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THE LAKE EQUATION AS
A SUPERCRITICAL MEAN-FIELD LIMIT

BY MaTTHEW ROSENZWEIG & SYLVIA SERFATY

Asstract. — We study so-called supercritical mean-field limits of trapped particle systems mov-

ing according to Newton’s second law with either Coulomb/super-Coulomb or regular interac-
tions, from which we derive a d-dimensional generalization of the lake equation, which coin-
cides with the incompressible Euler equation in the simplest setting, for monokinetic data. This
supercritical mean-field limit may also be interpreted as a combined mean-field and quasineu-
tral limit, and our assumptions on the rates of these respective limits are shown to be optimal.
Our work provides a mathematical basis for the universality of the lake equation in this scaling
limit—a new observation—in the sense that the dependence on the interaction and confine-
ment is only through the limiting spatial density of the particles. Our proof is based on a
modulated-energy method and takes advantage of regularity theory for the obstacle problem
for the fractional Laplacian.

Reésumic (Limites de champ moyen surcritiques : convergence vers 1’équation des lacs)

On étudie la limite dite de champ moyen surcritique d’un systéme de particules confinées
se déplacant selon la dynamique de Newton, & partir de laquelle on dérive une généralisation
d-dimensionnelle de I’équation des lacs, qui coincide dans sa version la plus simple avec 1’équa-
tion d’Euler incompressible. Cette limite surcritique peut aussi étre interprétée comme une
limite de champ moyen combinée avec une limite quasi-neutre, et on montre que nos hypo-
theses sur les taux respectifs de ces limites sont optimales.
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1020 M. ROSENZWEIG & S. SERFATY

1. INnTRODUCTION

Consider a Newtonian system of N particles with a pairwise interaction potential
g and external confining potential V'

9:2 =0
1 1
; Z—VUf—EgiN Z Vg(wﬁ—xé—)—;VV(mﬁL 1<i<N.
1<GENj#i

(@, v)) = (a7,7),

i Y R

(1.1) o}

The positions and velocities are assumed to belong to RY. Here, v > 0 is the friction
coefficient, and € > 0 is a small parameter, possibly depending on N, which encodes
physical information about the system. We are particularly interested in g belonging
to the family of logarithmic or Riesz interactions

1

g |I|757 S 7é 07

—log |x|, s=0,

(1.2) g(r) =

with the assumption that d — 2 < s < d. Up to a normalizing constant cq, these
interactions are characterized as fundamental solutions of the fractional Laplacian:
(—A)(d’s)ﬂg = cq,s00. The particular case s = d — 2 corresponds to the classical
Coulomb interaction, which is fundamental to plasma physics, and thus s > d — 2
means that we are considering the super-Coulomb case. See Remark 1.4 below for
further elaboration on the restriction to this case.

We are interested in the large N and small € limit of (1.1), the latter of which we
interpret as a quasineutral limit elaborated on in the next subsection. There are two
(mathematically equivalent) motivations for our setup.

The first motivation is non-neutral plasmas [OD98] (see also [WBIP85, MKTLO08]
for relevance to trapped neutral systems). The system (1.1) models the evolution of a
trapped system of ions near thermodynamic equilibrium, meaning the spatial density
phy = % Ziil 5102 is close to the equilibrium measure py . This equilibrium measure
is defined as the probability measure that minimizes the macroscopic energy

(1.3) 0= [ Vit /(Rd)zg@ — y)dp(@)du(y).

We refer to the recent lecture notes of the second author [Ser24, Chap. 2] for details
on the equilibrium measure in this context of Coulomb and Riesz interactions, as well
as for its connection to the solution of the fractional obstacle problem, which will be
also discussed below. One can see the equilibrium measure as a generalization of the
uniform measure on a torus when considering an infinitely extended trapped system.

The second motivation comes from two-species globally neutral systems. In this
setting, the empirical spatial density uf; is close to a fixed density u, representing
the density of a stationary background of an oppositely charged species of particles
(e.g. heavy positively charged ions). Alternatively, one may think of this as a one-
component plasma with a nonuniform background. In this case, the term —VV (z!)

JEP. — M., 2095, tome 12



The LAkE EQUATION AS A SUPERCRITICAL MEAN-FIELD LIMIT TO21

on the right-hand side of the second line of (1.1) should be replaced by the attractive
force +V (g * u)(zf) due to the background.

The settings for each of these motivations are mathematically equivalent. The latter
corresponds to V = —g*p+ 3 f(Rd)z g(z —y)du®?(x,y). While the former corresponds
to considering a background density such that V(g * p+ V') = 0 in the support of u.
This is in particular achieved when (but not only when) p is equal to the equilibrium
measure [y .

Under suitable assumptions on the external potential V', our goal is to show that
if the initial empirical spatial density py, = % vazl 0z — py as N — oo and
the initial velocities v{ ~ u°®(z?), for a macroscopic vector field u® on RY, then the
empirical measure % Zfil 5(1571,;) associated to a solution of (1.1) converges as € — 0
and N — oo to the monokinetic measure iy (2)d,¢(5)(v), where u® satisfies the lake
equation

(1.4) {6tu+vu+u-Vu= —~Vp,

div(pyu) = 0.

In particular, when g is the Coulomb potential, we give a microscopic counterpart to
the proof of the quasineutral limit for Vlasov-Poisson with monokinetic data by Barré
et al. [BCGM15].

Note that if py is constant and v = 0, then (1.4) is nothing but the incompressible
Euler equation. The pressure p is a Lagrange multiplier to enforce the incompressibility
constraint div(uyu) = 0. Multiplying both sides of the first equation of (1.4) by py
and taking the divergence, the pressure p is obtained from the velocity u by solving
the divergence-form elliptic equation

(1.5) — div(py Vp) = div? (vu®?) = div(pyvu - Vu).

Equation (1.4), which is also sometimes called the anelastic equation, appears in the
modeling of atmospheric flows [OP62, Mas07] and superconductivity [CR97, DS18,
Duel8] and has been mathematically studied in [LOT96a, LOT96b, BCGM15, Duel8].
In particular, the second author and Duerinckx [DS18] have shown that the equation
arises as a mean-field limit for Ginzburg-Landau vortices with pinning and forcing.
We also mention that the lake equation has been shown [Mén24] to be a mean-field
limit for a model of vortices in shallow water with varying topography [Ric00].

Our proof rests on the powerful modulated-energy method introduced by the second
author [Ser17] and developed in subsequent works [Duel6, Ser20, BJW19, NRS22] to
treat first-order Hamiltonian or gradient flows for the family of Riesz energies. It takes
advantage of new sharp estimates controlling the first variation along a transport
of the modulated energy by the modulated energy itself, recently obtained by the
authors [RS24]. To handle the general nonuniformity of the equilibrium measure and
the presence of boundaries, we recast the equilibrium measure as a solution to an
obstacle problem for the fractional Laplacian and take advantage of recent regularity
theory.

JE.P. — M., 2095, tome 12



1029, M. ROSENZWEIG & S. SERFATY

1.1. THE COMBINED MEAN-FIELD AND QUASINEUTRAL LIMIT. To see how the equa-
tion (1.4) appears as a formal limiting dynamics for the empirical measure of (1.1),
we argue as follows.

Suppose that the parameter € > 0 is fixed. Then a formal calculation (e.g. see
[Jab14]) reveals that if the initial empirical measure f} . == Zfil dzo converges to
a sufficiently regular probability measure f° as N — oo, where 2 = (2%,07) € (RY)2,

then the time-evolved empirical measure ffv = % Zivzl 54 converges as N — 0o to
a solution f! of the Viasov equation with friction

1
atfs +uv- vmfs - ?v(v +gx* ,Ufs) ’ vvfs - diVU(’YUf) =0,

(16) He = fRd de('7v)7

f E|t=0 = f ; .
We now seek to formally derive the lake equation (1.4) from the Vlasov equation (1.6)
in the limit as ¢ — 0.

We recall that the regime under consideration is when the spatial density uf con-
verges to the equilibrium measure py as € — 0 (this is an assumption). Decomposing
the potential

Vitgrpe =V +grpv)+gs(ue—pv),
the fact that, by characterization of the equilibrium measure, V' + g * py is constant
on the support of py (see Section 2 for details) implies that

V(V +g*pe) = Vg (e —pv), = € supppiy.

Assuming that the renormalized electric potential difference s%g * (ue — py) has a
weak limit p as € — 0, we see that the weak limit f := lim._,¢ f. satisfies the equation
Of+v-Vaof =Vp-V,f — din(’YUf) =0,

(17) My = fRd df(',’l)),
f‘t=0 = fo7
where f° is the weak limit of f2.
Let us now define the current J(x) := [pq v df (z,v) associated to (1.7). Integrating
both sides of the first equation in (1.7) with respect to v, then using that the spatial

density is equal to uy for all time, we find that div J? is constant in time. To find an
equation for J, let us differentiate inside the integral to obtain

0,J = /Rd v(—v Vi f +divy ((71} + Vp)f))dv.

Since the integration is with respect to v, we can pull out V, to write
—/ v(v- V) fdv = —div/ v®2df (-, v),
Rd Rd
where the divergence may be taken with respect to either rows or columns since the
tensor is symmetric. Integrating by parts (assuming f vanishes sufficiently rapidly

JIEP. — M., 2095, tome 12



The LAkE EQUATION AS A SUPERCRITICAL MEAN-FIELD LIMIT 1023

as |v| = 00),

/ vl div, ((yv + Vp) f)dv = —/ 59 (v’ + 9;p)df (-,v) = —yJ7 — v 0;p.
Rd Rd

Therefore,
(1.8) o J + div/ v22df (-, v) = —yJ — py Vp.

Rd
This equation is not closed in terms of (J, p), since the second term on the left-hand
side requires knowledge of the second velocity moment of f, which in turn depends
on third moment and so on (this is the famous closure problem for moments of the
Vlasov equation, e.g. see [Uhl18]). But making the monokinetic or “cold electrons”™*)
ansatz f(z,v) = py(x)d(v — u(x)), it follows that J = pyu. Since py is independent
of time, substituting this identity into (1.8) yields

(1.9) prv Opu + div(pyu®?) = —py (yu + Vp),
div(pyu) = 0.

Assuming that uy is positive on its support, we see from dividing by uy that (1.9) is
equivalent to (1.4).

The limit as N — oo for fixed € > 0 corresponds to the mean-field limit of (1.1).
When g is Coulomb and v = 0, the equation (1.6) is known as Vlasov-Poisson. More
generally, for g as in (1.2), the equation is called Viasov-Riesz. It is a difficult problem
to derive the Vlasov-Poisson/Vlasov-Riesz equation directly from (1.1). While the
case of regular potentials g (e.g. globally C1'!) [NW74, BH77, Dob79, Due21] or even
just potentials with bounded force Vg [JW16] is understood, the Coulomb case in
general remains out of reach except in dimension 1 [Tro86, Haul4]. The best results
for singular potentials are limited to forces Vg which are square integrable at the
origin [HJ07, HJ15, BDJ24] (which barely misses the two-dimensional Coulomb case)
or are for Coulomb potentials with short-distance vanishing cutoff [BP16, Lazl6,
LP17, Gra21].®?) Recently, the second author together with Duerinckx [Ser20, App.]
proved the mean-field limit for the Vlasov-Poisson equation—and more generally super-
Coulomb Vlasov-Riesz®—for monokinetic/cold initial data, for which the Vlasov-
Poisson equation reduces to the pressureless Fuler-Poisson equation.

In the plasma physics setting of Vlasov-Poisson, the limit ¢ — 0 is called the
quasineutral limit, and the equation (1.7), in the case uy = 1, is called the kinetic
incompressible Fuler (KIE) equation [Bre89]. The inhomogeneous case of (1.7) does
not seem to have previously appeared in the literature. Nowhere in the above reasoning

(D This terminology, which is common in the physics literature, stems from the fact that the
temperature of the distribution is zero.

(2)1f one adds noise to the velocity equation in (1.1), corresponding to the Vlasov-Fokker-Planck
mean-field limit, then the two-dimensional Coulomb case has been recently achieved by Bresch et al.
[BJS25].

(3)Combining the total modulated energy introduced in this work with the commutator estimate
[NRS22, Prop. 4.1], one can extend this result to the sub-Coulomb Vlasov-Riesz equation as well.

JE.P.— M., 2095, tome 12



1024 M. ROSENZWEIG & S. SERFATY

did we assume a specific form for g (e.g. Coulomb). This demonstrates a certain
universality of the KIE for this kind of singular limit, which appears to be a new
observation. In this plasma physics setting, the distribution function f models the
evolution of electrons against a stationary background of positively charged ions.
After a rescaling to dimensionless variables, the parameter e corresponds to the Debye
(screening) length of the system, which is the scale at which charge separation in the
plasma occurs. When the Debye length is much smaller than the length scale of
observation, the plasma is said to be quasineutral, since it appears neutral to an
observer. The rigorous justification of the quasineutral limit is a difficult problem and
has been studied in [BG94, Gre95, Gre96, Gre99, Bre00, Mas01, HKH15, HKR16,
HKI17b, HKI17a, GPI18, GPI20]. We refer the reader to the survey [GPI21] and
references therein for further discussion on the quasineutral limit.

The preceding formal calculations suggest that in the limit as N +e~1 — oo, which
one can physically interpret as a combined mean-field and quasineutral limit, the em-
pirical measure f}vﬁ of the Newtonian system (1.1) converges to a solution f! of the
KIE (1.7), which reduces to the lake equation (1.4) for monokinetic solutions. Thus,
we expect that if the particle velocities v} ~ u®(x;), then the empirical measure f§; _
converges to the measure 6, () (v)uy (z) as N +e~1 — oo, where uf
(1.9). A more general interpretation of the limit as N +&71 — oo is as a supercritical

is a solution of

mean-field limit of the system (1.1). This terminology coined by Han-Kwan and Iaco-
belli [HKI21] refers to the fact that the force experienced by a single particle in (1.1)
formally diverges as N — oo, compared to being O(1) for the usual 1/N mean-field
scaling.

1.2, Prior work. — The convergence of the empirical measure to &, (z)(v)uy ()
was previously shown in the spatially periodic Coulomb case (i.e., z € T9) when
V =0 and py = 1 by Han-Kwan and Tacobelli [HKI21] assuming e N'/4¢+1) — o6 as
e+ N~ — 0, where u! is a solution of the incompressible Euler equation. In this work,
they recognized (building on the aforementioned work [Ser20, App.] for the mean-field
limit) that the modulated-energy method may be also used for this supercritical limit
provided one adds a suitable O(g?) corrector to the background spatial density in
the definition of the modulated potential energy. We elaborate more on this idea in
Section 1.4 below. Their proof may be viewed as a generalization of Brenier’s [Bre00]
modulated-energy approach to proving the quasineutral limit of Vlasov-Poisson with
monokinetic data to allow (via renormalization) for the solution of Vlasov-Poisson to
be a sum of Diracs.

As in all modulated-energy approaches, the key tool is a functional inequality (see
Proposition 3.3 below) that controls the derivative of the modulated potential energy
along a transport by the modulated potential energy itself:

(110) 5 [ (wle) = o) - Velz - )y 1) ,y)
2 J@ona

< Co(FN (X, p) + CNTT),

JEP. — M., 2095, tome 12



The LAkE EQUATION AS A SUPERCRITICAL MEAN-FIELD LIMIT 1025

for a constant C, depending quantitatively on the vector field v and some a > 0.
Such a functional inequality is, in fact, a type of commutator estimate; namely, the
quadratic form associated to the commutator v- Vg — div(gx*-), ignoring the excision
of the diagonal. Specifically, [HKI21] used the inequality of [Ser20], whose non-sharp
O(N'/4(d+1)) additive error leads to the aforementioned restriction on .

In the same setting, this convergence was subsequently improved by the first author
[Ros23] to
(1.11) lim ¢ 2N"2/d=9

e+N-1—0

using a sharp commutator estimate for the Coulomb case [LS18, Ser23, Ros23].
Sharper estimates in terms of the dependence on the solution u of Euler’s equation
were also shown. Moreover, in [Ros23], it was conjectured that the scaling assumption
(1.11) should be in general optimal, in the sense that the incompressible Euler equa-
tion should not be the limiting evolution of the empirical measure when e =2 <« N~2/4,

These previous works are limited to the Coulomb case on the torus, which is an
idealized setting since it assumes a spatially uniform density. Moreover, they left open
the question of a rigorous justification of the universality of the lake equation with
respect to the interaction and confinement in the sense that it only depends on the
equilibrium measure. Finally, these previous works also left open the optimality of
the scaling relation between € and N. As we now explain, we settle these questions
for (super-)Coulomb Riesz interactions.

