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EYRING-KRAMERS EXIT RATES FOR
THE OVERDAMPED LANGEVIN DYNAMICS:
THE CASE WITH SADDLE POINTS ON THE BOUNDARY

BY Tony Lerikvre, Dorian LE Peutrec & Boris NEcToux

AsstracT. — Let (X¢);>0 be the stochastic process solution to the overdamped Langevin dyna-
mics
dX¢ = =V f(X;)dt + VhdB;

and let © C R? be the basin of attraction of a local minimum of f : R4 — R. Up to a
small perturbation of © to make it smooth, we prove that the exit rates of (X¢);>0 from Q
through each of the saddle points of f on 92 can be parametrized by the celebrated Eyring-
Kramers laws, in the limit h — 0. This result provides firm mathematical grounds to jump
Markov models which are used to model the evolution of molecular systems, as well as to
some numerical methods which use these underlying jump Markov models to efficiently sample
metastable trajectories of the overdamped Langevin dynamics.

Résumi (Taux de sortie d’Eyring-Kramers pour la dynamique de Langevin sur-amortie : le cas
des points-selles sur la frontiére)
On considere la dynamique de Langevin sur-amortie

dXt = =V f(Xy)dt + VhdBy

et Q C R?, le bassin d’attraction d’un minimum local de f : R* — R. Quitte & légérement
perturber © pour en lisser le bord, nous montrons que les taux de sortie du processus (Xt);>0
de Q par chacun des points-selles de f sur 92 peuvent étre paramétrés par les lois d’Eyring-
Kramers, dans la limite h — 0. Ce résultat fournit une base mathématique solide aux modéles de
sauts markoviens qui sont utilisés pour décrire ’évolution des systémes moléculaires, ainsi qu’a
certaines méthodes numériques qui s’appuient sur ces modeles pour échantillonner efficacement
des trajectoires métastables de la dynamique de Langevin sur-amortie.
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1. MOTIVATION AND STATEMENTS OF THE MAIN RESULTS

1.1. AN INFORMAL PRESENTATION OF THE RESULTS. — Let us first present in this section
the motivation for this work, namely the modeling and the efficient simulation of
metastable stochastic dynamics which are used in molecular dynamics, as well as an
informal statement of the main results.

Overdamped Langevin dynamics and metastable exit. — Let us consider a potential
energy function

f:RY —R,
which is assumed to be smooth and with non-degenerate critical points. A prototypical
dynamics to describe the evolution of a molecular system in the energy landscape f
at a fixed temperature is the overdamped Langevin dynamics:

(1) dX, = —Vf(X,)dt + VhdB,,

where (X;):>0 gives the positions of the atoms as a function of time, h > 0 is (pro-
portional to) the temperature (and will be assumed to be small in the following), and
(Bt)i>o0 is a d-dimensional standard Brownian motion. Let us consider 2 C R? a basin
of attraction) of a local minimum of f- In many cases of interest, the process spends
a lot of time within ) before leaving it, typically because the temperature h is small
compared to the energy barriers which have to be overcome to leave €: this phenom-
enon is called metastability, and an exit which occurs after a long relaxation time
within 2 is called a metastable exit (this will be formalized below using the notion
of quasi-stationary distribution). We are interested in the so-called exit problem [34],
which consists in precisely describing the exit event from €2 in the limit A — 0, namely
the law of the pair of random variables® (7, X.), where

(2) T=1inf{t > 0, X; ¢ Q}

is the first exit time from 2, and X, is thus the first exit point. More precisely,
we will show that for a metastable exit, in the limit h — 0, the law of (7, X) can be
approximated using a simple jump Markov model with exit rates from ) parametrized
by the celebrated Eyring-Kramers laws, a model which is sometimes called kinetic
Monte Carlo in the physics literature [91]. These exit rates are associated with the
local minima of f on 02, which are saddle points of f (namely critical points of f of
index 1) since Q2 is a basin of attraction. These points are on the most probable exit
pathways from €.

Before providing more details on this kinetic Monte Carlo model in the next para-
graph, let us emphasize that this question is both important in terms of modeling,

(1)Actually, as will be discussed below, since we require 2 to be a smooth bounded domain, one
may need to consider a small perturbation of a basin of attraction of f to apply our results, see
Remark 5.

(Q)Throughout this work, 2 is a fixed domain, and we therefore do not indicate explicitly the
dependency of 7 on .

JEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS 883

and in terms of numerical simulation of (1). In terms of modeling, it gives a rigor-
ous framework to prove that a coarse-grained version of the overdamped Langevin
dynamics is indeed the kinetic Monte Carlo dynamics (also known as Markov state
model) parametrized by the Eyring-Kramers laws. Actually, if the states form a par-
tition of R? (which is indeed the case, up to a null set, if one defines the states as
the basin of attractions of the local minima of f) and if all the exits are assumed
to be metastable, one can even use a kinetic Monte Carlo model not only to sam-
ple the exit from a metastable state, but to actually describe the full evolution of
the system, see for example [13, 79, 80, 91, 92, 76]. In terms of numerical simula-
tions, metastability implies that the direct numerical simulation of (1) is prohibitive,
because a lot of computational time is wasted in metastable states: using the simpler
underlying kinetic Monte Carlo model, one can then accelerate the sampling of the
exit event when the process (X;);>o remains trapped in a metastable state. This is
the cornerstone of the so-called accelerated dynamics algorithms such as temperature
accelerated dynamics [83] or hyperdynamics [90, 88], see [26, 62, 77] for more details.
These algorithms are widely used in practice with applications in material science,
see for instance [2, 73, 84, 33]. In this context, the states are very often defined as
basins of attractions of local minima of f: this is indeed numerically convenient since a
simple steepest decent algorithm can be used to identify in which state the system is.

Kinetic Monte Carlo and the Eyring Kramers law. — Let us recall that € is a basin of
attraction of a local minimum of f. Thus, f has a unique critical point in €2, which is
also the global minimum of f in €2, denoted by xg. Moreover, the local minima of f on
00 are saddle points of f, that we denote by {z1,...,2z,} C 9Q. The kinetic Monte
Carlo algorithm models the exit event from € through a pair of random variables
(Tkmc, Yime), where muc is the exit time and Ygmc € {z1,..., 2, } is equal to z; if the
process exits {2 through a neighborhood of z; in 9Q. The law of (Tkmc, Ykmc) requires
a collection of rates (k.).eqz,,...,z,} associated with the saddle points, and is defined
by the following three properties:

(i) the time 7ymc is exponentially distributed with parameter Zze{zl,...,zn} k,
(3) TkMC ~ 3( Z kz>;
z€{z1,....,2n}
(ii) Tkmc is independent of Yymc ; and (iii) for all z € {z1,... 2,1},
ks
Doy Ko

Moreover, in the setting of the so-called harmonic transition state theory, the
rates are defined using the famous Eyring-Kramers formula [38, 91]: for any z €

{Zl,...,Zn},

(4) P[Yumc = 2] =

(5) k, = P, e~ /MU (E)=(z0)

JE.P. — M., 2095, tome 12
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1 s

where, we recall, zg € 2 is the global minimum of f in 2 and the prefactor P, is

(©) P _ |pe2] v/ det Hess f(z0)
: 7 /|det Hess f(2)|’

where p, is the negative eigenvalue of Hess f(2).

Remark 1. — The Eyring-Kramers formulas are sometimes defined with a prefactor
which is the half of the right-hand-side in (6). This depends whether one considers
exit rates (as in this work) or transition rates (as for example in the works [8, 9]
where eigenvalues of the infinitesimal generator of the process (Xi)i>o are identified
with transition rates). The transition rates are half of the exit rates since, in the small
temperature regime, once the process reaches a saddle point z, it has a probability 1/2
to immediately come back to 2, and a probability 1/2 to actually make a transition
to the neighboring state (see e.g. [63, Rem. 8] for further discussions).

The objective of this work is to show that, for a metastable exit, in the limit
h — 0, the law of (7kmc, Ykmc) indeed approximates the law of (7, X;), in a sense
that will be made precise in the next paragraph. We will use the quasi-stationary
distribution approach to metastability, which appears to be very useful to study the
exit problem [55, 27, 6].

The quasi-stationary distribution approach to metastability. — As explained above,
we will study metastable exits, namely exits which occur after the stochastic process
(X¢)1>0 solution to (1) relaxes within Q. The notion of quasi-stationary distribution
gives a way to formalize mathematically this idea. Let us recall standard facts on
the existence and uniqueness of a quasi-stationary distribution for a diffusion process
(see for example [14, 18] for more details).

Derinirion 2. Let us denote by P(2) the set of probability measures supported
in Q. A quasi-stationary distribution in Q C R for a Markov process (X;);>o with
values in R? is a probability measure p € P(2) such that:

P,[X: € At
Vt >0, V measurable A C Q, pu(A4)=-- [Xi € At < 7]
P, [t <]

where 7 = inf{t > 0, X; ¢ Q}, and the subscript y in P,, indicates that Xo ~ p.

)

It is well-known (see for example [55, 15]) that for a smooth potential f and a
bounded smooth domain 2, the process (X;);>0 solution to (1) admits a unique quasi-
stationary distribution on €2, denoted by v, in the following. Moreover, the previously
cited works also show the following exponential convergence result:

de > 0,V € P(Q),3C (1) > 0,3t(p) > 0,
Vt > t(p),V measurable A C Q, |P,[X; € A|t < 7] —vp(A)] < C(p)e™ .

Therefore, if the process (X):>o remains trapped in € for a long-time, then X, is
approximately distributed according to the quasi-stationary distribution v, which
can thus be seen as a local equilibrium within Q. A metastable exit is then an exit

JIEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS 885

which occurs after this local equilibrium has been reached, namely (using the Markov
property) an exit for the process (X;)¢>o with initial condition X¢ ~ v

If Xo ~ vp, the exit event satisfies the two fundamental properties (see for example
[55, Prop. 2.4]):

(8) T~ &(Ap) and 7 is independent of X, .

With these two properties, one can use a kinetic Monte Carlo model to exactly sample
the exit event. Indeed, assume again for simplicity that ) is the basin of attraction
of a local minimum of f, and let us denote by W} C 9Q the stable manifold of the
saddle point z € {z1,...,2,} (see (13) below for a precise definition). Up to a null
set, the sets (Wj)ze{zl,...,zn} form a partition of the boundary 9f) of the basin of
attraction. Let us now introduce the rates: for any z € {z1,...,2,},

Py, [X; € WT]

9 Ko =
9) 2 E,, [7]

where the superscript of indicates that we consider the overdamped Langevin dyna-
mics (1). Then the kinetic Monte Carlo model parametrized with these rates generates
an exit event (7kmc, Ykmc) which is exactly consistent with the exit event (7, X)) of
the original dynamics (1). Indeed, using (3)—(4) and (8), one has: (i) 7kmc has the same
law as 7, (ii) 7kmc and Yygmc are independent, which is also the case for 7 and X,
and finally (iii) P(Yimc = z) = P(X,; € W ). The mathematical question, which is
the focus of this work, is now to prove that the rates k% can indeed be accurately
approximated by the Eyring-Kramers formulas (5).

As already mentioned above (see Footnote (1) and Remark 5 below), we will need
to assume that € is smooth and bounded. The smoothness assumption may require to
slightly modify the basin of attraction in the neighborhoods of the boundaries of W}
where 0 is not necessarily smooth (these are anyway typically high energy points
which are thus visited with an exponentially small probability when A — 0). There-
fore, we will not consider exactly k% but the following rates: for any z € {z1,...,2,},

P,, [X: € ]

(10) kg@(zz) = E [T] i

where ¥, is an open neighborhood of z in 92 which is positively stable for the gradient
dynamics & = —V f(x) and can be chosen arbitrarily large in 9QNW7. We will prove
that, under some geometric assumptions, these rates can indeed be accurately approx-
imated by the Eyring-Kramers formulas in the small temperature regime h — 0, see
Corollary 8 below. This requires sharp estimates of the probabilities that (X);>0
exits {2 through the neighborhoods ¥, of the saddle points z € {z1,...,2,}. These
precise approximations of the exit rates are used in particular in the temperature
accelerated dynamics algorithm [83] to extrapolate exit events observed at high tem-
perature to low temperature (see Remark 9 for a discussion underlying the similarities
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886 T. Leviivre, D. Le Peurrec & B. NEcroux

between our mathematical analysis and this algorithm). Let us now leave this infor-
mal presentation and present the precise setting and the main mathematical results
of this work.

1.2. MATHEMATICAL SETTING AND STATEMENTS OF THE MAIN RESULTS

1.2.1. Notation and definition. — In the following, ) is a smooth bounded domain
of R?. The function f : Q@ — R is assumed to be a € function, i.e., it is the restriction
to Q of a smooth function defined on R?. We still denote by f a smooth extension of
f:Q — R to R% Since the quantities of interest in this work only depends on the
values of f in the bounded set 2, we assume throughout this work without loss of
generality that the extension of f is such that:

(11) sup |V f(z)| + sup |Hess f(z)| < +o0,
z€R z€R

where Hess f(z) denotes the Hessian matrix of f at x € R%.

Basic notation. — The open ball of radius » > 0 centered at z € R is denoted
by B(z,r). The unit outward normal to Q at z € 9Q is denoted by nq(z). The
normal derivative on 9 of a smooth function f : € — R is denoted by O, f. Its
tangential gradient on 9f is denoted by Vr f. We will simply write {f < a} for the
set {r € Q, f(z) < a}.

Index of a critical point. — A point x € Q0 is a critical point of f if |V f(x)| = 0. The
critical point x is non-degenerate if furthermore Hess f(z) is invertible. The function f
is a Morse function if all its critical points in {2 are non degenerate. The non-degenerate
critical point z is of index p € {0,...,d} if Hess f(x) admits p negative eigenvalues.
A saddle point is a non degenerate critical point with index 1. Notice that the index
of a critical point on 9§ does not depend on the extension of f outside .

Stable and unstable manifolds. — Let x € R? and denote by ¢, (t) the maximal solu-
tion to the ordinary differential equation (which is defined for all ¢t € R by (11)):

(12) L ou(t) =~V (alt)) with 9a(0) = .

When z € R? is a saddle point of f, we denote by W} and W respectively the stable
and unstable manifolds of z for the dynamics (12), i.e.,

+ _ d : —
(13) WT = {x € RY, t_lgimoo v (t) = z}
Let us recall the stable manifold theorem (see [50, Cor. 6.4.1]).

Turorem (Stable manifold theorem). Let f: R — R satisfying (11), and let z be
a saddle point of f. Then, W and W7 are € embedded manifolds, with dimensions
d—1 and 1 respectively. Moreover, the tangent spaces of WF and W at point z satisfy

T,W} =Span(e;...,eq—1) and T,W, = Span(e;),

JEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS 887

where (e1,...,e4—1) is a basis of eigenvectors associated with the d — 1 positive eigen-
values of Hess f(z) and eq is an eigenvector associated with the negative eigenvalue of
Hess f(z).

Agmon distance. — Let us introduce the Agmon distance on Q which will be used to
state our main results below.

DeriNtrion 3. Let f : Q — R be a @ function. The Agmon pseudo-distance
between two points € Q and y € Q is defined by:

1
dutwn)=__int [ VGO 0]

where C! (x,y) is the set of curve v : [0,1] — Q which are €! with v(0) = z, y(1) = .

Since f has a finite number of critical points in Q (which is indeed the case if f is
a Morse function on Q), d, is a distance since for all z,y € Q, d,(z,y) = 0 if and only
ifx=uy.

1.2.2. Assumptions. — Let us now gather in the following assumption all the geomet-
ric requirements on €2 and f.

Assumprion (-f). — The set © is a € bounded domain of R?. The functions
f:Q— R and f|spq are € Morse functions. Moreover:

(1) The domain  is positively stable for (12): Vz € Q, Vt > 0, ¢, (t) € Q. More-
over, there exists xg €  such that for all x € Q, limy_, 1 o @4 (t) = 0.

(2) For any critical point z € 9 of f, there exists an open subset I', of 9Q
containing z and satisfying the following:

(a) If z is a saddle point of f, then
(14) I, cWi,
and T, is positively stable for the dynamics (12): Vo € T',,Vt > 0, ¢, (t) € T,.
(b) If z is not a saddle point of f, then d,,f =0 on I',.
(3) All the local minima of f|sq are saddle points of f.

Assumption (£2-f) has simple consequences that will be used many times in the
following (the proofs are standard, and provided in Section A.1 for completeness).

Lemwva 4. The following holds:

(1) Assume that item (1) in (Q-f) is satisfied. Then On,f = 0 on OQ and xg
is the only critical point of the function f in . There is no local minimum of f
on 0. Furthermore, f(xo) = ming f < mingg f, {f < mingq f} s connected and
O{f < mingq f} NN = argminy, f.

(2) Assume that (Q0-f) is satisfied. For all z € 02 such that [V f|(z) =0, na(z) is
an eigenvector of Hess f(2) associated with a negative eigenvalue.

JE.P.— M., 2095, tome 12



888 T. Levivee, D. LE Peutric & B. NecTtoux

my

Ficure 1. The basin of attraction A(0) = (—1,1)? (for the dyna-
mics (12)) of the local minimum 0 € R? of the Morse func-
tion f(x,y) = —cos(mx) — cos(my). There are 8 critical points
on OA(0): four saddle points (z1, 22, 23,24) and four local maxima
(m1, ma, m3, my). Each edge of the square (—1,1)? is the stable man-
ifold of the saddle point it contains. In thick lines, a domain §2 satis-
fying (2-f). In dashed lines, the level sets of f.

Other simple consequences of Assumption (£2-f) are the following. If z # x are
saddle points of f, then I', N T, = @. For 2z a saddle point of f, the existence of
a set ', whose closure is arbitrarily large in W} and which is positively stable for
the dynamics (12) is ensured by [27, Prop. 80], and € can then be defined such that
I, C 09, see Remark 5. If z is a saddle point of f one can check that On,f =0 on I,
(since T, € WF N 99Q). Finally, all the saddle points of f in £ necessarily belong to
09, and coincide with the local minima of f on 9.

Remark 5. — Let A(zg) be the basin of attraction of zq for the dynamics (12). As ex-
plained in the introduction, practitioners typically use as a definition of a bounded
metastable domain the whole basin of attraction A(zg), which indeed naturally satis-
fies all the Assumptions (Q-f), except in some cases the smoothness assumption (2 is
indeed assumed to be € in (Q-f)). More precisely, dA(zg) is smooth on W} for
all z € {z1,...,2n}, OA(0) = U.epsy oy W1 (see [69, Th.B.13]), but singularities
may occur on the boundaries of W} . In such a case, a domain Q C A(zg) satisfying
(£2-f) can typically be obtained from A(z() by slightly modifying it in neighborhoods
of the points of the boundary dA(zy) where dA(xo) is not smooth, see for example
Figure 1 for a schematic illustration in dimension 2. This modification typically only
concerns high energy points, which are anyway visited with an exponentially small
probability by the dynamics (1) in the regime h — 0.

Derinition 6. — When (Q-f) holds, the saddle points of f in Q are denoted by
{#z1,...,2n} C 09 and ordered such that

(15) min f = £(:1) =+ = F(ng) < Fng 1) < -0 < f(z).

JEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS 88()

The cardinal of arg min f|sq is thus ng € {1,...,n}. Forall k € {1,...,n}, u,, is the
negative eigenvalue of Hess f(z). For all k € {1,...,n}, we denote by ¥,, C 9Q an
open set such that

(16) 2 €Y, and X, CT,,.

A schematic representation of Q, xq, {z1,...,2,}, and {Z,,,..., 2., } is given in
Figure 2 when n = 4.

1.2.3. From stochastic processes to partial differential equations. — In order to give
sharp asymptotic estimates of the rates (10) when h — 0, we will rewrite the law
of the random variable (7, X ) using the first eigenvalue and eigenvector of the infini-
tesimal generator of the process (1) with homogeneous Dirichlet boundary conditions
on ). The small temperature regime then consists in analyzing the semi-classical limit
of this eigenstate.

Let us denote by

h
(17) Lfh = —5A+Vf-¥

the opposite of the infinitesimal generator of the process (1). Let HA (2, e~ /M dx)
be the set of functions g € H'(Q, e~ (3/Mfdz) such that g = 0 on 9. The operator
L) on L2(Q,e~@/Mf dz) with domain

H2(Q, e~ @MW d)y 0 HE (Q, e /M dz) = {we H2(Q,e” /M dz) w =0 on o0}

is denoted by L?’i;L(O)(Q). The superscripts Di and (0) respectively indicate that the

operator is supplemented with Dirichlet boundary conditions, and acts on func-
tions, namely 0-forms (operators on 1-forms will be also considered, see Section 2.5).
The operator L?,i,’l(o) (Q) is the Friedrichs extension (see for instance [40, §4.3]) on
L?(Q, e~ (2/M1dg) of the closed quadratic form

19 b € By, an) — b [ oy
Q

The operator L?f;l(o)(ﬂ) is thus a positive self-adjoint operator on L?(€2, e~ (/M fdz).
In addition, it has a compact resolvent (as follows from the compact injection
HY(Q, e~ @M dy) C L2(Q,e=(2/M/dx)). Then, by standard results on elliptic opera-
tors, its smallest eigenvalue )\, is simple and any associated eigenfunction wuy is €*°
on Q and has a sign on Q (see for instance [31, §§6.3 & 6.5]). Without loss of
generality, let us assume that:

(19) up >0on Q  and / uy e~ @/ — 1.
Q

Then, by the Hopf lemma (see for instance [31, §6.4.2]), one has dh,up > 0 on ON.
Let us now go back to the probabilistic setting introduced in Section 1.1 and rewrite
the rate (10) in terms of (An, up) (see for example [55] for proofs of these results). The

JE.P. — M., 2095, tome 12
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unique quasi-stationary distribution v, of the process (X¢):>o in § can be written in
terms of wuy, as follows:

uh(x)e_(2/h)f(w)
20 dz) = dz.
(20) vn(dz) Joyun(y)e M@y “

Moreover, if Xg ~ v, the parameter of the exponential random variable 7 is Ap
(in particular E,, (1) = A\; 1), and the law of X, can be written in terms of (A, up)
as follows: for any bounded measurable test function ¢ : 002 — R,
ko o () Ongun (x)e~ /M@ g (dr)

2\ fQ uh(y)e*(z/h)f(y)dy ’
where o is the Lebesgue measure on 0f). Using these properties, the rate (10) can
thus be written in terms of wy: for all z € {z1,..., 2,1},

hfz 5‘nnuhe’(2/h)fda

2 fQ uhe_(Q/h)f
Proving that the transition rates (10) are accurately approximated by the Eyring-

Kramers laws (5) in the limit A — 0 thus requires in particular to get precise estimates
of Ong,upn on each 3,.

(21) Elp(X-)] =

(22) k'(2.) =

1.2.4. Main results. We are now in position to precisely state our main results.
Theorem 1 and Proposition 7 give precise asymptotic estimates on (Ap,up) in the
limit A — 0.

Turorem 1. — Let us assume that the assumption (Q-f) is satisfied. Then, for all
ke {l,...,no} it holds in the limit h — 0

(23) / Ongun e~ M do
S,
oy (et Hess £ (20)
73/4| det Hess f(zk)’1/2

1/4

B/ (UG- (1 4 O(vR)),

where uyp, s the principal eigenfunction of L?i,’l(o)(Q) with the normalization (19).

In addition, there exists ¢ > 0 such that, when h — 0
(24) / O ¢~ /M g = O (- (1/WCIE)—F o)),
oa~Up2, DIP

Moreover, assume that:

(25) Vke{l,...,n}, inf  du(z,2k) > max[f(zn) — f(2x), f(zr) — f(21)],

zEBQ\sz
and
(26) f(z1) = f(wo) > f(zn) — f(21).
Then, for allk € {no+1,...,n}, it holds in the limit h — 0:
(27) Ongune” M o
PP
© 2l |(det Hess f(xo)) "

p/A=1 o= (/M EIGD=1@o) (1 4 O(VR)).

7r3d/4‘det Hess f(z;f)’l/2
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Assumptions (25) and (26) are required to prove (27) with our analysis. In partic-
ular, Assumption (25) ensures that all the saddle points zx, k € {1,...,n}, are well
separated in terms of the Agmon distance d,, which measures the exponential decay
of eigenforms away from critical points [41]. Without such an assumption, it has been
numerically observed in [27, §1.6.2] that (27) does not hold, in a slightly different
framework, namely when the normal derivative of f is strictly positive on 9Q (and
thus the z;’s are so-called generalized saddle points, namely local minima of f on 9Q).

Prorosirion 7. —  Let us assume that the assumption (Q-f) is satisfied.
(28) / up e~ /M = (rp)d/4 (det Hess f (o)) Mt e ming /(1 + O(h)).
Moreover, Zf holds in the limit h — 0:

< |z, | (det Hess f(a:o))l/2

(29) N\, = 75 67(2/h)(f(Z1)ff(mo))(1 + 0(\/5))_
=1 7T|detHebsf Zp |

Using the expression (21) for the law of the exit point X, Theorem 1 and Propo-
sition 7 yield the following sharp estimate of this law:

Tueorem 2. — Let us assume that the assumption (Q-f) is satisfied. Then, for all
ke {l,...,no}, it holds in the limit h — 0:

_ |U2k| ( |/Lzz| >_1
(80) P [Xr € 2] = +/|det Hess f(zx)| Z + \/|det Hess f(z()| +OWh),

In addition, there exists ¢ > 0 such that in the limit h — 0:
(31) P, [X, € 00N Up2, 2., < e /b

Finally, if (25) and (26) are satisfied, it holds for allk € {ng + 1,...,n}, in the limit
h —0:

12N < [, | ) o
32) P, [X,eX,]=
(32) ol o) +/|det Hess f(zx)| Z + \/|det Hess f(z¢)]
« e~ 2/M)(f(zr)— f(zl))(l + O(\/ﬁ))
As a corollary of Theorem 2 and Proposition 7, one immediately gets the following
sharp estimates of the exit rates defined in (10):

CoroLrary 8. — Let us assume that the assumption (Q-f) is satisfied. Then, for all
ke{l,...,ng}, it holds in the limit h — 0:

detH
(33) ket (my) = Mzl VIR0 —amisenr—sonn (1 4 O(VE)).
™ |det Hess f(zk)\
In addition, if (25) and (26) are satisfied, it holds for all k € {ng+1,...,n}, in the
limit h — 0:

z
(31)  Ko(xy) = Manl VAHSF@0) /s (1 4 o(v/E).
™ |det Hess f(z )\
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As discussed in Section 1.1, Corollary 8 thus justifies the approximation of meta-
stable exits of the overdamped Langevin dynamics (1) by a kinetic Monte Carlo model
parametrized with the Eyring-Kramers formulas.

We will also show that Theorem 2 extends to deterministic initial conditions = € Q)
as follows (the subscript x in P, indicates that Xy = x).

Turorem 3. — Let us assume that the assumption (Q-f) is satisfied. Let K be a
compact subset of Q. Then, for all k € {1,...,ng}, it holds in the limit h — 0:

. quk| :u‘Zel )_1
(35) PolXr € 2] = /|det Hess f(z1)| <Z /|det Hess f(z¢)] +O(h),

uniformly in x € K. In addition, there exists ¢ > 0 such that in the limit h — 0:

(36) sup P.[X; € 00\ Uy, 52 ] e/

Let us assume that (25) and (26) are satisfied. Assume in addition there exists £y €
{no+1,...,n} such that
(37) 2(f(2e0) — f(21)) < f(z1) = f (o)

Let ko € {no+1,...,4} and a. € R be such that f(zo) < o < 2f(21)— f(2x,) (notice
that necessarily o, < f(z1) = mingg f). Then, it holds for k € {no+1,...,ko} in the
limit h — 0:

2, <" 2| )1
38) P X,eX,]|=
(38) [ 2 |det Hess f(zx)] Z |det Hess f(2¢)]

e~ 2/h)(f(z)—f(21)) (1 + O(\/E)),

uniformly in x € {f < ay}.

Before precisely discussing related results in the literature, let us provide some pre-
liminary comments on the statements presented in this section. First, Equations (30)—
(31) and (35)—(36) show that the most probable places of exit from Q as h — 0 are
{#1,...,%ny }, and they provide the relative probabilities of exiting through (neigh-
borhoods of) these points. Moreover, Equations (31) and (38) give precise asymptotic
estimate of the probability to leave through higher energy saddle points. All these
results can be seen as generalizations of those previously obtained in [27] and of some
results in [28], where it is assumed that J,, f > 0 on 9. In this case, the local minima
of f on 0N play the role of saddle points, and different prefactors than (6) appear in
the asymptotic rates, for example. Let us finally emphasize that, as will become clear
from the proofs, all the error terms O(\m) follow from the Laplace method applied to
integrals on R? and are optimal, see the computations leading to (201) (see also [58,
Rem. 25 & 39] for more details).
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1
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Ficure 2. Example of a domain Q with n = 4 saddle points {z1,...,24}.

1.2.5. A short review on mathematical approaches to metastability. — In this section,
we succinctly present two aspects of metastability which have received attention from
the mathematical community: the exit problem (which is the focus of this work) and
the spectral analysis of the infinitesimal generator.

On the exit problem. — Even though the exit problem from a basin of attraction of a
local minimum of f is a very natural question, this setting has not been considered
up to now in the literature, at least to the best of our knowledge. This is essentially
because of the mathematical difficulties induced by the presence of critical points of f
on the boundary. Let us recall the main results which have been obtained.

Let us first mention that early inspiring formal computations were conducted by
Z.Schuss and co-workers [67, 74, 68]. In terms of rigorous proofs, two techniques have
then been developed, based on large deviations or the analysis of partial differential
equations associated to the stochastic process.

From a probabilistic viewpoint, the exit problem has been studied a lot using large
deviation techniques, pioneered by M.I. Friedlin and A.D.Wentzell [34]. Typically,
results are only obtained on h-log limits of the mean exit time 7 and of the law
of the exit location X, under the assumption that f does not have critical point
on 01, see also the developments by M.V. Day and M. Sugiura [21, 20, 23, 22, 86, 85]).
A noteworthy exception is the work [24] by M. V. Day where large deviations principles
are given for some conormally reflected processes with attractors on the boundary.

