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EYRING-KRAMERS EXIT RATES FOR

THE OVERDAMPED LANGEVIN DYNAMICS:

THE CASE WITH SADDLE POINTS ON THE BOUNDARY

by Tony Lelièvre, Dorian Le Peutrec & Boris Nectoux

Abstract. — Let (Xt)t⩾0 be the stochastic process solution to the overdamped Langevin dyna-
mics

dXt = −∇f(Xt) dt+
√
h dBt

and let Ω ⊂ Rd be the basin of attraction of a local minimum of f : Rd → R. Up to a
small perturbation of Ω to make it smooth, we prove that the exit rates of (Xt)t⩾0 from Ω
through each of the saddle points of f on ∂Ω can be parametrized by the celebrated Eyring-
Kramers laws, in the limit h → 0. This result provides firm mathematical grounds to jump
Markov models which are used to model the evolution of molecular systems, as well as to
some numerical methods which use these underlying jump Markov models to efficiently sample
metastable trajectories of the overdamped Langevin dynamics.

Résumé (Taux de sortie d’Eyring-Kramers pour la dynamique de Langevin sur-amortie : le cas
des points-selles sur la frontière)

On considère la dynamique de Langevin sur-amortie

dXt = −∇f(Xt) dt+
√
h dBt

et Ω ⊂ Rd, le bassin d’attraction d’un minimum local de f : Rd → R. Quitte à légèrement
perturber Ω pour en lisser le bord, nous montrons que les taux de sortie du processus (Xt)t⩾0

de Ω par chacun des points-selles de f sur ∂Ω peuvent être paramétrés par les lois d’Eyring-
Kramers, dans la limite h → 0. Ce résultat fournit une base mathématique solide aux modèles de
sauts markoviens qui sont utilisés pour décrire l’évolution des systèmes moléculaires, ainsi qu’à
certaines méthodes numériques qui s’appuient sur ces modèles pour échantillonner efficacement
des trajectoires métastables de la dynamique de Langevin sur-amortie.
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1. Motivation and statements of the main results

1.1. An informal presentation of the results. — Let us first present in this section
the motivation for this work, namely the modeling and the efficient simulation of
metastable stochastic dynamics which are used in molecular dynamics, as well as an
informal statement of the main results.

Overdamped Langevin dynamics and metastable exit. — Let us consider a potential
energy function

f : Rd −→ R,
which is assumed to be smooth and with non-degenerate critical points. A prototypical
dynamics to describe the evolution of a molecular system in the energy landscape f
at a fixed temperature is the overdamped Langevin dynamics:

(1) dXt = −∇f(Xt) dt+
√
h dBt,

where (Xt)t⩾0 gives the positions of the atoms as a function of time, h > 0 is (pro-
portional to) the temperature (and will be assumed to be small in the following), and
(Bt)t⩾0 is a d-dimensional standard Brownian motion. Let us consider Ω ⊂ Rd a basin
of attraction(1) of a local minimum of f . In many cases of interest, the process spends
a lot of time within Ω before leaving it, typically because the temperature h is small
compared to the energy barriers which have to be overcome to leave Ω: this phenom-
enon is called metastability, and an exit which occurs after a long relaxation time
within Ω is called a metastable exit (this will be formalized below using the notion
of quasi-stationary distribution). We are interested in the so-called exit problem [34],
which consists in precisely describing the exit event from Ω in the limit h→ 0, namely
the law of the pair of random variables(2) (τ,Xτ ), where

(2) τ = inf{t ⩾ 0, Xt /∈ Ω}

is the first exit time from Ω, and Xτ is thus the first exit point. More precisely,
we will show that for a metastable exit, in the limit h→ 0, the law of (τ,Xτ ) can be
approximated using a simple jump Markov model with exit rates from Ω parametrized
by the celebrated Eyring-Kramers laws, a model which is sometimes called kinetic
Monte Carlo in the physics literature [91]. These exit rates are associated with the
local minima of f on ∂Ω, which are saddle points of f (namely critical points of f of
index 1) since Ω is a basin of attraction. These points are on the most probable exit
pathways from Ω.

Before providing more details on this kinetic Monte Carlo model in the next para-
graph, let us emphasize that this question is both important in terms of modeling,

(1)Actually, as will be discussed below, since we require Ω to be a smooth bounded domain, one
may need to consider a small perturbation of a basin of attraction of f to apply our results, see
Remark 5.

(2)Throughout this work, Ω is a fixed domain, and we therefore do not indicate explicitly the
dependency of τ on Ω.

J.É.P. — M., 2025, tome 12



Eyring-Kramers exit rates for the overdamped Langevin dynamics 883

and in terms of numerical simulation of (1). In terms of modeling, it gives a rigor-
ous framework to prove that a coarse-grained version of the overdamped Langevin
dynamics is indeed the kinetic Monte Carlo dynamics (also known as Markov state
model) parametrized by the Eyring-Kramers laws. Actually, if the states form a par-
tition of Rd (which is indeed the case, up to a null set, if one defines the states as
the basin of attractions of the local minima of f) and if all the exits are assumed
to be metastable, one can even use a kinetic Monte Carlo model not only to sam-
ple the exit from a metastable state, but to actually describe the full evolution of
the system, see for example [13, 79, 80, 91, 92, 76]. In terms of numerical simula-
tions, metastability implies that the direct numerical simulation of (1) is prohibitive,
because a lot of computational time is wasted in metastable states: using the simpler
underlying kinetic Monte Carlo model, one can then accelerate the sampling of the
exit event when the process (Xt)t⩾0 remains trapped in a metastable state. This is
the cornerstone of the so-called accelerated dynamics algorithms such as temperature
accelerated dynamics [83] or hyperdynamics [90, 88], see [26, 62, 77] for more details.
These algorithms are widely used in practice with applications in material science,
see for instance [2, 73, 84, 33]. In this context, the states are very often defined as
basins of attractions of local minima of f : this is indeed numerically convenient since a
simple steepest decent algorithm can be used to identify in which state the system is.

Kinetic Monte Carlo and the Eyring Kramers law. — Let us recall that Ω is a basin of
attraction of a local minimum of f . Thus, f has a unique critical point in Ω, which is
also the global minimum of f in Ω, denoted by x0. Moreover, the local minima of f on
∂Ω are saddle points of f , that we denote by {z1, . . . , zn} ⊂ ∂Ω. The kinetic Monte
Carlo algorithm models the exit event from Ω through a pair of random variables
(τkMC,YkMC), where τkMC is the exit time and YkMC ∈ {z1, . . . , zn} is equal to zi if the
process exits Ω through a neighborhood of zi in ∂Ω. The law of (τkMC,YkMC) requires
a collection of rates (kz)z∈{z1,...,zn} associated with the saddle points, and is defined
by the following three properties:

(i) the time τkMC is exponentially distributed with parameter
∑
z∈{z1,...,zn} kz

(3) τkMC ∼ E
( ∑
z∈{z1,...,zn}

kz
)
;

(ii) τkMC is independent of YkMC ; and (iii) for all z ∈ {z1, . . . zn},

(4) P[YkMC = z] =
kz∑

z∈{z1,...,zn} kz
.

Moreover, in the setting of the so-called harmonic transition state theory, the
rates are defined using the famous Eyring-Kramers formula [38, 91]: for any z ∈
{z1, . . . , zn},

(5) kz = Pz e
−(2/h)(f(z)−f(x0)),

J.É.P. — M., 2025, tome 12
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where, we recall, x0 ∈ Ω is the global minimum of f in Ω and the prefactor Pz is

(6) Pz =
|µz|
π

√
detHess f(x0)√
|detHess f(z)|

,

where µz is the negative eigenvalue of Hess f(z).

Remark 1. — The Eyring-Kramers formulas are sometimes defined with a prefactor
which is the half of the right-hand-side in (6). This depends whether one considers
exit rates (as in this work) or transition rates (as for example in the works [8, 9]
where eigenvalues of the infinitesimal generator of the process (Xt)t⩾0 are identified
with transition rates). The transition rates are half of the exit rates since, in the small
temperature regime, once the process reaches a saddle point z, it has a probability 1/2

to immediately come back to Ω, and a probability 1/2 to actually make a transition
to the neighboring state (see e.g. [63, Rem. 8] for further discussions).

The objective of this work is to show that, for a metastable exit, in the limit
h → 0, the law of (τkMC,YkMC) indeed approximates the law of (τ,Xτ ), in a sense
that will be made precise in the next paragraph. We will use the quasi-stationary
distribution approach to metastability, which appears to be very useful to study the
exit problem [55, 27, 6].

The quasi-stationary distribution approach to metastability. — As explained above,
we will study metastable exits, namely exits which occur after the stochastic process
(Xt)t⩾0 solution to (1) relaxes within Ω. The notion of quasi-stationary distribution
gives a way to formalize mathematically this idea. Let us recall standard facts on
the existence and uniqueness of a quasi-stationary distribution for a diffusion process
(see for example [14, 18] for more details).

Definition 2. — Let us denote by P(Ω) the set of probability measures supported
in Ω. A quasi-stationary distribution in Ω ⊂ Rd for a Markov process (Xt)t⩾0 with
values in Rd is a probability measure µ ∈ P(Ω) such that:

∀t ⩾ 0, ∀ measurable A ⊂ Ω, µ(A) =
Pµ [Xt ∈ A, t < τ ]

Pµ [t < τ ]
,

where τ = inf{t > 0, Xt ̸∈ Ω}, and the subscript µ in Pµ indicates that X0 ∼ µ.

It is well-known (see for example [55, 15]) that for a smooth potential f and a
bounded smooth domain Ω, the process (Xt)t⩾0 solution to (1) admits a unique quasi-
stationary distribution on Ω, denoted by νh in the following. Moreover, the previously
cited works also show the following exponential convergence result:

(7)
∃c > 0,∀µ ∈ P(Ω),∃C(µ) > 0,∃t(µ) > 0,

∀t ⩾ t(µ),∀ measurable A ⊂ Ω,
∣∣Pµ[Xt ∈ A

∣∣t < τ
]
− νh(A)

∣∣ ⩽ C(µ)e−ct.

Therefore, if the process (Xt)t⩾0 remains trapped in Ω for a long-time, then Xt is
approximately distributed according to the quasi-stationary distribution νh, which
can thus be seen as a local equilibrium within Ω. A metastable exit is then an exit
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which occurs after this local equilibrium has been reached, namely (using the Markov
property) an exit for the process (Xt)t⩾0 with initial condition X0 ∼ νh.

If X0 ∼ νh, the exit event satisfies the two fundamental properties (see for example
[55, Prop. 2.4]):

(8) τ ∼ E(λh) and τ is independent of Xτ .

With these two properties, one can use a kinetic Monte Carlo model to exactly sample
the exit event. Indeed, assume again for simplicity that Ω is the basin of attraction
of a local minimum of f , and let us denote by W+

z ⊂ ∂Ω the stable manifold of the
saddle point z ∈ {z1, . . . , zn} (see (13) below for a precise definition). Up to a null
set, the sets (W+

z )z∈{z1,...,zn} form a partition of the boundary ∂Ω of the basin of
attraction. Let us now introduce the rates: for any z ∈ {z1, . . . , zn},

(9) koℓz :=
Pνh

[
Xτ ∈W+

z

]
Eνh

[
τ
] .

where the superscript oℓ indicates that we consider the overdamped Langevin dyna-
mics (1). Then the kinetic Monte Carlo model parametrized with these rates generates
an exit event (τkMC,YkMC) which is exactly consistent with the exit event (τ,Xτ ) of
the original dynamics (1). Indeed, using (3)–(4) and (8), one has: (i) τkMC has the same
law as τ , (ii) τkMC and YkMC are independent, which is also the case for τ and Xτ ,
and finally (iii) P(YkMC = z) = P(Xτ ∈ W+

z ). The mathematical question, which is
the focus of this work, is now to prove that the rates koℓz can indeed be accurately
approximated by the Eyring-Kramers formulas (5).

As already mentioned above (see Footnote (1) and Remark 5 below), we will need
to assume that Ω is smooth and bounded. The smoothness assumption may require to
slightly modify the basin of attraction in the neighborhoods of the boundaries of W+

z

where ∂Ω is not necessarily smooth (these are anyway typically high energy points
which are thus visited with an exponentially small probability when h→ 0). There-
fore, we will not consider exactly koℓz but the following rates: for any z ∈ {z1, . . . , zn},

(10) koℓz (Σz) :=
Pνh

[
Xτ ∈ Σz

]
Eνh

[
τ
] ,

where Σz is an open neighborhood of z in ∂Ω which is positively stable for the gradient
dynamics ẋ = −∇f(x) and can be chosen arbitrarily large in ∂Ω∩W+

z . We will prove
that, under some geometric assumptions, these rates can indeed be accurately approx-
imated by the Eyring-Kramers formulas in the small temperature regime h→ 0, see
Corollary 8 below. This requires sharp estimates of the probabilities that (Xt)t⩾0

exits Ω through the neighborhoods Σz of the saddle points z ∈ {z1, . . . , zn}. These
precise approximations of the exit rates are used in particular in the temperature
accelerated dynamics algorithm [83] to extrapolate exit events observed at high tem-
perature to low temperature (see Remark 9 for a discussion underlying the similarities
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between our mathematical analysis and this algorithm). Let us now leave this infor-
mal presentation and present the precise setting and the main mathematical results
of this work.

1.2. Mathematical setting and statements of the main results

1.2.1. Notation and definition. — In the following, Ω is a smooth bounded domain
of Rd. The function f : Ω→ R is assumed to be a C∞ function, i.e., it is the restriction
to Ω of a smooth function defined on Rd. We still denote by f a smooth extension of
f : Ω → R to Rd. Since the quantities of interest in this work only depends on the
values of f in the bounded set Ω, we assume throughout this work without loss of
generality that the extension of f is such that:

(11) sup
x∈Rd

|∇f(x)|+ sup
x∈Rd

|Hess f(x)| < +∞,

where Hess f(x) denotes the Hessian matrix of f at x ∈ Rd.

Basic notation. — The open ball of radius r > 0 centered at x ∈ Rd is denoted
by B(x, r). The unit outward normal to Ω at z ∈ ∂Ω is denoted by nΩ(z). The
normal derivative on ∂Ω of a smooth function f : Ω → R is denoted by ∂nΩf . Its
tangential gradient on ∂Ω is denoted by ∇Tf . We will simply write {f < a} for the
set {x ∈ Ω, f(x) < a}.

Index of a critical point. — A point x ∈ Ω is a critical point of f if |∇f(x)| = 0. The
critical point x is non-degenerate if furthermore Hess f(x) is invertible. The function f
is a Morse function if all its critical points in Ω are non degenerate. The non-degenerate
critical point x is of index p ∈ {0, . . . , d} if Hess f(x) admits p negative eigenvalues.
A saddle point is a non degenerate critical point with index 1. Notice that the index
of a critical point on ∂Ω does not depend on the extension of f outside Ω.

Stable and unstable manifolds. — Let x ∈ Rd and denote by φx(t) the maximal solu-
tion to the ordinary differential equation (which is defined for all t ∈ R by (11)):

(12) d

dt
φx(t) = −∇f(φx(t)) with φx(0) = x.

When z ∈ Rd is a saddle point of f , we denote by W+
z and W−

z respectively the stable
and unstable manifolds of z for the dynamics (12), i.e.,

(13) W±
z =

{
x ∈ Rd, lim

t→±∞
φx(t) = z

}
.

Let us recall the stable manifold theorem (see [50, Cor. 6.4.1]).

Theorem (Stable manifold theorem). — Let f : Rd → R satisfying (11), and let z be
a saddle point of f . Then, W+

z and W−
z are C∞ embedded manifolds, with dimensions

d−1 and 1 respectively. Moreover, the tangent spaces of W+
z and W−

z at point z satisfy

TzW
+
z = Span(e1 . . . , ed−1) and TzW

−
z = Span(ed),

J.É.P. — M., 2025, tome 12
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where (e1, . . . , ed−1) is a basis of eigenvectors associated with the d− 1 positive eigen-
values of Hess f(z) and ed is an eigenvector associated with the negative eigenvalue of
Hess f(z).

Agmon distance. — Let us introduce the Agmon distance on Ω which will be used to
state our main results below.

Definition 3. — Let f : Ω → R be a C∞ function. The Agmon pseudo-distance
between two points x ∈ Ω and y ∈ Ω is defined by:

da (x, y) = inf
γ∈C1(x,y)

∫ 1

0

|∇f |(γ(t)) |γ′(t)| dt,

where C1 (x, y) is the set of curve γ : [0, 1]→ Ω which are C1 with γ(0) = x, γ(1) = y.

Since f has a finite number of critical points in Ω (which is indeed the case if f is
a Morse function on Ω), da is a distance since for all x, y ∈ Ω, da(x, y) = 0 if and only
if x = y.

1.2.2. Assumptions. — Let us now gather in the following assumption all the geomet-
ric requirements on Ω and f .

Assumption (Ω-f). — The set Ω is a C∞ bounded domain of Rd. The functions
f : Ω→ R and f |∂Ω are C∞ Morse functions. Moreover:

(1) The domain Ω is positively stable for (12): ∀x ∈ Ω, ∀t ⩾ 0, φx(t) ∈ Ω. More-
over, there exists x0 ∈ Ω such that for all x ∈ Ω, limt→+∞ φx(t) = x0.

(2) For any critical point z ∈ ∂Ω of f , there exists an open subset Γz of ∂Ω
containing z and satisfying the following:

(a) If z is a saddle point of f , then

(14) Γz ⊂W+
z ,

and Γz is positively stable for the dynamics (12): ∀x ∈ Γz,∀t ⩾ 0, φx(t) ∈ Γz.
(b) If z is not a saddle point of f , then ∂nΩf = 0 on Γz.

(3) All the local minima of f |∂Ω are saddle points of f .

Assumption (Ω-f) has simple consequences that will be used many times in the
following (the proofs are standard, and provided in Section A.1 for completeness).

Lemma 4. — The following holds:
(1) Assume that item (1) in (Ω-f) is satisfied. Then ∂nΩf ⩾ 0 on ∂Ω and x0

is the only critical point of the function f in Ω. There is no local minimum of f
on ∂Ω. Furthermore, f(x0) = minΩ f < min∂Ω f , {f < min∂Ω f} is connected and
∂{f < min∂Ω f} ∩ ∂Ω = argmin∂Ω f .

(2) Assume that (Ω-f) is satisfied. For all z ∈ ∂Ω such that |∇f |(z) = 0, nΩ(z) is
an eigenvector of Hess f(z) associated with a negative eigenvalue.

J.É.P. — M., 2025, tome 12
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m4

m1

m3

m2

Ω

z1 z3

z2

z4

x0

Figure 1. The basin of attraction A(0) = (−1, 1)2 (for the dyna-
mics (12)) of the local minimum 0 ∈ R2 of the Morse func-
tion f(x, y) = − cos(πx) − cos(πy). There are 8 critical points
on ∂A(0): four saddle points (z1, z2, z3, z4) and four local maxima
(m1,m2,m3,m4). Each edge of the square (−1, 1)2 is the stable man-
ifold of the saddle point it contains. In thick lines, a domain Ω satis-
fying (Ω-f). In dashed lines, the level sets of f .

Other simple consequences of Assumption (Ω-f) are the following. If z ̸= x are
saddle points of f , then Γz ∩ Γx = ∅. For z a saddle point of f , the existence of
a set Γz whose closure is arbitrarily large in W+

z and which is positively stable for
the dynamics (12) is ensured by [27, Prop. 80], and Ω can then be defined such that
Γz ⊂ ∂Ω, see Remark 5. If z is a saddle point of f one can check that ∂nΩf = 0 on Γz
(since Γz ⊂ W+

z ∩ ∂Ω). Finally, all the saddle points of f in Ω necessarily belong to
∂Ω, and coincide with the local minima of f on ∂Ω.

Remark 5. — Let A(x0) be the basin of attraction of x0 for the dynamics (12). As ex-
plained in the introduction, practitioners typically use as a definition of a bounded
metastable domain the whole basin of attraction A(x0), which indeed naturally satis-
fies all the Assumptions (Ω-f), except in some cases the smoothness assumption (Ω is
indeed assumed to be C∞ in (Ω-f)). More precisely, ∂A(x0) is smooth on W+

z for
all z ∈ {z1, . . . , zn}, ∂A(x0) =

⋃
z∈{z1,...,zn} W

+
z (see [69, Th. B.13]), but singularities

may occur on the boundaries of W+
z . In such a case, a domain Ω ⊂ A(x0) satisfying

(Ω-f) can typically be obtained from A(x0) by slightly modifying it in neighborhoods
of the points of the boundary ∂A(x0) where ∂A(x0) is not smooth, see for example
Figure 1 for a schematic illustration in dimension 2. This modification typically only
concerns high energy points, which are anyway visited with an exponentially small
probability by the dynamics (1) in the regime h→ 0.

Definition 6. — When (Ω-f) holds, the saddle points of f in Ω are denoted by
{z1, . . . , zn} ⊂ ∂Ω and ordered such that

(15) min
∂Ω

f = f(z1) = · · · = f(zn0
) < f(zn0+1) ⩽ · · · ⩽ f(zn).

J.É.P. — M., 2025, tome 12
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The cardinal of argmin f |∂Ω is thus n0 ∈ {1, . . . , n}. For all k ∈ {1, . . . , n}, µzk is the
negative eigenvalue of Hess f(zk). For all k ∈ {1, . . . , n}, we denote by Σzk ⊂ ∂Ω an
open set such that

(16) zk ∈ Σzk and Σzk ⊂ Γzk .

A schematic representation of Ω, x0, {z1, . . . , zn}, and {Σz1 , . . . ,Σzn} is given in
Figure 2 when n = 4.

1.2.3. From stochastic processes to partial differential equations. — In order to give
sharp asymptotic estimates of the rates (10) when h → 0, we will rewrite the law
of the random variable (τ,Xτ ) using the first eigenvalue and eigenvector of the infini-
tesimal generator of the process (1) with homogeneous Dirichlet boundary conditions
on Ω. The small temperature regime then consists in analyzing the semi-classical limit
of this eigenstate.