1.3. INFORMAL STATEMENT OF MAIN RESULTS. — 10 present our result, we introduce the
total modulated energy

N N
1 1 1
(1.12) Hy(Zy,u') = N Z |Uf—ut($§)|2+;2':N(XfVaHV +52ﬂt)+ﬁ ZC(@"U
1=1 1=1

Here, ZY; is a solution of the N-particle system (1.1). The vector field u' is not a
solution of the lake equation (1.4) but rather an extension of a solution from supp puy
to all of RY, such that the regularity is preserved and div(uyu) = 0 (see Section 4).
The physical Cauchy problem for (1.4) is in the domain supp uy subject to a no-flux
boundary condition, but at the microscopic dynamics level (1.1), the particles are not
confined to supp py. The extension allows us to compare between the two settings.

The first term of (1.12) is the modulated kinetic energy. The second term is the
modulated potential energy introduced in [SS15b, PS17] and first used in the dynam-
ical setting in [Duel6, Ser20], where

N

1 1 ®2

(1.13) Fy (X iy +22400) = o /<> B d( 5 b =y =) ),
> i=1

and U is an N-independent corrector, whose precise definition is provided in (5.2).

Thanks to a certain electric formulation, this modulated energy has good coercivity
properties and controls a form of distance between the empirical measure % Zivzl Ot

JE.P. — M., 2095, tome 12



1026 M. ROSENZWEIG & S. SERFATY

and py + 24 These properties are reviewed in [Ser24, Chap. 4]), we will here quote
the ones we need in Section 3.
The third term is

(1.14) C=gxu+V-—c

for Robin constant ¢ (see Section 2.1 for further elaboration), which is nonnegative
and vanishes on supp py . Strictly speaking, the quantity (1.12) depends on both e, N.
But since we view ¢ as a function of N, we omit the dependence on ¢ to lighten the
notation.

An informal statement of our main result is given in Theorem 1.1 below. In Sec-
tion 5, we will give a precise statement (see Theorem 5.2), in particular clarifying the
vague assumptions, after we have reviewed necessary background facts. We also prove
a generalization of our findings to the case of regular interactions in Appendix A; but
for brevity, we omit discussion of this result from the introduction.

Turorem 1.1 (Informal). — Suppose that the equilibrium measure py is sufficiently
reqular and 3 == supp uy s a sufficiently smooth domain. Assume u is a sufficiently
regular solution to (1.4) on [0,T). Then there exist continuous functions Ci,Cs,Cs :
[0,T] — R4, which depend on d,s,v, and norms of u, such that for any solution
Z4 = (X§, V) of (1.1), it holds that

log N
t ot
(115) HN(ZN7’U/ )+m s=0

: log N CLNs/d-1

< e (Hn (2, u”) + sans Lo+ +Cie?).
In particular, if
log N Ns/d-1
1.16 I (H 7% 71:)= I =0,
( ) a+1>r1{/'1—>0 N (Zpsu )+2dN62 =0 s+1}r1{fl—>o g2 0
then
L XN

1.17 — Oy ———— Oyt vt e [0, T
( ) N ; 2! ct1/N—0 u (m)(U)MV<x)a € [ 5 ]

in the weak-* topology for measures.

The scaling assumption Ns/d_l/s2 — 0 in (1.16) is in general optimal, in the
sense that there exists a sequence of solutions Z% to (1.1) such that & Zf;l 60 =
Out(2)(V)py () as e +1/N — 0, but the total modulated energy Hy (Z}, u") does not
vanish. This is a consequence of the next-order asymptotics for mean-field limits of
log/Coulomb/Riesz energies obtained in [SS15b, SS15a, RS16, PS17], comprehensively
reviewed in [Ser24].

More precisely, suppose that X3, is a minimizer of the microscopic energy

N
(1.18) Ho (Xn) = 2LN Y gl a)+ Y Vi)

1<i# <N

JEP. — M., 2095, tome 12



The LAkE EQUATION AS A SUPERCRITICAL MEAN-FIELD LIMIT 1027

By taking variations, we see that Xy, is a critical point, i.e.,

. 1 o 0 o
VISiSN, & > Ve(a§ —af)+ VV(a5) =0,

1IN g #d
For each 1 <7 < N, define

vVt =0, (xf0]) = (x2,0),

i Y1

so that Z% = (x!,v!) | is evidently the unique (stationary) solution of (1.1) with
~v = 0, which is moreover independent ofs As a consequence of the results of [SS15b,
SS15a, RS16, PS17], it holds that -+ ZZ 1 0o T v and

log N

2dN =y Ns/d_l—i-o(NS/d_l) as N — oo,

—Zc ) +FN (XK ) + 5o

where CL/,S is a computable constant depending only on d,s, V' that encodes thermody-
namic information at the microscale. That ((xf) = 0 for each 7 follows from the fact
that minimizing point configurations lie in the support of the equilibrium measure,
on which ¢ vanishes (see [PS17, Th. 5]).

Hence,
log N

1
ogN1
2dNe2

1
1o = *(FN(XXHMV) + 24N Ls=0

v Ns/d—l Ns/d—1
+ 0( 5 )
9

HN(Z]tVaO) +

Thus, we cannot expect vanishing of the total modulated energy in the supercritical
mean-field regime if ¢ < N&=9/24,

The observations of the preceding paragraph lead one to ask what is the effective
equation describing the system (1.1) as € + 1/N — 0, assuming that ¢ < NG=9/2d,
Naively, one might expect that when & < NG~9/2d this behaves like first sending
€ — 0 and then N — oo. However, this limit does not make sense in general. Indeed,
multiplying both sides of the second equation of (1.1) by &2 and letting ¢ — 0 for
fixed N, we formally see that the limiting positions X% should be a critical point of
the energy (1.18). If each limiting velocity v! is nonzero, we would not expect X¥
to remain a critical point for all ¢. On the other hand, there is no mechanism to
force the velocities to tend to zero even if the initial positions are a critical point
of the energy (1.18). We give an explicit demonstration of the failure of this limit
for the exactly solvable one-dimensional Coulomb case in Section 6 precisely when
g 2Ns/d-1 = (eN)~2 does not vanish, showing that there need not be any weak limit
for the empirical measure, even in the simplest setting.

Let us close this subsection with some further remarks about Theorem 1.1.

Remark 1.2. — Given u°, one can produce statistically generic examples of initial
data Z%, such that (1.16) holds. Indeed, suppose that (x9)52, is a sequence of iid
random points in RY with law jy. For each i > 1, choose v{ € B(u°(zS),7n), where

JE.P. — M., 2095, tome 12



1028 M. ROSENZWEIG & S. SERFATY

the radius ry — 0 as N — oo. Then it is easy to check that for Z% = (29)N, with
z9 = (z3,v7), we have

o oy, logN
(119) E<HN(ZN7U )+ 2dNe2 5:0)
—003) - 2 [ ale— )P () + BN g L / Cdpy.
252N (Rd)Q ’ QdN 2

Since ( is identically zero on the support of py, the last term vanishes. Evidently,
the remaining terms on the right-hand side tend to zero as ¢ + 1/N — 0 assuming
that e2N — oo and s # 0. In the case s = 0, we need the distribution of X% to be
sufficiently correlated so that

log N

ogN, )

1
—IE(F X —
= N(XN,pv) + 2N 15=0
vanishes as € + 1/N — 0 assuming that 2N — oo. For this, it suffices to take X§ to

be distributed according to a modulated Gibbs measure

1
dQng(pv) = 7—F—
) )
which corresponds to a (low-temperature) log gas. We refer to [Ser24, Chap.5 & 6]

for details.

eiBNFN(XN’#V)dXN, B> N,

Remark 1.3. — By adapting ideas from our prior work [RS23] on first-order mean-
field limits with additive noise, we expect that one can generalize our result to treat
the Langevin system with vanishing noise, so that the system (1.1) of ODEs is instead
now a system of SDEs

dzl = vldt,
1
(120) 4 gut = —yotdt — S D Valel - al)dt - fvv Bt + /2] BdW?,
€ 1<j<N:j#i
where W1y,..., Wy are independent standard d-dimensional Wiener processes and

the differential is in the It0 sense. In this case, the noise models thermal fluctuations
at the microscopic level and the parameter § > 0 has the interpretation of inverse
temperature and may depend on N.

If one runs the same derivation as sketched in Section 1.1 starting from (1.20),
then the KIE (1.7) now has an additional term 87!A,f in the right-hand side of
the first equation. The resulting equation makes mathematical sense, although we
are not away of its study in the literature. However, the monokinetic ansatz is in
general not compatible with this diffusion term. To understand why, observe that
fRd vA, fdv = 0 by integration by parts, so there is no contribution to the equation
(1.8) for the current J; but by It6’s formula, the noise has an order 1 contribution
to the kinetic energy at the microscopic level, which does not vanish in the limit.
To rectify this issue, we have to require that 8 = By — oo as N — oo, so that the
contribution of the noise vanishes in the limit. Thus, thermal fluctuations vanish as
N — o0, and the limiting equation is still (1.4).
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1.4. METHOD OF PROOF. The quantity (1.12) is a variant of the total modulated en-
ergy originally introduced by Duerinckx and the second author [Ser20, App.| to treat
the mean-field limit for Vlasov-Riesz in the monokinetic regime. The idea to incorpo-
rate a time-dependent corrector 4 in the modulated potential energy for supercritical
mean-field scalings originates in the aforementioned work of Han-Kwan and Iacobelli
[HKI21]. The scaling by €2 in the expression of uy + 24! reflects O(e?) fluctua-
tions around the macroscopic equilibrium spatial density py. The addition of the
last term in (1.12) is a new contribution of the present work and reflects the fact
that our starting system (1.1) is confined by an external potential V', as opposed to
making an a priori assumption that the domain of the problem is compact, e.g. T¢
as in [HKI21, Ros23]. Although the ¢ term appears to be only O(1), it is, in fact,
zero if the particles remain in the support of py, i.e., the quasineutral assumption
is propagated. In analogy to the relationship between [HKI21] and [Bre00], our total
modulated energy (1.12) may be viewed as a renormalization of the total modulated
energy from [BCGM15], so as to allow for the Vlasov solution f! = % Zfil Ot

As with all modulated-energy approaches, our proof (see Section 5 for the main
argument) is based on establishing a Gronwall relation for the total modulated energy
(1.12). The time derivative of this quantity has several terms that require different
consideration (see Lemma 5.5).

The main contribution from the modulated kinetic energy is trivially estimated
using Cauchy-Schwarz. The main contribution from the modulated potential energy
is a commutator of the form of the left-hand side of (1.10) with v = @', the extension
of the solution u® of the lake equation to the whole space (see Section 4 for further
elaboration), and p = uy +&24*. To handle this term, we crucially rely on the authors’
recent sharp estimate [RS24, Th. 1.1], recorded in Proposition 3.3 below, which is what
enables us to achieve the scaling assumption (1.16).

Another term, new compared to [HKI21, Ros23] and coming from the contribution
of the ((zt), is

N
1
& D) V() = /R u- VCduly.
i=1
This term has no commutator structure. Instead, we manage to bound it by

1 N
Ol D Clat)
i=1

thanks to Lemma 2.3. The proof of this lemma relies on the fact that u’ satisfies
a no-flux condition on the boundary of ¥ = supp puy (a consequence of taking the
quasineutral limit) and some nontrivial results for the regularity of the free boundary
for solutions of the obstacle problem for the fractional Laplacian (see Appendix B),
which may be of independent interest. We mention that a similar term was encoun-
tered in [BCGM15] in the Coulomb case, where the pl; is replaced by the spatial
density u® of Vlasov-Poisson, but handled by ad hoc arguments using the local nature
of the Laplacian.
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The correction 24! in the spatial density is to cancel out the contribution of the
pressure in (1.4) when one differentiates the modulated kinetic energy. The exact
definition of U’ is given in (5.2), and we refer to (5.17) and (5.18) for the exact
cancellation.

There are also several residual terms that have the form [y ¢ d(uy — py — 280),
where ¢ is a function of w,$l. These may be controlled by the modulated potential
energy, thanks to its coercivity (see Lemma 3.2), plus errors which are O(e=2N%/d=1),
hence acceptable.

Combining the estimates for the various terms and appealing to the Gronwall-
Bellman lemma yields the inequality (1.15). As explained in [Ros23, §4.2], the weak
convergence of the empirical measure follows from the vanishing of the total modulated
energy using the coercivity of the modulated potential energy. This then completes
the proof of Theorem 1.1.

Remark 1.4. — We have considered only the Coulomb/super-Coulomb sub-case of
log/Riesz interactions for two reasons. First, this is the only case where we can show
our results are sharp because of the sharpness of our commutator estimates. Only a
non-sharp commutator estimate is available in the sub-Coulomb case by work of the
authors and Q.-H.Nguyen [NRS22|. Second, and more importantly, there does not
seem to be an adequate regularity theory for the obstacle problem for higher-order
powers of the fractional Laplacian (see [DHAP23] for some progress in this direction).
If one assumes that the equilibrium measure has full support in R9, or restricts to the
torus where full support is easily established under a smallness condition on the con-
finement, then all terms involving ¢ vanish. One can then treat the sub-Coulomb case
by following the same proof in this paper, using instead the non-sharp commutator
estimate of [NRS22], leading to vanishing of Hy(Z%,,u') as e + 1/N — 0, provided
that
lim l (N—2/(5+2)(S+1) + Mlszo) =0
e+1/N—0 €2 N ’

which we believe is a suboptimal scaling assumption.

1.5. THE NON-MONOKINETIC REGIME. At present, our approach is limited to the
monokinetic regime, as is the case for even just the mean-field limit for second-
order systems. Given other approaches are capable of treating the mean-field limit for
second-order systems without the monokinetic ansatz, a natural question is whether
one can derive the full kinetic incompressible Euler equation (1.7) as e + N~! — 0,
under some scaling relation between € and N, drawing on these approaches instead
of the modulated-energy method.

The answer to this question is not immediately clear to us. Per our knowledge, the
only results deriving the full KIE (for the uniform density case) are due to Griffin-
Pickering and Iacobelli [GPI18, GPI20], where one essentially sandwiches together
two results, a mean-field limit for a (regularized) Vlasov-Poisson N — oo and the
quasineutral limit of Vlasov-Poisson. This approach imposes a very restrictive condi-
tion on the relation between ¢ and N.
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At least in the case of regular interactions (treated in Appendix A), preliminary cal-
culations suggest that the modulated-energy approach of this paper can be extended
beyond the monokinetic case, for possibly nonconstant density, through a multi-
stream/multi-fluid decomposition, in the spirit of [Gre96]. We plan to investigate
this direction in future work.

1.6. ORGANIZATION OF ARTICLE. Let us comment on the organization of the remain-
ing body of the paper.

In Section 2, we review the basic minimization problem for the equilibrium measure
(Section 2.1) and the connection to the obstacle problem for the fractional Laplacian
(Section 2.2). We also clarify the precise regularity and topological assumptions im-
posed on py and its support in this paper (Section 2.3).

In Section 3, we review basic properties of the modulated potential energy in the
form of its almost positivity (Lemma 3.1) and coercivity (Lemma 3.2). We also record
the sharp commutator estimate from [RS24] referenced in the introduction (Proposi-
tion 3.3).

In Section 4, we review the local well-posedness of the lake equation (1.4) in
bounded domains subject to the no-flux boundary condition (Proposition 4.1). We
also review the procedure for extending the lake equation solution to the whole space
(Lemma 2.3).

In Section 5, we prove our main result Theorem 1.1. We start by giving a mathe-
matically precise version of Theorem 1.1 in the form of Theorem 5.2 (Section 5.1). We
then compute the differential identity (see Lemma 5.5) obeyed by the total modulated
energy (Section 5.2). Finally, we show the Gronwall relation for the total modulated
energy, completing the proof of Theorem 1.1 (Section 5.3).

In Section 6, we present the explicit example in the one-dimensional case which
shows that the empirical measure may have no weak limit if the scaling assumption
(1.16) fails. The main result is Proposition 6.1.

