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MEAN SURFACES IN HALF-PIPE SPACE AND

INFINITESIMAL TEICHMÜLLER THEORY

by Farid Diaf

Abstract. — We study a correspondence between smooth spacelike surfaces in the half-pipe
space HP3 and divergence-free vector fields on the hyperbolic plane H2. We show that a partic-
ular case involves harmonic Lagrangian vector fields on H2, which are related to mean surfaces
in HP3. Consequently, we prove that the infinitesimal Douady-Earle extension is a harmonic
Lagrangian vector field that corresponds to a mean surface in HP3 with prescribed boundary
data at infinity.

We establish both existence and, under certain assumptions, uniqueness results for harmonic
Lagrangian extension of a vector field on the circle. Finally, we characterize the Zygmund and
little Zygmund conditions and provide quantitative bounds in terms of the half-pipe width.

Résumé (Surfaces moyennes dans l’espace half-pipe et théorie de Teichmüller infinitésimale)
Nous étudions une correspondance entre les surfaces lisses de type espace dans l’espace

half-pipe HP3 et les champs de vecteurs à divergence nulle sur le plan hyperbolique H2. Nous
montrons qu’un cas particulier de cette correspondance fait intervenir des champs de vecteurs
harmoniques lagrangiens sur H2, qui sont liés aux surfaces moyennes dans HP3. Par conséquent,
nous prouvons que l’extension infinitésimale de Douady–Earle est un champ de vecteurs harmo-
nique lagrangien correspondant à une surface moyenne dans HP3, avec un bord prescrit à l’infini.

Nous établissons à la fois des résultats d’existence et, sous certaines hypothèses, d’unicité
d’extension harmonique lagrangienne d’un champ de vecteurs défini sur le cercle. Enfin, nous
caractérisons les conditions de Zygmund et de petit Zygmund, et nous fournissons des estima-
tions quantitatives en termes de largeur de l’espace half-pipe.
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1290 F. Diaf

1. Introduction

The goal of this paper is threefold:
(1) Study a correspondence between smooth spacelike surfaces in the three-

dimensional half-pipe space HP3 and divergence-free vector fields on the hyperbolic
plane H2. This can be seen as an infinitesimal version of a well-known correspondence
between smooth spacelike surfaces in three-dimensional Anti-de Sitter space and
area-preserving diffeomorphisms of the hyperbolic plane H2.

(2) Study harmonic Lagrangian vector fields on H2 by giving several characteri-
zations of them. In particular, we show that under the above correspondence, they
correspond to mean surfaces in HP3. Furthermore, we will see that the so-called infin-
itesimal Douady-Earle extension is a particular case of harmonic Lagrangian vector
fields. Hence, we obtain an interpretation of the infinitesimal Douady-Earle extension
in terms of three-dimensional geometry.

(3) Finally, we show that any continuous vector field on the circle can be extended
to a harmonic Lagrangian vector field on the hyperbolic plane. Moreover, such an
extension is unique if the associated mean surface in HP3 has bounded principal
curvature. In this way, we characterize vector fields on the circle with various regularity
properties using purely geometric quantities arising from half-pipe geometry.

1.1. Motivation from AdS geometry and conformally natural extension

Following the groundbreaking ideas of Mess [Mes07], the relationship between
Lorentzian space forms and two-dimensional hyperbolic geometry has become a pow-
erful tool in Teichmüller theory. Several contributions have been made on this subject;
see, for example, [ABB+07, Bon05, Bar05, BB09, BS16].

Mess emphasized the significance of studying Anti-de Sitter geometry in dimen-
sion 3, namely the Lorentzian geometry of constant curvature −1. The Anti-de Sitter
space AdS3 can be identified with the Lie group Isom0(H2) of orientation-preserving
isometries of the hyperbolic plane H2, endowed with its bi-invariant metric induced
by its Killing form. The study of AdS3 is often motivated by its similarities to three-
dimensional hyperbolic geometry and its connections to the Teichmüller theory of
hyperbolic surfaces.

A main idea of Mess is the Gauss map construction, which associates to a space-
like surface S in Anti-de Sitter space, a map Φ between domains of H2. Mess then
observed that the connected component of the boundary of the convex hull in Anti-de
Sitter space provides an earthquake map of H2, leading to a new proof of Thurston’s
Earthquake Theorem [Thu86] (the construction works even though the convex hull
boundary is not a smooth surface).

Since Mess’s work, interest in three-dimensional Anti-de Sitter space has grown,
and the Gauss map construction has been used to provide several interesting exten-
sions of circle homeomorphisms to the hyperbolic plane; see [BS10, BS18, Sep19].
For instance, Bonsante and Schlenker used the Gauss map construction to prove that
any quasisymmetric homeomorphism ϕ : S1 → S1 of the circle is the extension of a
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unique minimal Lagrangian diffeomorphism Φ : H2 → H2. These are diffeomorphisms
of H2 whose graphs are minimal Lagrangian surfaces in H2 ×H2, with respect to the
Riemannian product metric and the symplectic form π∗

l ω− π∗
rω, where ω is the sym-

plectic form on H2, and πl, πr denote the projections onto the left and right factors of
the product, respectively. The crucial observation is that minimal Lagrangian maps
are precisely those associated, via the Gauss map construction, to maximal surfaces
in AdS3 (i.e., smooth surfaces with zero mean curvature).

Minimal Lagrangian diffeomorphisms are a particular class of conformally natural
extensions. Specifically, if A and B are isometries of H2 and ϕ is a quasisymmetric
homeomorphism with a minimal Lagrangian extension Φ, then A ◦ Φ ◦ B−1 is the
minimal Lagrangian diffeomorphism that extends A ◦ ϕ ◦ B−1. Nevertheless, in gen-
eral, minimal Lagrangian diffeomorphisms are not stable under composition. In fact,
a general theorem by Epstein and Markovic [EM07] states that it is not possible to
extend, in a homomorphic fashion, each quasisymmetric homeomorphism of the cir-
cle to a quasiconformal homeomorphism of H2. However, the infinitesimal situation
is completely different. Indeed, denote by Γ(S1) and Γ(H2) the spaces of continuous
vector fields on S1 and H2, respectively. We say that a linear map L : Γ(S1) → Γ(H2)

is conformally natural if
L(A∗X) = A∗L(X),

for all vector fields X on the circle and for all isometries A of the hyperbolic plane.
The infinitesimal Douady-Earle extension L0 : Γ(S1) → Γ(H2) is an example of such
a linear map. According to a theorem in [Ear88], this is the unique (up to a constant)
continuous linear operator that is conformally natural.

1.2. Spacelike surfaces in HP3 and vector fields of H2. — The first goal of this
paper is to give an infinitesimal version of the Anti-de Sitter Gauss map construction,
now between smooth spacelike surfaces in the half-pipe space HP3 on the one hand,
and vector fields on H2 on the other hand. Such a construction has been investigated
by the author in [Dia24] for convex hulls in HP3 (which are not smooth surfaces),
thus yielding infinitesimal earthquakes of H2, similar to how convex hulls in Anti-de
Sitter space lead to earthquake maps on H2.

The half-pipe space, also known as the Co-Minkowski space, is the space of all
spacelike planes in Minkowski space R2,1. Recall that Minkowski space is the flat
model of Lorentzian geometry, which can be described as the three-dimensional vector
space R3 endowed with a bilinear form of signature (−,+,+). The half-pipe space can
be identified as the geometry of the infinite cylinder H2×R with respect to projective
transformations induced from isometries of R2,1. Indeed, for each pair (η, t) ∈ H2×R,
one can associate a spacelike plane in R2,1 for which the normal is given by η, and
the oriented distance from the origin through the normal direction is t.

We now describe what we could call the Gauss map construction in half-pipe space.
A plane in the projective model of half-pipe space H2×R is said to be spacelike if it is
not vertical. It turns out that there is a projective duality between spacelike planes in
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1292 F. Diaf

half-pipe space and points in Minkowski space. This correspondence can be viewed as
the infinitesimal version of the projective duality between points and spacelike planes
in AdS3. The key idea in the Gauss map construction in HP3 is that one of the models
of Minkowski space is the Lie algebra isom(H2) of the Lie group Isom0(H2), where
each element of isom(H2) corresponds to a Killing vector field on H2. Consequently,
we establish the following homeomorphism:

(1) K : {Spacelike planes in HP3} ∼= {Killing vector fields in H2}.

Based on the identification (1), we can associate to each properly embedded space-
like surface S ⊂ HP3, which is the graph of some smooth function u : H2 → R, a
vector field VS on H2. Specifically, take p ∈ H2 and consider Pp, the tangent plane
at (p, u(p)) of S. This plane is spacelike, and therefore, by duality (1), we define the
vector field associated with S as:

(2) VS(p) := K(Pp)(p).

The first result of this paper characterizes the vector field VS in terms of the
geometry of the tangent bundle of H2. It turns out that TH2 is endowed with a natural
pseudo-Kähler structure, namely a triple (G, J,Ω) such that G is a pseudo-Riemannian
metric of signature (2, 2), J is an integrable almost complex structure, and Ω = G(J·, ·)
is a symplectic form (a non-degenerate closed 2-form). We will come back to this in
detail in Section 3.1.

Theorem 1.1. — Let V : H2 → TH2 be a smooth vector field on H2. The following
are equivalent:

(1) There exists a smooth function u : H2 → R such that V is the vector field
associated to the surface S = gr(u) ⊂ HP3, that is V = VS.

(2) V (H2) is a Lagrangian surface in TH2 with respect to the symplectic form Ω.
(See Theorem 3.1.)

(3) V is a divergence-free vector field on H2.

Theorem 1.1 is a local result, meaning that one may replace H2 with any simply
connected open set of H2 and the result still holds. It is worth noting that in the case
of Anti-de Sitter geometry, an important feature of the Gauss map construction is the
fact that the space of timelike geodesics of AdS3 is naturally identified with H2 ×H2.
In our case, the tangent bundle TH2 can be interpreted as the space of oriented
timelike geodesics in Minkowski space R2,1. Since the seminal paper of Hitchin [Hit82],
who observed the existence of a natural complex structure on the space of oriented
geodesics in Euclidean three-space, there has been a growing interest in the geometry
of the space of geodesics of certain Riemannian and pseudo-Riemannian manifolds
(see [GK05, Anc14, GS15, AGR11, BEE22, EES22]).

1.3. Harmonic Lagrangian extension. — The second goal of this paper is to use
the Gauss map construction in half-pipe space to obtain interesting extensions of
vector fields on the circle to the hyperbolic plane, similarly to how the Gauss map
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construction in Anti-de Sitter space provides extensions of circle homeomorphisms.
Let us briefly explain how such a construction can be used to extend a vector field
on the circle. Given that the tangent bundle of S1 is trivial, each vector field X on
the circle can be represented as a function ϕX : S1 → R, called the support function,
where X(z) = izϕX(z) for every z ∈ S1.

Identifying a vector field X with its support function ϕX : S1 → R, we can view the
graph of ϕX in S1 ×R ∼= ∂H2 ×R as a curve on the boundary at infinity of HP3. The
key point is that certain surfaces in HP3 that admit these curves as their “boundary
at infinity” give rise to vector fields on the hyperbolic plane that extend X.

In this paper, we are interested in harmonic Lagrangian vector fields on H2. These
can be seen as the infinitesimal analogue of minimal Lagrangian maps of H2. That
is, if Φt : H2 → H2 is a one-parameter family of minimal Lagrangian maps such
that Φt = Id, then V = d

dt

∣∣
t=0

Φt is a harmonic Lagrangian vector field. To define
this class of vector fields intrinsically, we use the geometry of the tangent bundle
TH2, similarly to how minimal Lagrangian maps correspond to minimal Lagrangian
surfaces in H2 ×H2.

Definition 1.2. — We say that a vector field V : H2 → TH2 is harmonic Lagrangian
if it satisfies the following conditions:

(1) V : (H2, gH
2

) → (TH2,G) is a harmonic map.
(2) V (H2) is a Lagrangian surface in TH2 with respect to the symplectic struc-

ture Ω.

In Definition 1.2, gH2 denotes the hyperbolic metric on H2 and G and Ω are defined
in Theorem 3.1. The harmonicity condition is defined as the critical points of an
energy functional among compactly supported variations, and an equivalent analytic
condition is given in Definition 4.1. The next result gives characterizations of harmonic
Lagrangian vector fields.

Theorem 1.3. — Let V : H2 → TH2 be a smooth vector field on H2. The following
are equivalent:

(1) There exists a smooth function u : H2 → R such that S = gr(u) is a mean
surface in HP3 and V is the vector field associated to the surface S, that is V = VS.

(2) V is harmonic Lagrangian.
(3) The unique self-adjoint (1, 1)-tensor b : TH2 → TH2 such that LV g

H2

=

gH
2

(b·, ·) satisfies the conditions:

(3) tr(b) = 0 and d∇b = 0,

where ∇ is the Levi-Civita connection of H2.

Mean surfaces in HP3 are smooth spacelike surfaces of zero mean curvature. They
can be thought as the infinitesimal analogue of maximal surfaces in the Anti-de Sitter
space AdS3 and minimal surfaces in hyperbolic space H3. However, due to the lack of
a natural pseudo-Riemannian metric in HP3, mean surfaces are not local minima or
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1294 F. Diaf

maxima for the area functional, which is why they are called mean surfaces and not
minimal or maximal surfaces. Observe that the third characterization in Theorem 1.3
implies in particular that V is divergence-free (that is the third characterization in
Theorem 1.1); in fact, this is equivalent to the traceless condition of the tensor b

in (3).
As we mentioned, a harmonic Lagrangian vector field can be seen as the infini-

tesimal version of a minimal Lagrangian map of H2. The graphs of these maps are
by definition Lagrangian and minimal surfaces in H2 × H2. By analogy, one may
wonder if for a harmonic Lagrangian vector field V , the section V (H2) is a minimal
surface in (TH2,G). It turns out that this is not possible according to a theorem in
[AGR11, Prop. 2.2], which shows that if V : H2 → TH2 is a vector field (not necessar-
ily harmonic) such that V (H2) is a Lagrangian surface in TH2, then V (H2) cannot
be minimal in TH2. We can now state our third main result.

Theorem 1.4. — Let X be a continuous vector field on S1. There exists a harmonic
Lagrangian vector field on H2 which extends continuously to X on S1.

Using mean surfaces in half-pipe space, we will give an explicit construction of
the harmonic Lagrangian vector field extending X. This works as follows: take a
continuous vector field X(z) = izϕX(z), for some continuous function ϕX : S1 → R.
Then, based on a theorem from [BF20], there exists a unique mean surface S in HP3

with “boundary at infinity” ∂S given by the graph of ϕX . We then define

(4) HL(X) := VSX
.

We will show in Proposition 5.14 that HL(X) is a harmonic Lagrangian vector field
which extends continuously to X.

The next result, proved in Section 5.1, shows that the infinitesimal Douady-Earle
extension coincides with the vector field HL(X).

Proposition 1.5 (Proposition 5.15). — Let X be a continuous vector field on the circle
and L0 : Γ(S1) → Γ(H2) be the infinitesimal Douady-Earle extension. Then

HL(X) = L0(X).

The precise statement of Proposition 1.5 is given in Proposition 5.15 after recalling
in Section 5.1 the explicit construction of the infinitesimal Douady-Earle extension.

1.4. Zygmund and little Zygmund vector fields. — The correspondence between
mean surfaces in HP3 and the infinitesimal Douady-Earle extension (Proposition 1.5)
establishes a connection with the work of Fan and Hu [FH14], where infinitesimal
Douady-Earle extensions are studied in detail and used to characterize Zygmund
and little Zygmund vector fields using the ∂-operator. These classes of vector fields
are related to the tangent space of the universal Teichmüller space and the little
Teichmüller space, respectively. In this section, we state our main results concerning
the characterization of these classes of vector fields using the width of the convex core

J.É.P. — M., 2025, tome 12



Mean surfaces in half-pipe space and infinitesimal Teichmüller theory 1295

in HP3. Note that the characterization involving the width is only visible from the
half-pipe perspective.

