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A HOLOGRAPHIC GLOBAL UNIQUENESS IN

PASSIVE IMAGING

by Roman G. Novikov

Abstract. — We consider a radiation solution ψ for the Helmholtz equation in an exterior
region in R3. We show that the restriction of ψ to any ray L in the exterior region is uniquely
determined by its imaginary part Imψ on an interval of this ray. As a corollary, the restriction
of ψ to any plane X in the exterior region is uniquely determined by Imψ on an open domain in
this plane. These results have holographic prototypes in the recent work Novikov (2024, Proc.
Steklov Inst. Math. 325, 218-223). In particular, these and known results imply a holographic
type global uniqueness in passive imaging and for the Gelfand-Krein-Levitan inverse problem
(from boundary values of the spectral measure in the whole space) in the monochromatic case.
Some other surfaces for measurements instead of the planes X are also considered.

Résumé (Une unicité globale holographique en imagerie passive). — Nous considérons une so-
lution de rayonnement ψ pour l’équation de Helmholtz dans une région extérieure de R3. Nous
montrons que la restriction de ψ à tout rayon L de la région extérieure est déterminée de
manière unique par sa partie imaginaire Imψ sur un intervalle de ce rayon. En corollaire, la
restriction de ψ à tout plan X de la région extérieure est déterminée de manière unique par
Imψ sur un domaine ouvert de ce plan. Ces résultats ont des prototypes holographiques dans
l’article récent de Novikov (2024, Proc. Steklov Inst. Math. 325, 218-223). En particulier, ces
résultats et des résultats connus impliquent une unicité globale de type holographique en ima-
gerie passive et pour le problème inverse de Gelfand-Krein-Levitan (à partir des valeurs au bord
de la mesure spectrale dans l’espace entier) dans le cas monochromatique. D’autres surfaces de
mesure que les plans X sont également considérées.
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1070 R. G. Novikov

1. Introduction

We consider the Helmholtz equation

(1) −∆ψ(x) = κ2ψ(x), x ∈ U, κ > 0,

where ∆ is the Laplacian in x, and U is an exterior region in R3 that is U is an open
unbounded connected set in R3 consisting of all points in exterior of a closed bounded
regular surface S (as in [3], [29]).

For equation (1) we consider the radiation solutions ψ that is the solutions satis-
fying the Sommerfeld’s radiation condition

(2) |x|
( ∂

∂|x|
− iκ

)
ψ(x) −→ 0 as |x| → +∞,

uniformly in x/|x|. We assume that ψ ∈ C2 in the closure of U.
Let

(3) L = Lx0,θ = {x ∈ R3 : x = x(s) = x0 + sθ, 0 < s < +∞}, x0 ∈ R3, θ ∈ S2,

where S2 is the unit sphere in R3.
In the present work we show that, for any radiation solution ψ and any ray L ⊂ U,

the restriction of ψ to L is uniquely determined by its imaginary part Imψ on an
arbitrary interval of L; see Theorem 1 in Section 2.

As a corollary, we also obtain that, for any radiation solution ψ and any plane
X ⊂ U, the restriction of ψ to X is uniquely determined by Imψ on an arbitrary
open domain of X; see Theorem 2 in Section 2.

As a further corollary, we obtain that, for any radiation solution ψ and any plane
X ⊂ U, the solution ψ on the whole U is also uniquely determined by Imψ on an
arbitrary open domain of X; see Corollary 1 in Section 2.

These results have holographic prototypes in the recent work [23], where the afore-
mentioned reconstructions of ψ are considered from the intensity |eikx + ψ|2 in place
of Imψ. Here, eikx is a plane wave solution of (1), i.e., k ∈ R3, |k| = κ. The results
of [23] solve one of old mathematical questions of holography and admit straightfor-
ward applications to phaseless inverse scattering.

In the present work our studies are motivated by the Gelfand-Krein-Levitan inverse
problem (from boundary values of the spectral measure in the whole space) and by
passive imaging; see, e.g., [1], [2], [4], [6], [10], [11], [16], [28].