Let us denote by

(17) L
(0)
f,h = −h

2
∆ +∇f · ∇

the opposite of the infinitesimal generator of the process (1). Let H1
0 (Ω, e

−(2/h)fdx)

be the set of functions g ∈ H1(Ω, e−(2/h)fdx) such that g = 0 on ∂Ω. The operator
L
(0)
f,h on L2(Ω, e−(2/h)fdx) with domain

H2(Ω, e−(2/h)fdx) ∩H1
0 (Ω, e

−(2/h)fdx) =
{
w ∈ H2(Ω, e−(2/h)fdx), w = 0 on ∂Ω

}
.

is denoted by L
Di,(0)
f,h (Ω). The superscripts Di and (0) respectively indicate that the

operator is supplemented with Dirichlet boundary conditions, and acts on func-
tions, namely 0-forms (operators on 1-forms will be also considered, see Section 2.5).
The operator L

Di,(0)
f,h (Ω) is the Friedrichs extension (see for instance [40, §4.3]) on

L2(Ω, e−(2/h)fdx) of the closed quadratic form

(18) ψ ∈ H1
0 (Ω, e

−(2/h)fdx) 7−→ h

2

∫
Ω

|∇ψ|2 e−(2/h)f .

The operator L
Di,(0)
f,h (Ω) is thus a positive self-adjoint operator on L2(Ω, e−(2/h)fdx).

In addition, it has a compact resolvent (as follows from the compact injection
H1

0 (Ω, e
−(2/h)fdx) ⊂ L2(Ω, e−(2/h)fdx)). Then, by standard results on elliptic opera-

tors, its smallest eigenvalue λh is simple and any associated eigenfunction uh is C∞

on Ω and has a sign on Ω (see for instance [31, §§6.3 & 6.5]). Without loss of
generality, let us assume that:

(19) uh > 0 on Ω and
∫
Ω

u2h e
−(2/h)f = 1.

Then, by the Hopf lemma (see for instance [31, §6.4.2]), one has ∂nΩuh > 0 on ∂Ω.
Let us now go back to the probabilistic setting introduced in Section 1.1 and rewrite

the rate (10) in terms of (λh, uh) (see for example [55] for proofs of these results). The
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unique quasi-stationary distribution νh of the process (Xt)t⩾0 in Ω can be written in
terms of uh as follows:

(20) νh(dx) =
uh(x)e

−(2/h)f(x)∫
Ω
uh(y)e−(2/h)f(y)dy

dx.

Moreover, if X0 ∼ νh the parameter of the exponential random variable τ is λh
(in particular Eνh(τ) = λ−1

h ), and the law of Xτ can be written in terms of (λh, uh)
as follows: for any bounded measurable test function φ : ∂Ω→ R,

(21) E[φ(Xτ )] = −
h

2λh

∫
∂Ω
φ(x)∂nΩuh(x)e

−(2/h)f(x)σ(dx)∫
Ω
uh(y)e−(2/h)f(y)dy

,

where σ is the Lebesgue measure on ∂Ω. Using these properties, the rate (10) can
thus be written in terms of uh: for all z ∈ {z1, . . . , zn},

(22) koℓz (Σz) = −
h

2

∫
Σz
∂nΩuhe

−(2/h)fdσ∫
Ω
uhe−(2/h)f

.

Proving that the transition rates (10) are accurately approximated by the Eyring-
Kramers laws (5) in the limit h→ 0 thus requires in particular to get precise estimates
of ∂nΩuh on each Σz.

1.2.4. Main results. — We are now in position to precisely state our main results.
Theorem 1 and Proposition 7 give precise asymptotic estimates on (λh, uh) in the
limit h→ 0.

Theorem 1. — Let us assume that the assumption (Ω-f) is satisfied. Then, for all
k ∈ {1, . . . , n0} it holds in the limit h→ 0

(23)
∫
Σzk

∂nΩuh e
−(2/h)fdσ

=
2|µzk |

(
detHess f(x0)

)1/4
π3d/4

∣∣detHess f(zk)
∣∣1/2 hd/4−1 e−(1/h)(2f(z1)−f(x0))

(
1 +O(

√
h)
)
,

where uh is the principal eigenfunction of L
Di,(0)
f,h (Ω) with the normalization (19).

In addition, there exists c > 0 such that, when h→ 0

(24)
∫
∂Ω∖

⋃n0
k=1 Σzk

∂nΩuh e
−(2/h)fdσ = O

(
e−(1/h)(2f(z1)−f(x0)+c)

)
.

Moreover, assume that:
(25) ∀k ∈ {1, . . . , n} , inf

z∈∂Ω∖Γzk

da(z, zk) > max[f(zn)− f(zk), f(zk)− f(z1)],

and
(26) f(z1)− f(x0) > f(zn)− f(z1).

Then, for all k ∈ {n0 + 1, . . . , n}, it holds in the limit h→ 0:

(27)
∫
Σzk

∂nΩuh e
−(2/h)fdσ

=
2|µzk |

(
detHess f(x0)

)1/4
π3d/4

∣∣detHess f(zk)
∣∣1/2 hd/4−1 e−(1/h)(2f(zk)−f(x0))

(
1 +O(

√
h)
)
.
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Assumptions (25) and (26) are required to prove (27) with our analysis. In partic-
ular, Assumption (25) ensures that all the saddle points zk, k ∈ {1, . . . , n}, are well
separated in terms of the Agmon distance da, which measures the exponential decay
of eigenforms away from critical points [41]. Without such an assumption, it has been
numerically observed in [27, §1.6.2] that (27) does not hold, in a slightly different
framework, namely when the normal derivative of f is strictly positive on ∂Ω (and
thus the zk’s are so-called generalized saddle points, namely local minima of f on ∂Ω).

Proposition 7. — Let us assume that the assumption (Ω-f) is satisfied.

(28)
∫
Ω

uh e
−(2/h)f = (πh)d/4

(
detHess f(x0)

)−1/4
e−(1/h)minΩ f (1 +O(h)).

Moreover, it holds in the limit h→ 0:

(29) λh =

n0∑
ℓ=1

|µzℓ |
(
detHess f(x0)

)1/2
π
∣∣detHess f(zℓ)

∣∣1/2 e−(2/h)(f(z1)−f(x0))(1 +O(
√
h)).

Using the expression (21) for the law of the exit point Xτ , Theorem 1 and Propo-
sition 7 yield the following sharp estimate of this law:

Theorem 2. — Let us assume that the assumption (Ω-f) is satisfied. Then, for all
k ∈ {1, . . . , n0}, it holds in the limit h→ 0:

(30) Pνh [Xτ ∈ Σzk ] =
|µzk |√

|detHess f(zk)|

( n0∑
ℓ=1

|µzℓ |√
|detHess f(zℓ)|

)−1

+O(
√
h),

In addition, there exists c > 0 such that in the limit h→ 0:

(31) Pνh [Xτ ∈ ∂Ω∖
⋃n0

k=1 Σzk ] ⩽ e−c/h.

Finally, if (25) and (26) are satisfied, it holds for all k ∈ {n0 + 1, . . . , n}, in the limit
h→ 0:

(32) Pνh [Xτ ∈ Σzk ] =
|µzk |√

|detHess f(zk)|

( n0∑
ℓ=1

|µzℓ |√
|detHess f(zℓ)|

)−1

× e−(2/h)(f(zk)−f(z1))
(
1 +O(

√
h)
)
.

As a corollary of Theorem 2 and Proposition 7, one immediately gets the following
sharp estimates of the exit rates defined in (10):

Corollary 8. — Let us assume that the assumption (Ω-f) is satisfied. Then, for all
k ∈ {1, . . . , n0}, it holds in the limit h→ 0:

(33) koℓzk(Σk) =
|µzk |
π

√
detHess f(x0)√
|detHess f(zk)|

e−(2/h)(f(z1)−f(x0))
(
1 +O(

√
h)
)
.

In addition, if (25) and (26) are satisfied, it holds for all k ∈ {n0 + 1, . . . , n}, in the
limit h→ 0:

(34) koℓzk(Σk) =
|µzk |
π

√
detHess f(x0)√
|detHess f(zk)|

e−(2/h)(f(zk)−f(x0))
(
1 +O(

√
h)
)
.
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As discussed in Section 1.1, Corollary 8 thus justifies the approximation of meta-
stable exits of the overdamped Langevin dynamics (1) by a kinetic Monte Carlo model
parametrized with the Eyring-Kramers formulas.

We will also show that Theorem 2 extends to deterministic initial conditions x ∈ Ω

as follows (the subscript x in Px indicates that X0 = x).

Theorem 3. — Let us assume that the assumption (Ω-f) is satisfied. Let K be a
compact subset of Ω. Then, for all k ∈ {1, . . . , n0}, it holds in the limit h→ 0:

(35) Px[Xτ ∈ Σzk ] =
|µzk |√

|detHess f(zk)|

( n0∑
ℓ=1

|µzℓ |√
|detHess f(zℓ)|

)−1

+O(
√
h),

uniformly in x ∈ K. In addition, there exists c > 0 such that in the limit h→ 0:

(36) sup
x∈K

Px
[
Xτ ∈ ∂Ω∖

⋃n0

k=1 Σzk
]
⩽ e−c/h.

Let us assume that (25) and (26) are satisfied. Assume in addition there exists ℓ0 ∈
{n0 + 1, . . . , n} such that

(37) 2(f(zℓ0)− f(z1)) < f(z1)− f(x0).

Let k0 ∈ {n0+1, . . . , ℓ0} and α∗ ∈ R be such that f(x0) < α∗ < 2f(z1)−f(zk0) (notice
that necessarily α∗ < f(z1) = min∂Ω f). Then, it holds for k ∈ {n0+1, . . . , k0} in the
limit h→ 0:

(38) Px[Xτ ∈ Σzk ] =
|µzk |√

|detHess f(zk)|

( n0∑
ℓ=1

|µzℓ |√
|detHess f(zℓ)|

)−1

× e−(2/h)(f(zk)−f(z1))
(
1 +O(

√
h)
)
,

uniformly in x ∈ {f ⩽ α∗}.

Before precisely discussing related results in the literature, let us provide some pre-
liminary comments on the statements presented in this section. First, Equations (30)–
(31) and (35)–(36) show that the most probable places of exit from Ω as h → 0 are
{z1, . . . , zn0

}, and they provide the relative probabilities of exiting through (neigh-
borhoods of) these points. Moreover, Equations (31) and (38) give precise asymptotic
estimate of the probability to leave through higher energy saddle points. All these
results can be seen as generalizations of those previously obtained in [27] and of some
results in [28], where it is assumed that ∂nΩf > 0 on ∂Ω. In this case, the local minima
of f on ∂Ω play the role of saddle points, and different prefactors than (6) appear in
the asymptotic rates, for example. Let us finally emphasize that, as will become clear
from the proofs, all the error terms O(

√
h) follow from the Laplace method applied to

integrals on Rd− and are optimal, see the computations leading to (201) (see also [58,
Rem. 25 & 39] for more details).
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Ω

Σz1
Σz2

Σz3
Σz4

z4

x0

z2

z1

z3

Figure 2. Example of a domain Ω with n = 4 saddle points {z1, . . . , z4}.

1.2.5. A short review on mathematical approaches to metastability. — In this section,
we succinctly present two aspects of metastability which have received attention from
the mathematical community: the exit problem (which is the focus of this work) and
the spectral analysis of the infinitesimal generator.

On the exit problem. — Even though the exit problem from a basin of attraction of a
local minimum of f is a very natural question, this setting has not been considered
up to now in the literature, at least to the best of our knowledge. This is essentially
because of the mathematical difficulties induced by the presence of critical points of f
on the boundary. Let us recall the main results which have been obtained.

Let us first mention that early inspiring formal computations were conducted by
Z. Schuss and co-workers [67, 74, 68]. In terms of rigorous proofs, two techniques have
then been developed, based on large deviations or the analysis of partial differential
equations associated to the stochastic process.

From a probabilistic viewpoint, the exit problem has been studied a lot using large
deviation techniques, pioneered by M.I. Friedlin and A.D. Wentzell [34]. Typically,
results are only obtained on h-log limits of the mean exit time τ and of the law
of the exit location Xτ , under the assumption that f does not have critical point
on ∂Ω, see also the developments by M.V. Day and M. Sugiura [21, 20, 23, 22, 86, 85]).
A noteworthy exception is the work [24] by M.V. Day where large deviations principles
are given for some conormally reflected processes with attractors on the boundary.

Techniques based on parabolic or elliptic partial differential equations associated
with the stochastic process have also been developed in particular by S. Kamin [51, 52],
H. Ishii and P.E. Souganidis [47, 48], B. Perthame [78], and more recently D. Borisov
and D. Sultanov [7]. In particular, these articles study the concentration of the law
of Xτ on the global minima of f on ∂Ω in the limit h→ 0. In these works, it is again
assumed that f does not have critical points on the boundary. Let us mention [66]
for early results on the h-log limits of the smallest eigenvalues of and [75] for sharp
asymptotic equivalents on the mean exit time E[τ ] when f has critical points on ∂Ω.
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Notice that h-log limits cannot be used to compute the relative probabilities of exits
through the lowest saddle points {z1, . . . , zn0}. Moreover, Equations (35) and (36)
extend the results of [34, Th. 2.1] and [52, 51, 78, 22, 23, 64] to the case when f

has critical points on ∂Ω. Let us however acknowledge that even if the techniques
mentioned above seem inherently limited to h-log limits, some of them are robust
enough to apply to non reversible elliptic processes, or quasilinear parabolic equations
(see [34, 21, 20, 23, 22, 47, 48]), whereas we only consider reversible dynamics here.

Spectral problem and the Eyring-Kramers laws. — The focus of the present work is
on the exit problem (exit time, and first exit points), and we prove that the Eyring-
Kramers laws precisely describe the exit rates from a basin of attraction of the poten-
tial energy function. In the mathematical literature, the Eyring-Kramers laws have
also been obtained in a different context, namely when studying the smallest eigen-
values of the infinitesimal generator (seen as an operator on Rd) of the overdamped
Langevin process, see the definition (17) of L(0)f,h. Two variational techniques have been
used, based either on tools from potential theory or from spectral theory (see [3] for
a nice review).

Let us first mention that sharp lower and upper bounds on the small eigenvalues
were obtained in the pioneering works [71, 46]. Then, A. Bovier and collaborators
developed in [8, 9] a potential theoretic approach [10] to obtain precise equivalents of
the np smallest eigenvalues of L(0)f,h, np being the number of local minima of f in Rd.
It is also proved that the non-zero eigenvalues coincide with the inverses of mean
transition times to go from one local minimum of f to any of the other local min-
ima with smaller energies. This potential theoretic approach have then been further
developed by N. Berglund and co-workers [5, 4], and by C. Landim and I. Seo [53, 61],
in particular for generalizations to non-reversible diffusions.

Using tools developed to analyze the semi-classical limit of the Schrödinger opera-
tor, similar results on the low-lying spectrum have been derived by B. Helffer, M. Klein
and F. Nier in [41]. See also the recent works [57, 70, 60, 59] for generalizations,
and [45] for asymptotic equivalents of the smallest eigenvalues of the kinetic Langevin
operator. Let us mention the nice work [69] where it is proved that Poincaré and
Logarithmic-Sobolev inequalities constants asymptotically satisfy an Eyring-Kramers
law in the limit h→ 0.

Let us finally emphasize that the two problems we have discussed up to now in this
section (the exit problem, and the low-lying spectrum of L(0)f,h in Rd) are different in
nature. In particular, the exit problem requires to precisely study the law of the first
exit point in order to estimate all the the exit rates.

1.2.6. Strategy of the proofs and mathematical novelties

Strategy of the proofs and organization of the article. — Let us provide a concise pre-
sentation of the strategy of the proofs, together with an outline of this work. In view
of Theorem 1 and (22), one needs precise asymptotic estimates of of ∇uh ·nΩ on ∂Ω, as
h→ 0. Recall that uh is the principal eigenfunction of LDi,(0)

f,h (Ω): LDi,(0)
f,h (Ω)uh = λhuh.
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The cornerstone of the proof of Theorem 1 is that ∇uh also satisfies an eigenvalue
problem (with the same exponentially small eigenvalue λh), obtained by differentiat-
ing the previous equation:

(39)


L
(1)
f,h∇uh = λh∇uh in Ω,
∇Tuh = 0 on ∂Ω,(

−h
2
div+∇f ·

)
∇uh = 0 on ∂Ω,

where L
(1)
f,h = −h2∆+∇f · ∇+Hess f is an operator acting on vector fields, trivially

identified with 1-forms in this Euclidean setting, and where ∇Tuh denotes the tan-
gential gradient of the function uh on ∂Ω. In the following, the operator L(1)f,h with tan-
gential Dirichlet boundary conditions, as introduced in (39), is denoted by L

Di,(1)
f,h (Ω).

For q ∈ {0, 1}, let us denote, by π
(q)
h the orthogonal projector of L

Di,(q)
f,h (Ω) on the

eigenspace associated with the eigenvalues of L
Di,(q)
f,h (Ω) smaller than a constant c0

independent of h. From (39), it holds, in the limit h→ 0,
(40) ∇uh ∈ Ranπ

(1)
h ,

where Ranπ
(1)
h stands for the image of the projector π(1)

h . The first step of the anal-
ysis thus consists in studying the spectrum of the operators L

Di,(q)
f,h (Ω), q ∈ {0, 1}.

This is done in Section 2 in a rather general setting (in particular without assuming
that all the local minima of f on the boundary are necessary saddle points of f),
since this study has its own interest. We will prove in particular (see Theorem 4 and
Corollary 25) that for some c0, and for all h sufficiently small,
(41) Ranπ

(0)
h = Spanuh and dimRanπ

(1)
h = n.

Then, in order to study the asymptotic behaviour of uh and ∇uh when h → 0,
we construct in Section 3 a suitable orthonormal basis of Ranπ(1)

h (in the weighted
Sobolev space L2

w(Ω), see Section 2.5.1) using so-called quasi-modes {f(1)1 , . . . , f
(1)
n }

(see in particular Propositions 26 and 27). These quasi-modes {f(1)1 , . . . , f
(1)
n } are built

such that for each k ∈ {1, . . . , n}, f
(1)
k is essentially the principal eigenform of the

operator L(1)f,h defined on a domain ΩM
k ⊂ Ω, with mixed Dirichlet-Neumann boundary

conditions, where the domain ΩM
k is constructed in Proposition 30 (the superscript M

refers to the fact that mixed Dirichlet-Neumann boundary conditions will be con-
sidered on ∂ΩM

k ). The only critical points of f in ΩM
k are x0 and zk, so that f

(1)
k

gather information on the exit through zk. In particular, with these quasi-modes
{f(1)1 , . . . , f

(1)
n }, one has: for all k ∈ {1, . . . , n},

(42)
∫
Σzk

∂nΩuh e
−(2/h)fdσ ∼ ⟨∇u(0), f(1)k ⟩L2

w(Ω)

∫
Σzk

f
(1)
k · nΩ e−(2/h)fdσ, as h→ 0,

and ⟨∇u(0), f(1)k ⟩L2
w(Ω) and

∫
Σzk

f
(1)
k · nΩ e−(2/h)fdσ have the expected asymptotic

behavior leading to Theorem 1. Here, the function u(0) is an approximation of uh (see
Definition 41). More precisely, we construct ΩM

k in a way that allows us to compute the
asymptotic equivalent of the principal eigenvalue λ(ΩM

k ) of the operator L
(1)
f,h defined
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with mixed Dirichlet-Neumann boundary conditions on ΩM
k , with techniques recently

used in [58]. We then show that the asymptotic equivalent of λ(ΩM
k ) provides the

required asymptotic equivalent of the right-hand side in (42), for each k ∈ {1, . . . , n}.
This method to estimate

∫
Σzk

∂nΩuh e
−(2/h)fdσ is the main difference with the ap-

proach used previously in [27].
Finally, Section 4 builds on the two previous sections to prove the main results

stated in Section 1.2.4: Section 4.1 is devoted to the proofs of Theorem 1, Proposi-
tion 7, Theorem 2, and Corollary 8; Section 4.2 contains the proof of Theorem 3.

The appendix gathers various technical results and additional comments.

Remark 9. — Interestingly enough, in the Temperature Accelerated Dynamics algo-
rithm [83, 1, 26], the numerical method consists in sampling successive exits through
the saddle points (zk)1⩽k⩽n at high temperature by imposing reflecting boundary
conditions on the already visited transition pathways, and then to infer the exit event
that would have been observed at low temperature using the Eyring-Kramers laws
(see Corollary 8). Imposing reflecting boundary conditions on the dynamics is equiva-
lent to introducing Neumann boundary conditions on the infinitesimal generator, and
the sampled exits are thus very much related to the principal eigenforms (f

(1)
k )1⩽k⩽n

that we use as quasi-modes. For example, in the procedure outlined above, the exit
through zk is exponentially distributed with parameter λ(ΩM

k ) (in the regime h→ 0).

Mathematical novelties. — Let us finally emphasize the main mathematical novelties
and difficulties of the present work, which is the first to precisely analyze the exit
problem from a domain Ω when the local minima of f on ∂Ω are saddle points of f .
We actually studied a similar problem in [27], but under the less natural assumption
that ∂nΩf > 0 on ∂Ω. The presence of critical points of f on ∂Ω implies substantial dif-
ficulties from a mathematical viewpoint. First, to prove dimRanπ

(1)
h = n, we extend

the analysis of [42] (see Remark 12 for more details), which is of independent interest.
This is the purpose of Section 2 on the Witten complex, see more precisely Theo-
rem 4. Second, we develop a new approach to compute the asymptotic equivalents
as h → 0 of the right-hand side of (42) without relying on WKB approximations
which were used for example in [27]. Though WKB approximations are very pow-
erful and central tools on which rely many works in semi-classical analysis (see for
instance [44, 39, 29, 41, 42]), the fact that both zk ∈ ∂ΩM

k and zk is a critical point
of f prevent us from using previously constructed WKB approximations for Witten
Laplacians [44, 42] (this is explained in more details in Section A.2). Third, the proof
of Theorem 3 uses other arguments than the one made to prove [27, Cor. 16] especially
because the results of [30] (based on techniques from the large deviation theory) do
not hold when f has critical points on ∂Ω (see the discussion after Corollary 47).