Roughly speaking, the width of a vector field X measures the thickness of the convex
core of gr(ϕX) in HP3. Concretely, it is defined as follows: Denote by ∂−C(X) and
∂+C(X) the lower and upper boundary components of the convex hull of the graph
of ϕX in the cylinder HP3. It turns out that each of these boundary components is
the graph of a function defined on D2. We denote these functions by Φ−

X and Φ+
X :

D2 → R such that
∂±C(X) = gr(ϕ±

X),

see Figure 1. Next, we define the function ωX : D2 → R, which measures the length
along the degenerate fiber of the convex core of ϕX , as follows: for each η ∈ D2 ∼= H2,
the points (η,Φ+

X(η)) and (η,Φ−
X(η)) in HP3 correspond to two parallel spacelike

planes in Minkowski space. We then define ωX(η) as the timelike distance between
these two parallel spacelike planes. The width of X is then defined by:

ω(X) := sup
η∈D2

ωX(η) ∈ [0,+∞].

This is a meaningful quantity to work with since it is invariant under isometries of
half-pipe space.

The next result concerns the uniqueness of the harmonic Lagrangian extension for
vector fields on the circle having Zygmund regularity and estimates relating to the
width.

Theorem 1.6. — Let X be a continuous vector field on S1. Consider ω(X) the width
of X and HL(X) the harmonic Lagrangian vector field defined in (4). The following
are equivalent:

(1) X is a Zygmund vector field.
(2) There exists a harmonic Lagrangian vector field V on H2 which extends con-

tinuously to X and such that ∥∂V ∥∞ is finite.
(3) ω(X) < +∞.
(4) ∥∂HL(X)∥∞ < +∞.

Moreover,
(i) The harmonic Lagrangian extension V as in (2) is unique.
(ii) The following estimates hold:

(5) 1

6
∥∂HL(X)∥∞ ⩽ ω(X) ⩽ 2∥∂HL(X)∥∞.

The ∂-operator is defined in Section 4.2 via the complex structure J of TH2. In sim-
pler terms, if we write V in the Poincaré disk model of H2, then the norm ∥∂V ∥∞
coincides with the sup-norm of the complex derivative with respect to z, see Corol-
lary 4.17. In Proposition 7.1, we actually obtain a stronger statement for the left
estimate (5). Indeed, we derive a pointwise estimate, which should be of independent
interest. See Remark 7.10. The next theorem concerns little Zygmund vector fields.
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1296 F. Diaf

Theorem 1.7. — Let X be a continuous vector field on S1. Consider ω(X) the width
of X and HL(X) the harmonic Lagrangian vector field defined in (4). The following
are equivalent:

(1) X is little Zygmund.
(2) ∥∂HL(X)p∥ tends to zero as p ∈ H2 tends to the boundary of H2.
(3) ωX(z) tends to zero as |z| → 1.

1.5. Outline of the proof. — We will sketch some elements of the proof of Theo-
rem 1.4. In fact, we will give two independent proofs of this result. One proof is in
the spirit of half-pipe geometry, which is essential for proving the uniqueness result
stated in Theorem 1.6. The other proof uses tools from Teichmüller theory. In the
end, we will relate the two approaches.

Let’s start by explaining the proof from a half-pipe perspective. The first thing
to observe is that if V is a harmonic Lagrangian vector field, then by Definition 1.2,
V (H2) is a Lagrangian surface in H2. According to Theorem 1.1, V corresponds to
a surface S ⊂ HP3, which is the graph of some smooth function u : H2 → R. The
remaining part is to translate the harmonicity condition in terms of the surface S.
Theorem 1.3 implies that S should be a mean surface in HP3. At the price of analytical
technicality, the choice of the mean surface S with boundary at infinity given by the
graph of ϕX will force the harmonic vector field HL(X) defined in (4) to extend to X

on S1 (see Proposition 5.14). We will provide a far more detailed discussion of the
main ideas used in this step of the proof in Section 5.2.

The proof of the uniqueness result in Theorem 1.6 (i.e., (i) in the “moreover”
part) follows from the following result, which establishes a relationship between the
boundedness of ∂ and the asymptotic behavior of mean surfaces.

Proposition 1.8 (Propositions 6.2 and 5.14). — Let u : H2 → R be a smooth function
and S ⊂ HP3 be its graph so that VS is a harmonic Lagrangian vector field of H2.
Assume that ∥∂VS∥∞ is finite, then the boundary at infinity of S is the graph of a
continuous function ϕ : S1 → R. Moreover VS = HL(X) extends continuously to
X(z) = izϕ(z) on S1.

Since S has zero mean curvature, the principal curvatures of S are λ and −λ. The
idea of the proof of Proposition 1.8 is to relate ∥∂VS∥ to the sup norm of |λ|. Indeed,
we show in Corollary 4.14 (see also Remark 4.15):

∥∂VS∥∞ = sup
p∈H2

|λ(p)|.

Since the construction that associates to a spacelike surface in HP3, a vector field of H2

is invariant under normal evolution, one can push the surface S by normal evolution
to obtain a convex or concave surface in HP3 (depending on the direction of the
evolution); this can be done when the principal curvatures are bounded. Furthermore,
we use classical convexity results to show that the new surface has a boundary in HP3

which is the graph of a continuous function, thus concluding the proof since the
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surface S has the same boundary at infinity as the pushed surfaces. Then one may
use the uniqueness of the mean surface with prescribed data at infinity to conclude
the uniqueness of the harmonic Lagrangian vector field with bounded ∂. This kind of
argument would also be useful to prove the right estimate (5) in Theorem 1.6.

The second way to prove the existence of harmonic Lagrangian extension follows
by showing that if X is a continuous vector field on the circle, then the infinitesimal
Douady-Earle extension L0(X) is a harmonic Lagrangian vector field (see Proposi-
tion 5.4). This can be done using the next result on an appropriate conformally natural
continuous linear map from Γ(S1) to Γ(H2).

Theorem 1.9 ([Ear88]). — Up to multiplication by a constant, there is exactly one
conformally natural continuous linear map from Γ(S1) to Γ(H2).

Based on a theorem of Reich and Chen [RC91], who proved that L0(X) is an
extension of X to the hyperbolic plane, we obtain another proof of Theorem 1.4.
Let us briefly explain why the infinitesimal Douady-Earle extension coincides with
the vector field corresponding to a mean surface in HP3 with prescribed data at
infinity (i.e., HL(X)). Given a continuous vector field X on the circle and consider
uX : H2 → R the function for which the graph is a mean surface with boundary
at infinity given by ϕX , then uX satisfies a particular linear elliptic equation (see
Proposition 2.17). This implies the following observation: For any vector fields X

and Y on the circle and for any λ ∈ R,

HL(X + λY ) = HL(X) + λHL(Y ).

Namely, HL : Γ(S1) → Γ(H2) is a linear operator. Using classical results of elliptic
equations, we show that HL defines a continuous linear operator. By showing the con-
formal naturality of the operator HL and applying Earle’s Theorem 1.9, we establish
Proposition 1.5.

It is worth noting that the uniqueness result in Theorem 1.9 differs from the unique-
ness results for the harmonic Lagrangian extension of a given continuous vector field
on the circle. Therefore, our uniqueness result in Theorem 1.6 is not a direct con-
sequence of Earle’s Theorem 1.9. Furthermore, we expect that the uniqueness result
in Theorem 1.6 may not hold if we remove the condition ∥∂V ∥∞ < +∞. This con-
dition can be viewed as a quasiconformal condition in the non-infinitesimal setting.
In the theory of quasiconformal maps, it is known that for any given quasisymmetric
homeomorphism on S1, there is a unique quasiconformal harmonic extension to H2

(see [LT93a, Mar17]). Such a uniqueness result does not hold for non-quasiconformal
harmonic extensions. In [LT93a, LT93b], Li and Tam constructed families of harmonic
maps on H2 with the same boundary values. By analogy with this result, one might
expect that a family of harmonic Lagrangians vector fields with the same boundary
values can be found.

1.6. Organization of the paper. — In Section 2, we collect some preliminary results
to work towards the proofs of our main results introduced above. Section 3 explains
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1298 F. Diaf

the correspondence between spacelike surfaces in HP3 and vector fields on H2, where
we prove Theorem 1.1. In Section 4, we introduce harmonic Lagrangian vector fields
and prove Theorem 4.6. Additionally, we provide details on the ∂-operator. Section 5
is devoted to proving Theorem 1.4. We begin by proving it through the infinitesimal
Douady-Earle extension and then provide the proof from the half-pipe perspective.
Finally, we prove Proposition 1.5, which connects the infinitesimal Douady-Earle ex-
tension to the mean surface in HP3. In Section 6, we focus on proving the uniqueness
part of Theorem 1.6. In the last Section 7, we complete the proof of Theorem 1.6.
Finally, we conclude by proving Theorem 1.7 concerning little Zygmund vector fields.
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2. Preliminaries

2.1. Minkowski geometry. — The Minkowski space is the vector space R3 endowed
with a non degenerate bilinear form of signature (−,+,+), it can be defined as

R1,2 :=
(
R3, ⟨(x0, x1, x2), (y0, y1, y2)⟩1,2 = −x0y0 + x1y1 + x2y2

)
.

The group of isometries of R1,2 that preserve both the orientation and time orien-
tation is identified as:

Isom0(R1,2) = O0(1, 2)⋉R1,2,

where O(1, 2) is the group the linear transformations that preserve the Lorentzian
form ⟨· , ·⟩1,2, O0(1, 2) denotes the identity component of O(1, 2) and R1,2 acts by
translation on itself. In Minkowski space, there are three types of planes P: spacelike
when the restriction of the Lorentzian metric to P is positive definite, timelike when
the restriction is still Lorentzian or lightlike when the restriction is a degenerate
bilinear form.

We define the hyperbolic plane as the upper connected component of the two-
sheeted hyperboloid, namely:

(6) H2 := {(x0, x1, x2) ∈ R1,2 | −x2
0 + x2

1 + x2
2 = −1, x0 > 0}.

The restriction of the Lorentzian bilinear form of R1,2 on H2 induces a complete
Riemannian metric gH

2 of sectional curvature −1. The group Isom0(H2) of orienta-
tion preserving isometries of H2 is thus identified with O0(1, 2). Consider the radial
projection Π defined on {(x0, x1, x2) ∈ R3 | x0 ̸= 0} by:

(7) Π(x0, x1, x2) =
(x1

x0
,
x2

x0

)
,

The projection Π identifies the hyperboloid H2 with the unit disk D2 which is the
Klein projective model of the hyperbolic plane. The boundary at infinity ∂H2 of the
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hyperbolic plane is then identified with the unit circle S1. We now recall the definition
of the Minkowski cross product.

Definition 2.1. — Let x, y ∈ R1,2. The Minkowski cross product of x and y is the
unique vector x⊠ y in R1,2 such that:

⟨x⊠ y, v⟩1,2 = det(x, y, v),

for all v ∈ R1,2.

Next, we highlight two important features of the Minkowski cross product. The
first one is that we can write the almost complex structure on H2 as follows. For
v ∈ TpH2 :

(8) Jp(v) = p⊠ v.

Notice that J is compatible with gH
2 . Namely,

gH
2

(J·, J·) = gH
2

(· , ·).

This implies that ωH2

= gH
2

(J·, ·) is a differential 2-form which is moreover closed.
As a result, the triple (gH

2

, J, ωH2

) is a Kähler structure on H2. We will use this
structure in Section 3.1 to describe the geometry of the tangent bundle of H2.

The second property of the Minkowski cross product is that it gives rise to an
isomorphism Λ : R1,2 → isom(H2) between the Minkowski space R1,2 and the Lie
algebra of Isom(H2). Since O0(1, 2) is the isometry group of H2, isom(H2) is the
algebra of skew-symmetric matrices with respect to ⟨· , ·⟩1,2. More precisely, we have:
(9) Λ(x)(y) := y ⊠ x.

The isomorphism Λ is equivariant with respect to the linear action O0(1, 2) on R1,2

and the adjoint action of O0(1, 2) on isom(H2), namely for all x ∈ R2,1, A ∈ O0(1, 2),
we have:
(10) Λ(A · x) = AΛ(x)A−1.

Recall that the Lie algebra isom(H2) can be seen as the space of all Killing vector
fields on H2, where a Killing field X is by definition a vector field whose flow is a
one-parameter group of isometries of H2. Indeed each X ∈ isom(H2) defines a Killing
field on H2 given by:

X(p) =
d

dt

∣∣∣
t=0

(etX · p)

and any Killing field on H2 is of this form for a unique X ∈ isom(H2).

2.2. Half-pipe geometry as dual of Minkowski geometry

In this section, we introduce the so-called half-pipe geometry, which is a homoge-
neous real projective geometry. Following [Dan11], it is defined as

HP3 := {[x0, x1, x2, x3] ∈ RP3 | −x2
0 + x2

1 + x2
2 < 0}.

The boundary at infinity ∂HP3 of HP3 is given by:

∂HP3 = {[x] ∈ RP3 | −x2
0 + x2

1 + x2
2 = 0}.
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The half-pipe space has a natural identification with the dual of Minkowski space,
namely the space of spacelike planes of Minkowski space. More precisely, we have the
homeomorphism

(11) D : HP3 ∼= {Spacelike planes in R1,2}

which associates to each point [x, t] in HP3, the spacelike plane of R1,2 defined as:

(12) P[x,t] = {y ∈ R1,2 | ⟨x, y⟩1,2 = t}.

The homeomorphism D extends to a homeomorphism between ∂HP3 ∖ [0, 0, 0, 1] and
the space of lightlike planes in Minkowski space R1,2 using the same formula (12).
Another interesting model of HP3 derived from this duality is given by the diffeomor-
phism: HP3 → H2 × R defined by:

(13) [x, t] 7−→
(

x√
−⟨x, x⟩

1,2

,L([x, t])

)
,

where L([x, t]) is the height function, which is defined as the signed distance of the
spacelike plane P[x,t] to the origin along the future normal direction. It can be checked
by an elementary computation that for [x, t] ∈ HP3 with x = (x0, x1, x2) and x0 > 0,
we have:

(14) L([x, t]) =
t√

−⟨x, x⟩
1,2

.

We will call geodesics (resp. planes) of HP3 the intersection of lines (resp. planes) of
RP3 with HP3. We will also use the following terminology:

– A geodesic in HP3 of the form {∗} × R is called a fiber.
– A geodesic in HP3 which is not a fiber is called a spacelike geodesic.
– A plane in HP3 is spacelike if it does not contain a fiber.

From this, we can define a dual correspondence to the identification (11) as follows:

(15) D∗ : R1,2 ∼= {Spacelike planes in HP3}

which associates to each vector v in R1,2, the spacelike plane in HP3 given by:

Pv := {[x, t] ∈ HP3 | ⟨x, v⟩1,2 = t}.

Now, let us denote by Isom0(HP3) the group of transformations given by:[
A 0

v 1

]
,

where A ∈ O0(1, 2) and v ∈ R2. Observe that the group Isom0(HP3) preserves the
orientation of HP3 and sends oriented fibers to oriented fibers. The map D in (11)
induces an isomorphism between Isom0(R1,2) and Isom0(HP3) given by (See [RS22,
§2.8])

(16)
Is : Isom0(R1,2) −→ Isom0(HP3)

(A, v) 7−→
[

A 0
T vJA 1

]
,
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where J = diag(−1, 1, 1). Now, we move on to describing the Klein model of the half-
pipe space which will be useful in this paper. It is defined as the cylinder D2 × R
obtained by projecting HP3 in the affine chart {x0 ̸= 0}:

(17)
HP3 −→ D2 × R

[x0, x1, x2, x3] 7−→
(x1

x0
,
x2

x0
,
x3

x0

)
.

By the above discussion, it is clear that in this model the correspondence (15) between
Minkowski space and spacelike planes of HP3 associates to each vector v ∈ R1,2, the
non-vertical plane

(18) Pv := {(η, t) ∈ D2 × R | ⟨(1, η), v⟩1,2 = t}

and this plane corresponds to the graph of an affine function over D2. The height
function L is expressed in the Klein model as follows

(19) L(η, t) =
t√

1− |η|2
,

where |η| is the standard euclidean norm of η. The next lemma describes the action
of the isometries of HP3 in the Klein model.

Lemma 2.2 ([BF20, Lem. 2.26]). — Let (η, t) ∈ D2 × R, A ∈ O0(1, 2) and v ∈ R1,2.
Then the isometry of half-pipe space defined by Is(A, v) acts on the Klein model D2×R
as follows:

Is(A, v) · (η, t) =
(
A · η, t

−⟨A
(
1
η

)
, (1, 0, 0)⟩1,2

+ ⟨(1,A · η), v⟩1,2
)
,

where A · η is the image of η by the isometry of D2 induced by A.