The Gelfand-Krein-Levitan problem in question (in its fixed energy version in
dimension d = 3) consists in determining the potential v in the Schrödinger equa-
tion

(4) −∆ψ(x) + v(x)ψ(x) = κ2ψ(x) + δ(x− y), x, y ∈ R3, κ > 0,

from the imaginary part of the outgoing Green function R+
v (x, y, κ) for one κ and all

x, y on some part of the boundary of a domain containing the support of v. Here, δ is
the Dirac delta function. In this problem ImR+

v is related to the spectral measure of
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A holographic global uniqueness in passive imaging 1071

the Schrödinger operator H = −∆+v. More precisely, H admits the following spectral
decomposition in L2(Rd), at least, for real-valued compactly supported v ∈ L∞(Rd):

(5) H =

∫ ∞

0

κ2dµκ +

N∑
j=1

Ejπj , dµκ =
2

π
ImR+

v (κ)κdκ,

where dµκ is the positive part of the spectral measure for H, Ej are nonpositive
eigenvalues for H and πj are orthogonal projectors on corresponding eigenspaces,
R+

v (κ) = (H − κ2 − i0)−1 is the limiting absorption resolvent for H, whose Schwartz
kernel is given by R+

v (x, y, κ); see, e.g., [13, Lem. 14.6.1].
Note that the terminology “Gelfand-Krein-Levitan problem” is not conventional.

Our motivation for this terminology is based on the Yu. M. Berezanskii’s work [4],
which is one of the very first mathematical works on the multidimensional inverse
problems for differential equations. According to [4], the problem of finding potential
v in the multidimensional Schrödinger equation from boundary values of the spectral
measure for some fixed boundary condition was formulated originally by M. G. Krein,
I. M. Gelfand and B. M. Levitan at a conference on differential equations in Moscow
in 1952. In addition, [4] gives, in particular, uniqueness theorems on such problems
including the case of the problem of determining v from boundary values (together
with some normal derivatives) of the spectral measure arising in (5) for all real energies
on a part of the boundary, at least, for piecewise real-analytic v.

In addition, R+
v (x, y, κ), for fixed y, can be defined as the solution ψ of equation (4)

with the radiation condition (2). For more details, see [1], [4] and references therein.
Equation (4) at fixed κ can be also considered as the Helmholtz equation of

acoustics or electrodynamics for monochromatic waves, where complex-valued v(x) =
v(x, κ) is related to the perturbation of the refraction index. In particular, the afore-
mentioned mathematical problem of recovering v from boundary values of ImR+

v

arises in the framework of passive acoustic tomography (in ultrasonics, ocean acous-
tics, local helioseismology). In these framework ImR+

v is related to cross correlations
of wave fields generated by random sources; see, e.g., formula (49) in [11]. For more
details, see [1], [2], [6], [11], [27], [28] and references therein.

Note that

(6) R+
0 (x, y, κ) =

eiκ|x−y|

4π|x− y|
, x, y ∈ R3,

where R+
0 is the outgoing Green function for equation (4) with v ≡ 0.

Let

(7) R+
v,sc(x, y, κ) = R+

v (x, y, κ)−R+
0 (x, y, κ), x, y ∈ R3.

Suppose that

(8) supp v ⊂ R3 ∖ U,

where U is the closure of U. Then, in view of the definitions of R+
v,sc, R+

v , and R+
0 ,

the function ψ = R+
v,sc(x, y, κ) is a radiation solution of equation (1) for each y ∈ R3.
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1072 R. G. Novikov

Therefore, the aforementioned results on recovering a radiation solution ψ from
Imψ give a reduction of the Gelfand-Krein-Levitan problem (of inverse spectral theory
and passive imaging in dimension d = 3) to the inverse scattering problem of finding v
in (4) from boundary values of R+

v . Note that studies on the latter problem also go
back to [4].

This reduction and known results imply, in particular, that v in (4) is uniquely
determined by ImR+

v (x, y, κ) for one κ and all x, y on an arbitrary open domain D

of X, where supp v ⊂ Ω, X is a plane in R3 ∖ Ω, Ω is an open bounded connected
domain in R3, Ω is the closure of Ω; see Theorem 3 in Section 2. By this result we
continue studies of [4] mentioned above and relatively recent studies of [1] and [2].

We also consider other surfaces for measurements instead of the planes X; see
Example 1 and Theorems 4 and 5 in Section 2.

The main results of this work are presented in more detail and proved in Sec-
tions 2–7.

Acknowledgements. — The author thanks the referees for remarks that have helped
to improve the presentation.

2. Main results

In this work our key result is as follows.

