 1,−1)}.

Define φ : G→ U(M) by
φ(a, b, z) = zU(a)V (b).

Clearly, it satisfies

φ(ag) = φ(a)φ(g), φ(gb) = φ(g)φ(b), φ(zg) = φ(z)φ(g)

for every g ∈ G, a ∈ A, b ∈ B, z ∈ {−1, 1}. Moreover our assumption is equivalent to

Eg∥φ(gh)− φ(g)φ(h)∥22 ⩽ ε.

We can apply Theorem 1.4 for the ∥·∥2-norm and p = 2 to obtain a projection P , a rep-
resentation π : G → U(PM∞P ) and an isometry w ∈ PM∞1M as in Theorem 1.4.
Also, by Lemma 1.7 we know that, for H = A,B or {−1, 1}.

(1.18) Eh∈H∥φ(h)− w∗π(h)w∥22 ⩽ 1444ε.

We are almost at the desired conclusion, except that we do not a priori have the
desired (anti)-commutation relation, but only (denoting Z = π(1, 1,−1))

π(a)π(b) = Zπ(b)π(a) when γ(a, b) = −1.

(1)This is the same as γ being a 2-cocycle on A × B whose restriction to A and B is zero, or a
group homomorphism A → hom(B, {−1, 1}), or a group homomorphism B → hom(A, {−1, 1}).
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So we would be done if Z was equal to −P . This is almost the case. Indeed, taking
H = {−1, 1} in (1.18) we see

∥1M + w∗Zw∥22 ⩽ 2888ε

and we deduce

∥P + Z∥2 ⩽ ∥ww∗(P + Z)ww∗∥2 + 2∥P − ww∗∥2 ⩽ 38
√
2ε+ 8

√
ε.

But Z is an order 2 unitary in PM∞P , so it can be written as P −2Q for a projection
Q ⩽ P , which commutes with the range of π because (1, 1,−1) belongs to the center
of G. And we have just proved that ∥P − Q∥2 ⩽ (19

√
2 + 4)

√
ε. So let us replace P

by Q, π by g 7→ Qπ(g) and w by w′, the partial isometry in the polar decomposition
of Qw. We claim that

∥w − w′∥2 ⩽ ∥w −Qw∥2 + ∥w′ −Qw∥2 ⩽ 2∥P −Q∥2.

Indeed, the first term is ∥Pw −Qw∥2 ⩽ ∥P −Q∥2, and the second term is

∥(w′)∗w′ − |Qw|∥2 ⩽ ∥1M − |Qw|∥2 ⩽ ∥1M − |Qw|2∥ = ∥w∗(P −Q)w∥2 ⩽ ∥P −Q∥2.

So we deduce, for H = A or H = B,(
Eh∈H∥φ(h)− (w′)∗π(h)w′∥22

)1/2
⩽

(
Ea∥φ(h)− w∗π(h)w∥22

)1/2
+ 2∥w − w′∥2

⩽ (38 + 4(19
√
2 + 4))

√
ε.

The last inequality is (1.18). This proves the corollary. □

2. The main result

The main new contribution in this note is the following result. It is expressed in
term of the spectral gaps κ(·) defined in Section 1.3.

Theorem 2.1. — Let A,B be two finite groups equipped with probability measures µ, ν.
Let U : A→ U(M) and V : B → U(M) be two homomorphisms. Then

Ea∈A,b∈B∥[U(a), V (b)]∥22 ⩽ κ(µ)κ(ν)

∫
∥[U(a), V (b)]∥22 dµ(a)dν(b).

We first prove a result with only one group entering the picture.

Lemma 2.2. — Let G be a group, µ a probability measure on G with generating sup-
port, and U : G → U(M) be a group homomorphism. Set N = M ∩ U(G)′ and let
EN : M → N be the conditional expectation.

For every V ∈ M,

(2.1) ∥V − EN(V )∥22 ⩽
κ(µ)

2

∫
∥[U(g), V ]∥22 dµ(g).

If G is finite,

Eg∈G∥[U(g), V ]∥22 ⩽ κ(µ)

∫
∥[U(g), V ]∥22 dµ(g).
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Proof. — The formula
π(a)X = U(a)XU(a)∗

defines a unitary representation of π on the Hilbert space L2(M, τ). Here we use in an
essential way that τ is trace. Moreover, the space of invariant vectors L2(M, τ)π coin-
cides with L2(N, τ), and the orthogonal projection on L2(M, τ)π is just EN. Therefore,
(2.1) is exactly the Poincaré inequality (1.1).

If G is finite, EN is given by V 7→ Eg∈GU(g)V U(g)∗, so

Eg∈G∥[U(g), V ]∥22 = 2∥V ∥22 − 2τ(Eg∈GU(g)∗V U(g)V ∗)

= 2∥V ∥22 − 2∥EN(V )∥22 = 2∥V − EN(V )∥22.

So the second inequality is a particular case of (2.1). □

Proof of Theorem 2. — Successive applications of Lemma 2.2 for A and for B give

Ea,b∥[U(a), V (b)]∥22 ⩽ Ebκ(µ)

∫
A

∥[U(a), V (b)]∥22 dµ(a)

= κ(µ)

∫
A

Eb∥[U(a), V (b)]∥22 dµ(a)

⩽ κ(µ)

∫
A

κ(ν)

∫
B

∥[U(a), V (b)]∥22dν(b) dµ(a).

This proves the theorem. □

2.1. Consequences. — We list four consequences of this theorem. Only the last one
(Corollary 2.6) will be used in the next section.

Corollary 2.3. — Let A,B,U, V, µ, ν be as in Theorem 2.1. If∫
∥[U(a), V (b)]∥22 dµ(a)dν(b) ⩽ ε,

then there is a projection P ∈ M∞, unitary representations Ũ : A→ U(PM∞P ) and
Ṽ : B → U(PM∞P ) with commuting ranges, and an isometry w ∈ PM∞1M such
that

Ea∈A∥U(a)− w∗Ũ(a)w∥22 ≲ κ(µ)κ(ν)ε,

Eb∈B∥U(b)− w∗Ṽ (b)w∥22 ≲ κ(µ)κ(ν)ε,

τ∞(P ) ⩽ 1 + 16κ(µ)κ(ν)ε.