Remark 2.3. — The reader may refer to [NS22, NS23], where the authors use projec-
tive duality to study a broader correspondence between the geometry of affine spaces
endowed with properly convex cones and the geometry of convex tube domains. In the
case of three-dimensional affine space R3 equipped with the cone

{(x, y, z) ∈ R3 | −x2 + y2 + z2 < 0},

the associated convex tube domain is precisely the half-pipe space HP3 ∼= H2 × R.

We finish these preliminaries on half-pipe geometry by recalling the notion of width.
To do this, we need to recall some notions in convex analysis. For more detailed
discussions, readers can refer to [Roc70]. Given a convex (resp. concave) function
u : D2 → R, the boundary value of u is the function on S1 whose value at z ∈ S1 is
given by:

(20) u(z) = lim
s→0+

u((1− s)z + sx), for any x ∈ D2.

The limit defined in (20) exists and does not depend on the choice of x ∈ D2 (see
[NS22, §4]). Moreover, if u : D2 → R is convex (resp. concave), then the extension
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of u to D2 through the boundary value (20) is a lower semicontinuous (resp. upper
semicontinuous) function. We also need the following result.

Proposition 2.4 ([NS22, Prop. 4.2]). — Let u : D2 → R be a convex (or concave)
function. Then the boundary value of u is a continuous function on S1 if and only
if u has a continuous extension to D2.

For any function ϕ : S1 → R, define two functions Φ−,Φ+ : D2 → R as follows:
Φ−(z) = sup{a(z) | a : R2 → R is an affine function with a|S1 ⩽ ϕ},(21)
Φ+(z) = inf{a(z) | a : R2 → R is an affine function with ϕ ⩽ a|S1}.(22)

We need the following properties of the maps Φ− and Φ+:
(P1) We have Φ− ⩽ Φ+, moreover, if ϕ is continuous on S1 then ϕ± is continuous

in D2 with ϕ±|S1 (see for instance [NS22, Lem. 4.6]).
(P2) If u : D2 → R is a convex (resp. concave) function such that u|S1 ⩽ ϕ

(resp. ϕ ⩽ u|S1), then u ⩽ Φ− (resp. Φ+ ⩽ u) in D2, see [NS22, Cor. 4.5].
Let ϕ : S1 → R be a continuous map and let gr(ϕ) be its graph. Denote by C(ϕ) the
convex hull of gr(ϕ). That is, the smallest convex set of R3 containing gr(ϕ). Note
that since D2 × R is a convex set containing gr(ϕ), we have C(ϕ) ⊂ D2 × R.

We denote by ∂C(ϕ) the boundary of C(ϕ) in D2 × R. If ϕ is continuous and is
not the restriction of an affine map of R2, then by the Jordan-Brouwer separation
theorem, ∂C(ϕ) ∖ gr(ϕ) has two connected components, which we denote as ∂+C(ϕ)

and ∂−C(ϕ), respectively. It turns out that the connected components ∂±C(ϕ) are
exactly the graphs of the maps ϕ±; see [BF20, Lem. 2.41]. Following the work of
[BF20], we have

Definition 2.5. — Let ϕ : S1 → R be a continuous function and L : HP3 → R be the
height function defined in (14). Then the width of ϕ is defined as:

w(ϕ) := sup
(η,Φ+(η))∈∂−C(ϕ)

(η,Φ−(η))∈∂+C(ϕ)

|L(η,Φ−(η))− L(η,Φ+(η))| ∈ [0,+∞].

In other words, by (19),

w(ϕ) := sup
η∈D2

Φ+(η)− Φ−(η)√
1− |η|2

.

The quantity L(η,Φ−(η))−L(η,Φ+(η)) can be interpreted as the timelike distance
between the parallel spacelike planes P(η,Φ−(η)) and P(η,Φ+(η)) of Minkowski space,
dual to (η,Φ−(η)) and (η,Φ+(η)) respectively (see Equation (12)). As consequence,
the function

L(η,Φ−(η))− L(η,Φ+(η)) : η 7−→ Φ+(η)− Φ−(η)√
1− |η|2

is invariant by isometries of HP3 in the sense that for any A ∈ O0(1, 2) and v ∈ R1,2,

(23) L
(
Is(A, v) · (η,Φ+(η))

)
− L

(
Is(A, v) · (η,Φ−(η))

)
= L

(
(η,Φ+(η))

)
− L

(
(η,Φ−(η))

)
.
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gr(φ)

(η,φ+(η))

(η,φ−(η))

φ+(η)−φ−(η)
√

1−|η|2

Figure 1. An illustrative picture on the width of a continuous map ϕ.

2.3. Vector fields on the circle and half-pipe geometry. — The goal of this section
is to explain how one can interpret a vector field on the circle as data at the boundary
at infinity in HP3. Consider

N = {(x0, x1, x2) ∈ R1,2 | −x2
0 + x2

1 + x2
2 = 0}∖ {0},

so that P(N) ∼= S1. The following lemma, as shown in [BS17], establishes a natural
identification between vector fields on S1 and 1-homogeneous functions on N .

Lemma 2.6 ([BS17, Lem. 2.23]). — There is a 1−to−1 correspondence between vector
fields X on S1 and 1-homogeneous functions Φ : N → R satisfying the following
property: For any C1 spacelike section s : S1 → N of the radial projection Π : N → S1

and for v the unit tangent vector field to s which is positively oriented, we have

(24) s∗(X(z)) = Φ(s(z))v(s(z))

To clarify the terminology in the Lemma: Given a C1 spacelike section s : S1 → N

of the radial projection Π : N → S1 defined in (7), a unit vector field v to s is a
map from the image of the section s(S1) to the tangent bundle T(s(S1)) such that
the norm of v is 1 with respect to the Minkowski norm (this is possible because the
section is C1). Note that the section s has two unit tangent vectors v; we choose the
one that is positively oriented, meaning for each z ∈ S1

det
(
Π(s(z)),Π∗

(
v(s(z))

))
> 0,

where Π∗
(
v(s(z))

)
= ds(z)Π

(
v(s(z))

)
∈ R2. For example, if s(z) = (1, z) is the hori-

zontal section, then for z = (x, y) we have v(1, x, y) = (0,−y, x).
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In this paper, we will primarily work within the Klein model D2×R of the half-pipe
space, so the following definition is essential.

Definition 2.7. — Given a vector field X on S1 and Φ : N → R a one-homogeneous
function as in (24), the support function of X is the function ϕX : S1 → R defined by:

ϕX(z) = Φ(1, z).

Therefore, the vector field X can be written as:

(25) X(z) = izϕX(z).

For instance, one can show that the support function of the restriction on S1 of a
Killing vector field is the restriction of an affine map on S1.

Corollary 2.8 ([Dia24, Cor. 2.10]). — Let σ ∈ R1,2. The support function ϕΛ(σ) :

S1 → R of the Killing vector field Λ(σ) is given by:

ϕΛ(σ)(z) = ⟨(1, z), σ⟩1,2.

The next lemma describes the behavior of a support function under the action
of O0(1, 2) ⋉ R1,2 on vector fields of the circle. Recall that the linear part acts on
the space of vector fields by pushforward, and the translation part acts by adding a
Killing vector field.

Lemma 2.9 ([Dia24, Lem. 2.12]). — Let X be a vector field of S1 and ϕX be its support
function. Let A ∈ O0(1, 2) and σ ∈ R1,2. The support function ϕA∗X+Λ(σ) of the vector
field A∗X + Λ(σ) satisfies:

(26) gr(ϕA∗X+Λ(σ)) = Is(A, σ)gr(ϕX).

We now define the width of a vector field.

Definition 2.10. — Let X be a continuous vector field of S1. Then the width of X,
denoted by ω(X), is defined as the width of ϕX (see Definition 2.5).

It follows from Lemma 2.9 and the invariance of the height function in (23) that
the width is invariant under isometries of HP3. Namely for any A ∈ O0(1, 2) and
σ ∈ R1,2, we have

ω(A∗X + Λ(σ)) = ω(X).

2.4. Mean surfaces in HP3. — The goal of this section is to introduce mean surfaces
in HP3. For a more detailed exposition, we refer the reader to [FS19, §5.2-6.3] and
[BF20, §2.3.2].

Since there does not exist any pseudo-Riemannian metric on HP3 invariant under
the isometry group of HP3 [FS19, Fact 3.11], there is no notion of a unit normal vector
of a surface in HP3. Nevertheless, one may use the existence of a vertical fiber to mimic
classical affine differential geometry [NS94]. Indeed, let HP3 be the lift of HP3 in R4:

HP3 = {(x0, x1, x2, x3) ∈ R4 | −x2
0 + x2

1 + x2
2 = −1, x0 > 0}.
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Consider the transverse vector field Nx = x in R4. This vector field N is invariant
under the isometries of HP3, which are naturally identified with O0(2, 1)⋉R1,2, as seen
from the structure inside the brackets of (16). This implies that for any isometry
γ ∈ O0(1, 2)⋉R1,2

γ∗(Nx) = Nγ(x).

Thus, one can use the vector field N to decompose the ambient canonical connection D

of R4 into tangential and normal parts. Specifically, denote by ⟨· , ·⟩2,1,0 the bilinear
form on R4 induced by the quadratic form:

q1,2,0(x0, x1, x1, x2) = −x2
0 + x2

1 + x2
2,

then we have the following definition.

Definition 2.11. — Let V and W be two vector fields on HP3. The connection ∇HP3

is defined by:
DV W = ∇HP3

V W + ⟨V,W ⟩1,2,0N.

The half-pipe connection is the connection ∇HP3 induced on HP3 by ∇HP3 .

We will denote by T the vector field on HP3 defined by (0, 0, 0, 1) in HP3. It is a
degenerate vector field invariant under Isom0(HP3).

Remark 2.12. — It was shown by Fillastre and Seppi [FS19, Props. 5.3 & 5.11]
that the connection ∇HP3 is the unique connection on HP3 satisfying the following
properties:

– ∇HP3 is torsion-free, i.e., for any pair of vector fields X and Y , we have ∇HP3

X Y −
∇HP3

Y X = [X,Y ];
– ∇HP3 is compatible with the degenerate metric gHP3 induced by q1,2,0, i.e.,

∇HP3

gHP3

= 0;
– ∇HP3 preserves every space-like plane of HP3, i.e., for any vector fields V and W

tangent to a space-like plane P , the vector field ∇HP3

V W is also tangent to P ;
– The vector field T is parallel with respect to ∇HP3 , i.e., ∇HP3

T = 0.

We can now define the second fundamental form of any spacelike surface in HP3 ∼=
H2 × R. Recall that a surface S is said to be spacelike if it is locally the graph of
a function u : Ω → R, for a domain Ω ⊂ H2. Denote by I the first fundamental
form of S which is just the hyperbolic metric on the base H2. For a spacelike surface
S ⊂ HP3 we have the splitting.

(27) T(x,t)HP3 = T(x,t)S ⊕ T(x,t).

Following [FS19], we have:

Proposition 2.13 ([FS19]). — Given a spacelike S in HP3 and v, w ∈ T(x,t)S. Then
we may define:
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(1) The second fundamental form of S:

∇HP3

V W = ∇I
V W + II(v, w)T,

where V and W are vector fields extending v and w and ∇I is the Levi-Civita con-
nection of the first fundamental form I.

(2) The shape operator of S is the self-adjoint (1, 1)-tensor given by

II(v, w) = I(B(v), w).

Definition 2.14. — A spacelike surface S in HP3 is called mean if tr(B) = 0.

In this paper, we focus on mean surfaces, which globally are graphs of functions
on H2. Given a function u : H2 → R, We define the hyperbolic Hessian of u as the
(1, 1)-tensor

HessH
2

u(v) = ∇H2

v gradH
2

u,

where ∇H2 is the Levi-Civita connection of H2. Finally, denote by ∆H2 the Laplace-
Beltrami operator of H2, which can be defined as:

∆H2

u = tr(HessH
2

(u)).

The next Lemma provides a formula for the shape operator of the graph of u.

Lemma 2.15 ([Sep15, Lem. 9.1.7]). — Let u : H2 → R be a smooth function, and let
S ⊂ HP3 be the graph of u. Then, the shape operator of S is given by

B = HessH
2

(u)− u1,

where 1 is the identity operator. Thus S is a mean surface if and only if ∆H2

u−2u = 0.

The problem of existence for mean surfaces with a prescribed curve at infinity is
established by Barbot and Fillastre [BF20]; see also Seppi’s thesis [Sep15, Chap. 9].
To explain this, it is convenient to work in the Klein model D2 × R. Hereafter, for a
function u : H2 → R, we denote by u : D2 → R the function given by

(28) u(Π−1(η)) =
u(η)√
1− |η|2

,

where Π is the radial projection defined in (7). The relationship between u and u

should be understood as follows: Let I+(0) be the future cone over 0 ∈ R1,2, namely

I+(0) = {(x0, x1, x2) ∈ R1,2 | −x2
0 + x2

1 + x2
2 < 0, x0 > 0}.

Consider U : I+(0) → R to be the unique 1-homogeneous function such that U |H2 = u;
then it is immediate to check that u(η) = U(1, η). We refer the reader to [FV16] for
more properties about the 1-homogeneous function U .

Remark 2.16. — Let U be a 1-homogeneous function on I+(0), and consider U |H2 = u

and u(η) = U(1, η). Given an isometry (A, v) ∈ O0(1, 2)⋉R1,2 and the 1-homogeneous
function H defined by:

H(x) = U(A−1x) + ⟨x, v⟩1,2.
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Let H|H2 = h, then using Lemma 2.2, it is not difficult to verify that the graph of h
and u are related by the following relation:

(29) gr(h) = Is(A, v)(gr(u)).

Proposition 2.17 ([BF20, p. 668, Prop. 16.2.37, Lem. 6.2.42]). — Let ϕ : S1 → R be
a continuous map. Then there exists a unique smooth mean surface S in HP3 ∼=
H2×R with boundary at infinity gr(ϕ). More precisely, there exists a unique function
u : H2 → R which satisfies

(30)
{
∆H2

u− 2u = 0,

u|S1 = ϕ.

Equivalently, if we denote by ∆E2 and HessE
2

the Laplacian and Hessian on R2,
respectively, and by gE

2 the Euclidean metric, then u is the unique solution of

(31)
{
∆E2

u(η)− gE
2

(HessE
2

η (u)η, η) = 0,

u|S1 = ϕ.

In addition, we have Φ− ⩽ u ⩽ Φ+, namely the graph of u is contained in the convex
core of gr(ϕ).

3. Surfaces in HP3 and vector fields of H2

The goal of this section is to establish a correspondence between spacelike surfaces
in HP3 and vector fields in TH2. Subsequently, we will characterize the vector fields
constructed from embedded spacelike surfaces in HP3 in terms of the geometry of the
tangent bundle of H2, see Theorem 3.7.

3.1. The geometry of the tangent bundle of H2. — We briefly recall how the tan-
gent bundle of H2 is endowed with a natural pseudo-Kähler structure and refer the
reader to [AR14] for a more general construction on the tangent bundle of a gen-
eral Kähler manifold. Let TH2 be the tangent bundle of H2, and we denote by
p : TH2 → H2 the canonical projection. The sub-bundle ker(dp) := VH2 of TTH2 will
be called the vertical bundle. For (x, v) ∈ TH2 and w ∈ TxH2, we define:

FV
(x,v) : TxH2 −→ T(x,v)TH2

w 7−→ wV :=
d

dt

∣∣∣
t=0

(x, v + tw).

We call wV the vertical lift of w. The map FV
(x,v) is injective with image VH(x,v). The

Levi-Civita connection ∇H2 of H2 allows us to define a horizontal bundle HH2 in such
a way that we have the splitting:

TTH2 = HH2 ⊕ VH2.

J.É.P. — M., 2025, tome 12



1308 F. Diaf

For (x, v) ∈ TH2 and w ∈ TxH2, we set

FH
(x,v) : TxH2 −→ T(x,v)TH2

w 7−→ wH :=
d

dt

∣∣∣
t=0

(c(t), V (t)),

where c : R → H2 is the parameterized geodesic with c(0) = x and c′(0) = w, and V

is the parallel vector field along c such that V (0) = v. The map F(x,v) is injective,
and we call wH the horizontal lift of w. The fiber on (x, v) of the horizontal bundle
HH2 is then just the image of F(x,v). In conclusion, we have the identification

(32)
TxH2 × TxH2 ∼= T(x,v)TH2 = HH2

(x,v) ⊕ VH2
(x,v)

(w1, w2) 7−→ wH
1 + wV

2 .