Theorem 1. — Let ψ be a radiation solution of equation (1) as in (2). Let L be a ray
as in (3) such that L ⊂ U, where U is the region in (1). Then ψ on L is uniquely
determined by Imψ on Λ, where Λ is an arbitrary non-empty open interval of L.

As a corollary, we also get, in particular, the following result.

Theorem 2. — Let ψ be a radiation solution of equation (1) as in (2). Let X be a
two-dimensional plane in R3 such that X ⊂ U. Then ψ on X is uniquely determined
by Imψ on D, where D is an arbitrary non-empty open domain of X.

Theorem 1 is proved in Section 4 using the Atkinson-Wilcox expansion of [3], [29]
for the radiation solutions ψ of equation (1), and a modified version of holographic
techniques of [21], [23]. In particular, in this proof we use Proposition 1 of Section 3,
which yields a two-point approximation for ψ in terms of Imψ. This two-point ap-
proximation is also of independent interest.

Note that ψ and Imψ are real-analytic on U, and, therefore, on L in Theorem 1
and on X in Theorem 2. Because of this analyticity, Theorem 1 reduces to the case
when Λ = L and Theorem 2 reduces to the case when D = X.

Using this reduction, Theorem 2 is proved as follows. We assume that D = X.
Then to determine ψ at an arbitrary x ∈ X, we consider a ray L = Lx0,θ ⊂ X such
that x ∈ L and use Theorem 1 for this L.

Corollary 1. — Under the assumptions of Theorem 2, the imaginary part Imψ on D,
uniquely determines ψ in the entire region U.

J.É.P. — M., 2025, tome 12



A holographic global uniqueness in passive imaging 1073

Corollary 1 follows from Theorem 2, formula (18) recalled in Section 3.3, and
analyticity of ψ in U.

Remark 1. — In the one dimensional case, an analog of Theorem 1 follows from a
very simple form of one dimensional radiation solutions. In particular, in this case an
analog of the two-point approximation of Proposition 1 is exact. The two dimensional
case is considered in [17] using results of [14], [18] in place of the three dimensional
Atkinson-Wilcox expansion (12) used in the present work. We expect that the case of
dimension d > 3 is similar to the three-dimensional case if d is odd and is similar to
the two-dimensional case if d is even.

Theorems 1 and 2, and Corollary 1 have holographic prototypes in [23]; see Intro-
duction for some comments in this connection.

Using Theorem 2 and known results on direct and inverse scattering we obtain the
following global uniqueness theorem for the Gelfand-Krein-Levitan inverse problem
mentioned in Introduction.

Theorem 3. — Let v ∈ L∞(R3), supp v ⊂ Ω, and X ⊂ R3 ∖ Ω, where Ω is an open
bounded connected domain in R3, Ω is the closure of Ω, and X is a two-dimensional
plane. Let property (23) hold for fixed κ > 0 and R+

v (x, y, κ) be the outgoing Green
function for equation (4). Then v is uniquely determined by ImR+

v (·, ·, κ) on D×D,
where D is an arbitrary non-empty open domain of X.

In Theorem 3 we do not assume that v is real-valued, but we assume that prop-
erty (23) formulated in Section 3.4 holds.

Remark 2. — Under the conditions that v is real-valued, v ∈ L∞(Rd), supp v ⊆ Ω,
where Ω is an open bounded domain in Rd with ∂Ω ∈ C2,1, Ω = Ω∪∂Ω, d ⩾ 2, a local
uniqueness for determining v from ImR+

v (·, ·, κ) on ∂Ω×∂Ω for one κ is proved in [1].
The assumption that v is real-valued is very essential in this proof.

Remark 3. — In connection with applications to helioseismology, it is natural to
assume that v is complex-valued, v ∈ L∞(R3), v(x) = ṽ(|x|), ṽ(r) = α/r, r ⩾ r0, for
some constants α ∈ R and r0 > 0. Let Mr = S2r × S2r and r2 > r1 > r0, where S2r is
defined by (9). Under these assumptions, a global uniqueness for determining v from
ImR+

v (·, ·, κ) on Mr1 ∪Mr2 , for fixed κ and nonsingular pair r1, r2, is proved in [2].

One can see that Theorem 3 contains a principal progress on the Gelfand-
Krein-Levitan inverse problem in comparison with the results of [1], [2] mentioned
in Remarks 2 and 3. In comparison with the aforementioned result of [1], Theo-
rem 3 is global and does not assume that v is real-valued. In comparison with the
aforementioned result [2], Theorem 3 does not assume that v is spherically symmetric.