Techniques based on parabolic or elliptic partial differential equations associated
with the stochastic process have also been developed in particular by S. Kamin [51, 52],
H.Ishii and P.E. Souganidis [47, 48], B. Perthame [78], and more recently D. Borisov
and D. Sultanov [7]. In particular, these articles study the concentration of the law
of X; on the global minima of f on 9 in the limit A — 0. In these works, it is again
assumed that f does not have critical points on the boundary. Let us mention [66]
for early results on the h-log limits of the smallest eigenvalues of and [75] for sharp
asymptotic equivalents on the mean exit time E[r] when f has critical points on 9€.
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Notice that h-log limits cannot be used to compute the relative probabilities of exits
through the lowest saddle points {z1,...,2n, }. Moreover, Equations (35) and (36)
extend the results of [34, Th.2.1] and [52, 51, 78, 22, 23, 64] to the case when f
has critical points on 0€2. Let us however acknowledge that even if the techniques
mentioned above seem inherently limited to h-log limits, some of them are robust
enough to apply to non reversible elliptic processes, or quasilinear parabolic equations
(see [34, 21, 20, 23, 22, 47, 48]), whereas we only consider reversible dynamics here.

Spectral problem and the Eyring-Kramers laws. — The focus of the present work is
on the exit problem (exit time, and first exit points), and we prove that the Eyring-
Kramers laws precisely describe the exit rates from a basin of attraction of the poten-
tial energy function. In the mathematical literature, the Eyring-Kramers laws have
also been obtained in a different context, namely when studying the smallest eigen-
values of the infinitesimal generator (seen as an operator on R) of the overdamped
Langevin process, see the definition (17) of Lgc(’),)L. Two variational techniques have been
used, based either on tools from potential theory or from spectral theory (see [3] for
a nice review).

Let us first mention that sharp lower and upper bounds on the small eigenvalues
were obtained in the pioneering works [71, 46]. Then, A.Bovier and collaborators
developed in [8, 9] a potential theoretic approach [10] to obtain precise equivalents of
the n, smallest eigenvalues of Lgfj,)L7 np being the number of local minima of f in RY.
It is also proved that the non-zero eigenvalues coincide with the inverses of mean
transition times to go from one local minimum of f to any of the other local min-
ima with smaller energies. This potential theoretic approach have then been further
developed by N. Berglund and co-workers [5, 4], and by C. Landim and I. Seo [53, 61],
in particular for generalizations to non-reversible diffusions.

Using tools developed to analyze the semi-classical limit of the Schrédinger opera-
tor, similar results on the low-lying spectrum have been derived by B. Helffer, M. Klein
and F.Nier in [41]. See also the recent works [57, 70, 60, 59] for generalizations,
and [45] for asymptotic equivalents of the smallest eigenvalues of the kinetic Langevin
operator. Let us mention the nice work [69] where it is proved that Poincaré and
Logarithmic-Sobolev inequalities constants asymptotically satisfy an Eyring-Kramers
law in the limit h — 0.

Let us finally emphasize that the two problems we have discussed up to now in this
section (the exit problem, and the low-lying spectrum of LSS;L in R?) are different in
nature. In particular, the exit problem requires to precisely study the law of the first
exit point in order to estimate all the the exit rates.

1.2.6. Strategy of the proofs and mathematical novelties

Strategy of the proofs and organization of the article. — Let us provide a concise pre-
sentation of the strategy of the proofs, together with an outline of this work. In view
of Theorem 1 and (22), one needs precise asymptotic estimates of of Vuy,-ng on 0%, as

h — 0. Recall that wy, is the principal eigenfunction of L?yi,’l(o) (Q): L?j}’l(o) (Q) up, = Apup.
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The cornerstone of the proof of Theorem 1 is that Vu, also satisfies an eigenvalue
problem (with the same exponentially small eigenvalue Ay ), obtained by differentiat-
ing the previous equation:

L) Vup = Ay Vg, in
(39) N Veruy = 0 on 99,
(_5 div —|—Vf->Vuh — 0 on 99,

where Lgcll)l = —%A + Vf -V + Hess f is an operator acting on vector fields, trivially
identified with 1-forms in this Euclidean setting, and where Vrtu;, denotes the tan-

gential gradient of the function uy on 9. In the following, the operator L;l})L with tan-

gential Dirichlet boundary conditions, as introduced in (39), is denoted by L?j;fl)(Q).
(a)

For ¢ € {0,1}, let us denote, by 7" the orthogonal projector of L?j;l(q)(ﬂ) on the

eigenspace associated with the eigenvalues of L?’i;L(q)(Q) smaller than a constant cg

independent of h. From (39), it holds, in the limit A — 0,

(40) Vuy, € Ranm",

where Ran ﬂ,(Ll) stands for the image of the projector 77,(11). The first step of the anal-
ysis thus consists in studying the spectrum of the operators L?",’l(q)(Q), qg € {0,1}.
This is done in Section 2 in a rather general setting (in particular without assuming
that all the local minima of f on the boundary are necessary saddle points of f),
since this study has its own interest. We will prove in particular (see Theorem 4 and
Corollary 25) that for some ¢, and for all h sufficiently small,

1)
h

(41) Ran W}(LO) = Spanu, and dimRanm;’ =n.

Then, in order to study the asymptotic behaviour of w;, and Vuj, when h — 0,
we construct in Section 3 a suitable orthonormal basis of Ran wgl) (in the weighted
Sobolev space L2 (), see Section 2.5.1) using so-called quasi-modes {ffl), . ,f,(Ll)}
(see in particular Propositions 26 and 27). These quasi-modes {f{l), e ,fr(Ll)} are built
such that for each k € {1,...,n}, f,(cl) is essentially the principal eigenform of the
operator L?;L defined on a domain Q%’I C Q, with mixed Dirichlet-Neumann boundary
conditions, where the domain Q}i’l is constructed in Proposition 30 (the superscript M
refers to the fact that mixed Dirichlet-Neumann boundary conditions will be con-
sidered on 9OM). The only critical points of f in QM are zo and z, so that f.")
gather information on the exit through zx. In particular, with these quasi-modes

{1‘1(1)7 .. ,fy(Ll)}, one has: for all k € {1,...,n},
(42) / Ong, U, e~ /Mgy ~ <VU(O),f£1)>Li(Q)/ f,gl) ‘ng e ¥Migs as h — 0,
., b

zk
and (Vu(©®, f,gl)>L2 @ and [§ f,(cl) -ng e~ ?/Mfdo have the expected asymptotic
.
behavior leading to Theorem 1. Here, the function u(®) is an approximation of uj, (see
Definition 41). More precisely, we construct Q) in a way that allows us to compute the

asymptotic equivalent of the principal eigenvalue A(Q)!) of the operator Lgtll)l defined

JE.P. — M., 2095, tome 12



896 T. LeLikvre, D. LE PEutric & B. NEcroux
) ,

with mixed Dirichlet-Neumann boundary conditions on Q%’I, with techniques recently
used in [58]. We then show that the asymptotic equivalent of A(Q)) provides the
required asymptotic equivalent of the right-hand side in (42), for each k € {1,...,n}.
This method to estimate szk Ong, U, e~ @/Mfdo is the main difference with the ap-
proach used previously in [27].

Finally, Section 4 builds on the two previous sections to prove the main results
stated in Section 1.2.4: Section 4.1 is devoted to the proofs of Theorem 1, Proposi-
tion 7, Theorem 2, and Corollary 8; Section 4.2 contains the proof of Theorem 3.

The appendix gathers various technical results and additional comments.

Remark 9. — Interestingly enough, in the Temperature Accelerated Dynamics algo-
rithm [83, 1, 26], the numerical method consists in sampling successive exits through
the saddle points (zr)i<k<n at high temperature by imposing reflecting boundary
conditions on the already visited transition pathways, and then to infer the exit event
that would have been observed at low temperature using the Eyring-Kramers laws
(see Corollary 8). Imposing reflecting boundary conditions on the dynamics is equiva-
lent to introducing Neumann boundary conditions on the infinitesimal generator, and
the sampled exits are thus very much related to the principal eigenforms (f,(cl))lgkgn
that we use as quasi-modes. For example, in the procedure outlined above, the exit
through 2y, is exponentially distributed with parameter A(Q})) (in the regime h — 0).

Mathematical novelties. — Let us finally emphasize the main mathematical novelties
and difficulties of the present work, which is the first to precisely analyze the exit
problem from a domain 2 when the local minima of f on 02 are saddle points of f.
We actually studied a similar problem in [27], but under the less natural assumption
that Oy, f > 0 on 0. The presence of critical points of f on 0f2 implies substantial dif-
ficulties from a mathematical viewpoint. First, to prove dim Ran 7r,(11) = n, we extend
the analysis of [42] (see Remark 12 for more details), which is of independent interest.
This is the purpose of Section 2 on the Witten complex, see more precisely Theo-
rem 4. Second, we develop a new approach to compute the asymptotic equivalents
as h — 0 of the right-hand side of (42) without relying on WKB approximations
which were used for example in [27]. Though WKB approximations are very pow-
erful and central tools on which rely many works in semi-classical analysis (see for
instance [44, 39, 29, 41, 42]), the fact that both z;, € QM and z; is a critical point
of f prevent us from using previously constructed WKB approximations for Witten
Laplacians [44, 42] (this is explained in more details in Section A.2). Third, the proof
of Theorem 3 uses other arguments than the one made to prove [27, Cor. 16] especially
because the results of [30] (based on techniques from the large deviation theory) do
not hold when f has critical points on 99 (see the discussion after Corollary 47).
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fessor at Imperial College of London, with a visiting professorship grant from the
Leverhulme Trust. The Department of Mathematics at ICL and the Leverhulme Trust
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2. NUMBER OF SMALL EIGENVALUES OF THE WITTEN [LAPLACIAN
In all this section, the following general setting is assumed:

Assumrerion (M-f). Let M be a € oriented compact and connected Riemannian
manifold of dimension d, with boundary OM and interior M. The metric tensor on M is
denoted by gm. Let f : M — R be a C* function. The functions f : M — R and f|am
are assumed to be Morse functions. Finally, for all € OM such that |V f(x)| = 0,
there exists a neighborhood VZM of 2 in OM such that:

Yy e VOV, 0n, fly) = 0.

Notice that (M-f) implies that f and f|om have a finite number of critical points.
Since the normal derivative On,, f is zero around critical points on M, OM is said to
be characteristic (for the function f) in these regions. Let us recall that this condition
is in particular natural when M C R? is the basin of attraction of a local minimum
of f.

The objective of this section is to relate the number of critical points of index p of f,
to the number of small eigenvalues of the Witten Laplacian acting on p-forms with
tangential Dirichlet boundary conditions on OM, see Theorem 4 below. This result is
standard for manifolds without boundary [93, 44, 82, 45], and has been proved in [42,
Th. 3.2.3] for manifolds with boundaries but when f does not have critical points
on OM (see also [54, 56]). This section is organized as follows. The Witten Laplacian
is introduced in Section 2.1. The main result is stated in Section 2.2 and proved in
Section 2.4, after the study of model problems on the half space R% in Section 2.3.
Finally, consequences of these results to the particular problem of interest in this work
are detailed in Section 2.5, with in particular the proof of (41).

2.1. WITTEN LAPLACIAN WITH TANGENTIAL DIRICHLET BOUNDARY CONDITIONS

2.1.1. Notation for Soboley spaces. Let us introduce standard notation for Sobolev
spaces on manifolds with boundaries (see [81] for details). For ¢ € {0,...,d}, one
denotes by A€ (M) (respectively A9C3°(M)) the space of > g-forms on M (respec-
tively on M and with compact support in M). Moreover, the set AZC5°(M) is the set
of C>° g-forms v such that tv = 0 on OM, where t denotes the tangential trace on

forms. For ¢ € {0,...,d}, A9L%(M, gy) is the completion of the space A?C>(M) for

the norm 1/2
w € AIC (M) s (/ |w2> .
M

For m > 0, one denotes by AZH™ (M, gm) the Sobolev spaces of g-forms with regularity
index m: v € ATH™(M, gn) if and only if for all multi-index o with |a| < m, the «
derivative of v is in AYL?(M, gum). Let us recall for a multi-index o = (a1, ..., aq) € N,
la| = Z?Zl o; and 9% = *(9%1v,...,0%¢v). We will denote by ||| gmm,g,) the
norm on the space AYH™(M,, gm). Moreover (-, -)12(m,g,,) denotes the scalar product
in A7L?(M, gm). For ¢ € {0,...,d} and m > 1/2, the set AYH (M, gwm) is defined by

AHT (M, gm) :={v € ATH™ (M, gm), tv =0 on OM}.
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We will always explicitly indicate the dependency on the metric gy in the notation of
the Witten Laplacians or associated quadratic forms, but often omit it in the notation
of the Sobolev spaces and associated norms®, to ease the notation.

2.1.2. Tangential Dirichlet boundary conditions. — In this section, we introduce the

tangential Dirichlet Witten Laplacian and recall some of its properties. For ¢ €

{0,...,d}, one defines the so-called distorted exterior derivative & la Witten dgff,)1 :

A9€(M) — A9T1€>(M) and its formal adjoint d'f) * : A1 (M) — A9€>(M) by
d;‘l})l — o~ (/M b 4@ (/R)f and d}qz * = (/M d(@) % o= (/)

where d(9) is the differential operator on M and d(9) * is the co-differential operator on
the manifold M equipped with the metric tensor gm. We may drop the superscript (q)
when the index of the form is explicit from the context. The Witten Laplacian, firstly
introduced in [93], is then defined similarly as the Hodge Laplacian Ag)(M, gm) =
(d+d*)? : AC>®(M) — A9C>(M) by

AW (M, gu) = (dgn +d5 )7 = dpadf, +d5 s 0 ATCT(M) — ATC%(M).
Equivalently, one has
(43) AY) (M, gu) = h2AW (M, gw) + V2, + h(Lvs + Lb)),

where Ly ¢ is the Lie derivative associated with the vector field V f. Here and in the
following |.|g, stands for the norm in the tangent space associated with the metric
tensor gu. Let us now introduce the Dirichlet realization of A;?ZL(M, gm) on AYLZ(M),
following [42, §2.4].

Prorosition 10. — Let us assume that (M-f) is satisfied. Let ¢ € {0,...,d} and
h > 0. The Friedrichs extension of the quadratic form

Di, *
QTP M. gu) : w € ATHE(M) — [ld gl 32y + 147 w72
on A1L%(M) is denoted by A?yi;fq)(M,gM). Its domain is
D(AYD (M, gu)) = {w € ATHL(M) N ATH?(M), td},w =0 on OM}.

Moreowver, A?j;fq)(M7 gm) is a self-adjoint operator, with compact resolvent. Finally it

holds, for all Borel set E C R and u € AYHAL(M),

(44) TR (A?j;l(qul)(M, gM)) deLu = df’h TR (A?jil(q)(M7 gM)) u
and
(45) 7e (AT (M, gw)) & u = df ), 75 (AT (M, gw)) .

(3)Of course, if M is a manifold satisfying (M-£) (in particular M is compact), only the norms
depend on the metric gy, but not the Sobolev spaces. We will also use in the following Sobolev
spaces on R? | which is not compact.
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Here and in the following, for a Borel set £ C R and T a non negative self-adjoint
operator on a Hilbert space, 7g(T) denotes the spectral projector associated with T
and F.

The following standard lemma will be used several times throughout this work.

Lemma 11. — Let (T, D (T)) be a non negative self-adjoint operator on a Hilbert space
(3, ] - |) with associated quadratic form qt(x) = (x, Tx) whose domain is Q (T).
It then holds:

gr(u)

-

Generally speaking, a H-normalized element u € D (T) such that |7y, 4o0)(T) ul|
is small is called a quasi-mode for the spectrum in [0,b] of T.

The objective of this section is to count the number of eigenvalues smaller than ch

Vb >0, Vu € Q(T), || b 4oo) (T) ul|”

(for some ¢ > 0) of AD' (M gm), namely to identify the dimension of the range of
M[0,ch] (A : Q)(M gM)), for h sufficiently small.

2.2. NUMBER OF SMALL EIGENVALUES OF A (Q)(M gm). — Before stating the main
result of Section 2, let us introduce a feW more notation. Let us assume that (M-f)
holds. Let z € OM be a critical point of f (i.e., [V f(z)] = 0). Then, z is a critical point
of flom and the unit outward normal ny(z) to M at z (see item (2) in Lemma 4) is
an eigenvector with the associated eigenvalue:

(46) iz = "nu(2) Hess f(2) nu(2).

Let us now introduce the set of so-called generalized critical points of f for the oper-
ator A?jh(M, gm), which can be seen intuitively as critical points for the function f
extended by —oo outside M. For ¢ € {0,...,d}, the standard critical points with
index ¢ in M are:

= {x € M, x is a critical point of f of index q},

with cardinal mg" = Card(Ug"). Two additional sets of generalized critical points with
index ¢ on OM should be considered. First, let us introduce

(47) UIMI= {z € OM, z is a critical point of f|om of index ¢—1 and 9y, f(z) > 0},
with cardinal quM’l = Card(UgM’l), and with the convention that UgM’l = @ for
q = 0. Second, one defines,
(48) U,?M’2 ={2€ M, [Vf(z)| =0, z is a critical point of f|om

of index ¢ — 1 and p, < O},

with cardinal m‘w| 2= Card(UaM %), and with again the convention that U(?M 2=y

for ¢ = 0. Finally, one defines the total number of generalized critical points with
index ¢:

(49) m, _m +m6M1+m8M2

Let us now state the main result of this section.
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TaEOREM 4. Let us assume that (M-f) holds. Then, for all ¢ € {0,...,d}, there
exists ¢ > 0 and hg > 0 such that for all h € (0, ho):

dim Ran 7 ¢ (A h(a )(I\/I gm)) =my, where my is defined by (49).

Let us mention that this result is proved in [58] for ¢ = 0 under a weaker assumption
than (M-f).

The proof of Theorem 4, inspired from [42, §3] and [19], consists in finding where the
L?(M, gu)-norms of eigenforms associated with eigenvalues of order o(h) concentrate
in M, and in determining a finite dimensional linear space close to them. We first
study in Section 2.3 model problems on R% where

RY = {z = (a/,2q), o' = (x1,...,2q.1) € R 24 €R, x4 <0},
before providing the proof of Theorem 4 in Section 2.4.

Remark 12. — Let us mention that the main difference with [42, Chap. 3] is that
we cannot use a block-diagonalization of the metric gy and of the function f near
the critical points in OM, which would lead to an exact tensorization into a Witten
Laplacian in a variable 2’ € OM and a Witten Laplacian in a variable 4 € R_.
We actually only decompose the metric gy in a local system of coordinates near the
critical point, constructed with the geodesic distance to the boundary. Then, using
the fact that 0, f = 0 near critical points on OM, it appears that a local asymptotic
expansion of f in these coordinates is precise enough to count the number of small
eigenvalues.

Remark 13. — A simple consequence of the above results is the following finite dimen-
sional Dirichlet complex structures for Witten Laplacians on bounded domains under
the assumption (M-f):

i, drn
{0} — Ranmg cp (A?};L(O)(M%M)) L

dy, dfn
S Ran g g (AH? (M, gu)) —L5 {0}

and
d*
{0} <—Ran7r[06h](A YO(M, gy)) L

d*
T Ranig o (A% (M, gu)) +— {0},
These, combined with Theorem 4, yield strong Morse inequalities. This generalizes
standard results for the Witten Laplacians in the full domain [44, 19, 93] or on
bounded domain without critical points on the boundary [42, 56] (see also [54, 16]).

2.3. NUMBER OF SMALL EIGENVALUES OF WITTEN LapLacians in R . — The goal of this
section is to count the number of small eigenvalues of A?;}L((I) (R%,g) in a simple
geometric setting (in particular f has a single critical point, located at 0). The main
result (Proposition 16) is stated in Section 2.3.1. The proof is done in three steps:
we first recall well-known results for Witten Laplacians in R?~! in Section 2.3.2; then
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we prove Proposition 16 in a simplified setting in Sections 2.3.3 and 2.3.4; and we
finally conclude with the proof of Proposition 16 in Section 2.3.5.

2.3.1. Witen Laplacian in RE. with tangential Dirichlet boundary conditions. — Let us

first introduce the tangential Dirichlet Witten Laplacian A(f?ZL(Ri, g) in R%, under
two sets of assumptions.

Assumprion (Metric-R%). — The space RZ is endowed with a metric tensor g satis-
fying the following:

(i) g writes, for some C* function G on RY,
(50) g(z) = G2, xq)dz' + da3,

with G(0,0) the identity matrix. o
(i) G and all its derivatives are bounded over R? .

(iii) G is uniformly elliptic over R .

To ease the notation, we will not indicate explicitly the metric G in the functional
spaces nor in the associated norm: we will simply write AZH*(RZ) (vesp. ATHL(R2))
for ATH*(R?, g) (resp. A?Hy(R?, g)), and denote by ||.|| g g ) the associated norm.

Notice that under (Metric-R%), the norm on (R?,g) is uniformly equivalent to
the norm on (R?,l;dz?) (where |, is the identity matrix of size d), which is simply
denoted by |x]: |z|? = Z?:I x2. Moreover, for all ¢ € {0,...,d} and k > 0, the norm
on AYH*(RY,g) is equivalent to the norm on AYH*(R? | 1,dx?), and AHL(R? , g) =
ATHA(RE 1, dz?).

Assumprion (Potential-R%). — The function f : R — R satisfies:

(i) f is a C> function such that for all multi-index o € N? with |a| > 1,
supr |92 f] < oc.

(ii) The point 0 is the only critical point of f in R? and is a non degenerate critical
point of f (this condition is independent of the metric tensor on R? ). Moreover, there
exist R > 0 and ¢ > 0 such that:

(51) Ve eRe, |z| > R = |Vf|(z) >ec.
(iii) It holds:
(52) vz e RY 9, , f(a',0) = 0.

Notice that thanks to (50), for any ¢ € A°C!(R%), one has:

(53) v’ e R, 0, 2 0(',0) = 0s,0(2",0).

Moreover, under the above assumptions, up to an orthogonal transformation on z’
(which preserves the fact that G(0,0) is the identity matrix), one can assume that
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the Hessian matrix of f|ypa at 0 € R~ is diagonal. As a consequence, there exists

a neighborhood Vo of 0 in RY and (p4, ..., tg) € (R*)% such that:
(54) Vo = (x1,...,24) € Vo, [f(2) —|—Z z? +O(|z*),

where (p1,. .., 1) are the eigenvalues of Hess f(0). More precisely, pq = 9z,,2,/(0),
and (1, ..., pa—1) are the eigenvalues of Hess f|ga (0).

We will need the following standard results on the operator A ’(Q) (R, g).

Prorosition 14. — Let us assume that (Metric-R?) and item (i) in (Potential-R%)
are satisfied. Let ¢ € {0,...,d} and h > 0 be fized. The Friedrichs extension of the
quadratic form

Di, .
(55) nyh(q)(Ri»g) tw € AMHp(RY) — ”df,hw”QLz(Ri) + ||df,hw||2L2(R<j)
on A1L*(RY) is denoted by AD' (@) (Ri, g). It is a self-adjoint operator with domain
D(AT(RE,g)) = {w € AYHA(RY) N ATHA(R?), td},w =0 on OR? }.

Moreover, it holds, for all Borel set E C R and u € ATHL(R?),

(56) me (AT (RE @) dppu = dpp e (AY(RY g)) u
and

Di, Di,
(57) e (AT (R, g)) df yu = db ), mp (ATHO (RY, g)) u

The following Green formula will be used many times in the sequel (it can be proved
as in the compact case [42, Lem. 2.3.2] by density of A9C°(R%) in ATH(R)).

Levmva 15. — Let ¢ € {0,...,d}. Let us assume that (Metric-R%) is satisfied. Then,
for all w € ATHL(R?), it holds:

||dfthL2(Rd +dethL2(]Rd —h2||deL2(]Rd JrhZ”d*w”[} R4 )

+(w, (|Vf‘g +hLyr + L*Vf)) w>L2(Ri)

— h/ (w, w>T(w, o) OR% Ona f(@',0)A(dz"),
OR% ’ -

where \(dx') is of course the volume form on ORY induced by the metric tensor g.
Let us now state the main result of this section (recall the definition (54) of ugq).

Prorosition 16. — Let us assume that (Metric-R?) and (Potential-R%) hold. Let
q €{0,...,d}. Then, there exist C > 0, ¢ > 0, and hg > 0 such that for all h € (0, ho),
the following holds:

JIEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS (,)03

(i) If ¢ =0, then:
(58) Yw € AHE(RD), Q75O (RY,g)(w) > Ch |[w]|2 ga -

Let ¢ € {1,...,d}. If the index of 0 as a critical point of flsga is not ¢ — 1 or if
ta > 0, then:

(59) vw e AHL(RY), QP (RY,g)(w) > Chlfw]2apa -
If the index of 0 as a critical point of f|sga is ¢ — 1 and pg <0, then:
(60) Ran (g, cp) (AD :(9) (R?, g)) = Ker A?j}fQ)(Ri,g) has dimension 1.

(ii) Assume that the index of 0 as a critical point of f|sga is ¢ — 1 and pgq < 0.

Let x : RY [0,1] be a € function supported in a neighborhood of 0 which equals 1
in a neighborhood of 0. Let ¥}, € Ker A?:}L({I)(R‘f,g) such that [|Vp || 2gay = 1. Then,
in the limit h — 0, it holds:

61) X Unll2ea)=1+0(k%) and QT VR, g)(x¥s) = O(h?).

The next lemma shows that it is enough to prove (58)—(59) in Proposition 16 for
forms w supported in a ball B(0, h?/5).

Levmva 17. — Let us assume that (Metric-R?) and (Potential-R%) are satisfied. Let
us assume that there exist C > 0 and hg > 0 such that for all h € (0, hg) and for all
v € NHL(RL) supported in B(0,h?/?),

Di,
(62) QYN (RL, g)(v) > Ch[v]|2s g .

Then, there exist ¢ > 0 and hg > 0 such that for all h € (0,hg) and for all w €
ATHp(R?),

QYR g)(w) > Chllwl7aa)-

Proof. — Let us consider a quadratic partition of unity (x1,x2) such that x1 €
C>®(R%), x1 = 1 on B(0,1/2), suppx1 C B(0,1) and x% + x3 = 1. The IMS for-
mula [19, 42] yields: for all w € AYHL(R?),

(63) QYR g Z QYD (R, &) (xi (h /% Jw)
— HV[Xk(h&/s')]wni?(m)'
Using Lemma 15, 8, , f = 0 on OR? (see (52)) and t(xx(h~%/°.)w)(z’,0) = 0, one has:
QY (RY &) (xa(h~*Jw)
= 12[[d(xe(h ™/ )w) [} ga ) + B2[ld" (xa(h ™)) |7

+ (a2 Jw, (IVF2 = h(Lvs + L) )xa(h™/7)w) g,
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Moreover, using (Metric-R% ) and item (ii) in (Potential-R? ), there exists C' > 0 such
that,
(64) Vo € RE N B(0,h%/°/2), |V f(2)]2 > Ch*>,

for some C' > 0 independent of h. Thus, using the fact that Ly + LG vyisa Oth order
operator and supp xa2(h~%/%.) € R? < B(0, h?/5/2), one obtains that there exist ¢ > 0
and hg > 0 such that for all h € (0, hg):

Di, _ _
(65) QPR (RL, &) (xa (h™/7Jw) = ChY® | xa(h ™% Jwl| 2 -
This implies that there exist ¢ > 0 and C' > 0 such that

QR RL g)w) > Q71 (BL &) (/)
+ ChY2 X2 (™2 Jw|| T2 gy — CROP w2 ga -

If (62) holds, one obtains (taking v = x1(h~2/%.)w in (62)) for all h small enough:
Di, _
QYO R, g)(w) > C (Rt (b2 w2 g
+ h4/5||X2(h_2/5-)w||2L2(Ri) - h6/5||w‘|%2(11§‘1)>'
Thus, Q?' :(9) (R, g)(w) > Chl|wlf?, (%) . This ends the proof of Lemma 17. O

The proof of Proposition 16 will be done in Section 16, after considering successively
model problems on R%~! and on R% in a simplified setting.

2.3.2. Witten Laplacian in R~ Let us first recall standard results on the number
of eigenvalues of order o(h) for the Witten Laplacian on R?~! associated with a
function f, : R%~! — R which has only one critical point in R¢~!. Let us introduce
the two sets of assumptions used to state this result.

Assumption (Metric-R?71). — The space R4~! is endowed with a € metric tensor
denoted by 2/ € R s G(z’) da’?. In addition,

(i) G and all its derivatives are bounded over R4~1,

(ii) G is uniformly elliptic over R471, i.e., G > c over R~ for some ¢ > 0.

Again, we will not indicate explicitly the metric G in the functional spaces nor in
the associated norm: we will simply write AZH*(R?~1) for AYH*(R?~! G da'?) and
denote || - || gx(ra-1y the associated norm.

Notice that, as above, under (Metric-R4~1), the norm on (R4, G da'?) is uni-
formly equivalent to the norm on (R4, 1,_; dz'?), the latter being simply denoted
|2'|: 2| = Z‘j 11302 In addition, for all ¢ € {0,...,d — 1} and k£ > 0, the norm on
AYHF (R G da'?) is equivalent to the norm on AqH’“ (R 1y da'?).

Assumprion (Potential-R%~1). — The function f, : R¥~! — R satisfies:
(i) fy is a € function such that for all multi-index 8 € N¢~1 with [8] > 1
Supga_s [0 1] < +o.
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(i) The point 0 is the only critical point of f; in R%~! and is a non degenerate
critical point, with an index denoted by p € {0,...,d — 1} (the non-degeneracy and
the index do not depend on the metric tensor on R%~1). Moreover, there exist R > 0
and ¢ > 0 such that:

Vo' e R 2| > R = |Vfi(a))| > e

Under these assumptions, the following result holds (see [42, Prop.3.3.2 & 3.3.3]
and[41, Prop. 2.2] for proofs of very similar results).

Prorosrrion 18. Let d > 2 and assume that (Metric-R?~!) and (Potential-R9~1)
hold. Let g € {0,...,d—1} and h > 0. The Friedrichs extension of the quadratic form
_ D(AY (R, Gda?)) — R
QY (BRI, G da’) { (A7n (T, Gaa™)) = Re
w > HdﬁthL?(Rd—l) + ”df,hw”L?(]Rd—l)
on NL2(RI~1Y) 4s denoted by Agfi)’h(]Rd_l, Gdz'?). It is a self-adjoint operator with
domain
DAY (R, Gda'?)) = ATHA(RT).
Moreover, there exist C >0, ¢ > 0 and hg > 0 such that for all h € (0, hg):
(i) inf oes (A, (RT1, G da'?)) > C.
(i) When p # q, dimRan g cp) (A;‘f’h(Rd_17 G dz'?)) = 0.
When p = q, Ran g oy (Agf?,h(Rd_l, édm’z)) = Ker Agff’h(Rd_l, G dx'?) has dimen-
sion 1.
2.3.3. A simplified model in R:. — We will first prove item (i) of Proposition 16 in
the special case when G(a/,24) in item (i) of (Metric-R%) is independent of the
variable x4.