Proof. — This follows from Theorem 2.1 and Corollary 1.8. □

For abelian groups, we have a stronger conclusion.

Corollary 2.4. — Let A,B,U, V, µ, ν be as in Theorem 2.1, with A and B abelian. If∫
∥[U(a), V (b)]∥22 dµ(a)dν(b) ⩽ ε,

then there exists a unitary representation V1 : B → U(M) such that

[U(a), V1(b)] = 0 ∀a ∈ A, b ∈ B and Eb∥V (b)− V1(b)∥2 ⩽ 10κ(µ)κ(ν)ε.

J.É.P. — M., 2025, tome 12



1430 M. De La Salle

Proof. — By Theorem 2.1, the hypothesis implies that

(2.2) Ea,b∥[U(a), V (b)]∥22 ⩽ κ(µ)κ(ν)ε.

Therefore, the result follows from [19, Cor. 5]. Observe that [19, Cor. 5] is only stated
for A = Z/nZ and B = Z/mZ, but its proof is valid for any finite abelian groups.
Indeed, by Lemma 1.1, (2.2) can be translated to the PVMs corresponding to U and V
being close, so [19, Th. 4] applies. □

Corollary 2.5. — Let A be a finite abelian group, and µ, ν be probability measures
on A and Â respectively.

Let U : A→ U(M) and V : Â→ U(M) be two homomorphisms satisfying∫
∥U(a)V (χ)− χ(a)V (χ)U(a)∥22 dµ(a) dν(χ) ⩽ ε.

Then they satisfy

Ea,χ∥U(a)V (χ)− χ(a)V (χ)U(a)∥22 ⩽ κ(µ)κ(ν)ε.

Proof. — Consider, on ℓ2(A), the operators (called Pauli matrices) λ(a) of translation
operators, and M(χ) of multiplication by χ:

(λ(a)f)(a′) = f(a−1a′), (M(χ)f)(a′) = χ(a′)f(a′).

They satisfy λ(a)M(χ) = χ(a)M(χ)λ(a). Therefore, on M ⊗MA(C) with the trace
τ ⊗ tr, if we define

Ũ(a) = U(a)⊗ λ(a), Ṽ (χ) = V (χ)⊗M(χ),

we have

Ũ(a)Ṽ (χ)− Ṽ (χ)Ũ(a) = (U(a)V (χ)− χ(a)V (χ)U(a))⊗ λ(a)M(χ).

So we conclude by Theorem 2.1. □

Corollary 2.6. — Assume, in addition to the hypotheses of Corollary 2.5, that A is
a 2-group. Then there is a projection P ∈ M∞, a partial isometry w ∈ PM∞1M,
a pair of representations U1 : A→ U(PM∞P ) and V1 : Â→ U(PM∞P ) that satisfy

U1(a)V1(χ) = χ(a)V1(χ)U1(a) ∀a ∈ A, χ ∈ Â,

Ea∥U(a)− w∗U1(a)w∥22 ≲ κ(µ)κ(ν)ε,

Eb∥V (b)− w∗V1(b)w∥22 ≲ κ(µ)κ(ν)ε,

∥1− w∗w∥22 ≲ κ(µ)κ(ν)ε,

∥P − ww∗∥22 ≲ κ(µ)κ(ν)ε.

Proof. — Combine Corollary 2.5 with Corollary 1.9. □
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3. Translation to games and strategies

In this section, we translate the results of the previous section (in particular Corol-
lary 2.6) in terms of (two-player one-round) games. This translation is adapted from a
construction by Natarajan and Vidick [17], which was also adapted in similar fashion
in [11] (see Section 3.5 for a comparison).

Since we only consider synchronous strategies, we adopt the following slightly
unconventional definition of a game, but that is equivalent to the standard notion
of a synchronous game for our purposes.

Definition 3.1. — A game is a tuple G = (X,µ,A,D) where X is a finite set, µ is a
probability distribution on X × X, A = (A(x))x∈X is a collection of finite sets (the
possible answers to question x) and D is a {0, 1}-valued function defined on

{(x, y, a, b) | (x, y) ∈ supp(µ), a ∈ A(x), b ∈ A(y)}

and that is required to be symmetric (that is D(x, y, a, b) = D(y, x, b, a) whenever
both terms are defined).

By abuse, we will also write by the same symbol µ the probability measure on X

given by
µ(x) =

1

2

∑
y∈X

µ(x, y) + µ(y, x).

If G = (X,µ,A,D) is a game, a synchronous strategy in (M, τ) is, for every x ∈ X,
a PVM (P x

a )a∈A(x) in M. The value of the game on this strategy is

valG(P ) :=

∫ ∑
a∈A(x)
b∈A(y)

D(x, y, a, b)τ(P x
a P

y
b ) dµ(x, y).

Remark 3.2. — In the standard definition of a synchronous game, µ and D are both
required to be symmetric, and it is moreover required that D(x, x, a, b) = 0 whenever
a ̸= b. This last requirement is not important for us because the value of a synchronous
strategy does not involve such values of D (because τ(P x

a P
x
b ) = 0 if a ̸= b). Moreover,

a game as defined in Definition 3.1 can be turned a symmetric game as in the standard
definition by replacing µ by 1

2 (µ + µ̃), where µ̃(x, y) = µ(y, x) and extending D by
symmetry. But this is not very important, as the value of any synchronous strategy
for the original game and the symmetrized game agree.

Definition 3.3. — We say that a synchronous strategy (Qx
a)

x∈X
a∈A(x) in (N, τ ′) is ε-close

to another synchronous strategy (P x
a )

x∈X
a∈A(x) in (M, τ) if:

• There is a projection P ∈ M∞ of finite trace such that N = PM∞P with trace
τ ′ = (1/τ∞(P ))τ .