Theorem 3 is proved in Section 5. In particular, in this proof we use Proposition 2 of
Section 5, which stays that v is uniquely determined by R+

v (·, ·, κ) on X×X for fixed κ.
To our knowledge, Proposition 2 is slightly different from the results reported in the
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1074 R. G. Novikov

literature. Therefore, just in case, for completeness of presentation this proposition is
also proved in Section 5.

In connection with other surfaces of measurements instead of the planes X our
results are as follows.

The results of Theorems 1 and 2 don’t hold for some other curves in place of L
and surfaces in place of X. An example is as follows.

Let

(9) S2r = {x ∈ R3 : |x| = r}, r > 0.

Example 1. — Let ψ(x) = G+(x, κ), where G+ is defined by (19). Then ψ is a non-
zero radiation solution of equation (1) if 0 ∈ R3 ∖ U, but Imψ ≡ 0 on the spheres S2r
for r = nπ/κ, n ∈ N.

Nevertheless, the uniqueness results of Theorem 2, Corollary 1, and Theorem 3
remain valid for many interesting surfaces instead of the planes X. Suppose that

(10)
B is an open bounded domain in R3,

Y = ∂B is real-analytic and connected.
In particular, we have the following uniqueness theorems.

Theorem 4. — Let ψ be a radiation solution of equation (1) as in (2). Let Y be a
surface as in (10), where κ is not a Dirichlet eigenvalue for B, and B = B ∪ Y ⊂ U.
Then ψ on U is uniquely determined by Imψ on D, where D is an arbitrary non-empty
open domain of Y .

Theorem 5. — Let v ∈ L∞(R3), supp v ⊂ R3 ∖U, where U is as in (1), and property
(23) holds for fixed κ > 0. Let Y be a surface as in (10), where κ is not a Dirichlet
eigenvalue for B, and B = B∪Y ⊂ U. Then v is uniquely determined by ImR+

v (·, ·, κ)
on D×D, where D is an arbitrary non-empty open domain of Y .

Theorems 4 and 5 are proved in Sections 6 and 7. Note that the determinations in
Theorems 1, 2, 3 and especially in Theorems 4 and 5 include analytic continuations.
Studies on more stable reconstructions appropriate for numerical implementation will
be continued elsewhere. In this respect one can use, in particular, results of Section 3.2.

3. Preliminaries

3.1. The Atkinson-Wilcox expansion. — Let

(11) Br = {x ∈ R3 : |x| < r}, r > 0.

If ψ is a radiation solution of equation (1) and R3 ∖ Br ⊂ U, then the following
Atkinson-Wilcox expansion holds:

(12) ψ(x) =
eiκ|x|

|x|

∞∑
j=1

fj(θ)

|x|j−1
for x ∈ R3 ∖Br, θ =

x

|x|
,

where the series converges absolutely and uniformly; see [3], [29].

J.É.P. — M., 2025, tome 12
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3.2. A two-point approximation for ψ. — Let

(13) I(x) = |x| Imψ(x), x ∈ U,

where ψ is a radiation solution of equation (1).
We have that

(14) 2iI(x) = eiκ|x|f1(θ)− e−iκ|x|f1(θ) +O(|x|−1) as |x| → +∞,

uniformly in θ = x/|x|, where f1 is the leading coefficient in (12).

Proposition 1. — Let ψ be a radiation solution of equation (1). Then

(15)
f1(θ) =

1

sin(κτ)

(
−e−iκ|y|I(x) + e−iκ|x|I(y) +O(|x|−1)

)
,

x, y ∈ Lx0,θ, x0 = 0, y = x+ τθ, θ ∈ S2, τ > 0,

uniformly in θ, where f1 is the coefficient in (14), I is defined by (13), Lx0,θ is the
ray defined by (3), and sin(κτ) ̸= 0 for fixed τ .

Formula (15) is a two-point approximation for f1 and together with (12) also gives
a two-point approximation for ψ in terms of I. For phaseless inverse scattering and
holography formulas of such a type go back to [21] (see also [25], [24], [23]).

Remark 4. — If an arbitrary function I on L0,θ satisfies (14), then formula (15) holds,
for fixed θ ∈ S2.