Prorosition 19. — Assume that (Metric-R?) and (Potential-R?) are satisfied.
Assume in addition that G is independent of xy:

(66) V(2! xq) € RE, G(2/,2q) = G(2').
for some C* function G defined on R~ Then, item (i) in Proposition 16 is satisfied.

Before providing the proof of this proposition in Section 2.3.4, let us conclude this
section with a few preliminary results. Notice first that when (Metric-R? ) and (66),
are satisfied, G(z/)da’? satisfies (Metric-R%41). Moreover, we will need the following
decomposition of the function f.

Derinttion 20. Assume that (Potential-R?) is satisfied, and recall the expan-
sion (54) of f around 0. Let us define f, and f_ by:

d-1
(67)  Vo=(awa)€Vo, fil@) =) 5ol and fo(va)=-Elad

i=1
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Let us then extend the function fy (resp. f_) to a C*° function over R?~! (resp. R_)
such that:

(1) All the derivatives of fy (resp. f_) of order at least 1 are bounded over R?~!
(resp. R_).

(2) The point 0 is the only critical point of fi (resp. f_) on R?~! (resp. R_),
and for some ¢ > 0, |[Vfi| = ¢ (resp. |[Vf_| > ¢) outside a compact set of R4~!
(resp. of R_).

In other words, f, satisfies (Potential-R%~1), and f_ satisfies (Potential-R% ) for d = 1.

It is easy to check that, when pg < 0, f_ satisfies
(68) Vh >0, e /M- c AOH2(R_).

The following result is the key point to prove Proposition 19. It allows us to separate
the variables ' and x4 in the Witten Laplacian A?",’l(Q) (Rﬂ, g), up to remainder terms
of order h%/5.

Levmma 21. Assume that (Metric-R? ), (Potential-R?), and (66) are satisfied. Let
us consider the functions f1 and f_ as introduced in Definition 20. Let g € {0,...,d}
and w € D(A?,';L(Q) (R, g)). Write w = a Adxg + b where

b= Z bydr; and a= Z ajdzx.

J={j1,--dq}, I={i1,...rig—1}
1< <dq,d¢) 1< <ig_1, dg

It then holds, for some c; > 0 and cy > 0 independent of h > 0 and of w,

Q?,i;l(q) (Rg)m) =0 Z/ QEi}(_l,)h(R—, dz3)(ai(2’,.)dzq) p(da’)
vad [ QU dad) ol )
- /a:dG]R Q(fi_’;) (Rdil’ édz’z) (a('7 xd))dl'd

- / Qg’?,h(Rd_lv Gda')(b(-, xa))daq — e(h, w),
xdER,

where |e(h, w)| < cah8/5 |jw|| ) if suppw C B(0, h?/%). The measure p(dx') is the

2
L2(RE

measure \/det G(a') dz’, where dz’ is the Lebesque measure on R4, and the measure
dxq is the Lebesgue measure on R_.

Proof. — One has from (54) and (67), in a neighborhood Vg of 0 in R,
(69) Vo = (a,2q) € Vo,  f(z) = f(0) + fr(2') — f-(za) + O(|z]*)
and (using (66)),

(70) IVf(@)lg = [V f (@G e + 102 f-(za)* + O(|2).
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Moreover, one has:
(71) Lvp@) + LY@ = L9y @) —f- (=) T LY(f (@)—f @) T O]).
Let w € @(AD' (@R g)). One has

QPP (RL g)(w) = (w, ATLRL, g)) 1agus)

= (w, A(Q)

() d
fr—f- h(Rf» g)w>L2(]R‘i) + e(h,w),

where, owing to (43), (69), (70), and (71), the remainder term e(h,w) satisfies: if w
is supported in B(0,2%/%),

(73) le(h,w)] < C(WO® 4 b x W) ||w][ 72 e y < CRY® [lw]|72 g .

Let us now give a lower bound on (w, Af s h(R‘f7 g)w)2(ra). Algebraically,
using (66), one has (see [42, Eq. (3.17)] or [56, Eq. (4.3.16)] for similar computations):

(74) (w,AY_, (R, g)w)p2(ea )
<Zd$| /\ a| dxd Zdﬂﬂ A A( R_,dl‘d)(én d$d)>
(0
n <§J: by dz., EJ:A_f_vh(Rﬂdxd)(bJ) de>L2(Ri)

+(aAdwg, AY D (R, Gda'?)(a) A darg)

L2(R?)

L2(RY)

+ <b, Agc(i)’h(Rdil, édx/Z)b>L2(Ri).

Since tw = 0 on dR?, it holds, for all J and for a.e. 2’ € R4~1 by(2’,0) = 0. Thus
(see Proposition 14 for the domain of AD' (0) W (R_, dz2) and item (1) of Definition 20),
for all J and a.e. ' € R4~ 1,

by(2’,.) € AH*(R_) N A°HL(R_) = D(A”Y), (R_, da?)).

From (66), td} ,w = 0 on OR? (for the metric tensor g) writes: for a.e. 2/ € R4™!
and all I,

(75) Dy, (e~ /M3 (2’ 0) = 0.

Because 9, f(2',0) = 0 for all 2’ € R4™1, see (52) and (53), this condition thus writes
Dz a1(2',0) = 0. On the other hand, f’ (0) =0 and hence, 9,,(e~1/M/-a)(z',0)=0
for a.e. 2’ € RI7L e, td} ,(a(z’,za)dzq) = 0 on JOR_ for the metric ten-
sor dz? (recall that d*(¢dzg) = —0,,¢ for the metric tensor dz?). Thus, because
in addition aj(z’,.)dry € A'H?(R_), one has (see Proposition 14 for the domain of

AP (R_, da?)), for all | and a.e. 2’ € RT:

al(a’, )dzq € DAY, (R, da?)).
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Furthermore, one has (see Proposition 18 for the domain of A;T?(Rdil, Gdz'?)):
for a.e. g4 <0,

a(,xq) € ATUHA (R = D(AUTD (R, Gda'?)),
b(.,z4) € ATH? (R}, Gda'?) = D(AY , (RI™!, Gda"?)).

Lemma 21 then follows from (73) and (72) together with two integration by parts
in R9~! and two integrations by parts in R_ in (74), the constant ¢; > 0 being the min-
imum of the smallest eigenvalues of the matrices (HZ;}G”%)UI and (TI{_, G, jr )1,
on R4-1. |

2.3.4. Proofof Proposition 19. — We are now in position to prove Proposition 19. Let
us assume that (Metric-R% ), (Potential-R%), and (66) are satisfied. Let us recall that
according to Lemma 17, it is enough to prove Proposition 19 for all w € AYHL(R?)
supported in B(0, 2?/%). All along the proof, the constants C' > 0 and ¢ > 0 can change
from one occurrence to another but do not depend on h and on the test function w.
The proof of Proposition 19 is divided into three steps: the case d = 1, the proof
of (58) and (59) when d > 1, and finally the proof of (60) when d > 1.

Step 1: The case d = 1 (i.e, RE = R_). Let us recall that according to item (i)
in (Metric-R? ), the space R_ = {24 € R, 24 < 0} is endowed with the metric tensor
g(zq) = dz?. From (54), in a neighborhood Vj of 0 in R_, one has

Vaa € Vo, f(za) = £(0) + 5 af+ O(laP).

Notice that for w € AHL(R_) according to the decomposition w = a A dzq + b in
Lemma 21, w = b when w is a O-form and w = adxy when w is a 1-form (a is a
function, see (77) below). For all b € A°HL(R_), one has from Lemma 15 and since
b(0) = 0,

Di,(0
(76) QpA" (R, dx3)(b) = W [0nblEaga_y + 16Dz, [y — h(bOL, f, b)r2ca ).
For all adry € A'HL(R_) where we recall that
(77) AMHp(R_) =A'H'(R_) = {adzq, a € A°H'(R_)},

one has, since 9,,f(0) = 0 (the boundary term vanishes in Lemma 15):

Q?,ih(l)(R_’ dz?)(a dwd):h2||8rda”2LQ(Ri)+||a 8mdf||iz(Ri)+h<a 92 f, )t ).

Let us now consider the two possibilities: pg > 0 or pg < 0.

Step 1a: The case d = 1 and pg > 0 (i.e., 02, f(0) > 0). — Then, there exists C > 0

such that 97, f > C in a neighborhood of 0 in R_. Thus, for all adzq € A'HL(R_)
such that a is supported in B(0, h?/%), one has QJEC)V';L(D(}R,7 dz?)(adzq) = Ch ||a|\%2(R_).
Thanks to Lemma 17, this inequality extends for all adry, € A'HAL(R_): there exists

C > 0 such that for ~ small enough,
(78) Vadrg € A'HE(R-), Q7(V(R_,du3)(adzq) = Chlal?s e -
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Let us now prove that there exists ¢ > 0 such that for h small enough:
(79) vb e AHL(R-), Q73" (R-.dad)(b) > chlbllfa -

It is clear that Ker A?;,’fo)(R,,dmz) = {0} since e~(/M7 is not in the domain of
A?j;l(o) (R_,dz?2). Let us now consider 1, in Ran T[0,Ch/2] (A?’i;fo) (R_, dﬂcfl)) (where C
is the constant appearing in (78)). Then, dy vy, is in Ran g, cn /2] (A?:;L(D(R_, dxfi))

(thanks to (56)). From (78), this implies that d¢ 4y = 0. Thus, A;?QL(R,, dz2)n =0
and hence, ¥, = 0. This proves (79).

Step 1b: The case d = 1and pq < 0(i.e., 92, f(0) < 0). — Then, there exists C' > 0 such
that 02 f < —C in aneighborhood of 0 in R_. Thus, from (76), for h small enough, one

has for all b € A° H4(R_) such that b is supported in B(0, h?/°): Q?;;L(O) (R_,d22)(b) >
Ch ||bH%2(R7). Using Lemma 17, this inequality extends for all b € A°HL(R_), i.e.,
for h small enough:

(80) Vb e AHp(Rodof). Q3" (Ro.daf)(b) > Ch [b]fae -

Let us now prove that there exists ¢ > 0 such that for h small enough

(81)  Ranmpu (AN (R, d23)) = Ker ANV (R, da?) = Span(ef/"day).

From item (ii) in (Potential-R? ) and using the same arguments as those to check (68),

one has f' > ¢ on [~o0, —¢] for some ¢ > 0. Hence, for h > 0, e//" € A°L*(R_)

and from item (i) in (Potential-R?), e//" € A°H?(R_). Consequently (see Proposi-

tion 14), ef/"dxy € D(A?";l(l)(R_,dxfl)). Therefore, since for all adzy € A'HL(R_),
Di, (1 . .

QP (R_, do?)(adwa) = [|d} a2 5 ), it holds:

Ker A?j,’fl)(R,, dz?) = Span(ef/hdxd).

Let us now consider an eigenform 1, € Ran W[O,Ch/Q]A?j,’L(l)(R,, dz?) (where C is the
constant appearing in (80)). Then, d} ¢ € RanW[O,Ch/Q]A?j;I(O)(R,7dmi) (thanks
to (57)). From (80), this implies that for h small enough, d} ;¢ = 0. Thus ¥ €
Span(ef/"dx4). This proves (81).

Step 2: The case d > 1, proofs of inequalities (58) and (59). Remember that R? is
endowed with a metric tensor g satisfying (66). Thanks to Lemma 17, it is enough to
consider

w e D(A?";l(q) (R?, g)) with supp w C B(0, h*/?).
Following Lemma 21, w = b + a A dxg4, where:

b= Z bydr; and a= Z a da).

J={j1,--.da}s 1={i1,0rig—1},
J1<<jq, d¢J 1< <ig1, d¢l

We will use many times that, from (Metric-R%) and (66),

||wH2L2(1Rg) = ||b||2Lz(Ri) +llaA dxd”iz(mg)
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(because b is orthogonal to a A dzg) with

||b||L2 Ra) = C1 Z ||bJHi2(Rg) and [la A ddeLz RE) = ||a||iz(Ri) Zc Z HaI”iz(Ri)
| J

(where ¢; > 0 is as in Lemma 21).

Step 2a: The case d > 1 and g = 0, proofof (58). — Assume that ¢ =0 (i.e., w =Db is
a function). Then, using Lemma 21, one has:

(2 QRO g ar| Q¥ (R did) (b’ )u(d) - esh® e

z/€Rd—1
Equations (79) and (80) imply that that there exists C' > 0 (independent of z’) such
that for all h small enough and a.e. z’ € R4

Di,(0
Q2" (R, dz3)(b(a',.)) > Chlb(«’, )|z ).
Thus, using (82), one obtains for all w € D(AD' (0 (Rd )) supported in B(0, h%/?):
QPR g)(w) > Chllw|2a gy — c2h®™ [[w|Zagay > chllwl|2aga -
Together with Lemma 17, this proves (58).

Step 2b: The case d > 1, ¢ > 1 and pq > 0, proof of (59). — The analysis above in
dimension 1 (see (78) and (79)) implies that there exists C' > 0 (again, independent
of 2') such that for h small enough, for all | and a.e. 2’ € R?~1,

Q% V(R duf) (e, )dza) > Chllai(a’, ) [Fae. .
and for h small enough, for all J and a.e. 2/ € R471,
QY (R dx)(by(a’,.)) > Chllby(a’, M Fae_ -
Thus, using Lemma 21, for all w € D(ADi’(q) (R%, g)) supported in B(0, h?/5), one has:
QPN (RY &) (w) = Chllw]|2ega ) — 2h®® w22z > chllw|2aza -
Using Lemma 17, this proves (59) when ¢ > 1 and pq > 0.

Step 2c: The case d > 1, ¢ = 1, pg < 0 and the index of 0 as a critical point of f|aga is
not ¢ — 1, proofof (59). — Using (80), there exists C' (again, independent of z’) such
that for h small enough, for all J and a.e. 2’ € R4~

(83) Q%Y (R_, dx3) (by(a',.)) = Chlby(a’, )32

Thus, using Lemma 21, one has:

D
(84) QYR g)(w) = Ch|b|2apa
Jrcl/ Q}‘i i)(Rd l,gdx’2)(a(.,xd))dxd—c2h6/5 ||1UH%2(Rd)-
rg€ER_ -

Recall that 0 is not a critical point of index ¢ — 1 of f|ge . Then, 0 is not a critical
point of index ¢ — 1 for f, (see (54) and Definition 20). Since a is a ¢ — 1 form,
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this implies from Proposition 18 (applied with the metric tensor Gda' 2), that there
exists C' (independent of z4) such that for h small enough,

QY R, Gda™)(a(., 2a)) > Chllal. xa) |72 pa-r)-
Therefore, using (84), for h small enough, one has:
QYRP (R, g)(w) > Ch(|Ibl|aga ) + [l e ) — 2h® ]| o
> 0l agua
Using Lemma 17, this proves (59) when ¢ > 1, pg < 0 and the index of 0 as a critical

point of f|gga is not ¢ — 1.

Step 3: The case d > 1, ¢ = 1, pg < 0 and the index of 0 as a critical point of f|aga is
q — 1, proofof (60). Notice that in this case, the point 0 is a critical point of f
of index ¢ — 1 (see Definition 20).

Step 3a: Proof of (60) when f = fy — f—. — Let us first prove (60) for the potential
(see Definition 20):

v = (2, 24) €RL — f1 (') — |- (2a).

In view of Definition 20 and (53), f, — f_ satisfies (Potential-R%). Thus, Proposi-
tion 14, (58), and (59) are valid for f; — f_ and g. Let us consider

Uy, € Ker A V(R Gda'?)

with Wy # 0 (which exists thanks to item (ii) in Proposition 18). Let us prove that

there exist ¢ > 0 and hy > 0 such that for all h € (0, hg),
Di, Di,
. Ranmy,on (A7), (RY, g)) = Ker AR} (R g)
(85) — —(1/h)f-
= Span(¥p, Ae dzq).

Let co > 0 and ¢, € Ran g ¢,n] (A?l(f},,h(Ri’ g)) where the constant ¢g is strictly

smaller than the constants C' > 0 in (58) and (59) applied to f = f; — f_. Hence,
using (56) and (57), one has for h small enough

df,h¢h =0 and dj‘,h¢h =0.

Thus, Q?' (@) (Ri,g)(gﬁh) = 0. Using Lemma 21 with f = fi — f_ (in which case
e(h, dp) = 0) together with item (ii) in Proposition 18 and (81) with f = —f_ ?, one
obtains

(86) o € Span(\I/h Ae~(A/M)f- dxd),
To prove (85), it thus remains to show that:

(87) Uy, Ae” M= dz, € Ker A?l’(_"}_,h(R‘i,g).
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It first holds, from Propositions 18 and 14, and (68), ¥, A e~ (/M/-dz, is in

@(A?i’(_q}ﬂh(R‘i, g)) (recall that the boundary condition td}, _, ,w = 0 is equiva-

lent to 8,,(e~/MU+=1-)3))(2/,0) = 0, see indeed (75)). Besides, one has:
df+ff,,h(\1}h A e_(l/h)f’dl'd) = df+,h(\IJh) A 6_(1/h)f’dxd =0.

Moreover, from (66) (see also item (i) in (Metric-R%)), it holds

d*’g(‘l’h /\e—(l/h)ffdxd) _ d*,édm’Q (‘I’h) /\e—(l/h)ff(xd)dxd+\Ijhd*vd3’:<21 (6_(1/h)f’dxd)7

where the superscript indicates in which metric the operator d* is built. And one can
check that

(=g (Yn A e” M day)
= ivz,ﬂr (\I’h) A 6_(1/h)f’(xd)dl‘d — U, A ivIdJQ (6_(1/h)f’ dxd)
g s (Un) A e NI dpy 1 1wy, 8, (e (/DI Ga)Y,
Therefore, d7 _; (Tp A e=(/MF-dz,) = 0. This proves (87) and then (85). This
concludes the proof of (60) when f = fi — f_.

Step 3b: Proofof (60) for a general function f. Let ¢y > 0 be strictly smaller than
the constants C' > 0 in (58) and (59). Assume that Ran g ¢, (A?};L(q)(R‘i, g)) # {0}
and let us consider a L?(R% )-normalized form

Yn € Ranmpg cony (ATHY (RY, g)).
Then, using (56) and (57), one has for h small enough, dy ¢ =0, d} 9, = 0, and
thus Q?j,’l(q)(R‘f, g)¥y = 0. This proves that for h small enough:

Ran g o) (AT (RY, g)) = Ker ATH? (R g).

Let us now consider a quadratic partition of unity (x1,x2) such that x; € C*(R%),
x1 = 1 on B(0,1/2), suppx; C B(0,1), and x? + x3 = 1. The IMS formula (63)
implies that there exists C' > 0 such that:

(88) 0= QP (R, g)(x (h™% )
+ Q7T (RL, ) (xa (B2 )n) — CBE® |32 g -

From (65), one has:

QTP (R, ) (xa (W™ Jun) > ChY®xa(h ™/ )unllFa as -
Thus, it holds for A > 0 small enough:
(89) [Ix2(h™ /2 )n[12ama) = O(h*?) and  xa(h™2/5) 020y = 14+ O(h*9),
and then:
(90) QYNP R, &) (x (b7 )wn) < ChO|xa (™2 )on | e -
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Using (55), (70) and (71), and using twice Lemma 15 (once for f and once for fi — f_)
together with the fact that On , f = On, (f+ — f-) =0 on OR? | one has for h small

enough and for all v € AYHL(RZ, g) supported in B(0, h?/°):
Di, Di,
(91) QYO ®RY g)(v) = QYY) L (RE,g)(v) + O(h®%)||v]|22 g0 -
Thus, one gets for h small enough:
QYO ®RY, &) xa (b2 ) = Q77 (R, &) (xa (h™ /7))
_ 2
O s (05
Then, using (90), it holds for h small enough:
Di, — _ 2
Qf+(7q}_’h(R'i, g)(x1(h 2/5-)1/%) = O(h6/5) HXl (h 1/5')whHL2(R‘1)'
For all (2/,24) € R, let us define (see (85)),
On(a', xq) = kp Up (') Ne” VM@ gy, where ry, = || ¥, A e_(l/h)f*ddezg(Rd )

Using Lemma 11 and (85) (choosing ¢y smaller than ¢ > 0 appearing in (85)), one
has for h small enough,

dist 2 (ga) (Xl(h_2/5.)1/1h, Span ©,)
= ’|7T[O,ch] (A?_:_’(_q))f_JL(Rliv g)) (Xl(h_2/5')¢h) HL2 (R )

QYD (RE, ) (xa(h =1/ )y )1/
<
NzD

Using in addition (89), one obtains for h small enough:

distz2(re ) (Yn, Span ©1) < ChY1 + Cllxa(h™/5)tbn 72 ga , < 2R

< Chl/lo.

Therefore, since we assumed that Ran g con) (A?’iﬁ(q) (Ri,g)) # {0}, it holds for h

small enough:

dim Ran g ¢, 4] (A?’i}fq) (R, g)) = 1.

It thus remains to prove that Ran g cop] (A?ﬁi;fq)(R‘Lg)) # {0}. To this end, let

us show that A?},’l(q) (R?,g) admits an eigenvalue which is o(h) when h — 0. Using
the IMS formula (63) together with the fact that

Q?l’(,q},,h(Ri,g)(Qh) =0,
and QY L(RY g)(x2(h™7)0y) = ch*/? |\X2(h—2/5.)@huiz(m),
one obtains, when h — 0,
QY WL, g)0a(h™/7)0r) = O(h°7)
and HXl(h_2/5~)9h =1+ 0(h?/).

2
HLZ(JRi)
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Using (91) and the Min-Max principle, A?;}L(q) (R%, g) admits an eigenvalue of order

O(h%/%) when h — 0. Therefore, Ran W[O,coh](A?j;l(q) (R%,g)) is of dimension 1 for h
small enough. This proves (60) and concludes the proof of Proposition 19.

2.3.5. Proofof Proposition 16. — We are now in position to prove Proposition 16. Let
us first state a preliminary result.

Lemva 22, — Let us assume that the space RY is endowed with a metric tensor g
satisfying (Metric-R% ). Assume that f satisfies item (i) in (Potential-R? ). Define for
all ' € R G(2') = G(2/,0) and let us introduce the metric on RZ :

(92) Vo = (2/,2q) € R, g(z) = G(2')da’ ? + da?.
Let (g1,82) = (g,8) or (g1,82) = (8,8). Then, there exist C > 0, ¢ > 0, hg > 0,

1 : [0, ho] = Ry, such that for h € (0, hg), n(h) = O(h?*/®) and for all w € AYHL(R%)
such that supp w C B(0, h?/%), it holds,

(93) Hw||L2(Rd_7g2) = Hw||L2(Rd_7g1)(1 +77(h))7
and for all g € {0,...,d},

Di, Di,
99 QUPRL, g)(w) > C QTP RL, &) (w) — CR® |2 4,
Equation (93) is a simple consequence of the two metric tensors are smooth and
coincide at x4 = 0. Equation (94) is easily obtained following the proof of [42,
Lem. 3.3.7].
Let us now prove Proposition 16.

Proof. — Let us assume that (Metric-R% ) and (Potential-R% ) are satisfied. The proof
is divided into three steps.

Step 1: Proofs of (58) and (59). — Let us recall that according to Lemma 17, it is
sufficient to prove (58) and (59) for forms w € A?H4 (R, g) supported in B(0, h%/?).
Because the metric tensor g defined in (92) satisfies (Metric-R%) Proposition 19
implies that (58) and (59) hold for g and f. From those estimates and (93) and (94),
one gets (58) and (59) for g and f.

Step 2: Proof of (60). Let us assume that 0 is a critical point of index ¢ — 1

of flom and pg < 0. Let ¢ > 0 be strictly smaller than the constants C' > 0
in (58) and (59). Assume that Ranmg . (A?:;L(Q)(R‘i,g)) # {0} and let us con-

sider a L?(R%,g)-normalized form ¢, € Ranmg cp (A?j;fq) (R%,g)). This implies,
using (56), (57), and the results of Step 1, that d; ¢, =0 and d% ,¢n = 0. Thus,

it holds Q?’i;fo) (RY, g)(¢n) = 0. Consequently, for h > 0 small enough,

Ran g, (ATH? (R, g)) = Ker AVH V(R g).

JEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS ()15

Now, let (x1,x2) be a quadratic partition of unity such that y; € €°(R%), x1 = 1
on B(0,1/2), supp x1 C B(0,1), and x% + x3 = 1. Using the IMS formula (63), there
exists C' > 0 such that:

0> Q75" R &) (h7/)on) + Q7" (RL ) (xa(h™/)6n) = Ch*'® |62 gt -

Therefore, one has QD' q)(Rd ,8)(x2(h=%/5)¢p) = O(h%/5) and
Di, —
(95) Q7" (Y 8) 0 (b )én) = O(H).
In addition, let us recall that (see indeed (65)),
QTR &) (xa(h™27)6n) = CHY?|[xa (W) 2 gt -

Therefore, one obtains in the limit A — 0:

||X2(h—2/5 :O(h2/5),

2
9|12 g )
(96) —-2/5 2/5

/ =14 O(h?/?).

[|x1(h ')¢hHiZ(Ri,g)

Then, using (94) with g = g and go = g, one gets for all h small enough:
Di, ~ - - 2
B > C QTP RE,E) (xa (b)) — CR® | (b2 )n 2 s -

Notice that from (93) and (96), one has for h small enough ||x1(h=2/5.)¢p,
1+ O(h?/5). Therefore, one obtains:

(97) PR E) (1 (h2/2)6n) < ChE |[xa(h2/)6n [} g
Recall (since f and g satisfy (Potential-R?) and (Metric-R%)) that according

to Proposition 19, there exist ¢g > 0 and hg > 0 such that for all h € (0, hg), there
exists a L?(R%, g)-normalized ¢-form ®;, such that

(98) Ran 7 ¢, b (A ’(q)(Rd g)) = Span(®;,) = KerA?’i;L(q)(R‘i,g).

HL2 (R ?g)

8)’

Using Lemma 11 and (97), one obtains that for A small enough:
dist2pe g (x1(h™2/%.)¢n, Span @),) = O(hM/17).
This implies together with (96) and (93), and since we assume that
Ran o (A757 (R, g)) # {0},
that for A small enough:
dim Ran 7(g cp) (AD (Q)(Rd )) =1.

It remains to prove that Ran g .1 (AD (Q)(Rd )) # {0}. To this end, let us prove

that ANL( )(R‘i, g) admits an eigenvalue of order o(h) when i — 0. Let us consider a
L?(R4 | g)-normalized g-form ®;, which satisfies (98). Recall that from (89) and (90),
one has when h — 0:

(R )@ g 5 = O*®) and [xa (B2 ) @[} g 5 = 1+ O(h*7)

~ _ _ 2
and QTR (RL, ) (1 (h2/7)®1) < CRY® [Py (h2/2) 0 |2 s -
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From (93) and (94) (applied with g1 = g and gy = g), one deduces that:

99 QTP R g)0a ()@ < CH ()8 o g

Then, using the Min-Max principle, for h small enough, A?)i;l(q)(Rfi,g) admits an

eigenvalue of order h%°® when h — 0. Thus, Ran T[0,ch] (A?j}fq)(Ri,g)) # {0}. This
ends the proof of (60).

Step 3: Proofof (61). — Let ¥}, € Ker A?’i,’fq) (R?, g) such that [|[ W] p2pa o) = 1. Let
X : RY — [0,1] be a € function supported in a neighborhood of 0 which equals 1 in
a neighborhood of 0 in R?. Let us define X = ﬁ Then, using Lemma 15 (and
the fact that O, , f(2/,0) = 0 for all 2’ € R9=1), since there exists ¢; > 0 such that
infyuppy |V £| > c1, it holds

QY @ ) (X0 > ClR L .

Using in addition the fact that Q?’i,’fQ) (R, g)(¥),) = 0 together with the IMS for-
mula (63), one obtains (61) using a similar reasoning as in (96) and (95). This ends
the proof of Proposition 16. ]

2.4. Proor or Tueorem 4. — Let us assume that (M-f) holds. For a fixed ¢ €
{0,...,d}, let us consider the operator A?j,’l(q)(M,gM). We will identify the number
of eigenvalues smaller than ch for this operator, for some ¢ > 0 and for all sufficiently
small h.

According to the analysis made in [42, Chap. 3] and [44], it is already known that
one can build linearly independent quasi-modes associated with the (generalized)
critical points in Ug" U Uqa'\/“1 which thus yield at least m'(}/' + man71 small eigenvalues.
The main novelty compared to [42, Chap. 3] is that we also have to consider critical

points of f located on OM:

(100) BM:2 .= {» € OM, |V [(2)| = 0}.

In the proof, we will thus consider all the critical points in
P, = UMuU UM yBIM2

as potential candidates to generate small eigenvalues, and we will prove that only
those critical points in Q; C P4 where

M oM, 1 oM,2
Q= UM U UMty y2

will actually contribute to the spectrum of A?;;L(q)(M, gwm) in [0, ch].

By assumption (M-f), for all z € B2 9, f = 0 in a neighborhood of z in OM.
Let us thus introduce a family (V,)yep, of neighborhoods in M of y € P, such that:

— Forall y € Ug", V, C M and y is the only critical point of f in V.

— For all y € U?M’l, Onyf >0 0n OM NV, and y is the only critical point of f|am
in oOMNV,.
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~ For ally € BM2 9, f=0o0noMnN V, and y is the only critical point of f
in V

— The sets (V )yep, are pairwise disjoint.
The neighborhoods (V,),ecp, may be shrunk in the following in order to introduce
local coordinates on V,, this will be made precise below. In order to use an IMS
localization formula, let us now introduce a quadratic partition of unity (xy)yep, UX
such that ¥2 + Zyqu X; = 1 on M, and for all y € P2 Xyt M = [0,1] is €,
supported in V,, and x, = 1 in a neighborhood of y in M. Let w € AYHL(M, gm).
The IMS formula [19 42] reads:

Di, (Q)(M gM Z QDI (2) M gM Z h ||vay| L2(R
yePy yePy

+ QY5 (M, gn) (Rw) — 2w VR 2 gt gy

7gM)

Thus, there exists C' > 0 such that
(101) - Q7" (M, gm)(w) > Q7" (M, gm) (Rw)
Di
— Ch wl2a g gy + D QTRY (M, gm) (xyw).

y€EPy

To prove Theorem 4, we will study separately the quantities QD (a) (M7 gm)(xw)
and QD (Q)(I\/I, gm)(xyw) for y € P,. The latter will be estimated using Proposition 16,
after havmg introduced coordinates on V,, in which the metric has the block structure
assumed in item (i) of (Metric-R?), and f satisfies (54). The proof of Theorem 4 is
divided into four steps.
Step 1: Results from |42, Chap. 3] and [44].
Step la: Quasi-modes associated with points in UY UUIM. — Let y € UM U UM Let
us introduce the set E defined as follows:

E:RdifyeUg/' and E=R? inyUgM’l.