• There is a partial isometry w ∈ PM∞1M such that

τ(1− w∗w) ⩽ ε, τ ′(P − ww∗) ⩽ ε,

• Ex

∑
a∈A(x) ∥P x

a − w∗Qx
aw∥22 ⩽ ε.
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The following straightforward lemma illustrates that this notion of strategies being
close is compatible with the closeness of unitary representations that was considered
in the previous sections.

Lemma 3.4. — Let (M, τ) be a tracial von Neumann algebra, P ∈ M∞ be a projection
and w ∈ PM∞1M. Let H be a finite abelian group, U : H → U(M) and V : H →
U(PM∞P ) be two unitary representations, with corresponding PVMs (Pχ)χ∈Ĥ and
(Qχ)χ∈Ĥ as in Lemma 1.1. Then

Eh∈H∥U(h)− w∗V (h)w∥22 =
∑
χ∈Ĥ

∥Pχ − w∗Qχw∥22.

Proof. — The left-hand side is

Eh∈H∥
∑
χ

χ(h)(Pχ − w∗Qχw)∥22,

so the lemma is just the orthogonality of characters. □

We start with two important and well-known examples. I include proofs for com-
pleteness, but there is nothing original here.

3.1. The commutation game. — Given two sets A1, A2, the commutation game on
A1, A2 is the game where

• X = {x1, x2, y}, A(xi) = Ai and A(y) = A1 ×A2,
• µ = 1

2 (δ(x1,y) + δ(x2,y)),
• D(x1, y, a, (a

′, b′)) = 1a=a′ and D(x2, y, b, (a
′, b′)) = 1b=b′ .

The important feature of this game is that strategies with large value have to be
almost commuting, as shown by the following lemma. For later use, we denote
Gcom = (Xcom, Acom, µcom, Dcom) the commutation game on A1 = A2 = {−1, 1}, and
xcom,1 = x1 and xcom,2 = x2.

Lemma 3.5. — If a synchronous strategy achieves the value 1− ε on the commutation
game of A1, A2, then its restriction (pa)a∈A1

and (qb)b∈A2
to x1 and x2 respectively

satisfies

(3.1)
∑

a∈A1,b∈A2

∥∥[pa, qb]2∥∥22 ⩽ 16ε.

If A1 = A2 = {−1, 1} then

(3.2)
∥∥[p1 − p−1, q1 − q−1]

∥∥2
2
⩽ 64ε.

Proof. — The assumption means that there is a PVM (ra,b)(a,b)∈A1×A2
such that

1

2

∑
a,b

τ(para,b) + τ(qbra,b) ⩾ 1− ε.
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Define p′a =
∑

b ra,b and q′b =
∑

a ra,b. The previous inequality can be equivalently
written as η1 + η2 ⩽ 4ε, where

η1 =
∑
a

∥pa − p′a∥22 and η2 =
∑
b

∥qb − q′b∥22.

We can bound
(∑

a,b

∥∥[pa, qb]2∥∥22)1/2 by(∑
a,b

∥∥[pa − p′a, qb]
2
∥∥2
2

)1/2
+
(∑

a,b

∥∥[p′a, qb − q′b]
2
∥∥2
2

)1/2
+
(∑

a,b

∥∥[p′a, q′b]2∥∥22)1/2.
Using the easy bound ∑

b

∥∥[x, qb]∥∥22 ⩽ 2∥x∥22

valid for every x ∈ M, we can bound the first term by
√
2η1 and similarly the second

term by
√
2η2. The last term vanishes because r is a PVM. We deduce∑

a,b

∥[pa, qb]2∥22 ⩽
(√

2η1 +
√

2η2
)2

⩽ 4(η1 + η2).

The inequality (3.1) follows because η1 + η2 ⩽ 4ε.
When A1 = A−1 = {1,−1}, we have p1 − p−1 = 2p1 − 1 = 1− 2p−1 and similarly

for q, so that
∥∥[p1−p−1, q1− q−1]

∥∥
2
= 4

∥∥[pa, pb]∥∥2 for every a, b ∈ {1,−1}. Therefore,
(3.2) is immediate from (3.1). □

3.2. The anticommutation game. — The anticommutation game (or magic square
game) is a game with |X| = 15 with two specific questions x1, x2 with answers A(x1) =
A(x2) = {−1, 1}. For later use, we denote

Ganticom = (Xanticom, Aanticom, µanticom, Danticom)

the anticommutation game. The specific question will also be denote xanticom,j .
What will be important will not be the precise definition of the game, but that

synchronous strategies with large values forces some anti-commutation:

Lemma 3.6. — [4] If (p−1, p1) and (q−1, q1) are the restriction to x1 and x2 of a
synchronous strategy for the anticommutation game with value 1− ε, then

∥(p1 − p−1)(q1 − q−1) + (q1 − q−1)(p1 − p−1)∥22 ⩽ 432ε.

We recall the proof for completeness. To prove the lemma, we need to give the
definition of the game. Its set of questions is X = C∪L where C = {1, 2, 3}2 is a 3×3

square and L is the set of all horizontal or vertical lines in the square. The specific
points are x1 = (1, 1) and x2 = (2, 2). Define α(ℓ) = 1 for every line except the last
vertical line, for which α(ℓ) = −1. For c ∈ C, define A(c) = {−1, 1}, and for a line ℓ,
define A(ℓ) ⊂

∏
c∈ℓ{−1, 1} by

A(ℓ) =
{
(bc)c ∈

∏
c∈ℓ{−1, 1} |

∏
c∈ℓ bc = α(ℓ)

}
.