Theorem 3.1 ([AR14]). — Under the identification (32), we define:
– A pseudo-Riemannian metric G on TH2 of signature (2, 2) given by:

G
(
(X1, X2), (Y1, Y2)

)
= gH2(X1, Y2) + gH2(X2, Y1).

– An almost complex structure J on TH2 (i.e., J2 = −Id):

J(X1, X2) = (JX1, JX2).

– A differential 2-form Ω on TH2 given by:

Ω((X1, X2), (Y1, Y2)) = gH
2

(JX1, Y2)− gH
2

(X2, JY1).

Then the triple (G, J,Ω) defines a pseudo-Kähler structure on TH2. That is, J is
an integrable almost complex structure such that Ω = G(J·, ·) is a symplectic form
(a non-degenerate closed 2-form).

Remark 3.2. — The original theorem in [AR14] is stated differently. Instead of taking
(G, J,Ω), the authors consider the pullback of (G, J,Ω) by the diffeomorphism

TH2 −→ TH2

X 7−→ JX.

3.2. Divergence free vector fields of H2 and surfaces in HP3. — The purpose of
this section is to explain the construction which associates to a smooth spacelike sur-
face in HP3 a vector field of H2. As discussed in Section 2, each element of isom(H2)

corresponds to a Killing vector field of H2. Consequently, we establish a correspon-
dence:

(33)
{Spacelike planes in D2 × R} ∼= {Killing vector fields of H2}

Pv 7−→ Λ(v),

where we recall that for v ∈ R1,2,

Pv := {(η, t) ∈ D2 × R | ⟨(1, η), v⟩1,2 = t},

and Λ(v) is the Killing vector field of H2 given by Λ(v)(p) = p ⊠ v. Let u : H2 → R
be a smooth function so that the graph S := gr(u) of u is an embedded spacelike
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surface in HP3. We now describe how to construct a vector field VS using the iden-
tification (33). Let p0 ∈ H2 and η0 = Π(p0) ∈ D2 and consider the affine function
a : D2 → R given by:

a(η) = u(η0) + dη0u(η − η0),

where u : D2 → R is the function defined in (28). The graph of a is the tangent
plane of gr(u) at (η0, u(η0)). Since this plane is spacelike, there is σ ∈ R1,2 such that
gr(a) = Pσ. We define the vector field associated to S as follows:

(34) VS(p0) = Λ(σ) = p0 ⊠ σ.

The next lemma provides an explicit description of σ in terms of the gradient of u.

Lemma 3.3. — Let u : H2 → R be a smooth function. Fix p0 ∈ H2 and η0 = Π(p0).
Let a : D2 → R be the affine function given by:

a(η) = u(η0) + dη0
u(η − η0).

Let σ = gradH
2

p0
u− u(p0)p0. Then

a(η) = ⟨(1, η), σ⟩1,2.

In other words, Pσ is the graph of the affine function a.

Proof. — Let U : I+(0) → R be the 1-homogeneous function whose restriction to H2

is u, and to D2 is u. For each p ∈ I+(0), denote by DpU the Minkowski gradient of U
at p. Note that for each p ∈ I+(0), we have

⟨DpU, p⟩2,1 = U(p),

which follows by differentiating the identity U((1 + t)p) = (1 + t)U(p) with respect
to t at t = 0. This implies:

a(η) = u(η0) + dη0
u(η − η0)

= U(1, η0) + ⟨D(1,η0)U, (0, η − η0)⟩2,1
= ⟨D(1,η0)U, (1, η0)⟩2,1 + ⟨D(1,η0)U, (0, η − η0)⟩2,1
= ⟨D(1,η0)U, (1, η)⟩2,1.

Finally, it is easy to verify that DU is 0-homogeneous; that is, for all λ > 0 and
p ∈ I+(0), we have

DλpU = DpU.

Therefore, D(1,η0)U = Dp0
U = σ, which completes the proof. □

As consequence, we get the following corollary.

Corollary 3.4. — Let u : H2 → R be a smooth function and S be the graph of u.
Then the vector field associated to S is given by:

VS = JgradH
2

(u).
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Proof. — Let p ∈ H2. It follows from Lemma 3.3 and from the definition of VS

(see (34)) that
VS(p) = p⊠ σ,

where σ = gradH
2

p u− u(p)p. Since p⊠ p = 0, we have

VS(p) = p⊠ gradH
2

p u.

The conclusion follows from the interpretation of J in terms of the Minkowski cross
product (see (8)). □

Remark 3.5. — It is worth noting the following:
(1) The above construction of the vector field is invariant under the normal evolu-

tion of a surface along the vertical fiber on HP3. More precisely, let u : H2 → R be a
smooth function and S = gr(u). For t ∈ R, define the parallel surface St as the graph
of u+ t. Then it follows for Corollary 3.4 that VSt

= VS .
(2) Similarly, one may define a vector field from a convex function u : H2 → R

(i.e., u convex) which is possibly discontinuous. One needs to replace the tangent
plane by a choice support plane. For instance, this construction is used in [Dia24] to
study infinitesimal earthquakes; see Section 5.2.1.

The next goal is to understand which vector fields on H2 can be obtained from an
embedded spacelike surface in HP3 as in (34). Let div denote the divergence operator
on H2 defined by

div(V ) = tr(∇V ).

In explicit terms, this is

(35) div(V ) = gH
2

(∇H2

e1 V, e1) + gH
2

(∇H2

e2 V, e2),

where ei is any orthonormal basis. A vector field V on H2 is said to be divergence-free
if div(V ) = 0. We denote by αV the smooth 1-form on H2 that is dual to V , given by

(36) αV = gH
2

(V, ·).

The next lemma expresses the divergence of the vector field JV in terms of the exterior
derivative of the dual 1-form. For the sake of clarity, we will henceforth denote the
Levi-Civita connection of H2 simply by ∇, instead of ∇H2 .

Lemma 3.6. — Let V : H2 → TH2 be a smooth vector field on H2, and let αV be its
dual 1-form as in (36). Let e1, e2 be an oriented orthonormal local frame for gH

2 .
Then

div(JV ) = −dαV (e1, e2).

Proof. — By a straightforward computation, the exterior derivative of αV satisfies

dαV (e1, e2) = e1 · αV (e2)− e2 · αV (e1)− αV ([e1, e2])

= gH
2

(∇e1V, e2)− gH
2

(∇e2V, e1).
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Since J is parallel with respect to ∇ (i.e., ∇X(JY ) = J(∇XY ) for all vector fields
X,Y ), and Je1 = e2, Je2 = −e1, we obtain:

dαV (e1, e2) = −gH
2

(J∇e1V, e1)− gH
2

(J∇e2V, e2)

= −div(JV ),

as desired. □

We can now state the principal result of this section which is the content of Theo-
rem 1.1.

Theorem 3.7. — Let V : H2 → TH2 be a smooth vector field on H2. The following
are equivalent:

(1) There exists a smooth function u : H2 → R such that V = JgradH
2

(u). In other
words V = VS, which is the vector field associated to the surface S = gr(u) ⊂ HP3

(see Corollary 3.4).
(2) V (H2) is a Lagrangian surface in TH2 with respect to the symplectic form Ω.
(3) V is divergence-free vector field of H2.

To prove this result, we need the following proposition which expresses the differ-
ential of a vector field under the decomposition (32):

Proposition 3.8 ([Kon92, Prop. 1.6]). — Let V : H2 → TH2 be a vector field on H2.
Then for each vector field X we have:

dV (X) = (X,∇XV ).

Proof of Theorem 3.7. — Let e1, e2 be an oriented orthonormal local frame for gH
2 .

Then:

(V ∗Ω)(e1, e2) = Ω(dV (e1),dV (e2))

= Ω((e1,∇e1V ), (e2,∇e2V ))

= gH
2

(Je1,∇e2V )− gH
2

(∇e1V, Je2)

= gH
2

(e2,∇e2V ) + gH
2

(∇e1V, e1)

= div(V ).

On the other hand, consider the 1-form dual to JV , given by

(37) α := gH
2

(JV, ·).

Then, by Lemma 3.6 and using J2 = −Id, we get:

dα(e1, e2) = −div(J2V ) = div(V ).

Thus, we obtain

(38) div(V ) = dα(e1, e2) = (V ∗Ω)(e1, e2).

The identity (38) establishes the equivalence between statements (2) and (3).
To prove the equivalence between (1) and (3), observe that by (38), V is divergence-
free if and only if α is a closed 1-form. Since H2 is simply connected, it follows that
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there exists a smooth function f : H2 → R such that α = df . From (37), we deduce
that

JV = gradH
2

(f),

and hence V = JgradH
2

(u) with u = −f . □

3.2.1. Normal congruence in Minkowski space. — The goal of this part is to briefly
explain how the vector field constructed in Corollary 3.4 can be obtained from the
normal congruence of a spacelike surface in Minkowski space. The general idea is
that the space of geodesics of certain pseudo-Riemannian manifolds M has a rich
geometric structure. The study of such structures goes back to the seminal work of
Hitchin [Hit82], who described a natural complex structure of the space of oriented
straight lines in Euclidean 3-space. An important aspect of this is the study of the lift
of a submanifold in M into the space of geodesics of M (this lift is generally called the
normal congruence). The reader can also consult [AGR11, Anc14, EES22] for related
works on normal congruences.

In this paper, we are interested in TH2, which has a natural identification with the
space of oriented timelike geodesics in R1,2, denoted by L−1(R1,2). Following [DGK16,
§6.6], the identification is given by

(39)
TH2 −→ L−1(R1,2)

(p, w) 7−→ Lp,w := {σ ∈ R1,2 | p⊠ σ = w}.

Moreover, we have the following equivariance properties; for A ∈ O0(1, 2) and v ∈ R1,2

(40) LAp,Aw = A(Lp,w), Lp,p⊠v+w = τv(Lp,w),

where τv is the translation by v in R1,2. If c : R → R1,2 is a future timelike geodesic
which is parameterized by arc length, then it is not difficult to check that

(41) c(R) = Lc′(0),c′(0)⊠c(0).

Given a spacelike surface Σ in R1,2, i.e., for every x ∈ Σ, the tangent plane TxΣ is a
spacelike plane of R1,2. There is a notion of Gauss map:

GΣ : Σ −→ H2

which maps x ∈ Σ to the normal of S at x, i.e., the future unit timelike vector
orthogonal to TxΣ. For a spacelike surface Σ of R1,2 for which the Gauss map GΣ is
invertible, one may lift Σ in L−1(R1,2) to define a normal congruence Σ as follows:

(42) Σ = {Lp,p⊠G−1
Σ (p) | p ∈ H2}.

By (41), Lp,p⊠G−1
Σ (p) is the timelike geodesic in R1,2 going through G−1

Σ (p) with
speed p. Under the identification (39), the surface Σ gives rise to the following vector
field on H2

X(p) = p⊠G−1
Σ (p).

Consider uΣ : H2 → R the support function of Σ:

uΣ(p) = sup
x∈Σ

⟨x, p⟩1,2.
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It turns out that the G−1
Σ is related to uΣ by the formula:

G−1
Σ (p) = gradH

2

p (u)− u(p)p,

and hence
V (p) = p⊠ gradH

2

p (u) = Jpgrad
H2

p (u).

Then, one may notice that in the notation of Corollary 3.4, we have V = VS , where S is
the graph of the support function uΣ. We refer the reader to [BS17] and the references
therein for a more detailed exposition on the support function of surfaces in R1,2.

4. Harmonic Lagrangian vector fields

In this section, we introduce harmonic Lagrangian vector fields and prove several
characterizations of them, as detailed in Theorem 4.6.

4.1. Definition and characterizations. — We begin this section by defining har-
monic Lagrangian vector fields using the pseudo-Riemannian metric and the symplec-
tic form of TH2 described in the previous section. To do this, we need to recall the
notion of a harmonic map between pseudo-Riemannian manifolds. Let F : (M, gM ) →
(N, gN ) be a smooth map between two pseudo-Riemannian manifolds. Denote by ∇M

and ∇N the Levi-Civita connections of gM and gN respectively. If F ∗(TN) denotes
the pullback bundle, we consider ∇2F to be the section of T∗M ⊗ T∗M ⊗ F ∗(TN)

defined by
∇2F (X,Y ) = ∇N

dF (X)dF (Y )− dF (∇M
X Y ),

for all vector fields X and Y on M . The tension field of F is the section of F ∗(TN)

given by:
τ(F ) := trgM

(
∇2F

)
.

Namely, if we fix (ei), a local orthonormal local frame for gM , then

τ(F ) =
∑
i

gM (ei, ei)∇2F (ei, ei).

Note that if M is a Riemannian manifold, then gM (ei, ei) is always equal to 1.

Definition 4.1. — Let F : (M, gM ) → (N, gN ) be a smooth map between two pseudo-
Riemannian manifolds. Then F is called harmonic if τ(F ) = 0.

We can now state the Definition of harmonic Lagrangian vector field.

Definition 4.2. — We say that a vector field V : H2 → TH2 is Harmonic Lagrangian
if it satisfies the following conditions:

– V : (H2, gH2) → (TH2,G) is an harmonic map.
– V (H2) is a Lagrangian surface in TH2 with respect to the symplectic structure Ω.

(See Theorem 3.1.)

Konderak [Kon92] established necessary and sufficient conditions under which a
vector field V : (H2, gH2) → (TH2,G) is an harmonic map, which we will explain now.
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Definition 4.3. — The rough Laplacian of a vector field V on H2 is defined by

∆V = trgH2

(
(X,Y ) 7−→ ∇X∇Y V −∇∇XY V

)
.

We denote by R the Riemann tensor of (H2, gH
2

) of type (3, 1).

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

Then we have

Theorem 4.4 ([Kon92, Prop. 4.1]). — A vector field V : (H2, gH
2

) → (TH2,G) is an
harmonic map if and only if

∆V + trgH2

(
(X,Y ) → R(V,X)Y

)
= 0.

In fact, Theorem 4.4 deals with vector fields defined on a general pseudo-
Riemannian manifold M . Observe that since (H2, gH

2

) has sectional curvature −1,
the Riemann tensor R takes the following simple form:

R(X,Y )Z = gH
2

(X,Z)Y − gH
2

(Y,Z)X.

Thus if e1 and e2 is an oriented orthonormal local frame of gH2 , then:

trgH2

(
(X,Y ) −→ R(V,X)Y

)
= R(V, e1)e1 +R(V, e2)e2

= gH
2

(V, e1)e1 − gH
2

(e1, e1)V

+ gH
2

(V, e2)e2 − gH
2

(e2, e2)V

=
(
gH

2

(V, e1)e1 + gH
2

(V, e2)e2
)
− 2V

= V − 2V

= −V.

Combining the last computation with Theorem 4.4, we get:

Corollary 4.5. — A vector field V : (H2, gH
2

) → (TH2,G) is an harmonic map if
and only if

∆V = V.

We now proceed to describe several characterizations of harmonic Lagrangian vec-
tor fields. Before that, we need some preparation. Recall that the Lie derivative of gH2

with respect to V is given by:

LV g
H2

(X,Y ) = gH
2

(X,∇Y V ) + gH
2

(Y,∇XV )

for any vector fields X and Y . The next Theorem is the principal result of this section.

Theorem 4.6. — Let V be a vector field on H2. The following are equivalent:
(1) There exists a smooth function u : H2 → R satisfying ∆H2

u− 2u = 0 such that

V = JgradH
2

(u).

In other words, V is the vector field associated to the mean surface S = gr(u) ⊂ HP3

(see Lemma 2.15 and Corollary 3.4).
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(2) V is harmonic Lagrangian.
(3) The unique self-adjoint (1, 1)-tensor b : TH2 → TH2 such that LV g

H2

=

gH
2

(b·, ·) satisfies the conditions:

(43) tr(b) = 0, d∇b = 0.

We recall that, for a (1, 1)−tensor b, the exterior derivative d∇b is defined as

d∇b(X,Y ) = ∇X(b(Y ))−∇Y (b(X))− b([X,Y ]).

A tensor satisfying d∇b = 0 is called Codazzi tensor with respect to the metric gH
2 .

Remark 4.7. — It is worth noting the following points, which we will use freely in
the rest of this paper:

– For any u : H2 → R, B = HessH
2

(u) − u1 is a self-adjoint Codazzi tensor with
respect to gH

2 , (see for instance [BS16, Lem. 2.1]).
– Let f : H2 → R be a smooth function. Consider e1 and e2 to be an oriented

orthonormal local frame for gH
2 . Then it is not difficult to check that:

d∇ (f1) (e1, e2) = JgradH
2

(f).