Up to reducing the neighborhood V,, of y in M, the following results hold according to
the analysis in [42, Chap. 3] (see also [44] and [41] for the case when E = R?). There
exists a € system of coordinates

v €V, — z(v) €E,
and a metric tensor g, and a function f, on E which coincide on z(V,) respectively
with gyv and f expressed in the x-coordinates, such that the following holds:

(102) 3c, > 0,3hg > 0,Yh € (0,hg), Ranmgc,n (Ty) = Ker T, has dimension 1,
where Iy = A;Z)ﬁh(Rd,gy) ify e U['}/' and T, = A?yi:(,f) (R,g,)ify € Uan’l. Moreover,
let x : E — [0,1] be a € function supported in z(V,) which equals 1 in a neighbor-

hood of 0 in 2(V,). Let ¥} € Ker T, such that |[¥}|[2Eg,) = 1, then, in the limit
h — 0, it holds:

(103) T2y = 1+ O(h?) and Q5 (M, gm)(xT}) = O(h?).
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Step 1b: Lower bound on ?j;L(Q)(M,gM)()zw). — Moreover, it is proved in [42, §3.4]

that there exist C > 0 and hg > 0 such that for all h € (0,ho) and all w €
ATHp (M, gw):

Di, ~ 0~
(104) QPRY (M. gm) (Rw) = ChIXw |32 g1
More precisely, by [42, §3.4], one has for any 2 € M \ Py:

(1) either z € M with |V f(z)| # 0, in which case there exist ¢ > 0 and a neighbor-
hood V, of z in M such that Q?";L(q)(l\/l, gm)(xzw) = ¢ ||XIw||2L2(M’gM) for any smooth
function y, supported in V,;

(2) or 2 € M with |V f(z)| = 0 and = ¢ UM, in which case there exist ¢ > 0 and

a neighborhood V, of z in M such that Q?j;l(q)(M,gM)(wa) > ch wawHQLQ(M,gM) for
any smooth function y, supported in V,;
(3) or x € OM with |V f(z)| # 0 and = ¢ UZM!, in which case there exist ¢ > 0

and a neighborhood V,, of 2 in M such that Q?;,’I(q)(l\/l, gm)(xzw) = ch ||wa‘|%2([\/| )
for any smooth function x, supported in V,.

Equation (104) then follows from the fact that ¥ = 0 in a neighborhood of all the
points in P,.

Step 2: Change of coordinates neary € BOM:2. For ¢ > 0 small enough, for all v € M
such that dy;(v,0M) < €, there exists a unique point z(v) € OM such that
zq(v) = —d(v,0M) = —dy(v, z(v)),

where we recall d; denotes the geodesic distance in M. Moreover the function v —
dii(v, OM) is smooth on the set {v € M, dg;(v, IM) < &}.

Let us now consider a fixed y € B2 c 9M and let 2’ be a local system of
coordinates in OM centered at y. Then there exists a neighborhood U,, of y in M such
that the mapping

(105) v € Uy — 2(v) == (2/(2(v)), 24(v)) € R x RZ

is a system of coordinates near y € OM, centered at y: this is the so-called tangential-
normal system of coordinates. Then, up to choosing V, smaller, one can assume that:

U, = V,.
It holds, by construction of v — z(v):
z(y) =0, {veV,y, zq4v) <0} =MnV,, {veV,y zq4(v)=0}=0MnNV,,
and for all (2/,0) € z(V,),
O v(2’,0) = nu(v(2’,0)).

Moreover, by construction, the metric tensor gy in the z-coordinates has the desired
block structure of item (i) in (Metric-R%), i.e.,

(106) V(2',xq) € 2(Vy), gm(2',1q) = Gm(2,z4)dx"? + dz3,
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where it is assumed, without loss of generality, that Gm(0,0) is the identity matrix.
In the following and with a slight abuse of notation, one still denotes by f the func-
tion f in the z-coordinates. Since gu(0,0) = dz’? + dx?, the Hessian matrix of f
(resp. the Hessian matrix of f|sga ) at 0 in this new coordinates is unitarily equivalent
to Hess f(y) (resp. Hess f|am(y)). In particular, they have the same eigenvalues. Let
us recall that according to (M-f), nu(y) is an eigenvector of Hess f(y) for the eigen-
value p,, see (46), also denoted by pq in the following. Let us denote by g1, .. ., fg—1
the d — 1 remaining eigenvalues of Hess f(y), the associated eigenspace being T,,0M.
These are also the eigenvalues of Hess f|am(y). Let us recall that, up to an orthogonal
transformation on z’ = (x1,...,24-1), it holds, in a neighborhood of 0 and in the
x-coordinates,

d
(107) f@) = £+ a2 v 0z,

which is precisely (54).

Remark 23. — Let us mention that (107) only requires that nu(y) is an eigenvector
of Hess f(y). The stronger assumption that Oy, f = 0 on IM NV, will be necessary to
use the results of Proposition 16.

In addition, it holds:
(108) Ve’ € R nz(V,), On,a f(2',0) = 0.

In order to use Proposition 16, we extend the function f and the metric gm from z(V,)
to RZ so that they satisfy respectively (Potential-R?) and (Metric-R%). We denote
by f, and g, these extensions, defined on RY . Notice that it holds since Xy is supported
in Vy,
QPP (RI &) (xyw) = Q75 (M, gwm) (xyw)
and
Ixywllr2@a-1,g,) = IXywllL2(m,gu)»

where with a slight abuse of notation y,w both denotes the g-form defined on M and
in the xz-coordinates. These equalities will be used many times in the rest of the proof.

Step 3: Contributions of the points in BOM.2, According to Step 2, one can use Propo-
sition 16 to study Q?)',’I(q)(l\/l, gu)(xyw) when y € B2 where, we recall, w €
A°HL(M,gm). There are thus three possible cases:

(1) By (58), if ¢ = 0, there exists C' > 0 such that for all h small enough:

(109) QYO (M, gu) (xyw) = Chxywl|32 v gy -

(2) By (59), for ¢ € {1,...,d}, if the index of y as a critical point of f|om is not
q— 1, or if ug > 0, then, there exists C' > 0 such that for all A small enough:

(110) QY5 (M, gm) (xyw) = Ch [y w32 g)-
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(3) For ¢ € {1,...,d}, if the index of y as a critical point of f|sm is ¢ — 1 and
pa < 0 (namely if y € U?M’z), from (60) there exists ¢, > 0 such that for all A small
enough:

(111) Ran g ¢,z (A?L”(,f) (R?,g,)) = Ker AD' (q)( ¢ g,) has dimension 1.

Moreover, let y : RY — [0,1] be a € function supported in V,, which equals 1 in a
neighborhood of y in V,. Let ¥} € Ker A?:’(,;I)(R‘i,gy) such that ||V}l 2ga &) = 1,
then, in the limit A — 0, it holds (by (61)):

Di
(12) W eongy = 1+O(F) and Q75" (M, gu) (x¥}) = O(h?).

Let us insist again on the fact that in (109)—(110), the constants C' and the interval
(0, ho) © h do not depend on w.

Step 4: Lind of the proof of Theorem 4. — Let us consider 7, > 0. Using the Min-Max
principle, Equations (112), (103) together Wlth the fact that the supports of (xy)yeq,

are pairwise disjoint, one gets that AP 7, h (M gm) admits at least m, eigenvalues of
order O(h?) when h — 0. Thus, for h sufficiently small,
dim Ran 7(g , ] (A ’(Q)(M gv)) = mg.

Let us now prove the reverse inequality holds if 7; is small enough. To this end, let
us consider w € ATH1.(M, gu) such that ||w||r2mg,) = 1 and

QY5 (M, gu) (w) < mih,

and let us prove that the distance between w and Span(xy Uy e Qq) (which,
we recall, is of dimension m, because (xy)ycq, have supports which are pairwise
disjoint) goes to 0 when h — 0, for a sufficiently small 7;. Using (101), it holds for
some Cy > 0 independent of h:

(113) > QU (M, gm)(Rw) — Coh® + 37 Q4@ (M, gu) (xyw).

y€Py

In the following ¢ > 0 is a constant independent of h, ; and w, which can change
from one occurrence to another. Then (113) together with (110) and (109) yields that
for all y € BIM2 (UIM2 = P, \ Qg, for all h small enough:

(114) IxywllL2qmy < Vmh + Coh?/VCh < ¢/

In addition, from Equations (113) and (104), one has for h small enough:
(115) IXwllz2my < Vmh + Coh?/V Ch < cy/m.
Furthermore, one deduces from (113) that for all y € Py, for h small enough:

(116) QY5 (M, gu) (xyw) < 2m h.

For y € Qg = UM UUM T UUIM2 set (see the quasi-modes introduced in (102)—(103)
and (111)-(112))

(117) @ = xy ¥y / Xy Il 2wy
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It holds:
. 2 2
dist 2w (w, Span(®}, y € Qq)> = Hw - Z (w,¢Z>L2(M)®Z‘
L2(m)
yEQq
2 2
_ y y ~ y y
= Z; ‘ Xz (w - y; <w7(1)h>L2(M)(I)h) HLZ(M) + Hx(w - y; <w7(1)h>L2(M)(I)h)‘ L2’

The first inequalities in (112) and (103) imply that for all y € Qq, as h — O:
11 = X)xy P72 my = 14+ O(R®).

Therefore, using in addition (115), one deduces that:

2
(e = 3w @ean®h) |, ., < 2 (IR0 + 3 17203200
YEQq YEQq

g 5(771 + hz)a

where p > 0 is independent of h, 11 and w, and since the supports of (xy)yecp, are
pairwise disjoint,

2

<eny.
LMy €

Z ‘ Xz (w - Z <qu)Z>L2(M)q)Z)’

2€P¢\Qq YEQq

On the other hand, when z € Q,, one has since the supports of (x,),ep, are pairwise
disjoint and using Lemma 11, (116), (111), and (102),

2
‘ Xz (w -3 <w,¢>%>m<m>@%)’
X295, ‘

veQ, L2(M)
| 23122y

< H(l — T0,c.h] (TZ))(XZw)HiQ(E,gZ) + ch? < 5(771/Cz + h2)7

2

zW ) Z\IIZ
Xat = (X W) 22w L2(w)

where T, = AZP(R? g.) if z € OM and T. = A (R?,g.) if z € M (recall that
E=R? if y € OM and E = R? if 5y € M). In conclusion, as 7; — 0 and h — 0,

diStL2(M) (w, Span(q)zv Yy € Qq)) — 0.

This implies that there exist 7 > 0 and hy > 0 such that for all n; € (0,7) and h €
(0, ho), dim Ran 7o, 1) (A?",’l(q) (M, gM)) < my. This concludes the proof of Theorem 4.

25 APPLICATION oF THEOREM 4 TO THE INFINITESIMAL GENERATOR OF THE DIFFUSION (1)

Let us go back to the setting introduced in Section 1. Recall that ) is a smooth
bounded domain of R?, and let us apply the results stated above to M = Q endowed
with the standard Euclidean metric tensor: gy = ((5¢’j dx;dx;); j=1,... 4. For the ease
of notation, we henceforth omit the reference to the metric tensor in the notation of
the Witten Laplacian and the Sobolev spaces.
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2.5.1. Nowation for weighted Soboley spaces. For ¢ € {0,...,d} and m € N, one
denotes by AYH(2) the weighted Sobolev spaces of g-forms with regularity index
m, for the weight e~ (/Mf (@) dx on Q (hence the subscript w in AYH™(S2)). We refer
again for example to [81] for an introduction to Sobolev spaces on manifolds with
boundaries. For ¢ € {0,...,d} and m > 1/2, the set AYH,}' () is defined by

AH () := {v € ATH}(Q), tv = 0 on 0Q}.
The space AYH}) (1) is denoted by AYLZ (). Let us mention that the space A’ H, +(Q2)
(resp. A°L2 (Q)) is the space Hg(Q,e~*/Mldg) (resp. L?(, e~ /M dzx)) that we
introduced in Section 1.2.3 to define the domain of L?,',’Z(O) (€2). We will denote by ||| g
the norm on the weighted space AYH'() (without referring to the degree of the
forms). Moreover (-,-)z> denotes the scalar product in AYLZ (€2). We will also simply
denote A°HY(Q) by HY(Q) if there is no possibility for confusion.
2.5.2. Link between L?j;L(O)(Q) and A?j}b(o)(Q), and proofof (41). — The infinitesimal
generator —L}(’)QL of the diffusion (1) (see Section 1.2.3) is linked to the Witten Lapla-
cian A;?;L = Ag) +|V£]? + hA(}(;)f (where we recall that the Hodge Laplacian writes
here: Ag) = —divV = —A) through the unitary transformation:

peL2(Q)—s e Ty e L3(N).
Indeed, one can check that
(118) AP =2ne ML) et/h,

(0)
f

Let us now generalize this to ¢-forms, using extensions of L} ; to ¢-forms.

Prorosition 24. — Let g € {0,...,d}. The Friedrichs extension of the quadratic form

i h h *
QY () tv e ATHY p(Q) — §||d(q)”}|ii<ﬂ> + 5 [ (d D) e 0]z 0

on A1L2 (Q), is denoted (L?)i,’l(Q)(Q), D(L?)i;fQ)(Q))). The operator L?i;fq)(Q) is a pos-
itive unbounded self-adjoint operator on A1L%(Q). Besides, one has

D(L?’i;l(q)(Q)) ={v e AH. (), tv =0, td*(e_2f/hv) =0}.

Proposition 24 is proved in [42, §2.4]. For p = 0, the operator L?’i;L(O)(Q) is the one
introduced in Section 1.2..3. In particular, for v € D(L?j;b(o)(Q)), L?i;L(O)(Q)U = L;(,),)lv.
For p = 1 the operator L?',’l(l)(Q) is the one introduced in Section 1.2.6. In particular,

for v € D(L?j;fl)(Q)), L?’i;l(l)(Q)v = L;{,)Lv where we recall that

h
L) = §Ag)+Vf'V+Hessf7

see (39).

As a generalization of (118), one gets:

(119) A D(Q) = 2ne /(LY (@) e/,
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The intertwining relations (44) and (45) write on L?,i;L(Q)(Q): Y € A‘JH;’T(Q)7

(120) me (L2509 (@Q)dv = drg (LY@ ()0
and

Di,(q— " " Di,
(121) WE(th(q 1)(9)) 2f,h’U = d2f,h7TE(Lf’h(Q)(Q))U7

Thanks to the relation (119), the operators L?’i;fq)(Q) and A?j;t(q)(Q) have the same

spectral properties. In particular the operators L?j;b(Q)(Q) and A?j;t(q)(ﬁ) both have
compact resolvents, and thus a discrete spectrum (see Proposition 10).

Equation (41) is a consequence of Theorem 4 as stated in the following results,
which also gives a first estimate of Aj,.

Cororrary 25. — Let us assume that (Q-f) is satisfied. Then, there exists ¢ > 0 and
ho > 0 such that for all h € (0, ho),

dimRanm g (L7537 (Q)) =1 and  dimRanmq (LT3 (Q)) = n.

Moreover, A\, the principal eigenvalue of L?’i,’l(o)(ﬂ), is exponentially small as h — 0.

For ease of notation, we set
(122) T = 70,0 (LTR(9)), for g € {0,1},
where ¢ > 0 is the constant introduced in Corollary 25.

Proof. — First of all, by item (2) in (Q-f), for any 2 € 9Q such that |V f(z)| = 0,
there exists a neighborhood V% of = in 90 such that Jn, f = 0 on V2. Therefore,
M = Q and f satisfy (M-f). By Theorem 4 and (119), for all ¢ € {0,...,d}, there
exists ¢ > 0 and ho > 0 such that for all h € (0, ho):

dim Ran 7o,¢ (L7417 (2)) = mq, where by (49), m, = Card (UF U U™t U UZ2).

Let us first consider the case ¢ = 0. Recall that Uo‘m’1 U UgQ’2 = @. Thus mg =
Card(Ug) =1, since by Lemma 4, f has only one local minimum in €2 which is zg.

Let us now consider the case ¢ = 1. Notice that U} = & since the minimum = is
the only critical point of f in 2. One then has m; = Card(U?Q’luU?Q’Q). By item (3)
in (Q-f) and by the definition (47) of U, it holds U?*' = &. By (48), UY*? is
the set of saddle points of f on 0€2. Thus, from Definition 6, U?Q’Q ={z1,...,2n}
In conclusion, my = n.

It remains to prove that A, is exponentially small when h — 0. Let us recall the
proof of this well-known result. Let y : R? — [0, 1] be a € function supported in €
such that y = 1 in a neighborhood of zy in €. Then, since z( is the only global
minimum of f in Q (see Lemma 4), there exists § > 0 such that f > f(x¢) + 6 on
supp Vx. In addition, because Hess f(xz¢) > 0,

/ x2e~ @/ — (zh)¥2(1 + O(h))e~ /M=) / /det Hess f (o),
Q
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in the limit A — 0. Thus, for A small enough, it holds:
- h fQ |Vx|2€7(2/h)f

Di,(0) —8/h
Ah < <Lf,h (Q)X7X>L12” = 9 fQ XQG_(Q/h)f < Ce y
where § > 0 is independent of h. This ends the proof of Corollary 25. ]

3. (QUASI-MODES ASSOCIATED WITH (2 )k=1,...n

By Corollary 25, for h small enough, the rank of the spectral projector ﬂél) (de-
fined by (122)) is the number n of saddle points of f and the rank of the spectral

’(lo) is 1 (the number of local minima of f). To prove Theorem 1, we will con-

projector 7
struct n quasi-modes {ffl), e 7fT(Ll)} for L?,',’l(l)(ﬁ) and a quasi-mode u(®) for L?:;L(O) (Q)

which form respectively a basis of Ran 7T}(Ll) and of Ran 7T}(10)

. We will build quasi-modes
which satisfy appropriate estimates, listed in Section 3.1, in order to get the results
of Theorem 1.

As already outlined in Section 1.2.6, the strategy to build the quasimode f,(cl) con-
sists in constructing a quasi-mode v,(fl) € Ate(Q) for A?j}b(l)(Q) associated with the
saddle point z; € 0 for each k € {1,...,n}, from which a quasi-mode f,il) = ef/hvl(ﬂl)

for L?ﬁi,’fl)(Q) is deduced. This quasi-mode v,(fl)

is built as follows. We first introduce in
Section 3.2 a subdomain Q} of Q which satisfies some geometric conditions (in par-
ticular, zj is the only saddle point of f in @7 and Vf - noy = 0 on BQI,:I). Then,
we introduce in Section 3.3 an auxiliary Witten Laplacian on Q}:l with mixed Dirichlet-
Neumann boundary conditions, and we prove that it has only one eigenvalue )\(QQI)
smaller than ch when considered on functions and 1-forms. The quasi-mode v,(cl) is
then defined as the principal 1-eigenform of this Witten Laplacian (denoted by u,(fl))
multiplied by a suitable cut-off function, see Section 3.4.

Let us emphasize that since |V f(z;)| = 0, the constructions of the quasi-mode v,(cl)
are very different from those done previously in the literature [27, 42, 28, 41]. In par-
ticular, WKB approximations of v,(cl) are not sufficient to prove the required estimates
(see Section A.2 for more details). Instead of using a WKB-approximation, we will
use an asymptotic equivalent of A(Q}!) in the limit & — 0, inspired by [58]. For A(Q}!)
to be different from 0, we require in particular that Q}z’l contains xg, which was not
the case in [27].

01 @ Di,(0 Di,(1
3.1. SUFFICIENT ESTIMATES ON THE QUASI-MODES FOR Lflh( )(Q) AND Lf_'h( )(Q)

Let us exhibit sufficient conditions on the quasi-modes to get the results of Theo-
rem 1 (recall that ng is the cardinal of arg min f|aq, see (15)).

Prorosition 26. Let us assume that (Q2-f) is satisfied. Assume that there exists a
family {f{l), . ,f,(f)} of smooth 1-forms on Q, and a smooth function u® on Q such
that:

(1) The function u®©) belongs to HL(Q) and is normalized in L2/(Q). For all k €
{1,...,n}, f,(cl) belongs to A'H,\, (Q) and is normalized in A* L2, ().
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(2)

(a) There exists e1 > 0 such that for all k € {1,...,n}, in the limit h — 0:
(D)) )2 —e1/h
(123) (1= m,")f HH}U(Q) <e/

(b) For any r >0, u®) can be chosen such that there exist C, > 0 such that
for h small enough:

||VU(O)||2L,2 @ < C,e~@/M(F ()= f(zo)—r),

(3) There exists e > 0 such that for h small enough, ¥(k,¢) € {1,...,n}> with
kA 0:

|<fl(gl)7fzgl)>ng(Q)| e/t

(4)
(a) There ezist constants (Ki)k=1,...n, and p which do not depend on h such
that for all k € {1,...,ng}, in the limit h — 0:

<Vu(0)’f£1)>L2 @ = Ki hPe~ (/M E)=1@o) (1 4 O(Vh)),
where we recall f(zr) = f(z1) fork=1,...,n9. If k > ng, it holds for h small
enough:

—(1/h)(f(z1)— f(zo)+e)

|<Vu(0)’fl(c1)>qu(Q)‘ Sse :

(b) There exist constants (bg)r=1,....n, and m which do not depend on h such
that for all (k,€) € {1,...,n}>, in the limit h — O:

0 ifk#¢,
/flgl),nﬂ e~ M dg={ —b k™ e~ (/MIED (14 O(VR)) ifk=(e{l,... no},
2z, O(e—(l/h)(f(z1)+c)) ifk=0e{ng+1,...,n},

where all the ¥,,’s are such that (16) holds.
Then, in the limit h — 0:

h2pt1 10
Ap = — e~ 2/h)(f(z1)—f(20)) Z K? (14 O(Vh)),
k=1

where Ay, is the principal eigenvalue of L?’i}L(O)(Q). In addition, for allk € {1,...,n0},

in the limit h — 0:

/ (Onytin) =@M dg = — Kby, B2+ e=(/M@FED=1@0) (1 1 O(VER)),
sz

where uy, is the principal eigenfunction of L?)i,’l(o)(Q) which satisfies (19). Finally, there

exists ¢ > 0 such that, when h — 0

/ Ot /W dg = O (¢~ /MCHE)—F @)+
8Q\U}:gl sz
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Let us emphasize that, even if this is not explicitly indicated, the family
{f1(1)7...,f7(L1)} depends on h > 0, and the function u(® depends on h > 0 and
r > 0. The proof of Proposition 26 is based on finite dimensional linear algebra
computations, and is similar to the proof of [28, Th. 5]. It is therefore not reproduced
here. Notice that Equations (23) and (24) in Theorem 1 and Equation (29) in Propo-
sition 7 will follow from the construction of quasi-modes {f{l), e ,fr(Ll)} and u(®
satisfying all the assumptions of Proposition 26. This construction is made in the
rest of Section 3 (see the formulas (186) and (237) for the constants by, m, K, and p,
and Section 4.1 for more details).

To prove Equation (27) in Theorem 1 (i.e., to get an asymptotic equivalent of
fz (Onqun) e —@/Mfde for k > ng, as h — 0), one needs stronger assumptions on
these quasi-modes.

Prorosirion 27. — Let us assume that (2-f) is satisfied. Assume that there exists
a family {ffl),...,ﬂ(ll)} of smooth 1-forms on Q, and a smooth function u® on Q
satisfying all the assumptions of Proposition 26 with the following additional require-
ments:

(1) Concerning item (2a) in Proposition 26, there exists €2 > 0 such that for all
ke{l,...,n}, in the limit h — 0:

(124) (1~ 7T(l f<1 HHl < e~ @/M)max(f(zn)=f(z0).f (21) = f(z1)]He2)

(2) Concerning item (3) in Proposz’tz'on 26, there exists €3 > 0 such that ¥(k,?) €
{1,...,n}* with k > £, in the limit h — 0:

|<f(1) f(l > | < e~ (/M) (f(z1) = f(ze)+ea)
(3) Concerning item (4a) in Proposition 26, there exist (Kk)k=no+1,... n and p which
do not depend on h such that for all k > ng, in the limit h — 0:
1 — zi)—f(x
<Vu(0)7f£ )>Li(9) = Ky, hPe~ (/M 0)=F@0)) (1 + O(Vh)).

L3, ()

(4) Concerning item (4b) in Proposition 26, there exist constants (bg)k=ng+1,....n
and m which do not depend on h such that for all k € {ng+1,...,n}, in the limit
h —0:

/ £ g e~ @M dg = _by B™ e~ WMIE) (14 O(VRY),
PP
where all the Z:k ’s are such that (16) holds.
Then, for all k € {ng+1,...,n}, in the limit h — 0:

/ (Onytin) =@M dg = —Kyby hP™ e~ (/M EI=1E0) (1 4 O(VR)).
I

Notice that the assumptions of Proposition 27 on the quasi-modes are stronger
than those of Proposition 26 (see indeed (15)). Again, the proof of Proposition 27
is similar to the proof of [27, Prop. 25|, and is therefore not reproduced here. Notice
that Equation (27) in Theorem 1 will follow from the construction of quasi-modes
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satisfying the assumptions of Proposition 27. To construct such quasi-modes, the
assumptions (25) on the Agmon distance and (26) on f(xo) will be used.

Let us finally mention that once Theorem 1 and Proposition 7 are proved, Theo-
rem 2 and Corollary 8 are direct consequences of Theorem 1 together with (21), (22),
and Proposition 7.

3.2. CONSTRUCTION OF THE SUBDOMAINS (Q,’\Cl)kzly__’n or . — Let us recall that Q is
a smooth bounded domain of R?. In this section, we construct a Lipschitz subdo-
main Qﬁl of € associated with each saddle point z; of f in 9, k = 1,...,n. This
subdomain will then be used to define in the next section a Witten Laplacian with
mixed Dirichlet-Neumann boundary conditions on QM. We construct Q) such that:

(i) there exist two disjoint open subsets I‘%{D and I‘}:{N of Q) such that OQ) =
™ UFM
kD YL kN
(ii) 8,,9)\61]" =0on F%D and annilf >0 on I’};’fw
(iii) zo € @}, and finally
(iv) T}'p and Tyly meet at an angle strictly smaller than m (see Definition 31

below).

Conditions (ii) and (iii) will then be used to deduce in Section 3.3 the number
of small eigenvalues of this Witten Laplacian on Q}, and the condition (iv) will be
necessary to have existence of traces and regularity estimates for forms in the domain
of this Witten Laplacian.

3.2.1. Preliminary resulis. Before going through the construction of Q3! (see Propo-
sition 30), we need preliminary results stated in Propositions 28 and 29.

Prorosition 28. — Let us assume that the assumption (Q-f) is satisfied. Consider
ke {l,...,n} and F a compact subset of the open set T',, . Then, there exists a C™
simply connected subdomain Tr of OQ containing zy, such that Tg C T, , F C T, and

(125) Vf-npp, >0 ondlE,

where np. € TS is the unit outward normal to I'r.

Since ) is a stable domain for the dynamics (12), one can prove a similar result
on zo and {2, as the one obtained in Proposition 28 on z; and I', .

Prorosition 29. — Let us assume that (Q-f) is satisfied. Then, for any compact
subset K of Q there exists a C>° simply connected subdomain Qx of Q containing xg
such that K C Qk, Qx C Q, and

Vf-ng>0 ondQk.

The proofs of Propositions 28 and 29 are tedious, and we therefore postpone them
to Section A.3, in the appendix.
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3.2.2. Construction of Q,‘! . We are now in position to construct, for each k €
{1,...,n}, the subdomain QM of Q associated with the saddle point zj and its neigh-
borhood X, (see (16)).

Prorosition 30. — Let us assume that (Q-f) is satisfied and consider k € {1,...,n}.
Then, there exists a Lipschitz subdomain QM of Q containing xo and such that:

(1) It holds OQM N 0Q = % where T}y is a € subdomain of T'., containing
3., which satisfies:
(a) Vf~nF§KD >0 on 8].",16‘/7[]D (recall that npy € T@Qﬂ(T@I‘,’fD)J- is the unit
outward normal to F,ICV’ID) and

(b) a.e. on T}y,

Vf : nggf = 0,
where, here and in the following, a.e. is with respect to the surface measure on
oM.
(2) On F,g/)[N = 0QM N Q it holds a.e.:
Vf . nQJIl/I > 0.

(3) The sets F,ICV’ID and F,JCV’[N meet at an angle smaller than © (see Definition 31
below). This angle will be actually w/2 from the construction below.

(4) For all § > 0, QM can be chosen such that
(126) sup dg(z,00\T;,) <4,

zEFﬁ{N
where dg denotes the geodesic distance in Q.

Schematic representations of Q}, I‘MD, and I‘}i{N are given in Figure 4 below.
The subscript D (resp. N) in F}:{D (resp. in F};’{N) refers to the fact that Dirichlet
(resp. Neumann) boundary conditions will be applied on I‘}:’{D (resp. on Fl,lIN) when
defining the Witten Laplacian with mixed Dirichlet-Neumann boundary conditions
on Q) see Section 3.3.1 below. Let us recall the definition of an angle between two
hypersurfaces used in item (3) of Proposition 30 (see [12, 49]).

Dermvition 31. — Let D be a bounded Lipschitz domain of R?. Let I'n and I'n be
two open disjoint subsets of 9D such that I'p U 'y = OD. The sets I'p and I'n
meet at an angle smaller than 7 (in D) if locally around any point y € I'p N I'y,
there exists a local system of coordinates (y1,y”,vyq) € R x R9™2 x R on a neigh-
borhood Vy of y, and two Lipschitz functions ¢, : R41 — R and Py R¥=2 5 R
such that DNVy = {ys > oy (v1,¥")}, Tp NVy = {ya = oy (v1, ") and y1 > ¥y (y")},
I'nNVy = {ya = ¢y(y1,9") and y1 <y (y")}, and
Oypy(yr,y’) 2 6 onyr >y (y"),
1

Dy oy(y1,y") < =k onyy < ahy(y"),

for some x > 0.
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From a geometric viewpoint, the fact that I'p and I';y meet at an angle smaller
than 7 is equivalent to the existence of a smooth vector field # on 9D such that
(0,np) <0 onI'p and (#,np) > 0 on I'n. Let us now prove Proposition 30.

Proof of Proposition 30. — Let k € {1,...,n}. The domain Q} will be defined as the
union of two intersecting subdomains of €2. The proof of Proposition 30 is divided
into several steps.