Acknowledgements. — Part of this project was carried out as TL was a visiting pro-
fessor at Imperial College of London, with a visiting professorship grant from the
Leverhulme Trust. The Department of Mathematics at ICL and the Leverhulme Trust
are warmly thanked for their support.
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2. Number of small eigenvalues of the Witten Laplacian

In all this section, the following general setting is assumed:

Assumption (M-f). — Let M be a C∞ oriented compact and connected Riemannian
manifold of dimension d, with boundary ∂M and interior M. The metric tensor on M is
denoted by gM. Let f : M→ R be a C∞ function. The functions f : M→ R and f |∂M
are assumed to be Morse functions. Finally, for all x ∈ ∂M such that |∇f(x)| = 0,
there exists a neighborhood V∂Mx of x in ∂M such that:

∀y ∈ V∂Mx , ∂nMf(y) = 0.

Notice that (M-f) implies that f and f |∂M have a finite number of critical points.
Since the normal derivative ∂nMf is zero around critical points on ∂M, ∂M is said to
be characteristic (for the function f) in these regions. Let us recall that this condition
is in particular natural when M ⊂ Rd is the basin of attraction of a local minimum
of f .

The objective of this section is to relate the number of critical points of index p of f ,
to the number of small eigenvalues of the Witten Laplacian acting on p-forms with
tangential Dirichlet boundary conditions on ∂M, see Theorem 4 below. This result is
standard for manifolds without boundary [93, 44, 82, 45], and has been proved in [42,
Th. 3.2.3] for manifolds with boundaries but when f does not have critical points
on ∂M (see also [54, 56]). This section is organized as follows. The Witten Laplacian
is introduced in Section 2.1. The main result is stated in Section 2.2 and proved in
Section 2.4, after the study of model problems on the half space Rd− in Section 2.3.
Finally, consequences of these results to the particular problem of interest in this work
are detailed in Section 2.5, with in particular the proof of (41).

2.1. Witten Laplacian with tangential Dirichlet boundary conditions

2.1.1. Notation for Sobolev spaces. — Let us introduce standard notation for Sobolev
spaces on manifolds with boundaries (see [81] for details). For q ∈ {0, . . . , d}, one
denotes by ΛqC∞(M) (respectively ΛqC∞

c (M)) the space of C∞ q-forms on M (respec-
tively on M and with compact support in M). Moreover, the set ΛqC∞

T (M) is the set
of C∞ q-forms v such that tv = 0 on ∂M, where t denotes the tangential trace on
forms. For q ∈ {0, . . . , d}, ΛqL2(M,gM) is the completion of the space ΛqC∞(M) for
the norm

w ∈ ΛqC∞(M) 7−→
(∫

M

|w|2
)1/2

.

Form ⩾ 0, one denotes by ΛqHm(M,gM) the Sobolev spaces of q-forms with regularity
index m: v ∈ ΛqHm(M,gM) if and only if for all multi-index α with |α| ⩽ m, the α
derivative of v is in ΛqL2(M,gM). Let us recall for a multi-index α = (α1, . . . , αd) ∈ Nd,
|α| =

∑d
i=1 αi and ∂αv = t(∂α1

x1
v, . . . , ∂αdxd v). We will denote by ∥.∥Hm(M,gM) the

norm on the space ΛqHm(M, ,gM). Moreover ⟨·, ·⟩L2(M,gM) denotes the scalar product
in ΛqL2(M,gM). For q ∈ {0, . . . , d} and m > 1/2, the set ΛqHm

T (M,gM) is defined by
ΛqHm

T (M,gM) := {v ∈ ΛqHm(M,gM), tv = 0 on ∂M}.
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We will always explicitly indicate the dependency on the metric gM in the notation of
the Witten Laplacians or associated quadratic forms, but often omit it in the notation
of the Sobolev spaces and associated norms(3), to ease the notation.

2.1.2. Tangential Dirichlet boundary conditions. — In this section, we introduce the
tangential Dirichlet Witten Laplacian and recall some of its properties. For q ∈
{0, . . . , d}, one defines the so-called distorted exterior derivative à la Witten d

(q)
f,h :

ΛqC∞(M)→ Λq+1C∞(M) and its formal adjoint d
(q)
f,h

∗ : Λq+1C∞(M)→ ΛqC∞(M) by

d
(q)
f,h := e−(1/h)f h d(q) e(1/h)f and d

(q)
f,h

∗ := e(1/h)f h d(q) ∗ e−(1/h)f ,

where d(q) is the differential operator on M and d(q) ∗ is the co-differential operator on
the manifold M equipped with the metric tensor gM. We may drop the superscript (q)
when the index of the form is explicit from the context. The Witten Laplacian, firstly
introduced in [93], is then defined similarly as the Hodge Laplacian ∆

(q)
H (M,gM) :=

(d+ d∗)2 : ΛqC∞(M)→ ΛqC∞(M) by

∆
(q)
f,h(M,gM) := (df,h + d∗f,h)

2 = df,hd
∗
f,h + d∗f,hdf,h : ΛqC∞(M) −→ ΛqC∞(M).

Equivalently, one has

(43) ∆
(q)
f,h(M,gM) = h2∆

(q)
H (M,gM) + |∇f |2gM

+ h(L∇f + L∗
∇f ),

where L∇f is the Lie derivative associated with the vector field ∇f . Here and in the
following |.|gM

stands for the norm in the tangent space associated with the metric
tensor gM. Let us now introduce the Dirichlet realization of ∆(q)

f,h(M,gM) on ΛqL2(M),
following [42, §2.4].

Proposition 10. — Let us assume that (M-f) is satisfied. Let q ∈ {0, . . . , d} and
h > 0. The Friedrichs extension of the quadratic form

Q
Di,(q)
f,h (M,gM) : w ∈ ΛqH1

T(M) 7−→ ∥df,hw∥2L2(M) + ∥d
∗
f,hw∥2L2(M)

on ΛqL2(M) is denoted by ∆
Di,(q)
f,h (M,gM). Its domain is

D
(
∆

Di,(q)
f,h (M,gM)

)
=

{
w ∈ ΛqH1

T(M) ∩ ΛqH2(M), td∗f,hw = 0 on ∂M
}
.

Moreover, ∆Di,(q)
f,h (M,gM) is a self-adjoint operator, with compact resolvent. Finally it

holds, for all Borel set E ⊂ R and u ∈ ΛqH1
T(M),

(44) πE
(
∆

Di,(q+1)
f,h (M,gM)

)
df,hu = df,h πE

(
∆

Di,(q)
f,h (M,gM)

)
u

and

(45) πE
(
∆

Di,(q−1)
f,h (M,gM)

)
d∗f,hu = d∗f,h πE

(
∆

Di,(q)
f,h (M,gM)

)
u.

(3)Of course, if M is a manifold satisfying (M-f) (in particular M is compact), only the norms
depend on the metric gM, but not the Sobolev spaces. We will also use in the following Sobolev
spaces on Rd

−, which is not compact.
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Here and in the following, for a Borel set E ⊂ R and T a non negative self-adjoint
operator on a Hilbert space, πE(T) denotes the spectral projector associated with T

and E.
The following standard lemma will be used several times throughout this work.

Lemma 11. — Let (T, D (T)) be a non negative self-adjoint operator on a Hilbert space
(H, ∥ · ∥) with associated quadratic form qT(x) = (x,Tx) whose domain is Q (T).
It then holds:

∀b > 0, ∀u ∈ Q(T),
∥∥π[b,+∞)(T)u

∥∥2 ⩽
qT(u)

b
.

Generally speaking, a H-normalized element u ∈ D (T) such that ∥π[b,+∞)(T)u∥
is small is called a quasi-mode for the spectrum in [0, b] of T.

The objective of this section is to count the number of eigenvalues smaller than ch
(for some c > 0) of ∆Di,(q)

f,h (M,gM), namely to identify the dimension of the range of
π[0,ch]

(
∆

Di,(q)
f,h (M,gM)

)
, for h sufficiently small.

2.2. Number of small eigenvalues of ∆
Di,(q)
f,h (M,gM). — Before stating the main

result of Section 2, let us introduce a few more notation. Let us assume that (M-f)
holds. Let z ∈ ∂M be a critical point of f (i.e., |∇f(z)| = 0). Then, z is a critical point
of f |∂M and the unit outward normal nM(z) to M at z (see item (2) in Lemma 4) is
an eigenvector with the associated eigenvalue:

(46) µz =
tnM(z) Hess f(z) nM(z).

Let us now introduce the set of so-called generalized critical points of f for the oper-
ator ∆Di

f,h(M,gM), which can be seen intuitively as critical points for the function f

extended by −∞ outside M. For q ∈ {0, . . . , d}, the standard critical points with
index q in M are:

UM
q =

{
x ∈ M, x is a critical point of f of index q

}
,

with cardinal mM
q = Card

(
UM
q

)
. Two additional sets of generalized critical points with

index q on ∂M should be considered. First, let us introduce

(47) U∂M,1q =
{
z ∈ ∂M, z is a critical point of f |∂M of index q−1 and ∂nMf(z) > 0

}
,

with cardinal m∂M,1
q = Card

(
U∂M,1q

)
, and with the convention that U∂M,10 = ∅ for

q = 0. Second, one defines,

(48) U∂M,2q =
{
z ∈ ∂M, |∇f(z)| = 0, z is a critical point of f |∂M

of index q − 1 and µz < 0
}
,

with cardinal m∂M,2
q = Card

(
U∂M,2q

)
, and with again the convention that U∂M,20 = ∅

for q = 0. Finally, one defines the total number of generalized critical points with
index q:

(49) mq = mM
q +m∂M,1

q +m∂M,2
q .

Let us now state the main result of this section.
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Theorem 4. — Let us assume that (M-f) holds. Then, for all q ∈ {0, . . . , d}, there
exists c > 0 and h0 > 0 such that for all h ∈ (0, h0):

dimRanπ[0,ch]
(
∆

Di,(q)
f,h (M,gM)

)
= mq, where mq is defined by (49).

Let us mention that this result is proved in [58] for q = 0 under a weaker assumption
than (M-f).

The proof of Theorem 4, inspired from [42, §3] and [19], consists in finding where the
L2(M,gM)-norms of eigenforms associated with eigenvalues of order o(h) concentrate
in M, and in determining a finite dimensional linear space close to them. We first
study in Section 2.3 model problems on Rd− where

Rd− = {x = (x′, xd), x′ = (x1, . . . , xd−1) ∈ Rd−1, xd ∈ R, xd < 0},

before providing the proof of Theorem 4 in Section 2.4.

Remark 12. — Let us mention that the main difference with [42, Chap. 3] is that
we cannot use a block-diagonalization of the metric gM and of the function f near
the critical points in ∂M, which would lead to an exact tensorization into a Witten
Laplacian in a variable x′ ∈ ∂M and a Witten Laplacian in a variable xd ∈ R−.
We actually only decompose the metric gM in a local system of coordinates near the
critical point, constructed with the geodesic distance to the boundary. Then, using
the fact that ∂nMf = 0 near critical points on ∂M, it appears that a local asymptotic
expansion of f in these coordinates is precise enough to count the number of small
eigenvalues.

Remark 13. — A simple consequence of the above results is the following finite dimen-
sional Dirichlet complex structures for Witten Laplacians on bounded domains under
the assumption (M-f):

{0} −→ Ranπ[0,ch](∆
Di,(0)
f,h (M,gM))

df,h−−−−→ · · ·

· · ·
df,h−−−−→ Ranπ[0,ch](∆

Di,(d)
f,h (M,gM))

df,h−−−−→ {0}

and

{0}
d∗f,h←−−−− Ranπ[0,ch](∆

Di,(0)
f,h (M,gM))

d∗f,h←−−−− · · ·

· · ·
d∗f,h←−−−− Ranπ[0,ch](∆

Di,(d)
f,h (M,gM))←− {0}.

These, combined with Theorem 4, yield strong Morse inequalities. This generalizes
standard results for the Witten Laplacians in the full domain [44, 19, 93] or on
bounded domain without critical points on the boundary [42, 56] (see also [54, 16]).

2.3. Number of small eigenvalues of Witten Laplacians in Rd−. — The goal of this
section is to count the number of small eigenvalues of ∆

Di,(q)
f,h (Rd−,g) in a simple

geometric setting (in particular f has a single critical point, located at 0). The main
result (Proposition 16) is stated in Section 2.3.1. The proof is done in three steps:
we first recall well-known results for Witten Laplacians in Rd−1 in Section 2.3.2; then
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we prove Proposition 16 in a simplified setting in Sections 2.3.3 and 2.3.4; and we
finally conclude with the proof of Proposition 16 in Section 2.3.5.

2.3.1. Witten Laplacian in Rd− with tangential Dirichlet boundary conditions. — Let us
first introduce the tangential Dirichlet Witten Laplacian ∆

(q)
f,h(Rd−,g) in Rd−, under

two sets of assumptions.

Assumption (Metric-Rd−). — The space Rd− is endowed with a metric tensor g satis-
fying the following:

(i) g writes, for some C∞ function G on Rd−,

(50) g(x) = G(x′, xd)dx
′2 + dx2d,

with G(0, 0) the identity matrix.
(ii) G and all its derivatives are bounded over Rd−.
(iii) G is uniformly elliptic over Rd−.

To ease the notation, we will not indicate explicitly the metric G in the functional
spaces nor in the associated norm: we will simply write ΛqHk(Rd−) (resp. ΛqH1

T(Rd−))
for ΛqHk(Rd−,g) (resp. ΛqH1

T(Rd−,g)), and denote by ∥.∥Hk(Rd−) the associated norm.
Notice that under (Metric-Rd−), the norm on (Rd−,g) is uniformly equivalent to

the norm on (Rd−, Id dx2) (where Id is the identity matrix of size d), which is simply
denoted by |x|: |x|2 =

∑d
i=1 x

2
i . Moreover, for all q ∈ {0, . . . , d} and k ⩾ 0, the norm

on ΛqHk(Rd−,g) is equivalent to the norm on ΛqHk(Rd−, Iddx2), and ΛqH1
T(Rd−,g) =

ΛqH1
T(Rd−, Id dx2).

Assumption (Potential-Rd−). — The function f : Rd− → R satisfies:
(i) f is a C∞ function such that for all multi-index α ∈ Nd with |α| ⩾ 1,

supRd−
|∂αx f | < +∞.

(ii) The point 0 is the only critical point of f in Rd− and is a non degenerate critical
point of f (this condition is independent of the metric tensor on Rd−). Moreover, there
exist R > 0 and c > 0 such that:

(51) ∀x ∈ Rd−, |x| ⩾ R =⇒ |∇f |(x) ⩾ c.

(iii) It holds:

(52) ∀x′ ∈ Rd−1, ∂nRd−
f(x′, 0) = 0.

Notice that thanks to (50), for any ϕ ∈ Λ0C1(Rd−), one has:

(53) ∀x′ ∈ Rd−1, ∂nRd−
ϕ(x′, 0) = ∂xdϕ(x

′, 0).

Moreover, under the above assumptions, up to an orthogonal transformation on x′

(which preserves the fact that G(0, 0) is the identity matrix), one can assume that
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the Hessian matrix of f |∂Rd− at 0 ∈ Rd−1 is diagonal. As a consequence, there exists
a neighborhood V0 of 0 in Rd− and (µ1, . . . , µd) ∈ (R∗)d such that:

(54) ∀x = (x1, . . . , xd) ∈ V0, f(x) = f(0) +

d∑
i=1

µi
2
x2i +O(|x|3),

where (µ1, . . . , µd) are the eigenvalues of Hess f(0). More precisely, µd = ∂xd,xdf(0),
and (µ1, . . . , µd−1) are the eigenvalues of Hess f |∂Rd−(0).

We will need the following standard results on the operator ∆
Di,(q)
f,h (Rd−,g).

Proposition 14. — Let us assume that (Metric-Rd−) and item (i) in (Potential-Rd−)
are satisfied. Let q ∈ {0, . . . , d} and h > 0 be fixed. The Friedrichs extension of the
quadratic form

(55) Q
Di,(q)
f,h (Rd−,g) : w ∈ ΛqH1

T(Rd−) 7−→ ∥df,hw∥2L2(Rd−) + ∥d
∗
f,hw∥2L2(Rd−)

on ΛqL2(Rd−) is denoted by ∆
Di,(q)
f,h (Rd−,g). It is a self-adjoint operator with domain

D
(
∆

Di,(q)
f,h (Rd−,g)

)
=

{
w ∈ ΛqH1

T(Rd−) ∩ ΛqH2(Rd−), td∗f,hw = 0 on ∂Rd−
}
.

Moreover, it holds, for all Borel set E ⊂ R and u ∈ ΛqH1
T(Rd−),

(56) πE
(
∆

Di,(q+1)
f,h (Rd−,g)

)
df,hu = df,h πE

(
∆

Di,(q)
f,h (Rd−,g)

)
u

and

(57) πE
(
∆

Di,(q−1)
f,h (Rd−,g)

)
d∗f,hu = d∗f,h πE

(
∆

Di,(q)
f,h (Rd−,g)

)
u.

The following Green formula will be used many times in the sequel (it can be proved
as in the compact case [42, Lem. 2.3.2] by density of ΛqC∞

c (Rd−) in ΛqH1(Rd−)).

Lemma 15. — Let q ∈ {0, . . . , d}. Let us assume that (Metric-Rd−) is satisfied. Then,
for all w ∈ ΛqH1

T(Rd−), it holds:

∥df,hw∥2L2(Rd−) + ∥d
∗
f,hw∥2L2(Rd−) = h2∥dw∥2L2(Rd−) + h2∥d∗ w∥2L2(Rd−)

+
〈
w,

(
|∇f |2g + h(L∇f + L∗

∇f )
)
w
〉
L2(Rd−)

− h
∫
∂Rd−
⟨w,w⟩T(x′,0)∂Rd−∂nRd−

f(x′, 0)λ(dx′),

where λ(dx′) is of course the volume form on ∂Rd− induced by the metric tensor g.

Let us now state the main result of this section (recall the definition (54) of µd).

Proposition 16. — Let us assume that (Metric-Rd−) and (Potential-Rd−) hold. Let
q ∈ {0, . . . , d}. Then, there exist C > 0, c > 0, and h0 > 0 such that for all h ∈ (0, h0),
the following holds:
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(i) If q = 0, then:

(58) ∀w ∈ Λ0H1
T(Rd−), Q

Di,(0)
f,h (Rd−,g)(w) ⩾ Ch ∥w∥2L2(Rd−).

Let q ∈ {1, . . . , d}. If the index of 0 as a critical point of f |∂Rd− is not q − 1 or if
µd > 0, then:

(59) ∀w ∈ ΛqH1
T(Rd−), Q

Di,(q)
f,h (Rd−,g)(w) ⩾ Ch ∥w∥2L2(Rd−).

If the index of 0 as a critical point of f |∂Rd− is q − 1 and µd < 0, then:

(60) Ranπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
= Ker∆

Di,(q)
f,h (Rd−,g) has dimension 1.

(ii) Assume that the index of 0 as a critical point of f |∂Rd− is q − 1 and µd < 0.
Let χ : Rd− → [0, 1] be a C∞ function supported in a neighborhood of 0 which equals 1

in a neighborhood of 0. Let Ψh ∈ Ker∆
Di,(q)
f,h (Rd−,g) such that ∥Ψh∥L2(Rd−) = 1. Then,

in the limit h→ 0, it holds:

(61) ∥χΨh∥L2(Rd−) = 1 +O(h2) and Q
Di,(q)
f,h (Rd−,g)(χΨh) = O(h2).

The next lemma shows that it is enough to prove (58)–(59) in Proposition 16 for
forms w supported in a ball B(0, h2/5).

Lemma 17. — Let us assume that (Metric-Rd−) and (Potential-Rd−) are satisfied. Let
us assume that there exist C > 0 and h0 > 0 such that for all h ∈ (0, h0) and for all
v ∈ ΛqH1

T(Rd−) supported in B(0, h2/5),

(62) Q
Di,(q)
f,h (Rd−,g)(v) ⩾ Ch ∥v∥2L2(Rd−).

Then, there exist c > 0 and h0 > 0 such that for all h ∈ (0, h0) and for all w ∈
ΛqH1

T(Rd−),

Q
Di,(q)
f,h (Rd−,g)(w) ⩾ Ch∥w∥2L2(Rd−).

Proof. — Let us consider a quadratic partition of unity (χ1, χ2) such that χ1 ∈
C∞
c (Rd−), χ1 = 1 on B(0, 1/2), suppχ1 ⊂ B(0, 1) and χ2

1 + χ2
2 = 1. The IMS for-

mula [19, 42] yields: for all w ∈ ΛqH1
T(Rd−),

(63) Q
Di,(q)
f,h (Rd−,g)(w) =

2∑
k=1

Q
Di,(q)
f,h (Rd−,g)(χk(h−2/5.)w)

− h2
∥∥∇[χk(h−2/5.)

]
w
∥∥2
L2(Rd−)

.