In particular, f is constant if and if f1 is a Codazzi tensor.
– A Codazzi tensor b is self-adjoint and traceless if and only if Jb is self-adjoint,

traceless, and Codazzi.

To prove Theorem 4.6, we need some preliminary results.

Lemma 4.8. — Let A be a tensor field of type (1, 1), and let e1, e2 be a positively
oriented orthonormal local frame for gH

2 . Then:

trgH2 (∇A) = −d∇(A ◦ J)(e1, e2).

Proof. — Since Je1 = e2 and Je2 = −e1, we compute:

d∇(A ◦ J)(e1, e2) = ∇e1(A(Je2))−∇e2(A(Je1))−A(J[e1, e2])

= −∇e1A(e1)−∇e2A(e2)−A(J(∇e1e2 −∇e2e1)),

where we used that ∇ is torsion-free.
Since J is parallel with respect to ∇, i.e., ∇X(JY ) = J(∇XY ), we obtain:

d∇(A ◦ J)(e1, e2) = −∇e1A(e1)−∇e2A(e2)−A(−∇e1e1 −∇e2e2)

= − (∇e1A(e1)−A(∇e1e1))− (∇e2A(e2)−A(∇e2e2))

= −(∇e1A)(e1)− (∇e2A)(e2)

= −trgH2 (∇A),

which concludes the proof. □

Given a vector field V on H2, define a self-adjoint (1, 1)-tensor b and a smooth
function ϕ : H2 → R such that:

(44) LV g
H2

(X,Y ) = gH
2

(bX,Y ), dαV (X,Y ) = gH
2

(ϕ JX,Y ).
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Lemma 4.9. — Let V be a vector field on H2 and consider the self-adjoint tensor
field b of type (1, 1) and the function ϕ : H2 → R as in (44). Then:

– ∇XV = 1
2bX + 1

2ϕ JX. In particular, b is the symmetric part of ∇V ;
– ϕ = −div(JV ).

Proof. — The first formula is standard, but we include the proof for the reader’s
convenience. By definition, we have

(45) LV g
H2

(X,Y ) = gH
2

(∇XV, Y ) + gH
2

(∇Y V,X).

On the other hand, a direct computation shows:

(46) dαV (X,Y ) = gH
2

(∇XV, Y )− gH
2

(∇Y V,X).

Adding (45) and (46), we get the desired formula.
The second formula follows directly from Lemma 3.6. Indeed, let e1, e2 be an ori-

ented orthonormal local frame of gH2 . Then

ϕ = dαV (e1, e2) = −div(JV ). □

The following lemma expresses the rough Laplacian of V in terms of b and ϕ as
defined in (44).

Lemma 4.10. — Let V be a vector field on H2 and consider the self-adjoint tensor
field b of type (1, 1) and a function ϕ : H2 → R as in (44):

LV gH2(X,Y ) = gH
2

(bX,Y ), dαV (X,Y ) = gH
2

(ϕJX,Y ).

Let e1, e2 be an oriented orthonormal local frame for gH
2 . Then

∆V = −1

2
d∇(bJ)(e1, e2) +

1

2
JgradH

2

(ϕ).

Proof. — By definition of the rough Laplacian, we have ∆V = trgH2 (∇(∇V )). Apply-
ing Lemma 4.8 to the tensor field ∇V of type (1, 1), we obtain

∆V = −d∇(∇V ◦ J)(e1, e2)

= −1

2
d∇ ((b + ϕ J) ◦ J) (e1, e2)

= −1

2
d∇(b ◦ J)(e1, e2) +

1

2
d∇(ϕ1)(e1, e2)

= −1

2
d∇(b ◦ J)(e1, e2) +

1

2
J gradH

2

(ϕ),

where in the second line we use Lemma 4.9, and in the third line we apply Remark 4.7.
This completes the proof. □

The next Lemma provides some essential computations in the case where V =

JgradH
2

(u) for a smooth function u : H2 → R.

Lemma 4.11. — Let u : H2 → R be a smooth function and V = JgradH
2

(u). Consider
B = HessH

2

(u) − u1 the shape operator of gr(u) ⊂ HP3, and B0 = B − tr(B)
2 1 the

traceless part of B. Then we have:
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(1) LV g
H2

= gH
2

(2JB0·, ·).
(2) dαV = (∆H2

u)gH
2

(J·, ·).
(3) ∆V − V = JgradH

2

(tr(B)).

Proof. — Let X and Y be vector fields on H2. Then

∇XV = JHessH
2

u(X) = JBX + uJX.

Note that gH
2

(JX,Y ) + gH
2

(JY,X) = 0, thus

LV gH2(X,Y ) = gH
2

(JBX,Y ) + gH
2

(JBY,X)

=
(
gH

2

(JB0X,Y ) + gH
2

(JB0Y,X)
)
+

tr(B)

2

(
gH

2

(JX,Y ) + gH
2

(JY,X)
)

= gH
2

(JB0X,Y ) + gH
2

(JB0Y,X).

Since B0 is self-adjoint and traceless, JB0 is also self-adjoint and traceless, thus

(47) LV g
H2

(X,Y ) = gH
2

(2JB0X,Y ).

This completes the proof of (1).
Let us prove the second formula (2). By (44), there exists ϕ : H2 → R such that

(48) dαV = gH
2

(ϕJ·, ·).

Based on Lemma 4.9, we have

ϕ = −div(JV ) = div(gradH
2

(u)) = ∆H2

u.

Thus, by (48), dαV = (∆H2

u)gH
2

(J·, ·). This completes the proof of (2).
Finally, we will prove the third formula (3). Consider e1, e2 be an oriented ortho-

normal local frame for gH2 . Then by Lemma 4.10 and the second formula (2), we have:

∆V = −d∇(JB0J)(e1, e2) + JgradH
2(
∆H2

u/2
)

= −d∇B0(e1, e2) + JgradH
2(
∆H2

u/2
)

= −d∇B(e1, e2) + d∇
(
tr(B)1/2

)
(e1, e2) + JgradH

2(
∆H2

u/2
)

= −d∇B(e1, e2) + d∇
(
tr(B)1/2

)
(e1, e2) + JgradH

2(
(∆H2

u− 2u)/2
)

+ JgradH
2

u

= −d∇B(e1, e2) + d∇
(
tr(B)1

)
(e1, e2) + JgradH

2

u,

(49)

where we have used in the second equality the fact that JB0 = −B0J, and in the last
equality, we have used the fact that tr(B) = ∆u−2u together with Remark 4.7. Now,
since B is a Codazzi tensor and d∇ (tr(B)1) (e1, e2) = JgradH

2

(tr(B)) (see Remark
4.7), formula (49) becomes:

(50) ∆V − V = JgradH
2

(tr(B)) .

This concludes the proof of (3). □
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Proof of Theorem 4.6. — The proof is based on the formulas established in Lem-
ma 4.11.

– (1) ⇒ (2): Assume that V = JgradH
2

(u), where u satisfies ∆u−2u = 0. Thus by
Theorem 3.7, V (H2) is a Lagrangian surface. It remains to show that V is harmonic.
Lemma 4.11 implies that

∆V − V = JgradH
2(
tr(B)

)
.

But tr(B) = ∆u− 2u = 0 and thus

∆V − V = 0.

Hence V is harmonic by Corollary 4.5.
– (2) ⇒ (3): Let V be an harmonic Lagrangian vector field of H2. Since V (H2) is a

Lagrangian surface, by Theorem 3.7, there exists a smooth function u : H2 → R such
that V = JgradH

2

(u). By Lemma 4.11, we have

LV g
H2

= gH
2

(2JB0·, ·),

where B0 is, as usual, the traceless part of B = HessH
2

(u)−u1. To prove (3), we need
to show that JB0 satisfies the conditions

tr(JB0) = 0 and d∇(JB0) = 0.

Since B0 is a traceless self-adjoint operator, tr(JB0) = 0 follows immediately. To prove
that JB0 is a Codazzi tensor, we need to use the harmonicity of V . Indeed, since
∆V − V = 0 (see Corollary 4.5), then by the third formula of Lemma 4.11, we get

JgradH
2

(tr(B)) = 0.

Hence the trace of B is constant. In particular, by Remark 4.7, tr(B)1 is a Codazzi
tensor. Therefore,

d∇B0 = d∇B− d∇
( tr(B)1

2

)
= d∇B.

Again, by Remark 4.7, the shape operator B is a Codazzi tensor and hence B0 is a
Codazzi tensor, and the same holds for JB0 (because B0 is self-adjoint and traceless).

– (3) ⇒ (1): Let V be a vector field on H2 for which the unique self-adjoint (1, 1)-
tensor b : TH2 → TH2 such that LV g

H2

= gH
2

(b·, ·) satisfies the conditions:

tr(b) = 0 and d∇b = 0.

Then by the definition of divergence operator (see (35)), we have 2div(V ) = tr(b).
Hence V is divergence-free, and so by Theorem 3.7, there is a smooth function
u : H2 → R such that

V = JgradH
2

(u).

By Lemma 4.11, b = 2JB0. Based on Remark 4.7, B = HessH
2

(u) − u1 is a Codazzi
tensor and so tr(B)1 is a Codazzi tensor since B0 = B − tr(B)

2 1. Therefore, tr(B) is
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constant, say c. Since ∆H2

u− 2u = c, it follows that ∆H2

(u+ c/2)− 2(u+ c/2) = 0,
and so V is equal to JgradH

2

(u+ c/2). This finishes the proof of (1). □

Remark 4.12. — It follows from Theorem 4.6 that a Killing vector field on H2 is
harmonic Lagrangian. Indeed, if V is such a Killing vector field, then there exists
σ ∈ R1,2 such that V = Λ(σ). In other words,

V (p) = p⊠ σ,

for all p ∈ H2. Now, we consider the map u : H2 → R defined by u(p) = ⟨p, σ⟩1,2. This
implies that gradH

2

p u = σ+u(p)p, hence V = JgradH
2

u. On the other hand, u satisfies
∆u− 2u = 0, and thus V is harmonic Lagrangian.

4.2. ∂-operator. — In this section, we establish a relationship between the shape
operator of a mean surface and the ∂-derivative of the harmonic Lagrangian vector
field associated to it. Let V be a vector field on H2, then for each vector field Y

on H2, we can use the complex structures J and J of H2 and TH2 respectively (see
Theorem 3.1) to decompose dV (Y ) as

dV (Y ) = L1(Y ) + L2(Y ),

where
– L1(Y ) := 1

2 (dV (Y )− JdV (JY )) satisfies

L1(JY ) = JL1(Y ),

– L2(Y ) := 1
2 (dV (Y ) + JdV (JY )) satisfies

L2(JY ) = −JL2(Y ).

According to Proposition 3.8, we have dV (Y ) = (Y,∇Y V ), hence

L2(Y ) = (0, 1
2 (∇Y V + J∇JY V )).

Following this, we introduce:

Definition 4.13. — Let V be a smooth vector field on H2. Then we define the self-
adjoint (1, 1)-tensor ∂V by:

(51) ∂V (Y ) :=
1

2
(∇Y V + J∇JY V ).

The next proposition gives a relation between the shape operator of a mean surface
and the ∂−operator.

Lemma 4.14. — Let u : H2 → R be a smooth function satisfying ∆H2

u− 2u = 0 such
that V = JgradH

2

(u) is an harmonic Lagrangian vector field (see Theorem 4.6). Then

∂V = JB,

where B = HessH
2

(u)− u1 is the shape operator of gr(u) ⊂ HP3.
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Proof. — Let Y be a vector field on H2 then

(52) ∇Y V = JHessH
2

u(X) = JBY + uJY.

Using the fact that JB = −BJ, we get:
J∇JY V = J(JBJY − uY )

= −BJY − uJY

= JBY − uJY.

(53)

Adding (52) and (53), we get ∂V (Y ) = JBY , as required. □

A quantity that will be discussed in the remainder of this paper is the norm of
the ∂-operator. Recall that the norm of a (1, 1)-tensor b : TH2 → TH2 is defined as
follows. For each p ∈ H2, we denote by bp the induced linear map on TpH2. Then the
norm of bp is given by:

(54) ∥bp∥ := sup
Y ∈TpH2

Y ̸=0

∥bp(Y )∥H2

∥Y ∥H2

,

where ∥·∥H2 denotes the norm induced from the hyperbolic metric gH
2 .

From this, we define the norm of b by:

∥b∥∞ := sup
p∈H2

∥bp∥ ∈ [0,+∞].

Remark 4.15. — It is worth noticing that if V = JgradH
2

(u) is harmonic Lagrangian
vector field. then

∥∂V ∥∞ = sup
p∈H2

|λ(p)|,

where λ and −λ are the principal curvatures of the mean surface gr(u) ⊂ HP3, namely,
the eigenvalues of the shape operator B = HessH

2

−u1. This immediately follows from
Lemma 4.14.

Consider now the Poincaré disk B2. This is a conformal model of the hyperbolic
plane. It is the unit disk endowed with the conformal metric gB

2 given by:

gB
2

z :=
4

(1− |z|2)2
· gE

where gE is the standard Euclidean metric tensor on R2. Notice B2 and D2 are the
same space which is the unit disk, however we used different notations to distinguish
between the Klein model and the Poincaré model.

A vector field on B2 can be seen as a map from B2 to R2 ∼= C, and the complex
structure on B2 is just the multiplication multiplication by i =

√
−1. The goal at

the end of this section is to explain the relation between the ∂-derivative of a vector
field given in (51) and the usual complex derivative with respect to z, for which this
quantity appears in [RC91]; see also [FH22].
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Let ∇B2 be the Levi-Civita connection of gB2 and denote by D the flat connection
of R2. Let f : B2 → R be such that gB

2

= e2fgE . The following formula relates the
Levi-Civita ∇B2 and D:

(55) ∇B2

X Y = DXY + df(X)Y + df(Y )X − gE(X,Y )gradE(f),

where gradE(f) is the euclidean gradient of f . Let V : B2 → C be a smooth vector
field on B2, then we may write the ∂-operator in the Poincaré B2 as :

(56) ∂B2V (Y ) =
1

2
(∇B2

Y V + J∇B2

JY V ).

Using (55) we obtain:

(57) ∂B2V (Y ) =
1

2
(DY V + JDJY V ) +

1

2
L(Y, V ),

where

L(Y, V ) = df(Y )V + df(JY )JV − gE(Y, V )gradE(f)− gE(JY, V )JgradE(f).

By writing Y and V in the standard basis
(

∂
∂x ,

∂
∂y

)
of R2, one may verify by direct com-

putation that L(Y, V ) = 0. This follows from checking that: L
(

∂
∂x ,

∂
∂x

)
= L

(
∂
∂y ,

∂
∂y

)
=

L
(

∂
∂x ,

∂
∂y

)
= 0. Therefore,

(58) ∂B2V (Y ) =
1

2
(DY V + JDJY V ).

In conclusion, we have the following lemma.

Lemma 4.16. — Let V = (V 1, V 2) be a smooth vector field on B2, viewed as a map
from B2 to R2. Then, for each z ∈ B2, the norm of ∂B2Vz in the sense of (54) is
given by: ∥∥∂B2Vz

∥∥ =
1

2

√
(∂xV 1(z)− ∂yV 2(z))

2
+ (∂yV 1(z) + ∂xV 2(z))

2
.

In particular,

(59)
∥∥∂B2Vz

∥∥ =

∣∣∣∣∂V∂z (z)

∣∣∣∣,
where ∂V /∂z denotes the z-derivative of V .

Proof. — First, observe that the norm defined in (54) is invariant under conformal
changes of the metric. Since gB

2

= e2fgE , for any z ∈ B2 and Y ∈ TzB2 ∼= R2,
we have: ∥∥∂B2Vz

∥∥ = sup
Y ∈TzB2

Y ̸=0

∥∥∂B2Vz(Y )
∥∥
B2

∥Y ∥B2

= sup
Y ∈TzB2

Y ̸=0

ef(z)
∥∥∂B2Vz(Y )

∥∥
E

ef(z) ∥Y ∥E

= sup
Y ∈TzB2

Y ̸=0

∥∥∂B2Vz(Y )
∥∥
E

∥Y ∥E
.
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Hence, it suffices to compute the norm using the Euclidean metric. In standard coor-
dinate of R2, we have

DzV =

(
∂xV

1 ∂yV
1

∂xV
2 ∂yV

2

)
, and J =

(
0 −1

1 0

)
.