The distribution µ is the uniform distribution on {(c, ℓ) | c ∈ ℓ}. And D(c, ℓ, a, b) =

1a=bc .
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Proof of Lemma 3.6. — Let (pc−1, p
c
1)c∈C and (pℓb)b∈A(ℓ) be the synchronous strategy

with value ⩾ 1 − ε, so that (p−1, p1) = (p1,1−1, p
1,1
1 ) and (q−1, q1) = (p2,2−1, p

2,2
1 ). For

every c ∈ C, define U c = pc−1 − pc1. For every ℓ ∈ L and every c ∈ ℓ, define U ℓ(c) =∑
b∈A(ℓ) bcp

ℓ
b. Define

ηc,ℓ = ∥U c − U ℓ(c)∥2 = 2
√

1−
∑

b∈A(ℓ) τ(p
c
bc
pℓb).

So, by the assumption that the strategy has value ⩾ 1− ε, we obtain
1

18

∑
ℓ

∑
c∈ℓ

η2c,ℓ =

∫
η2c,ℓ dµ(c, ℓ) ⩽ 4ε.

Therefore, if for ℓ ∈ L we denote ηℓ = (
∑

c∈ℓ η
2
c,ℓ)

1/2, we obtain∑
ℓ

η2ℓ ⩽ 24ε.

The U c and U ℓ
c are all self-adjoint unitaries. Observe that if c, c′, c′′ are the points

in ℓ, then U ℓ(c) = α(ℓ)U ℓ(c′)U ℓ(c′′). Therefore, we obtain

∥U c − α(ℓ)U c′U c′′∥2 ⩽ ηc,ℓ + ηc′,ℓ + ηc′′,ℓ ⩽
√
3 ηℓ.

In the following, we denote by hi the i-th horizontal line, and vj the j-th vertical line.
In the following, we write M ≃δ N if ∥M −N∥2 ⩽

√
3 δ. We therefore have

U11U22 ≃ηh1+ηv2
U13U12U12U32 = U13U32

≃ηv3+ηh3
−U23U33U33U31 = −U23U31

≃ηh2+ηv1 −U22U21U21U11 = −U22U11.

So we deduce
∥U11U22 + U22U11∥2 ⩽

∑
ℓ

√
3 ηℓ ⩽

√
18

∑
ℓ η

2
ℓ .

The lemma follows, because we have already justified that
∑

ℓ η
2
ℓ ⩽ 24ε, and 18 ·24 =

432. □

3.3. Pauli matrices. — Let A be a finite group of exponent 2, that is a group isomor-
phic to (Z/2Z)N for some integer N . In the proof of Corollary 2.5, we considered two
unitary representations a ∈ A 7→ λ(a) and χ ∈ Â 7→ M(χ) on B(ℓ2(A)), called the
Pauli representations. By Fourier transform (Lemma 1.1), these representations corre-
spond to PVMs (τXχ )χ∈Â and (τZa )a∈A, that we will call the Pauli PVMs. If (by fixing
a basis) we choose an isomorphism between A and (Z/2Z)N and identify accord-
ingly Â with (Z/2Z)N for the duality ⟨a, b⟩ = (−1)

∑N
i=1 aibi and ℓ2(A) with ⊗N

i=1C
2,

then we have

τXa = ⊗N
i=1τ

X
ai
, where τX0 =

(
1/2 1/2

1/2 1/2

)
, τX1 =

(
1/2 −1/2

−1/2 1/2

)
τZa = ⊗N

i=1τ
Z
ai
, where τZ0 =

(
1 0

0 0

)
, τX1 =

(
0 0

0 1

)
.and
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We have the following classical fact.

Lemma 3.7. — Let U : A→ U(M) and V : Â→ U(M) be two unitary representations
with values in a tracial von Neumann algebra satisfying U(a)V (χ) = χ(a)V (χ)U(a)

for every a ∈ A,χ ∈ Â. Then there is a tracial von Neumann algebra (N, τ ′) such that
(M, τ) = (B(ℓ2(A))⊗N, tr⊗τ ′),

Eaχ(a)U(a) = τXχ ⊗ 1N ∀χ ∈ Â and Eχχ(a)V (χ) = τZa ⊗ 1N ∀a ∈ A.

Proof. — This is a result about the representation theory of the Weyl-Heisenberg
group introduced in Corollary 1.9, for B = Â and the map γ(a, χ) = χ(a). Indeed,
it is well-known that its irreducible representations are of two kinds: those that are
trivial on the center and one-dimensional (there are |A|2 of them, corresponding to
characters of the abelian group A × Â), and a unique representation π0 that is non
trivial on the center, of dimension |A|, given by (λ,M). Therefore, if U and V are in
the lemma, they give rise to a unitary representation π of the Weyl-Heisenberg group
such that π(Z) = −1M (where Z is the non-trivial central element), so by Peter-Weyl,
π is of the form π0 ⊗ 1, and the lemma follows. □

3.4. Combining the two games. — We now explain how, adapting the construction
from [17], we can combine the commutation and anticommutation games to obtain
the desired game.

Let H be a finite abelian group of exponent 2 (that is a group isomorphic to
(Z/2Z)N for some integer N). Let (Ω,P) be a (finite) probability space with two inde-
pendent random variable α : Ω → H, β : Ω → Ĥ. Define a partition Ω = Ω+ ∪ Ω− by

Ω+ = {ω ∈ Ω | ⟨β(ω), α(ω)⟩ = 1}
Ω− = {ω ∈ Ω | ⟨β(ω), α(ω)⟩ = −1}.and

This data allows us to define a game (X, µ,A,D) as follows, inspired by the Pauli
basis test in [11].

• X = {PX,PZ} ∪ (Xcom × Ω+) ∪ (Xanticom × Ω−)

• A(PX) = Ĥ, A(PZ) = H, for x ∈ Xcom, A(x, ω) = Acom(x), and for x ∈
Xanticom, A(x, ω) = Aanticom(x).

• µ is the law of (x, y) ∈ X generated as follows: generate independently i uniformly
in {1, 2, 3}, ω ∈ Ω, (xc, yc) according to µcom and (xa, ya) according to µanticom. Define

(x0, y0) =

{
(xc, yc) if ω ∈ Ω+,

(xa, ya) otherwise (if ω ∈ Ω−).