We obtain (15) from the system of equations for f1 and f1:

(16)
eiκ|x|f1(θ)− e−iκ|x|f1(θ) = 2iI(x) +O(|x|−1),

eiκ|y|f1(θ)− e−iκ|y|f1(θ) = 2iI(y) +O(|y|−1),

where x, y are as in (15). In particular, we use that |y| = |x|+ τ and that

(17) D = 2i sin(κτ),

where D is the determinant of system (16).
In turn, (16) follows from (14).

3.3. A Green type formula. — The following formula holds:

ψ(x) = 2

∫
X

∂G+(x− y, κ)

∂νy
ψ(y)dy, x ∈ VX ,(18)

G+(x, κ) = −e
iκ|x|

4π|x|
, x ∈ R3,(19)

where ψ is a radiation solution of equation (1), X and VX are plane and open half-
space in U, where X is the boundary of VX , ν is the outward normal to X relative
to VX ; see, for example, [5, Eq. (5.84)].

Recall that R+
0 (x, y, κ) = −G+(x− y, κ), where R+

0 is the outgoing Green function
for equation (4) with v ≡ 0.

J.É.P. — M., 2025, tome 12



1076 R. G. Novikov

For completeness of presentation note that formula (18) follows from the formula

(20)
ψ(x) =

∫
X

∂G+
X(x, y, κ)

∂νy
ψ(y)dy, x ∈ VX ,

G+
X(x, y, κ) = G+(x− y, κ)−G+(x− y∗, κ), x, y ∈ VX ∪X,

where y∗ is symmetric to y with respect to X. The point is that G+
X is the Green

function for the Helmholtz operator ∆+ κ2 in VX with Dirichlet boundary condition
on X and Sommerfeld radiation condition at infinity.

3.4. Some facts of direct scattering. — We consider equation (4) assuming for
simplicity that

(21)
v ∈ L∞(Ω), v ≡ 0 on R3 ∖ Ω

Ω is an open bounded connected domain in R3.

The outgoing Green function R+
v for equation (4) satisfies the integral equation

(22) R+
v (x, y, κ) = −G+(x− y, κ) +

∫
Ω

G+(x− z, κ)v(z)R+
v (z, y, κ)dz,

where x, y ∈ R3, G+ is given by (19).
Actually, in addition to (21), we assume that, for fixed κ > 0,

(23) equation (22) is uniquely solvable for R+
v (·, y, κ) ∈ L2(Ω).

In particular, it is known that if v satisfies (21) and is real-valued (or Im v ⩽ 0),
then (23) is fulfilled automatically; see, for example, [7].

We also consider the scattering wave functions ψ+ for the homogeneous equa-
tion (4) (i.e., without δ):

(24) ψ+ = ψ+(x, θ, κ) = eiκθx + ψ+
sc(x, θ, κ), x ∈ R3, θ ∈ S2,

where ψ+
sc satisfies the radiation condition (2) at fixed θ.

The following formulas hold:

R+
v (x, y, κ) = R+

v (y, x, κ), x, y ∈ R3;(25)

R+
v (x, y, κ) =

eiκ|x|

4π|x|
ψ+

(
y,− x

|x|
, κ

)
+O

( 1

|x|2
)

as |x| → +∞ at fixed y;(26)

ψ+
sc(x, θ, κ) =

eiκ|x|

|x|
A
(
θ,

x

|x|
, κ

)
+O

( 1

|x|2
)

as |x| → +∞ at fixed θ,(27)

where A arising in (27) is the scattering amplitude for the homogeneous equation (4)
and is defined on S2 × S2 at fixed κ.

In view of (6), (7), (24)–(26), we also have that

R+
v,sc(x, y, κ) = R+

v,sc(y, x, κ), x, y ∈ R3;(28)

R+
v,sc(x, y, κ) =

eiκ|x|

4π|x|
ψ+
sc

(
y,− x

|x|
, κ

)
+O

( 1

|x|2
)

as |x| → +∞ at fixed y.(29)

In connection with aforementioned facts concerning R+
v and ψ+ see, e.g., [9, Chap. IV,

§1].
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A holographic global uniqueness in passive imaging 1077

Remark 5. — It is well known that, under assumptions (21), (23), the scattering
amplitude A = A(·, ·, κ) is real analytic on S2 × S2.