Using Lemma 15, ∂nRd− f = 0 on ∂Rd− (see (52)) and t(χk(h
−2/5.)w)(x′, 0) = 0, one has:

Q
Di,(q)
f,h (Rd−,g)(χ2(h

−2/5.)w)

= h2
∥∥d(χ2(h

−2/5.)w
)∥∥2
L2(Rd−)

+ h2
∥∥d∗(χ2(h

−2/5.)w
)∥∥2
L2(Rd−)

+
〈
χ2(h

−2/5.)w,
(
|∇f |2 − h

(
L∇f + L∗

∇f
))
χ2(h

−2/5.)w
〉
L2(Rd−)

.
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Moreover, using (Metric-Rd−) and item (ii) in (Potential-Rd−), there exists C > 0 such
that,

(64) ∀x ∈ Rd− ∖ B(0, h2/5/2), |∇f(x)|2g ⩾ Ch4/5,

for some C > 0 independent of h. Thus, using the fact that L∇f +L∗
∇f is a 0th order

operator and supp χ2(h
−2/5.) ⊂ Rd∖B(0, h2/5/2), one obtains that there exist c > 0

and h0 > 0 such that for all h ∈ (0, h0):

(65) Q
Di,(q)
f,h (Rd−,g)(χ2(h

−2/5.)w) ⩾ Ch4/5∥χ2(h
−2/5.)w∥2L2(Rd−).

This implies that there exist c > 0 and C > 0 such that

Q
Di,(q)
f,h (Rd−,g)(w) ⩾ Q

Di,(q)
f,h (Rd−,g)(χ1(h

−2/5.)w)

+ Ch4/5∥χ2(h
−2/5.)w∥2L2(Rd−) − Ch

6/5∥w∥2L2(Rd−).

If (62) holds, one obtains (taking v = χ1(h
−2/5.)w in (62)) for all h small enough:

Q
Di,(q)
f,h (Rd−,g)(w) ⩾ C

(
h∥χ1(h

−2/5.)w∥2L2(Rd−)

+ h4/5∥χ2(h
−2/5.)w∥2L2(Rd−) − h

6/5∥w∥2L2(Rd−)

)
.

Thus, QDi,(q)
f,h (Rd−,g)(w) ⩾ Ch∥w∥2

L2(Rd−)
. This ends the proof of Lemma 17. □

The proof of Proposition 16 will be done in Section 16, after considering successively
model problems on Rd−1, and on Rd− in a simplified setting.

2.3.2. Witten Laplacian in Rd−1. — Let us first recall standard results on the number
of eigenvalues of order o(h) for the Witten Laplacian on Rd−1 associated with a
function f+ : Rd−1 → R which has only one critical point in Rd−1. Let us introduce
the two sets of assumptions used to state this result.

Assumption (Metric-Rd−1). — The space Rd−1 is endowed with a C∞ metric tensor
denoted by x′ ∈ Rd−1 7→ G̃(x′) dx′2. In addition,

(i) G̃ and all its derivatives are bounded over Rd−1.
(ii) G̃ is uniformly elliptic over Rd−1, i.e., G̃ ⩾ c over Rd−1, for some c > 0.

Again, we will not indicate explicitly the metric G̃ in the functional spaces nor in
the associated norm: we will simply write ΛqHk(Rd−1) for ΛqHk(Rd−1, G̃ dx′2) and
denote ∥ · ∥Hk(Rd−1) the associated norm.

Notice that, as above, under (Metric-Rd−1), the norm on (Rd−1, G̃ dx′2) is uni-
formly equivalent to the norm on (Rd−1, Id−1 dx

′2), the latter being simply denoted
|x′|: |x′|2 =

∑d−1
i=1 x

2
i . In addition, for all q ∈ {0, . . . , d − 1} and k ⩾ 0, the norm on

ΛqHk(Rd−1, G̃ dx′2) is equivalent to the norm on ΛqHk(Rd−1, Id−1 dx
′2).

Assumption (Potential-Rd−1). — The function f+ : Rd−1 → R satisfies:
(i) f+ is a C∞ function such that for all multi-index β ∈ Nd−1 with |β| ⩾ 1,

supRd−1 |∂βxf+| < +∞.
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(ii) The point 0 is the only critical point of f+ in Rd−1 and is a non degenerate
critical point, with an index denoted by p ∈ {0, . . . , d − 1} (the non-degeneracy and
the index do not depend on the metric tensor on Rd−1). Moreover, there exist R > 0

and c > 0 such that:

∀x′ ∈ Rd−1, |x′| ⩾ R =⇒ |∇f+(x′)| ⩾ c.

Under these assumptions, the following result holds (see [42, Prop. 3.3.2 & 3.3.3]
and[41, Prop. 2.2] for proofs of very similar results).

Proposition 18. — Let d ⩾ 2 and assume that (Metric-Rd−1) and (Potential-Rd−1)

hold. Let q ∈ {0, . . . , d−1} and h > 0. The Friedrichs extension of the quadratic form

Q
(q)
f+,h

(Rd−1, G̃ dx′2) :

{
D
(
∆

(q)
f+,h

(Rd−1, G̃ dx′2)
)
−→ R+

w 7−→ ∥df,hw∥2L2(Rd−1) + ∥d
∗
f,hw∥2L2(Rd−1)

on ΛqL2(Rd−1) is denoted by ∆
(q)
f+,h

(Rd−1, G̃dx′2). It is a self-adjoint operator with
domain

D
(
∆

(q)
f+,h

(Rd−1, G̃dx′2)
)
= ΛqH2(Rd−1).

Moreover, there exist C > 0, c > 0 and h0 > 0 such that for all h ∈ (0, h0):
(i) inf σess

(
∆

(q)
f+,h

(Rd−1, G̃ dx′2)
)
⩾ C.

(ii) When p ̸= q, dimRanπ[0,ch]
(
∆

(q)
f+,h

(Rd−1, G̃ dx′2)
)
= 0.

When p = q, Ranπ[0,ch]
(
∆

(q)
f+,h

(Rd−1, G̃ dx′2)
)
= Ker∆

(q)
f+,h

(Rd−1, G̃ dx′2) has dimen-
sion 1.

2.3.3. A simplified model in Rd−. — We will first prove item (i) of Proposition 16 in
the special case when G(x′, xd) in item (i) of (Metric-Rd−) is independent of the
variable xd.

Proposition 19. — Assume that (Metric-Rd−) and (Potential-Rd−) are satisfied.
Assume in addition that G is independent of xd:

(66) ∀(x′, xd) ∈ Rd−, G(x′, xd) = G̃(x′).

for some C∞ function G̃ defined on Rd−1. Then, item (i) in Proposition 16 is satisfied.

Before providing the proof of this proposition in Section 2.3.4, let us conclude this
section with a few preliminary results. Notice first that when (Metric-Rd−) and (66),
are satisfied, G̃(x′)dx′2 satisfies (Metric-Rd−1). Moreover, we will need the following
decomposition of the function f .

Definition 20. — Assume that (Potential-Rd−) is satisfied, and recall the expan-
sion (54) of f around 0. Let us define f+ and f− by:

(67) ∀x = (x′, xd) ∈ V0, f+(x
′) =

d−1∑
i=1

µi
2
x2i and f−(xd) = −

µd
2
x2d.
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Let us then extend the function f+ (resp. f−) to a C∞ function over Rd−1 (resp. R−)
such that:

(1) All the derivatives of f+ (resp. f−) of order at least 1 are bounded over Rd−1

(resp. R−).
(2) The point 0 is the only critical point of f+ (resp. f−) on Rd−1 (resp. R−),

and for some c > 0, |∇f+| ⩾ c (resp. |∇f−| ⩾ c) outside a compact set of Rd−1

(resp. of R−).
In other words, f+ satisfies (Potential-Rd−1), and f− satisfies (Potential-Rd−) for d = 1.

It is easy to check that, when µd < 0, f− satisfies

(68) ∀h > 0, e−(2/h)f− ∈ Λ0H2(R−).

The following result is the key point to prove Proposition 19. It allows us to separate
the variables x′ and xd in the Witten Laplacian ∆

Di,(q)
f,h (Rd−,g), up to remainder terms

of order h6/5.

Lemma 21. — Assume that (Metric-Rd−), (Potential-Rd−), and (66) are satisfied. Let
us consider the functions f+ and f− as introduced in Definition 20. Let q ∈ {0, . . . , d}
and w ∈ D(∆

Di,(q)
f,h (Rd−,g)). Write w = a ∧ dxd + b where

b =
∑

J={j1,...,jq},
j1<···<jq, d/∈J

bJ dxJ and a =
∑

I={i1,...,iq−1},
i1<···<iq−1, d/∈I

aI dxI.

It then holds, for some c1 > 0 and c2 > 0 independent of h > 0 and of w,

Q
Di,(q)
f,h (Rd−,g)(w) ⩾ c1

∑
I

∫
x′∈Rd−1

Q
Di,(1)
−f−,h(R−, dx

2
d)
(
aI(x

′, .)dxd
)
µ(dx′)

+ c1
∑
J

∫
x′∈Rd−1

Q
Di,(0)
−f−,h(R−, dx

2
d)
(
bJ(x

′, .)
)
µ(dx′)

+

∫
xd∈R−

Q
(q−1)
f+,h

(Rd−1, G̃dx′2)
(
a(., xd)

)
dxd

+

∫
xd∈R−

Q
(q)
f+,h

(Rd−1, G̃dx′2)
(
b(., xd)

)
dxd − e(h,w),

where |e(h,w)| ⩽ c2h
6/5 ∥w∥2

L2(Rd−)
if suppw ⊂ B(0, h2/5). The measure µ(dx′) is the

measure
√
det G̃(x′) dx′, where dx′ is the Lebesgue measure on Rd−1, and the measure

dxd is the Lebesgue measure on R−.

Proof. — One has from (54) and (67), in a neighborhood V0 of 0 in Rd−,

(69) ∀x = (x′, xd) ∈ V0, f(x) = f(0) + f+(x
′)− f−(xd) +O(|x|3)

and (using (66)),

(70) |∇f(x)|2g = |∇x′f+(x
′)|2

G̃dx′2 + |∂xdf−(xd)|2 +O(|x|3).

J.É.P. — M., 2025, tome 12



Eyring-Kramers exit rates for the overdamped Langevin dynamics 907

Moreover, one has:

(71) L∇f(x) + L∗
∇f(x) = L∇(f+(x)−f−(x)) + L∗

∇(f+(x)−f−(x)) +O(|x|).

Let w ∈ D
(
∆

Di,(q)
f,h (Rd−,g)

)
. One has

(72)
Q

Di,(q)
f,h (Rd−,g)(w) = ⟨w,∆

(q)
f,h(R

d
−,g)w⟩L2(Rd−)

= ⟨w,∆(q)
f+−f−,h(R

d
−,g)w⟩L2(Rd−) + e(h,w),

where, owing to (43), (69), (70), and (71), the remainder term e(h,w) satisfies: if w
is supported in B(0, h2/5),

(73) |e(h,w)| ⩽ C(h6/5 + h× h2/5)∥w∥2L2(Rd−) ⩽ Ch6/5 ∥w∥2L2(Rd−).

Let us now give a lower bound on ⟨w,∆(q)
f+−f−,h(R

d
−,g)w⟩L2(Rd−). Algebraically,

using (66), one has (see [42, Eq. (3.17)] or [56, Eq. (4.3.16)] for similar computations):

⟨w,∆(q)
f+−f−,h(R

d
−,g)w⟩L2(Rd−)(74)

=
〈∑

I

dxI ∧ (aI dxd),
∑
I

dxI ∧∆
(1)
−f−,h(R−, dx

2
d)(aI dxd)

〉
L2(Rd−)

+
〈∑

J

bJ dxJ,
∑
J

∆
(0)
−f−,h(R−, dx

2
d)(bJ) dxJ

〉
L2(Rd−)

+
〈
a ∧ dxd,∆(q−1)

f+,h
(Rd−1, G̃dx′2)(a) ∧ dxd

〉
L2(Rd−)

+ ⟨b,∆(q)
f+,h

(Rd−1, G̃dx′2)b⟩L2(Rd−).

Since tw = 0 on ∂Rd−, it holds, for all J and for a.e. x′ ∈ Rd−1, bJ(x′, 0) = 0. Thus
(see Proposition 14 for the domain of ∆Di,(0)

−f−,h(R−, dx
2
d) and item (1) of Definition 20),

for all J and a.e. x′ ∈ Rd−1,

bJ(x
′, .) ∈ Λ0H2(R−) ∩ Λ0H1

T(R−) = D
(
∆

Di,(0)
−f−,h(R−, dx

2
d)
)
.

From (66), td∗f,hw = 0 on ∂Rd− (for the metric tensor g) writes: for a.e. x′ ∈ Rd−1

and all I,

(75) ∂xd(e
−(1/h)faI)(x

′, 0) = 0.

Because ∂xdf(x′, 0) = 0 for all x′ ∈ Rd−1, see (52) and (53), this condition thus writes
∂xdaI(x

′, 0) = 0. On the other hand, f ′−(0) = 0 and hence, ∂xd(e−(1/h)f−aI)(x
′, 0)=0

for a.e. x′ ∈ Rd−1, i.e., td∗f−,h(aI(x
′, xd)dxd) = 0 on ∂R− for the metric ten-

sor dx2d (recall that d∗(ϕdxd) = −∂xdϕ for the metric tensor dx2d). Thus, because
in addition aI(x

′, .)dxd ∈ Λ1H2(R−), one has (see Proposition 14 for the domain of
∆

Di,(1)
−f−,h(R−, dx

2
d)), for all I and a.e. x′ ∈ Rd−1:

aI(x
′, .)dxd ∈ D

(
∆

Di,(1)
−f−,h(R−, dx

2
d)
)
.
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Furthermore, one has (see Proposition 18 for the domain of ∆
(q−1)
f+,h

(Rd−1, G̃dx′2)):
for a.e. xd < 0,

a(., xd) ∈ Λq−1H2(Rd−1) = D
(
∆

(q−1)
f+,h

(Rd−1, G̃dx′2)
)
,

b(., xd) ∈ ΛqH2(Rd−1, G̃dx′2) = D
(
∆

(q)
f+,h

(Rd−1, G̃dx′2)
)
.

Lemma 21 then follows from (73) and (72) together with two integration by parts
in Rd−1 and two integrations by parts in R− in (74), the constant c1 > 0 being the min-
imum of the smallest eigenvalues of the matrices (Πq−1

k=1G̃ik,i′k
)I,I′ and (Πqk=1G̃jk,j′k

)J,J′

on Rd−1. □

2.3.4. Proof of Proposition 19. — We are now in position to prove Proposition 19. Let
us assume that (Metric-Rd−), (Potential-Rd−), and (66) are satisfied. Let us recall that
according to Lemma 17, it is enough to prove Proposition 19 for all w ∈ ΛqH1

T(Rd−)
supported in B(0, h2/5). All along the proof, the constants C > 0 and c > 0 can change
from one occurrence to another but do not depend on h and on the test function w.
The proof of Proposition 19 is divided into three steps: the case d = 1, the proof
of (58) and (59) when d > 1, and finally the proof of (60) when d > 1.

Step 1: The case d = 1 (i.e., Rd− = R−). — Let us recall that according to item (i)
in (Metric-Rd−), the space R− = {xd ∈ R, xd < 0} is endowed with the metric tensor
g(xd) = dx2d. From (54), in a neighborhood V0 of 0 in R−, one has

∀xd ∈ V0, f(xd) = f(0) +
µd
2
x2d +O(|x|3).

Notice that for w ∈ ΛH1
T(R−) according to the decomposition w = a ∧ dxd + b in

Lemma 21, w = b when w is a 0-form and w = adxd when w is a 1-form (a is a
function, see (77) below). For all b ∈ Λ0H1

T(R−), one has from Lemma 15 and since
b(0) = 0,

(76) Q
Di,(0)
f,h (R−, dx

2
d)(b) = h2∥∂xdb∥2L2(R−) + ∥b ∂xdf∥

2
L2(R−) − h⟨b ∂

2
xd
f, b⟩L2(R−).

For all a dxd ∈ Λ1H1
T(R−) where we recall that

(77) Λ1H1
T(R−) = Λ1H1(R−) =

{
a dxd, a ∈ Λ0H1(R−)

}
,

one has, since ∂xdf(0) = 0 (the boundary term vanishes in Lemma 15):

Q
Di,(1)
f,h (R−, dx

2
d)(a dxd)=h

2
∥∥∂xda∥∥2L2(R−)

+
∥∥a ∂xdf∥∥2L2(R−)

+h⟨a ∂2xdf, a⟩L2(R−).

Let us now consider the two possibilities: µd > 0 or µd < 0.

Step 1a: The case d = 1 and µd > 0 (i.e., ∂2xdf(0) > 0). — Then, there exists C > 0

such that ∂2xdf ⩾ C in a neighborhood of 0 in R−. Thus, for all a dxd ∈ Λ1H1
T(R−)

such that a is supported in B(0, h2/5), one has QDi,(1)
f,h (R−, dx

2
d)(a dxd) ⩾ Ch ∥a∥2L2(R−).

Thanks to Lemma 17, this inequality extends for all a dxd ∈ Λ1H1
T(R−): there exists

C > 0 such that for h small enough,

(78) ∀a dxd ∈ Λ1H1
T(R−), Q

Di,(1)
f,h (R−, dx

2
d)(a dxd) ⩾ Ch ∥a∥2L2(R−).
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Let us now prove that there exists c > 0 such that for h small enough:

(79) ∀b ∈ Λ0H1
T(R−), Q

Di,(0)
f,h (R−, dx

2
d)(b) ⩾ c h ∥b∥2L2(R−).

It is clear that Ker∆
Di,(0)
f,h (R−, dx

2
d) = {0} since e−(1/h)f is not in the domain of

∆
Di,(0)
f,h (R−, dx

2
d). Let us now consider ψh in Ranπ[0,Ch/2]

(
∆

Di,(0)
f,h (R−, dx

2
d)
)

(where C
is the constant appearing in (78)). Then, df,hψh is in Ranπ[0,Ch/2]

(
∆

Di,(1)
f,h (R−, dx

2
d)
)

(thanks to (56)). From (78), this implies that df,hψh = 0. Thus, ∆(0)
f,h(R−, dx

2
d)ψh = 0

and hence, ψh = 0. This proves (79).

Step 1b: The case d = 1 and µd < 0 (i.e., ∂2xdf(0) < 0). — Then, there exists C > 0 such
that ∂2xdf ⩽ −C in a neighborhood of 0 in R−. Thus, from (76), for h small enough, one
has for all b ∈ Λ0H1

T(R−) such that b is supported in B(0, h2/5): QDi,(0)
f,h (R−, dx

2
d)(b) ⩾

Ch ∥b∥2L2(R−). Using Lemma 17, this inequality extends for all b ∈ Λ0H1
T(R−), i.e.,

for h small enough:

(80) ∀b ∈ Λ0H1
T(R−, dx

2
d), Q

Di,(0)
f,h (R−, dx

2
d)(b) ⩾ Ch ∥b∥2L2(R−).

Let us now prove that there exists c > 0 such that for h small enough

(81) Ranπ[0,ch]
(
∆

Di,(1)
f,h (R−, dx

2
d)
)
= Ker∆

Di,(1)
f,h (R−, dx

2
d) = Span(ef/hdxd).

From item (ii) in (Potential-Rd−) and using the same arguments as those to check (68),
one has f ′ > c on [−∞,−ε] for some ε > 0. Hence, for h > 0, ef/h ∈ Λ0L2(R−)

and from item (i) in (Potential-Rd−), ef/h ∈ Λ0H2(R−). Consequently (see Proposi-
tion 14), ef/hdxd ∈ D(∆

Di,(1)
f,h (R−, dx

2
d)). Therefore, since for all a dxd ∈ Λ1H1

T(R−),
Q

Di,(1)
f,h (R−, dx

2
d)(a dxd) = ∥d∗f,ha∥2L2(R−), it holds:

Ker∆
Di,(1)
f,h (R−, dx

2
d) = Span

(
ef/hdxd

)
.

Let us now consider an eigenform ψh ∈ Ranπ[0,Ch/2]∆
Di,(1)
f,h (R−, dx

2
d) (where C is the

constant appearing in (80)). Then, d∗f,hψh ∈ Ranπ[0,Ch/2]∆
Di,(0)
f,h (R−, dx

2
d) (thanks

to (57)). From (80), this implies that for h small enough, d∗f,hψh = 0. Thus ψh ∈
Span(ef/hdxd). This proves (81).

Step 2: The case d > 1, proofs of inequalities (58) and (59). — Remember that Rd− is
endowed with a metric tensor g satisfying (66). Thanks to Lemma 17, it is enough to
consider

w ∈ D
(
∆

Di,(q)
f,h (Rd−,g)

)
with supp w ⊂ B(0, h2/5).

Following Lemma 21, w = b+ a ∧ dxd, where:

b =
∑

J={j1,...,jq},
j1<···<jq, d/∈J

bJ dxJ and a =
∑

I={i1,...,iq−1},
i1<···<iq−1, d/∈I

aI dxI.

We will use many times that, from (Metric-Rd−) and (66),

∥w∥2L2(Rd−) = ∥b∥
2
L2(Rd−) + ∥a ∧ dxd∥

2
L2(Rd−)
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(because b is orthogonal to a ∧ dxd) with

∥b∥2L2(Rd−) ⩾ c1
∑
I

∥bJ∥2L2(Rd−) and ∥a ∧ dxd∥2L2(Rd−)=∥a∥
2
L2(Rd−)⩾c1

∑
J

∥aI∥2L2(Rd−)

(where c1 > 0 is as in Lemma 21).

Step 2a: The case d > 1 and q = 0, proof of (58). — Assume that q = 0 (i.e., w = b is
a function). Then, using Lemma 21, one has:

Q
Di,(q)
f,h (Rd−,g)(w)⩾c1

∫
x′∈Rd−1

Q
Di,(0)
−f−,h(R−, dx

2
d)
(
b(x′, .)

)
µ(dx′)− c2h

6/5∥w∥2L2(Rd−).(82)

Equations (79) and (80) imply that that there exists C > 0 (independent of x′) such
that for all h small enough and a.e. x′ ∈ Rd−1:

Q
Di,(0)
−f−,h(R−, dx

2
d)
(
b(x′, .)

)
⩾ Ch∥b(x′, .)∥2L2(R−).

Thus, using (82), one obtains for all w ∈ D
(
∆

Di,(q)
f,h (Rd−)

)
supported in B(0, h2/5):

Q
Di,(q)
f,h (Rd−,g)(w) ⩾ Ch∥w∥2L2(Rd−) − c2h

6/5 ∥w∥2L2(Rd−) ⩾ ch∥w∥2L2(Rd−).