Step 1: Definition of Q!

Step 1a: Adapted system of coordinates and preliminary constructions

The set F,KD. Recall (see (16)) that z € X,, and X, C I,,. Using Proposi-
tion 28, there exists a € subdomain '}', of T, such that ., C [}'p, T, C Ty,

which can be as large as needed in I',, , and such that

(127) Vf-npu_ >0 on 9.

In step 1b below (see indeed (147)), we will check that, from the definition (141) of QM,
F}X{D = 0QM N 09, and this will therefore prove item (1a) of Proposition 30.

Systems of coordinates near O and 3F,Z D In the following we introduce two sys-
tems of coordinates: one around z € 9 in Q (see (2, 24) and one around z € BF%D
in 9 (see 2’ in (131) and (132)). They will be used to define Q3.

Recall that, for ¢ > 0 small enough, for all z € Q such that dg(z,09) < e, there
exists a unique point z(x) € 99 such that

(128) zq(z) == dg(z,00) = dg(z,z(z)),
where we recall dg denotes the geodesic distance in Q. Moreover the function z —
dg(z,09) is smooth on the set {z € Q, dg(z,09) < €}. Let z € 99 and 2’ be a

system of coordinates in 0f) centered at z. Then, there exists a neighborhood V. of z
in Q such that the function

(129) v eV, — (2/(z(v)), z4(v)) € R x R,

is a system of coordinates in V, (this is the tangential-normal system of coordinates
already introduced above in (105)). For ease of notation, we omitted to write the
dependency on z when writing (2’ z4), and we write with a slight abuse of notation,
a'(v) instead of z’(z(v)). Let us assume, up to choosing V, smaller that for £, > 0
small enough, V. is a cylinder in the (z’, z4)-coordinates:

(130) V. ={veV.,, [2/(v)] <e. and z4(v) € [0,¢.)}.

Let us now be more precise on x’ when z € FkMD. If z € F%D, we choose €, > 0
small enough such that

(131) NV, ={veV,, |2/(v)] <e, and z4(v) =0} C F%D.
If z € 81“%]3, the system ' = (x1,...,24-1) in 99 is chosen such that:
(132) Fl,;/fD NOANV,) ={vednV,, z1(v) >0},
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Figure 3. The cylinder C,.
and
(133) MY H N (O2NV.) ={veadnV., z1(v) =0}
This implies that for all z € 5‘I‘%D,
Vzi(z)

134 =—-———>>€T,00.
(134) "o () = ) €

Constructions of two subdomains of Q: Co, and Qk
the open cylinder

(135) Ca={2€Q,z2(x) € F%D, zq(z) € (0,a)},

w2+ — Define, for a > 0 small enough,

(see Figure 3 for a schematic representation of C,), and the compact set
Koo ={v €, dg(v,00) > a/2} C Q.

From Proposition 29, there exists a €>° subdomain €, , of { containing zo such

that KQ/Q C QKa/z7 Qk C 2, and

(136) Vf . I’\QKQ/2 >0 on 8QKQ/2.

a/2

A schematic representation of {2k, and C, is given in Figure 4.
Moreover it holds (see Figure 3):

(137) 0C, =T}, uxpteraly phase,
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Ficure 4. Schematic representations of QM = C, U Qk V2 I‘%’{D, and

F;IN On the right, a zoom in the neighborhood of I',,, where the
dotted lines represent the flows of ¢, near the saddle point z; of f
(see (12) and item (1) in (Q-f)).

where
(138) spteed = fr e Q, z(x) € ONY'p, za(z) € (0,0)} C Q,
and yhase = [z € Q, z()GFkD,xd )=a} CQ.

Let us now prove that there exists ag > 0, such that for all « € (0, ag), one has:
(139) Vf-nc, >0 on Xlateral
It holds £l = {y € Q, z1(v) = 0, zq(v) € (0,a)} (from (131)-(133), (135),
and (138)), and hence, one has for all v € Ylateral;
Vi (v)
[V |(v)
Therefore, by a continuity argument, using (127) and (134), there exists ag > 0 such
that for all a € (0, ap) and for all v € Xlateral

Vf)-nc,(v)>0.
This concludes the proof of (139).

(140) e, (v) = -

Step 1b: definition of Q! such that 9! N0 = I‘,'f p- — Let us introduce (see Figure 4)
(141) Q= C, Uk

/27

which is included in Q. Let us mention that Qil depends on two parameters: the set
F%{D (which can be chosen as large as needed in I',, ), and the parameter o > 0 (which

can be chosen as small as needed). One obviously has TM C 9. Let us define

(142) Tin = 00~ TYp,
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so that 9Q)' is the disjoint union of I), and T)y. By definition, Q! is the union
of two intersecting open connected subsets C, and Qk, , of £, it is thus open and
connected. Notice that one has:

(143) o0 € 9Ca U0k,

and, since ¥52% C K, /o C Ok, ,, C Q' (see (137)), one has:

a/2
(144) 00, ,, NI =@ and O NEh*e = 2.

In addition, from the fact that 0k, , C 2 and % C 09, it holds:
(145) 00, NTY, = 2.

Thus, from (143), (144), and (145) together with the definition of F%N, it holds:
TN C (0Ca U0k, ) \ (TN UXbase) = 9C, \ (TYp U Bbase) U 0k, ,, and thus,
from (137),

(146) Iy C Sy ok, C{v €, dg(v,09) < a},

/2
where the last inclusion follows from the fact that

Mk, C{v e, dg(v,09) < a/2}
and (138). In particular, this implies that, since FkM)D C 09,
(147) o' N =T}y and 90 NI =TNp,.
Step 2: Proofs of items 3 and 4 in Proposition 30

Step 2a. — Let us check that Fg{D and F%N meet at an angle strictly smaller than 7
in Q' (in the sense of Definition 31). To this end, let us prove that

(148) Y AT = T, N Sferl,

Notice that (148) implies that Q! is Lipschitz near T}, N TNy as the union of the
closures of two disjoint open transverse C>° hypersurfaces F}:’{D and Ylateral (this will
be used in Step 3b below). Furthermore, (148) implies that '}y and '}y meet at
an angle 7/2 (see Figure 5), which thus yields item (3) in Propé)sition 30.

Let us thus prove (148). From (146) together with (145), it holds:

M M M lat 1
Fk pN Fk7N C I'yip N Xgteral,

Now, let us consider z € FM N Xlateral  Then, there exists a sequence (Tn)n>0 €
yhateral gych that x, — @ as n — +o0o. Let us prove that for all n large enough,
T, € 892’1. For n large enough, x,, does not belong to m because m C Q and
r, — x € 0. In addition z,, ¢ C, (indeed x,, € 9C, since z,, € Ylateral) Therefore,
for n large enough, x,, ¢ QM. On the other hand, since z,, € C,, z, € C, C 971121
In conclusion, z, € 2N I = I'¥y (see (147)) and thus, z € T'}y. This concludes
the proof of (148). ’ ’

JEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS ()33

on
) —mee— oy (YY) =l
N //’ Etheral
y/,)'\ zg O
'3 M Ny
Y1 Tep Yd
Ca

)

Ficure 5. The sets F%D and Y12teral meet at an angle 7/2 in C, (see
Definition 31, (132), (133), and (137)). On the figure, y € T)5 N
ygteral and {zq > 0} = Q, y1 = (—zg+21)/2, Yya = (2a +21)/2,

y" = (22,...,24-1) (which is, schematically, the coordinates per-
pendicular to the plane (x1,z4) centered at y), ¥y (y”’) = 0, and

@y(y1,y") = |y1| in Definition 31.

Step 2b. — Let us now prove item (4) in Proposition 30. To this end, let § > 0.

Let us choose F%D such that the distance between '}y and 9Q \ T, is smaller

than §/2 (recall that I‘}:{D C I';, can be chosen as large as needed in I';, , see Step la
above), i.e.,

(149) dg(Tip, 02N T.,) <6/2.

Let us consider z € I')'y. According to (146), z € L% or 2 € 9, ,. If = €
ylateral “then by the triangular inequality, it holds:

Ao, 00\ Ts,) < dg(e. i) + (T, 02\ Ts,) <o+ /2,

where we have used that according to (138), dg(z,T}!p) < dg(z, ') < a, for
all x € Ylateral If g ¢ Mk, ,,, then dg(z,09Q) < a/2 < a. Because = ¢ C, (since
x € O and C, is an open subset of Q"), one has z(z) € 9Q \ T}',. Therefore,

dg(z,00\T;,) <dg(z,z(z)) + dg(z(z), 00 \T.,) < a/2+6/2,

where we have used that either z(z) € 9Q\T';, (in which case dg(z(z), 0Q~\T,) = 0)
orz(x) eI, ~ I‘QTD (in which case dg(z(z), 02\ T, ) < 6/2, see (149) together with
the fact that z(z) ¢ F%D). In conclusion

sup dg(z,00\T,,) <a+d/2.

M
zel')

Choosing « < §/2 concludes the proof of item (4) in Proposition 30.
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Step 3: Proof that Q) is Lipschitz, and study of the sign of Vf - o Let us first
check that QM is Lipschitz. Notice that the union of two Lipschitz (even smooth)
subdomains of 2 is not necessarily a Lipschitz domain (the boundary is even not
necessarily a manifold). In our setting, one has:

O, NOC, = I, ,, N T2 (see (137), (144), and (145)),

where (i) Slateral anq 9k, ,, are smooth, and (ii) the normal derivatives V f(v)-nc, (v)
and V f(v)- noc (v) of f at v € Ylateral NQk,, ,, are positive (so that the two normal
vectors cannot be opposite, a situation which could create cusps). These two points
will be used to prove that the boundary of QM is Lipschitz. One has:

(150) o' € 99k, ,, U ICa.
Define the two open subsets of GQN

(151) Ar =00 N (09, . ~ 0Ca), Ag =00 N (0Ca \ 0%, ,,),

and the closed subset of 9Q Az := 00N (082, ,,NOCq), so that oM is the disjoint
union of Ay, Az, and Az. Let us now prove that, for j € {1,2,3}, 9Q} is Lipschitz in
a neighborhood of any point of A;, and let us also study the sign of V f - Ny on Aj.
Step 3a: Study of Ay. First notice that (because 0Qk,

(152) A1 C OO, ,, \ 0C, C Q,

c ),

v/2

Let z € A;. Then, there exists a neighborhood O, of z in R? such that 0, N C, = @.
Indeed, if not, z would belong to C, = 9C, U C,, and z cannot belong to 0C,
(by definition of A;) and z cannot belong to C, (because z € 9Q\). Using (141),
it then holds O, N QT,;I =0.n m (because QT,;I =C,U WMZ) Therefore, since in
addition Qk_ , is a smooth domain, A is a smooth part of the boundary of Q' and
oy = Noc . on A;. Finally, using (136), it holds:

(153) anf’];l[f >0 onA;.

Step 3b: Study of Ag. — 1t holds Ay C IC, 0, ,,- With the same arguments as
in Step 3a (see the lines after (152)), O, N Qiﬁl = 0, N C, for some neighborhood O,
at any point z € Ag. Moreover, from (137), C, is €> except on dT)', U 955,
where it is Lipschitz since F%{D and Ylateral and y:base and ylateral are transverse (see
Step 2a above). Thus, As is a Lipschitz part of the boundary of Qﬁl and

(154) ngu =nc, on A\ (81"2{1) U dxP®e) je., a.e. on As.

Let us now study the sign of V f-ngu on Az. Recall that 9Co = Fg{Duzfteraluzgase
see (137)), TM_ NoQk ,, = @ (see indeed (145)), and QM N Ehase = & (see (144)).
k,D a/2 k o
Hence, it holds:
(155) Ay = 90 N (9Ca N 0k, ,) = (09" NTHL) U(OQ N Tt 00k, ,)-
—_——

_TM
=I'yp
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Let z€ Ag. If z € F}E’TD, then nc_(z) = nq(z) and thus, using (154), it holds:
(156) V/-ngy=0onT}p,

where we also used the fact that T}, C T, together with item (2) in (Q-f). If z €
ylateral “then from (139) and (154), it holds,

(157) Vf-ngy >0 on o0 N\ 90, .

Step 3c: Study of As. — Notice that Ag = Mk, ,, NOC, (because M, , NIC, C
o). Notice also that since Nk, ,, C O,

(158) Az C Q.
Using (137), (144), and (145), it holds:
(159) Az = 0k, ,, N OCq = 00k, ,, N S

Thus, 0€k, , intersects 9C, where 9C, is smooth (i.e., on ylateral) Tet us consider
v € Ags. Let us conclude the proof by considering successively the case when no, , (v)
is not collinear to nc_(v), and the case when o, (v) = £nc_ (v).

Let us first consider the case when ok, , (v) is not collinear to nc,(v). By a con-
tinuity argument, there exists a neighborhood O, of v in £ such that O, N 9C, =
0, N Xlateral (55 that nc, is defined everywhere and continuous on O, N dC,) and

such that ng, P is not collinear to nc, on O,. Consequently, 0€k and 0C, are

a/2
transverse on O, (or equivalently, the natural immersion map i : %, , — R? is
transverse to 9C,, on O,). Thus, O, N aﬂﬁl is Lipschitz. In addition, as a consequence
of the inverse image of a regular value Theorem [11, Th. (5.12)] and its proof (see
also [87, 72, 37]) applied here to the smooth function i, one has, up to choosing O,
smaller, O, Ni~*(0C,) = 0, N (082, ,, NOCs) (because i~1(0C,) = Mk, ,, NOCs)
is a 1-codimensional smooth submanifold of 9k, ,, (i.e., a 2-codimensional smooth
submanifold of R? included in Q). Therefore, for all v € Az such that o, (v) is

not collinear to nc, (v), there exists a neighborhood O, of v in € such that
(160) 0, N Az is of measure 0 for the surface measure on O, N GQI,EI.

Let us finally consider the case when ng, P (v) = £nc,_ (v). Using (136) and (139),
oy, , (v) = +n¢, (v). Moreover, from (135), (138), and (159) there exists a neighbor-
hood O, of v in Q such that O, NJC, = O, N ¥l and thus (see (132) and (133)),

0,NCa=0,N{weQ, z1(w) >0, z4(w) € (0,a)}
and (see (138))
(161)  0,NACq =0, N{w € Q, z1(w) =0, zq(w) € (0,a)} (=0, N ylateral)
In the following, with a slight abuse of notation, we will denote by x = (x1,Z) both

a point in O, and its coordinates in the local basis.
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In addition, since ng, 12 (v) = +nc,(v) and 9k, is smooth, up to choosing O,
smaller, there exists a smooth function ¥ : R?~! — R such that ¥(z(v)) = z1(v) =0
and

(162) 0, N, = {(V(7),7), © = (1, F) € O,}

is the graph® of W in the (x1,) coordinates, where we set T := (za,...,2Z4_1,2Zq)-
Moreover, one has
0, N, , = {r = (1,7) € O, such that z; > ¥(z)}.
Therefore, from (141), O, N Q¥={x = (21,7) € O, such thatz; > min(¥(Z),0)} and
thus,
0, NI = {x = (1,7) € O, such that z; = min(¥(Z),0)}

is Lipschitz (indeed Y : Z — min(¥(Z),0) is a Lipschitz function). In addition, for
a.e. z = (z1,7) € 0, NI nou(z) € {nc,(z),nq, (z)}. Indeed, in the (z1,7)-
coordinates, one has for a.e. z = (z1,7) € O, NI,

(=L VY (7))
VIFHIVY@)P

Because for a.e. 7, VY(Z) € {0, V¥(7)}, it holds for a.e. z = (z1,7) € O, N I,
nqu(z) € {nc,(z),nq,, (%)} Moreover, using (136) and (139), it holds for a.e. z =
(1‘1, 5?') €0, N 89}21

(163) Vf(x) : an(a:) > 0.

T,00M = {(ﬁ-VT(?:), p), pe Rd—l} and  ngy(z) =

From (160) and (163), we thus conclude that for any point v € A, there exists a
neighborhood O, of v in  such that, for the surface measure on O, N IQM, either
O, N A3 is of measure 0 or Vf - ngu > 0 a.e. on 0, N As. This implies that, for the
surface measure on 9Q},

(164) V[ ngu>0 a.e. onAs.

In conclusion, Q};’I is a Lipschitz subdomain of . Furthermore, we have proved
that:
Vf-ngu=0 ae. on My = I NN (see (156) and (147)).
In addition, since (see (147), (152), (155), and (158))

Min =00 NQ=A; U (Ay N Q)UA3,

(4)The fact that Oq,ﬂaQKQ/z is the graph of a function of 7 is a consequence of the implicit function
theorem, since 7,00k, = {Vz1(v)}* (ng, /2 (v) = +nc, (v) and (161)). Indeed, in a neighborhood
of yo := (z1(v),Z(v)) = (0,%(v)) in R, 9k, is the set of points (z1, F) such that ¢(z1,7) = 0 where
# : RY — R is smooth. In particular, V¢(yo) # 0 is collinear to ng, /2 (v) and Vrd(yo) = 0, where
Vr is the tangential gradient of ¢ along 9k, , ). Since T, 00k, = {Vz1(v)}+ and Vz1(v) L Vig(v)
for ¢ =2,...,d (we choose normal coordinates systems), one has Vz¢(yo) = Vr¢d(yo) = 0 and thus,
Oz, %(yo) # 0. Equation (162) then follows from the implicit function theorem.

JIEP. — M., 2095, tome 12



EYRING-KRAMERS EXIT RATES FOR THE OVERDAMPED [LANGEVIN DYNAMICS ()37‘

and Ay N Q = 9Qf N xgrered Ok, ,,, one deduces from (153), (157), and (164),
that
Vf- noM >0 a.e. on P%N — 8921 A,

This concludes the proof of Proposition 30. |

3.3. Wirren Lapracians with Mixep DiricHLET-NEUMANN BOUNDARY CONDITIONS ASSO-
CIATED WITH (2))g=1,....n. — In this section, we define a Witten Laplacian with mixed
Dirichlet-Neumann boundary conditions associated with each saddle point zp of f
using the domain QY constructed in the previous section. The idea is to define a
Witten Laplacian in A?L*(Q)) with Dirichlet boundary conditions on F};’fD (where
Vf-ngu = 0) and Neumann boundary conditions on [N (where Vf - ngu > 0), see
Proposition 30. Since zg € Q! is the only minimum of f in Q) and 2z, € QM is the
only saddle point of f in @’ we expect, in view of Theorem 4 and the results of [56],
that such Witten Laplacians have only one eigenvalue smaller than ch when ¢ = 0
and ¢ = 1. Thanks to Witten’s complex structure, this eigenvalue, already introduced
as A(Q}!) at the beginning of Section 3, will be the same for ¢ = 0 and ¢ = 1. The
quasi-mode v,(cl) of A?;;L(l)(fl) associated with z; will then be defined by multiplying

by a cut-off function the principal 1-eigenform u,(cl) of this Witten Laplacian with
mixed Dirichlet-Neumann boundary conditions.

We first give the definition of Witten Laplacians with mixed Dirichlet- Neumann
boundary conditions on Lipschitz domains in Section 3.3.1. We then study the spectral
properties of these Witten Laplacians and derive some estimates on the principal
eigenvalues and eigenforms in Sections 3.3.2, 3.3.3 and 3.3.4

3.3.1. Witten Laplacians with mixed Dirichlet-Neumann boundary conditions on Lips-
chitz domains. In this section, in order to ease the notation, we drop the subscript k&
in (Q}:I, F%{D, FQTN), since the results will then be applied to each of this triplet, for
k€ {1,...,n}. Let thus Q™ be a Lipschitz subdomain of 2. Let I'M and TN be two
disjoint open subsets of Q™ such that IT\D"I U I‘T\\} = oM.

This section is organized as follows. We first recall the definition of weak traces for
forms w € AYHg(QM) N A?Hy (QM) where for ¢ € {0, ...,d},

(165) ATHg(QY) := {w € AL*(QY), dw € ATT' L2 (QY)}
and
(166) AT Hy- (V) = {w € A7L2(QM), d*w € AT L2(QY)}

are equipped with their natural graph norms. Let us recall the convention A=™'L? =
A2 = {0}. Secondly, we state trace estimates and regularity estimates for forms
w € AN Hy(QM)NAHy. (QM) such that tw = 0 on 'Y and nw = 0 on T'Y. Indeed (see
[12, 49]), a trace in AYL%(9QM) does not exist in general for such forms except if 'Y
and T'N} meet at an angle strictly smaller than 7 (measured in QM), in the sense of
Definition 31. This explains the role of item (3) in Proposition 30. Finally, we introduce
the Witten Laplacians of interest, together with an associated Green formula. This
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formula will be crucial to study the spectral properties of these operators in the next
section.

Weak definitions of traces for elements in A9 Hg(QY) or in A9Hy-(QY). — Let us recall
that for a differential form u in AYL%(9QM), the tangential and normal components
are defined as follows:

(167) u=tu+nu with tu=i,, (n?ZM Au) and nu= “?ZM A (inQMu)7

where the superscript b stands for the usual musical isomorphism (n?ZM is the 1-form
associated with nou, nou being is the unit outward normal to QM). Notice that tu is
orthogonal to nu in AYL2(9QM). Let us recall that the mapping

(168) w e ATHY (QM) — w|pou € ATHY?(00QM)

is well-defined, continuous, and surjective. We would like here to recall the procedure
to extend the notion of traces to elements in the subspaces of AZH(QM): A7H4(QM)
and A9Hg- (QM). This is achieved using a duality argument and the standard Green
formula which reads for differential forms (u,v) € AYTHY(QM) x ATHLHY(QM):

(169) <C|7.L, ’U>L2(Qn) - <u, d*U>L2(QM)

= / . <n?71\1 A u, U>T;Q\Id0‘ = / M(nsb-zm A u, nv)T;QMdO’
o0 a0

:/ (u,innMv>T;dea:/ (tu,in V) requdo,
aaM aaM

where we used the fact that the adjoint of n?)M/\ in AqLQ(GQM) is inQM. Let us now
consider w € AYHg(QM). Then, n%, Aw is defined as an element in A7F1H~1/2(9QM)
by: V¢ € Aq+1H1/2(8QM),

(170) <n?21\1 N w, ¢>H—1/2(8§2M)’H1/2(6QM) = <d’UJ, ‘I)>L2(QM) — <’UJ,d*(I)>L2(QM),

where ® is any form in AT H'(QM) whose trace in A9t HY2(9QM) is ¢. Recall that
this definition is independent of the chosen extension ® of ¢ (this follows from (169)
and the density of AQGOO(W) in AYHy(QM), see for example [49, Prop.3.1]). Sim-
ilarly, for any w € A9Hy-(QM), inw € AITTH/2(0QM) s defined by: V¢ €
Aqlel/Q(aQM)v

(171) <inQ]\[’UJ7 ¢>H—1/2(89M)7H1/2(69M) = <w, d(I)>L2(Qn) - <d*w7 <D>L2(QM),

where ® is any extension of ¢ in AY~LH1(QM).

Let us now recover the decomposition (167) for forms w € AZHy(QM)NAHy- (QM)
such that, on a subset I" of 9QM, the tangential trace or the normal trace are defined
in a weak sense. Let w € ATHg(QM). If n%y A w € ATT1L2(T), we define twlp, the
tangential trace of w on I', by

(172)  tw|p := inQM(nEM Aw) € AYL*(T), so that |[tw| 2y = [ wl|z2(r)-
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In particular tw|r = 0 if n?w Aw|p = 0. Let us now consider w € A?Hg-(QM). When
in  w € A7 L*(I), we define nw|r, the normal trace of w on I', by

(173) nu|r := niu A (inguu) € AIL*(T), so that |[nul|z2ry = lingy ull 22 (r)-

In particular, nulp = 0 if in_, w|p = 0. Lastly, if w € AZHg(QM) N A%Hg- (QM) is such
that ngy A w|r € AT L3(T) and iy, w € A7'L?(T') then w admits a trace wlr in
AYL2(T) defined by (see (172) and (173)),

(174) ’w|p = tU)|F +Il’w|p.
In addition, one has for such w:
b .
[wlellZe ) = lbwlelZe ) + InwlelZaw) = [Ingu AwlZar) + ling w2z )

Let us mention that all the above definitions coincide with the usual ones when w
belongs to AYH!(QM). In particular, (174) can be seen as an extension of (167).

Trace estimates for forms AN Hg(QY) N A Hy« (Q) satisfying mixed Dirichlet-Neumann
boundary conditions and when Q" is not smooth. — Let T be any open Lipschitz subset
of QM. According to [49, Prop. 3.1], the space

{w € Aie™ (W), w = 0 in a neighborhood of QM I‘}

is dense in

A Hy p(QM) = {w € AT Hg(QM), supp(ngu Aw) C T}
and in

A Hg p(QY) = {w € ATHg-(QM), supp(in , w) C T'}.

We are now in position to state the following result which is a consequence of [49,
Th.1.1 & 1.2] (see also [36, Th.4.1 & 4.2]).

Prorosition 32. — Let us assume that QM C R? is a Lipschitz domain. Let T'Y§
and T be two disjoint Lipschitz open subsets of OQM such that FT\)’I U @ = oM
and such that TM and TY meet at an angle strictly smaller than 7 (in the sense of
Definition 31). Then, the following results hold:

(i) Let w be a differential form such that (see (165), (166), (172), and (173))
w € A Hg(QM) N AYHy- (QM), tw|py =0 and nw|py =0.
Then w satisfies
we AHY2(QM)  and ing W, o Aw € AL?(9QM)
as well as the regularity estimate:
(175) ||w||H1/2(QM) + ||w|3QMHL2(3QM) < C(Hu}HLz(QM) + ||dw||L2(QM) + ||d*’U}||L2(QM)),

where w|gaum is defined by (174) and C > 0 is independent of w.
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(ii) Assume that f:QM =R is a € function. The unbounded operators d}?Z7T(QM)
and 5;?,)11N(QM) on AN1L2(QM) defined by
() = o
with domain
D(d) (M) = {w € ALX(QM), dppw € ATTLAQM), tw|py =0},
and

6(‘1)

f,h,N(QM) _ d(‘l) *

=dy,
with domain

D(0F) (M) = {w € ATL2(QM), d} w € AT LA(QM), nuw|py = 0},
are closed, densely defined, and adjoint one of each other in AIL?(QM).
On can check that (see [27, Eq. (130])

176) Imdy,r C Kerdypr and d7, o =0,
176 _ h
Imdf N C Kerdppn and 67, 5 =0.

Witten Laplacian with mixed Dirichlet-Neumann boundary conditions on 90Q"

We are now in position to define the Witten Laplacians with mixed Dirichlet-
Neumann boundary conditions on QM (see also [27, p. 89]).

Provosition 33. — Let us assume that QM, TM and T satisfy the assumptions of
Proposition 32. Let ¢ =0,...,d. Let us define on AL*(QM) the operator

M, —
(177) AFRD(@M) = d QM) 0 577 (M) + 5T N (QY) 0 Y, (@),

in the sense of composition of unbounded operators, see Proposition 32 for the defini-
tions of dyp(QM) and 555 n(QM). This operator is a densely defined nonnegative
self-adjoint operator and its domain is given by

(178) D(AP(@M))
- {w € ATL2(QM), dypw, d}w,d%d g pw, dy pd} g we AL2(QY),

tw|ry =0, td} ,wlpy =0, nwlpy =0, ndypw|py = 0}.

In addition, the domain ‘D(Q%’L(Q)(QM)) of the closed quadratic form Q%’l(q)(QM)
associated with A%’fq)(QM) is given by

M,
D@ (@M)) = D(df), £(@") N D) n(@))
= {w € AT Hy(QM) N AYHg (QM), twlpy =0 and nw|py = 0}
and for any u,w € D(Q?{k(q)(QM)),

QI (@M (u,w) = (dgnu,d . mw) L2y + (870N 870 NW) 2 (0.
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Let us mention an important consequence of Proposition 32. For w € D(AM (Q)(QM))
the traces td} ,w and ndy,w are a priori defined in AH~Y/2(9QM) but actually
belong to AL?(0QM). Indeed, ndy, nulpy = 0 by definition of D(AI\%’}L@(QM)) and
tdypwlpy = 0 using (176). Therefore, dypw is in D(QMh(qH)(QM)) and therefore
has a trace in AL2(9QM) according to Proposition 32. This argument also holds for
X M,(g—1) ;M

ds,w e D(QFH 1 (@QM)).

We end up this section with a Green formula which will be frequently used in the
sequel (see [60, Lem. 2.10]).

Levva 34. — Let us assume that QM TM and T satisfy the assumptions of Propo-
sition 32. Let ¢ = 0,...,d. Let ¢ be a real-valued Lipschitz function on QM. Then,
for any w € D(Q%L(q)(QM)), one has:

(179) Q5P (QM)(w, e/ Mew) = 2| d(e?/ w)]| 72 g

+ <(|Vf|2 - |V90|2 +hlvy+ hLVf)e@/hwvetp/hw>L2(QM)

+h / 7/ (w, w)psqu e2/Meg, wfdo,
F% Fg o Q

where we recall that £ stands for the Lie derivative. Moreover, when w belongs to
@(A%’L(q)(QM)), the left-hand side of (179) equals <e(2/h)“"Aj\c/7[;L(Q)(QM)w,w>L2(QM).

+ B2l (/" w) |7 2 g

In the following, we will use this lemma several times with (QM T'M,TN) =
(), T, TYN) (for k€ {1,...,n}), in which case 8y, f = 0 on 'y} and 8y, f > 0
on T'¥ (see items (1b) and (2) in Proposition 30).

3.3.2. Spectral properties of A ’(Q)(QV)

In view of Proposition 30, the results of Section 3.3.1 can be applied, for any

ke {l,....n}, to (QM,TH, TN = (@}, Fl,:{D,FI,:fN). The main result of this section

concerns the spectrum of the operator Al}l}fq)(ﬂgl), defined in Proposition 33.

Prorosirion 35. — Let us assume that (Q-f) is satisfied. Let k € {1,...,n} and QMY
be the domain introduced in Proposition 30. For q € {0,...,d}, let A%’L(Q)(Q,ICVI) be
the unbounded nonnegative self-adjoint operator on A1L*(QY) defined by (177)~(178)
with (Y, T, TN) = (), T¥'p, Ti'N)- Then, the following holds true:

(i) The operator A, ’(q)(QM) has compact resolvent.