There are two appendices. In Appendix A, we present the previously advertised
generalization of our modulated-energy method to sufficiently regular interactions but
which lack the Riesz-type structure that allows a commutator estimate of the type
Proposition 3.3 to hold. The main result of this appendix is Theorem A.1. In Ap-
pendix B, we review some facts about regularity theory for the fractional obstacle
problem, as well as prove some new nondegeneracy results for the free boundary,
which are needed for Lemma 2.3.

1.7. Norarion. We close the introduction with the basic notation used throughout
the article without further comment, following the conventions of [RS24].

Given nonnegative quantities A and B, we write A < B if there exists a constant
C > 0, independent of A and B, such that A < CB.If A < B and B < A, we write
A ~ B. Throughout this paper, C' will be used to denote a generic constant which
may change from line to line. Also (-); denotes the positive part of a number.
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The symbol N denotes the natural numbers excluding zero, and Ny including
zero. For N € N, we abbreviate [N] := {1,..., N}. Ry denotes the positive reals.
Given # € RY and r > 0, B(z,r), B.(r) and B(z,7),dB,(x) respectively denote
the ball and sphere centered at = of radius r. Given a distribution f, we denote its
support by supp f. The notation V®* f denotes the k-tensor field with components
(0iy -+ O figin,.in<d-

The symbol P(R?) denotes the space of Borel probability measures on RY. If y is
absolutely continuous with respect to Lebesgue measure, we shall abuse notation by
writing u for both the measure and its density function. When the measure is clearly
understood to be Lebesgue, we shall simply write [5, f instead of [pq fdz.

The symbol C*%(RY) denotes the inhomogeneous space of k-times differentiable
functions on RY whose k-th derivative is a-Holder continuous, for a € [0,1] (i.e., a = 0
is bounded and « = 1 is Lipschitz). As per convention, a " superscript denotes the
homogeneous space/seminorm. With a slight abuse of notation, we let C7 denote the
Besov space BY, ., which coincides with the Holder space C*7 % whenk <y < k+1
for integer k, but is strictly larger than the usual C7 space for integer v. We let
H" = W2 denote the standard L? Sobolev space of f such that (I — A)Y/2f € L.
Finally, we let 8 and 8’ denotes the space of Schwartz functions and the space of
tempered distributions, respectively.

Acknowledgements. — The first author thanks the Institute for Computational and
Experimental Research in Mathematics (ICERM) for its hospitality, where part of
the research for this project was carried out during the Fall 2021 semester program
“Hamiltonian Methods in Dispersive and Wave Evolution Equations.” He also thanks
the Courant Institute of Mathematical Sciences at NYU for their hospitality during
his visit in April 2024. Both authors thank Stephen Cameron and Xavier Ros-Oton
for helpful remarks on the fractional obstacle problem.

2. Tue EQUILIBRIUM MEASURE AND THE <FR~\CTI()1\’AL> OBSTACLE PROBLEM

2.1. Tue gQuiLiBrRIUM MEASURE. — We need to clarify our assumptions on the external
potential V' as it pertains to the minimizer py for the energy & defined in (1.3).
Throughout this section, we assume that g is of the form (1.2).

Our basic assumptions on V' to ensure the existence and uniqueness of the equilib-
rium measure py are the following:

(i) V is lower semicontinuous (l.s.c.) and bounded below,

(ii) {z € RY: V(x) < oo} has positive g-capacity,

(iii) hmmﬁm V(x) + g(x) = OQ.

Under assumptions (i)—(iii), Frostman’s theorem [Fro35] guarantees the existence
of a minimizer to (1.3) satisfying certain properties. We refer to [Ser24, Chap. 2] for
a proof under these assumptions and for our class of g’s.
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Prorosrrion 2.1. Assuming V' satisfies (1)—(iil), there exists a unique minimizer
of & in P(RY), denoted by py, with E(uwy) finite. Moreover, wy has the following
properties:

— X = supp py 15 bounded and has positive g-capacity;

— if we define the g-potential h*V = g x py, then there exists a constant ¢ > 0
(called the Robin constant), such that

WY +V > ¢ quasi-everywhere (q.e.), )
v +V =c¢ gq.e. on 3.

Remark that the second item uniquely characterizes the equilibrium measure. If we
define the function

(2.1) (=M +V—cg

then Proposition 2.1 implies that ¢ > 0 on RY. For our purposes, we need to assume
that py is absolutely continuous with respect to the Lebesgue measure and has a
sufficiently regular density (at least bounded in ¥), which we also denote by py with
an abuse of notation. We also need to assume that ¥ equals the closure of its interior,
i.e., ¥ = X°, and that the boundary 9% is sufficiently smooth, at least C':!.

Let us comment on examples of possible external potentials V. In the case where
V(z) = %|z|* and g is the Coulomb potential, it is well-known that py is a constant
multiple of the characteristic function of a ball centered at the origin. More generally,
if V' is still quadratic and g is of the form (1.2), then uy is the so-called fractional
Barenblatt profile [BIK15, Th. 2.2] and [CV11, Th. 3.1] which generalizes the classical
Barenblatt profile for self-similar solutions of the porous medium equation. Let us also
mention that if V' is radial, then ¥ is always a ball. Furthermore, given any probability
measure p, with finite g-energy, one can choose the confinement

1
Vo= —g# e+ 5/ gl — y)dp(x)dps(y),
(RY)2

so that the associated equilibrium measure gy = p.. Remark that for this choice
of V, the energy (1.3) becomes the mazimum mean discrepancy (MMD) widely used
in statistics and machine learning, e.g. [GBR112].

2.2, THE EQUILIBRIUM MEASURE AS A SOLUTION TO THE OBSTACLE PROBLEM. As empha-
sized in [Ser15, §2.5] (see also [PS17, CDM16] for the fractional case), the minimization
problem for € is intimately connected to an obstacle problem for the fractional Lapla-
cian: for s € (0,1], given an obstacle ¢ : RY — R, find a function w : R — R such
that

(2.2) min{(—A)*w,w — ¢} =0,

(4)Quasi—everywhere means the exceptional set has zero g-capacity, which is stronger than zero
Lebesgue measure. See [Lan72, §I1.1].
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which, for instance, is reviewed in [Caf98] for the classical case s = 1 and has been
studied in [Sil07, ACS08, CSS08, KPS15, DSS16, BFRO18, JN17, KRS19] for the
fractional case s € (0,1). The set {w = ¢} is called the coincidence set or contact set,
which is an unknown, and its boundary d{w = ¢} is called the free boundary. More
precisely, if gy minimizes the energy €, then it follows from Proposition 2.1 that h*v
satisfies (2.2) with s = (d —s)/2 and obstacle ¢ = ¢ — V. Moreover, {¢ = 0} is the
contact set.

We have ¥ C {¢ = 0}, but in general it is not true that {{ = 0} = X, the latter
of which is called the droplet [HM13]. To avoid this possible issue, we hypothesize
that {¢ = 0} = X. A sufficient condition to ensure this equality is that Ap < 0,
equivalently AV > 0, in a neighborhood of {¢ = 0}.

The connection between the minimization problem and the obstacle problem allows
us to access regularity results for the latter, in particular those pertaining to the
regularity of the free boundary and the so-called “lift-off” rate from the obstacle, i.e.,
growth rate of ¢ away from 3. The crucial point for us is that lift-off be sufficiently
fast, which is the main reason for the assumption that 3 = {{ = 0} as well as our
other assumptions.

We now briefly review a few important facts, focusing on the fractional case s €
(0,1). Additional discussion and results are deferred to Appendix B.

As shown in [CSS08], improving upon [Sil07], the optimal regularity for the solu-
tion w of (2.2) is C'**, under the assumption that ¢ is sufficiently regular (e.g. C>®).
Consequently, V¢(x) = 0 for all z € 3. [CSS08] additionally classifies free boundary
points zg as regular points, if the blow-up at z has 1 + s homogeneity,® or singular
points, if the contact set has zero density at xo; and establishes C'*® regularity at
regular points. In principle, the union of regular points and singular points does not
exhaust the free boundary; but [BFRO18] shows that such points are the only two
possibilities, under the assumption that Ay < —c¢ < 0. [JN17, KRS19] independently
establish higher regularity of the free boundary near regular points (see also [ARO20]
for improvements and generalizations). Paraphrasing from the former work, if the
obstacle ¢ € C™P(RY) for m > 4 and B € (0,1) and ¢ € 0% is a regular point of
the free boundary, then 9% is C™ 1'% in a neighborhood of zy for some a € (0,1)
depending d, s, m, 8; in particular, if ¢ € C'°°, then the free boundary is C*°. In gen-
eral, the free boundary may contain both regular and singular points, around the
latter of which the free boundary is only C''. We always assume in this work that this
is not the case. The recent [FROS20] proves for the classical obstacle problem that
the absence of singular points is generic for d < 4.

Remark 2.2. — For many results, the obstacle ¢ and its derivatives up to certain
order need to be bounded. This is obviously not the case if ¢ =V — ¢ for V as above.
However, our assumption that > is bounded allows us to work with a local obstacle

(5)Strictly speaking, [CSS08] did not show the convexity of blow-ups, which is an important detail
that was later addressed in [FRJ21, CDV22].
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problem in a neighborhood of ¥. In which case, the needed boundedness for ¢ and
its derivatives is satisfied.

The main application of this regularity theory for the obstacle problem comes in the
form of the following lemma, which is a Riesz generalization of the Coulomb-specific
result [BCGM15, Lem. 3.2] (see also Lemma 3.1 in the cited work for the specific case
of a quadratic potential). As discussed in the introduction, we shall need this lemma
to estimate one of the terms appearing in the evolution equation satisfied by the total
modulated energy Hx (Z%,u'). The proof is deferred to the end of Appendix B.

Lemma 2.3, — Let 6 > 2 and suppose that V &€ Cleot(d*s)/z. There exists a constant

C > 0 depending on d,s,V, X such that for any vector field v : RY — RY satisfying the
no-fluz condition v-v = 0 on 9% (where v is the unit normal to 0X), with supp v
contained in a 2 diam(X)-neighborhood of ¥, it holds that

(2:3) [o(@) - V¢(@)] < Cllollwr=((2), Ve e R

2.3. ASSUMPTIONS. For convenience of subsequent referencing, we explicitly record
below the assumptions made on V, uy, and ¥ in the preceding paragraphs:

(H1) ¥ coincides with the coincidence set and equals the closure of its interior, i.e.,
%= ={c=0);

(H2) ¥ is connected;

(H3) every zg € 0% is a regular point;

(H4) V is locally C2F((d=s)/2)*¢ for ¢ > 0;

(H5) AV > 0 in a neighborhood of {¢ = 0}.
Further regularity assumptions on the density uy and its support % will be made in
Sections 4 and 5.

3. ThE MODULATED POTENTIAL ENERGY AND COMMUTATORS

We review basic properties of the modulated potential energy

N
B0 FCnw =g [ s (Y0 )

for (super-)Coulomb Riesz interactions (1.2) and the sharp estimate for their first
variation along a transport, which will be used in this paper as advertised in the
introduction. In the remainder of this section, we assume that p is distribution in
LY(RY) N L=®(RY) such that [dyp = 1.(9 If s < 0, we suppose further that

/ g — 9)|dl|® (2, ) < oo.
(R9)2

(6)The Lo assumption may be relaxed to an LP assumption for p = p(d,s) at the cost of larger
additive errors in the estimates. For instance, see [Ros22b, Ros22a, §3].
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These conditions are sufficient to ensure that Fx (X, ) is well-defined. We emphasize
that we do not require that > 0, only that [du = 1. This is an important gener-
alization, originating in [Ros23], because the distribution p! 4+ 24’ is not necessarily
nonnegative, though always has mass one since {! has zero mean.

The quantity (3.1) first appeared as a next-order electric energy in [SS15b, RS16,
PS17] and was subsequently used in the dynamics context in [Duel6, Ser20] and
following works—in the spirit of Brenier’s total modulated energy [Bre00]. In that
context, the term “modulated energy” was used, instead of “modulated potential
energy,” as there is no modulated kinetic energy necessitating distinction. Concretely,
Fn is the total interaction of the system of N discrete charges located at X against a
negative (neutralizing) background charge density u, with the infinite self-interaction
of the points removed.

As shown in the aforementioned prior works, Fy is not necessarily positive; how-
ever, it effectively acts as a squared distance between the spatial empirical measure
= Zf\il 0z, and p and is bounded from below, as expressed by the next two lemmas.
The logarithmic correction in the s = 0 case is present because Fy (X, u) is not
quite the right quantity to consider, since it is not invariant under zooming into the
microscale (N||u||z=)~"/¢. For a proof of Lemma 3.1, we refer to [RS24, Prop. 2.3],
which improves upon [Ser20, Cor. 3.4]. For a proof of Lemma 3.2, we refer to [Ser24,
Lem. 3.1, Cor. 3.3], which improves upon [Ser20, Prop. 3.6].

Lemva 3.1. — There exists a constant C > 0, depending only on d,s, such that for
any pairwise distinct configuration Xy € (RN,

10 N oo s _
(3.2) P (X, )+ B IEle=)y s /e voret.
2dN
Lemva 3.2. — There exists a constant C > 0, depending only on d,s, such that for

any test function ¢ and pairwise distinct configuration Xy € (RN,

N
1 —s s/d—
| [ 0a(5 300 = )| < U820 e (W)

i=1
log(N oo N\1/2
+ C|ll a2 (FN(XNaH) + Mlszo + C||MHSL/odeNS/d 1) :

2d N
Consequently, if kK > d —s+d/2, then

N
1 e
|3 20 = n] . < Ve
i=1
log(N o
+C(FN(XN7M)+ g(N[pll=)

2dN

The next proposition asserts a functional inequality that controls the first varia-
tion of the modulated potential energy along the transport map I + tv in terms of
the modulated potential energy itself. We recall from the introduction that such a

< N\ 1/2
Lo + Cllul 2 N/1)

functional inequality is equivalent to a commutator estimate. The specific estimate
below is taken from the authors’ recent [RS24, Th. 1.1], which improves upon earlier
nonsharp estimates [Duel6, Ser20] and generalizes to the super-Coulomb Riesz case
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sharp Coulomb-specific estimates [LS18, Ser23, Ros23|. As remarked in the introduc-
tion, the sharpness of the N/9=1 additive error is crucial to allowing for the scaling
relation (1.16) between £ and N.

Prorosition 3.3. — There exists a constant C > 0 depending only on d,s such that
for any Lipschitz vector field v : RY — RY and any pairwise distinct configuration
Xy € (RN, it holds that'"

(33) | /<Rd>2\A(“(””) —(0)) - Vele — i ia 1) (@)
 log(NV||pl[z=)

< IVl (Fa (v ) Tomo + Ol N1).

2dN

4. Tue EULER/LAKE EQUATION

In this section, we review some properties of solutions to the lake equation (1.4).
Well-posedness has been studied, for instance, in [LOT96b, LOT96a, Oli97, LO97,
Hua03, BM06, LNP14, Duel8, BJ18, HLM22, ATL23|. For our purposes, we need
existence and uniqueness of classical solutions in a bounded domain (corresponding
to the interior X° of 3 = supp py ) under minimal topological assumptions. Namely,
the Cauchy problem is

ou+yu+ (u-Viu=-Vp  inX°,

(1) div(pyu) =0 in 3°,
u-v=>0 on 0%°,
u® = u° in X°.

Working in a bounded domain makes physical sense because taking the quasineutral
limit means that the density of particles outside of ¥ is zero and there is no current
flux across the boundary of X.

For the purposes of our main result Theorem 1.1 (more precisely, its rigorous version
Theorem 5.2), we need at least a solution u € L ([0, T], W1>°(2°)N H(£°)) of (4.1)
for large enough o > 0. The existence and uniqueness of such a solution under the
strong assumption infy, gy > 0 is shown in [BCGM15, Th. A.1], which we quote below
in Proposition 4.1.