Together with Lemma 17, this proves (58).

Step 2b: The case d > 1, q ⩾ 1 and µd > 0, proof of (59). — The analysis above in
dimension 1 (see (78) and (79)) implies that there exists C > 0 (again, independent
of x′) such that for h small enough, for all I and a.e. x′ ∈ Rd−1,

Q
Di,(1)
−f−,h(R−, dx

2
d)(aI(x

′, .)dxd) ⩾ Ch∥aI(x′, .)∥2L2(R−),

and for h small enough, for all J and a.e. x′ ∈ Rd−1,

Q
Di,(0)
−f−,h(R−, dx

2
d)(bJ(x

′, .)) ⩾ Ch∥bJ(x′, .)∥2L2(R−).

Thus, using Lemma 21, for all w ∈ D
(
∆

Di,(q)
f,h (Rd−,g)

)
supported in B(0, h2/5), one has:

Q
Di,(q)
f,h (Rd−,g)(w) ⩾ Ch∥w∥2L2(Rd−) − c2h

6/5 ∥w∥2L2(Rd−) ⩾ ch∥w∥2L2(Rd−).

Using Lemma 17, this proves (59) when q ⩾ 1 and µd > 0.

Step 2c: The case d > 1, q ⩾ 1, µd < 0 and the index of 0 as a critical point of f |∂Rd− is
not q− 1, proof of (59). — Using (80), there exists C (again, independent of x′) such
that for h small enough, for all J and a.e. x′ ∈ Rd−1,

(83) Q
Di,(0)
−f−,h(R−, dx

2
d)
(
bJ(x

′, .)
)
⩾ Ch∥bJ(x′, .)∥2L2(R−).

Thus, using Lemma 21, one has:

(84) Q
Di,(q)
f,h (Rd−,g)(w) ⩾ Ch∥b∥2L2(Rd−)

+ c1

∫
xd∈R−

Q
(q−1)
f+,h

(Rd−1,gdx′2)
(
a(., xd)

)
dxd − c2h

6/5 ∥w∥2L2(Rd−).

Recall that 0 is not a critical point of index q − 1 of f |∂Rd− . Then, 0 is not a critical
point of index q − 1 for f+ (see (54) and Definition 20). Since a is a q − 1 form,
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this implies from Proposition 18 (applied with the metric tensor G̃dx′ 2), that there
exists C (independent of xd) such that for h small enough,

Q
(q−1)
f+,h

(Rd−1, G̃dx′2)
(
a(., xd)

)
⩾ Ch∥a(., xd)∥2L2(Rd−1).

Therefore, using (84), for h small enough, one has:

Q
Di,(q)
f,h (Rd−,g)(w) ⩾ Ch(∥b∥2L2(Rd−) + ∥a∥

2
L2(Rd−))− c2h

6/5 ∥w∥2L2(Rd−)

⩾ ch∥w∥2L2(Rd−).

Using Lemma 17, this proves (59) when q ⩾ 1, µd < 0 and the index of 0 as a critical
point of f |∂Rd− is not q − 1.

Step 3: The case d > 1, q ⩾ 1, µd < 0 and the index of 0 as a critical point of f |∂Rd− is
q − 1, proof of (60). — Notice that in this case, the point 0 is a critical point of f+
of index q − 1 (see Definition 20).

Step 3a: Proof of (60) when f = f+ − f−. — Let us first prove (60) for the potential
(see Definition 20):

x = (x′, xd) ∈ Rd− 7−→ f+(x
′)− f−(xd).

In view of Definition 20 and (53), f+ − f− satisfies (Potential-Rd−). Thus, Proposi-
tion 14, (58), and (59) are valid for f+ − f− and g. Let us consider

Ψh ∈ Ker∆
(q−1)
f+,h

(Rd−1, G̃dx′2)

with Ψh ̸= 0 (which exists thanks to item (ii) in Proposition 18). Let us prove that
there exist c > 0 and h0 > 0 such that for all h ∈ (0, h0),

(85)
Ranπ[0,ch]

(
∆

Di,(q)
f+−f−,h(R

d
−,g)

)
= Ker∆

Di,(q)
f+−f−,h(R

d
−,g)

= Span
(
Ψh ∧ e−(1/h)f−dxd

)
.

Let c0 > 0 and ϕh ∈ Ranπ[0,c0h]
(
∆

Di,(q)
f+−f−,h(R

d
−,g)

)
where the constant c0 is strictly

smaller than the constants C > 0 in (58) and (59) applied to f = f+ − f−. Hence,
using (56) and (57), one has for h small enough

df,hϕh = 0 and d∗f,hϕh = 0.

Thus, QDi,(q)
f+−f−,h(R

d
−,g)(ϕh) = 0. Using Lemma 21 with f = f+ − f− (in which case

e(h, ϕh) = 0) together with item (ii) in Proposition 18 and (81) with f = −f− ?, one
obtains

(86) ϕh ∈ Span
(
Ψh ∧ e−(1/h)f−dxd

)
.

To prove (85), it thus remains to show that:

(87) Ψh ∧ e−(1/h)f−dxd ∈ Ker∆
Di,(q)
f+−f−,h(R

d
−,g).
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It first holds, from Propositions 18 and 14, and (68), Ψh ∧ e−(1/h)f−dxd is in
D(∆

Di,(q)
f+−f−,h(R

d
−,g)) (recall that the boundary condition td∗f+−f−,hw = 0 is equiva-

lent to ∂xd(e−(1/h)(f+−f−)aI)(x
′, 0) = 0, see indeed (75)). Besides, one has:

df+−f−,h
(
Ψh ∧ e−(1/h)f−dxd

)
= df+,h(Ψh) ∧ e−(1/h)f−dxd = 0.

Moreover, from (66) (see also item (i) in (Metric-Rd−)), it holds

d∗,g
(
Ψh∧e−(1/h)f−dxd

)
= d∗,G̃dx

′2(
Ψh

)
∧e−(1/h)f−(xd)dxd+Ψhd

∗,dx2
d
(
e−(1/h)f−dxd

)
,

where the superscript indicates in which metric the operator d∗ is built. And one can
check that

i∇(f+−f−)

(
Ψh ∧ e−(1/h)f−dxd

)
= i∇x′f+

(
Ψh

)
∧ e−(1/h)f−(xd)dxd −Ψh ∧ i∇xdf−

(
e−(1/h)f−dxd

)
= i∇x′f+

(
Ψh

)
∧ e−(1/h)f−(xd)dxd + hΨh ∂xd

(
e−(1/h)f−(xd)

)
.

Therefore, d∗f+−f−,h
(
Ψh ∧ e−(1/h)f−dxd

)
= 0. This proves (87) and then (85). This

concludes the proof of (60) when f = f+ − f−.

Step 3b: Proof of (60) for a general function f . — Let c0 > 0 be strictly smaller than
the constants C > 0 in (58) and (59). Assume that Ranπ[0,c0h]

(
∆

Di,(q)
f,h (Rd−,g)

)
̸= {0}

and let us consider a L2(Rd−)-normalized form

ψh ∈ Ranπ[0,c0h]
(
∆

Di,(q)
f,h (Rd−,g)

)
.

Then, using (56) and (57), one has for h small enough, df,hψh = 0, d∗f,hψh = 0, and
thus QDi,(q)

f,h (Rd−,g)ψh = 0. This proves that for h small enough:

Ranπ[0,c0h]
(
∆

Di,(q)
f,h (Rd−,g)

)
= Ker∆

Di,(q)
f,h (Rd−,g).

Let us now consider a quadratic partition of unity (χ1, χ2) such that χ1 ∈ C∞
c (Rd−),

χ1 = 1 on B(0, 1/2), suppχ1 ⊂ B(0, 1), and χ2
1 + χ2

2 = 1. The IMS formula (63)
implies that there exists C > 0 such that:

(88) 0 ⩾ Q
Di,(q)
f,h (Rd−,g)(χ1(h

−2/5.)ψh)

+Q
Di,(q)
f,h (Rd−,g)(χ2(h

−2/5.)ψh)− Ch6/5 ∥ψh∥2L2(Rd−).

From (65), one has:

Q
Di,(q)
f,h (Rd−,g)(χ2(h

−2/5.)ψh) ⩾ Ch4/5∥χ2(h
−2/5.)ψh∥2L2(Rd−).

Thus, it holds for h > 0 small enough:

(89) ∥χ2(h
−2/5.)ψh∥2L2(Rd−) = O(h2/5) and ∥χ1(h

−2/5.)ψh∥2L2(Rd−) = 1 +O(h2/5),

and then:

(90) Q
Di,(q)
f,h (Rd−,g)(χ1(h

−2/5.)ψh) ⩽ Ch6/5∥χ1(h
−1/5.)ψh∥2L2(Rd−).
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Using (55), (70) and (71), and using twice Lemma 15 (once for f and once for f+−f−)
together with the fact that ∂nRd− f = ∂nRd−

(f+ − f−) = 0 on ∂Rd−, one has for h small

enough and for all v ∈ ΛqH1
T(Rd−,g) supported in B(0, h2/5):

Q
Di,(q)
f,h (Rd−,g)(v) = Q

Di,(q)
f+−f−,h(R

d
−,g)(v) +O(h6/5)∥v∥2L2(Rd−).(91)

Thus, one gets for h small enough:

Q
Di,(q)
f,h (Rd−,g)(χ1(h

−1/5.)ψh) = Q
Di,(q)
f+−f−,h(R

d
−,g)(χ1(h

−1/5.)ψh)

+O(h6/5)
∥∥χ1(h

−1/5.)ψh
∥∥2
L2(Rd−)

.

Then, using (90), it holds for h small enough:

Q
Di,(q)
f+−f−,h(R

d
−,g)(χ1(h

−2/5.)ψh) = O(h6/5)
∥∥χ1(h

−1/5.)ψh
∥∥2
L2(Rd−)

.

For all (x′, xd) ∈ Rd−, let us define (see (85)),

Θh(x
′, xd) = κhΨh(x

′)∧e−(1/h)f−(xd)dxd, where κh = ∥Ψh ∧ e−(1/h)f−dxd∥−1
L2(Rd−)

.

Using Lemma 11 and (85) (choosing c0 smaller than c > 0 appearing in (85)), one
has for h small enough,

distL2(Rd−)

(
χ1(h

−2/5.)ψh,SpanΘh
)

=
∥∥π[0,ch](∆Di,(q)

f+−f−,h(R
d
−,g)

)(
χ1(h

−2/5.)ϕh
)∥∥
L2(Rd−)

⩽
Q

Di,(q)
f,h (Rd−,g)(χ1(h

−1/5.)ψh)
1/2

√
ch

⩽ Ch1/10.

Using in addition (89), one obtains for h small enough:

distL2(Rd−)

(
ψh,SpanΘh

)
⩽ Ch1/10 + C∥χ2(h

−2/5.)ψh∥2L2(Rd−) ⩽ 2Ch1/10.

Therefore, since we assumed that Ranπ[0,c0h]
(
∆

Di,(q)
f,h (Rd−,g)

)
̸= {0}, it holds for h

small enough:
dimRanπ[0,c0h]

(
∆

Di,(q)
f,h (Rd−,g)

)
= 1.

It thus remains to prove that Ranπ[0,c0h]
(
∆

Di,(q)
f,h (Rd−,g)

)
̸= {0}. To this end, let

us show that ∆
Di,(q)
f,h (Rd−,g) admits an eigenvalue which is o(h) when h → 0. Using

the IMS formula (63) together with the fact that

Q
Di,(q)
f+−f−,h(R

d
−,g)(Θh) = 0,

Q
Di,(q)
f+−f−,h(R

d
−,g)(χ2(h

−2/5.)Θh) ⩾ ch4/5
∥∥χ2(h

−2/5.)Θh
∥∥2
L2(Rd−)

,and

one obtains, when h→ 0,

Q
Di,(q)
f+−f−,h(R

d
−,g)(χ1(h

−2/5.)Θh) = O(h6/5)∥∥χ1(h
−2/5.)Θh

∥∥2
L2(Rd−)

= 1 +O(h2/5).and
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Using (91) and the Min-Max principle, ∆Di,(q)
f,h (Rd−,g) admits an eigenvalue of order

O(h6/5) when h → 0. Therefore, Ranπ[0,c0h](∆
Di,(q)
f,h (Rd−,g)) is of dimension 1 for h

small enough. This proves (60) and concludes the proof of Proposition 19.

2.3.5. Proof of Proposition 16. — We are now in position to prove Proposition 16. Let
us first state a preliminary result.

Lemma 22. — Let us assume that the space Rd− is endowed with a metric tensor g

satisfying (Metric-Rd−). Assume that f satisfies item (i) in (Potential-Rd−). Define for
all x′ ∈ Rd−1, G̃(x′) = G(x′, 0) and let us introduce the metric on Rd−:

(92) ∀x = (x′, xd) ∈ Rd−, g̃(x) = G̃(x′)dx′ 2 + dx2d.

Let (g1,g2) = (g, g̃) or (g1,g2) = (g̃,g). Then, there exist C > 0, c > 0, h0 > 0,
η : [0, h0]→ R+, such that for h ∈ (0, h0), η(h) = O(h2/5) and for all w ∈ ΛqH1

T(Rd−)
such that supp w ⊂ B(0, h2/5), it holds,

(93) ∥w∥L2(Rd−,g2) = ∥w∥L2(Rd−,g1)

(
1 + η(h)

)
,

and for all q ∈ {0, . . . , d},

(94) Q
Di,(q)
f,h (Rd−,g1)(w) ⩾ C Q

Di,(q)
f,h (Rd−,g2)(w)− Ch7/5 ∥w∥2L2(Rd−,g2)

.

Equation (93) is a simple consequence of the two metric tensors are smooth and
coincide at xd = 0. Equation (94) is easily obtained following the proof of [42,
Lem. 3.3.7].

Let us now prove Proposition 16.

Proof. — Let us assume that (Metric-Rd−) and (Potential-Rd−) are satisfied. The proof
is divided into three steps.

Step 1: Proofs of (58) and (59). — Let us recall that according to Lemma 17, it is
sufficient to prove (58) and (59) for forms w ∈ ΛqH1

T(Rd−,g) supported in B(0, h2/5).
Because the metric tensor g̃ defined in (92) satisfies (Metric-Rd−) Proposition 19
implies that (58) and (59) hold for g̃ and f . From those estimates and (93) and (94),
one gets (58) and (59) for g and f .

Step 2: Proof of (60). — Let us assume that 0 is a critical point of index q − 1

of f |∂M and µd < 0. Let c > 0 be strictly smaller than the constants C > 0

in (58) and (59). Assume that Ranπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
̸= {0} and let us con-

sider a L2(Rd−,g)-normalized form ϕh ∈ Ranπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
. This implies,

using (56), (57), and the results of Step 1, that df,hϕh = 0 and d∗f,hϕh = 0. Thus,
it holds QDi,(0)

f,h (Rd−,g)(ϕh) = 0. Consequently, for h > 0 small enough,

Ranπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
= Ker∆

Di,(q)
f,h (Rd−,g).
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Now, let (χ1, χ2) be a quadratic partition of unity such that χ1 ∈ C∞
c (Rd−), χ1 = 1

on B(0, 1/2), suppχ1 ⊂ B(0, 1), and χ2
1 + χ2

2 = 1. Using the IMS formula (63), there
exists C > 0 such that:
0⩾QDi,(q)

f,h (Rd−,g)(χ1(h
−2/5.)ϕh)+Q

Di,(q)
f,h (Rd−,g)(χ2(h

−2/5.)ϕh)−Ch6/5
∥∥ϕh∥∥2L2(Rd−,g)

.

Therefore, one has QDi,(q)
f,h (Rd−,g)(χ2(h

−2/5.)ϕh) = O(h6/5) and

(95) Q
Di,(q)
f,h (Rd−,g)(χ1(h

−2/5.)ϕh) = O(h6/5).

In addition, let us recall that (see indeed (65)),
Q

Di,(q)
f,h (Rd−,g)(χ2(h

−2/5.)ϕh) ⩾ Ch4/5
∥∥χ2(h

−2/5.)ϕh
∥∥2
L2(Rd−,g)

.

Therefore, one obtains in the limit h→ 0:

(96)

∥∥χ2(h
−2/5.)ϕh

∥∥2
L2(Rd−,g)

= O(h2/5),∥∥χ1(h
−2/5.)ϕh

∥∥2
L2(Rd−,g)

= 1 +O(h2/5).

Then, using (94) with g1 = g and g2 = g̃, one gets for all h small enough:
h6/5 ⩾ C Q

Di,(q)
f,h (Rd−, g̃)(χ1(h

−2/5.)ϕh)− Ch7/5
∥∥χ1(h

−2/5.)ϕh
∥∥2
L2(Rd−,g̃)

.

Notice that from (93) and (96), one has for h small enough ∥χ1(h
−2/5.)ϕh

∥∥2
L2(Rd−,g̃)

=

1 +O(h2/5). Therefore, one obtains:
Q

Di,(q)
f,h (Rd−, g̃)(χ1(h

−2/5.)ϕh) ⩽ C h6/5
∥∥χ1(h

−2/5.)ϕh
∥∥2
L2(Rd−,g̃)

.(97)

Recall (since f and g̃ satisfy (Potential-Rd−) and (Metric-Rd−)) that according
to Proposition 19, there exist c0 > 0 and h0 > 0 such that for all h ∈ (0, h0), there
exists a L2(Rd−, g̃)-normalized q-form Φh such that

(98) Ranπ[0,c0h]
(
∆

Di,(q)
f,h (Rd−, g̃)

)
= Span(Φh) = Ker∆

Di,(q)
f,h (Rd−, g̃).

Using Lemma 11 and (97), one obtains that for h small enough:

distL2(Rd−,g̃)
(
χ1(h

−2/5.)ϕh, SpanΦh
)
= O(h1/10).

This implies together with (96) and (93), and since we assume that

Ranπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
̸= {0},

that for h small enough:

dimRanπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
= 1.

It remains to prove that Ranπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
̸= {0}. To this end, let us prove

that ∆
Di,(q)
f,h (Rd−,g) admits an eigenvalue of order o(h) when h→ 0. Let us consider a

L2(Rd−, g̃)-normalized q-form Φh which satisfies (98). Recall that from (89) and (90),
one has when h→ 0:∥∥χ2(h

−2/5.)Φh
∥∥2
L2(Rd−,g̃)

= O(h2/5) and
∥∥χ1(h

−2/5.)Φh
∥∥2
L2(Rd−,g̃)

= 1 +O
(
h2/5

)
Q

Di,(q)
f,h (Rd−, g̃)(χ1(h

−2/5.)Φh) ⩽ Ch6/5
∥∥χ1(h

−2/5.)Φh
∥∥2
L2(Rd−,g̃)

.and
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From (93) and (94) (applied with g1 = g̃ and g2 = g), one deduces that:

(99) Q
Di,(q)
f,h (Rd−,g)(χ1(h

−2/5.)Φh) ⩽ C h6/5
∥∥χ1(h

−2/5.)Φh
∥∥2
L2(Rd−,g)

.

Then, using the Min-Max principle, for h small enough, ∆
Di,(q)
f,h (Rd−,g) admits an

eigenvalue of order h6/5 when h → 0. Thus, Ranπ[0,ch]
(
∆

Di,(q)
f,h (Rd−,g)

)
̸= {0}. This

ends the proof of (60).

Step 3: Proof of (61). — Let Ψh ∈ Ker∆
Di,(q)
f,h (Rd−,g) such that ∥Ψh∥L2(Rd−,g) = 1. Let

χ : Rd− → [0, 1] be a C∞ function supported in a neighborhood of 0 which equals 1 in
a neighborhood of 0 in Rd−. Let us define χ̃ =

√
1− χ2. Then, using Lemma 15 (and

the fact that ∂nRd− f(x
′, 0) = 0 for all x′ ∈ Rd−1), since there exists c1 > 0 such that

infsuppχ̃ |∇f | ⩾ c1, it holds

Q
Di,(q)
f,h (Rd−,g)(χ̃Ψh) ⩾ C

∥∥χ̃Ψh∥∥2L2(Rd−,g)
.

Using in addition the fact that QDi,(q)
f,h (Rd−,g)(Ψh) = 0 together with the IMS for-

mula (63), one obtains (61) using a similar reasoning as in (96) and (95). This ends
the proof of Proposition 16. □

2.4. Proof of Theorem 4. — Let us assume that (M-f) holds. For a fixed q ∈
{0, . . . , d}, let us consider the operator ∆

Di,(q)
f,h (M,gM). We will identify the number

of eigenvalues smaller than ch for this operator, for some c > 0 and for all sufficiently
small h.

According to the analysis made in [42, Chap. 3] and [44], it is already known that
one can build linearly independent quasi-modes associated with the (generalized)
critical points in UM

q ∪U∂M,1q which thus yield at least mM
q +m∂M,1

q small eigenvalues.
The main novelty compared to [42, Chap. 3] is that we also have to consider critical
points of f located on ∂M:

(100) B∂M,2 :=
{
z ∈ ∂M, |∇f(z)| = 0}.

In the proof, we will thus consider all the critical points in

Pq = UM
q ∪ U∂M,1q ∪ B∂M,2

as potential candidates to generate small eigenvalues, and we will prove that only
those critical points in Qq ⊂ Pq where

Qq = UM
q ∪ U∂M,1q ∪ U∂M,2q

will actually contribute to the spectrum of ∆Di,(q)
f,h (M,gM) in [0, ch].

By assumption (M-f), for all z ∈ B∂M,2, ∂nMf = 0 in a neighborhood of z in ∂M.
Let us thus introduce a family (Vy)y∈Pq of neighborhoods in M of y ∈ Pq such that:

– For all y ∈ UM
q , Vy ⊂ M and y is the only critical point of f in Vy.