Define (x, y) as

(3.3) (x, y) =



(PX, (xcom,1, ω)) if i = 1 and ω ∈ Ω+,

(PX, (xanticom,1, ω)) if i = 1 and ω ∈ Ω−,

((x0, ω), (y0, ω)) if i = 2,

(PZ, (xcom,2, ω)) if i = 3 and ω ∈ Ω+,

(PZ, (xanticom,2, ω)) if i = 3 and ω ∈ Ω−.
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• The decision function D is given by: if x = xcom,1 and ω ∈ Ω+, or if x = xanticom,1

and ω ∈ Ω−,
D(PX, (x, ω), χ, ε) = 1⟨χ,α(ω)⟩=ε.

If x = xcom,2 and ω ∈ Ω+ or x = xanticom,2 and ω ∈ Ω−,

D(PZ, (x, ω), h, ε) = 1⟨β(ω),h⟩=ε,

and in the remaining cases of the support of µ,

D((x, ω), (y, ω), a, b) =

{
Dcom(x, y, a, b) if ω ∈ Ω+,

Danticom(x, y, a, b) if ω ∈ Ω−.

Proposition 3.8. — Assume that

∀χ ∈ Ĥ, χ ̸= 1, Eω⟨χ, α(ω)⟩ ⩽ 1− 1/c

∀h ∈ H, h ̸= 1, Eω⟨β(ω), h⟩ ⩽ 1− 1/c′.and

If the previous game achieves a value ⩾ 1 − ε on a synchronous strategy, then its
restriction (pPX

χ )χ∈Ĥ and (pPZ
h )h∈H satisfies

1

|H|2
∑

h∈H,χ∈Ĥ

∥∥UPX(h)UPZ(χ)− χ(h)UPZ(χ)UPX(h)
∥∥2
2
⩽ 1320cc′ε,

where UPX is the unitary representation of H corresponding to the PVM pPX ,
and V PZ is the unitary representation of Ĥ corresponding to the PVM pPZ .

Proof. — Denote by 1 − εi the value of this strategy when the questions asked are
conditioned to case i in (3.3). By definition, we then have

(3.4) ε1 + ε2 + ε3 ⩽ 3ε.

For every ω, and j = {1, 2} let (pj,ω−1 , p
j,ω
1 ) we the PVM corresponding to the question

(xcom,j , ω) if ω ∈ Ω+ and to (xanticom,j , ω) otherwise. These are restrictions to {x1, x2}
of a strategy for the commutation or anticommutation game (depending on whether
ω ∈ Ω+ or Ω−) with value 1− ε2(ω), where Eωε2(ω) = ε2. So, if we define

Uω = p1,ω1 − p1,ω−1 , V
ω = p2,ω1 − p2,ω−1 ,

we know from the properties of the commutation and anticommutation game, that

Eω∥UωV ω − ⟨β(ω), α(ω)⟩V ωUω∥22 ⩽ 432ε2.

(and in fact, 432 can be replaced by 64 on Ω+, but this is of no use for us).
Now by definition of ε1, we have

Eω

∑
χ∈Ĥ

τ(pPX
χ p1,ω⟨χ,α(ω)) = ε1,

or, equivalently,
Eω∥UPX(α(ω))− Uω∥22 = 4ε1.

In the same way,
Eω∥V PZ(β(ω))− V ω∥22 = 4ε3.

J.É.P. — M., 2025, tome 12



Spectral gap and stability for groups and non-local games 1437

Putting everything together, we obtain

Eω

∥∥UPX(α(ω))V PZ(β(ω))− ⟨β(ω), α(ω)⟩V PZ(β(ω))UPX(α(ω))
∥∥2
2

⩽
(√

4ε1 +
√
432ε2 +

√
4ε3

)2
.

This is less than 440(ε1 + ε2 + ε3) ⩽ 1320ε by Cauchy-Schwarz and (3.4). If µ is the
law of α(ω) and ν is the law of β(ω), by the assumption that α and β are independent,
we can write this as∫ ∥∥UPX(h)V PZ(χ)− ⟨χ, h⟩V PZ(χ)UPX(h)

∥∥2
2
dµ(χ) dν(h) ⩽ 1320ε.

We conclude by Corollary 2.5. □

The next corollary is expressed in terms of the Pauli PVMs introduced in Sec-
tion 3.3.

Corollary 3.9. — Under the same assumption on α, β as in Proposition 3.8, then
any synchronous strategy with value 1− ε to GN is O(cc′ε)-close to a strategy on an
algebra of the form (M2N (C)⊗N, tr⊗τ ′) where PPX

χ = τXχ ⊗1N and PPZ
h = τZh ⊗1N

for all χ ∈ Ĥ, h ∈ H.

Proof. — By the conclusion of Proposition 3.8 and Corollary 2.6, the representations
UPX , UPZ are O(cc′ε)-close to a pair of representations U1, V1 satisfying

U1(h)V1(χ) = χ(h)V1(χ)U1(h) ∀h ∈ H, χ ∈ Ĥ.

By Lemma 3.7, U1 and V1 have the desired forms, and by Lemma 3.4 the closeness
of the unitary representations is equivalent to the closeness of the strategies. □

Example 3.10. — Let C,C ′ be two linear binary codes of the same dimension N ,
say with parameters [k,N, d] and [k′, N, d′]. By Example 1.2, any choice of a basis
for C gives rise to a probability measure on (Z/2Z)N that is uniform on a subset of
cardinality k, and its spectral gap constant is κ = k/2d. Similarly, any choice of a
basis for C ′ produces a probability measure on (Z/2Z)N uniform on a subset of size k′
and with κ = k′/2d′.