Prorosition 4.1. Let Q C RY be a bounded open set with O of class C° for integer
o > (d+2)/2. Suppose that jry : Q — R is in H°, such that infg py > 0.8) Given
a vector field u® : Q — RY such that div(uyu®) = 0 in Q and satisfying the no-
flux condition u°®-v =0 on 0S), where v is the unit outward normal field for 09, and

(T)Here and throughout this paper, IV oo denotes |||Vv|p2]| L.
(8)Note that our assumption o > (d + 2)/2 a fortiori implies that py is Holder continuous by
Sobolev embedding. In particular, ;1 makes sense pointwise.
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a friction coefficient v € R, there exists a T > 0 and a solution u € L*([0,T]; H(Q))
of (1.4) satisfying the no-flux condition for t € [0,T]. Moreover,
sup ([|u'|lge + |0 | o1 + IVD' e + [|0:VD || ra-1) < C < o0,

Itx

where C depends only on d, X, v, T, ||u®|| g

This assumption infy py > 0 is overly restrictive in the non-Coulomb case s # d—2.
For example, the equilibrium measure for V = |2|? vanishes continuously on the
boundary 0%, unlike the Coulomb case. Given uy , we therefore take as an assumption
the existence of a solution u € L>([0,T], Wh>(3°) N H?(X°)). Proving the well-
posedness of the Cauchy problem without the assumption infy py > 0 is beyond the
scope of this paper, and we refer, for instance, to [BM06, ATL23] for some results in
the d = 2 case.

Since the particles at the microscopic level of (1.1) move through the whole space
and are not confined to the support of the equilibrium measure, it is convenient to
regard the solution u to the lake equation given by Proposition 4.1 as a vector field
in RY. A naive extension @ = ulq, however, does not preserve the regularity of u
nor the divergence-free condition. As partially sketched in [BCGM15, Rem. B.2] (see
[BCGM15, Lem. B.1] for when Q is explicitly a ball, or more generally, an ellipsoid),
it is possible to find a compactly supported extension u with the same regularity
as the solution u and satisfying div(uyu) = 0 in R in the sense of distributions.
We present the details for this construction.

Let © be a bounded, Lipschitz domain and v € W™ (Q) N H(Q2) for some m > 0
and o > 0. By Stein’s extension theorem [Ste70, Th. 5, VI.3},(9) there exists a vector
field v € W™ (RY) N H°(RY) such that

[0][ w0 ey < Cllv][wrm.o (),
[0l o (rey < Cllvll e (0,

where C' > 0 depends only d,m, 0, . Let O be an open neighborhood of €. Then we
can we find a C° bump function y such that x=1 on Q and supp x C O. Multiplying v
by x, we may assume without loss of generality that v is supported in O.

We apply the preceding result with Q = 3°. If div(uyv) = 0 in 2 and v satisfies the
no-flux condition, then we claim that div(uy2) = 0 in RY in the distributional sense.
Indeed, given any test function ¢, it follows from the definition of the distributional
derivative and integration by parts that

—/ cpdiv(,uvT)):/ Vw-'ﬁuvz/ Vo - vuy
RY RY xo

- /d el vy - [ it =0

(Q)Strictly speaking, Stein’s theorem only implies that there exists a bounded linear extension
operator & : WoP(Q) — WP(RY) for integer ¢ > 0. But the boundedness of the operator on
fractional Sobolev spaces follows from the theory of complex interpolation (e.g. see [BL76, Th.4.1.2,
Th. 6.4.5)).
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Given a solution u € L>®([0,T], W™>(X°) N H?(X°)) to (4.1), we can apply the
preceding lemma pointwise in ¢ with v = u? to obtain the following proposition.

Prorosition 4.2

Suppose that £° is a Lipschitz domain and uw € L*>([0,T], W™>(Z°) N H?(X°))
for m,o > 0. Given any open neighborhood of O D X, there exists

€ L=([0,T], W™ (RY) N H? (RY))
such that for every t > 0, u is compactly supported in O, ut = ul in X°, at-v =0
on 9%°, and div(uya') = 0 in RY. Moreover,
|6l oo (jo,77,wm-o me)) < CllullLoojo,77,Wwm o (s0)),
]| Loo (jo,77, o (reYy < Cllull o (o, 17,27 (0))>

where C > 0 depends only on d,m, o, X°.

Remark 4.3

We can deduce the regularity of the time derivatives of the extension, that is 9Fu
for k > 1. Indeed, suppose that 9fu € L>([0,T], W™~F>(x2°) N H~F(X°)). Now
since the difference quotients (9F ~tu(t + h) — 07~ u(t))/h converge, as h — 0, to dfu
in Ho7k(32°) (resp. Wm~k:20(3°)) it follows from the continuity of the linear map
u — U that

c%@f‘lu(t) = %L}II]O af 1U(t + h})L — atk 1U(t)
exists in H°*(RY) and equals 8:’“;(1%), where f denotes the extension operator con-
structed above applied to f. By induction on k, it follows that 0Fu = 5{@ Moreover,
05T | o ray < CllOFU || ra—r (509,
Hatkat”Wm—kv‘X’(Rd) < OHGfUtHWm—k,oc(zoy
where the constant C' > 0 is independent of ¢. Thus,
(4.2) ok € L>=([0, T], Wm=ko(RY) 0 HO=F(RY)).
This will be of use in Section 5 when we incorporate the corrector 4, which is con-
structed from w, O;u, into our modulated energy. Note that u does not satisfy equa-

tion (1.4) in all of RY, only in the open set ¥°. Therefore, we cannot deduce that
oy € L ([0, T), Wm=Lo°(RY) N Ho~1(RY)) simply using the equation (1.4).

5. MAIN PROOF
In this section, we prove our main result Theorem 1.1.

5.1. StaTeEMENT OF MAIN RESULT. — We present a rigorous, precise statement of our
main result, previously stated informally in Theorem 1.1.

For m > 0 and ¢ > 0, given a solution v € L*([0,T], W™ (3°) N H?(X°)) to
the lake equation (1.4), such that dFu € L>([0,T], Wm—k:oo(x°) 0 HO=k(%°)), let
u : RY — RY be its extension in L>([0,T], W™>(RY) N H(RY)) such that 0fu €
L>([0,T), Wn=Fk(ROHYNH—*(RY)), ut-v on 9X°, and div(uyu) = 0, as constructed
in Section 4. Hereafter to, we work exclusively with the extension and therefore drop
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the ~ superscript. Given a solution Z§ = (X%, V},) to the N-particle system (1.1),
we recall from Section 1.3 the total modulated energy

N
1 1 1
to by . t Lo Y2 ¢ 2t t
(5.1) Hy(Zy,u") = ON ‘5—1 v —u'(z7)] +?FN(XN7MV+€ QRS 2N § C(z5),

where ( is as defined in (2.1) and 4 : RY — R is the corrector defined by

(5.2) U= (—A) 472792 Qiv(du + yu + u - Vu).

The motivation for the inclusion of this corrector will become clear during the com-
putation behind the proof of Lemma 5.5.

Remark 5.1. Let us comment on the regularity of the corrector 4. Note that
—2 < d—2—s < 0 by assumption, so that (—A)(@=2-9/2div is order d — 1 — s,
which acts like a fractional derivative if d —2 <s < d—1, is of order zero if s =d — 1,
and is smoothing if d — 1 < s < d. By Proposition 4.2 and Remark 4.3,

(Opu 4 yu +u - Vu) € L=([0, T], W™~ (RY) n H7~1(RY)),

hence(10)

she L([0,T),C™m+7975(RY) n HOF*74(RY))
for any € > 0. Appealing to Remark 4.3 again,
8tu c LOO([()?T]? Cm+s—d—1—a(Rd) N HU+s_d_1(Rd)).

The precise version of Theorem 1.1 is the following result. As explained in Sec-
tion 1.4, vanishing of the total modulated energy implies the weak-* convergence of
the empirical measure to py ()0, () as N + el = o0.

Tueorem 5.2. — Suppose that m > 1+d—s and o > 2+ (d —s)/2, and let u be as
above. Suppose that py, 2,V satisfy the assumptions (1)—(iil) and H1-H5 as listed in
Section 2.3. For 0 < e < ||pv ||z /2|4l Lo ([0, 1],y and for C > 0 sufficiently large,
define the quantity

log (|| v + e*U||L~N)

| Cllpy + W N
2¢2Nd

(5.3) A5 = Hn(Z4,u) + =

15:0

?

which is nonnegative,"™) for a solution Z% of (1.1) and an admissible extension u® of
a solution of (1.4). Then there exist constants C1,Cy > 0 depending only on d,s, %,

(10)There is an e-loss of regularity because ||(—A)Y/2u||os < oo does not imply u € C7.

(11)Evidently, the modulated kinetic energy in the definition of (5.1) is nonnegative. The modu-
lated potential energy is, in general, not nonnegative; however, the addition of the last two terms in
(5.3) ensure nonnegativity of Fy (X%, v + ¢24?) by Lemma 3.2.
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such that for every t € [0,T],
(5.4) AL <& Jo (LI oo+l 1,00 +(1 VT | oo =) 1 )dr
|y +e?4U7 || oo )

log( 750
0 ( lpv +e? W0z /4
( Nt OZEI;t 2dNz22 s=0T

C(||MV+€2wllsL/i||uv+52u0||'°’L/i)Ns/d1)
52 +

t
2
+ 0262/ 0N rsva—arre + [0 gesrama 2 107 oo + lu” [ Lo 147 | grsra-a/2)"dT
0

t
+02N5/d‘1/0 (10: [ oo + || div ]| oo [[4][ Lo + IIULmVﬂILm)dT)

Remark 5.3. The reader may check that our regularity assumptions for u, py imply
that all the norms above are finite.

Remark 5.4. — At the risk of being too elementary, let us explain why (1.16) implies
that the right-hand side of (5.4) vanishes as ¢ + N~ — 0. It is clear that the last two
lines vanish, as well as the second term on the second line. For the first term on the
second line, we have by the triangle inequality and our smallness assumption for ¢

that .
lluy +e=4 || oo
Tl +e W~ Joe (it )| _ 1ogs

37 lpv + 249 fee 2d Ne2 = 2dNe?’
which vanishes as e + N~=! — 0 if (1.16) holds. By similar reasoning, /# vanishes as
e+ N1 0.

52 C()MPUTATI()N OF THE TIME-DERIVATIVE OF THE TOTAL MODULATED ENERGY

We turn to the proof of Theorem 5.2. In this subsection, we compute the time
derivative of Hy (Z4, u'), the end result of our efforts stated in the following lemma
(cf. [HKI21, Eq. (2.7)]).

Lemma 5.5. IF St = g o(—A)97279/2 div(Oyu + yu + u - Vu), then

d t ot 1 & t to ot to ot t £ (ot
(5.5) %HN(ZNaU )= N Z(Uz —u (xl)) : ((u (z;) —v;) - Vu )(xz)

N
Y
= LS et — (e
=1

1 2
o [ ()~ () - Velo — il — v — 4 P )
2e (R)2\ A
N
+ L Zut(:ct-) S V((xh) - / (div he hafw)d(,uﬁv — py — )
€2N P v ¢ Rd ’

where hf =g« f.

Proofof Lemma5.5. — The proof is similar to that of [HKI21, Eq. (2.7)], but more
delicate given that uy is not constant and that u is not a solution to (1.4), but
rather an extension of the solution to RY, which means that u only solves (1.4) in X°.
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As commented in the introduction, a key difference compared to [HKI21] is the third

term in (5.1), which provides an essential cancellation, as the reader shall see. Finally,

we remark that all the computations below are justified by our regularity assumption

for w. To simplify the notation, we omit the time superscript in the calculations below.
By the chain rule,

d 1 &
(5.6) %HN(ZN, =N Z — Owu(z;) — Vu(z,) - Ui)

1d ,
+€7th (XNaH/V“FEu ZVC% L.

Let us consider each of the three right-hand side terms separately.

The third term. — Using the first equation of (1.1) and the definition (2.1) of ¢, we find

N N N
1 1 1
A - Y. = 1Y (g Y- s
(5.7) N ;:1 V()2 N iE:I V¢ () -v; N igzl(Vh (x;) + VV(25)) - v;.
The first term. — Using equation (1.1) for &;,v;, we find

(vi = u(@;)) - (0; — pu(ws) — (&3 - V)u(w;)) = (vi — u(w;))
<— Z Vg(x; — ;) —yvi — sizVV(xi) — Oru(x;) — (v; - V)u(lﬂ)

1<]<N
J#i

Observe that (u(z;) - V)u(x;) — (v; - VIu(z;) = ((u(z;) — v;) - V)u(z;), and therefore,

(vi —u(@s)) - ((w(wi) - V(@) — (vi - V(@) = (v = w(@i)) - ((u(@:) — i) - V)u(a;)
= —Vu(z;) : (v; — u(x;))®?

Similarly, (v; — u(7)) - (—701) = —fv; — ()2 = y(v; — u(a:)) - ule;). Thus,

L
N Z(vz —u(x;)) - (0; — Opu(x;) — Vula;) - ;)

i=1 N
_62% Z (vi — u(zi)) - Vg(zi — x;5) _EQLN Z(Ui —u(x;)) - VV(x;)
1<jAISN i
T
1 & &
_N§Vu(xi):(vi— NZI
1= 1 N K2

D0~ () - Ouutan) + yule) + i) - Vulea)

As we shall see, the last term will be canceled by the corrector 4. It is important for
the reader to note that we cannot simply write

O + yu 4+ u - Vu = —=Vp,
since we recall that u is actually an extension of the solution to (1.4), and therefore

the equation only holds in the open set X°, while the particles are not necessarily
confined to X°.
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The second term. Unpacking the definition (3.1) of Fy,

d d 1
—Fn(X ; ; v (g
g N X+ = Zots Z g(wi — ;) dtNZh
1<i# <N

®2
+ ff/ gz — y)d(py +224)% (2, ).
(R4)2
By the chain rule and using the first equation of (1.1),

d 1 1
JioN? Z g(xi—ffj)zm Z Vg(z; — ;) - (vi — vj)

1<iAj <N 1<i#j <N
1
(5.9) =5 2. Velwi— ;) (v —ulz:)
1<i#j<N
1
t 32 > Vel — ;) - ulw).
1<i#j<N

Since py is independent of time, it follows from another application of the chain rule
that

d

S W) = VRV () v+ 200 ().
Thus,
(5.10) dt ¥ Z pvs () = 2 sz Vi (z

——Zvl VhH(z;) — fzha’u ;).

Lastly, by the chain rule and since py is independent of time,

d1

(5.11) T /(Rd)2 gz —y)d(pv + 5211)@2(:5,3/) = g2 /Rd hatu(y)d(uv + 5211) (y).

Putting together identities (5.9) (5.10), (5.11), we see that

1 d
oy Fn(Xn, py +€24) = Z Vg(ri — x5) - (vi — u(w;))
1<27$j<N
1
4+ = N Z Vg(z; —xj) - u(x;) — QNZ ) - VA"V (2;)
1<i#Aj<N
1 & - 1 &
- N —u(x;)) - —N -V (z;) — i u(x;) - VA (2;)
_ Ol .. O U 2
N;h (mz)—k/Rdh d(pv +£%4).
Note that

N
1
¥ z_: RO () + /Rd RO d(py + &24) = — /Rd RO d(un — py — £24).
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Hence,
1d ) 1
(5.12) ?%FN<XN,,UV +e°4) = N Z Veg(x; — ;) - (vi —u(x;))
1<i#£j <N
b O Valw ) -ule) EQNZ ) VR ()
1<i#j<N
1 1 & 1
N ; —Uu .’EZ 7N g Vh/l V N ; )

—/ RO d(un — py — £24).
Rd

We next reorganize the right-hand side into into a commutator of the form of the
left-hand side of (3.3) plus residual terms that either vanish as e + N~ — 0 or cancel
with another term in the computation.

To this end, observe that

618) 55 [ () = u(e) - Vaw ~d(us v~ <4) e
9 (RH)2\ A N 1 N
ISIISN z:l i=1
1 ,
T 2N Z /Rd u(x) - Vg(x — zy)d(py + £4) ()

+i2/ uvu-Vhﬂv+62“+/ usl - VhHv e
&€ Rd Rd

Since pyu is divergence-free, we see from integrating by parts that
1

1
—2/ pyu - VAPV = ——2/ div(,uvu)h”‘/“zu =0.
9 Rd & Rd

Similarly, observe that

(5.14) — EQLN ; /R u(2) - Vel — z)d(py +240)(2)

- o ﬁ [ vt @ete =) + 5 [ divtust@ete o) = [ divnauy
and -

(5.15) /Rd usl- VhPv L = /Rd div b d(py + £240).