4. Proof of Theorem 1

4.1. Case L ⊆ L0,θ. — First, we give the proof for the case when L ⊆ L0,θ. In this
case it is essentially sufficient to prove that Imψ on L uniquely determines fj(θ)
in (12) for all j. Such a determination is presented below in this subsection. The rest
follows from the convergence of the series in (12) and analyticity of ψ and Imψ on L.

The determination of f1 follows from (15). Suppose that f1, . . . , fn are determined,
then the determination of fn+1 is as follows. Let

ψn(x) =
eiκ|x|

|x|

n∑
j=1

fj(θ)

|x|j−1
, where θ = x

|x|
,(30)

In(x) = |x| Imψn,(31)
Jn(x) = |x|n(I(x)− In(x)),(32)

where x is as in (12), I(x) is defined by (13).
We have that

2iI(x) = 2iIn(x) +
eiκ|x|

|x|n
fn+1(θ)−

e−iκ|x|

|x|n
fn+1(θ) +O(|x|−n−1),(33)

2iJn(x) = eiκ|x|fn+1(θ)− e−iκ|x|fn+1(θ) +O(|x|−1),(34)

as |x| → +∞, where I is defined by (13).
Due to (34) and Remark 4, we get

(35)
fn+1(θ) =

1

sin(κτ)

(
−e−iκ|y|Jn(x) + e−iκ|x|Jn(y) +O(|x|−1)

)
,

x, y ∈ Lx0,θ, x0 = 0, y = x+ τθ, θ ∈ S2, τ > 0,

assuming that sin(κτ) ̸= 0 for fixed τ (where the parameter τ can be always fixed in
such a way for fixed κ > 0).

Formulas (13), (30)–(32) and (35) determine fn+1, give the step of induction for
finding all fj , and complete the proof of Theorem 1 for the case L ⊆ L0,θ.

4.2. General case. — The general case reduces to the case of Section 4.1 by the
change of variables

(36) x′ = x− q for some fixed q ∈ R3 such that L ⊆ Lq,θ.

In the new variables x′ ∈ U′ = U− q, we have that:

(37) ψ =
eiκ|x

′|

|x′|

∞∑
j=1

f ′j(θ)

|x′|j−1
for x′ ∈ R3 ∖Br′ , θ =

x′

|x′|
,

for some new f ′j , where r′ is such that R3 ∖Br′ ⊂ U′;

(38) L ⊆ Lq,θ = L0,θ.

In addition, the series in (37) converges absolutely and uniformly.
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In view of (37), (38), we complete the proof of Theorem 1 by repeating the proof
of Section 4.1.

Remark 6. — Our proof of Theorem 1 has a holographic prototype in [23]. Additional
formulas for finding fj from Imψ on L can be obtained proceeding also from the
approaches of [22], [25], [26].

5. Proof of Theorem 3

Under our assumptions on v, Ω, X, and κ, we have, in particular, that

R+
v,sc(·, y, κ) is real-analytic on X for fixed y ∈ X,(39)

R+
v,sc(x, ·, κ) is real-analytic on X for fixed x ∈ X,(40)

where R+
v,sc is defined by (6), (7). Here, we use that R+

v,sc(x, y, κ) satisfies the ho-
mogeneous equation (4) and, therefore, is real-analytic outside of supp v, and that
symmetry (28) holds.

In view of (6), (7), (39), (40), Theorem 3 reduces to the case when D = X. In
turn, Theorem 3 with D = X follows from formulas (6), (7) and from Lemma 1 and
Proposition 2 given below.

Lemma 1. — Under the conditions of Theorem 3, ImR+
v,sc(·, y, κ) on X uniquely de-

termines R+
v,sc(·, y, κ) on X, where y ∈ R3, and ImR+

v,sc(·, ·, κ) on X × X uniquely
determines R+

v,sc(·, ·, κ) on X ×X.

Lemma 1 follows from Theorem 2 with U such that Ω ⊂ R3 ∖ U, X ⊂ U, and
the property that ψ = R+

v,sc(x, y, κ) is a radiation solution of equation (1) for each
y ∈ R3.

Proposition 2. — Under the conditions of Theorem 3, R+
v,sc(·, ·, κ) on X×X uniquely

determines v (for fixed κ).

Proposition 2 is proved as follows (for example). First,

(41)
ψ = R+

v,sc(·, x′, κ) on X uniquely determines ψ = R+
v,sc(·, x′, κ) on VX

via formula (18), for each fixed x′ ∈ X.