Applying (58), we compute

∂B2Vz =
1

2

(
∂xV

1 − ∂yV
2 ∂yV

1 + ∂xV
2

∂yV
1 + ∂xV

2 ∂yV
2 − ∂xV

1

)
.

This symmetric matrix has eigenvalues ±
√
α2 + β2, where

α =
1

2
(∂xV

1 − ∂yV
2), β =

1

2
(∂yV

1 + ∂xV
2).

Therefore, its operator norm is∥∥∂B2Vz

∥∥ =
√
α2 + β2 =

1

2

√
(∂xV 1 − ∂yV 2)2 + (∂yV 1 + ∂xV 2)2.

Finally, observe that

∂V

∂z
(z) =

1

2
(∂xV + i∂yV ) =

1

2

(
∂xV

1 − ∂yV
2
)
+

i

2
(∂yV

1 + ∂xV
2),

which shows that ∥∥∂B2Vz

∥∥ =

∣∣∣∣∂V∂z (z)

∣∣∣∣,
as claimed. □

Using Lemma 4.16, we may deduce the following corollary.

Corollary 4.17. — Let V be a smooth vector field on H2. Consider G : H2 → B2 an
isometry between the hyperboloid model and the Poincaré disk model of the hyperbolic
space. Then

∥∂Vp∥ =

∣∣∣∣∂(G∗V )

∂z
(G(p))

∣∣∣∣.
5. Extension by harmonic Lagrangian vector field

The goal of this section is to prove Theorem 1.4, which we will restate here.

Theorem 5.1. — Let X be a continuous vector field on S1. Then there exists an
harmonic Lagrangian vector field on H2 that extends continuously to X on S1.

We will give two completely different proofs of Theorem 5.1. The first proof is
based on the study of the so-called infinitesimal Douady-Earle extension. The second
proof is more in the spirit of half-pipe geometry.
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5.1. Infinitesimal Douady-Earle extension. — In this section, we recall the con-
struction of infinitesimal Douady-Earle extension and then state the main results
needed to prove Theorem 5.1. We denote by Γ(S1) and Γ(H2) the vector spaces of
continuous vector fields on S1 and H2, respectively. These two spaces are equipped
with the compact-open topology, meaning that a sequence Vn in Γ(S1) (resp. Γ(H2))
converges to V in Γ(S1) (resp. Γ(H2)) if Vn converges uniformly to V on S1 (resp. on
compact subsets of H2).

The full isometry group of H2, denoted by Isom(H2), acts on Γ(S1) and Γ(H2) by
pushforward. That is,

A∗X(p) = dA−1·pA(X(A−1 · p)),
for A ∈ Isom(H2) and V ∈ Γ(S1) or Γ(H2). We say that a linear map L : Γ(S1) →
Γ(H2) is conformally natural if for all V ∈ Γ(S1) and A ∈ Isom(H2), we have:

L(A∗V ) = A∗L(V ).

One such map, L0 : Γ(S1) → Γ(H2), is the infinitesimal Douady-Earle extension,
which can be defined on the Poincaré model B2 as follows: Consider a vector field X

on S1 and define

(60) L0(X)(z) =
(1− |z|2)3

2iπ

∫
S1

X(x)

(1− zx)(x− z)
dx,

for all z ∈ B2. It is explained in [Ear88] that the operator L0 can be seen as an infinites-
imal version of the Douady-Earle extension operator. More precisely, let ft : S1 → S1

be a smooth family of diffeomorphisms of S1 and let X = d
dt

∣∣
t=0

ft be a tangent vec-
tor field on S1. Set DE(ft) : H2 → H2 to be the Douady-Earle extension of ft (see
[DE86]). Then we have

(61) L0(X) =
d

dt

∣∣∣
t=0

DE(ft).

Remark 5.2. — Let X ∈ Γ(S1) be the restriction on S1 of a Killing vector field of H2,
which we also denote by X. Then L0(X) = X. Indeed, let ft : S1 → S1 be the flow
of X so that X = d

dt

∣∣
t=0

ft. Consider Ft : H2 → H2 to be the one-parameter family
of isometries of H2 that extends to ft in S1. Then it is known that DE(ft) = Ft and
hence by (61), L0(X) = X.

Now we state the principal result of [Ear88]:

Theorem 5.3 ([Ear88]). — Let L : Γ(S1) → Γ(B2) be a continuous linear map that is
conformally natural. Then L is a multiple of the infinitesimal Douady-Earle exten-
sion L0 given in (60).

From Theorem 5.3, we can prove that L0(X) is an harmonic Lagrangian vector
field on H2.

Proposition 5.4. — Let X be a continuous vector field on S1. Then L0(X) is an
harmonic Lagrangian vector field on B2.
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Proof. — By the definition of an harmonic Lagrangian vector field, Corollary 4.5, and
Theorem 3.7, we need to show that

(62) ∆(L0(X)) = L0(X) and div(L0(X)) = 0.

Consider the continuous linear operator given by
L1 : Γ(S1) −→ Γ(B2)

X 7−→ ∆(L0(X)).

It is not difficult to check that L1 is conformally natural, and hence by Theorem 5.3,
there is λ ∈ R such that

(63) L1(X) = λL0(X),

for all vector field X. According to Remark 5.2, if Y is the restriction on S1 of a
Killing vector field of H2, then L0(Y ) = Y . On the other hand, a Killing vector field
is harmonic (see Remark 4.12), thus

L1(Y ) = ∆(L0(Y )) = L0(Y )

and hence λ = 1. This proves the harmonicity of L0(X).
Next, we prove that L0(X) is a divergence-free vector field on B2. For this, we con-

sider the following continuous linear map:
L2 : Γ(S1) −→ Γ(B2)

X 7−→ div(L0(X))L0(X).

Again, L2 is conformally natural and so by Theorem 5.3, L2 = µL0 for some µ ∈ R.
Since Killing vector fields are divergence-free, L2 sends Killing vector fields to 0, hence
µ = 0. We conclude that L2 = 0, equivalently

(64) div(L0(X))L0(X) = 0,

for all X ∈ Γ(S1). We claim that div(L0(X)) = 0. By contradiction, if there is z ∈ B2

such that div(L0(X))(z) ̸= 0, then by (64) we must have L0(X)(z) = 0. Now observe
that if V is a vector field on B2 and ϕ is a smooth scalar function on B2, then by the
divergence formula (35), we have:

(65) div(ϕV ) = ϕdiv(V ) + dϕ(V ).

Using (64) and applying formula (65) for ϕ = div(L0(X)) and V = L0(X), we get

(66) ϕ2 + dϕ(V ) = 0.

Since V (z) = L0(X)(z) = 0, then (66) implies ϕ(z) = 0, this is a contradiction with
our hypothesis ϕ(z) = div(L0(X))(z) ̸= 0. This completes the proof. □

The remaining result needed to prove Theorem 5.1 is the following theorem due to
Reich and Chen.

Theorem 5.5 ([RC91]). — Let X be a continuous vector field on S1. Then L0(X)

defines a continuous extension of X from S1 to B2.

J.É.P. — M., 2025, tome 12



Mean surfaces in half-pipe space and infinitesimal Teichmüller theory 1325

We now have all the tools to prove Theorem 5.1.

First proof of Theorem 5.1. — Let X be a continuous vector field on S1. Then by
Proposition 5.4, L0(X) is harmonic Lagrangian, and the extension of L0(X) to X

follows from Theorem 5.5. This concludes the proof. □

It is worth noting that the question of the extendability of a vector field on the
hyperbolic disk to its boundary depends on the model and is not intrinsic. Indeed, an
explicit isometry T : B2 → D2 between the Poincaré disk model and the Klein model
is given by

(67) T (reiθ) =
2r

1 + r2
eiθ.

Let (ρ, η) denote the polar coordinates on D2 (to avoid confusion between the two
models). Then:

ρ(r, θ) =
2r

1 + r2
= f(r), η(r, θ) = θ.

We compute the pushforward of the radial vector field:

T∗(∂r)(ρe
iη) = f ′(f−1(ρ)) ∂ρ.

Now, consider the vector field in the Poincaré model:

X = ϕ(r) sin
( 1

1− r

)
∂r,

where ϕ : [0, 1] → [0, 1] is a smooth function that vanishes on [0, 1
3 ] and is identically 1

on [ 23 , 1], ensuring that X is well-defined at the origin. We observe that X does not
extend continuously to the boundary in the Poincaré model. However, T∗X does
extend continuously in the Klein model.

Indeed, we have

T∗X(ρeiη) = ϕ(f−1(ρ)) · sin
( 1

1− f−1(ρ)

)
· f ′(f−1(ρ)) · ∂ρ.

Note that

f ′(r) =
2(1− r2)

(1 + r2)2
, lim

r→1
f(r) = 1, lim

r→1
f ′(r) = 0.

Hence, T∗X extends continuously to the boundary, and its limit is the zero vector
field.

In contrast, we have following lemma:

Lemma 5.6. — Let V be a vector field on the Poincaré disk B2 that extends contin-
uously to the unit circle S1, and let X denote its extension. Let T : B2 → D2 be the
isometry given by (67). Then the pushforward vector field T∗V also extends continu-
ously to the boundary S1, and the extension is equal to T∗X.

Proof. — We write
V = Vr ∂r + Vθ ∂θ,
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where Vr and Vθ are the radial and angular components of V . Since V extends con-
tinuously to the boundary, we have

lim
r→1

Vr(re
iθ) = 0, lim

r→1
Vθ(re

iθ)∂θ = X(eiθ),

Now, the pushforward T∗V is given by

(68) T∗V (ρeiη) = Vr(f
−1(ρ)eiη)f ′(f−1(ρ)) ∂ρ + Vθ(f

−1(ρ)eiη) ∂η.

As ρ → 1, we have f ′(f−1(ρ)) → 0. Hence, the first term on the right-hand side
of (68) converges to zero, and the second term converges to X(eiη). Therefore, T∗V

extends continuously to the boundary, and the extension is equal to T∗X. □

Remark 5.7. — We end this subsection with the following useful observations:

– For X ∈ Γ(S1), the infinitesimal Douady–Earle extension L0(X), defined on the
Poincaré disk B2, extends to X by Proposition 5.4. By Lemma 5.6, T∗L0(X) extends
to T∗X. Therefore, the extendability of the Douady–Earle extension is independent
of the model of the hyperbolic plane we choose.

– One may wonder whether Theorem 5.3 depends on working in the Poincaré disk
model. In fact, it does not: the proof relies entirely on an algebraic lemma (see [Ear88,
§3]). Another way to see this is to observe that the property of admitting a conformally
natural, continuous linear operator from the space of continuous vector fields on the
circle to the space of continuous vector fields on the hyperbolic plane does not depend
on the model. Pulling back such operators preserves both continuity and equivariance
under isometries.

– Let us also mention that a conformally natural extension operator L0 for vec-
tor fields in higher-dimensional spaces is studied by McMullen in [McM96, App. B],
where L0(X) is called the visual extension of a vector field X. Even in McMullen’s
paper, the visual extension is shown to be harmonic by using the uniqueness of the
linear operator L0. It would be interesting to prove directly, by computation, that the
Douady–Earle extension is a harmonic vector field.

5.2. Extension in terms of mean surface in HP3. — The goal of this section, which
can be read independently from Section 5.1, is to give a second proof of Theorem 5.1.
This proof does not use any knowledge on infinitesimal Douady-Earle extension. Fur-
thermore, it provides some necessary tools to prove the uniqueness result in Theo-
rem 1.6.

5.2.1. Infinitesimal earthquake. — In this part, we will recall the construction of par-
ticular vector fields on H2. These vector fields will be used in our proof of Theorem 5.1.
We define the left infinitesimal earthquake:

(69)
E−
X : D2 −→ R2

η 7−→ d(1,η)Π((1, η)⊠ σ) ,
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where σ ∈ R2,1 is a point for which the dual spacelike plane Pσ ⊂ HP3 is a support
plane of gr(Φ−

X) at (η,Φ−
X(η)). That is, (η,Φ−

X(η)) ∈ Pσ and

⟨(1, x), σ⟩1,2 ⩽ Φ−
X(x),

for x ∈ D2. Notice that one may similarly define the right infinitesimal earthquake by
taking support planes of gr(Φ+

X) instead of gr(Φ−
X), we refer the reader to [Dia24] for

more details about this construction.

Proposition 5.8 ([Dia24, Prop. 4.6]). — Let X be a continuous vector field on S1

then E−
X extends continuously to X.

Remark 5.9. — The proof of the extension of the left infinitesimal earthquake E−
X is

based on convexity arguments. A similar approach can be used to show the following
fact: let u : H2 → R be a convex function, i.e., the shape operator of the surface
S = gr(u) is positive definite. Then the vector field VS = JgradH

2

(u) associated to S

extends continuously to X.

5.2.2. Analysis of the mean surface equation. — The key step to proving Theorem 5.1
is the following gradient estimate proved by Li and Yau.

Theorem 5.10 ([LY86, Th. 1.3]). — Let M be a complete Riemannian manifold of
dimension n without boundary. Suppose f(p, t) is a positive solution on M × (0,+∞)

of the equation:
∆f − qf − ∂tf = 0,

where q is a smooth function defined on M × (0,+∞), ∆ is the Laplacian operator
on M × (0,+∞), and the subscript t denotes the partial differentiation with respect
to the t variable. Assume that the Ricci curvature of M is bounded from below by −K

for some constant K > 0. We also assume that there exist constants A and B such
that:

∥grad q∥M×(0,+∞) ⩽ A, ∆q ⩽ B.

Then there is a constant C such that for any given α ∈ (1, 2), f satisfies the estimate:
∥gradf∥2M×(0,+∞)

f2
− ∂tf

f
⩽ αq +

nα2

2t
+ C

(
B +

K

α− 1
+

√
A
)
,

where ∥·∥M×(0,+∞) denotes the norm induced from the Riemannian product metric
on M × (0,+∞).

Corollary 5.11. — Let u:H2→R be a positive solution of the equation ∆H2

u−2u=0.
Then there exists a constant C0 such that

∥gradH
2

u∥H2

u
⩽ C0.

Proof. — Let u be a positive solution of ∆H2

u − 2u = 0. Applying Theorem 5.10 to
this time-independent solution, we arrive at the estimate:

∥gradH
2

u∥2H2

u2
⩽ 2α+

α2

t
+ C

1

α− 1
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for all α ∈ (1, 2) and t ∈ (0,+∞). Letting t → +∞ and taking α = 3/2, we get the
desired estimate with C0 =

√
3 + 2C. This completes the proof. □

Now we turn our attention to the PDE satisfied by the function u : D2 → R for
which, according to Proposition 2.17, we have:

(70)
{
∆E2

u(η)−HessE
2

η (η, η) = 0,

u|S1 = ϕ.

In other words, if η = (x, y) ∈ D2, then (70) is equivalent to:

(71)
{
(1− x2)∂xxu+ (1− y2)∂yyu− 2xy∂xyu = 0,

u|S1 = ϕ.

Therefore, dividing the equation ∆E2

u(η)−HessE
2

η (η, η) = 0 by (1− |η|2), we obtain
a strictly elliptic equation for which we have the following strong maximum principle.

Theorem 5.12 ([PW67, §3]). — Let Ω be an open connected set in Rn and let L be
the second-order differential operator:

D =

n∑
i,j=1

aij(p)∂xixj
+

n∑
i=1

bi(p)∂xi
,

with aij = aji. Assume the following:
– The coefficients aij and bi are locally bounded on Ω.
– The operator D is strictly elliptic on Ω. Namely, there is λ > 0 such that

n∑
i,j=1

xixjaij(p) ⩾ λ∥x∥2, for all x ∈ Rn, p ∈ Ω.

Let f be a smooth function satisfying the differential inequality D(f) ⩾ 0. If f attains
a maximum M at a point in Ω, then f ≡ M in Ω.

As a consequence, we get the following.

Lemma 5.13. — Let ϕ : S1 → R be a continuous function and u : D2 → R be a solution
of (70). We furthermore assume that u is not the restriction of an affine function. Let
σ ∈ R1,2 such that Pσ is a support plane of gr+(Φ−). Then for all η ∈ D2, we have
the strict inequality:

⟨(1, η), σ⟩1,2 < u(η).