– For all y ∈ U∂M,1q , ∂nMf > 0 on ∂M ∩ Vy and y is the only critical point of f |∂M
in ∂M ∩ Vy.
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– For all y ∈ B∂M,2, ∂nMf = 0 on ∂M ∩ Vy and y is the only critical point of f
in Vy.

– The sets (Vy)y∈Pq are pairwise disjoint.
The neighborhoods (Vy)y∈Pq may be shrunk in the following in order to introduce
local coordinates on Vy, this will be made precise below. In order to use an IMS
localization formula, let us now introduce a quadratic partition of unity (χy)y∈Pq ∪ χ̃
such that χ̃2 +

∑
y∈Pq

χ2
y = 1 on M, and for all y ∈ Pq, χy : M → [0, 1] is C∞,

supported in Vy, and χy = 1 in a neighborhood of y in M. Let w ∈ ΛqH1
T(M,gM).

The IMS formula [19, 42] reads:

Q
Di,(q)
f,h (M,gM)(w) =

∑
y∈Pq

Q
Di,(q)
f,h (M,gM)(χyw)−

∑
y∈Pq

h2
∥∥w∇χy∥∥2L2(Rd−,gM)

+Q
Di,(q)
f,h (M,gM)(χ̃w)− h2

∥∥w∇χ̃∥∥2
L2(Rd−,gM)

.

Thus, there exists C > 0 such that

(101) Q
Di,(q)
f,h (M,gM)(w) ⩾ Q

Di,(q)
f,h (M,gM)(χ̃w)

− C h2 ∥w∥2L2(Rd−,gM) +
∑
y∈Pq

Q
Di,(q)
f,h (M,gM)(χyw).

To prove Theorem 4, we will study separately the quantities QDi,(q)
f,h (M,gM)(χ̃w)

and QDi,(q)
f,h (M,gM)(χyw) for y ∈ Pq. The latter will be estimated using Proposition 16,

after having introduced coordinates on Vy in which the metric has the block structure
assumed in item (i) of (Metric-Rd−), and f satisfies (54). The proof of Theorem 4 is
divided into four steps.

Step 1: Results from [42, Chap. 3] and [44].

Step 1a: Quasi-modes associated with points in UM
q ∪U∂M,1q . — Let y ∈ UM

q ∪U∂M,1q . Let
us introduce the set E defined as follows:

E = Rd if y ∈ UM
q and E = Rd− if y ∈ U∂M,1q .

Up to reducing the neighborhood Vy of y in M, the following results hold according to
the analysis in [42, Chap. 3] (see also [44] and [41] for the case when E = Rd). There
exists a C∞ system of coordinates

v ∈ Vy 7−→ x(v) ∈ E,

and a metric tensor gy and a function fy on E which coincide on x(Vy) respectively
with gM and f expressed in the x-coordinates, such that the following holds:
(102) ∃cy > 0,∃h0 > 0,∀h ∈ (0, h0), Ranπ[0,cyh]

(
Ty

)
= KerTy has dimension 1,

where Ty = ∆
(q)
fy,h

(Rd,gy) if y ∈ UM
q and Ty = ∆

Di,(q)
fy,h

(Rd−,gy) if y ∈ U∂M,1q . Moreover,
let χ : E→ [0, 1] be a C∞ function supported in x(Vy) which equals 1 in a neighbor-
hood of 0 in x(Vy). Let Ψyh ∈ KerTy such that ∥Ψyh∥L2(E,gy) = 1, then, in the limit
h→ 0, it holds:

(103) ∥χΨyh∥L2(M,gM) = 1 +O(h2) and Q
Di,(q)
f,h (M,gM)(χΨ

y
h) = O(h2).
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Step 1b: Lower bound on QDi,(q)
f,h (M,gM)(χ̃w). — Moreover, it is proved in [42, §3.4]

that there exist C̃ > 0 and h0 > 0 such that for all h ∈ (0, h0) and all w ∈
ΛqH1

T(M,gM):

(104) Q
Di,(q)
f,h (M,gM)(χ̃w) ⩾ C̃h ∥χ̃w∥2L2(M,gM).

More precisely, by [42, §3.4], one has for any x ∈ M∖ Pq:
(1) either x ∈ M with |∇f(x)| ≠ 0, in which case there exist c > 0 and a neighbor-

hood Vx of x in M such that QDi,(q)
f,h (M,gM)(χxw) ⩾ c ∥χxw∥2L2(M,gM) for any smooth

function χx supported in Vx;
(2) or x ∈ M with |∇f(x)| = 0 and x /∈ UM

q , in which case there exist c > 0 and
a neighborhood Vx of x in M such that QDi,(q)

f,h (M,gM)(χxw) ⩾ ch ∥χxw∥2L2(M,gM) for
any smooth function χx supported in Vx;

(3) or x ∈ ∂M with |∇f(x)| ̸= 0 and x /∈ U∂M,1q , in which case there exist c > 0

and a neighborhood Vx of x in M such that QDi,(q)
f,h (M,gM)(χxw) ⩾ ch ∥χxw∥2L2(M,gM)

for any smooth function χx supported in Vx.
Equation (104) then follows from the fact that χ̃ = 0 in a neighborhood of all the
points in Pq.

Step 2: Change of coordinates near y ∈ B∂M,2. — For ε > 0 small enough, for all v ∈ M

such that dM(v, ∂M) < ε, there exists a unique point z(v) ∈ ∂M such that

xd(v) := −dM(v, ∂M) = −dM(v, z(v)),

where we recall dM denotes the geodesic distance in M. Moreover the function v 7→
dM(v, ∂M) is smooth on the set {v ∈ M, dM(v, ∂M) < ε}.

Let us now consider a fixed y ∈ B∂M,2 ⊂ ∂M and let x′ be a local system of
coordinates in ∂M centered at y. Then there exists a neighborhood Uy of y in M such
that the mapping

(105) v ∈ Uy 7−→ x(v) := (x′(z(v)), xd(v)) ∈ Rd−1 × R−

is a system of coordinates near y ∈ ∂M, centered at y: this is the so-called tangential-
normal system of coordinates. Then, up to choosing Vy smaller, one can assume that:

Uy = Vy.

It holds, by construction of v 7→ x(v):

x(y) = 0, {v ∈ Vy, xd(v) < 0} = M ∩ Vy, {v ∈ Vy, xd(v) = 0} = ∂M ∩ Vy,

and for all (x′, 0) ∈ x(Vy),

∂xdv(x
′, 0) = nM(v(x

′, 0)).

Moreover, by construction, the metric tensor gM in the x-coordinates has the desired
block structure of item (i) in (Metric-Rd−), i.e.,

(106) ∀(x′, xd) ∈ x(Vy), gM(x
′, xd) = GM(x

′, xd)dx
′ 2 + dx2d,
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where it is assumed, without loss of generality, that GM(0, 0) is the identity matrix.
In the following and with a slight abuse of notation, one still denotes by f the func-
tion f in the x-coordinates. Since gM(0, 0) = dx′ 2 + dx2d, the Hessian matrix of f
(resp. the Hessian matrix of f |∂Rd−) at 0 in this new coordinates is unitarily equivalent
to Hess f(y) (resp. Hess f |∂M(y)). In particular, they have the same eigenvalues. Let
us recall that according to (M-f), nM(y) is an eigenvector of Hess f(y) for the eigen-
value µy, see (46), also denoted by µd in the following. Let us denote by µ1, . . . , µd−1

the d− 1 remaining eigenvalues of Hess f(y), the associated eigenspace being Ty∂M.
These are also the eigenvalues of Hess f |∂M(y). Let us recall that, up to an orthogonal
transformation on x′ = (x1, . . . , xd−1), it holds, in a neighborhood of 0 and in the
x-coordinates,

(107) f(x) = f(0) +
d∑
j=1

µj
2
x2j +O(|x|3),

which is precisely (54).

Remark 23. — Let us mention that (107) only requires that nM(y) is an eigenvector
of Hess f(y). The stronger assumption that ∂nMf = 0 on ∂M∩Vy will be necessary to
use the results of Proposition 16.

In addition, it holds:

(108) ∀x′ ∈ Rd−1 ∩ x(Vy), ∂nRd−
f(x′, 0) = 0.

In order to use Proposition 16, we extend the function f and the metric gM from x(Vy)

to Rd− so that they satisfy respectively (Potential-Rd−) and (Metric-Rd−). We denote
by fy and gy these extensions, defined on Rd−. Notice that it holds since χy is supported
in Vy,

Q
Di,(q)
fy,h

(Rd−1,gy)(χyw) = Q
Di,(q)
f,h (M,gM)(χyw)

and
∥χyw∥L2(Rd−1,gy) = ∥χyw∥L2(M,gM),

where with a slight abuse of notation χyw both denotes the q-form defined on M and
in the x-coordinates. These equalities will be used many times in the rest of the proof.

Step 3: Contributions of the points in B∂M,2. — According to Step 2, one can use Propo-
sition 16 to study Q

Di,(q)
f,h (M,gM)(χyw) when y ∈ B∂M,2, where, we recall, w ∈

Λ0H1
T(M,gM). There are thus three possible cases:

(1) By (58), if q = 0, there exists C > 0 such that for all h small enough:

(109) Q
Di,(0)
f,h (M,gM)(χyw) ⩾ Ch ∥χyw∥2L2(M,gM).

(2) By (59), for q ∈ {1, . . . , d}, if the index of y as a critical point of f |∂M is not
q − 1, or if µd > 0, then, there exists C > 0 such that for all h small enough:

(110) Q
Di,(q)
f,h (M,gM)(χyw) ⩾ Ch ∥χyw∥2L2(M,gM).
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(3) For q ∈ {1, . . . , d}, if the index of y as a critical point of f |∂M is q − 1 and
µd < 0 (namely if y ∈ U∂M,2q ), from (60) there exists cy > 0 such that for all h small
enough:

(111) Ranπ[0,cyh]
(
∆

Di,(q)
fy,h

(Rd−,gy)
)
= Ker∆

Di,(q)
fy,h

(Rd−,gy) has dimension 1.

Moreover, let χ : Rd− → [0, 1] be a C∞ function supported in Vy which equals 1 in a
neighborhood of y in Vy. Let Ψyh ∈ Ker∆

Di,(q)
fy,h

(Rd−,gy) such that ∥Ψyh∥L2(Rd−,gy) = 1,
then, in the limit h→ 0, it holds (by (61)):

(112) ∥χΨyh∥L2(M,gM) = 1 +O(h2) and Q
Di,(q)
f,h (M,gM)(χΨ

y
h) = O(h2).

Let us insist again on the fact that in (109)–(110), the constants C and the interval
(0, h0) ∋ h do not depend on w.

Step 4: End of the proof of Theorem 4. — Let us consider η1 > 0. Using the Min-Max
principle, Equations (112), (103) together with the fact that the supports of (χy)y∈Qq

are pairwise disjoint, one gets that ∆
Di,(q)
f,h (M,gM) admits at least mq eigenvalues of

order O(h2) when h→ 0. Thus, for h sufficiently small,

dimRanπ[0,η1h]
(
∆

Di,(q)
f,h (M,gM)

)
⩾ mq.

Let us now prove the reverse inequality holds if η1 is small enough. To this end, let
us consider w ∈ ΛqH1

T(M,gM) such that ∥w∥L2(M,gM) = 1 and

Q
Di,(q)
f,h (M,gM)(w) ⩽ η1h,

and let us prove that the distance between w and Span
(
χy Ψ

y
h, y ∈ Qq

)
(which,

we recall, is of dimension mq because (χy)y∈Qq have supports which are pairwise
disjoint) goes to 0 when h → 0, for a sufficiently small η1. Using (101), it holds for
some C0 > 0 independent of h:

η1 h ⩾ Q
Di,(q)
f,h (M,gM)(χ̃w)− C0h

2 +
∑
y∈Pq

Q
Di,(q)
f,h (M,gM)(χyw).(113)

In the following c̃ > 0 is a constant independent of h, η1 and w, which can change
from one occurrence to another. Then (113) together with (110) and (109) yields that
for all y ∈ B∂M,2 ∖ U∂M,2q = Pq ∖ Qq, for all h small enough:

(114) ∥χyw∥L2(M) ⩽
√
η1h+ C0h2/

√
Ch ⩽ c̃

√
η1.

In addition, from Equations (113) and (104), one has for h small enough:

(115) ∥χ̃w∥L2(M) ⩽
√
η1h+ C0h2/

√
C̃h ⩽ c̃

√
η1.

Furthermore, one deduces from (113) that for all y ∈ Pq, for h small enough:

(116) Q
Di,(q)
f,h (M,gM)(χyw) ⩽ 2 η1 h.

For y ∈ Qq = UM
q ∪U∂M,1q ∪U∂M,2q , set (see the quasi-modes introduced in (102)–(103)

and (111)–(112))

(117) Φyh := χyΨ
y
h / ∥χyΨ

y
h∥L2(M).
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It holds:

distL2(M)

(
w,Span

(
Φyh, y ∈ Qq

))2

=
∥∥∥w − ∑

y∈Qq

⟨w,Φyh⟩L2(M)Φ
y
h

∥∥∥2
L2(M)

=
∑
z∈Pq

∥∥∥χz(w − ∑
y∈Qq

⟨w,Φyh⟩L2(M)Φ
y
h

)∥∥∥2
L2(M)

+
∥∥∥χ̃(w − ∑

y∈Qq

⟨w,Φyh⟩L2(M)Φ
y
h

)∥∥∥2
L2(M)

.

The first inequalities in (112) and (103) imply that for all y ∈ Qq, as h→ 0:

∥(1− χ̃)χyΨyh∥L2(M) = 1 +O(h2).

Therefore, using in addition (115), one deduces that:∥∥∥χ̃(w − ∑
y∈Qq

⟨w,Φyh⟩L2(M)Φ
y
h

)∥∥∥2
L2(M)

⩽ ρ
(
∥χ̃w∥2L2(M) +

∑
y∈Qq

∥χ̃Φyh∥
2
L2(M)

)
⩽ c̃

(
η1 + h2

)
,

where ρ > 0 is independent of h, η1 and w, and since the supports of (χy)y∈Pq are
pairwise disjoint, ∑

z∈Pq∖Qq

∥∥∥χz(w − ∑
y∈Qq

⟨w,Φyh⟩L2(M)Φ
y
h

)∥∥∥2
L2(M)

⩽ c̃ η1.

On the other hand, when z ∈ Qq, one has since the supports of (χy)y∈Pq are pairwise
disjoint and using Lemma 11, (116), (111), and (102),∥∥∥χz(w − ∑

y∈Qq

⟨w,Φyh⟩L2(M)Φ
y
h

)∥∥∥2
L2(M)

=
∥∥∥χzw − ⟨w,χzΨzh⟩L2(M)

χ2
zΨ

z
h

∥χzΨzh∥2L2(M)

∥∥∥2
L2(M)

⩽
∥∥(1− π[0,czh](Tz))(χzw)∥∥2L2(E,gz)

+ c̃h2 ⩽ c̃(η1/cz + h2
)
,

where Tz = ∆
Di,(q)
f,h (Rd−,gz) if z ∈ ∂M and Tz = ∆

(q)
f,h(Rd,gz) if z ∈ M (recall that

E = Rd− if y ∈ ∂M and E = Rd if y ∈ M). In conclusion, as η1 → 0 and h→ 0,

distL2(M)

(
w,Span(Φyh, y ∈ Qq)

)
−→ 0.

This implies that there exist η > 0 and h0 > 0 such that for all η1 ∈ (0, η) and h ∈
(0, h0), dimRanπ[0,η1h]

(
∆

Di,(q)
f,h (M,gM)

)
⩽ mq. This concludes the proof of Theorem 4.

2.5. Application of Theorem 4 to the infinitesimal generator of the diffusion (1)
Let us go back to the setting introduced in Section 1. Recall that Ω is a smooth

bounded domain of Rd, and let us apply the results stated above to M = Ω endowed
with the standard Euclidean metric tensor: gM = (δi,j dxi dxj)i,j=1,...,d. For the ease
of notation, we henceforth omit the reference to the metric tensor in the notation of
the Witten Laplacian and the Sobolev spaces.
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2.5.1. Notation for weighted Sobolev spaces. — For q ∈ {0, . . . , d} and m ∈ N, one
denotes by ΛqHm

w (Ω) the weighted Sobolev spaces of q-forms with regularity index
m, for the weight e−(2/h)f(x)dx on Ω (hence the subscript w in ΛqHm

w (Ω)). We refer
again for example to [81] for an introduction to Sobolev spaces on manifolds with
boundaries. For q ∈ {0, . . . , d} and m > 1/2, the set ΛqHm

w,T(Ω) is defined by

ΛqHm
w,T(Ω) := {v ∈ ΛqHm

w (Ω), tv = 0 on ∂Ω}.

The space ΛqH0
w(Ω) is denoted by ΛqL2

w(Ω). Let us mention that the space Λ0H1
w,T(Ω)

(resp. Λ0L2
w(Ω)) is the space H1

0 (Ω, e
−(2/h)fdx) (resp. L2(Ω, e−(2/h)fdx)) that we

introduced in Section 1.2.3 to define the domain of LDi,(0)
f,h (Ω). We will denote by ∥.∥Hqw

the norm on the weighted space ΛqHm
w (Ω) (without referring to the degree of the

forms). Moreover ⟨·, ·⟩L2
w

denotes the scalar product in ΛqL2
w(Ω). We will also simply

denote Λ0Hq
w(Ω) by Hq

w(Ω) if there is no possibility for confusion.

2.5.2. Link between L
Di,(0)
f,h (Ω) and ∆

Di,(0)
f,h (Ω), and proof of (41). — The infinitesimal

generator −L(0)f,h of the diffusion (1) (see Section 1.2.3) is linked to the Witten Lapla-
cian ∆

(0)
f,h = ∆

(0)
H + |∇f |2 + h∆

(0)
H f (where we recall that the Hodge Laplacian writes

here: ∆(0)
H = −div∇ = −∆) through the unitary transformation:

ϕ ∈ L2
w(Ω) 7−→ e−f/hϕ ∈ L2(Ω).

Indeed, one can check that

(118) ∆
(0)
f,h = 2h e−f/h L

(0)
f,h e

f/h.

Let us now generalize this to q-forms, using extensions of L(0)f,h to q-forms.

Proposition 24. — Let q ∈ {0, . . . , d}. The Friedrichs extension of the quadratic form

Q
Di,(q)
f,h (Ω) : v ∈ ΛqH1

w,T(Ω) 7−→
h

2

∥∥d(q)v∥∥2
L2
w(Ω)

+
h

2

∥∥e2f/h(d(q))∗e−2f/hv
∥∥2
L2
w(Ω)

on ΛqL2
w(Ω), is denoted

(
L
Di,(q)
f,h (Ω), D

(
L
Di,(q)
f,h (Ω)

))
. The operator L

Di,(q)
f,h (Ω) is a pos-

itive unbounded self-adjoint operator on ΛqL2
w(Ω). Besides, one has

D
(
L
Di,(q)
f,h (Ω)

)
=

{
v ∈ ΛqH2

w(Ω), tv = 0, td∗
(
e−2f/hv

)
= 0

}
.

Proposition 24 is proved in [42, §2.4]. For p = 0, the operator L
Di,(0)
f,h (Ω) is the one

introduced in Section 1.2.3. In particular, for v ∈ D
(
L
Di,(0)
f,h (Ω)

)
, LDi,(0)

f,h (Ω)v = L
(0)
f,hv.

For p = 1 the operator L
Di,(1)
f,h (Ω) is the one introduced in Section 1.2.6. In particular,

for v ∈ D
(
L
Di,(1)
f,h (Ω)

)
, LDi,(1)

f,h (Ω)v = L
(1)
f,hv where we recall that

L
(1)
f,h =

h

2
∆

(1)
H +∇f · ∇+Hess f,

see (39).
As a generalization of (118), one gets:

(119) ∆
Di,(q)
f,h (Ω) = 2h e−f/h

(
L
Di,(q)
f,h (Ω)

)
ef/h.
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The intertwining relations (44) and (45) write on L
Di,(q)
f,h (Ω): ∀v ∈ ΛqH1

w,T(Ω),

(120) πE
(
L
Di,(q+1)
f,h (Ω))dv = dπE

(
L
Di,(q)
f,h (Ω))v

and

(121) πE
(
L
Di,(q−1)
f,h (Ω)

)
d∗2f,hv = d∗2f,hπE

(
L
Di,(q)
f,h (Ω)

)
v,

Thanks to the relation (119), the operators L
Di,(q)
f,h (Ω) and ∆

Di,(q)
f,h (Ω) have the same

spectral properties. In particular the operators L
Di,(q)
f,h (Ω) and ∆

Di,(q)
f,h (Ω) both have

compact resolvents, and thus a discrete spectrum (see Proposition 10).
Equation (41) is a consequence of Theorem 4 as stated in the following results,

which also gives a first estimate of λh.

Corollary 25. — Let us assume that (Ω-f) is satisfied. Then, there exists c > 0 and
h0 > 0 such that for all h ∈ (0, h0),

dimRanπ[0,c]
(
L
Di,(0)
f,h (Ω)

)
= 1 and dimRanπ[0,c]

(
L
Di,(1)
f,h (Ω)

)
= n.

Moreover, λh, the principal eigenvalue of LDi,(0)
f,h (Ω), is exponentially small as h→ 0.

For ease of notation, we set

(122) π
(q)
h = π[0,c]

(
L
Di,(q)
f,h (Ω)

)
, for q ∈ {0, 1},

where c > 0 is the constant introduced in Corollary 25.

Proof. — First of all, by item (2) in (Ω-f), for any x ∈ ∂Ω such that |∇f(x)| = 0,
there exists a neighborhood V∂Ωx of x in ∂Ω such that ∂nΩf = 0 on V∂Ωx . Therefore,
M = Ω and f satisfy (M-f). By Theorem 4 and (119), for all q ∈ {0, . . . , d}, there
exists c > 0 and h0 > 0 such that for all h ∈ (0, h0):

dimRanπ[0,c]
(
L
Di,(q)
f,h (Ω)

)
= mq, where by (49), mq = Card

(
UΩ
q ∪ U∂Ω,1q ∪ U∂Ω,2q

)
.