M, (q)(QM)

(ii) For any ezgenvalue A of A and any associated eigenform w'? in

D(Af’ (q)(QM)), one has
dppw® € D(AYV@QY))  and df,w@ e D(AYTV(QM)),

with
drnAfa” (@)@ = AT (@) d @ = Mg

and d’}’hAj\c{;L(q)(Q,y)w(Q) = A%’L(pfl)(ﬂﬂ/f)d?hw(q) = )\d}th(‘”.
If in addition X # 0, either dy ,w@ or d;,hw(q) is non-zero.

JE.P. — M., 2095, tome 12



942 T. Leviivre, D. Le Peurrec & B. NEcroux

(iii) There exist ¢ > 0 and hg > 0 such that for any q € {0,...,d} and h € (0, ho),
dim Ran 7o, ch]( (QM)) {1 Z:fq {01},
0 ifqge{2,...,d},
In addition, for all h € (0, hg), there exists A\(QM) > 0 such that for q € {0,1},
Sp(A7A" (@) N [0,ch] = (@}
Finally, \(QM) is non-zero and is exponentially small when h — 0.

Proof. — Ttem (i) is a consequence of the compactness of the embedding
ATHY2(Q) — ATLH(Q))

and of the continuous inclusion D(AM (@) (QM)) < ATHY2(QM) (see Proposition 32).
Item (ii) is a straightforward consequence of the characterization of the domain of
AI}'T;L(Q)(Q%I) together with (176). Moreover, if A # 0, then

M, /
0 £ )\”w(q)”;mf) = <Af’h(Q)(le)w(q)7w(q)>L2(Qg)
= <df,hw(q)adf,hw(Q)>L2(Q};) + <d?,hw(q)’d},hw(q)>L2(Qg),

which implies that either df’hw(q) or d;,hw(‘n is non-zero. Let us now prove item (iii)
in Proposition 35. It is a consequence of Lemma 34 (with ¢ = 0) and the fact that
the normal derivative of f on I}y is non negative (see item 2 in Proposition 30)
together with arguments already used in Section 2.4. Let us be more precise on this.
The function f is € on 9721 and its critical points in Qi}z[ are exactly xg and zj.
Moreover, for € > 0 small enough,

(180) AN {z €, zq4(z) €[0,e]} =CaN{z € Q, z4(x) € [0,]} =C..

In particular, Q}z’l is smooth near z, and

(181) nQII\CI =nc, = hg on F%D
From assumption (2-f), it thus holds 8,19%1 f=0o0n F%"{D. Therefore, we can consider

two neighborhoods V., and V., of respectively xo and z; in 971,:[ such that
~ Vg, € Q' and z is the only critical point of f in V,,,
-V, N FMN =, 8,191’\6[]” =0 on QM NV,, and, z; is the only critical point of f

inV,,,

-V, NV, =2.
For y € {zo, 2z}, let xy : @ — [0,1] be a € supported in V,, and such that x, =1
in a neighborhood of y in ngl. Then, one defines:

X=/1-x3, = X3,

so that on Qﬁl, XP+x3,+x3, =1 Letw e D(QM (q)(QM)). The IMS formula [19, 42]
yields:

M, / M, ~
QrP (@ (w) = Qi (Rw) = b w VI 2 g,
n Z QM(q (xyw) — h? ||wayHL2 @

ye{zo,zr}
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This formula easily follows from Lemma 34 (with ¢ = 0) and the fact that X%+ x2 +
X2, =1land yw € D(QM (Q)(QM)) for any smooth function x : 9721 — R

In the following C' > 0 and ¢ > 0 are constants independent of h and w, and which
can change from one occurrence to another. Since |V f|? > ¢ on the support of Y
in 97%17 one deduces from Lemma 34 (applied to xw with ¢ = 0), and the fact that
8%)\3 f>0on I‘}EN that for h small enough

BO@N Gw) = cllw X2 -
Then, using the previous IMS formula, it holds for A small enough,
(182) QPR (@MW) > cllw X Faquy+ D Qi () (xyw) = Ch2[[w][Fa quy.
ye{wo,zx}

Let us assume that ¢ > 2. Then, by the same analysis as in item (2) in Step 1b
and item (2) in Step 3 in Section 2.4, one has (up to choosing V;, and V,, smaller),
for all y € {xo, 21} and h small enough QM (9) (O (xyw) = Ch||waHL2 Q) Hence,
using (182), it follows that, when g > 2,

QI (@) (w) > Chllwll} 2 qu)-

This proves the first statement in item (iii) in Proposition 35 when ¢ > 2.

Let us now consider ¢ € {0,1}. By the same analysis as in item (2) in Step 1b and
item (1) in Step 3 in Section 2.4, one has that (up to choosing V., and V., smaller)
for h small enough QM (O)(QM)(Xka) C’h||XkaHL2 qy) an nd QM (1)(91\1)()(1010) >

Ch||xm0w||L2(QM). Let us now assume that
k

1@ (w) < chllwllZz g,
for some ¢ > 0. Using the same arguments than those used in Step 4 in Section 2.4
(up to choosing V,, and V,, smaller), one obtains that, if ¢ = 0 (resp. ¢ = 1), w is
at a distance (v/c + o(1))|lw|| 2y of the one dimensional vector space spanned
by @5 = Xao V3" / [IXao W3l L2 )y, see (102), (103), and (117) (resp. spanned by
7 = X Ui /X R L2y, see (111), (112), and (117)). Hence, for ¢ > 0 small
enough and h small enough

dim Ran g cp) (AM (Q)(QM))

Besides, using Proposition 33, ®7° € D(Ql}l;l (231)) because the function ®3° is
smooth and is supported in V,, C Q1. It also holds ®;* € D(QM m(QM)). Indeed,
the 1-form ®7* is smooth, supported in V,, C QQI and V,, N I = @, and there-
fore: t®;* = 0 on F%’{D and ®;* = 0 on F%{N. Using the Min-Max principle, Equa-
tions (103) (with y = x¢) and (112) (with y = 2;), one deduces that A?T;L(Q)(Qg{)
admits at least one eigenvalue A*(9) of order O(h?) when h — 0. This shows that
dimRan 7.y (AP (Q) = 1if g € {0,1}.

Using the complex property (see (ii) in Proposition 35), it holds AM:(0) = \M.(1) —
MY for h small enough. In addition, AM(©) > 0 because e~(1/"/ does not belong
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to the domain of AI;T;L(O) (). Finally, the fact that AM:(0) i exponentially small when
h — 0 follows by standard arguments, using the test function Xmoe’(l/ "I in the Min-
Max principle for AM (0)(QM) (see the end of the proof of Corollary 25 for a similar
reasoning). The proof of Proposition 35 is complete. ]

3.3.3. Asymptotic equivalents of () and offrl, “ng e~ (/MF— Let us now

provide asymptotic results on the principal elgenvalue and eigenform of AM (1)(QM)

Provosirion 36. — Let us assume that assumption (Q-f) is salisfied. Let k €
{1,...,n} and QM be the domain introduced in Proposition 30. For q € {0,1}, let
A}V’[;L(q)(QM) be the unbounded nonnegative self-adjoint operator on A1L*(QM) defined
by (177)~(178) with (QY, T, ) = (U, TV, TN)-

Let \(QM) be the principal eigenvalue of AM (Q)(QM) (as introduced in item (iil) of
Proposition 35). Then, it holds in the limit h 5 0:
(183) QM) = A,y o he” GMUEI=F @) (1 4 O(Vh))
with

1/2

2|z, | (det Hess f(z))

W‘detHessf 2k | 12
where p, is the negative eigenvalue of Hess f(zy).

Let u,(cl) be a L*(QM)-normalized eigenform of Ay h(l)(QM) associated with the

eigenvalue A(QM). The 1-form u,(C ) s unique up to a multiplication by £1. This mul-
tiplicative factor can be chosen such that: in the limit h — 0,

(184) Agg.zp i=

(185) / ul) g em1/MF = _ppm e~ (/MFED (14 O(Vh)),

T¥p *
where
(186) bi := /A ' d d_1

= Kagy Kzy = ——o—, and m:=— —_.

g FoseTRer TR T Jdet Hess f(z0) 4 2
Proof. The proof of Proposition 36 is divided into three steps.
Step 1: Construction of the quasi-mode @’Lj’(o) Sfor A’}{}EO)(Q,'CJ ). Let € > 0 be small

enough such that m C {x4 > 5e}. Then it holds (see (180) and (135))

(187) DI N{z € Q, zq(z) €[0,4e]} = Co N {z € Q,z4(x) € [0,4¢]} = Cye.
Notice that since xq € QKQ/Q, it then holds

(188) zo € QN {x € O zq(x) > 4e}.

Since zj belongs to the open set T}, one can consider r > 0 small enough such that

Boa(zx,7) C I'p (where Boq(zx,7) is the open ball of radius r > 0 centered at z in
09)). Define

(189) Vi (21) == {z € Q, z(z) € Baoq(2k,) and z4 € [0,4e]} C Cye.

A schematic representation of V}_(zx) is given in Figure 6.
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Ficure 6. A schematic representation of Vi, (zx).

For each z € %, recall that ' = (x1,...,24-1) is a system of coordinates
defined in a neighborhood of z in 99 such that (131), (132), and (133) hold. Recall
that  — (z(z), z4(x)) introduced in (105) and (129) defines a €*° diffeomorphism on
{x € Q, z4(x) € [0,3¢)}. To ease the notation, from now on, we simply write {z, € O}
for the set {z € Q,z4(x) € O} for O C R,. Recall that by (106) and since nw(2y)
is an eigenvector of Hess f(z) for the eigenvalue u,, < 0, up to choosing € > 0 and
r > 0 smaller,

(190) Vz = (2',24) € Vi.(2k),
1 . .
flx) = f(0)+ 51:’ -Hess flaa(z1)x’ — % 2+ O(|z]?).
Since Hessf|gn(zx) is positive-definite, we may assume in the following that r > 0
and € > 0 are small enough such that

(191) {2z} = argmin(f + g, |22).

Vi (zk

Moreover, because oUn N
o Clz and I, CWZ

(see (14)), one has {z,} = arg minﬁ f. With a slight abuse of notation, we still

denote by f the function f in the (z,z4) variable. Since f(z,z4) = f(z,0) + 0c(1)

uniformly on z = (z,74) € Cyc as ¢ — 0, it thus holds if in addition z € F}:j{D ~

Boa(zk, 1), f(z,zq) = f(zr) + ¢ — 0s(1) for some ¢ > 0 independent of z4 € [0, 4e].

This implies that up to choosing € > 0 smaller, it holds for some ¢ > 0,

(192)  f > f(zr) +¢/2

on Cye \Vi(21) = {z = (z,24),2 € F}SD N Boa(zk, 1), zq € [0, 4e]}.
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Let us consider x € €>°(R,[0,1]) such that supp x C [0,¢] and x =1 on [0,&/2].
Inspired by [8] (see also [58, §4.2] and [25]), we build a quasi-mode for AM (0)(QM)

using the function qbzl’(o) defined on C,, N {x4 € [0,2¢]} = Cac (see (135)) by:

Ta o) o= (/W) kny | €2 gy
1 _ o M, (0) — Jo " x(t)e
(193) Vo = (z,24) € Cae, v (z,7a) f2sX )e —(1/ M)z | 82 gy

Notice that the function (;51,:1’(0) only depends on the variable x4. Moreover, one has:
1,:1’(0) € €*(Cy) and Va = (z,zq) € Cy, 21 (0)( )=11if x4 € [g, 2¢].

Let us set for z = (z,14) € Co.:

(194) V@) = " (2, 2a).

We extend wM O from G = W N {zq € [0,2¢]} (see (187)) to W by setting

¢k © — 1 on QM N{zq > 2e} = QM ~ Cac. One then has 1/} ) ¢ @ (QM) Notice
that from (188),

(195) M® =1 in a neighborhood of o in Q).
Then, define on 971]:[

O = (1/m)f
[t @ e=/m |

M, (0 oM
(196) o © = > (Q).
@

Let us check that gpk 2 belongs to the domain of AM (0)(QM) defined in (178).
Because it is smooth on the bounded set Q};I, one just has to check that it satis-
fies the boundary conditions on 8QM By definition of ng( ) above, cpzl (O)( )=20
for all & = (z,24) € Co: N {zg = 0} = T}’ (see (135)). Let us now check that

M, (0 M, (0

anni,(ef/hgak ())(x) = 0 for ae. z € I‘kN, ie., that 0, oy Y ()( ) = 0 for a.e.
z € T)y. Recall that Ty = 9" NQ (see (147)). Let us first consider the case
z € Tyl N{zq € (0,3¢)}. From (187) and (138), it holds:

(197) O N {zq € (0,3¢)} = Sigeral,

C{xq>5e} and Zteral € 9C,,, one deduces that (see (150) and (151)),

siteral — T N {zq € (0,3¢)} C As.

Then using (154) and (140), ngu = — Va1 /|Vay| on X! Since Vs is collinear
to Vg on Cs. which is, in view of (106), orthogonal to Vz, it holds:

Q\IwM (0 ( ) =0 forzxe€ Fk: N N Zgasterall

Because O, ,

M,(0)

Let us now consider the case = € TMy N {z4 > 3¢}. Because ¢, ") =1 on QM C2
QM N {zg > e} (therefore [V~ (0)|( ) = 0 on this set) and T}y N {zg > 3e} =
8QM N{xq > 3¢}, it holds,

QMwM (0)( )=0 forae xel)yn{zs>3e}.
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In conclusion, one has
(198) o e D(AFT @)

Step 2: Asymptotic estimates of

M, (0 M, (0 Iy M, (0 M, (0 M, (0)
(o, AT @ D) ey and AT @DV quy as h— 0.

Let us first deal with Z,, := 1/JM"(0) e~ (/M| L2 quy. Because wM’(O) < 1, {zo} =
k k L2(Q)) k
arg minQTlI f (which follows from the fact that zp € Q¥ C Q and Lemma 4) and
1,21 0 = 1 near 2o in QM (see (195)) it holds, using Laplace’s method, in the limit
h —0:
(199) Z., = \[Fgy h¥*e=(/MI@) (1 4 O(R)),

where k,, is defined in (186).
Let us now consider the term (o (*) AM (0 dy 0)>L2(Q¥). One has (see (198)
and Proposition 33):

h2f ‘v,(/}Mv(O)|2€—(2/h)f
(0) A M,(0 M, (0 M,(0 Co. k
(. ORI o = [ Wt O = 7 ’

where we also used the fact that wM © — 1 on QT;I . Cac. For 1 € [0,2¢], set ['(n) =

{x € Ca., w4(x) = n}. Note that ['(0) = F}ETD and that for any n € [0,2¢], I'(n) is
naturally parametrized by FMD through the mapping z € FI,ETD — (z,7n) with Jacobian
determinant j(z, ) with j(z,0) = 1. One has using (194), (193), the co-area formula [32]
(dz = dor(,)|Vaq|~1dn), and the fact that |Vag| = 1:

2e 2 2 —(2/h L n? _
hz/ |v¢1\~1,(0)|ge,(2/h)f:fnzox (n) fr(n)Ide| e~ (2/M)(f+|pzyIn )dUF(n)de\ Ldn
k 2e _ 2 2
Cac ( 0 X(t)e (1/h)|l‘zk‘t dt)
fiio 2(n) fzerM e—(2/h)(f(zm)+\uzkInz)j(z n)dops _d
(fo 1/h)|uzk|t2dt) ’

A straightforward computation implies that there exists ¢ > 0 such that in the limit
h — 0,

% > Jrh
(200) N, ;:/ X(t) e~ (/M) e 187 gy — 7(1 +O(€_C/h)),
L N

Using (192) and (189), one has for i small enough:

2e
/ ) / e~ @MU @D i 1) (2, )y di
n=0 eFM

2e
_ / ) / ~@ D i 1))z, ) dory iy
n=0 | |<T

+ O(e= /MG,
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for some ¢ > 0 independent of h. Using in addition (190), the same computations as
in the proof of the step 1.b of [58, Prop. 24] imply that in the limit h — 0:

2e h)4/2e—(2/h) f(zk)
[ [ e i oy, an = T (L+0(Vh).
n=0 \ |<r B pd—1| iz |

where the O(v/h) is optimal in general. In conclusion, using also (199), one has as
h — 0:

(201) <<P1;:;L(O) AIJ\"Ih(O (QM) kI (0)>L2(QM) — Lo o h 6*(2/h)(f(zk) (IO))(I + O(\/E))

Let us now con81der the term HAM {0 (MY M0 12 HL2(QM Using (118) and the def-

)’

inition of wk , it holds on Q}:
2he—(1/R)f h
(202) AP MO = ¢ SAR H VSV it

- ||¢112I © _(1/h)f||L2(QM) 2 L
is supported in Co..
By (194), (200), and (193), for h small enough,
1A Vo and VO ey

are O(h") for some v € R. Then, using (192) and (199), one has for h small enough
(see (189)):
(203) ALY @e M2y = 1874 @0k Ve

_ ||AM (0)(91\1) M, (0) ”L2 Vi ey + Ole —@/M)(f (1) =] (w0)+0)),
for some ¢ > 0 independent of h. Let us recall that g denotes the metric tensor in

the (2/,x4) coordinates (see (106)). In the following, with a slight abuse of notation,
we also denote by g the matrix (G,0;0,1). In the (z/, x4)-coordinates, Ag) writes

A(O)gb\[ (0) _ Z 8751 |g| g ]ax] ¢1\1 ,(0) )’

\% 7.]1

where |g| denotes the determinant of g and g/ the (i, j) entry of g~—!. Then, from
(202) and (193), one has on V5_(zx),

2he=f/h
Agnpp©@ = 5 [ Zé’ml &g 0, on ) +Zg’]8 fOa, M(O}
2

131 1,j=1
d

I e~ /) (f+lnzy |23) h _
= [ = 2 O (VIET B ) x(wa) + 8" (@) sy

sz‘Nzk - V |g| i=1

d
; h
i,d / d,d
+x(m) 3 g0, — X ) g
9h e~ (/M) (F 1z, 123)
= [O() +O(|«)].
Z, N,
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where N, is defined in (200), and where in the last inequality we have used that

ghd=0fori=1,...,d —1 (see (106)), and 9y, f(z',24) = —|pz, |Ta + O(Jx|?) (see

(190)). Notice the cancellation of the O(z) terms in the previous computations due

to the precise form of the quasi-mode @2'1’(0). Thus, by (191), (199), (190), (200),
and (201), one deduces using Laplace’s method that as h — 0,

thd/2

(1)~ Rd/2p,

M,(0) A M,(0) /My, M, (0
= O(hQ)K@k ( )7Af,h( )(le)%’k ( )>L2(Q}9I)’~

JAO @A O, ., O(h2) e~ @/M (1)~ F (o))

Consequently, one deduces using (203), that

M, (0 / M, (0 M, (0 M, (0 ,(0
204)  ANO @A 2y = O |2, AT @) gy |-

Step 3: Eond of the proof of Proposition 36. — Let us introduce the constant ¢ > 0 from
item (iii) in Proposition 35. Because ¢ M0 ¢ D(AM (O)(QM)), see indeed (198), and
since A(Q}) is exponentially small when h — 0 (actually o(h) as h — 0 would be
enough), using the fact that (see the proof of [58, Prop. 27])
(1= mo.any (A3 (@M))) o) = _% (e — AWO)TTAMON O,
T JC(ch/2)

where C(ch/2) C C is the circle of radius ch/2 centered at 0, it holds for h small
enough

1 = mo.cn (AT @) 01| 2y < CAM AT @R 2 -

Therefore, using (204), it holds:

(205) H (1 — mo.cn) (AM (‘))(QM))) (pM .(0)

Iz 2oy

M,(0) AM,(0) pfy M,(0
< C\/|<80k ( )7Af,h( )(Qﬁl)% ( )>L2(Q§;)‘-

In particular, using (201) and the fact that ||¢1,:'1’(0)||L2(Q£1) = 1, there exists ¢ > 0
(because f(z) > f(xo) see Lemma 4) such that, for h > 0 small enough,

(206) memﬂAMmRQM» 1+ 0(e=/M),

||L2(ng) =
and the following function is therefore well-defined:
M, (0 M, (0
To.ch] (A X )(QM)) +(0)
M, (0 M, (0
Iio.ca (AR @) Mo

(0
(207) ul® =
(¥
One has

M,
(QM) (,&O),A (0)(QM (0)>L2(QM

(208)
= (moan (A7 @) e AT @y ) L2 g L+ O™,
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since the orthogonal projector Woch( AM (0) (M ) and AM’(O)(QM) commute on

D(Al}%}fo)(ﬂ}z’l)) and (,DM (0 ¢ D(A? h(o)(QM)) In addition, one has, using (205)
and (204),

M, ny M, M, M,
<7T[o,ch] (Af,h(O)(QM)) (0) A (0)(91\[) (0)>L2(Ql,;’)
:< M, (0) AM ,(0) (QM) M, ( o)> o
L2(Q))
— (1 = mo.en (A7 @) AT @) L2
@)
< M, (0) AM (0)(91\1) M, (0)>L2(Q;\;)(1+O( ),
= —(2/h)(f(zK)—f(z0))
Azy 2 h e (1+ O(Vh)),

where We used (201). This proves (183). It remains to prove Equation (185).

Let ul) be a L2 QM)-normalized eigenform of AM M QM) associated with the
k: k

eigenvalue A(QM). In view of item (ii) and (iii) in Proposition 35 it holds (ugco) is

indeed a L?(Q))-normalized principal eigenform of AM (O)(QM), see (207)), ug) =
:tdf’huk )/||df’huk 2@y~ Let us choose

4oy
(209) gt = L with N = [[d gl

N @

From (208), one has,
M) = (drauy” drau”) ooy = (NF)?,
and thus, using (207) and the fact that
dpnmo.en (AFR (D) = mo.eny (AT (D) d g
(see item (ii) in Proposition 35),

1 M 1
Nl(c ) <df,h80k 0 ) I(c)>L2(Q~,‘€1)

AR = d
1,(0) ;MY M, (0)
Hﬂ-[o,ch] (Af,h (Q%;I))Sak ( HL2(QlI\cI)
1 M,(0) , _ 1
T s
- M, (0 | M, (0 )
HT‘-[O,Ch] (Af,h )(Qil))ng ( ) HLz(QII\cI)ZZk

where we also used (196) at the last line. Therefore, because N,(fl) =/ A(QM), it follows

from (183), (199) and (206), that, as h — 0, it holds:

(210) (" hem MDY L o = Vs iz By B2 e WIED (14 O(V)).

Besides, using the fact that u,(;) € D(AM (1) (1)) (see item (ii) in Proposition 35)
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and the Green formula (171), one deduces that

(211)  (de" keI o) = —d(1 =) hemIGD) L o

_ M,(0)y _—(1/h)f 4% (1) M, (0)y (1) —(1/h)f
= (=)W df ) gy — b 39%‘(1_% Jul - ngue (/M

(where here and in the following, we use the notation u,(cl) noy = in o u]g )) and

1 '
U;C ) . nQ}J =0on F%{N

Moreover, 77/12’[’(0) =0 on I‘}:{D. Thus,

(212) /agzm(l _ wzl,(o))ul(c) noy e —(1/R)f _ /FED u](61) - ngy e~/
Let us now deal with the term ((1 — w,lz'{’(o))e’(l/h)f, d;)hukl)hg(w). It holds,
LTt S O B [ S Pvreg
<ce MM it ! [y quy

< Ce~ (1/R)(f(z0)+9) )\(Ql}ZI)
< Ce—(1/h)(f(zk)-*-5)7

where we used the fact that, from (195) and since x is the global minimum of f in
(see Lemma 4), minsupp(l—wﬁ““)) f = f(zo) + 6, for some ¢ > 0. Notice that we also
used (183) at the last line of the previous computation. Equation (185) then follows
from the previous inequality together with (210), (211), and (212). This concludes
the proof of Proposition 36. |

3.3.4. Agmon estimates on ug). — The aim of this section is to prove that u(l) (the

principal eigenform of AM (1) (M) decays exponentially fast away from zj, (see Propo-
sition 38 below): these are so-called Agmon estimates.

Recall the Definition 3 of the Agmon distance. These are basic properties of the
Agmon distance which follows from [44, App. 2], see also [65, Lem. 3.2]:

Prorosition 37. — Let us assume that f : & — R is a C® function. Then, the
Agmon pseudo-distance (z,y) € Qx Q > du(x,5y) (see Definition 3) is symmetric and
satisfies the triangular inequality. In addition, it is a distance if f has a finite number
of critical points in Q. Moreover, for any fived y € Q, v € Q > d, (z,y) s Lipschitz
(therefore, its gradient is well-defined almost everywhere). For all subset U of Q and
for almost every x € Q,

(213) Vada (2,U) | < [Vf(2)].

Moreover, for all x,y € Q, we have

(214) [f(z) = f(y) < da(z,y).
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The main result of this section if the following:

Prorosrriox 38

Let us assume that assumption (Q-f) is satisfied. Let k € {1,...,n} and QM
be the subdomain of Q introduced in Proposition 30. Let A%’L(l)(ﬂﬂ/f) be the un-
bounded nonnegative self-adjoint operator on A'L*(QM) defined by (177)~(178) with

QM TM TM) = (QM, F%D,F%N)- Let ug) be a L*(QM)-normalized eigenform of
Ay;fl)(ﬂ,]y) associated with the eigenvalue \(QM), as introduced in Proposition 35.

Then, for any § > 0, there exists hs > 0 such that it holds for h € (0, hs):

/(D) A g + 18 () gy <

||e L2 =

|2 + | 2y
where Uy (x) := dg(z, 21).

Proof. — Using Lemma 34 on Q) with w = u,(fl) and since Vf - ngu > 0 a.e. F%N

(see item (2) in Proposition 30), it holds,

(215) M@ e |72 quy = b2 [ld(e/ M uy” + B2||d* (e®/ Ml

2 2
)HLQ(Qk[) )||L2(Q%I)

+{(IVf? = |Ve|* + hLys + hL*Vf)e“’/hug), e”/hu,(cl)hz(%[).

Using (215) and (213), it is then standard to get the estimate of Proposition 38 with
da(-, {2z} U {zo}) instead of d,(-, z) using the same arguments as those used in the
boundaryless case [39, Prop. 3.3.1]. Proving Proposition 38 requires a finer analysis.
To this end, we follow the analysis of [43, §2.2] and [29, §6.c]. The proof is divided
into two steps.

Step 1: A Witten Laplacian on 1-forms with a spectrum bounded from below by ch
Roughly speaking, recall that in view of the proof of item (iii) in Proposition 35,
2, is the only point which “creates” a small eigenvalue for A%’fl) (), namely A(QM).
Thus, if we “remove” zj from Qi}z"l, the spectrum of the Witten Laplacian AI}T;L(I) will
be bounded from below by ch. To do so, we proceed as follows. Let us take n > 0
small enough such that B, (zy,3n) N Q2 C QM and 2, is the only critical point of f
in By (zk, 3n), where B, (x,r) denotes the open ball of center = and radius r for the
Agmon distance d, (which is indeed a distance since f is a Morse function). Define

Dy, = Qﬁ’l N~ Ba(zk, m).
We have 9Dy, ,, = m U kD Um, where
SN =N, Zep o= Tp N Bal(z,7) NOQY,  and Sy pp := 9B (2, 1) N QL
We refer to Figure 7 for a schematic representation of Dy, ,, and its boundary. We use
the subscript FD because we will consider a Witten Laplacian with full Dirichlet

boundary conditions on ¥ rp.

Following the procedure of Section 3.3.1, we can consider the Friedrichs exten-
sion A?/[}’L(l)(Dk.’n) (which has different boundary conditions from the mixed Lapla-

cian Al}l;l(l) introduced in Proposition 33, hence the different notation) of the closed
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Ficure 7. A schematic representation of Dy, .

quadratic form

Q%A(l)(Dkw)(u,w) = (dfnu,df nw)r2(o,.,) + (d7 41, d} ,w) 12D, )
for all u,w € CD(Q%[;L(D(D;V,U)), where
D(QY;" (Dry)) == {w € A'L*(Dy), dypw and d} ,w € AL*(Dy) with

nwly, = 0,tw|y, , =0, and w|s, ., = O}.

Let w € D(Q?&(U(ka)) and ¢ be a real-valued Lipschitz function on Dy ,. Since

W]z, pp =0and Vf - ngu = 0 on F%D D X¥i,D, one has using the same arguments as
those used to prove Lemma 34,

Q?«,A,;“)(Dk,n)(w, /My
) 2 i )
) hQ}’d(eW/} w)HLQ(DI‘hn) T h2‘ d (EW/hw)’|L2(Dk,n)

+ (VPP = [Vo|* + hlvy + hL e Mw, e?/ M)

L2(Dk,n)

(216)

+h /2 (w, w>T;ka 6<2/h)"’3n91’\0[fd0
JYE N

> hQHd(ewhw)HiZ(Dk_n) + hQ‘

d*(ewhw)HiZ(Dk.w

(V1P = Vo’ + hlvs +hLep)e? M w, e M) o

where we have used that anﬂi[f >0 a.e. on F}EN = 3 . Thus, using (216) and the

same analysis as the one made to prove item (iii) in Proposition 35, there exists ¢ > 0

such that for h small enough:
(217) o (AY; M (D)) = ch.
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Step 2: Resolvent estimates. When D is a subdomain of 2, and w € A*L?(D) is such
that dw and d*w belong to AL?(D), we define

(218) ||7~U||%7v1(D) = Hw||2L2(D) + ||dw||%2(D) + Hd*w||%2(o)-

Notice that by (215) (with ¢ = 0), it holds

(219) lug? e oy < Ch72,

By (217) and since A\(Q}!) is exponentially small as h goes to 0 (see (183)), the
distance of A(QM) to O'(A}v’[];(l)(ka)) is bounded from below by ch/2, as h — 0.
Then, adopting the notation of [29, p.56], and using (213) and (216), we obtain
using resolvent estimates as in the proof of [29, Prop.6.5] (with, in our context,

K(h) = (A},
(220) (A5 (Dry) — MQY) T (2,y) = O(e=V/MaGW)) - for all 2,y € Dy

The O in (220) means that for any z,y € Dy, and € > 0, there exist neighborhoods V,
and V, in Dy, of x and y respectively such that for h small enough,

H M (1 )‘(Q%I))_lwnwl(vz) < e—(l/h)(da(m,y)—s) ||wHL2(Vy)7
for allwe A1L2(ka) supported in V. We are now in position to prove Proposition 38.

Step 3: Proof of the Agmon estimate. — Let x, be a smooth cut-off function supported
in Bq(zk, 2n) which equals 1 on Bg(2k,37/2) and such that Vx, - ngu = 0. We claim
that

(1 xp)uy € DAY “><Dkn>>

M, (1 1 1
AFRY (k) (= xg)up”) = AT (1 = xa)ui).