Proof. — Let a : D2 → R be the affine function given by

a(η) = ⟨(1, η), σ⟩1,2,

and assume by contradiction the existence of η0 such that u(η0) = a(η0). Let h = a−u.
Then clearly we have ∆E2

h(η)− gE
2

(HessE
2

η (h)η, η) = 0.
Consider now D to be the second-order differential operator:

(72) D =
1− x2

1− x2 − y2
∂xx +

1− y2

1− x2 − y2
∂yy −

xy

1− x2 − y2
∂xy −

xy

1− x2 − y2
∂yx.
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The differential operator D clearly satisfies the hypothesis of Theorem 5.12. Observe
that D(h) = 0; indeed, if η = (x, y), then we get D(h) by dividing the equation
∆E2

h(η)− gE
2

(HessE
2

η (h)η, η) by (1− x2 − y2).
To arrive at a contradiction, observe that h ⩽ 0 because Pσ is a support plane of

gr(Φ−) and Φ− ⩽ u (see Proposition 2.17). On the other hand, h(η0) = 0 and so h

achieves its maximum at η0 ∈ D2. Thus, according to Theorem 5.12, h is constantly
equal to 0, and hence u is the restriction of an affine function, which is a contradiction.

□

The second proof of Theorem 5.1 follows from this proposition.

Proposition 5.14. — Let X be a continuous vector field on S1 and let ϕX : S1 → R
be its support function. Let uX : H2 → R be the unique function such that

(73) ∆H2

uX − 2uX = 0, u|S1 = ϕX .

Then, HL(X) := JgradH
2

(uX) is an harmonic Lagrangian vector field which extends
continuously to X.

Proof. — First, observe that by Theorem 4.6, HL(X) is an harmonic Lagrangian vec-
tor field. To prove the extension, we shall make computations in the Klein model D2.
Consider HL(X) = (Π)∗HL(X), the vector field HL(X) written in D2, namely for
η ∈ D2 we have:

(74) HL(X)(η) = dΠ−1(η)Π
(
HL(X)(Π−1(η))

)
= dΠ−1(η)Π

(
Π−1(η)⊠ gradH

2

Π−1(η)uX

)
.

It is immediate to check that for η ∈ D2 and v ∈ R3 a tangent vector at Π−1(η) ∈ H2,
we have:

(75) dΠ−1(η)Π(v) =
√
1− |η|2d(1,η)Π(v).

Thus, combining (74) and (75), we obtain

(76) HL(X)(η) = d(1,η)Π
(
(1, η)⊠ gradH

2

Π−1(η)uX

)
.

Let ηn=(xn, yn) be a sequence converging to η∞=(x∞, y∞). The goal is to show that:

(77) HL(X)(ηn) −→ X(η∞).

Let Psn be a sequence of spacelike support planes of gr(Φ−
X) at (ηn,Φ−

X(ηn)) (see (18)
for the formula of Psn). Then consider the function hn defined on H2 by

hn(q) = uX(q)− ⟨q, sn⟩1,2.

Similarly, we define hn : D2 → R by

(78) hn(η) = uX(η)− ⟨(1, η), sn⟩1,2.

We claim that

(79) d(1,ηn)Π
(
(1, ηn)⊠ gradH

2

Π−1(ηn)hn

)
−→ 0.

To prove the claim, consider

σn = gradH
2

Π−1(ηn)hn − hn(Π
−1(ηn))Π

−1(ηn),
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so that spacelike plane Pσn
is the tangent plane of gr(hn) at (ηn, hn(ηn)) (see Lem-

ma 3.3). In particular

(80) hn(ηn) = ⟨(1, ηn), σn⟩1,2.

Let p = (1, 0, 0), rn =
√
x2
n + y2n, and vn = (1/rn)(−yn, xn). Consider wn = (1/rn)ηn

so that (p, (0, wn), (0, vn)) is an oriented orthonormal basis. We can write σn in this
basis as:

(81) σn = anp+ bn(0, wn) + cn(0, vn).

Now, by an elementary computation, one may check that the differential of the radial
projection Π satisfies the following:

d(1,x,y)Π(v0, v1, v2) = (−xv0 + v1,−yv0 + v2),

for all (x, y) ∈ D2 and (v0, v1, v2) ∈ R3. This implies that

d(1,ηn)Π(p) = −ηn, d(1,ηn)Π(0, wn) = wn, d(1,ηn)Π(0, vn) = vn,

therefore:

(82)
d(1,ηn)Π

(
(1, ηn)⊠ gradH

2

Π−1(ηn)hn

)
= d(1,ηn)Π

(
(1, ηn)⊠ σn

)
= −cn(1− r2n)wn + (bn − rnan)vn.

Hence, by (82) it is enough to show that:

(83) (1− r2n)cn −→ 0 and bn − rnan −→ 0.

To prove this, observe that:

(84)
√
1− r2n∥grad

H2

Π−1(ηn)hn∥H2 −→ 0.

Indeed, from Lemma 5.13, observe that hn defined in (78) is a positive function which
is moreover a solution of (73). Hence, we may apply Corollary 5.11 to get the gradient
estimate:

∥gradH
2

Π−1(ηn)hn∥H2 ⩽ C0hn(Π
−1(ηn)).

Thus √
1− r2n ∥grad

H2

Π−1(ηn)hn∥H2 ⩽ C0

√
1− r2n hn(Π

−1(ηn))

= C0hn(ηn) −→ 0.

Note that

cn = ⟨σn, (0, vn)⟩1,2

= ⟨gradH
2

Π−1(ηn)hn − hn(Π
−1(ηn))Π

−1(ηn), (0, vn)⟩1,2

= ⟨gradH
2

Π−1(ηn)hn, (0, vn)⟩1,2.

It follows from the Cauchy-Schwarz inequality and from the limit (84) that:

(1− r2n)|cn| ⩽ (1− rn)
2∥gradH

2

Π−1(ηn)hn∥H2 −→ 0.
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We turn now to the proof of the other limit: bn−rnan → 0. First, observe that by (81)
we have

bn − rnan = ⟨σn, (0, wn) + rnp⟩1,2.

Since
Π−1(ηn)⊠ (0, vn) =

−1√
1− r2n

((0, wn) + rnp),

then
bn − rnan = −

√
1− r2n ⟨grad

H2

Π−1(ηn)hn,Π
−1(ηn)⊠ (0, vn)⟩1,2.

Since Π−1(ηn)⊠ (0, vn) is a tangent vector at Π−1(ηn) of norm 1, then again by the
Cauchy-Schwarz inequality and (84) we have

|bn − rnan| =
√

1− r2n |⟨gradH
2

Π−1(ηn)hn,Π
−1(ηn)⊠ (0, vn)⟩1,2|

⩽
√

1− r2n ∥gradH
2

Π−1(ηn)hn∥H2 −→ 0.

This finishes the proof of (83) and thus the proof of (79).
The last step of the proof is to show the limit (77). Since hn(q) = uX(q)−⟨q, sn⟩1,2

and gradH
2

q (⟨q, sn⟩) = sn + ⟨q, sn⟩1,2q, then

gradH
2

Π−1(ηn)hn = gradH
2

Π−1(ηn)uX − sn − ⟨Π−1(ηn), sn⟩Π−1(ηn).

Thus
(1, ηn)⊠ gradH

2

Π−1(ηn)hn = (1, ηn)⊠ gradH
2

Π−1(ηn)uX − (1, ηn)⊠ sn.

This implies that

(85) HL(X)(ηn) = d(1,ηn)Π
(
(1, ηn)⊠ gradH

2

Π−1(ηn)hn

)
+ d(1,ηn)Π((1, ηn)⊠ sn).

It follows form Proposition 5.8 that E−
X(ηn) = d(1,ηn)Π((1, ηn)⊠ sn) → X(η∞) and

hence using (79) in (85) we obtain

HL(X)(ηn) −→ X(η∞),

which completes the proof. □

5.3. Infinitesimal Douady-Earle extension and mean surface in HP3

The goal of this section is to explain that the vector field associated to the mean
surface in HP3 coincides with the infinitesimal Douady-Earle extension. Before stating
the result, recall that the hyperboloid model H2 and the Poincaré disk model B2 can
be identified through the isometry (see [Mar22, Chap. 2]):

(86)
G : H2 −→ B2

(x0, x1, x2) 7−→
( x1

1 + x0
,

x2

1 + x0

)
.

By pushing forward vector fields, the map G induces a linear map between Γ(H2) and
Γ(B2) which is conformally natural, we denote such map by G∗.
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Proposition 5.15. — Let HL : Γ(S1) → Γ(H2) be the linear operator given by
HL : Γ(S1) −→ Γ(H2)

X 7−→ JgradH
2

(uX)

where uX : H2 → R is the unique solution of

(87)
{
∆H2

uX − 2uX = 0,

uX |S1 = ϕX .

Then, we have:
G∗HL = L0,

where L0 is the infinitesimal Douady-Earle extension defined in (60).

Proof. — First, we will show that HL is a continuous linear map that is conformally
natural. We start with the conformal naturality. Let A ∈ Isom(H2) and X ∈ Γ(S1).
Consider ΦX as the 1-homogeneous function associated to X. Then, using elemen-
tary computations from Lemma 2.6, we deduce that if A preserves orientation, then
ΦX ◦A−1 is the 1-homogeneous function associated to A∗X. Thus, if ϕA∗X : S1 → R
is the support function of A∗X, then according to Lemma 2.9, we have gr(ϕA∗X) =

Is(A, 0)gr(ϕX). Hence, it is straightforward to check that

uA∗X = u ◦A−1.

Therefore,

HL(A∗X) = JgradH
2

(uA∗X)

= JgradH
2

(uX ◦A−1)

= JA∗grad
H2

(uX)

= A∗Jgrad
H2

(uX) (because JA∗ = A∗J)

= A∗HL(X).

It remains to prove the invariance of HL with respect to isometries that reverse the
orientation. To show this, one may note that the isometry group of H2 is generated
by isometries which preserve the orientation, that is O0(1, 2) and the orientation
reversing isometry γ given by

γ =

1 0 0

0 1 0

0 0 −1

 .

As we already proved the invariance with respect to O0(1, 2), then it is enough to
show the invariance of HL by γ. We have for z ∈ S1,

ϕγ∗X(z) = −ϕX(z)

and so
uγ∗X = −uX ◦ γ−1.
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This implies that

HL(γ∗X) = JgradH
2

(uγ∗X)

= −JgradH
2

(uX ◦ γ−1)

= −Jγ∗grad
H2

(uX)

= γ∗Jgrad
H2

(uX) (because Jγ∗ = −γ∗J)

= γ∗HL(X).

Next, we prove the continuity of the linear operator HL. Let Xn be a sequence of vector
fields converging to X. Then ϕXn

: S1 → R is a sequence of continuous functions
uniformly converging to ϕX : S1 → R. It follows from Lemma 2.38 in [BF20] that uXn

converges to uX uniformly on compact sets of H2. By Corollary 5.11, there is a
constant C0 independent of n such that

∥gradH
2

p (uXn − uX)∥H2 ⩽ C0|uXn(p)− uX(p)|.

This shows that gradH
2

(uXn) converges to gradH
2

(uX) uniformly on compact sets
of H2, which concludes the proof of the continuity of HL. (Notice that one may apply
classical Schauder estimates (see [GT83]) on compact sets on the elliptic equation
∆H2

u − 2u = 0 instead of the Li-Yau estimate to prove the uniform convergence of
gradH

2

(uXn)).
Since G : H2 → B2 is an isometry, then G∗HL(X) is also a continuous linear map

from Γ(S1) to Γ(B2) which is conformally natural. Therefore, Theorem 5.3 implies
that:

(88) G∗HL = λL0,

for some λ ∈ R. We claim that λ = 1. To prove this, consider the vector field

X(z) = iz.

Let Rt : B2 → B2 be the one-parameter family of rotations given by Rt(z) = eitz,
then

X =
d

dt

∣∣∣
t=0

Rt.

It follows from Remark 5.2 that

(89) L0(X) = X.

Now we will compute G∗HL(X). First, observe that ϕX = 1, which can be written as

ϕX(z) = ⟨(1, z), (−1, 0, 0)⟩1,2.

Therefore, it is immediate to check that the solution uX of (87) is given by

uX(p) = ⟨p, (−1, 0, 0)⟩1,2,

for all p ∈ H2. This implies that gradH
2

p uX = σ + uX(p)p and so

(90) HL(X)(p) = p⊠ (−1, 0, 0).
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For (x0, x1, x2) ∈ H2, we have:

(91) d(x0,x1,x2)G =
1

1 + x0

(
− x1

1+x0
1 0

− x2

1+x0
0 1

)
,

The inverse of G is given by:

(92)
G−1 : B2 −→ H2

z = (x, y) 7−→
(1 + |z|2

1− |z|2
,

2x

1− |z|2
,

2y

1− |z|2
)
.

Combining (90), (91), and (92), we obtain by tedious but elementary computation:

(93) G∗HL(X)(z) = iz,

for z ∈ B2. In conclusion, equations (88), (89), and (93) imply that λ = 1, that is,
G∗HL = L0 as desired. □

6. Uniqueness of extension

The goal of this section is to prove the following uniqueness result (i) in Theo-
rem 1.6. More precisely, we show the following.

Theorem 6.1. — Let X be a continuous vector field on S1. Let V be an harmonic
Lagrangian vector field on H2 that extends continuously to X on S1. Assume that
∥∂V ∥∞ is finite. Then V = HL(X) (see Proposition 5.15).

It is tempting to have uniqueness without the additional hypothesis on the bound-
edness of the ∂-operator; however, our proof relies on this hypothesis.

The rest of this section is devoted to proving Theorem 6.1. The next lemma is a
key step of the proof.

Proposition 6.2. — Let u : H2 → R be a smooth function such that ∆H2

u− 2u = 0.
Consider B = HessH

2

(u)−u1, the shape operator of the graph of u, and assume that B
is bounded. Then the function u : D2 → R defined in (28) extends continuously to a
function ϕ : S1 → R.

Proof. — Let λ and −λ be the principal curvatures of gr(u) ⊂ HP3. Then, by Lem-
ma 4.14,

∥B∥∞ = ∥λ∥∞,

where ∥λ∥∞ := supp∈H2 |λ(p)|. For each t ⩾ ∥λ∥∞, consider the functions u+t = u+ t

and u−t = u − t and let B±t = HessH
2

(u±t) − u±t1. Consider u−t and u+t, the
functions defined on D2 (see (28)). We claim that u−t and u+t are convex and concave
functions, respectively. To show this, it is enough to show that the Euclidean Hessian
HessE

2

(u+t) (resp. HessE
2

(u−t)) is positive definite (resp. negative definite). Let us
focus on proving the convexity of u−t.
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The following formula relates the Euclidean Hessian and the hyperbolic Hessian
(see [BF20, Cor. 2.7]): for a function f : D2 → R, we have

L−1HessE
2

f(η)(X,Y ) = HessD
2

(L−1f)(η)(X,Y )− (L−1f)(η)gD2(η)(X,Y ),

where L(η) =
√
1− |η|2 and gD2 is the hyperbolic metric in the Klein model D2.

Hence, we need to show that

(94) HessD
2

(L−1u−t)(η)(X,Y )− (L−1u−t)(η)gD2(η)(X,Y )

is positive definite. Recall that u−t ◦Π−1 = L−1u−t, where Π : H2 → D2 is the radial
projection (see (7)). Thus (94) is equivalent to proving that

(95) HessD
2

(u−t ◦Π−1)(η)(X,Y )− (u−t ◦Π−1)(η)gD2(η)(X,Y )

is positive definite. However, since Π : H2 → D2 is an isometry between the hyper-
boloid model and the Klein model of the hyperbolic space, (95) is equivalent to the
fact that B−t = HessH

2

(u−t)− u−t1 is positive definite. Since B−t = HessH
2

(u− t)−
(u− t)1 = B+ t1, then

det(B−t) = t2 − λ2 > 0 and tr(B−t) = 2t > 0.

This implies that B−t is positive definite. This finishes the proof of the convexity of
u−t. Similarly, one can show that u+t is a concave function. Note that

u−t(η) := u− t
√
1− |η|2, u+t(η) := u+ t

√
1− |η|2

on D2. Since η 7→
√
1− |η|2 vanishes on S1, the boundary values of u−t and u+t

coincide. Moreover, u−t is lower semicontinuous and u+t is upper semicontinuous.
Hence, the common boundary value of u−t and u+t is a continuous function on S1,
as it is both lower and upper semicontinuous. Therefore, u−t and u+t are continuous
functions on D2 by Proposition 2.4. This implies that u extends continuously to D2.