Let us first consider the case q = 0. Recall that U∂Ω,10 ∪ U∂Ω,20 = ∅. Thus m0 =

Card
(
UΩ
0 ) = 1, since by Lemma 4, f has only one local minimum in Ω which is x0.

Let us now consider the case q = 1. Notice that UΩ
1 = ∅ since the minimum x0 is

the only critical point of f in Ω. One then has m1 = Card
(
U∂Ω,11 ∪U∂Ω,21

)
. By item (3)

in (Ω-f) and by the definition (47) of U∂Ω,11 , it holds U∂Ω,11 = ∅. By (48), U∂Ω,21 is
the set of saddle points of f on ∂Ω. Thus, from Definition 6, U∂Ω,21 = {z1, . . . , zn}.
In conclusion, m1 = n.

It remains to prove that λh is exponentially small when h → 0. Let us recall the
proof of this well-known result. Let χ : Rd → [0, 1] be a C∞ function supported in Ω

such that χ = 1 in a neighborhood of x0 in Ω. Then, since x0 is the only global
minimum of f in Ω (see Lemma 4), there exists δ > 0 such that f ⩾ f(x0) + δ on
supp∇χ. In addition, because Hess f(x0) > 0,∫

Ω

χ2e−(2/h)f = (πh)d/2(1 +O(h))e−(2/h)f(x0)/
√
detHess f(x0),
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in the limit h→ 0. Thus, for h small enough, it holds:

λh ⩽ ⟨LDi,(0)
f,h (Ω)χ, χ⟩L2

w
=
h

2

∫
Ω
|∇χ|2e−(2/h)f∫
Ω
χ2e−(2/h)f

⩽ Ce−δ/h,

where δ > 0 is independent of h. This ends the proof of Corollary 25. □

3. Quasi-modes associated with (zk)k=1,...,n

By Corollary 25, for h small enough, the rank of the spectral projector π(1)
h (de-

fined by (122)) is the number n of saddle points of f and the rank of the spectral
projector π(0)

h is 1 (the number of local minima of f). To prove Theorem 1, we will con-
struct n quasi-modes {f(1)1 , . . . , f

(1)
n } for LDi,(1)

f,h (Ω) and a quasi-mode u(0) for LDi,(0)
f,h (Ω)

which form respectively a basis of Ran π(1)
h and of Ran π(0)

h . We will build quasi-modes
which satisfy appropriate estimates, listed in Section 3.1, in order to get the results
of Theorem 1.

As already outlined in Section 1.2.6, the strategy to build the quasimode f
(1)
k con-

sists in constructing a quasi-mode v
(1)
k ∈ Λ1C∞(Ω) for ∆

Di,(1)
f,h (Ω) associated with the

saddle point zk ∈ ∂Ω for each k ∈ {1, . . . , n}, from which a quasi-mode f
(1)
k = ef/hv

(1)
k

for LDi,(1)
f,h (Ω) is deduced. This quasi-mode v

(1)
k is built as follows. We first introduce in

Section 3.2 a subdomain ΩM
k of Ω which satisfies some geometric conditions (in par-

ticular, zk is the only saddle point of f in ΩM
k , and ∇f · nΩM

k
⩾ 0 on ∂ΩM

k ). Then,
we introduce in Section 3.3 an auxiliary Witten Laplacian on ΩM

k with mixed Dirichlet-
Neumann boundary conditions, and we prove that it has only one eigenvalue λ(ΩM

k )

smaller than ch when considered on functions and 1-forms. The quasi-mode v
(1)
k is

then defined as the principal 1-eigenform of this Witten Laplacian (denoted by u
(1)
k )

multiplied by a suitable cut-off function, see Section 3.4.
Let us emphasize that since |∇f(zk)| = 0, the constructions of the quasi-mode v

(1)
k

are very different from those done previously in the literature [27, 42, 28, 41]. In par-
ticular, WKB approximations of v(1)k are not sufficient to prove the required estimates
(see Section A.2 for more details). Instead of using a WKB-approximation, we will
use an asymptotic equivalent of λ(ΩM

k ) in the limit h→ 0, inspired by [58]. For λ(ΩM
k )

to be different from 0, we require in particular that ΩM
k contains x0, which was not

the case in [27].

3.1. Sufficient estimates on the quasi-modes for L
Di,(0)
f,h (Ω) and L

Di,(1)
f,h (Ω)

Let us exhibit sufficient conditions on the quasi-modes to get the results of Theo-
rem 1 (recall that n0 is the cardinal of argmin f |∂Ω, see (15)).

Proposition 26. — Let us assume that (Ω-f) is satisfied. Assume that there exists a
family {f(1)1 , . . . , f

(1)
n } of smooth 1-forms on Ω, and a smooth function u(0) on Ω such

that:
(1) The function u(0) belongs to H1

w(Ω) and is normalized in L2
w(Ω). For all k ∈

{1, . . . , n}, f(1)k belongs to Λ1H1
w,T(Ω) and is normalized in Λ1L2

w(Ω).
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(2)
(a) There exists ε1 > 0 such that for all k ∈ {1, . . . , n}, in the limit h→ 0:

(123)
∥∥(1− π(1)

h

)
f
(1)
k

∥∥2
H1
w(Ω)

⩽ e−ε1/h.

(b) For any r > 0, u(0) can be chosen such that there exist Cr > 0 such that
for h small enough:

∥∇u(0)∥2L2
w(Ω) ⩽ Cre

−(2/h)(f(z1)−f(x0)−r).

(3) There exists ε0 > 0 such that for h small enough, ∀(k, ℓ) ∈ {1, . . . , n}2 with
k ̸= ℓ: ∣∣〈f(1)k , f

(1)
ℓ

〉
L2
w(Ω)

∣∣ ⩽ e−ε0/h.

(4)
(a) There exist constants (Kk)k=1,...,n0

and p which do not depend on h such
that for all k ∈ {1, . . . , n0}, in the limit h→ 0:〈

∇u(0), f(1)k

〉
L2
w(Ω)

= Kk h
pe−(1/h)(f(z1)−f(x0)) (1 +O(

√
h)),

where we recall f(zk) = f(z1) for k = 1, . . . , n0. If k > n0, it holds for h small
enough: ∣∣〈∇u(0), f(1)k

〉
L2
w(Ω)

∣∣ ⩽ e−(1/h)(f(z1)−f(x0)+ε).

(b) There exist constants (bk)k=1,...,n0
and m which do not depend on h such

that for all (k, ℓ) ∈ {1, . . . , n}2, in the limit h→ 0:

∫
Σzℓ

f
(1)
k ·nΩ e−(2/h)fdσ=


0 if k ̸= ℓ,

−bk hm e−(1/h)f(z1)(1 +O(
√
h)) if k = ℓ∈{1, . . . , n0},

O(e−(1/h)(f(z1)+c)) if k = ℓ∈{n0 + 1, . . . , n},

where all the Σzℓ ’s are such that (16) holds.
Then, in the limit h→ 0:

λh =
h2p+1

2
e−(2/h)(f(z1)−f(x0))

n0∑
k=1

K2
k (1 +O(

√
h)),

where λh is the principal eigenvalue of LDi,(0)
f,h (Ω). In addition, for all k ∈ {1, . . . , n0},

in the limit h→ 0:∫
Σzk

(∂nΩuh) e
−(2/h)fdσ = −Kkbk hp+m e−(1/h)(2f(z1)−f(x0)) (1 +O(

√
h)),

where uh is the principal eigenfunction of LDi,(0)
f,h (Ω) which satisfies (19). Finally, there

exists c > 0 such that, when h→ 0∫
∂Ω∖

⋃n0
k=1 Σzk

∂nΩuh e
−(2/h)fdσ = O

(
e−(1/h)(2f(z1)−f(x0)+c)

)
.
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Let us emphasize that, even if this is not explicitly indicated, the family
{f(1)1 , . . . , f

(1)
n } depends on h > 0, and the function u(0) depends on h > 0 and

r > 0. The proof of Proposition 26 is based on finite dimensional linear algebra
computations, and is similar to the proof of [28, Th. 5]. It is therefore not reproduced
here. Notice that Equations (23) and (24) in Theorem 1 and Equation (29) in Propo-
sition 7 will follow from the construction of quasi-modes {f(1)1 , . . . , f

(1)
n } and u(0)

satisfying all the assumptions of Proposition 26. This construction is made in the
rest of Section 3 (see the formulas (186) and (237) for the constants bk, m, Kk, and p,
and Section 4.1 for more details).

To prove Equation (27) in Theorem 1 (i.e., to get an asymptotic equivalent of∫
Σzk

(∂nΩuh) e
−(2/h)fdσ for k > n0, as h → 0), one needs stronger assumptions on

these quasi-modes.

Proposition 27. — Let us assume that (Ω-f) is satisfied. Assume that there exists
a family {f(1)1 , . . . , f

(1)
n } of smooth 1-forms on Ω, and a smooth function u(0) on Ω

satisfying all the assumptions of Proposition 26 with the following additional require-
ments:

(1) Concerning item (2a) in Proposition 26, there exists ε2 > 0 such that for all
k ∈ {1, . . . , n}, in the limit h→ 0:

(124)
∥∥(1− π(1)

h

)
f
(1)
k

∥∥2
H1
w(Ω)

⩽ e−(2/h)(max[f(zn)−f(zk),f(zk)−f(z1)]+ε2).

(2) Concerning item (3) in Proposition 26, there exists ε3 > 0 such that ∀(k, ℓ) ∈
{1, . . . , n}2 with k > ℓ, in the limit h→ 0:∣∣〈f(1)k , f

(1)
ℓ

〉
L2
w(Ω)

∣∣ ⩽ e−(1/h)(f(zk)−f(zℓ)+ε3).

(3) Concerning item (4a) in Proposition 26, there exist (Kk)k=n0+1,...,n and p which
do not depend on h such that for all k > n0, in the limit h→ 0:〈

∇u(0), f(1)k

〉
L2
w(Ω)

= Kk h
pe−(1/h)(f(zk)−f(x0)) (1 +O(

√
h)).

(4) Concerning item (4b) in Proposition 26, there exist constants (bk)k=n0+1,...,n

and m which do not depend on h such that for all k ∈ {n0 + 1, . . . , n}, in the limit
h→ 0: ∫

Σzk

f
(1)
k · nΩ e−(2/h)fdσ = −bk hm e−(1/h)f(zk) (1 +O(

√
h)),

where all the Σzk ’s are such that (16) holds.
Then, for all k ∈ {n0 + 1, . . . , n}, in the limit h→ 0:∫

Σzk

(∂nΩuh) e
−(2/h)fdσ = −Kkbk hp+m e−(1/h)(2f(zk)−f(x0)) (1 +O(

√
h)).

Notice that the assumptions of Proposition 27 on the quasi-modes are stronger
than those of Proposition 26 (see indeed (15)). Again, the proof of Proposition 27
is similar to the proof of [27, Prop. 25], and is therefore not reproduced here. Notice
that Equation (27) in Theorem 1 will follow from the construction of quasi-modes
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satisfying the assumptions of Proposition 27. To construct such quasi-modes, the
assumptions (25) on the Agmon distance and (26) on f(x0) will be used.

Let us finally mention that once Theorem 1 and Proposition 7 are proved, Theo-
rem 2 and Corollary 8 are direct consequences of Theorem 1 together with (21), (22),
and Proposition 7.

3.2. Construction of the subdomains (ΩM
k )k=1,...,n of Ω. — Let us recall that Ω is

a smooth bounded domain of Rd. In this section, we construct a Lipschitz subdo-
main ΩM

k of Ω associated with each saddle point zk of f in ∂Ω, k = 1, . . . , n. This
subdomain will then be used to define in the next section a Witten Laplacian with
mixed Dirichlet-Neumann boundary conditions on ∂ΩM

k . We construct ΩM
k such that:

(i) there exist two disjoint open subsets ΓM
k,D and ΓM

k,N of ∂ΩM
k such that ∂ΩM

k =

ΓM
k,D ∪ ΓM

k,N,
(ii) ∂n

ΩM
k

f = 0 on ΓM
k,D and ∂n

ΩM
k

f > 0 on ΓM
k,N,

(iii) x0 ∈ ΩM
k , and finally

(iv) ΓM
k,D and ΓM

k,N meet at an angle strictly smaller than π (see Definition 31
below).

Conditions (ii) and (iii) will then be used to deduce in Section 3.3 the number
of small eigenvalues of this Witten Laplacian on ΩM

k , and the condition (iv) will be
necessary to have existence of traces and regularity estimates for forms in the domain
of this Witten Laplacian.

3.2.1. Preliminary results. — Before going through the construction of ΩM
k (see Propo-

sition 30), we need preliminary results stated in Propositions 28 and 29.

Proposition 28. — Let us assume that the assumption (Ω-f) is satisfied. Consider
k ∈ {1, . . . , n} and F a compact subset of the open set Γzk . Then, there exists a C∞

simply connected subdomain ΓF of ∂Ω containing zk such that ΓF ⊂ Γzk , F ⊂ ΓF, and

(125) ∇f · nΓF
> 0 on ∂ΓF,

where nΓF
∈ T∂Ω is the unit outward normal to ΓF.

Since Ω is a stable domain for the dynamics (12), one can prove a similar result
on x0 and Ω, as the one obtained in Proposition 28 on zk and Γzk .

Proposition 29. — Let us assume that (Ω-f) is satisfied. Then, for any compact
subset K of Ω there exists a C∞ simply connected subdomain ΩK of Ω containing x0
such that K ⊂ ΩK, ΩK ⊂ Ω, and

∇f · nΩK
> 0 on ∂ΩK.

The proofs of Propositions 28 and 29 are tedious, and we therefore postpone them
to Section A.3, in the appendix.
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3.2.2. Construction of ΩM
k . — We are now in position to construct, for each k ∈

{1, . . . , n}, the subdomain ΩM
k of Ω associated with the saddle point zk and its neigh-

borhood Σzk (see (16)).

Proposition 30. — Let us assume that (Ω-f) is satisfied and consider k ∈ {1, . . . , n}.
Then, there exists a Lipschitz subdomain ΩM

k of Ω containing x0 and such that:
(1) It holds ∂ΩM

k ∩ ∂Ω = ΓM
k,D where ΓM

k,D is a C∞ subdomain of Γzk containing
Σzk which satisfies:

(a) ∇f ·nΓM
k,D

> 0 on ∂ΓM
k,D (recall that nΓM

k,D
∈ T∂Ω∩(T∂ΓM

k,D)⊥ is the unit
outward normal to ΓM

k,D) and
(b) a.e. on ΓM

k,D,
∇f · nΩM

k
= 0,

where, here and in the following, a.e. is with respect to the surface measure on
∂ΩM

k .
(2) On ΓM

k,N := ∂ΩM
k ∩ Ω it holds a.e.:

∇f · nΩM
k
> 0.

(3) The sets ΓM
k,D and ΓM

k,N meet at an angle smaller than π (see Definition 31
below). This angle will be actually π/2 from the construction below.

(4) For all δ > 0, ΩM
k can be chosen such that

(126) sup
x∈ΓM

k,N

dΩ(x, ∂Ω∖ Γzk) ⩽ δ,

where dΩ denotes the geodesic distance in Ω.

Schematic representations of ΩM
k , ΓM

k,D, and ΓM
k,N are given in Figure 4 below.

The subscript D (resp. N) in ΓM
k,D (resp. in ΓM

k,N) refers to the fact that Dirichlet
(resp. Neumann) boundary conditions will be applied on ΓM

k,D (resp. on ΓM
k,N) when

defining the Witten Laplacian with mixed Dirichlet-Neumann boundary conditions
on ΩM

k , see Section 3.3.1 below. Let us recall the definition of an angle between two
hypersurfaces used in item (3) of Proposition 30 (see [12, 49]).

Definition 31. — Let D be a bounded Lipschitz domain of Rd. Let ΓD and ΓN be
two open disjoint subsets of ∂D such that ΓD ∪ ΓN = ∂D. The sets ΓD and ΓN

meet at an angle smaller than π (in D) if locally around any point y ∈ ΓD ∩ ΓN,
there exists a local system of coordinates (y1, y

′′, yd) ∈ R × Rd−2 × R on a neigh-
borhood Vy of y, and two Lipschitz functions φy : Rd−1 → R and ψy : Rd−2 → R
such that D ∩ Vy = {yd > φy(y1, y

′′)}, ΓD ∩ Vy = {yd = φy(y1, y
′′) and y1 > ψy(y

′′)},
ΓN ∩ Vy = {yd = φy(y1, y

′′) and y1 < ψy(y
′′)}, and

∂y1φy(y1, y
′′) ⩾ κ on y1 > ψy(y

′′),

∂y1φy(y1, y
′′) ⩽ −κ on y1 < ψy(y

′′),

for some κ > 0.
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From a geometric viewpoint, the fact that ΓD and ΓN meet at an angle smaller
than π is equivalent to the existence of a smooth vector field θ on ∂D such that
⟨θ, nD⟩ < 0 on ΓD and ⟨θ, nD⟩ > 0 on ΓN. Let us now prove Proposition 30.

Proof of Proposition 30. — Let k ∈ {1, . . . , n}. The domain ΩM
k will be defined as the

union of two intersecting subdomains of Ω. The proof of Proposition 30 is divided
into several steps.

Step 1: Definition of ΩM
k

Step 1a: Adapted system of coordinates and preliminary constructions

The set ΓM
k,D. — Recall (see (16)) that z ∈ Σzk and Σzk ⊂ Γzk . Using Proposi-

tion 28, there exists a C∞ subdomain ΓM
k,D of Γzk such that Σzk ⊂ ΓM

k,D, ΓM
k,D ⊂ Γzk ,

which can be as large as needed in Γzk , and such that

(127) ∇f · nΓM
k,D

> 0 on ∂ΓM
k,D.

In step 1b below (see indeed (147)), we will check that, from the definition (141) of ΩM
k ,

ΓM
k,D = ∂ΩM

k ∩ ∂Ω, and this will therefore prove item (1a) of Proposition 30.

Systems of coordinates near ∂Ω and ∂ΓM
k,D. — In the following we introduce two sys-

tems of coordinates: one around z ∈ ∂Ω in Ω (see (x′, xd) and one around z ∈ ∂ΓM
k,D

in ∂Ω (see x′ in (131) and (132)). They will be used to define ΩM
k .

Recall that, for ε > 0 small enough, for all x ∈ Ω such that dΩ(x, ∂Ω) < ε, there
exists a unique point z(x) ∈ ∂Ω such that

(128) xd(x) := dΩ(x, ∂Ω) = dΩ(x, z(x)),

where we recall dΩ denotes the geodesic distance in Ω. Moreover the function x 7→
dΩ(x, ∂Ω) is smooth on the set {x ∈ Ω, dΩ(x, ∂Ω) < ε}. Let z ∈ ∂Ω and x′ be a
system of coordinates in ∂Ω centered at z. Then, there exists a neighborhood Vz of z
in Ω such that the function

(129) v ∈ Vz 7−→ (x′(z(v)), xd(v)) ∈ Rd−1 × R+

is a system of coordinates in Vz (this is the tangential-normal system of coordinates
already introduced above in (105)). For ease of notation, we omitted to write the
dependency on z when writing (x′, xd), and we write with a slight abuse of notation,
x′(v) instead of x′(z(v)). Let us assume, up to choosing Vz smaller that for εz > 0

small enough, Vz is a cylinder in the (x′, xd)-coordinates:

(130) Vz =
{
v ∈ Vz, |x′(v)| < εz and xd(v) ∈ [0, εz)

}
.

Let us now be more precise on x′ when z ∈ ΓM
k,D. If z ∈ ΓM

k,D, we choose εz > 0

small enough such that

(131) ∂Ω ∩ Vz =
{
v ∈ Vz, |x′(v)| ⩽ εz and xd(v) = 0

}
⊂ ΓM

k,D.

If z ∈ ∂ΓM
k,D, the system x′ = (x1, . . . , xd−1) in ∂Ω is chosen such that:

(132) ΓM
k,D ∩ (∂Ω ∩ Vz) = {v ∈ ∂Ω ∩ Vz, x1(v) > 0},
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lateral

lateral

base

Figure 3. The cylinder Cα.

and

(133) ∂ΓM
k,D ∩ (∂Ω ∩ Vz) = {v ∈ ∂Ω ∩ Vz, x1(v) = 0}.

This implies that for all z ∈ ∂ΓM
k,D,

(134) nΓM
k,D

(z) = − ∇x1(z)
|∇x1|(z)

∈ Tz∂Ω.

Constructions of two subdomains of Ω: Cα and ΩKα/2 . — Define, for α > 0 small enough,
the open cylinder

(135) Cα =
{
x ∈ Ω, z(x) ∈ ΓM

k,D, xd(x) ∈ (0, α)
}
,

(see Figure 3 for a schematic representation of Cα), and the compact set

Kα/2 =
{
v ∈ Ω, dΩ(v, ∂Ω) ⩾ α/2

}
⊂ Ω.

From Proposition 29, there exists a C∞ subdomain ΩKα/2 of Ω containing x0 such
that Kα/2 ⊂ ΩKα/2 , ΩKα/2 ⊂ Ω, and

(136) ∇f · nΩKα/2
> 0 on ∂ΩKα/2 .

A schematic representation of ΩKα/2 and Cα is given in Figure 4.
Moreover it holds (see Figure 3):

(137) ∂Cα = ΓM
k,D ∪ Σlateral

α ∪ Σbase
α ,
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Figure 4. Schematic representations of ΩM
k = Cα ∪ΩKα/2 , ΓM

k,D, and
ΓM
k,N. On the right, a zoom in the neighborhood of Γzk , where the

dotted lines represent the flows of φx near the saddle point zk of f
(see (12) and item (1) in (Ω-f)).

where

Σlateral
α =

{
x ∈ Ω, z(x) ∈ ∂ΓM

k,D, xd(x) ∈ (0, α)
}
⊂ Ω,(138)

Σbase
α =

{
x ∈ Ω, z(x) ∈ ΓM

k,D, xd(x) = α
}
⊂ Ω.and

Let us now prove that there exists α0 > 0, such that for all α ∈ (0, α0), one has:

(139) ∇f · nCα > 0 on Σlateral
α .