Let us consider Ω = supp(µ)× supp(µ′) with its uniform probability measure, and
α, β : Ω → (Z/2Z)N the two coordinate projections. If we identify (Z/2Z)N with
its Pontryagin dual for the duality ⟨a, b⟩ = (−1)

∑
i aibi , the previous construction

therefore gives rise to a two-player non-local game G(C) = (XC,C′ , µ,AC,C′ , DC,C′)

with |XC,C′ | = O(kk′), AC,C′ = (Z/2Z)N and two particular questions PX and PZ

with the following properties:
• µ(PX) = µ(PZ) = 1/3,
• any synchronous strategy with value 1 − ε to G(C) is O(εkk′/dd′)-close to a

strategy on an algebra of the form (M2N (C)⊗N, tr⊗ τ ′) where PPX
a = τXa ⊗ 1N and

PPZ
b = τZb ⊗ 1N for all a, b ∈ (Z/2Z)N .

The existence of asymptotically good codes (Proposition 1.3) implies in particular
the following theorem.
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Theorem 3.11. — For every N , there is a game GN with |X| ⩽ CN2, |A| = 2N

and with two specific questions PX,PZ ∈ X satisfying µ(PX) = µ(PZ) = 1/3, with
answer sets A(PX) = (Z/2Z)N = A(PZ) = (Z/2Z)N such that any synchronous
strategy with value 1− ε to GN is O(ε)-close to a strategy on an algebra of the form
(M2N (C) ⊗ N, tr ⊗ τ ′) where PPX

a = τXa ⊗ 1N and PPZ
b = τZb ⊗ 1N for all a, b ∈

(Z/2Z)N .

Moreover, the GN can be made explicit, replacing the existential argument of
asymptotically good codes from Proposition 1.3 by explicit constructions, for exam-
ples such as Justesen codes [16] or expander codes [18], see also [8].

Proof. — Combine Proposition 1.3 and Corollary 3.9. □

3.5. Final comment. — Let q = 2k be a power of 2 with k odd. This guarantees that
the Pontryagin dual of Fq identifies with Fq for the duality bracket ⟨x, y⟩ = (−1)Tr(xy)

where we identify an element of Fq (here xy) with the F2-linear map of multiplication
on Fq, seen as an F2 vector space, and so Tr(xy) ∈ F2 is the trace of this F2-linear
operator. Identify the Pontryagin dual of FN

q with itself accordingly.
Let m be an integer. Consider the Reed-Muller code C, the set of all polynomials

of individual degree ⩽ 1 in m variables, seen as a subspace of the space F
Fm

q
q of all

functions Fm
q → Fq. By the Schwarz-Zippel Lemma, any nonzero such polynomial

has at most mqm−1 zeros, so it is a [qm, 2m,⩽ qm(1−m/q)]q-code. By Example 1.2,
this code therefore gives rise to a probability measure µ on F2m

q that is uniformly
supported on a set of size qm+1, and such that κ(µ) ⩽ (q − 1)/(q −m). In particular,
as soon as q ⩾ 2m, we obtain κ(µ) ⩽ 2.

If we define a game from two copies of C as in Example 3.10, we therefore obtain
a game with |X| = O(22k(m+1)), |A| = 2k2

m and that satisfies the same conclusion as
in Theorem 3.11. In this example, the dependence between the number of questions
O(22k(m+1)) and of answers O(2k2

m

) is not as good as in Theorem 3.11.
In [11, §7.3] a game called the Pauli basis test is studied, depending on the same

parameters k and m and an additional parameter d. We will not recall the precise
description of the Pauli basis test here, but it is closely related to the game previously
defined for this value of H,α, β. In particular, it is not difficult to show that, for every
d ⩾ 1, the Pauli basis test contains the game above, and therefore a conclusion similar
to Theorem 3.11 holds for the Pauli basis test as soon as q ⩾ 2m. This is significantly
better than in [11, Th. 7.14], where this statement is proved for the Pauli basis test,
but with O(ε) replaced by a(md)a(εb + q−b + 2−bmd) for some constants a, b, c.

Therefore, Theorem 3.11 and the more general construction in Example 3.10 can
be seen as both an improvement, generalization and simplification of [11, Th. 7.14].

However, it should be noted that this simplification does not remove all the depen-
dencies to the difficult result from [12, 13], as this result is still used in the answer
reduction (or PCP) part of [11]. The main difference between the results in this note
and [13] is that, in [13], the number of answers is much smaller.
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4. Stability

Definition 4.1. — Let G be a countable group and µ a probability measure with gen-
erating support. A map φ : G→ U(M) is said to be an (ε, µ)-almost homomorphism
if
∫∫

∥φ(gh)− φ(g)φ(h)∥22 dµ(g) dµ(h) ⩽ ε.

Let C be a class of von Neumann algebras equipped with normal tracial states.

Definition 4.2. — We say that (G,µ) is C-stable if there is a non-decreasing function
δ : [0, 4] → [0, 4] with limt→0 δ(t) = 0 and such that, for every (M, τ) in C and
every (ε, µ)-almost homomorphism φ : G → U(M), there is a group homomorphism
π : G→ U(M) satisfying ∫

∥φ(g)− π(g)∥22 dµ(g) ⩽ δ(ε).

Such a function δ satisfying moreover that δ is concave and δ(4) = 4 will be called
a modulus of C-stability.

Remark 4.3. — If (G,µ) is C-stable, then it admits a modulus of C-stability (by replac-
ing δ by the smallest function greater than δ, concave and taking the value 4 at 4).
The concavity requirement for δ is here to make statements such as Theorem 4.6
cleaner. It is also very natural, and in fact if C is stable by direct sums then the
best δ is necessarily concave. Indeed, if φ1 and φ2 are respectively (ε1, µ) and (ε2, µ)

almost representations with values in U(M1) and U(M2), and λ ∈ [0, 1], then defining
M = M1⊕M2 with trace τ(x1, x2) = λτ1(x1)+(1−λ)τ2(x2), the pair (φ1, φ2) defines
a (λε1 + (1− λ)ε2, µ) almost representation φ on M. Moreover, a unitary representa-
tion π : G → U(M) is the same as a pair of unitary representations πi : G → U(Mi),
with∫

∥φ(g)− π(g)∥22 dµ(g)

= λ

∫
∥φ1(g)− π1(g)∥22 dµ(g) + (1− λ)

∫
∥φ2(g)− π2(g)∥22 dµ(g).