Thus, we see that the right-hand side of (5.13) simplifies, after combining (5.14)
and (5.15), to
N

N
1 1 "
22N2 E , u(z;) - Vg(r; —x; oy 521 ) VA* (x;) E )- VA= (z;)

1<i# <N

/ dlvh"ud MN —y —€ Ll)
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from which it follows that

d
(5.16) ?%FN(XN,MV + £%41)

1 ®2

=53 (u(z) —u(y)) - Ve(z — y)d(un — pv —24) " (2,)
9 (R9)2\ A

1 1 &

+€2N2 Z Vg(x; — ;) - (vi —u(x;)) v Z(vl —u(x;)) - VAV (2)
1<i£j<N i=1
—-Ty
- = Z VA () — / (div A" + W) d(pun — py — £241).
Rd

Putting together the identities (5.7), (5.8), (5.16) and canceling the +7; and —T}
terms, we arrive at

d N N
(5.17) S Hw(Zn,u) Z : —u<x,>>®2 lZm u(z;)[?
di s N &
52N Z; (VA" (x;) + VV (x;)) - v;— 2N Z —u(z;)) - VV(x;)
v N

L 122%
—gTN;(”'—“( 7)) - VY ()

N
D= e - @uule) + ) + () - VYala) + Vi)

o [, (o)~ u) - Velo ~ d(uy — v -~ 240) )
9 (RH)2 A

— / (div A" + W2 d(uy — pv — €241).
Rd

Let us simplify the right-hand side. Recalling the definition (2.1) of ¢, we see that

the second line r]%duces to N
1 "
22N Z (zi) - (VV(2;) + VRV ( = Z ) - V().
i=1 i=1
We also want the fourth line to cancel. Accordingly, we choose il so that
(5.18) ~Vht = du + yu +u - V.

Applying div to both sides and using that h/f = cqs(—A)~9/2f and the Fourier
multiplier identity — div V(—A)(=9/2 = (—A)(2+s=d)/2 we see that we should choose
U= (=A)4=5-2/2 div(dyu + yu + u - Vau), which evidently has zero mean. With this
final cancellation, the proof of the lemma is now complete. |

Let us close this subsection with some comments on how to modify the preceding
calculations when Z%; is now a solution of the system of SDEs (1.20). The argument
is similar to that in the proofs of [RS23, Lem. 6.1, Proposition 6.3]. One should start
with a solution Zy . of a truncated SDE system, where the interaction potential g, is
smooth and agrees with g at distance € from the origin. Consider a modified version
Hn e of the total modulated energy Hy, where g in Fy(Xn e, py + €24) has been
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replaced by g(.). One then computes E[Hy (Z _, u™)], where 7. is the stopping time
when the minimal distance between particles is < e, using Doob’s optional stopping
theorem and then shows that the truncated potential g can be replaced by g as
e — 0, up to vanishing error terms. The main difference between the setting of (1.20)
and that of (1.1) is that, by Itd’s formula, the nontrivial quadratic variation of the
Wiener processes contributes a new term +d/8, coming from the modulated kinetic
energy, to the right-hand side of (5.6). Evidently, this new term vanishes if § — oo
as N — oo.

5.3. GRONWALL ARGUMENT. We are in a position to complete the proof of Theo-
rem 5.2. With the formula (5.5) given by Lemma 5.5, this part is just an application
of estimates already in our possession. Trivially,

N
1
(5.19) — i ZVu(mZ) (v —u(xy)) ®2 Z lv; — u(z;)
i=1

< (H(vu)sym—HL‘” - Z|u xl i 7

where (A)gym,— denotes the negative, symmetric part of a square matrix A (note that
the antisymmetric part of Vu(z;) has zero contribution above). This takes care of the
first line on the right-hand side of (5.5).

The second line in (5.5) is handled via the sharp commutator estimate of Propo-
sition 3.3 with p replaced by py + €24l (note that [o,(uy +e4) = 1 since py is a
probability measure and 4l has zero mean):

1 2
6200 55| [ ()~ uly) - Vele - p)dux - v — 0P o)
2e Rd)Q\A
ClVul L= log(Nlullz=) $/d \r—1+s/d
< — _— .
< T (P () + B L + O 2N )
By Lemma 2.3,
N
1 C u 1,00
(5.21) ETNZM”) - VC(x)] < Clrulw= ”W Zg ;).
i=1

Finally, for the third line in (5.5), by Lemma 3.2 with ¢ = div 2** + h%*, we have
(5.22) ‘ / (div ™ + h?NYd(un — py — 5211)‘
Rd
<Ol (=2) @72 div B oo+ [1(=A) /2RO o ) (N oy + 2240 o0 )/

+ O(|V div h"™| ge—s /2 + ||Vh6”u||g(d—s>/z) (FN(XN, v + e°4)

 log(lay + 8= V)
2dN

< \1/2
Lo + C|lpy + 242 N*/4 1) :
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where we have also implicitly used the triangle inequality. Applying the elementary
inequality ab < %(5%2 +b2/£2), the second term on the right-hand side is bounded by

- ) 2
(5.23)  Ce*(|Vdivh™ || geo—s/z + VRO sy 2)

log(||pv 4 4| = N)
2dN

Putting together the estimates (5.19), (5.20), (5.21), (5.22), and (5.23), we have shown

C s _
+€—2<FN(XN,,MV+6211)+ lszo-l—CHuv—i-EzilHL/iNs/d 1).

d (V) sym, = = 7) )
%HN(ZNa u) < N ;:1 lu(z;) — vl
OVl L= aep  Log(N|uy + 24| )
+ 462 (FN(XNaNV +e u) + 2dN Li=o

+ Clluy -+ EFLN 1)
+ C(J1(=2) @972 div B oo+ ][ (= A) @R o ) (N oy + 240 o< )/

Clluflwr~

+ e2N

Y A 2
D) + C2 (Y div i a2 + [VHH | ros2)
i=1
c log(||uv + 24| = N)
—(Fn(X 2
G ¢ il
After a little bookkeeping, rewriting our differential inequality in integral form

using the fundamental theorem of calculus, we have shown that

1o+ Cllpy + s2u||;/iNs/d*1).

(5.24) Hy(Z4,u") <HN(Z%,u )+/ (v )Sym‘”“"_ Z| T(x]) — o] [2dr

0
Cllu [l
o [ (s Zc
+0(||<—A><d-s>/2divh“’||Loo+||<—A><d-s>/2hW||Loo)<N||uv+62w||m>s/d-1>d7

[ U
0

) (R + 24

n log(N ||y + €247 ||z~ )
2dN

t T T T 2
+ [ O (IV v R e + VR ) .
0

Lo + Clluy + 2074 N 1+S/d)d7’

Now adding
log(N|pv + £244!]| ) v + 248t |5/ N=/-1
2dNe? €2

to both sides of (5.24) so that the left-hand side is nonnegative provided C' is suffi-
ciently large depending on d,s (recall Lemma 3.1), it follows now from an application

15:0 +C
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of the Gronwall-Bellman lemma that

t
ff]\t, < BteA ,

where
t

At — C/o I+ ||IVu || pe + J[u” [y + (H(VUT)sym,fHLoo ) )dr

and
2¢(T
log (it )

B = (2%, u° ( I+ )y

N(Zy,u’) + OZIEt e —o

L Clly + W72 — v + WFON ))
22
Jr

t
+/ C(I1(=2) /2 div B e 4 [[(~2)79/2947 0 )
0
X (Nllpy + €207 )4 dr

¢ T(T T 2
4 [ (17 i h ™ s + VB )
0

The norms involving the h’s can be estimated in terms of norms of u™, ", 0 4"
by means of routine potential-theoretic estimates (cf. [Ros23, Lem. 4.3-4.4]). Indeed,
by Plancherel’s theorem, |[VA? " || -9z < [0-U7 || 245-0)/2 and

IV div 2™ | gamsy sz < ()| gssa—ae

S C([u | geraa2 18 Lo + 1u” [ o 147 | grera-ay2),
where the ultimate inequality follows from the homogeneous Moser product estimate
[BCD11, Cor. 2.54] (note s+4—d > 2). Similarly, using the fact that (—A)@=9)/2p/ =
cdsf and the product rule,

I(=2) 7272 div | e < O] div(utl) | =
S O([[divuT||pee 4|z + llullLe< [VUT[ L)
and
I(=A)@92h0 40| oo < C)|0r 47| e

The proof of Theorem 5.2 is now complete. One can go further and obtain a self-
contained bound in terms of Sobolev norms of u!, which in turn can be controlled by
Sobolev norms of the original solution to equation (1.4) (recall that u is really the
extension to all of RY). We leave these details to the interested reader.

6. Tue recive €2 < N3/9=1 gor e 1D CouLoms cas

In this section, we consider the one-dimensional Coulomb case with quadratic con-
finement (i.e., s = —1, g(z) = —|z|, V(2) = |x|?). Under the assumption that the ini-
tial empirical spatial density converges to the equilibrium measure, we show there is in
general no weak limit for the empirical current as e+ N~ — 0if e 2N/d-1 = ¢ =2 N2
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does not vanish. Thus, for the supercritical mean-field limit in the (super-)Coulomb
Riesz case, one cannot expect convergence to the lake equation outside of the scaling
assumption (1.16) of our Theorem 1.1.

Prorosition 6.1. There exists a sequence of initial positions X3, with
FN(XX,mv) — 0 and py — py  as N — oo,

but that if v = 0 for each 1 < i < N, the associated empirical current J& =

1 N ¢
N D i1 ViOgt

— converges to zero (which is the unique solution of the lake equation (1.9) starting
from zero initial datum) uniformly on [0,00) as e+ N~1 — 0 if eN — oo,
— has no weak limit for any t € (0,00) as e+ N~1 — 0 ifeN 4 oo.

Proof. — As is folklore, the dynamics of the one-dimensional Coulomb gas with qua-
dratic confinement are exactly solvable. Without loss of generality, we assume that
the initial positions are ordered z7 < --- < x%;. Observe that for each 1 < ¢ < N,

1 , 2 2 2
N Zj# glri =) =5 Zj# sgn(zs — ;) = Zj@ =5 ij
2AG-1)— (N—i)] _2(2i~1-N)

N N

Let T be the maximal time such that 2} < --- < for all ¢ < T.. Such a T, exists
by the initial point separation and the continuity of trajectories. Then on [0,T™*),

. 2(2i—1—N)
which may be integrated on [0, T*) to yield

(2i —1—N)

(6.1) xp = (xf - T) cos(\/it/e) + 07 sin(\/it/e) 4 M

N

Hence,
:cﬁH — xf = (vip 1 —v7) Sin(ﬁt/s) + (7, — 27 —2/N) cos(\/§t/s) +2/N.

If for each 4, we assume that [vf, ; —vf| + |27, — 27 — 2/N| < 2/N, then it follows
from the triangle inequality that z! 11— x! > 0. Thus, under this assumption, we may
conclude from a continuity argument that the particles preserve their initial order for
all times and the equation (6.1) holds on [0, 00).

The oscillations on the fast time scale €, which do not vanish as ¢ — 0, rule out any
convergent behavior at the microscopic level. Moreover, we cannot even guarantee the
convergence of the empirical current J} to a solution of the lake equation even when
the empirical spatial density u%; converges to the equilibrium measure py = %1[,111].

To see this last assertion, simply take v{ = 0 and z? = (26— 1— N)/N + 1/N
for each i. As ((2i —1— N)/N)¥, is the unique (up to permutation) critical point
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configuration of the microscopic energy (1.18), X§ is not a critical point. However,
it is straightforward to check that % Zf\; dze — py as N — oo, and evidently,
vips — o7 |+ |27y, — 27 —2/N[ =0 < 2/N,
so that equation (6.1) holds on [0, c0). Hence,
1 2t—1—-N
rl = Ncos(\/it/s) + %,
V2
+ .
= —— 2t
; Ne sin(v/2t/e),

from which it follows that

N \V/2sin \ft/e) \/isin(\/it/s) .
JN_NZ( VIIEE ), — I

e
Il

which evidently has no weak limit for ¢ > 0 if Ne /4 oc. O

AprPENDIX A. REGULAR INTERACTIONS

In this appendix, we show how to extend our method to treat the case of suffi-
ciently regular interactions on the flat torus T9—for which no commutator estimate
of the form Proposition 3.3 can hold in general!?)—under the assumption that the
equilibrium measure has full support in T9. The reason for this latter assumption is
that there is no concern about boundaries of support and need to connect with the
obstacle problem. We recall from Section 2 that one can tailor the confinement so
that the equilibrium measure coincides with a desired probability measure. Hence,
the full support assumption is not vacuous. The results of this appendix provide a
mathematical basis (in the monokinetic regime) for the universality of the lake equa-
tion as a supercritical mean-field limit for smooth interactions. The motivation for
considering T9, as opposed to RY, is explained in Appendix A.1 below. As elaborated
on in Appendix A.3 below, this extension of the modulated-energy method works
just as well—and is even simpler—for the usual mean-field limit for the second-order
monokinetic or first-order dynamics.

We assume that the interaction g has zero average and the confinement V' is such
that the equilibrium measure py has full support in T9, i.e., there exists a constant
¢ € R such that

(A.1) ™ +V =¢, q.e.in TY,

or equivalently, the function ¢ from (2.1) is zero q.e. in T¢. We assume that the Fourier
transform g(&) > 0 for £ # 0 (a type of repulsive assumption), which implies by (A.1)
that

py —1=(1/g)(D)(c—V), ae. inT

where (1/g)(D) is the Fourier multiplier with symbol 1/g(¢).
(12)1¢ is not difficult to construct an explicit counterexample when g is Gaussian.
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Let w(z — y) be the kernel of the Fourier multiplier (I — A)~*/2 for some x > d,
the exact requirement for which will be specified below. Clearly, w is positive definite
and by Sobolev embedding, w € C*~¢ if k > d. Observe that if o= wox f, then we
may rewrite

(A2 Wl = [ wlo— ) = [ 10— AT,

(T4)?

We redefine the total modulated energy as

N
1 1
(A?)) HN(ZJtV,’U,t) = W E |'Uzt — Ut(fff)|2 + ?FN(X]t\/WMV + EQHt)
i=1

1

37 |, e 0y — = )

for a solution Z%; of the microscopic system (1.1) and a solution u’ of the lake equa-
tion (1.4). We no longer need to consider an extension ' of a solution to (1.4) as in
Section 5 because py has full support. Also, note that the ¢ term has disappeared
because ¢ = 0, as remarked above. Strictly speaking, the correction €24’ in the last
term of (A.3) is not necessary; but it leads to cleaner estimates. We also mention
that 4 is now explicitly given in terms of the pressure by P = p?, which may be
inverted by applying DE(D) to both sides, using our assumption that g(¢) > 0 for
§£#0.

For a general regular interaction, it is not possible to estimate the commutator
term by the modulated potential energy. The inclusion of the third term in (A.3)
takes care of this issue, and it together with the modulated kinetic energy control its
derivative. The reason we still keep the modulated potential energy in (A.3) is that a
contribution from its time derivative (see —T} in (5.16)) cancels with a contribution
from the time derivative of the modulated kinetic energy (see +73 in (5.8).

We assume further that g has the following regularity property: for some x > d+2,
there exists a constant C' > 0 such that for any test function f,

(A4) Vg * fllgere < Cllf w2

We choose w based on this value of k. As the reader may check from taking f to be a
smearing of &y, the condition (A.4) implies that Vg is C'!. Consequently, we may re-
insert the diagonal in the definition (3.1) of the modulated potential energy, yielding a
nonnegative quantity that we continue to denote by F . It is evident from Plancherel’s
theorem that this property is satisfied, for instance, if the Fourier transform of g is
bounded and is < [£|717" as [£] — oo.

The main result of this appendix is the following theorem (cf. Theorem 5.2 above).

Tueorem A.1. — Let k,g,uy satisfy the above assumptions. Let ZY be a solution
(1.1) and u® be a solution of (1.4). Then there exists a constant C > 0 depending only
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on d,s, k and the constant in (A.4), such that for every t € [0,T],
t

(A5) Hx(Zh ) < exp (O [ (I lleonss + (100 D1 + 3 = 7))
0

t 2
x (HN(ZR,,uO)+€2/ (I g + (= 2) 720,47 -2 dT).
0

Let us remark that unlike in Theorem 1.1, we do not need to directly impose a
scaling relation between ¢, N beyond the requirement that ¢ + N~! — 0. All that
is needed for the convergence of the empirical measure to the solution of the lake
equation is that Hx (Z%,u%) — 0.