□

Proof of Theorem 6.1. — Let uX : H2 → R be the unique solution of

(96) ∆H2

uX − 2uX = 0, uX |S1 = ϕX ,

so that HL(X) = JgradH
2

(uX). Let V be an harmonic Lagrangian vector field on H2

that extends continuously to X with ∥∂V ∥∞<∞. The goal is to show that V =HL(X).
By Theorem 4.6, we can write V = JgradH

2

(u) where ∆H2

u− 2u = 0. We claim that
u|S1 = ϕX . Indeed, if we have such a fact, then u and uX would be two solutions of
the PDE (96), and by the uniqueness of the solution (see Proposition 2.17), we have
u = uX , and so V = HL(X), which is what we wanted to prove.

We will now show that uS1 = ϕX . Let B = HessH
2

(u)−u1 be the shape operator of
the graph of u. By Lemma 4.14, ∥∂V ∥∞ = ∥B∥∞ < ∞. Thus, Proposition 6.2 implies
that u extends to a continuous function ϕ : S1 → R. Consider the vector field X ′

given by:
X ′(z) = izϕ(z).
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By definition, V = HL(X ′) and so by Proposition 5.14, V extends to X ′. On the
other hand, V extends to X by hypothesis, thus X ′ = X, and so, ϕ = ϕX . Therefore,
uS1 = ϕX , which concludes the proof. □

7. Regularity of vector field: width and mean surface

In this section, we characterize vector fields on the circle of different regularities
using the half-pipe width. Let X be a continuous vector field, and let ϕX : S1 → R
be its support function. Consider the function wX : D2 → R defined by

(97) wX(η) =
Φ+

X(η)− Φ−
X(η)√

1− |η|2
,

Recall that for Definitions 2.5 and 2.10, the width of X is the supremum of wX over D2.
Furthermore, wX satisfies the following invariance property: for all A ∈ O0(1, 2) and
σ ∈ R1,2, we have:

(98) wA∗X+Λ(σ)(η) = wX(A−1 · η).

We have the following useful estimate:

Proposition 7.1. — Let X be a continuous vector field on the circle. Then for all
p ∈ H2, we have

(99) ∥∂HL(X)p∥ ⩽ 6wX(Π(p)),

where Π : H2 → D2 is the radial projection defined in (7).

The next lemma is a key step to proving Proposition 7.1.

Lemma 7.2 ([Dia24, Lem. 6.4]). — Let X be a continuous vector field. Assume that
D2×{0} is a support plane of gr(Φ−

X) at (0, 0,Φ−
X(0, 0)) (and so Φ−

X(0, 0) = 0). Then
for all z ∈ S1, we have:

(100) 0 ⩽ ϕX(z) ⩽ 2 (Φ+
X(0, 0)− Φ−

X(0, 0)).

Lemma 6.4 in [Dia24] is stated differently. In fact, the width of X is used instead
of Φ+

X(0, 0)−Φ−
X(0, 0). However, the proof is exactly the same line by line, so we omit

it here.

Proof of Proposition 7.1. — Using the equivariance of the two terms in the esti-
mate (7.1) under the isometry group of the hyperbolic plane, it suffices to prove the
statement for p = (1, 0, 0) and thus Π(p) = (0, 0) ∈ D2. By adding a Killing vector
field, we may also assume that D2×{0} is a support plane of gr(Φ−

X) at (0, 0), so that
we are in the configuration of Lemma 7.2.

Based on the discussion above, we need to show that:

(101) ∥∂HL(X)(1,0,0)∥ ⩽ 6wX(0).

Let L0(X) : B2 → C be the infinitesimal Douady-Earle extension given in (60) and
consider the isometry G : H2 → B2 defined in (86). Note that G(1, 0, 0) = (0, 0), thus
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according to Proposition 5.15 and Corollary 4.17, the estimate (101) is equivalent to
showing that

(102)
∣∣∣∣∂L0(X)

∂z
(0)

∣∣∣∣ ⩽ 6wX(0).

Since wX(0) = Φ+
X(0)− Φ−

X(0), then (102) is equivalent to∣∣∣∣∂L0(X)

∂z
(0)

∣∣∣∣ ⩽ 6(Φ+
X(0)− Φ−

X(0)).

Taking the z-derivative in the integral of (60) (see [RC91, p. 380]), we obtain
∂L0(X)

∂z
(z) =

3(1− |z|2)2

2iπ

∫
S1

X(x)

(1− zx)4
dx.

Thus, we compute: ∣∣∣∣∂L0(X)

∂z
(0)

∣∣∣∣ = ∣∣∣∣ 3

2iπ

∫
S1
X(x)dx

∣∣∣∣
=

3

2π

∣∣∣∣∫ 2π

0

ieiθX(eiθ)dθ

∣∣∣∣
⩽

3

2π

∫ 2π

0

∣∣ieiθϕX(eiθ)
∣∣ dθ

⩽
3

2π

∫ 2π

0

∣∣ϕX(eiθ)
∣∣ dθ

⩽ 6(Φ+
X(0)− Φ−

X(0)),

where we use Lemma 7.2 in the last inequality. This concludes the proof. □

7.1. Zygmund vector fields. — The goal of this section is to provide a quantitative
estimate between the width of a vector field on the circle and the ∂ norm of its
infinitesimal Douady-Earle extension. We start by recalling some terminology. Given
a quadruple Q = [a, b, c, d] of points on S1 arranged in counter-clockwise order, the
cross-ratio of Q is given by

cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
.

Let X be a vector field on S1. The cross-ratio distortion norm of X is defined as

∥X∥cr = sup
cr(Q)=1

|X[Q]| ∈ [0,+∞],

where

X[Q] =
X(b)−X(a)

b− a
− X(c)−X(b)

c− b
+

X(d)−X(c)

d− c
− X(a)−X(d)

a− d
,

for Q = [a, b, c, d]. For instance, one can check that X is an extension to S1 of a Killing
vector field of H2 if and only if ∥X∥cr = 0.

Definition 7.3. — A continuous vector field X of S1 is Zygmund if and only if the
cross-ratio distortion norm of X is finite.
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Recall that an orientation-preserving homeomorphism Φ : S1 → S1 is said to be
quasisymmetric if the cross-ratio norm defined as

∥Φ∥cr = sup
cr(Q)=1

|ln cr (Φ(Q))|,

is finite. Denote by QS(S1) the space of quasisymmetric homeomorphisms of S1. Then
the universal Teichmüller space is the space of quasisymmetric homeomorphisms of
the circle up to post-composition with an isometry of H2:

T(H2) = Isom(H2)\QS(S1).

Thus, T(H2) can be identified with the space of quasisymmetric homeomorphisms
of S1 fixing 1, i, and −1. It is known that T(H2) is an infinite-dimensional complex
Banach manifold for which the tangent space at the identity corresponds to Zygmund
vector fields on S1 that vanish at 1, i, and −1 (see [GL00]).

In [Dia24, Th. 1.3], we show that the width of X is equivalent to the cross-ratio
norm of X. In particular, we have:

Corollary 7.4 ([Dia24, Th. 1.3 & Eq. (96)]). — A vector field X of S1 is Zygmund if
and only if the width ω(X) is finite.

In [RC91], Reich and Chen proved that ∥∂L0(X)∥∞ is finite if and only if X is
a Zygmund vector field. Later, Fan and Hu showed in [FH22] that the cross-ratio
norm ∥X∥cr and ∥∂L0(X)∥∞ (which is equal to ∥∂HL(X)∥∞) are equivalent. The
estimate (5) in Theorem 1.6 provides a similar result using the width of X.

7.2. Proof of Theorem 1.6. — This subsection is devoted to completing the proof
of Theorem 1.6 stated in the introduction.

Proof of Theorem 1.6. — First, recall that the uniqueness result (i) in Theorem 1.6 is
already established in Theorem 6.1. The equivalence between (1) and (3) follows from
Corollary 7.4. Now we will show the equivalence between (3) and (4) by proving the
estimate (5). If the width is finite, then the estimate 1

6∥∂HL(X)∥∞ ⩽ ω(X) follows
immediately by taking the supremum in the pointwise estimate (99) of Proposition 7.1.
We will now prove the other estimate. Let uX : H2 → R be the unique solution of

(103) ∆H2

uX − 2uX = 0, uX |S1 = ϕX .

Let B = Hess(uX)− uX1 be the shape operator of the graph of uX . Since HL(X) =

JgradH
2

(uX), by Proposition 4.14, we have ∥∂HL(X)∥∞ = ∥B∥∞. Assume that this
is finite and let λ and −λ be the eigenvalues of B. Then

∥B∥∞ = ∥λ∥∞,

where ∥λ∥∞ := supp∈H2 λ(p). For each t ⩾ ∥λ∥∞, consider the functions u+t = uX + t

and u−t = uX−t and let B±t = Hess(u±t)−u±t1. Consider u−t and u+t, the functions
defined on D2 (see (28)). We apply the same method as in the proof of Proposition 6.2
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to deduce that u−t and u+t are convex and concave functions, respectively. It follows
from property (P2) in 2.2 that for all η ∈ D2,

Φ+
X ⩽ uX + t

√
1− |η|2, uX − t

√
1− |η|2 ⩽ Φ−

X .

Hence,
uX − t

√
1− |η|2 ⩽ Φ−

X ⩽ Φ+
X ⩽ uX + t

√
1− |η|2.

This implies
Φ+

X(η)− Φ−
X(η)√

1− |η|2
⩽ 2t.

Hence,

ω(X) = sup
η∈D2

Φ+
X(η)− Φ−

X(η)√
1− |η|2

⩽ 2t,

and this holds for all t ⩾ ∥λ∥∞, thus, ω(X) ⩽ 2∥B∥∞. This finishes the proof of the
estimate (5) in Theorem 1.6 and hence the equivalence between (3) and (4).

We need to show the equivalence between (1) and (2). Let V be a harmonic Lagran-
gian vector field with finite ∥∂V ∥∞. Then by Theorem 6.1, V = HL(X) and so, by (5),
the width is finite. Hence, X is Zygmund by Corollary 7.4. This shows the implica-
tion (2) ⇒ (1). Conversely, if X is a Zygmund vector field, then the width is finite
by Corollary 7.4 and hence ∥∂HL(X)∥∞ is finite by (5). This finishes the proof of
(1) ⇒ (2). □

7.3. Little Zygmund vector fields. — The aim of this section is to characterize little
Zygmund vector fields on the circle in terms of their width. We start this section by
discussing the notion of little Zygmund vector fields. Given a quadruple Q = [a, b, c, d]

of points on S1, the minimal scale S(Q) is defined as:

S(Q) = min{|a− b|, |b− d|, |c− d|, |d− a|}.

A sequence {Qn = [an, bn, cn, dn]}n∈N of quadruples of S1 is said to be degenerating
if cr(Qn) = 1 for each n and lim

n→+∞
S(Qn) = 0.

Definition 7.5. — A Zygmund vector field X is said to be little Zygmund if

sup lim sup
n→+∞

|V [Qn]| = 0

where the supremum is taken over all degenerating sequences Qn of quadruples.

Little Zygmund vector fields are related to the so-called little Teichmüller space.
Following [FH14], an element Φ in QS(S1) is said to symmetric if

sup lim sup
n→+∞

|cr(Φ(Qn))| = 0,

where the supremum is taken over all degenerating quadruples Qn. Denote by S(S1)
the space of symmetric homeomorphisms. In [GS92], Gardiner and Sullivan proved
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that S(S1) is a normal topological subgroup of QS(S1). Furthermore, the little Teich-
müller space, which is defined as the space of symmetric homeomorphisms of the circle
up to post-composition with an isometry of H2:

T0(H2) := Isom(H2)\S(S1),

is an infinite-dimensional complex manifold modeled on a Banach space. Moreover,
the tangent space at the identity corresponds to little Zygmund vector fields on S1

that vanishes at 1, i and −1. For more details, we refer the reader to the survey [Hu22]
and the references therein.

Fan and Hu characterize the little Zygmund regularity in terms of the ∂-operator.

Theorem 7.6 ([FH22, Th. 3]). — Let X be a continuous vector field and L0(X) be
the infinitesimal Douady-Earle extension defined in (60). Then X is little Zygmund
if and only if ∣∣∣∣∂L0(X)

∂z
(z)

∣∣∣∣ −→ 0 as |z| −→ 1.

Remark 7.7. — Recall that by Corollary 4.17 and Proposition 5.15, we have for all
z ∈ B2:

(104) ∥∂HL(X)G−1(z)∥ =

∣∣∣∣∂L0(X)

∂z
(z)

∣∣∣∣,
where G : H2 → B2 is the isometry defined in (86). As a consequence, Theorem 7.6 can
be stated by saying that X is little Zygmund if and only if ∥∂HL(X)G−1(z)∥ tends
to 0 as |z| → 1, which is equivalent by Lemma 4.14 to the fact that the principal
curvature of the mean surface gr(uX) in HP3 tends to zero at infinity.

The next theorem provides a characterization of little Zygmund vector fields in
terms of the width.

Theorem 7.8 (Theorem 1.7). — Let X be a continuous vector field and consider the
function ωX : D2 → R defined in (97). Then the following are equivalent:

(1) X is little Zygmund.
(2) ∥∂HL(X)G−1(z)∥ tends to zero as |z| → 1.
(3) ωX(z) tends to zero as |z| → 1.

The equivalence between (1) and (2) in Theorem 7.8 is due to Fan and Hu [FH22]
(and Remark 7.7). The new result on the little Zygmund vector fields concerns the
characterization with the width. To prove this, we need the following Lemma proved
in [FH22].

Lemma 7.9 ([FH22, p. 1167]). — Let X be a little Zygmund vector field and let zn be a
sequence of points in D2 such that |zn| → 1. Then there exists an isometry An of D2

and a Killing vector field Kn such that the vector field given by Xn = An∗X + Kn

satisfies
Xn(1) = Xn(−1) = Xn(−i) = 0.

and Xn converges to 0 uniformly on S1.
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The non-trivial part of the Lemma is to show the uniform convergence to 0. Indeed,
Zygmund vector fields are α-Hölder for all 0 < α < 1 with a Hölder exponent that
depends only on the cross-ratio norm. Then one may apply the Ascoli-Arzelà theo-
rem to show the uniform convergence of the vector field Xn to some vector field X.
Therefore, one needs to show that X = 0, and here the hypothesis of little Zygmund
is crucial.

Proof of Theorem 7.8. — The equivalence (1) ⇔ (2) follows from Fan-Hu Theorem 7.6
and Remark 7.7. The implication (3) ⇒ (2) follows from Proposition 7.1. It remains to
show the implication (1) ⇒ (3). As in Lemma 7.9, for each zn, let An be an isometry
of D2 such that Anzn = 0, and consider Kn to be a Killing vector field such that
the vector field given by Vn = An∗X +Kn converges uniformly to 0. Let ϕVn

be the
support function of Vn. Since ϕVn

(z) = det(Vn(z), z), ϕVn
converges to 0 uniformly

on S1. On the other hand, using the invariance property of the function wX (see (98)),
we get

wX(zn) = wVn
(0) −→ 0,

which concludes the proof. □

Remark 7.10. — The infinitesimal Douady-Earle extension is used in [HSWS13] to
characterize Weil-Petersson vector fields on the circle. These represent the tangent
space of the so-called universal Weil-Petersson Teichmüller space. The authors of
[HSWS13] proved that a vector field X is Weil-Petersson if and only if:∫

H2

∣∣∣∂L0(X)

∂z
(z)
∣∣∣2 dVolB2 < ∞,

where dVolB2 is the volume form of the Poincaré disk B2. It is tempting to prove the
same characterization with the width. Namely, one may wonder if X is Weil-Petersson
if and only if the function wX , defined in (97), is square integrable with respect to the
volume form of B2. Proposition 7.1 provides one implication. Indeed, if wX is square
integrable, then ∣∣∣∣∂L0(X)

∂z
(z)

∣∣∣∣ =∥∂HL(X)G−1(z)∥,

is square integrable and hence X is Weil-Petersson by the work of [HSWS13]. It is nat-
ural to conjecture that if X is Weil-Petersson, then wX is square integrable. We leave
this question for future investigation. Note that this question is motivated by the
work of Bishop [Bis25], which characterized the Weil-Petersson Teichmüller space as
those circle homeomorphisms that are conformal weldings of Jordan curves in S2 with
square integrable width in H3.
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