Taking the supremum over all (ε1, µ) and (ε2, µ) almost representations, we obtain

λδ(ε1) + (1− λ)δ(ε2) ⩽ δ(λε1 + (1− λ)ε2).

That is, δ is concave.

Definition 4.4. — We say that (G,µ) is C flexibly stable if there is a non-decreasing
function δ : [0, 4] → [0, 4] such that limt→0 δ(t) = 0 such that, for every (M, τ) in C

and every (ε, µ)-almost homomorphism φ : G→ U(M), there is a projection P ∈ M∞,
a group homomorphism π : G→ U(M) and an isometry w ∈ PM∞1M satisfying

max

(
τ(P )− 1,

∫
∥φ(g)− w∗π(g)w∥22 dµ(g)

)
⩽ δ(ε).

Such a function δ satisfying moreover that δ is concave and δ(4) = 4 will be called
a modulus of C-flexible stability.
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For example, Theorem 1.4 says that for every finite group and any C, (G,PG) is C

flexibly stable with modulus δ(t) = min(4, 169t).
This is an adaptation of the standard notions of Hilbert-Schmidt stability and

Hilbert-Schmidt flexible stability, see for example [10].
Let Cfin denote the class of all finite-dimensional von Neumann algebras with tracial

states.

Lemma 4.5. — A countable group G is Hilbert-Schmidt (flexibly) stable if and only if
there is a probability measure µ on G with generating support such that (G,µ) is Cfin

(flexibly) stable.
If G is finitely presented, µ can moreover be taken to be of finite support.

Proof. — The lemma is immediate if Cfin is replaced by the set

{Mn} = {(Mn(C), tr) | n ⩾ 1}.

So the whole point of the lemma is to show that if (G,µ) is {Mn}-stable, then (G,µ)

is Cfin-stable, and similarly for flexible stability.
Assume that (G,µ) is {Mn}-stable, and let δ be a modulus. We shall prove that

(G,µ) is Cfin-stable with the same modulus. Let (M, τ) ∈ Cfin and φ : G → U(M)

be an (ε, µ)-almost homomorphism. We can decompose M into a finite direct sum of
matrix algebras M =

⊕k
i=1Mni

(C) with trace τ =
∑

i λi trni
for positive numbers λi

summing to 1. Then φ(g) = (φi(g))i where φi is an (εi, µ)-almost homomorphism for
some numbers εi satisfying ∑

i
λiεi ⩽ ε.

Therefore, by {Mn}-stability, there are homomorphisms πi : G → U(ni) such that∫
∥φi(g) − πi(g)∥22 dµ(g) ⩽ δ(εi). If we define a homomorphism π : G → U(M) by

π(g) = (πi(g))g∈G, we obtain∫
∥φ(g)− π(g)∥22 dµ(g) =

k∑
i=1

λi

∫
∥φi(g)− πi(g)∥22 dµ(g) ⩽ δ(ε)

by concavity of δ.
The argument is identical for flexible stability, and left to the reader. □

Assume that C is a class of von Neumann algebras closed under taking subalgebras.

Theorem 4.6. — Direct products of C-stable groups are C-stable, provided that one of
them has property (T).

More precisely, if (G1, µ1) has property (T) and is C-stable with modulus δ1 and
(G2, µ2) is C-stable with modulus δ2, then (G1×G2, µ) is C-stable with modulus δ(ε) ≲
δ2(κ(µ1)δ2(ε)), where µ is the probability measure

µ(x, y) =
1

2
(µ(x)1y=1 + µ(y)1x=1).

The proof will use the following simple lemmas.

J.É.P. — M., 2025, tome 12



Spectral gap and stability for groups and non-local games 1441

Lemma 4.7. — Let (M, τ) be a tracial von Neumann algebra and N ⊂ M be a subalge-
bra, and let EN : M → N be the conditional expectation. For every unitary V ∈ U(M),
there is a unitary Ṽ ∈ U(N) such that ∥V − Ṽ ∥2 ⩽

√
2 ∥V − EN(V )∥2.

The
√
2 is optimal, for example when EN(V ) = 0.

Proof. — Let X = EN(V ). Since N is finite, we can write X = Ṽ |X| where Ṽ ∈ U(N)

and |X| = (X∗X)1/2. By the duality between L1(M, τ) and M, we have ℜτ(V ∗X) ⩽
τ(|X|), or equivalently ∥Ṽ −X∥2 ⩽ ∥V −X∥2. If we decompose V −Ṽ = V −X+X−Ṽ ,
the terms V −X and X − Ṽ are orthogonal, and therefore

∥V − Ṽ ∥22 = ∥V −X∥2 + ∥Ṽ −X∥2 ⩽ 2 ∥V −X∥22.

This proves the lemma. □

Lemma 4.8. — Let N ⊂ M be a von Neumann subalgebra, and EN : M → N be the
trace-preserving conditional expectation. For every ξ ∈ L2(M, τ),

∥ξ − EN(ξ)∥2 = sup{τ(ξη) | η ∈ L2(M, τ), EN(η) = 0, ∥η∥2 = 1}.

Proof. — (1− EN) is the orthogonal projection on {η ∈ L2(M, τ) | EN(η) = 0}. □

Proof of Theorem 4.6. — Let φ : G1×G2 → U(M) be a (ε, µ)-almost homomorphism.
The idea is simple: we first use the stability of G1 to say that the restriction of π
to G1 is close to a representation. Then by property (T), we will deduce that the
restriction of π to G2 is close to an almost homomorphism from G2 to the commutant
of G1, and therefore by stability of G2 to an actual homomorphism with values in the
commutant of G1.