A.1. REGULARITY FOR THE LAKE EQUATION. Before turning to the proof of Theo-
rem A.1, let us comment on the regularity assumptions for the solution u of the lake
equation (1.4) and why we choose to consider T¢ instead of R¢.

By testing the identity (1.5) against p, integrating by parts, and using Cauchy-
Schwarz, we see that

[ 1wnfdny < [ St V)i < 19z o IVl 20
which implies that
(4.6) 1952 < ol [Vl 2

In particular, if inf uy > 0, then we have an L? bound for Vp in terms of ||ul|ze
and ||Vul[z2(,,). In the whole space, it is not possible to have a probability density
that is uniformly bounded from below. To avoid this issue in RY, we would then have
to work in weighted spaces. But this would require modification of our modulated
energy scheme in the form of the third term of (A.3). Furthermore, (A.6) on its own
is not useful. It will not allow us to close an energy estimate for |Jul|z2(,, ) due to the
loss of derivative and the need for an L bound on u. Instead, we want to show—
and indeed can show using the div(pyu) = 0 assumption to overcome the loss of
derivative —that for large enough k (namely, k > d), |[V®*+Vp||12(,,) is controlled
by Z?:o IV®9ul| 124,y and |[ullcrz, up to a factor depending on the L> norm of
derivatives of py and (uy)~!. Assuming suitable decay assumptions on py and its
derivatives, this latter factor can even be bounded in the whole space. Such a bound
for [VE*+Dp| 12, is acceptable for an energy estimate for E?:o [V®ul| L2,
provided that one can control ||u||ox/2. Unfortunately, such a control does not follow
from Z?:o [V®7ul| 12(,, ) unless inf gy, > 0. In which case, the assumption on k may
weakened to k > %—i— 1 through a more efficient use of Hélder and Sobolev inequalities.

For the above described reasons, we work on the torus, where the regularity assump-
tions on u in Theorem A.1 may be shown to hold if uy is sufficiently smooth and
inf gy > 0. The argument is similar to the case of the bounded domain, and, in fact,
is easier due to the absence of the boundary condition. We emphasize, though, that
the proof of Theorem A.l presented in the next subsection goes through unchanged
(removing the zero mean assumption on g) if we instead work in the whole space, and
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Theorem A.1 is valid in RY, conditional on the regularity for v. We are not aware of
a work establishing solutions with this regularity (existing results in the whole space,
such as [Duel8] for d = 2, assume log uy € L*°), and it would be interesting to
address this.

A.2. Maix proor. — To prove Theorem A.1, we first compute the evolution of the
new total modulated energy (A.3) (cf. Lemma 5.5 above).

Levva A2, — It holds that

d N N
(A.7) aHN(Z}EV, = Z (0! — ut ®2 B %ZW o
=1 =1
2%2 /( . A(“t(x) —u'(y)) - V(e — y)d(f1)** / d (dw pe hatw)dft

]. >~ tg(t -~ t
— W' il wart u'il desl t
Nz E (vf —u* (V! ) (x )+€2/Tu -Vh! df /Td(dlvh +h )df7
where we abbreviate f' = pu; — py — 2t

Proof. — We omit the time superscripts in the computations below. By the product
rule and equation (1.1) for &;, we find

= /( )

N
- = g / — y)df(y) - /( Qe —)ir(y)
N

:—g i — u(x;)) Vhf)(ocz)—k/

Td

2

u-vﬁfdf+/ w- V! duy
Td

- / div h™df — [ hOMdf.
Td Td

Since div(puyu) = 0, Fubini-Tonelli and integration by parts in x reveal that the
last term on the third line equals zero. Combining with Lemma 5.5, we arrive at the
desired (A.7). O

We now estimate each term on the right-hand side of (A.7) and establish a Gronwall
relation to prove Theorem A.1.

Proof of Theorem A.1. — The only terms on the right-hand side of (A.7) that require
modification in estimating, compared to as in Section 5.3, are the third through sixth.

The third term. — Instead of using the commutator estimate of Proposition 3.3, we ar-
gue as follows. Desymmetrizing,

1 1 ;
37 o, (0 ) Vetr 0wy = 5 [ w W
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By the fractional Leibniz rule and our assumption x > d, the function u - Vh/ €
H*/?(T) and

e 0 ggern < C (el sz IVA oo+ oo 7 g2

< C(l[ullgrosa + lull e ) IVA 1
< Cllullgrrz | fll g—rr2,

where the penultimate line follows from Sobolev embedding and the ultimate line fol-
lows from the assumption (A.4) for g and another application of Sobolev embedding.
The constant C' > 0 depends only on d, x and the constant in (A.4). It now follows
from the (H*/?)* = H—*/? duality that

1 C
(A9) % [ W] < Sl e
3 Td 3
The fourth term. Instead of the coercivity estimate of Lemma 3.2, we use the

(H®/?)* = H~*/2 duality, the assumption (A.4) for g, and the triangle inequality
to estimate

‘ / (div A 4 haf”)df‘ < O F Nl gr—resz |l div B + RO .
Td
(A.10) < Ol fll=rra (0t grsro + 1 (=8) 72080 gy
< g 2 2 3 —A)"129,4 ’
< I l—wse + " (et -z +(=4) M g-nrz)
where the final line follows from the elementary inequality ab < 3(¢~2a + £2b).

The fifth term. By Cauchy-Schwarz in 1,

1 N ~
3 J o) - (T

Z

~ 1 1/2
(A.11) < VA |l p (ﬁ > lvi- u(xi)\Q)

i=1

N
<Ol fllvra (5 3 Ios = ul)?)

i=1
czoo, 1 & )
< 7Hf||H—~/2 + WZ;M —u(x;)|%,

where the penultimate line follows from Sobolev embedding (by our assumption x >
d +2) and (A.2) and the ultimate line by ab < 1(a® + b?).
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The sixth term. We write
/ w-Vhdf = [ w-VhI (I — A)2RS
Td Td
(A.12) = / [(1 — A) A (w - VRT) —u - V(I — AR | (T — A/ ARS
Td

+ / w- V(I — ARSI — AR
Td

where the final line follows from integrating by parts (I — A)*/4. To estimate the
last line of (A.12), we use the product rule to write V(I — A)*/4h/ (I — A)/4hS =
V(I - A)"‘/4hf)2 and then integrate by parts, leading to the final bound

~ ~ 1 ~
‘/Tdu~V(I—A)"“/4hf(I—A)”/4hf < §Hdivu||Loo||(I—A)"‘/4hf||2L2
A13
(A.13) 1 ,
= §H leU||L°°||fHH—~/2~

For the penultimate line of (A.12), we recognize that the expression contained in the
brackets is a commutator of Kato-Ponce type [KP88]. Applying Cauchy-Schwarz and
[Li19, Th.1.1] with s = /2, f = u, g = VhS, and p = 2, we obtain that

(A.14) /qr d

< (L= A (u- VRS) — - V(I — AR || 2 ||[(I — A) 4RI 12
< C(H(I—A)“/“VUIILz VA || oo 4[|V e ||<I—A><“*2>/4ﬁfum) (1 =AY 4RI 2

< OVl gera | 1 =nras

(= &)/ VRY) = - (1= Ay | (1 - A)”/“Ef’

where in the final line, we have also used Sobolev embedding on ||[VA/|[,~ and
IVu| L and our assumption £ > d + 2. Combining (A.12), (A.13), (A.14), we con-
clude that

(A.15) | [ TR dt] < Tl 1o

T
The seventh term. This term is analogous to the fourth term, and we ultimately
find that

(A.16) \ / (divﬁu%rﬁ@tﬂ df‘
Td

C N 2

< U1z + 2 (sl g2 + (=) 720U -2 )

Collecting the estimates (A.9), (A.10), (A.11), (A.15), (A.16) and combining with
the estimates for the remaining terms on the right-hand side of (A.7) previously shown
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in Section 5.3, we obtain that

d ([(V)sym, f||L°o +3-
N (Zn,u) < Z [vi — u(z;)|

c B 2
Sl Iy ern + ST+ a?(HuunW (= 8) 208 -2

C
+ Cl sz + VUl sl o

Integrating and appealing to the Gronwall-Bellman lemma similar to before, we arrive
at the desired (A.5). O

A.3. APPLICABILITY TO MEAN-FIELD LIMITS. — As mentioned above, this idea of adding
an extra term (under the same assumption that k£ > d + 2 is determined by (A.4)) to
the modulated potential energy also works to prove mean-field limits (in the whole
space or on the torus) of second-order monokinetic systems (i.e., (1.1) with ¢ = 1)
and first-order systems

1
t_ ¢ t_ ot
(A.17) z; = -VV(z]) + N E MVg(zi — z%)

J
1ISGSN:g#i

for a matrix M satisfying M¢ - € <0
In the second-order case, one considers the total modulated energy

N
H (ZNv(N’ u Z ‘2+FN(XN7N)

+

N | =

/ wlz — g)d(dy — 1)2(z, ),
(T4)2

where Z%; is a solution of (1.1) with ¢ = 1 and (u!,u') is a monokinetic solution of
the Vlasov equation, i.e., ft(z,v) = p'(x)d(v—u'(x)) is a weak solution of the Vlasov
equation. Here, we have re-inserted the diagonal (which is just a constant) in the
definition of Fy with an abuse of notation. One can repeat the calculations in [Ser20,
App.] for this total modulated energy. The only difference is the new term (cf. (A.8))

1d

N _ d t _t\®2
5 7 (Td)QW(‘T y)d(py — 1) (2, y)

N
_ % > /T o - Vwlat — y)d(dy — 1))
_ /T (@) Vw(x = y)d(ply — p) (y)dp' (2)

N
1 ~ ot
:NE:U*U CVhEN T (g )Jr/qrdut.thSv*u'd(u?Viﬂt).
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One can then estimate all the terms similar to in the previous subsection, in partic-
ular replacing the commutator estimate used for Coulomb/Riesz interactions by the
duality argument.

In the first-order case, the kinetic term disappears and one instead considers the
total modulated energy

1
i (Xho) = E X))y — ).,
where XY is a solution of (A.17) and u' is the solution of the mean-field PDE asso-
ciated to (A.17). Repeating the calculations in [Ser20], the only difference is the new
term (assuming for simplicity that Vg(0) = 0)

33 o, e 0 — )
1 1

22 L (-vvi+ > Vit - ) - Vwla! — )iy — 1))

+ /Td (VV —MV(g = ut)) Vw(z —y)d(uy — p')(y)du' (z)

N
~ t 1 Tt t
=~ | OV RNy — ) + 5 D MVgx (uly — ) () - VRN ()
e i—1
+ | MV(gxpt) VRN d(ply — ).
Td
The first and third terms on the right-hand side of the second equality may be handled
by the same duality argument used in the previous subsection. For the second term,
we argue

N
1 ~ ot .t
& O Mg iy — ) () - VRS (o)
= < OV (ly = )l o [ VRS o
< CMIIVe * (ly = i) sl = v

where the final line is by Sobolev embedding and the assumption k£ > d + 2. The
first factor on the last line may be bounded in terms of ||ul; — p'||z-~/2 using the
assumption (A.4) on g.

We do not claim to be able to show new results for the mean-field limits of systems
with regular interactions compared to that obtainable by classical approaches (see for
instance the introduction of [RS24]). Rather, our intention for recording observations
above is to demonstrate the generality /robustness of the modulated-energy approach
to mean-field limits, as a reading of the existing literature would leave one with the
impression that the approach is limited to singular, Riesz-type interactions.
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ArpENDIX B. REGULARITY FOR THE OBSTACLE PROBLEM

In this section, we review some classical regularity and lift-off rates (which are
intimately connected) for solutions of the obstacle problem near the free boundary,
as well as some new results that are used in the proof of Lemma 2.3.

Throughout this subsection, v will denote either a solution of the local obstacle
problem

(B.1) min{(—A)*u,u — ¢} =0 in B; C R4
or the global obstacle problem
(B.2) min{(—=A)*u,u — 1} =0 in RY.
In all cases, s € (0,1).

The optimal regularity of solutions was first established by Caffarelli et al. in
[CSS08] for 1) € %! obstacles. The regularity assumption on the obstacle was sub-
sequently improved to 1 € C1:*+9 in [CDSS17]. In the same work [CSS08], the regu-

larity of free boundaries was established and then later improved by various authors
in [CDSS17, ROS17]. We summarize these results with the following proposition.

Prorosition B.1. — Let ¢p € C2*1°(By), for some § > 0, and u be any viscosity
solution of (B.1). Thenu € 01’3(31/2). Suppose now that ) € C1+25%9 for some § > 0
and w is a solution of (B.1). Then for every free boundary point x. € O{u > }NBy 2,
we have the following dichotomy:

(i) =4 is a regular point,
(B.3) (u =) (2) = cz.d"*(2) + O(Ja — z.[1TF),
with ¢;, > 0, where d is the distance to the contact set {u = ¢}. In which case, the

free boundary is C*<, for some o > 0, in a neighborhood of w..
(ii) @« is a degenerate/singular point,

(u—¥)(@) = O(|lz — x| +F).

Remark B.2. — Note that
lim LY
aclgcl* dits’
zeB;
always exists and is strictly positive if x, is a regular point and zero if z, is a degen-

erate/singular point.
Remark B.3. — One actually has the quantitative local C'1** bound

(B.4) lullcrs (s, 5) < CU1Pllcrs+spy) + llull Lo me) ),

where the constant C' > 0 depends only on d,s,d. In fact, the dependence on
[|[u]| oo (rey < 00 can be relaxed to a local estimate L> estimate for the s-harmonic
extension @ in RY*! of v in the form of ||ﬂHLOO(§1), where By is the ball of radius 1
in R4*1. This is useful because u = h*v ¢ L>®(RY) if d = 1 and s < 0, as it grows in
magnitude like ||~ at infinity. However, its ((d — s)/2)-harmonic extension is given

JIEP. — M., 2095, tome 12



The LAkE EQUATION AS A SUPERCRITICAL MEAN-FIELD LIMIT IOS‘()

by simply extending h*V to R4T! through the radial symmetry of g, and this is in

L2 (R4, assuming, say, that uy is bounded.

We next reproduce below two results adapted from [ARO20]. The first is a sharp
(higher) regularity estimate for regular points of the free boundary, which is adapted
from [ARO20, Th.1.2]. The second is a boundary Schauder-type estimate for solu-
tions of nonlocal elliptic equations in C**® domains, which is adapted from [ARO20,
Th. 1.4].

Prorosition B.4. Let u be any solution of (B.2) with obstacle ¢ such that {1 > 0}
is bounded. Let 6 > 2 be such that both 6,0 £ s are noninteger, and assume that
Y € C¥*3. Then the free boundary is C° in a neighborhood B,.(x.) of any regqular
point z, € 0{u > ¥} and the C% norm only depends on d,s,~,0,r.

Prorosition B.5. Let B > s be such that both (3,3 & s are noninteger. Let Q C R
be a bounded CPH1 domain. Then there exists a constant C' > 0 depending only on
d, s, 8,9, such that for any solution u € L>=(RY) of

Ay = n QN B
(B.5) (A u=f R
u =0 in By €,
with f € CP=3(Q), it holds that
(B.6) lu/d*llcs@npyy < CIfllos-s@) + llull Lo me)),

where d(x) = dist(z, Q°).

Remark B.6. The boundedness assumption on ) is not actually necessary, since we
may always replace 2 by By N without changing (B.5). Similarly, the boundedness
assumption on {¢ > 0} is not necessary because a solution u of (B.2) solves the local
obstacle problem (B.1) with an obstacle that is localized to vanish outside Bs.
Furthermore, the global assumption u € L°°(RY) may be removed at the cost of
shrinking the ball on the left-hand side of (B.6). More precisely, let x be a smooth
cutoff which is identically one in Bj/4 and zero outside B;. Set u = xu. Then u solves

~APTu=f in QN By,
(B.7) (~ )u=f in 1/2
u=0 in 81/2 AN Q,
with f = f — (=A)*(x°u), where x° =1 — x. By Proposition B.5 (rescaling B, /3 to
By and replacing © by QN Bs/g), we have that
lu/d*|lcs@nB, o) = 16/d°llos@nB, ) < CUIfllco-s @) + 1l Lo (re))
S OUlflles—s@ + =AY (XUl cs-@nms 5 + lull=s)));

where we have also used the triangle inequality in the last line. Observe that y¢ =
in Bs,4. Hence, for x € QN Bys,

(B3) (A O = [ G

B34 |x -
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This function is evidently smooth, assuming that

|u(y)]
= — < 00.
ellzy o, /R (1+ [y)d+2s

This moment assumption is always satisfied for u = h*vV and s = (d —s)/2. Indeed,

h#*v is controlled by ||uy||p=~ ifd > 2ands>d—-22>0.Ifd=1ands € (—1,0],
then h*v grows like ||, while d + 25 =2 —s.