Second,

(42)
R+

v,sc(·, x′, κ) on VX ∪X uniquely determines ψ+
sc(x

′, θ, κ) for θ ∈ Θ+
X

via formula (29), for each fixed x′ ∈ X,

where

(43) Θ±
X = {θ ∈ S2 : ±θν ⩾ 0},

where ν is the outward normal to X relative to VX considered as the interior of X.
Third,

(44)
ψ = ψ+

sc(·, θ, κ) on X uniquely determines ψ = ψ+
sc(·, θ, κ) on VX

via formula (18).
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Fourth,

(45)
ψ+
sc(·, θ, κ) on VX ∪X uniquely determines A(θ, θ′, κ) for θ′ ∈ Θ−

X

via formula (27), for each fixed θ ∈ S2,

where Θ−
X is defined in (43).

Therefore, we get that

(46)
R+

v,sc(·, ·, κ) on X ×X uniquely determines A(·, ·, κ) on Θ+
X ×Θ−

X

via (41), (42), (44), (45).
In addition,

(47)
A(·, ·, κ) on Θ+

X ×Θ−
X uniquely determines A(·, ·, κ) on S2 × S2

by analyticity,
in view of Remark 5.

Finally, Proposition 2 follows from (46), (47) and the result of [19] (see also [20],
[12], [8]) that, under assumptions (21), (23), the scattering amplitude A at fixed κ

uniquely determines v. In this result the assumption that v is real-valued or Im v ⩽ 0

is not essential and can be replaced by assumption (23).
This completes the proofs of Proposition 2 and Theorem 3.

6. Proof of Theorem 4

Under the assumptions of Theorem 4, the functions ψ and Imψ are real-analytic
in U, in general, and on Y , in particular. Therefore, Imψ on D uniquely determines
Imψ on Y by analytic continuation, taking also into account that Y is real-analytic
and connected. In turn, Imψ on Y uniquely determines Imψ in B by solving the
Dirichlet problem for the Helmholtz equation. In turn, Imψ in B uniquely determines
Imψ in U by analytic continuation. Finally, Imψ in U uniquely determines ψ in U,
in view of Corollary 1 in Section 2.

This completes the proof of Theorem 4.

7. Proof of Theorem 5

Recall that ImR+
v (·, ·, κ) on D×D uniquely determines ImR+

v,sc(·, ·, κ) on D×D,
in view of (6), (7). Under the assumptions of Theorem 5, we have, in particular, that

(48) ψ = R+
v,sc(·, y, κ) is a radiation solution of equation (1), y ∈ R3.

Therefore, due to Theorem 4, ImR+
v,sc(·, y, κ) on D uniquely determines R+

v,sc(·, y, κ)
in U.

Similarly, ImR+
v,sc(x, ·, κ) on D uniquely determines R+

v,sc(x, ·, κ) in U, due to (28),
where x∈R3. Therefore, ImR+

v,sc(·, ·, κ) on D × D uniquely determines R+
v,sc(·, ·, κ)

on U× U. Finally, R+
v,sc(·, ·, κ) on U× U uniquely determines v by different ways.

For example: R+
v,sc(·, ·, κ) on U×U uniquely determines A(·, ·, κ) on S2×S2, in view

of (27), (29); A at fixed κ uniquely determines v as recalled at the end of proof of
Theorem 3.

This completes the proof of Theorem 5.
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Remark 7. — Formulas relating R+
v on S2r × S2r and A on S2 × S2 at fixed κ, where

v(x) = 0 for |x| > r, S2r is defined by (9), were given for the first time in [4].

Remark 8. — The case is also of interest when the boundary Y in (10) is not con-
nected but consists of two disjoint connected components Y1 and Y2, where Y1 = ∂B1,
Y2 = ∂B2 and B1, B2 are open bounded domains such that R3∖U ⊂ B1 ⊂ B2. In this
case Theorem 4 is valid with D replaced by D1∪D2, whereas Theorem 5 is valid with
D×D replaced by (D1∪D2)×D1 (as well as with D×D replaced by (D1∪D2)×D2,
where D1, D2 are arbitrary non-empty open domains of Y1 and Y2, respectively. It is
of interest to compare the later result with Theorem 4.3 in the recent thesis [15],
which gives uniqueness for monochromatic passive imaging from cross correlations on
(Y1 ∪ Y2)× (Y1 ∪ Y2). These comparisons may lead to further important results.
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