Here are the details. If we denote

εi,j =

∫∫
Gi×Gj

∥φ(gh)− φ(g)φ(h)∥22 dµi(g) dµj(h),

we then have ε1,1 + ε2,2 + ε1,2 + ε2,1 ⩽ 4ε.
The restriction of φ to G1 is an (ε1,1, µ1)-almost representation of G1, so there is

a unitary representation π1 : G1 → U(M) such that∫
∥φ(g)− π1(g)∥22 dµ1(g) ⩽ δ1(ε1,1).

Set N = M ∩ π̃1(G1)
′, and let E : M → N be the conditional expectation. Since C

is assumed to be stable under taking subalgebras, we have N ∈ C. Define, for every
h ∈ G2,

η(h) = ∥φ(h)− E(φ(h))∥2.
We first establish an upper bound for the norm of η in L2(G2, µ2). This is where we
use that G1 has property (T). By Lemma 2.2, we know that

η(h)2 ⩽ κ(µ1)

∫
G1

∥[φ(h), π1(g)]∥22 dµ1(g).

We can bound

∥[φ(h), π1(g)∥2 ⩽ 2∥φ(g)− π1(g)∥2 + ∥φ(h)φ(g)− φ(hg)∥2 + ∥φ(g)φ(h)− φ(gh)∥2.

J.É.P. — M., 2025, tome 12



1442 M. De La Salle

So, by the triangle inequality in L2(µ1 × µ2), we obtain

∥η∥L2(µ2) ⩽
√
κ(µ1)/2

(
2
√
δ1(ε1,1) +

√
ε1,2 +

√
ε2,1

)
.

By the standing assumptions on δ1, and the Cauchy-Schwarz inequality, we obtain
the following inequality that we will use shortly

(4.1)
∫
η(h)2 dµ2(h) ⩽ 12κ(µ1)δ1(ε).

By Lemma 4.7, for every h ∈ G2 there is a unitary V (h) ∈ U(N) such that
∥φ(h)− V (h)∥2 ⩽

√
2η(h). Our goal is to show that V is an almost-homomorphism,

to then apply flexible stability for G2. By the triangle inequality,(∫
∥V (gh)− V (g)V (h)∥22 dµ2(g) dµ2(h)

)1/2

is bounded above by
√
ε2,2 + 2

√
2 ∥η∥L2(µ2) +

√
2 ∥η∥L2(µ2∗µ2).

Decompose φ(gh) = a+ b+ c with a = φ(gh)−φ(g)φ(h), b = φ(g)(φ(h)−EN(φ(h)))

and c = φ(g)EN(φ(h)). Using Lemma 4.8, and writing supη for the supremum over
all unit vectors in the orthogonal subspace of L2(N, τ) in L2(M, τ), we have

η(gh) = supη τ(aη) + τ(bη) + τ(cη)

⩽ ∥a∥2 + ∥b∥2 + ∥c− EN(c)∥2
⩽ ∥φ(gh)− φ(g)φ(h)∥2 + η(h) + η(g).

As a consequence, we have ∥η∥L2(µ2∗µ2) ⩽
√
ε2,2 + 2 ∥η∥L2(µ2), and we deduce(∫

∥V (gh)− V (g)V (h)∥22 dµ2(g) dµ2(h)

)1/2

⩽ (1 +
√
2)
√
ε2,2 + 4

√
2 ∥η∥L2(µ2).

By (4.1), this last quantity is less than
√
Cκ(µ1)δ1(ε) for some universal constant C.

The theorem follows easily. Indeed, by stability for G2, we deduce that there is a
unitary representation π2 : G→ U(N) such that∫

∥V (g)− π2(g)∥22 dµ2(g) ⩽ δ2(Cκ(µ1)δ1(ε)),

and therefore∫
∥φ(g)− π2(g)∥22 dµ2(g) ⩽ 3

(
∥η∥2L2(µ2)

+ δ2(Cκ(µ1)δ1(ε))
)
.

By definition of N, π2(g) commutes with π1(G1), so the pair (π1, π2) gives rise to a
unitary representation π : G1 ×G2 → U(M) by π(g, h) = π1(g)π2(h). We have∫

∥φ(g)− π(g)∥22 dµ(g) ⩽
1

2

(
δ1(ε1,1) + 3∥η∥2L2(µ2)

+ 3δ2(Cκ(µ1)δ1(ε))
)
.

This is ≲ δ2(κ(µ1)δ1(ε)) by (4.1) and the standing assumption that the moduli δi are
concave and satisfy δi(t) ⩾ t. □
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Theorem 4.9. — Direct products of C-flexibly stable groups are C-flexibly stable, pro-
vided that one of them has property (T).

More precisely, if (G1, µ1) has property (T) and is C-flexibly stable with modulus δ1
and (G2, µ2) is C-flexibly stable with modulus δ2, then (G1×G2,

1
2 (µ1⊗ δ1+ δ1⊗µ2))

is C-flexibly stable with modulus δ(ε) ≲ δ2(κ(µ1)δ2(ε)).

Proof. — This is proved in the same way as for stability. The only difference is that
the von Neumann algebras change after each use of flexible stability. First, when
flexible stability is used for G1, a representation π̃1 of G1 is constructed in a small
dilation M1 of M. The almost representation of G2 is then defined with values in
U(M1) as w1π(g)w

∗
1 + P1 − w1w

∗
1 . Similarly, when flexible stability is used for G2

to construct a representation π̃2 in a small dilation M2 of M1, the representation π̃1
of G1 is then defined with values in U(M2) as w2π̃1(g)w

∗
2 + P2 − w2w

∗
2 . □

One way of expressing the crucial step in the above proofs is as follows: by (the
baby case of) von Neumann’s bicommutant theorem, the centralizer of a subgroup
of U(n) decomposes as a direct product of smaller unitary groups. This is not true for
permutation groups, and therefore the proof of the preceding theorems does not apply
verbatim for permutation stability or permutation flexible stability. The following
question is however natural. A positive answer would pleasingly complement Ioana’s
results [9].

Question 4.10. — Is it true that the direct product of two (flexibly) permutation stable
groups is (flexibly) permutation stable, provided that one of them has property (τ)?
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