For the purposes of proving Lemma 2.3, we need the following result for the tan-
gential and normal derivatives of u — ), a proof of which does not seem present in the
literature. This is an application of the preceding propositions.

Prorosition B.7. — Let 6 > 2 such that 6,0+ s are not integers. Let u be any solution
of (B.2) with obstacle ¢ € C&‘Zs"’o‘, for any o > 0, such that HU;HL;+1+25(Rd) < oo. Then
given any regular point x., there exist radii 0 < v’ < r such that the free boundary
is C? in B,(x.) and each point in x € B, (x.) has a unique nearest-point projection x,
onto {u =} such that x, € B, (x.). Moreover, if v,, T, are respectively normal and
tangent directions at x,, then there exists C > 0 such that for any x € By(x.),

(B.9) |00, (u =) (2)] < Cd*(x),
(B.10) 107, (u = ¥)(2)| < Cd*F(a),

where C > 0 is independent of vo, To.

Proof. — Let z, be a regular point. If v € C%*% for § > 2 such that 6,0 + s are
not integers, then by Proposition B.4, the free boundary is C? in a neighborhood of
B, (xy).

Setting w = d(u — 1)) for any partial derivative 0, the fact that u, ) are C' implies
that w vanishes on {u = 1}, hence is a solution to

{(—A)Sw = —(=2) 0, in{u> v},

w =0, in {u=1}.

Let 3: =60 —1. Then g > s and 3, 8 + s are not integers. Moreover,
Q= {u>9Y}NB,(xs)

is a bounded C#*! domain by the previous paragraph. As in Remark B.6, let x be a
cutoff as above, and consider w = yw, which solves

{(—A)S@ = —(~A)*(xOu)—(~A)*(xd), in {u >} N B, s(z.),
w =0, in By jo(z.) N {u = 1}

Hence, we may apply Proposition B.5 and Remark B.6 to obtain

B.11)  w/d[lco-r((usy3nB, ja(.)) < C(H(*A)S(Xa?ﬁ)||ceflfs(m)

+ (=2 X0 cor-samms ey T 100w — w)”Lw(B,-(ac*)))-
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Remark that the constant C' is independent of the choice of 0. From the definition of

the fractional Laplacian, it is straightforward to check that
||(_A)S(Xaw)||ce—1—s({u>¢}mgr(x*)) < CW)HC“SM(BT(M))

for any a > 0. By triangle inequality,

[0(u = V)| Lo (Bar(.)) < NOUllLo (B (wn)) + 10%] Lo (B0 (2))
and the term ||Vu|| o (B,, (z.)) is finite by Proposition B.1. Finally, for any test func-
tion f, using (B.8) with u replaced by O0f, we can integrate by parts, using that
|z — y|4T2% is smooth for « € Bs, /s and y ¢ B, 4(x.), to obtain

(A (O (x) = C/ X fly) (d +2S)C/Rd Ol —yIx“()f(y)

R |z — yldts |z —yld+aett

Since 0x“(y) is zero for y € Bg, a(x.) and y ¢ Bs,/s(v.), the first term on the

right-hand side is smooth if f is in L;(Bs,/s(7+)). The second term is smooth if

Jgasn [F @)/ (1 + [y[)?F2+! < co. Applying this result to f = u, we conclude that
H(_A)S(Xcau)HC’B—l—s(QmBS/ST(m*)) < 00.

Recalling our starting point (B.11), we have shown that there is a C' > 0 independent
of 0, such that

(B.12) Ve € Byja(zs), |w/d®llco-1({usyinB, a()) < O

Recalling that w = 9(u — ) for an arbitrary partial derivative 9, the preceding
automatically implies that given any free boundary point z, with normal vector v,
Oy, (u — 1) satisfies

Ve € Byya(2.), |0 (u = 9)(2)] < Cd*(x).
This establishes (B.9).
For the tangential derivatives, we first recall that there exists ' € (0,7/2) such

that every point © € B,(z,) has a unique nearest-point projection z, onto {u = ¢}
in By, (x.). Let 7, be a tangent vector at .. Then since 0, d(z) = 0, it follows that

0,00 )@)

ds(z)
Here, we are implicitly using that € — 1 > 1 (by assumption that 6 > 2) and so w/d?*
is at least C''. Moreover, by (B.12),

Vo € By (z.),  [0-,0(u—9)(z)| < Cd*(2),

where again C is independent of the choice 9. Now since 0, (u—1)(x,) = 0, it follows

Vo € By(zy), Or (w/d®)(z)

from the mean value theorem that for any © € B,/ (z.),

|0r, (u = ) (@)] = |0r, (u = ) (2) = B, (u — )(20)| < Cd™F(2).
This establishes (B.10), and the proof of the proposition is complete. O

Remark B.8. — One can easily extract a quantitative bound in terms norms of u, ¢
for the constant C' in Proposition B.7 by using Remark B.3.
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Using Proposition B.7, we have the following refinement of the asymptotics (B.3).

Prorosition B.9. — Impose the same assumptions as Proposition B.7, and let x,,r
be as above. Then there exists ¢ > 0 such that

Vo € {u >} N B(z.), (u—1)(z)>=cdF(z).

Proof. Indeed, let z,, r, 7’ be as in the statement of Proposition B.7. By translation
and rotation, we may assume without loss of generality that x, = 0 and the free
boundary in B,(0) is given by the C? graph

{uz9}nB.(0)={z=(z",...,2% 2% > O@a",...,2% "), 2 € B,(0)}

with ©(0) = 0, VO(0) = 0, and inward normal vector eq := (0,...,0,1) at 0. Let us
abbreviate | = (x!,...,2971). As noted in [ARO20] (see the proof of Theorem 1.2),
there exists ¢ > 0 such that

(B.13) Vo € {u>v}NB.(0), 0d4(u—)(z) = cd®(x).

Thus, for x = (x,,29) € {u > ¥} N B.(0), the fundamental theorem of calculus
implies that

(u=9)(x) = (u—¢)(x) = (u—1)(xL,O(zL))

=@ = 0(1) | Balu—0)(w1.Ow1) +Ha* = O(a1)))
> ced*t (),

where the final line follows from (B.13) and the fact that (z¢ — ©(x,)) > d(x) by
definition of the distance function. This completes the proof. |

We now pay our debt to the reader by giving the proof of Lemma 2.3.

Proof of Lemma 2.3. — We only consider the fractional case s # d—2, as the Coulomb
case s = d — 2 was previously treated in [BCGM15, Lem. 3.2].

We recall that u = h*V is a solution of the obstacle problem (2.2) for exponent s =
(d —s)/2 and obstacle ¢ = ¢—V. By assumption, every free boundary point z, € 90X =
0{¢ = 0} is a regular point. Hence, letting 0 < r, < r,, be as in Propositions B.7
and B.9, the family {B,, (2.)}s,eox forms an open cover of 0X. Since 9X is compact,
there exists a finite subcover corresponding to points x. 1,...,Txn.

By Proposition B.1 and our assumption for ¢, { € C’ll.gédfs)/z. Since V¢ =0 1in X,
the left-hand side of (2.3) trivially holds for z € . Letting d denote the distance to
the contact set {¢ = 0}, it follows that there exists § > 0 such that

inf{d(z):z € {¢ >0}~ U, B,.;*Wl(a:*yl)} > 0.

Since ¢ > 0 in RY \ ¥ and continuous, it follows from the extreme value theorem that
there exists ¢y > 0 such that

B.14 i > co.
( ) x:&éd(aglégdiamEg (E) €0
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Since the left-hand side of (2.3) is zero for x such that d(x) > 2diam ¥, the inequal-
ity (2.3) trivially holds for such z. For ¢ < d(z) < 2diam ¥, we crudely bound

(B15) |o(2) - ¢@)] < [0l 19€ ] oy < ol (I9VI sy + IVR ] ss)),

where 3 := {z : d(z) < 2diam X} and the final inequality is by the triangle inequality.
The second term is finite by Proposition B.1. So combining (B.14), (B.15), we find

0 <d(z) < 2diam X,
(B.16) < ol (IVV Iz + IVA 5

lv(z) - V((2)] < ).
co

Since {d(z) < 6} C Ui, By (24,), it suffices now to establish (2.3) when z €
Uizt Br;* ; (Ts,i)-

Dropping the ¢ subscript, let € By (z) N {¢ > 0}. Let v, denote the normal
vector at the nearest-point projection z, onto {¢ = 0}. Without loss of generality

(rotating and translating if necessary), we may assume that v, = eq = (0,...,0,1).
Hence, e1,...,e4—1 are tangent to {¢ = 0} at x,. We write
d
(B.17) (@) V¢(z) =Y v/ (2)d;¢(x).
j=1

Using the no-flux condition v4(x,) = 0, it follows from the mean-value theorem and
the estimate (B.9) of Proposition B.7 applied with s = (d —s)/2 that

(B.18) [v'(2)duC(@)| < [ () — v (w0)[|0a¢ ()] < CIV | 1o (8, (ayyd' 472 (2),

where we have implicitly used that | — .| = d(z). Using the estimate (B.10) of
Proposition B.7, we also have

d—1
(B.19) Z |07 (2)9;¢ ()]

d—1
<O NV =B, 0 d T2 (2) < Cllvl (B, (0. d O ().

j=1

Combining (B.17), (B.18), (B.19), we conclude that there is a C' > 0, independent
of v, such that

(B-20) Va € By (w) N{C >0}, (@) - VE(@)| < Cllollwro (5, ooy d /().
On the other hand, by Proposition B.9, there exists ¢ > 0 such that

(B.21) V& € By (z,)N{¢ >0}, () > cdTE9/2(g).

Combining (B.20), (B.21) and setting A := C'/c, we find that

Vo € By (z.) N{¢ >0}, v(z) - V()| < Allvllwre (s, @.)¢(@)-
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Applying (B.20) for each ball B,, (z.;), we obtain finitely many A, ..., 4, >0,

K3

so that setting Apmax = max(Ay,..., A,), we conclude

B22)  Vre U By (@00 {C>0) o) V@) < Auulvllwr ~((z).

1=

Combining (B.22), (B.16), the proof of the lemma is complete. a

REFERENCES

[ARO20] N. Asarancero & X. Ros-Orton — “Obstacle problems for integro-differential opera-
tors: higher regularity of free boundaries”, Adv. Math. 360 (2020), article no. 106931
(61 pages).

[ATL23] B. AL Takr & C. Lacave — “Degenerate lake equations: classical solutions and vanishing
viscosity limit”, Nonlinearity 36 (2023), no. 1, p. 653—678.

[ACS08] L. Arnanasorouros, L. A. CarrarerLr & S. Sausa — “The structure of the free boundary for
lower dimensional obstacle problems”, Amer. J. Math. 130 (2008), no. 2, p. 485-498.

[BCD11]  H. Banourr, J.-Y. Cremix & R. Dancuiny — Fourier analysis and nonlinear partial differen-
tial equations, Grundlehren Math. Wissen., vol. 343, Springer, Heidelberg, 2011.

[BCGM15] J. Barré, D. Cuiron, T. Goupon & N. Masmoupr — “From Vlasov-Poisson and Vlasov-
Poisson-Fokker-Planck systems to incompressible Euler equations: the case with finite
charge”, J. Ec. polytech. Math. 2 (2015), p. 247-296.

[BFRO18] B. Barrios, A. Ficarur & X. Ros-Orox — “Global regularity for the free boundary in the
obstacle problem for the fractional Laplacian”, Amer. J. Math. 140 (2018), no. 2, p. 415~
447.

[BL76] J. Bercn & J. Lorstrom — Interpolation spaces: An introduction, Springer-Verlag, Berlin,
1976.

[BIK15] P. Birer, C. Insert & G. Karcu — “The nonlocal porous medium equation: Barenblatt
profiles and other weak solutions”, Arch. Rational Mech. Anal. 215 (2015), no. 2, p. 497—
529.

[BP16] N. Bokrs & P. Pickr — “On mean field limits for dynamical systems”, J. Statist. Phys. 164
(2016), no. 1, p. 1-16.

[BHT77] W. Braux & K. Hepp — “The Vlasov dynamics and its fluctuations in the 1/N limit of
interacting classical particles”, Comm. Math. Phys. 56 (1977), no. 2, p. 101-113.

[Bre89] Y. Brenter — “Une formulation de type Vlassov-Poisson pour les equations d’Euler des
fluides parfaits incompressibles”, 1989, HAL: inria-00075489.

, “Convergence of the Vlasov-Poisson system to the incompressible Euler equa-
tions”, Comm. Partial Differential Equations 25 (2000), no. 3-4, p. 737-754.

[BGY4] Y. Brenier & E. Grenier — “Limite singuliére du systéme de Vlasov-Poisson dans le régime
de quasi neutralité: le cas indépendant du temps”, C. R. Acad. Sci. Paris Sér. I Math.
318 (1994), no. 2, p. 121-124.

[BDJ24]  D. Brescu, M. Duerinckx & P-E. Japixy — “A duality method for mean-field limits with
singular interactions”, 2024, arXiv:2402.04695.

[BJ18] D. Brescn & P-E. Japin — “Quantitative estimates for advective equation with degenerate
anelastic constraint”, in Proceedings of the I.C.M.—Rio de Janeiro 2018. Vol. 111, World
Sci. Publ., Hackensack, NJ, 2018, p. 2167-2192.

[BJS25] D. Brescu, P-E. Jasin & J. SoLer — “A new approach to the mean-field limit of Vlasov-
Fokker-Planck equations”, Anal. PDE 18 (2025), no. 4, p. 1037-1064.

[BJW19]  D. Bresch, P-E. JaBix & Z. Wanc — “Modulated free energy and mean field limit”, in Sémi-
naire Laurent Schwartz — EDP et applications. Année 20192020, Ecole polytechnique,
Palaiseau, 2019, p. I1.1-11.22.

[Bre00]

JIEP. — M., 2095, tome 12


https://hal.archives-ouvertes.fr/inria-00075489
http://arxiv.org/abs/2402.04695

[BMO6]

[CDV22
[Caf98]
[CDSS17]

[CSS08]

[CV11]

[CDM16]

[CR97]

[DHAP23]

[DSS16]
[Dob79]
[Duel6]

[Duelg]

[Due21]
[DS18]

[FRJ21]

[FROS20]
[Fro35)
[Gra21]
[Gre95]
[Gre96]

[Gre99]

The LAkE EQUATION AS A SUPERCRITICAL MEAN-FIELD LIMIT 1065

D. Brescin & G. Miérvier — “Global existence and uniqueness for the lake equations
with vanishing topography: elliptic estimates for degenerate equations”, Nonlinearity
19 (2006), no. 3, p. 591-610.
X. CaBrE, S. Dreierro & E. Varpivoct — “The Bernstein technique for integro-differential
equations”, Arch. Rational Mech. Anal. 243 (2022), no. 3, p. 1597-1652.
l.. A. CarrareLLr — “The obstacle problem revisited”, J. Fourier Anal. Appl. 4 (1998),
no. 4-5, p. 383-402.
L. A. Carrarerrn, D. DE Siwva & O. Savin — “The two membranes problem for different
operators”, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34 (2017), no. 4, p. 899-932.
L. A. Carparecer, S. Sasa & L. Sivestre — “Regularity estimates for the solution and the
free boundary of the obstacle problem for the fractional Laplacian”, Invent. Math. 171
(2008), no. 2, p. 425-461.
L. A. Carrarer & J. L. Vazquez — “Nonlinear porous medium flow with fractional poten-
tial pressure”, Arch. Rational Mech. Anal. 202 (2011), no. 2, p. 537-565.
J. AL Carrinro, M. G. Dercabino & A. MeLLer — “Regularity of local minimizers of the
interaction energy via obstacle problems”, Comm. Math. Phys. 343 (2016), no. 3, p. 747—
781.
S. J. Cuapman & G. Ricuarbson — “Vortex pinning by inhomogeneities in type-1I super-
conductors”, Phys. D 108 (1997), no. 4, p. 397-407.
D. Danierii, A Has Aur & A. Perrosvan — “The obstacle problem for a higher order frac-
tional Laplacian”, Calc. Var. Partial Differential Equations 62 (2023), no. 8, article
no. 218 (22 pages).
D. De Siva & O. Savin — “Boundary Harnack estimates in slit domains and applications
to thin free boundary problems”, Rev. Mat. Iberoamericana 32 (2016), no. 3, p. 891-912.
R. L. Dosrugin — “Vlasov equations”, Funktsional. Anal. i Prilozhen. 13 (1979), no. 2,
p. 48-58, 96.
M. Duerinckx — “Mean-field limits for some Riesz interaction gradient flows”, SIAM
J. Math. Anal. 48 (2016), no. 3, p. 2269-2300.