To prove (221), we use the integration by parts formula [27, Eq. (120)] on Dy, ,, with,
using the notation there, u = (1 — x;)u, (1) and an arbitrary v € @(QM (1)(ka)) and

we observe that all the boundary terms vanish. To do so, we check that u = (1 —X,])u,(cl)

(221)

satisfies the required regularity, and that the boundary terms are zero. This shows

that Q75" (Diy)(u,v) = (AY) (w),0)12(p,.,) is bounded by C(u)||v]z2(p,,,). Thus
ue D(AM W (Dp,)), and AT (D p)u = AV u

Let us give some more details on the regularity and trace of v = (1 — x,)u

It is easy to check that u € D(Q%;(l)(Dk 77)) Moreover, nd¢,u = 0 on ¥ N and

$.nu = 0on Xprp UXyp are consequences of the fact that u(l) € D(AM (1) (@)

and v = 0 in a neighborhood of Zk,FD in Dk,n. In particular, df,h“ = 0 on X p,

)u (1)_

since, d} ,u = —Vxy- ug) =0on Xy p (because d?hug) =0 and tu,(cl) =0on I’%D D
YkD)- ThlS ylelds Q. M )(ka)(% v) = <A§}}Lu, V) L2(Dy,.,)» Using [27, Eq. (120)], since
RS D(Qf I (Dk 77))7 ndﬁhu =0on Zk,N and d}’hu =0on Ek,FD U Ek,D7 and thus
concludes the proof of 221.

We have, using (221), and since Dy, C Qg’l,

(AY O (Dgy) = M) (1 = x)ul) = [AP), (1 = x)]ul”
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is supported in Bg,(zk,27) \ Ba(zk,3n/2) (we used here the commutator brackets
notation). Using (219) and (220), and the fact that [A(flgb, (1 — xy)] is a bounded
linear operator from A*W!(Dy,,) to A'L?(Dy,), for all z € Dy, and € > 0, there
exists a neighborhood V;, of z in Dy, such that for i small enough:

”(1 o Xn)ugcl) ”Wl(Vm) <eE/he_(l/h)(da(wazk)_Qn)||u§€1) ||W1(ka) <ef/he—(l/h)(da(z72k)—377).

Proposition 38 is a consequence of the previous estimate, a compactness argument,
and the fact that u,(:) = Xnu,(:) —i—(l—xn)u,(cl) and \|e(1/h)da(7"zk)x,,ug)le(%]) < e3/h
(by (219) and the continuity of the Agmon distance dg (-, zx)). O

: o . 1
3.4. (QUASI-MODES ASSOCIATED WITH (2k)k=1,...n- — TLhe principal eigenform ué) of

A%l(l)(ﬂg’l) introduced in Proposition 36 (see (209)) will be used as a quasi-mode for

A?’i,’fl)(ﬁ). To do so, we multiply it by a smooth cut-off function x} whose gradient is

supported as close as needed to F%’fN and so that X}:lug) belongs to the form domain

of A?j}fl)(Q), namely A*HL(Q) (as required by item (1) in Proposition 26, see also
(119)). More precisely, we have the following result.

Prorosition 39. Let us assume that the assumptions of Proposition 38 hold.
Let u,(cl) be defined by (209). Let 8 > 0 and x{/(8) : QM — [0,1] be a € function
such that

(222) XM(B) =1 on {x € QY. dg(x,TPy) > 25},
and,
(223) XH(8) =0 on {z € QY dg(z, Ty) < B},

where we recall that dg denotes the geodesic distance in Q. We extend X,ICW(B) by 0 on

Q- W, and thus xM(B) € C>*(Q) (see Figure 8 for a schematic representation of
the support of XIICVI) Then, one defines

M 1)
(224) V(l) = ]MXk (5();;]6 ,
Xz (8)uy ||L2(Q)
for any B € (0, By) with By > 0 small enough so that xM(B) # 0. For ease of notation,
we do not refer to [ when writing v,(fl). Then
vV e ATHL(Q) n ATeR(Q).
Finally, for any 6 > 0, there exists hs > 0 such that for all h € (0, hs) and B € (0, 5o):

e + 15 122 ) < CN@Y) + /e M

supp focu(ﬁ) da("21)
’

[ds.nv
where C' > 0 is independent of h, B, and §.

Notice that since X, is included in the open subset F%’fD of O = I‘}:{D U FI,:{N
(see item (1) in Proposition 30), from (222), for 8 > 0 small enough,

(225) M(B) =1 in a neighborhood of ¥, in @,
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)

Ficure 8. Schematic representation of the cut-off function X} (), see

Proposition 39. The support of Vx} () is as close as needed to Fl;\ﬁfN,

and F%{N can be as closed as needed to 92 \ T, .

or equivalently, in a neighborhood of ¥, in Q, by (180)—(135)). In addition, one also
has that, since zo € Q)1, for 8 > 0 small enough,

(226) X2 (B) =1 in a neighborhood of xq in Q) (or equivalently, in Q).
In the following, we assume that 5 > 0 is small enough such that (225) and (226)
hold.
Proof. — From (178), u,(fl), dug), d*ug) e AL2(Q}M) and tu](vl)|F21D = 0. Since
M(B) =0on Q~ Qil,:[,

vV avi d v e ATL2(Q).

Since X3 (8) = 0 on 90 ~\ IQM and tufﬁ”hnt (oanoay) = 0 (because int (9Q)' N 0Q) =
M5, see item (1) in Proposition 30), it holds: tvy") = 0 on 9. Then, by [27, Lem. 73],
v\ e ATHL(Q).

In addition, since A;%,)vlul(cl> = /\(Qz,l)u,(:) € A'L?(Q}) with, on the smooth open subset
F%{D of QM, tug) =0 and td}’hug) = 0, it holds, by local elliptic regularity (see for

example [17]), u,(;) e Ate (' UTMp). Therefore,
vV e Ale(@).
Let us now compute the energy of v,(:) in €. Let us first deal with ||x21(ﬁ)u§€1) 2
First of all, ngl(ﬁ)u,(:”hz(m = ||X1;:I(B)UIE:1)“L2(QIL[) < 1 (we have used that
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||U](€1)HL2(Q) =1, x}}(8) = 0 on O~ @7 and x} € [0,1]). On the other hand,
it holds

Ik (B)ui 2y = 1= (1L = ' ()] || o
and

H[l — X};’I(ﬁ)]u,&l) ||L2(QI;I) = H[l - X%(B)]e_\yk/h ul(cl)elpk/hHL%Q]}j)’

where we introduced the function Wy (z) = du(x, 2;). Furthermore, x}(8) = 1 in a
neighborhood of z;, in Q (by (225) together with the fact that z; € ., ). Thus, there
exists ¢ > 0 such that

inf U > c.
supp(1—x}/(8))

Then, using Proposition 38, one deduces that H[l — x%’l(ﬁ)]ug)HLz(QM) = O(e/M),
k
for some ¢ > 0 and as h — 0. Consequently,

(227) I B 12 = 1+ O™,
In addition one has, using again Proposition 38,

7. O B 2y < 1D BY i o ey + VXA (B) A0 o

A(Q) 4 ¥/he M M supn it ¥,

The same inequality holds for ||d% , (x}' (ﬂ)u,(cl))H L2(q Decause

(1) M (1)
||dfh (ﬁ HL2(Q) Ixk (5) fh“k HL2(QM) + thX B Ug HL%QQ})'
The proof of Proposition 39 is complete using (227) and (224). O
According to (126), (222), and (223), for any v > 0, one can choose QM in Propo-
sition 30 and § > 0 small enough in Proposition 39 (see Figure 8) such that:

sup dg(z,00\T;,) <
zE€supp VXY (B)

Hence, for any § > 0, one can choose 3 > 0 and Q) such that:

(228) inf  dg(y2k) > (mlnf da(:,2i) — 6/4.

supp Vx}'(8) ~zy,
Then, once (228) is satisfied, one can use (183) and Proposition 39 with such 8 > 0

and QY fixed as a function §, to obtain the following result.

Corovrrary 40. — Let us assume that the assumptions of Proposition 38 hold. For

any § > 0, there exists a domain QM, 8> 0, and hs > 0 such that for h € (0, hs):
810 167 [ g € e e s, 62

)

where C' > 0 is independent of h >0 and § > 0.
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By Corollary 40, and because inf.coo-r., da(z,2K) > 0 and f(zk) > f(xo), there
exists ¢ > 0 such that for h small enough:

* (1) (12 —c/h
Vi L) < Ce .

12
de,hvk HL?(Q) + ‘
This implies that v,(cl) is a quasi-mode associated with the spectrum in [0,ch] of

A%}fl) (Q}:’I) because, using in addition Lemma 11 and the fact that, by Proposition 39,

v e AHE(Q) = DQYSY (9)), it holds:
Di, 2 —c
(229) H [1 - W[07Ch](Af,h(1)(Q))]vl(cl)HL2(Q) < Cee/h,

4. PROOFS OF THE MAIN RESULTS

In this section, we give the proofs of the main results stated in Section 1.2.4.

4.1. Proors or Taeorem 1, Prorosition 7, THEorREM 2, AND COROLLARY 8

The quasi-modes for L?j;b(o)(Q) and L?,i,’l(l)(Q) are defined as follows.

Derinition 41. — Let us assume that (Q-f) is satisfied. Then, one defines for k €
{1,...,n} (see (209) and (224)):

i D € A 1 (9)

For r € (0,mingq f — f(xo)), consider x, € CX(Q) such that x, = 1 on the set
{f < mingg f — r}. Then, one defines:
u® .= X cex(q).
HXTHL%U(Q)

For ease of notation, we do not refer to 7 > 0 in the notation of u(®). Recall that
the family {fg), . ,ﬂ(abl)} depends on the parameter § > 0 introduced in Corollary 40.
Let us now check that there exist » > 0 and § > 0 such that the family of quasi-modes
{f£1)7 e ,fy(ll)} U{u@} introduced in Definition 41 satisfies the assumptions of Propo-
sitions 26 and 27. As explained at the end of this section, Theorem 1, Proposition 7,
Theorem 2, and Corollary 8 are then consequences of the results of Propositions 26
and 27.

Let us start with the following lemma.

Levmma 42, — Let us assume that (Q-f) is satisfied. Let {fil), . ,f,(Ll)} and u® be as
introduced in Definition 41. Then, item (1) in Proposition 26 is satisfied as well as
item (2b). Furthermore, there exists C > 0 such that for all h small enough:

(230) lun = @], ) < C A2 MG =T o)),

where we recall that r € (0, f(z1) — f(xo)). Finally, (28) is satisfied.

Proof. — Ttem (1) in Proposition 26 is satisfied by Definition 41. First of all, because
{z0} = argming f (see Lemma 4) and since x, = 1 near zy in Q (see Definition 41),
it holds, using Laplace’s method, in the limit A — 0:

(231) Ixrll72 (@) = Raph®Ze” M (14 O(R)),
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where kg, is defined in (186). Recall that from Corollary 25 (see also (122) for the

;LO) associated with L?j,’i(o)(fl) has

rank 1. Because u(®) ¢ D(Q?j;fo)(Q)) (see Proposition 24 and Section 1.2.3), it holds

definition of W;LO) ), the L2 (Q)-orthogonal projector

thanks to Lemma 11:
0 2 1 pio h
I = m O, ) < cQEV W) = o IVu O3 (o).
Using (231) and because x, € C°(Q) such that x, = 1 on {f < mingq f — r}, one
has for h small enough:

hIVXI72 (o)

h
L T2, ) = =
- BT 2 2, o

< OHVXTH%OO(Q) h—/2+1 o —=(2/R)(mingo f—f(zo)—T)

Hence, because f(z1) = mingg f (see Lemma 4 and (15)), u(®) satisfies item (2b) in
Proposition 26. In addition, one has:

0 2 - - z1)—f(xo)—1
1 = m O () < CIVXG gy R H e MU =S o)),
Choosing r > 0 small enough, it hence holds for h small enough:
||7T;(LO)U(0)||L%U(Q) =1+ O(e—c/h) £0,

and then (using in addition the fact that u; and u(®) are non negative),

(0), (0) (0) ©) _ 1),
=g = + M D 2 )
(|75, “(0)|Lg,(9) |73, U(0)|L,%,(Q) |73, U(0)|Lg,(n)

Equation (230) is a direct consequence of the three last equations. Moreover, the latter
equation implies

/ un e~ /M Z (1 4 O(e=/M)) {/ NOPS T

Q Q
where ©
0 —(1/h xo)+cr
lenl < |1 =, Jut )||L3U(Q)H1HL3U(Q) < Cem MU morten),

where ¢, = f(z1) — f(xo) —r > 0 (since r € (0, f(z1) — f(x0))). On the other
hand, from (231) together with the fact that fQ x e~ /Mf has the same asymptotic
equivalent as fQ x2 e~ @/Mf when h — 0,

/ 00 o—(2/n)f _ hd/4\/aef(l/h)f(xo)(1 + O(h)).
Q
This proves (28) and concludes the proof of Lemma 42. O

Let us now check that {f{l), . ,fr(bl)} satisfies item (2a) and item (3) in Proposi-
tion 26.

Levma 43. — Assume that (Q-f) is satisfied. Let {f%l),...,ﬂ(ﬁ)} be the family of
1-forms introduced in Definition 41. Let k € {1,...,n}. Then, for any 6 > 0, there
exists hs > 0 such that for h € (0, hs):

(232) [|(1=7 YD |2, o SCh™2em @MU ER=F@0)) 4 8/ (/Minfo0nr, dal20))

@ = )
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and for alll € {1,...,n}, L #k,

(233) IGRR7R) | < ef/he=(1/Mda(aniz),

L3, (Q)

In particular, choosing § > 0 small enough, {f:El), e ,ﬂ(Ll)} satisfies items (2a) and (3)
in Proposition 26, and if (25) and (26) hold, then {ffl), e ,fr(Ll)} satisfies items (1)
and (2) in Proposition 27.

Proof. Using Lemma 11 and Proposition 10,

i de»hv(l)H 2 +dehvk)H 2
111 = mo.cn (AT @I 2 < T L@,

Therefore, using Corollary 40, for any § > 0, there exists hs > 0 such that for
h e (0, h5):

Di, (1) (1))2
H [1 — W[O,ch](Af,h (Q))] Vi HL2(Q)
< Cle= /M) (f(z1)=F (20)) + e(S/he—(2/h)(imfas)\1“z,C da(-,zk)).

Let us prove that this inequality also holds in A*H'(Q). Set
v,(clzr [1 — T[0,ch] (A Di, m(Q))]vg).
It holds, using Proposition 10,
[1 = 7o, (AT3 P ()] d vl = dpavi ) = hdvil) + VAV
Therefore,
Blldviy ey < ldgavi” e + Oliviiallzco)

Similarly, one has h|/d*v Zr||L2 @ < [ld} v )||L2(Q) +C’Hvk W||Lz (). Hence, using also

the standard Gaflney inequality in © (see [81]), since v,(clzr € A'HL(Q) (by Proposi-

tion 39), it holds:

(1) 12
d V](<:,7)THL2(Q)
_ 1 . 1
(234) < Ch2(ldpavi ooy + 17003 200y + IVir [F200))-
This implies that for h € (0, hs):

CGaffﬂe.VHVI(cl,erHl(sz) S HVI(c%BrHLZ(Q) + HdVg,zTHL%Q) +

(235) Hvl(;?)THiIl(Q) < Ch~2 [e—(Q/h)(f(zk)—f(wo)) + ed/he= (/M) (infoanr., da(',z:c))]

From (119), it holds:
To.ch) (ATRD (Q)) = e~ WM D e/MI

Therefore, by definition of f,(C ) (see Definition 41) and from (235),

(1= DR, o < Ch-Zem MU0 =Fa0) 4 (e, o)

This proves Equation (232).
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Let us now prove (233). One has (see Definition 41) using the triangular inequality
for dg,

|<f1(cl)’ fé1)>Lgu(Q)| = |<V121)7V§1)>L2(Q)|

< ef(l/h)da(zz,zk)Hvl(cl)e(l/h)da y)e(l/h)d“("

('azk)HLQ(Q) v Z£)||L2(Q).

Equation (233) is thus a consequence of the previous inequality together with Propo-
sition 38 and (227) (see also (224)).

Since f(zx) — f(xo) > 0, da(2k, 2¢) > 0, and inf.coo.r., da(zk,2) > 0 (because dg
is a distance), {f{l), e ,f,(Ll)} satisfies items 2(a) and 3 in Proposition 26 hold choosing
> 0 small enough in (232) and (233). Finally, since z, € IQ\T, (because z, ¢ W]
and I',, C W | see (14))

2z

da(2k,2¢) > ze@ifrllfl“zk da(2k, 2).

In addition, f(,) — f(w0) > f(1) — f(w0) and if k>, f(z) — £(z1) > f(z) — F(z0):

Thus, if (25) and (26) hold, then {fp), e 7f,(,l)} satisfies items 1 and 2 in Proposi-
tion 27. 0

LEeywva 44. Let us assume that (-f) is satisfied. Let {ffl), . ,fr(Ll)} be the family
of 1-forms introduced in Definition 41. Let k, ¢ € {1,...,n}. Then, it holds,

., —by, h™ e~ (/M) (1 4+ O(Vh))  ifk=¢,
where by, and m are defined in (186). Let u®) be as introduced in Definition 41. Then,
for all k € {1,...,n}, there exists ¢ > 0 such that as h — 0:

B {Kkhp e~ WMUGED=F@) 1+ Oh)  ifke{l,...,no},

(0) £(1) —
<Vu . >L2 () O(ef(l/h)(f(zl)7f(ac0)+c)) if k> no,

w

where Ky, and p are defined in (237) below. In particular, {f%l),...,ﬂg)} and u(®
satisfy item (4) in Proposition 26. If moreover (25) and (26) hold, one has as h — 0,

(Vu®, f]gl)>L2 @ = KihP e~ (/M E)=F@) (1 4 O(Vh)).

Hence, if (25) and (26) hold, {ffl),...,ffll)} and u(®) satisfy items (3) and (4) in
Proposition 27.

Proof. — Recall the definitions of u(®) and {ffl), . ,fy(,,l)} in Definition 41. The proof
is divided into several steps.

1)
k

Step 1. Let us first compute fEZk uy,” -ng e~(/Mf . One has since 3., C T} (see

item (1) in Proposition 30),

/ 4D ng e~/ :/
b r

M
zp k,D

ul) g em (/M g5 — /rM ul) ng e (/M
k

,D\Ezk
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It holds, using the trace estimate (175) and Proposition 38, for any § > 0, there exists
hs > 0 such that for h € (0, hs):

’ / U](gl) - NO ei(l/h)f < ei(l/h) infrl’\CIvD\Ezk (da("Zk)+f(Zk))€5/h.
FILID\sz

Notice that we have used that f > f(z) on I}y (because I), € T, € W1, see

ZE?
Lemma 14). Thus, since infrw 5 da(,25) > 0, for 6 > 0 small enough, one has

for h small enough

(236) ‘j/ WD - ng e~ UWS| < o= /MG,
™_ (= k
:,D 2k

Using (185), it then holds as h — 0:
(/“ o gy e UIMT = _pym = UMIGD (1 1 O(VR)),
5.,

where by, and m are defined in (186).

Step 2. Let us deal with the terms [, f,(cl) ‘ng e~ (/MF One has x}(8) = 0 on
o K
OO\ TMp. Indeed, x;3'(8) is supported in QT (see (222), and (223)) and

QI NoQ =09y N0 =T,

(see item (1) Proposition 30). In particular, because T), C T',,, and T, N % C
I',, NT,, = @ when k # ¢ (see the line after the proof of Lemma 4 and (16)),
xM(B) =0 on X,, when k # £. Then, one has using (224), (225) and (227),

/ f,il) ‘ng e /M = / v,(cl) ng e /Mg
P =,

1
AU 22 o

_(1+0@d%)x{

Ezf

0 i £,
Js ug) ng e /M if =y,
2

o if k#¢,
—by A™ e~ (/M=) (1 + O(WVh))  if k=L

This proves the first statement in Lemma 44. In particular, {ffl), . ,f,(,,l)} satisfies
item (4b) in Proposition 26 and item (4) in Proposition 27.
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Step 3. — Let us finally deal with the terms <Vu(0), f,g,l)> One has, since x, =0

L2,@)
on 0%, from (224),
<VU(O)’f’(“1)>L2w(Q) _ W<VXT’6_(1/h)fV’(€1)>L2(Q)
= —W<V(l ety
= M;’J(Q) [h—1<(1 — XT)’6_(1/h)fd;’hvl(€1)>Lz(Q) _ /ag—(l/h)f\/g) ) ng}
- Ixrllm(n) [hﬂ((l - Xr)e*(l/h)ﬁd§,hV,(€1)>L2(Q) - /ammppxg(ﬁ?(l/h)f"/(cl) ' nQ]

Let us first deal with the boundary term in the previous equality. Because x}'(3) = 0
on 9Q \ T, from (224) and (227), it holds:

/ eI g = (140 [ B MID ng
OQNsupp Xﬁl(ﬁ) FI,\CIYD
— @0l [ 6akE) - e UMD gt [ O g,
I‘if’D F];I,D

It holds, from (225),

[y =0t || [ 0 e
F%,D FI}EI,D\EZ;C

< C‘/ eIy ng|.
Fil,D\sz

Thus from (236) and (185), it then holds as h — 0:

/ e~ (UMM no e~ (UMIED (1 4 O(VR)).
oQNsupp X} (8)

Hence, as h — 0, one has using (231) (see also (186)):
1

xelzz @) / e (WMID g = KphP e~ (/MU =FE0)(1 + O(vVR)),
rl1L2,(Q) Joaonsupp x}(8)

with
by, 1
(237) Kk? = ,TIO =V AIO7Zk and p=m-— Z = _57

where A, ., is defined in (184).
Let us now deal with the error term <(1 - Xr)e’(l/h)f, d})hv,(:)>L2(Q). Using Propo-
sition 39 and Corollary 40, for any § > 0, there exists hs > 0 such that for h € (0, hs):

— * 1 — min, 1— * 1
[{(1=xr),e (1/h)fdf,hV1(€ )>L2(Q)| < Ce™ /M) minsuppa—x) fde,hVIg )||L2(Q)
< Ce— /M) (f(z1)=r) [e—(l/h)(f(zk)—f(wo)) + 65/h6—(1/h)(infzean\rz,c da(zlmz)):l.
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Therefore, using (231),
_ «
(1= xp)e= /M7 ds i)

X+l z2 ()
< O /1e= /MG~ 10D =AM S e1) =S () =r)

L2(Q) ‘

+ 66/h6—(1/h)(infze69\rzk da(Zk72))6—(1/h)(f(Zl)—f(xo)—T)]
< e—(l/h)Ek(Tﬂls)7

where, for > 0 and § > 0 small enough, one can choose Ex(r,d) > f(z1) — f(=o).
Moreover, if (25) and (26) hold, then inf.cpo.r., da(zk,2) > f(2x) — f(21) and
f(z1) = f(zo) > f(zx) — f(21). Thus, for » > 0 and § > 0 small enough, one can
choose Eg(r,0) > f(zr) — f(x0). The proof of Lemma 44 is complete. O

In this section, we proved (see Lemmas 42, 43, and 44) that the quasi-modes
{ffl), . ,ffll)} U {u(®} satisfy all the assumptions of Propositions 26 and 27. We can
now conclude the proofs of Theorem 1, Proposition 7, Theorem 2, and Corollary 8,
using the results of Propositions 26 and 27. Theorem 1 is a consequence of Proposi-
tions 26 and 27 together with the formulas (186) and (237) for the constants by, m, K,
and p. Proposition 7 is a consequence of Lemma 42 and Proposition 26 (notice that
using Lemma 4, Proposition 7 is also a consequence of the results of [58]: we thus
here provide a new proof using 1-forms). Theorem 2 is a consequence of Theorem 1
and Proposition 7 together with (21). Corollary 8 is a consequence of Theorem 1,
Proposition 7, and (22). It remains to prove Theorem 3.

4.2, (,}ENERALIZATI()N TO DETERMINISTIC INITIAL CONDITIONS: PROOF OF THE()REM %

The proof of Theorem 3 relies on so-called leveling results (see Corollary 47 below)
which only requires that f : Q — R is a € function which satisfies item (1) in (9-f).
For F € C*(0,R), let us define
(238) Ve e Q, wp(z) =E,[F(X;)],
where 7 is defined by (2).

4.2.1. Leveling result on wy,. — For any closed subset F C RY, one denotes by
TF = inf{t >0, X; € F}
the first time the process (1) hits F (in particular, 7 = 7q<). Let 2o be a local minimum
of f in Q. Let us recall that B(zg, k) is the open ball centered at z( of radius h. Let
us assume that h is small enough so that B(zg, k) C €, where B(zg, h) is the closure
of B(zg, h). The function
Pao : @+ Palrae < T 1]

is called the committor function (or the equilibrium potential) between Q¢ and
B(xg, h). We have the following precise leveling result on p,, :  — R.
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Prorosition 45. Let us assume that f : Q — R is a € Morse function which
satisfies item (1) in (2-f). Let K be a compact subset of {f < mingq f}. Then, there
exist Cx > 0 and hg > 0 such that for all h € (0,hg) and x € K:

(239) Pag (z) < Ok h™de= (/M) (minoa f=f())

We refer to Figure 9 for a schematic representation of {f < mingq f} and B(zg, h)
(recall that since item (1) in (Q-f) holds, f satisfies item (1) in Lemma 4).

""" {f = minsq f}

Ficure 9. Schematic representation of {f < mingq f} and B(zg, h).
On the figure, it holds {f < mingq f} NN = {z1, 22}

Proof. The proof of this result is inspired by the proofs of [8, Lem. 4.6] and [53,
Prop.7.9]. Let x € Q. If z € B(xg, h), then p,, = 0. Let us thus deal with the case
when x € Q \ B(zg, h).

Step 1. First inequality for pg,(x) using capacities. — In this step, we prove Equa-
tion (242) below. Let us denote by dga« the standard Euclidean distance in R%. Let G,
be the Green function of L?";L(O)(Q\E(xo, h)), see [8, Eq. (2.3)]. Set for z € Q~\B(xo, h),

(240) ¢ = dga(z, Q° UB(x0, h))/2.
Define
p=ch>0and R=p/3.

On the one hand, using this pair (p, R) in the proof of [8, Lem. 4.6], one deduces that
there exists Cy > 0 such that for all z € Q ~\ B(zo, h), h € (0, 1],

(241) sup Gr(z,z) < C}TIP/R inf  Gp(z,2).

2€8B(z,p) z€0B(z,p)

Notice that ¢ depends on h and = (which was a priori not the case in [8, Lem. 4.6]).
Let us explain more precisely why (241) remains valid in our setting. To get Equa-
tion (241), one uses k times the Harnack inequality [35] (see also [8, Lem. 4.1]) on k
balls B(z;,p) where z; € 9B(z,p) with B(z;,R) N B(z;41,R) # @ (1 = 1,...,k,
ZTp+1 = x1), and where k < mp/R. The constant Cy in (241) is the one from the
Harnack inequality used on each B(z;, R). In addition, this constant Cy depends

JE.P. — M., 2095, tome 12



966 T. Leviivre, D. Le Peurrec & B. NEcroux

on h~2R? and thus can be chosen independently of h since for all x € Q . B(xg, h)
and h > 0,

h™2R* < d2a(z,Q°U {z0})/6* < M3 /36,
where Mo := max, g dga(y, 2°U{zo}). The conditionﬁh < 1in (241) ensures that we
can use the Harnack inequality, since for all z € Q \ B(zg,h) and all i =1,... k,
B(x;,2R) C Q ~ B(zo, h),
which follows from the fact that, if h < 1, p + 2R = 5dga(z, Q¢ U B(z0, h))h/6 <
dga(z, Q¢ UB(x0, h)). Finally notice that we have that
oyt = ot
On the other hand, using the arguments of the proof of [53, Prop.7.9] with C =

B(z, p) there, together with (241), one deduces that there exists C' > 0 such that for
all z € Q \ B(wg,h) and h small enough:

cap(B(z, p), Q)
Cap(B( ,p),B(JSO,h)UQC)7

where we recall that (see [8, §2]) for two subsets C and D of R? such that CND = &,

(242) Py (1) < C

(243) cap(C,D)zé inf / ’v<p(x)|2€f(2/h)f(z)dx7
2 peHcp Jpa (buc

where
Hcp = {p e H(RY), p(z) =1 for z € C, p(z) =0 for = € D}.

Step 2. Upper bound on cap(B(z, p), Q¢) and lower bound on cap(B(z, p), B(zg, h) U Q°)

Let us first obtain a lower bound on cap(B(z, p), B(zo, k) UQ°). By the variational
principle for capacities (243), it holds:

cap(B(z, p), B(z0, h) U L) > cap(B(x, p), B(ao, h).

Let K be a compact subset of Q. Following the proof of [53, Lem. 7.10] (see also [8,
Prop. 4.7]) with here p : [0,1] — Q a smooth path connecting z to xo and such that
t €[0,1] — f(p(t)) is decreasing, there exists C' > 0 such that for all x € Kand h > 0
(recall x¢ is the global minimum of f in ),

(244) cap(B(z, p), B(zo, h)) = Chle~?/Mf(),

Let us now deal with cap(B(z, p), Q2°). Let Uy be the subdomain of {f < mingq f}
such that U, C {f < mingq f} and for all € AUy, dga(z, {f < mingg f}°) = h
It then follows that for h small enough,

245 min > rmn —¢h,
( ) {f<mingq f}~\Uy f f

for some € > 0 independent of h. Let ¢5, be a smooth function on R? such that ¢, = 0
on {f < mingg f}¢, ¢ =1 on Uy, and for some C' > 0 independent of h,

(246) IV énllpe) < Ch™
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Assume now that K is a compact subset of {f < mingg f}. Then, for A small enough,
it holds for all x € K:
B(z, p) C Up,
where we recall p = ch > 0 where ¢ is defined by (240) and satisfies ¢ < Mg /2. Hence,
using the variational formula (243), it holds, for A small enough and all z € K|
cap(B(a,p). ) < 5 [ [Vene T2 |
R4 {f<mingq f}~\Uy

Using in addition (245) and (246), one deduces that for i small enough and all z € K|
(247) cap(B(z, p), Q%) < Ce~(2/M)(minoa f—ch)

|V¢h|26*(2/h)f_

where C' > 0 is a constant independent of € K and h. In conclusion, Equations (242),
(244), and (247) imply (239). This concludes the proof of Proposition 45. O

Let us recall that wy(z) = E[F(Xr.)] (see (238)). We will need the following
leveling result on wy, in B(zg, h) (see [52, Lem. 1] or [75, Lem. 3] for a proof).