, “Well-posedness for mean-field evolutions arising in superconductivity”, Ann.
Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 5, p. 1267-1319, With an appendix
jointly written with Julian Fischer.

, “On the size of chaos via Glauber calculus in the classical mean-field dynamics”,
Comm. Math. Phys. 382 (2021), no. 1, p. 613—-653.
M. Duerinckx & S. Serrary — “Mean-field dynamics for Ginzburg-Landau vortices with
pinning and forcing”, Ann. PDE 4 (2018), no. 2, article no. 19 (172 pages).
X. FernAnpEz-ReaL & Y. Juavert — “On the singular set in the thin obstacle problem:
higher-order blow-ups and the very thin obstacle problem”, Anal. PDE 14 (2021), no. 5,
p. 1599-1669.
A. Fiearrr, X. Ros-Oron & J. SErra — “Generic regularity of free boundaries for the obstacle
problem”, Publ. Math. Inst. Hautes Etudes Sci. 132 (2020), p. 181-292.
0. Frostman — “Potentiel d’équilibre et capacité des ensembles avec quelques applications
a la théorie des fonctions”, Meddelta. Lunds Univ. Math. Sem. 3 (1935), p. 1-118.
P. Grass — “Microscopic derivation of Vlasov equations with singular potentials”, 2021,
arXiv:2105.06509.
E. Grenier — “Defect measures of the Vlasov-Poisson system in the quasineutral regime”,
Comm. Partial Differential Equations 20 (1995), no. 7-8, p. 1189-1215.

, “Oscillations in quasineutral plasmas”, Comm. Partial Differential Equations
21 (1996), no. 3-4, p. 363-394.
, “Limite quasineutre en dimension 17, in Journées “Equations auz Dérivées
Partielles” (Saint-Jean-de-Monts, 1999), Univ. Nantes, Nantes, 1999, p. II.1-11.8.

JE.P.— M., 2095, tome 12


http://arxiv.org/abs/2105.06509

1066

M. ROSENZWEIG & S. SERFATY

[GBRT12] A. Grerron, K. M. Borawarpr, M. J. Rasci, B. Scnorkorr & A. Smora — “A kernel two-

[GPT18]
[GPI20]

[GPI21]

[HKH15)

[HKI17a]

[HKI17b]
[HKI21]
[HKR16]

[Haul4]

[HJ07]
[HJ15]
[HM13]
[HLM22]
[Hua03]
[Jab14]
[JW16]
[IN17]
[KP8S)
[KPS15]
[KRS19]
[LNP14]

[LanT2]

sample test”, J. Mach. Learn. Res. 13 (2012), p. 723-773.
M. Grirrin-Prekerine & M. lacoBerLr — “A mean field approach to the quasi-neutral limit
for the Vlasov-Poisson equation”, STAM J. Math. Anal. 50 (2018), no. 5, p. 5502-5536.
, “Singular limits for plasmas with thermalised electrons”, J. Math. Pures
Appl. (9) 135 (2020), p. 199-255.

, “Recent developments on quasineutral limits for Vlasov-type equations”, in

Recent advances in kinetic equations and applications, Springer INAAM Ser., vol. 48,
Springer, Cham, 2021, p. 211-231.
D. Han-Kwax & M. Hauvray — “Stability issues in the quasineutral limit of the one-
dimensional Vlasov-Poisson equation”, Comm. Math. Phys. 334 (2015), no. 2, p. 1101-
1152.
D. Han-Kwax & M. lacoseLnr — “Quasineutral limit for Vlasov-Poisson via Wasserstein
stability estimates in higher dimension”, J. Differential Equations 263 (2017), no. 1,
p. 1-25.

, “The quasineutral limit of the Vlasov-Poisson equation in Wasserstein metric”,
Commun. Math. Sci. 15 (2017), no. 2, p. 481-509.
, “From Newton’s second law to Euler’s equations of perfect fluids”, Proc. Amer.
Math. Soc. 149 (2021), no. 7, p. 3045-3061.
D. Han-Kwan & F. Rousser — “Quasineutral limit for Vlasov-Poisson with Penrose stable
data”, Ann. Sci. Ecole Norm. Sup. (4) 49 (2016), no. 6, p. 1445-1495.
M. Hauray — “Mean field limit for the one dimensional Vlasov-Poisson equation”, in

Séminaire Laurent Schwartz—Equations auz dérivées partielles et applications. Année
2012-2013, Ecole Polytechnique, Palaiseau, 2014, p. XXI.1-XXI.16.

M. Hauvray & P-E. Jasin — “N-particles approximation of the Vlasov equations with sin-
gular potential”, Arch. Rational Mech. Anal. 183 (2007), no. 3, p. 489-524.

, “Particle approximation of Vlasov equations with singular forces: propagation
of chaos”, Ann. Sci. Ecole Norm. Sup. (4) 48 (2015), no. 4, p. 891-940.

H. Hepenmarm & N. Makarov — “Coulomb gas ensembles and Laplacian growth”, Proc.
London Math. Soc. (3) 106 (2013), no. 4, p. 859-907.

L. E. Hientzsch, C. Lacave & E. Mior — “Lake equations with an evanescent or emergent
island”, Commun. Math. Sci. 20 (2022), no. 1, p. 85-122.

C. Huane — “Global solutions to the lake equations with isolated vortex regions”, Quart.
Appl. Math. 61 (2003), no. 4, p. 613-638.

P-E. Jagin — “A review of the mean field limits for Vlasov equations”, Kinet. and Relat.
Mod. 7 (2014), no. 4, p. 661-711.

P-E. JaBiv & Z. Wane — “Mean field limit and propagation of chaos for Vlasov systems
with bounded forces”, J. Funct. Anal. 271 (2016), no. 12, p. 3588-3627.

Y. Juavert & R. Neumaver — “Higher regularity of the free boundary in the obstacle prob-
lem for the fractional Laplacian”, Adv. Math. 311 (2017), p. 748-795.

T. Kato & G. Poxce — “Commutator estimates and the Euler and Navier-Stokes equa-
tions”, Comm. Pure Appl. Math. 41 (1988), no. 7, p. 891-907.

H. Kocm, A. Perrosvan & W. Sur — “Higher regularity of the free boundary in the elliptic
Signorini problem”, Nonlinear Anal. 126 (2015), p. 3—44.

H. Kochu, A. Rianp & W. Sur — “Higher regularity for the fractional thin obstacle prob-
lem”, New York J. Math. 25 (2019), p. 745-838.

C. Lacave, T. T. Neuven & B. Pausaper — “Topography influence on the lake equations in
bounded domains”, J. Math. Fluid Mech. 16 (2014), no. 2, p. 375-406.

N. S. Lanokor — Foundations of modern potential theory, Grundlehren Math. Wissen.,
vol. 180, Springer-Verlag, New York-Heidelberg, 1972.

JIEP. — M., 2095, tome 12



[Laz16]
[LP17]
[LS18]

[LO97]

[LOT96a]

[LOT96b)
[Li19]
[Mas01]
[Mas07]
[Mén24]
[MKTLOS]

[NW74]

[NRS22]
[OP62)
[01i97]
[0DYS]
[PS17]
[Ric00]
[ROS17]
[Ros22a]
[Ros22b)
[Ros23]

[RS23]

The LAkE EQUATION AS A SUPERCRITICAL MEAN-FIELD LIMIT IOG7

D. Lazarovict — “The Vlasov-Poisson dynamics as the mean field limit of extended
charges”, Comm. Math. Phys. 347 (2016), no. 1, p. 271-289.
D. Lazarovicr & P. Pickr. — “A mean field limit for the Vlasov-Poisson system”, Arch.

Rational Mech. Anal. 225 (2017), no. 3, p. 1201-1231.

T. LeBLE & S. SERFATY — “Fluctuations of two dimensional Coulomb gases”, Geom. Funct.
Anal. 28 (2018), no. 2, p. 443-508.

C. D. Levermore & M. Oriver — “Analyticity of solutions for a generalized Euler equation”,
J. Differential Equations 133 (1997), no. 2, p. 321-339.

C. D. Levermore, M. Ouiver & E. S. Tim1 — “Global well-posedness for models of shallow
water in a basin with a varying bottom”, Indiana Univ. Math. J. 45 (1996), no. 2,
p. 479-510.

__, “Global well-posedness for the lake equations”, Phys. D 98 (1996), no. 2, p. 492—
509.

D. Li — “On Kato-Ponce and fractional Leibniz”, Rev. Mat. Iberoamericana 35 (2019),
no. 1, p. 23-100.

N. Masmount — “From Vlasov-Poisson system to the incompressible Euler system”, Comm.
Partial Differential Equations 26 (2001), no. 9-10, p. 1913-1928.

, “Rigorous derivation of the anelastic approximation”, J. Math. Pures Appl. (9)
88 (2007), no. 3, p. 230-240.

M. Miénarp — “Mean-field limit of point vortices for the lake equations”, Commun. Math.
Sci. 22 (2024), no. 8, p. 2167-2228.

J. Mexponga, R. Karser, H. Tergas & J. Loureiro — “Collective oscillations in ultracold
atomic gas”, Phys. Rev. A 78 (2008), article no. 013408 (8 pages).

H. Neunzerr & J. Wick — “Die Approximation der Losung von Integro-Differential-

gleichungen durch endliche Punktmengen”, in Numerische Behandlung nichtlinearer
Integrodifferential- und Differentialgleichungen (Tagung, Math. Forschungsinst., Ober-
wolfach, 1973), Lect. Notes in Math., vol. 395, Springer, 1974, p. 275-290.
Q.-H. Nguven, M. Rosenzweic & S. Serraty — “Mean-field limits of Riesz-type singular
flows”, Ars Inven. Anal. (2022), article no. 4 (45 pages).
Y. Ocura & N. A. Puiruirs — “Scale analysis of deep and shallow convection in the atmo-
sphere”, J. Atmospheric Sci. 19 (1962), no. 2, p. 173 — 179.
M. Oriver — “Classical solutions for a generalized Euler equation in two dimensions”,
J. Math. Anal. Appl. 215 (1997), no. 2, p. 471-484.
T. M. O'Neir. & D. H. E. Dusixn — “Thermal equilibria and thermodynamics of trapped
plasmas with a single sign of charge”, Phys. Plasmas 5 (1998), no. 6, p. 2163—-2193.
M. PerracHE & S. Serraty — “Next order asymptotics and renormalized energy for Riesz
interactions”, J. Inst. Math. Jussieu 16 (2017), no. 3, p. 501-569.
G. Ricriarpson — “Vortex motion in shallow water with varying bottom topography and
zero Froude number”, J. Fluid Mech. 411 (2000), p. 351-374.
X. Ros-Oron & J. Serra — “Boundary regularity estimates for nonlocal elliptic equations
in C! and C1* domains”, Ann. Mat. Pura Appl. (4) 196 (2017), no. 5, p. 1637-1668.
M. Rosenzweic — “The mean-field approximation for higher-dimensional Coulomb flows
in the scaling-critical L space”, Nonlinearity 35 (2022), no. 6, p. 2722-2766.

, “Mean-field convergence of point vortices to the incompressible Euler equation
with vorticity in L>°”, Arch. Rational Mech. Anal. 243 (2022), no. 3, p. 1361-1431.
, “On the rigorous derivation of the incompressible Euler equation from Newton’s
second law”, Lett. Math. Phys. 113 (2023), no. 1, article no. 13 (32 pages).
M. Rosexzweic & S. Serraty — “Global-in-time mean-field convergence for singular Riesz-
type diffusive flows”, Ann. Appl. Probab. 33 (2023), no. 2, p. 754-798.

JE.P. — M., 2095, tome 12



1068

[RS24]
[RS16]
[$S15a]
[SS15D)]
[Ser15]
[Ser17]
[Ser20]
[Ser23]

[Ser24]
[Sil07]

[SteT0]
[Tro86]

[Uhl18]

[WBIPS5]

M. ROSENZWEIG & S. SERFATY

, “Sharp commutator estimates of all order for Coulomb and Riesz modulated
energies”, 2024, arXiv:2407.15650.
N. Rouvcerie & S. Serrary — “Higher-dimensional Coulomb gases and renormalized energy
functionals”, Comm. Pure Appl. Math. 69 (2016), no. 3, p. 519-605.
E. Saxpier & S. Serrary — “1D log gases and the renormalized energy: crystallization at
vanishing temperature”, Probab. Theory Related Fields 162 (2015), no. 3-4, p. 795-846.
_, “2D Coulomb gases and the renormalized energy”, Ann. Probab. 43 (2015),
no. 4, p. 2026-2083.
S. Serrary — Coulomb gases and Ginzburg-Landau vortices, Zurich Lectures in Advanced
Math., European Mathematical Society (EMS), Ziirich, 2015.
, “Mean field limits of the Gross-Pitaevskii and parabolic Ginzburg-Landau equa-
tions”, J. Amer. Math. Soc. 30 (2017), no. 3, p. 713-768.
, “Mean field limit for Coulomb-type flows”, Duke Math. J. 169 (2020), no. 15,
p- 2887—2935, Appendix with Mitia Duerinckx.

, “Gaussian fluctuations and free energy expansion for Coulomb gases at any
temperature”, Ann. Inst. H. Poincaré Probab. Statist. 59 (2023), no. 2, p. 1074-1142.
, “Lectures on Coulomb and Riesz gases”, 2024, arXiv:2407.21194.
L. Stuvestre — “Regularity of the obstacle problem for a fractional power of the Laplace
operator”, Comm. Pure Appl. Math. 60 (2007), no. 1, p. 67-112.
E. M. Steix — Singular integrals and differentiability properties of functions, vol. 30,

Princeton University Press, Princeton, NJ, 1970.

M. Trocueris — “On the derivation of the one-dimensional Vlasov equation”, Transport
Theory Statist. Phys. 15 (1986), no. 5, p. 597-628.

C. Unremany — “Finding closure: approximating Vlasov-Poisson using finitely gener-
ated cumulants”, J. Cosmol. and Astropart. Phys. 2018 (2018), no. 10, article no. 30
(23 pages).

D. J. Wineranp, J. J. Boruinger, W. M. Itano & J. D. Prestace — “Angular momentum of
trapped atomic particles”, J. Opt. Soc. Amer. B 2 (1985), no. 11, p. 1721-1730.

Manuscript received 1st September 2024
accepted 16th June 2025

Marraew Rosenzweic, Carnegie Mellon University, Department of Mathematical Sciences,
Wean Hall 6113, Pittsburgh, PA 15213, USA

E-mail : mrosenz2@andrew. cmu. edu

Url : https://sites.google.com/view/rosenzveig

SyLvia SErraty, Sylvia Serfaty, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012-1185, USA

& Sorbonne Université, Laboratoire Jacques-Louis Lions,

4 place Jussieu 75005 Paris, France

E-mail : serfaty@cims.nyu.edu

Url : https://math.nyu.edu/~serfaty/

JIEP. — M., 2095, tome 12


http://arxiv.org/abs/2407.15650
http://arxiv.org/abs/2407.21194
mailto:mrosenz2@andrew.cmu.edu
https://sites.google.com/view/rosenzweig
mailto:serfaty@cims.nyu.edu
https://math.nyu.edu/~serfaty/

	1. Introduction
	2. The equilibrium measure and the (fractional) obstacle problem
	3. The modulated potential energy and commutators
	4. The Euler/lake equation 
	5. Main proof
	6. The regime 1DCG
	Appendix A. Regular interactions
	Appendix B. Regularity for the obstacle problem
	References