Levmma 46. — Let us assume that f : Q@ — R is a € Morse function. Let xy be a
local minimum of f in Q. Then, it holds for h small enough

sup  wp (@) — wp(x0)] < CVhwy(zo).
z€B(z0,h)

The two previous results have the following consequence on wy,.
CoroLrary 47. — Let us assume that f : Q& — R is a € Morse function which

satisfies item (1) in (Q-f). Let K be a compact subset of {f < mingq f}. Then, for h
small enough and uniformly in x € K, one has,

wh<x) = wh(gjo)(l + O(\/ﬁ)) + O(h_de_@/h)(minaﬂ f—maxg f))
Let us mention that a similar result was proved in [27, §5.1.4] using [30, Th.1]
when f has no critical point on the boundary of 2. When this is no longer the case,

[30, Th. 1] does not apply and we prove this result using the strong Markov property
together with Proposition 45 and Lemma 46.
Proof. — Let K be a compact subset of {f < minsq f} and 2 € K. Then write:
(248) Ex [F(XTSZC )} = Ex [F(XTQC) 17—B(a:g,h)<7—§2c:l + EJC [F(XTQC )17-8(1-0,}027'52‘3} :
By the strong Markov property,
E, [F(XTQC )lTB(zg,h)<TQC] =E, [1Ts<zo,h)<mcEXTB(EOM [F(Xrqe )]] .

Using Proposition 45 and Lemma 46, for all A small enough and x € K, it holds:
(249) E, [F(XTSZC) 17'B(a:g,h)<7'£zc] = (1 + O(eic/h)) (1 + O(\/E))wh(J:O)a

uniformly in z € K,

where ¢ > 0 is any constant such that ¢ < 2(mingg f — maxg f). Let us now deal with
the last term in (248). For = € K, it holds:

Eq [F(X"'QC)]'TB(xO,h)>TQC] < HF”L“’(@Q)PI[TB(xQ,h) > TQC]’
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Using Proposition 45, it thus holds for h small enough:
Ina% E, [F(XTQC )1 ] < Chfde*@/h)(minas) f—maxg f).
[

TB(zq,h) ZTQC
Together with (249) and (248), this concludes the proof of Corollary 47. O
4.2.2. Proofof Theorem 3. — We are now in position to prove Theorem 3.

Proofof Theorem 3. — Let us assume that Assumption (Q-f) is satisfied. Let us define

for a € R,
Ko :={f < a}.

In the following we consider f(xp) < o < mingg f so that
Ka is a non empty compact subset of {f < mingg f}.

Write

(250)  E,[F(X.)] =27 /

wp 1wy e~ /M1 +z,;1/ wp uy e~ @I
QONKo

Ka
where we have defined 7Z;, := fQ up e~ 2/MF  Tet us deal with the first term in the
right-hand side of (250). It holds:

2,71/(2 wp, up, e~ 3/MT 1F| o< a2) Z;:l/ uy, e~ 2/MT
Ko

~“Ka

Moreover, using Lemma 42, it holds (see Definition 41)

—(2/n)f
Xre€
/ up e /M = Jok., X
Q~Kq HXrHLﬁ,

1 O( A2 M) =S o)) // e—2/h)f
O~Ka

Recall that when 2 — 0 (see Proposition 7, (231), and (186)),
Z, = g /4 = IMIE (14 O(R)) and [[xellzz, = Vg b4 e=(/MIE0) (11 O(R)).
Then, since f > a on 2 \ K, there exists 5 > 0 such that:
Z;l/ up e~ @M < onp [67(2/h)(a*f(ro)) + e*(l/h)(f(21)+a*2f(xo)*r)}_
N

Therefore, because mingq f = f(z1) = «a, for any r > 0, it holds for h small enough:
(251) z;l/ o= CINF < g—@/W = F o)),
92N

In conclusion, the first term in the right-hand side of (250) satisfies the following
upper bound: for any r > 0, it holds for h small enough:

(252) ! / w1y e~ WS e~ @/Ma—(w0)=r).
ONKo
Let us now deal with the second term in the right-hand side of (250). Using Corol-
lary 47 with K = K, there, it holds:
Z,;l /K wpup e /M = [wh(xo)(l + O(\/ﬁ)) + O(h*de*@/h)(mi“@‘ﬂ f-maxk, f))}

fK Up, e_(z/h)f
Ty n e @
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In addition, by (251),
fK uh ef(z/h)f
Joune=/mI

Thus, the second term in the right-hand side of (250) satisfies the equivalent in the
limit A — 0:

=1-2;"! / up e @M =14 0(@e/h).
ONKo

(253) Z;* /whuh e~ /S

o

= [wh(xo)(l +O(Vh)) + O(h™de= /M minoa =)y (1 4 O(e=¢/M)).

Choosing r > 0 small enough, Equations (35) and (36) when z = z( are then
consequences of (252), (253), (250) together with (30) and (31) in Theorem 2, and
the fact that f(rg) < a < mingq f. The asymptotic result on P, (X, € X,,) is
obtained as a consequence of the asymptotic result on E, (F(X,)) for smooth test
functions F' by writing F' < 1y, < G for two smooth test functions F, G : 92 — [0, 1]
supported in I',, such that G = 1 and F' = 1 around zj. For more details, see the
analysis led just after Equation (268) in [27].

To obtain (35) and (36) uniformly on all z in any compact subset K of
{f < minggq f}, one uses in addition Corollary 47 with K, where K is such that
K C Kq (with f(z) < a < mingg f). Using the procedure of step 2 of the proof of [64,
Prop. 14] and since the domain of attraction A({f < mingg f}) of {f < mingq f} for
the dynamics (12) (see [64, §1.2.2] for the definition of A({f < mingq f})) is equal
to Q (by item (1) of (Q-f)), (35) and (36) extends to all z € K, K a compact set of 2.

It remains to prove (38). To this end, assume that (25) and (26) are satisfied.
Assume in addition there exists £y € {ng + 1,...,n} such that (see (37))

2(f(ze,) = f(=21)) < f(z1) = f(zo)-

Let ko € {no+1,...,4} and a, € R be such that f(zg) < a. < 2f(21) — f(2k)-
Notice that we can assume without loss of generality (up to increasing . if «, is
smaller than f(zo) + f(2x,) — f(21), see (37)) that

(254) f(@o) + f(zi,) — f21) <o <2f(21) = f(zko)-
Let us consider @ € Ko+ and k € {ng + 1, ..., ko}. Thanks to (254) and the fact that
fzr) < f2k,)
Igglf — o = f(z1) = > flzw) — f(21) 2 flzr) — f(z1),
and
o — f(z0) > f(2ky) — f(21) = f(2k) — f(21).

Choosing r > 0 small enough in (252), and using (253) and (250) together with (32)
in Theorem 2, one then deduces Equation (38) when = x4. Using Corollary 47, one
proves that (38) holds uniformly on x € K,+. The proof of Theorem 3 is complete. O
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APPENDIX. PROOFS OF SOME TECHNICAL RESULTS AND ADDITIONAL COMMENTS
A.1l. Proor or LEmma 4

Proof of Lemma 4. — The proof is divided into two steps.

Step 1: Proof of item (1) in Lemma 4. — Let us prove that Jn,f > 0 on 0Q. Let us
assume that there exists z € 9 such that O, f(2) < 0. Then, there exists s, > 0
such that ¢ (t) ¢ Q for all t € (0,s.]. Let € > 0 be such that B(p.(s.),e) C R\ Q.
Since (s,x) — @, (s) is continuous, there exists o > 0 such that if |s — s.| < a and
| — 2| < «, then . (s) € B(p.(s,),e). Therefore, for all z € Q such that |z — 2| < a,
vz (s) ¢ Q, which contradicts item (1) in (£2-f). Therefore On, f > 0 on 9.

The fact that x( is the only critical point of the function f in 2 is also a direct
consequence of item (1) in (2-f). In addition, there is no local minimum z € 9Q of f
in Q. Indeed, assume the existence of such a point z € 9Q. Necessarily d,, f(x) < 0,
and by the previous discussion, Oy, f(x) = 0. Then, x is a critical point of f and a
local minimum of f in RY. Since Hess f(z) > 0, x is (positively) asymptotically stable
for the flow (12). This contradicts item (1) in (£2-f).

Let us now prove that f(z9) = mingf < mingo f. For 8 > 0, set Vg =
flo (=00, f(z0) + B)). Since Hess f(zo) > 0, for f > 0 small enough, Vs is a
nonempty open neighborhood of zy in € such that z( is the unique global minimum
of f on Vg. Let # € @\ Vj. Let t, :=inf{t > 0, ¢, (t;) € Vg}. By item (1) in (Q-f),
ty < +oo. In addition, by continuity of ¢ — @, (t), v, (tz) € Vg C {f = f(zo) + B}.
Thus,

F(2) = Flou(ta)) + / "IV (pals))2ds > f(xo) + B.

Let us now consider x € 9. Let x,, € Q be such that z,, — x as n — +oo. Since
for n large enough f(x,) = f(xo) + B, it follows that f(x) > f(zo)+ 5. In conclusion

flzo) = mﬁinf < Iggln f.

It remains to prove that {f < mingg f} is connected and d{f < mingg f} NN =
argmingg, f. The fact that {f < mingg f} is connected follows from the facts that
{f < mingg f} is actually an open subset of © and that there is only one local
minimum of f in  (namely zg). Let us now prove that 9{f < mingq f} NN =
argmingg f. It is clear that 0{f < mingg f}NON C argminyg f. Let z € argmingg, f.
If 2 ¢ O{f < minpg f}, then there exists € > 0 such that for all z € B(z,e) N Q,
f(x) > mingg f = f(2). Thus, z is a local minimum of f in Q, which is not possible.
Consequently z € d{f < mingg f}. Therefore, {f < mingq f} NIN = argmingg, f.
This ends the proof of item (1) in Lemma 4.

Step 2: Proof of item (2) in Lemma 4. — Let z € 082 be such that |V f|(z) = 0. Let
(e1,,...,€eq4) be an orthonormal basis such that (i) Span(ey,...,eq—1) = 7.9 and
(ii) eq = no(2). Let us introduce the affine change of variables:

d
2 (yla'- '7yd) = Z+Zi:1 Yi€i.
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The Hessian of f at point z is unitarily equivalent to the matrix with (z, j)-component
8% f
0y;0y; )
f(¢(y))). Let us prove that %(O) =0forallie {1,...,d—1}. For any such i, let
t € (—=1,1) = ~(t) € 99 be a curve such that y(0) = z and v/(0) = e;. By item (2)
in (Q-f), one has GV F(4(1) - na(v(t))|,_, = 0 (since Vf(7(t)) - na(y(t)) = 0 on a

neighborhood of ¢ = 0). This writes: 6328];,1 (0) = 0. This implies that (0,...,0,1)T is
% f

0y;0y;

(0) for 1 < 1,57 < d (where with a slight abuse of notation, f(y) refers to

an eigenvector of ( (0)) B associated with the eigenvalue o°f (0). Since f
1<i,5<

ayg

is a Morse function in O, one has %(O) # 0. Finally, item (1) in (Q-f) then implies

that necessarily giyét(O) < 0. This proves that nq(z) is an eigenvector of the Hessian
d
of f at z associated with a negative eigenvalue. a

A.2. On WKB-APPROXIMATION FOR v,(cl). — As explained in Section 3, the quasi-

modes f,(cl) for L?j,’l(l)(ﬁ) are built using the principal 1-eigenform v](:) of a Wit-
ten Laplacian on Q) with mixed Dirichlet-Neumann boundary conditions. Since
|Vf(2)| = 0, the constructions of the domain Q) and of the quasi-mode v,(cl) are
very different from the ones done in [27] and require to overcome a major technical
issue.

Indeed, we do not have a satisfactory WKB-approximation of v,(cl) near 2., in Qi};l
An accurate WKB-approximation, constructed in [42], was used in [27] (see also [28]

for similar computations) to estimate (in the limit A — 0), the quantities

255 v(l) . nQe_(l/h)f7 k=1,...,n,
k
b

z)
which were in turn used to compute asymptotically fz 3nnuh67(1/ M| since (see
Zk
Corollary 25, (40) and (119))

/ Ongune” Y/WF ~ Z/ Yuy, 'Vl(cl) o= (1/M)f / V;(cl) ng e~ (/M
2P k=18 =

“k

In our context (see [58, §1.4] for more details), the only possible candidate is the
WKB ansatz constructed in [44, §2] on B(zg,p) (for some p > 0). However, only
its first term woe™(/Mda(2) | belongs to the form domain of A?},’L(l)(Q) in general,
i.e., satisfies tag = 0 on 02 N B(zg,p). Thus, only this first term can be used to
approximate v,(cl) with the help of Lemma 11, but this approximation is not accurate
enough. Let us briefly explain why, by showing that for a smooth function £ supported

in B(zg, p/2) which equals 1 in B(z, p/3), the 1-form
gwoe_(l/h‘)da(')zk)k)

[€woe= (/M deloz)]q]| 12

Uwkb,0 =

is in general not close enough to v,(:) in A'H'(Q) (recall that we are looking for an
equivalent of (255)). Using (14), by construction of wyg in [44, Th.2.5] and using an
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integration by parts, it holds, for h small enough:

||£woe—(1/h)da(.,%)|Q||2L2(Q) (||df7huwkb7o||2Lz(Q) + ||d},huwkb,0||%2(ﬂ))
= <A(f;)Lkab,o, Uwkb,0) L?(Q) — h/ td¥ ,Uwkb,0 Uwkb,0 * N
OQNB(zk,p)
= O(h?)]|e™®/Mdel20) €y Apag |72 ) + O(e ™)

- h/ g2emMAL208[hd wo + i (4, (2041 (@0) | wo - g
dQNB(zk,p) —_—
=0
Therefore, using Laplace’s method and [44, Th. 2.5], one cannot expect in general a

better estimate when A — 0 than

||df.,h“wkb,0||%2(9) + ||d}k",huwkb,0||%2(9) < Con?,

which only implies, using Lemma 11, that uye,0 is at a distance of the order O(h1/4)
from v,(cl) in A1L%(Q). In view of the computations made in the proof of [27, Prop. 90]
(which is very similar to the proof of Lemma 43, see in particular (234)), this is not
sufficient to prove that the distance between uqxp,0 and v,(fl) converges to 0in A1 H(Q)

as h — 0. One would indeed at least need that ||df’huwkb,0||2LQ(Q) + ||dj}7huwkb’0||%2(ﬂ) =
o(h3) as h — 0.

A.3. Proors or Prorositions 28 axp 29

Proof of Proposition 28. — Let k € {1,...,n}. The proof of Proposition 28 is divided

into several steps.

Step 1: Properties of T, and preliminary definitions. — Let us recall that since I',, C
W1 (see (14) in (Q-f)), it holds
forall z €T,,, Vf(zx)=Vrf(x)e T,00.

Moreover, for all y € T';,, since ¢,(s) € T',, for all s > 0 (see (12)), it holds:
limg—s 400 9y (s) = 2. Let 7 > 0 and define:

Cop = (flr., )7 (=00, f(zk) + 7).
For r > 0 small, [V f| # 0 on 9C,, and thus, C,, is a smooth open neighborhood of z,
and Vf-nc, >00ndC,, . Fory el \C,, let:
(256) tCzk (y) =inf{s >0, ‘Py(s) € q}v

which is finite since lim,_, o y(s) = z,. By continuity of s > 0 — ¢,(s), for
yel, ~C,, py(tc., (y)) € 9C;, and for all s > tc, (y), py(s) € C,,. Moreover,
tc., (y) is defined by

ey, ()
[ 19 Pds = 1) = () + 1),
0
and thus since |V f| # 0 on 0C,,, by the implicit functions theorem,
(257) yel, ~C, tc., (y) is €.
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For all x € 0C,, and s € R, let v,(s) := py(—s) (see (12)) which satisfy for all
seR

(258) Lo(s) = T ((s)) with 7,(0) = .
Let us define for all z € 9C,, ,

(259) st () :=1inf{s > 0, 7.(s) ¢ I';, }.

Let us prove that

(260) sr., 1 0C;, — R4 is lower semicontinuous.

Let us first prove that for all z € 9C;,, sr. (x) < +oo. It it is not the case, there
exists y € 0C,, such that v,(s) € T',, for all s > 0. Thus, the curve 7, converges
to a critical point of f in I',,, the only one being z, (by (14)), which is impossible
because v, (s) ¢ C,, for all s > 0. Let us now prove that sr., Is lower semicontinuous.
To this end, let (zn)n>0 be a sequence in JC,, converging to z. € 0C,, and a
limit s, of a subsequence of (sr, (5))n>0. If s« = +00, then, sp, (7o) < 84 Let us
then consider the case when s, < 400. Up to extracting a subsequence, we assume
that sr, () — s+« when n — oo. Notice that for all n > 0, since ST, (zn) < 400
and s — v, (s) is continuous, vz, (sr., (zn)) € OT';,. In addition, since s, < +oo,
Jr',, is a closed set, and by continuity of (z,t) — 75(¢), it holds

%U,,L(SFZ,c () — Yo, (8x) € OT,, when n — 0.

This implies that sr. (Zoo) < s« by definition of sp, . This implies that sp_ is lower
semicontinuous and concludes the proof of (260).
Finally, since I';, is open, one can consider an open subset Of of I',, such that

C,UFCOf and OfcCTl,.

Step 2: Construction of a set Vg C T, containing O which is stable for (12). — Define
for all z € 9C,,, so.(x) := sup{s > 0, 7,(s) € Og}. Let us prove that

(261) sop < +oo and  sop < sr,, -

To prove the first statement in (261), we argue by contradiction: assume that there
exists x € OC,, such that so,(r) = +o0c. Then, there exists a sequence s, € (R )N
such that s, — +0o when n — +oco and for all n, v,(s,,) € Of. Thus, v, (s,) converges
when n — 400 to a critical point of f in Of, the only one being 2, which is not pos-
sible because v, (sy) ¢ C,, for all n. This proves the first statement in (261). To prove
the second statement in (261), let us consider x € 9C,,. Notice that since so.(z) is
finite and the trajectories of (258) are continuous in time, 7, (so, (7)) € O C T,.
Since I';, is stable for the dynamics (12), 72(s) = ¢+, (so, (2)) (50¢ () — ) € I, for all
s €10, sop(x)] (see (12) and (258)). Moreover, since I',, is open, and the trajectories
of (258) are continuous, there exists €, > 0 such that:

(262) {72(s), 2 € C., and s € [0, 50, () + 4]} C T2,
Therefore, sr, () > soe(¥) + 5. This concludes the proof of (261).
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Let us now define:
(263) VE := C., U {7a(s), z € 9C., and s € [0, so, ()] }.

By construction, the set Vg is stable for the dynamics (12). From (262) and since
q CTI';,, one has Vg C I';,. We now claim that

(264) sop : 0C,, —> Ry is upper semicontinuous and VF is a closed set.

Let us first prove the first statement in (264). To this end, let (x,,),>0 be a sequence in
0C,, converging to £, € 0C,, and s, a limit of a subsequence of (so.(zy))n>0. Up to
extracting a subsequence, we assume that so.(z,) — s« when n — oo. Notice that
for all n > 0, vz, (Sos (zn)) € Of. Let us prove that s, is finite. Assume that it is not
the case, i.e., that so.(z,) = +00. From (261), for all ¢ € [0, so.(zn)], Vs, (t) € T, .
Let T > 0 and consider N > 1 such that so.(x,) > T for all n > N. Then, for all
te[0,T) and n > N, 7., (t) € T, . Passing to the limit, one obtains that ~,(t) € T,
for all ¢ € [0,T). Since T > 0 is arbitrary, one deduces that 7, (t) € T, for all ¢ > 0.
This is not possible because, as already explained, the limit points of the curve -, are
outside T, . Thus s, is finite. Since Of is a closed set, by continuity of (x,t) + v, (t),
it holds 7., (50, (1)) — Yo (5+) € O when n — oco. Therefore, 5o, (Too) = Sx, and
thus, so. (7o) = limsup,,_,, . Sve(xy). This proves that sq, is upper semicontinuous.
This proves the first statement in (264).

Let us now prove the second statement in (264). To prove that Vg is a closed set
it is sufficient to show that A = {7,(s), z € 9C;, and s € [0, so. ()]} is a closed set.
To this end, let (y,)n>0 be a sequence in A converging to y.. Let us show that y, € A.
Write yn, = g, ($n) where x,, € 9C,, and 0 < s, < sop(2,). By compactness and
up to extracting a subsequence, let 2o, € 0C;, such that z,, = xo, when n — +o0.
Since sp, < +00 is upper semicontinuous on the compact set 9C;, , so, is bounded
on 9C,, . Therefore, (s,)n>0 and (so(zn))n>0 are bounded. Denote by s, a limit of
a subsequence of (s, )n>0. Then, it holds

s« < limsup s, < limsup so (%) < S0p (Too)s
n——+oo n—-+4oo

where the last inequality follows from the fact that so, is upper semicontinuous. Since
Yn = Yo, (Sn) = Yoo (8+) = Yy« when n — +o00, and s. < so.(Z), this implies that
Y € {72(s), 2 € 0C., and s € [0, so.()]}. The set A is therefore closed and thus,
so is VE.

Finally, let us prove that,

(265) OF C V.
To prove (265), we consider y € Og. The curve
s € [0,tc., ()] — e, e, ) (8) = yltc., (y) —9)

passes through y € Of at time s = tc_ (y) (see (12), (258), and (256)). Thus, by def-
inition of so., it holds tc. (y) < so(¢y(tc., (y))) and thus, by definition of Ve,
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Yy = ’ywy(tc% (y))(tcz’C (y)) S {FY‘/’y(tCzk )] (5), s € [O,SOF (SC))} = V. This proves (265)
and in particular F C VE.

The interior of Vi might be a good candidate to be I'r but this set is not necessarily
smooth or does not satisfy (125). This is due to the fact that the function s, is not
necessarily smooth. For this reason, we approximate so. from above by a smooth
function: this is made in the next step, see (268).

Step 3: Construction of T'r
Step 3a: Approximation of so. from above by a smooth function and definition of T'r

Since so, is upper semicontinuous (see (264)), from [89, Th.3], there exists a
decreasing sequence of continuous functions s, : 0C,, — R, n > 1, such that for
alln > 1,3, > so, and for all z € 9C,, , $,,(x) — so.(z) when n — +00. Let us prove
that there exists ng > 1 such that:

(266) for all 2 € 0C,,,  so.(z) < 8ny(2) < 1., ().

We just have to prove the second inequality in (266). For that purpose, we argue by
contradiction: assume that

(267) for all n > 1, there exists z,, € 9C,, such that s,(z,) > sr., (zn).

By compactness and up to extracting a subsequence, let zo, € 9C,, such that
Ty —>Too When n — 400. Let € > 0. There exists Ny > 1 such that for all n > Ng,
Sn(%oo) — S0f (Too) < €/2. One then has for all n > Ny, using that 5, < Sy,
Sn(Tn) = 50¢ (Too) = (8n(Tn) = 5N, (Too)) + (58, (Too) — 806 (Too))
< SN (Tn) — SNy (Too) + €/2.
Moreover, because sy, is a continuous function, there exists N; > 1 such that for all
n = N1, [Sny () — SN, (Too)| < €/2. Thus, for n>max(Ng, N1), S, (2,) — sor (o) <&,
Le., imsup,, | $n(Tn) — S0¢ (o) < 0. Now, since s, is lower semicontinuous

(see (260)) and from (267), it holds:

S0¢ (Too) = limsup Sy, (xy,) = liminf sy, (x,) = sr. (Too)-
n—-+4o00 n—+o0 k k

This contradicts the second statement in (261), and thus concludes the proof of (266).
Since the function sr_ — Sy, is lower semicontinuous and 9C;, is compact, sr, — sp,
attains its infimum on 9C;, and since sp, > 8y, (see (266)), this minimum is positive.
Let us then consider 0 < & < mingc, (SFZk — Sng) SO that

(268) Spo t€<sr, ondC,.

Since 0C,, is compact and S, +¢ is continuous on 9C,, , there exists § € C*°(9C,, ,R)
such that s,, +¢/2 < 8 < 5y, + 3¢/4, so that in view of (266) and (268),

(269) sop < B <sr, ondC.
We now define

(270) Ie:=C.,, U{7(s), z €9C;, and s € [0, B(x))}.
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Step 3b: Properties of Tk. Let us finally prove that I'r satisfies all the properties
listed in Proposition 28. First notice that by construction, I'r is included in I',, , this
indeed follows from (270) together with the second inequality in (269). Moreover,
T'r contains Vf (since so, < S, see (269) and (263)) and thus, F C T'r. Further-
more, by construction, I'r is simply connected. Let us now prove that I'r is open and
satisfies (125).

(1) Proof of the fact that T'r is open. To this end, let us first show that I'r ~. C, is
open. Let us denote by dgq the geodesic distance in 0f2. Let y; € T'r C72k and write
Y1 = Ya, (81) where z; € 0C,, and s; € (0,5(x1)). Then, there exists t1 € (s1, 5(z1))
such that vy, (—t1) € C,,. Since the mapping = — S(x) is continuous and t; < S(z1),
there exists €; > 0 such that for all z € 9C,,,

(271) doq (z,71) <e1 = t1 < B(x).

Let €9 = daq(vy, (—t1),0C;,) > 0. Since the mapping y — 7,(—t1) is continuous,
there exists €5 > 0 such that if dgg (y,y1) < 2 then

doa(vy(—t1), vy, (—t1)) < €0/2,

and thus v, (—t1) € C;,. Let y € T,. Write y = v, (tc., (y)) where z = ¢, (tc., (v)) €
0C,,., see (256). Since when dgq (y, y1) < €2 one has ¢, (t1) = v,(—t1) € C,,, it holds:

(272) forally € I';,, doq (y,41) < &2 = tc, (y) <ti.

Since y € T,, ~ C,, py(tc., (y)) € 9C,, is smooth (see indeed (257)), there
exists €3 > 0 such that if dpo (y,y1) < €3, then y € T',, \ C,, and doq(z, 1) < &1
with o = ¢y(tc., (y)) and 21 = ¢y, (tc., (y1)). In conclusion, from (271) and (272),
if doo (y,41) < min(ez,e3), then tc. (y) < t1 < B(x), where z = @,(lc., (y))
and y = vz(tc., (v)). Thus, from (270), if doo (y, y1) < min(e2, €3), then y € Te N C,.

The set I'r N\ C;, is therefore open. In addition, since C,, C O C I'r and Of is open,
I'e = (Tr \ C,,) UC,, Cint(I'r). Therefore the set T'r is open.

Moreover, using the same arguments as those used to prove the second statement
of (264), it holds:

(273) T =C., U{v(s), z€0C;, and s € [0, B(z)]}.

Consequently, since 8 < sp, and the trajectories of (258) are continuous (see
also (259)), one has:

TeCT,,.
In addition, from (273) and (270), one has:
(274) Olr = {7:(B(x)), z € 0C., }.

(2) Proof of the fact that the set I'r satisfies (125), i.e., that Vf - np, > 0 on OT'f,
where we recall that np, € T'0f2 is the unit outward normal to I'r. Notice that by
construction, the set I'r is a stable set for the dynamics (12) and thus Vf - np. > 0
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on JI'g. Let us prove that this inequality is actually a strict inequality. Let us define
the function

T:yel., \C, — (z,t) € 9C,, x RT such that v,(t) = y.

Notice that if T(y) = (z,t), then t = tc_ (y) (see (256)) and = = ¢,(tc., (y)). The
mapping Y is a €*° diffeomorphism from I',, ~\ C,, into its range. Let us denote by

F := Y~ its inverse function, i.e.,

(275) Fla,t) = 7 (1)

Thus, for all z € 9C,,, (Jac F)(z,S(z)) is a bijection between T,0C,, x R and
T, 3T, Forall z € 9C,, and v = (v1,v2) € T, 0C;, x R, one has:

(276)  (Jac F)(z, B(z))v = (0. F)(x, B(x))v1 + (0:F)(x, B(x)) X v2 € Ty, (5(2)) Lz

where (0:F)(x, B(x)) = Vf(v.(B(x)) (see (275) and (258)). Using the chain rule, one
has:

Jacy (F(z, B(x)))v1 = (0. F)(x, B(x))v1 + (9 F) (. B())) (VB(2) - v1)
= (0:F) (@, B(@)v1 + V[ (12(B(x)) (VB(z) - v1),
where Jac, (F(z, 8(z)))v1 € Ty, (5 TF and VB(z) € T,0C.,. To prove (125) we
argue by contradiction: assume that there exists x € 9C,, such that
Vf(v2(B(x))) - nre (v (B(x))) = 0

(see (274)) which is equivalent to V f(7.(8(x))) € Ty, ((x))OT'r. This implies, in view
of (276) and (277) that Ran(Jac F)(z, 8(z)) C T, (5(2))O'F, which contradicts the
fact that F is a diffeomorphism. This concludes the proof of (125).

(277)

The proof of Proposition 28 is complete. |

Proof of Proposition 29. — For all y € , recall that ¢, (s) € € for all s > 0 (see (12))
and lims_, 1 o, ¢y (s) = x¢. Define for r > 0:

Cwo = (f|Q)_1((_OOa f(l‘o) + ’I"))
For r > 0 small enough, C,, C Q and |Vf| # 0 on 9C,,. Thus, C,, is a smooth
open neighborhood of g and V f - nc,, > 0 on 0Cy,. For all x € 0C,, and s € R, let
Yz (8) := wz(—$) (see (12)) which satisfy for all s € R
d .
21 10(8) = Vf(pa(s) with 7,(0) = z.
Let us define for all x € 9C,,,

sa(z) :=inf{s > 0, v.(s) ¢ Q}.
The proof of Proposition 29 follows exactly the same lines as the proof of Proposi-
tion 28 if one shows that s is lower semicontinuous. The difference here, compar-
ing sr., (see (259)) and sq, is that sq can be infinite due to the existence of critical
points of f on 9. Let us thus prove that sq : 9C,, — Ry U {+00} is lower semicon-
tinuous. To this end, let (x5, )n>0 be a sequence in JC,, converging to z, € 0C,, and
s« € Ry U {400} a limit of a subsequence of (sq(zy))n>0- For ease of notation, up to
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extracting a subsequence, we assume that sq(x,) — s, when n — +o0o0. If s, = +00

then, s* > sq(zs). Let us now consider the case when s* < +oco. In particular,

sq(zy,) is finite for n large enough. In this case, sq(z«) < s« by the same proof as the

one

made to show (260). In conclusion sq is lower semicontinuous. Then, the same

arguments as those used to prove Proposition 28 allows us to conclude the proof of
Proposition 29. g
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