It holds Σlateral
α =

{
v ∈ Ω, x1(v) = 0, xd(v) ∈ (0, α)

}
(from (131)–(133), (135),

and (138)), and hence, one has for all v ∈ Σlateral
α :

(140) nCα(v) = −
∇x1(v)
|∇x1|(v)

.

Therefore, by a continuity argument, using (127) and (134), there exists α0 > 0 such
that for all α ∈ (0, α0) and for all v ∈ Σlateral

α ,

∇f(v) · nCα(v) > 0.

This concludes the proof of (139).

Step 1b: definition of ΩM
k such that ∂ΩM

k ∩∂Ω = ΓM
k,D. — Let us introduce (see Figure 4)

(141) ΩM
k := Cα ∪ ΩKα/2 ,

which is included in Ω. Let us mention that ΩM
k depends on two parameters: the set

ΓM
k,D (which can be chosen as large as needed in Γzk), and the parameter α > 0 (which

can be chosen as small as needed). One obviously has ΓM
k,D ⊂ ∂ΩM

k . Let us define

(142) ΓM
k,N = ∂ΩM

k ∖ ΓM
k,D,
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so that ∂ΩM
k is the disjoint union of ΓM

k,D and ΓM
k,N. By definition, ΩM

k is the union
of two intersecting open connected subsets Cα and ΩKα/2 of Ω, it is thus open and
connected. Notice that one has:

(143) ∂ΩM
k ⊂ ∂Cα ∪ ∂ΩKα/2

and, since Σbase
α ⊂ Kα/2 ⊂ ΩKα/2 ⊂ ΩM

k (see (137)), one has:

(144) ∂ΩKα/2 ∩ Σbase
α = ∅ and ∂ΩM

k ∩ Σbase
α = ∅.

In addition, from the fact that ∂ΩKα/2 ⊂ Ω and ΓM
k,D ⊂ ∂Ω, it holds:

(145) ∂ΩKα/2 ∩ ΓM
k,D = ∅.

Thus, from (143), (144), and (145) together with the definition of ΓM
k,N, it holds:

ΓM
k,N ⊂ (∂Cα ∪ ∂ΩKα/2)∖ (ΓM

k,D ∪ Σbase
α ) = ∂Cα ∖ (ΓM

k,D ∪ Σbase
α ) ∪ ∂ΩKα/2 and thus,

from (137),

(146) ΓM
k,N ⊂ Σlateral

α ∪ ∂ΩKα/2 ⊂ {v ∈ Ω, dΩ(v, ∂Ω) < α
}
,

where the last inclusion follows from the fact that

∂ΩKα/2 ⊂ {v ∈ Ω, dΩ(v, ∂Ω) ⩽ α/2
}

and (138). In particular, this implies that, since ΓM
k,D ⊂ ∂Ω,

(147) ∂ΩM
k ∩ Ω = ΓM

k,N and ∂ΩM
k ∩ ∂Ω = ΓM

k,D.

Step 2: Proofs of items 3 and 4 in Proposition 30

Step 2a. — Let us check that ΓM
k,D and ΓM

k,N meet at an angle strictly smaller than π
in ΩM

k (in the sense of Definition 31). To this end, let us prove that

(148) ΓM
k,D ∩ ΓM

k,N = ΓM
k,D ∩ Σlateral

α .

Notice that (148) implies that ∂ΩM
k is Lipschitz near ΓM

k,D ∩ ΓM
k,N as the union of the

closures of two disjoint open transverse C∞ hypersurfaces ΓM
k,D and Σlateral

α (this will
be used in Step 3b below). Furthermore, (148) implies that ΓM

k,D and ΓM
k,N meet at

an angle π/2 (see Figure 5), which thus yields item (3) in Proposition 30.
Let us thus prove (148). From (146) together with (145), it holds:

ΓM
k,D ∩ ΓM

k,N ⊂ ΓM
k,D ∩ Σlateral

α .

Now, let us consider x ∈ ΓM
k,D ∩ Σlateral

α . Then, there exists a sequence (xn)n⩾0 ∈
Σlateral
α such that xn → x as n → +∞. Let us prove that for all n large enough,

xn ∈ ∂ΩM
k . For n large enough, xn does not belong to ΩKα/2 because ΩKα/2 ⊂ Ω and

xn → x ∈ ∂Ω. In addition xn /∈ Cα (indeed xn ∈ ∂Cα since xn ∈ Σlateral
α ). Therefore,

for n large enough, xn /∈ ΩM
k . On the other hand, since xn ∈ ∂Cα, xn ∈ Cα ⊂ ΩM

k .
In conclusion, xn ∈ Ω ∩ ∂ΩM

k = ΓM
k,N (see (147)) and thus, x ∈ ΓM

k,N. This concludes
the proof of (148).
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lateral

Figure 5. The sets ΓM
k,D and Σlateral

α meet at an angle π/2 in Cα (see
Definition 31, (132), (133), and (137)). On the figure, y ∈ ΓM

k,D ∩
Σlateral
α and {xd > 0} = Ω, y1 = (−xd + x1)/2, yd = (xd + x1)/2,

y′′ = (x2, . . . , xd−1) (which is, schematically, the coordinates per-
pendicular to the plane (x1, xd) centered at y), ψy(y

′′) = 0, and
φy(y1, y

′′) = |y1| in Definition 31.

Step 2b. — Let us now prove item (4) in Proposition 30. To this end, let δ > 0.
Let us choose ΓM

k,D such that the distance between ΓM
k,D and ∂Ω ∖ Γzk is smaller

than δ/2 (recall that ΓM
k,D ⊂ Γzk can be chosen as large as needed in Γzk , see Step 1a

above), i.e.,

(149) dΩ(Γ
M
k,D, ∂Ω∖ Γzk) ⩽ δ/2.

Let us consider x ∈ ΓM
k,N. According to (146), x ∈ Σlateral

α or x ∈ ∂ΩKα/2 . If x ∈
Σlateral
α , then by the triangular inequality, it holds:

dΩ(x, ∂Ω∖ Γzk) ⩽ dΩ(x,Γ
M
k,D) + dΩ(Γ

M
k,D, ∂Ω∖ Γzk) ⩽ α+ δ/2,

where we have used that according to (138), dΩ(x,Γ
M
k,D) ⩽ dΩ(x, ∂Γ

M
k,D) ⩽ α, for

all x ∈ Σlateral
α . If x ∈ ∂ΩKα/2 , then dΩ(x, ∂Ω) ⩽ α/2 < α. Because x /∈ Cα (since

x ∈ ∂ΩM
k and Cα is an open subset of ΩM

k ), one has z(x) ∈ ∂Ω∖ ΓM
k,D. Therefore,

dΩ(x, ∂Ω∖ Γzk) ⩽ dΩ(x, z(x)) + dΩ(z(x), ∂Ω∖ Γzk) ⩽ α/2 + δ/2,

where we have used that either z(x) ∈ ∂Ω∖Γzk (in which case dΩ(z(x), ∂Ω∖Γzk) = 0)
or z(x) ∈ Γzk ∖ΓM

k,D (in which case dΩ(z(x), ∂Ω∖Γzk) ⩽ δ/2, see (149) together with
the fact that z(x) /∈ ΓM

k,D). In conclusion

sup
x∈ΓM

k,N

dΩ(x, ∂Ω∖ Γzk) ⩽ α+ δ/2.

Choosing α ⩽ δ/2 concludes the proof of item (4) in Proposition 30.
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Step 3: Proof that ΩM
k is Lipschitz, and study of the sign of ∇f · nΩM

k
. — Let us first

check that ΩM
k is Lipschitz. Notice that the union of two Lipschitz (even smooth)

subdomains of Ω is not necessarily a Lipschitz domain (the boundary is even not
necessarily a manifold). In our setting, one has:

∂ΩKα/2 ∩ ∂Cα = ∂ΩKα/2 ∩ Σlateral
α (see (137), (144), and (145)),

where (i) Σlateral
α and ∂ΩKα/2 are smooth, and (ii) the normal derivatives∇f(v)·nCα(v)

and ∇f(v) ·nΩKα/2
(v) of f at v ∈ Σlateral

α ∩∂ΩKα/2 are positive (so that the two normal
vectors cannot be opposite, a situation which could create cusps). These two points
will be used to prove that the boundary of ΩM

k is Lipschitz. One has:

(150) ∂ΩM
k ⊂ ∂ΩKα/2 ∪ ∂Cα.

Define the two open subsets of ∂ΩM
k

(151) A1 := ∂ΩM
k ∩ (∂ΩKα/2 ∖ ∂Cα), A2 := ∂ΩM

k ∩ (∂Cα ∖ ∂ΩKα/2),

and the closed subset of ∂ΩM
k A3 := ∂ΩM

k ∩(∂ΩKα/2∩∂Cα), so that ∂ΩM
k is the disjoint

union of A1, A2, and A3. Let us now prove that, for j ∈ {1, 2, 3}, ∂ΩM
k is Lipschitz in

a neighborhood of any point of Aj , and let us also study the sign of ∇f · nΩM
k

on Aj .

Step 3a: Study of A1. — First notice that (because ∂ΩKα/2 ⊂ Ω),

(152) A1 ⊂ ∂ΩKα/2 ∖ ∂Cα ⊂ Ω,

Let z ∈ A1. Then, there exists a neighborhood Oz of z in Rd such that Oz ∩ Cα = ∅.
Indeed, if not, z would belong to Cα = ∂Cα ∪ Cα, and z cannot belong to ∂Cα
(by definition of A1) and z cannot belong to Cα (because z ∈ ∂ΩM

k ). Using (141),
it then holds Oz ∩ ΩM

k = Oz ∩ ΩKα/2 (because ΩM
k = Cα ∪ ΩKα/2). Therefore, since in

addition ΩKα/2 is a smooth domain, A1 is a smooth part of the boundary of ΩM
k and

nΩM
k
= nΩKα/2

on A1. Finally, using (136), it holds:

(153) ∂n
ΩM
k

f > 0 on A1.

Step 3b: Study of A2. — It holds A2 ⊂ ∂Cα ∖ ∂ΩKα/2 . With the same arguments as
in Step 3a (see the lines after (152)), Oz ∩ ΩM

k = Oz ∩ Cα for some neighborhood Oz
at any point z ∈ A2. Moreover, from (137), ∂Cα is C∞ except on ∂ΓM

k,D ∪ ∂Σbase
α ,

where it is Lipschitz since ΓM
k,D and Σlateral

α , and Σbase
α and Σlateral

α are transverse (see
Step 2a above). Thus, A2 is a Lipschitz part of the boundary of ΩM

k and

(154) nΩM
k
= nCα on A2 ∖ (∂ΓM

k,D ∪ ∂Σbase
α ), i.e., a.e. on A2.

Let us now study the sign of∇f ·nΩM
k

on A2. Recall that ∂Cα = ΓM
k,D∪Σlateral

α ∪Σbase
α

(see (137)), ΓM
k,D ∩ ∂ΩKα/2 = ∅ (see indeed (145)), and ∂ΩM

k ∩Σbase
α = ∅ (see (144)).

Hence, it holds:

A2 = ∂ΩM
k ∩ (∂Cα ∖ ∂ΩKα/2) = (∂ΩM

k ∩ ΓM
k,D)︸ ︷︷ ︸

=ΓM
k,D

∪(∂ΩM
k ∩ Σlateral

α ∖ ∂ΩKα/2).(155)
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Let z ∈ A2. If z ∈ ΓM
k,D, then nCα(z) = nΩ(z) and thus, using (154), it holds:

(156) ∇f · nΩM
k
= 0 on ΓM

k,D,

where we also used the fact that ΓM
k,D ⊂ Γzk together with item (2) in (Ω-f). If z ∈

Σlateral
α , then from (139) and (154), it holds,

(157) ∇f · nΩM
k
> 0 on ∂ΩM

k ∩ Σlateral
α ∖ ∂ΩKα/2 .

Step 3c: Study of A3. — Notice that A3 = ∂ΩKα/2 ∩ ∂Cα (because ∂ΩKα/2 ∩ ∂Cα ⊂
∂ΩM

k ). Notice also that since ∂ΩKα/2 ⊂ Ω,

(158) A3 ⊂ Ω.

Using (137), (144), and (145), it holds:

(159) A3 = ∂ΩKα/2 ∩ ∂Cα = ∂ΩKα/2 ∩ Σlateral
α .

Thus, ∂ΩKα/2 intersects ∂Cα where ∂Cα is smooth (i.e., on Σlateral
α ). Let us consider

v ∈ A3. Let us conclude the proof by considering successively the case when nΩKα/2
(v)

is not collinear to nCα(v), and the case when nΩKα/2
(v) = ±nCα(v).

Let us first consider the case when nΩKα/2
(v) is not collinear to nCα(v). By a con-

tinuity argument, there exists a neighborhood Ov of v in Ω such that Ov ∩ ∂Cα =

Ov ∩ Σlateral
α (so that nCα is defined everywhere and continuous on Ov ∩ ∂Cα) and

such that nΩKα/2
is not collinear to nCα on Ov. Consequently, ∂ΩKα/2 and ∂Cα are

transverse on Ov (or equivalently, the natural immersion map i : ∂ΩKα/2 → Rd is
transverse to ∂Cα on Ov). Thus, Ov ∩∂ΩM

k is Lipschitz. In addition, as a consequence
of the inverse image of a regular value Theorem [11, Th. (5.12)] and its proof (see
also [87, 72, 37]) applied here to the smooth function i, one has, up to choosing Ov
smaller, Ov ∩ i−1(∂Cα) = Ov ∩ (∂ΩKα/2 ∩ ∂Cα) (because i−1(∂Cα) = ∂ΩKα/2 ∩ ∂Cα)
is a 1-codimensional smooth submanifold of ∂ΩKα/2 (i.e., a 2-codimensional smooth
submanifold of Rd included in ∂ΩM

k ). Therefore, for all v ∈ A3 such that nΩKα/2
(v) is

not collinear to nCα(v), there exists a neighborhood Ov of v in Ω such that

(160) Ov ∩ A3 is of measure 0 for the surface measure on Ov ∩ ∂ΩM
k .

Let us finally consider the case when nΩKα/2
(v) = ±nCα(v). Using (136) and (139),

nΩKα/2
(v) = +nCα(v). Moreover, from (135), (138), and (159) there exists a neighbor-

hood Ov of v in Ω such that Ov ∩ ∂Cα = Ov ∩Σlateral
α and thus (see (132) and (133)),

Ov ∩ Cα = Ov ∩
{
w ∈ Ω, x1(w) > 0, xd(w) ∈ (0, α)

}
and (see (138))

(161) Ov ∩ ∂Cα = Ov ∩
{
w ∈ Ω, x1(w) = 0, xd(w) ∈ (0, α)

}
(= Ov ∩ Σlateral

α ).

In the following, with a slight abuse of notation, we will denote by x = (x1, x̃) both
a point in Ov and its coordinates in the local basis.
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In addition, since nΩKα/2
(v) = +nCα(v) and ∂ΩKα is smooth, up to choosing Ov

smaller, there exists a smooth function Ψ : Rd−1 → R such that Ψ(x̃(v)) = x1(v) = 0

and

(162) Ov ∩ ∂ΩKα/2 = {(Ψ(x̃), x̃), x = (x1, x̃) ∈ Ov}

is the graph(4) of Ψ in the (x1, x̃) coordinates, where we set x̃ := (x2, . . . , xd−1, xd).
Moreover, one has

Ov ∩ ΩKα/2 = {x = (x1, x̃) ∈ Ov such that x1 > Ψ(x̃)}.

Therefore, from (141), Ov ∩ΩM
k ={x = (x1, x̃) ∈ Ov such thatx1 > min(Ψ(x̃), 0)} and

thus,
Ov ∩ ∂ΩM

k = {x = (x1, x̃) ∈ Ov such that x1 = min(Ψ(x̃), 0)}
is Lipschitz (indeed Υ : x̃ 7→ min(Ψ(x̃), 0) is a Lipschitz function). In addition, for
a.e. x = (x1, x̃) ∈ Ov ∩ ∂ΩM

k : nΩM
k
(x) ∈ {nCα(x), nΩKα

(x)}. Indeed, in the (x1, x̃)-
coordinates, one has for a.e. x = (x1, x̃) ∈ Ov ∩ ∂ΩM

k ,

Tx∂Ω
M
k =

{(
p̃ · ∇Υ(x̃), p̃

)
, p̃ ∈ Rd−1

}
and nΩM

k
(x) =

(−1,∇Υ(x̃))√
1 + |∇Υ(x̃)|2

.

Because for a.e. x̃, ∇Υ(x̃) ∈ {0,∇Ψ(x̃)}, it holds for a.e. x = (x1, x̃) ∈ Ov ∩ ∂ΩM
k ,

nΩM
k
(x) ∈ {nCα(x), nΩKα

(x)}. Moreover, using (136) and (139), it holds for a.e. x =

(x1, x̃) ∈ Ov ∩ ∂ΩM
k :

(163) ∇f(x) · nΩM
k
(x) > 0.

From (160) and (163), we thus conclude that for any point v ∈ A3, there exists a
neighborhood Ov of v in Ω such that, for the surface measure on Ov ∩ ∂ΩM

k , either
Ov ∩ A3 is of measure 0 or ∇f · nΩM

k
> 0 a.e. on Ov ∩ A3. This implies that, for the

surface measure on ∂ΩM
k ,

(164) ∇f · nΩM
k
> 0 a.e. on A3.

In conclusion, ΩM
k is a Lipschitz subdomain of Ω. Furthermore, we have proved

that:
∇f · nΩM

k
= 0 a.e. on ΓM

k,D = ∂ΩM
k ∩ ∂Ω (see (156) and (147)).

In addition, since (see (147), (152), (155), and (158))

ΓM
k,N = ∂ΩM

k ∩ Ω = A1 ∪ (A2 ∩ Ω) ∪ A3,

(4)The fact that Ov∩∂ΩKα/2
is the graph of a function of x̃ is a consequence of the implicit function

theorem, since Tv∂ΩKα = {∇x1(v)}⊥ (nΩKα/2
(v) = +nCα (v) and (161)). Indeed, in a neighborhood

of y0 := (x1(v), x̃(v)) = (0, x̃(v)) in Rd, ∂ΩKα is the set of points (x1, x̃) such that ϕ(x1, x̃) = 0 where
ϕ : Rd → R is smooth. In particular, ∇ϕ(y0) ̸= 0 is collinear to nΩKα/2

(v) and ∇Tϕ(y0) = 0, where

∇T is the tangential gradient of ϕ along ∂ΩKα/2
). Since Tv∂ΩKα = {∇x1(v)}⊥ and ∇x1(v) ⊥ ∇x̃q(v)

for q = 2, . . . , d (we choose normal coordinates systems), one has ∇x̃ϕ(y0) = ∇Tϕ(y0) = 0 and thus,
∂x1ϕ(y0) ̸= 0. Equation (162) then follows from the implicit function theorem.
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and A2 ∩ Ω = ∂ΩM
k ∩ Σlateral

α ∖ ∂ΩKα/2 , one deduces from (153), (157), and (164),
that

∇f · nΩM
k
> 0 a.e. on ΓM

k,N = ∂ΩM
k ∩ Ω.

This concludes the proof of Proposition 30. □

3.3. Witten Laplacians with mixed Dirichlet-Neumann boundary conditions asso-
ciated with (zk)k=1,...,n. — In this section, we define a Witten Laplacian with mixed
Dirichlet-Neumann boundary conditions associated with each saddle point zk of f
using the domain ΩM

k constructed in the previous section. The idea is to define a
Witten Laplacian in ΛqL2(ΩM

k ) with Dirichlet boundary conditions on ΓM
k,D (where

∇f · nΩM
k
= 0) and Neumann boundary conditions on ΓM

k,N (where ∇f · nΩM
k
> 0), see

Proposition 30. Since x0 ∈ ΩM
k is the only minimum of f in ΩM

k and zk ∈ ∂ΩM
k is the

only saddle point of f in ΩM
k , we expect, in view of Theorem 4 and the results of [56],

that such Witten Laplacians have only one eigenvalue smaller than ch when q = 0

and q = 1. Thanks to Witten’s complex structure, this eigenvalue, already introduced
as λ(ΩM

k ) at the beginning of Section 3, will be the same for q = 0 and q = 1. The
quasi-mode v

(1)
k of ∆Di,(1)

f,h (Ω) associated with zk will then be defined by multiplying
by a cut-off function the principal 1-eigenform u

(1)
k of this Witten Laplacian with

mixed Dirichlet-Neumann boundary conditions.
We first give the definition of Witten Laplacians with mixed Dirichlet- Neumann

boundary conditions on Lipschitz domains in Section 3.3.1. We then study the spectral
properties of these Witten Laplacians and derive some estimates on the principal
eigenvalues and eigenforms in Sections 3.3.2, 3.3.3 and 3.3.4

3.3.1. Witten Laplacians with mixed Dirichlet-Neumann boundary conditions on Lips-
chitz domains. — In this section, in order to ease the notation, we drop the subscript k
in (ΩM

k ,Γ
M
k,D,Γ

M
k,N), since the results will then be applied to each of this triplet, for

k ∈ {1, . . . , n}. Let thus ΩM be a Lipschitz subdomain of Ω. Let ΓM
D and ΓM

N be two
disjoint open subsets of ∂ΩM such that ΓM

D ∪ ΓM
N = ∂ΩM.

This section is organized as follows. We first recall the definition of weak traces for
forms w ∈ ΛqHd(Ω

M) ∩ ΛqHd∗(Ω
M) where for q ∈ {0, . . . , d},

(165) ΛqHd(Ω
M) :=

{
w ∈ ΛqL2(ΩM), dw ∈ Λq+1L2(ΩM)

}
and

(166) ΛqHd∗(Ω
M) :=

{
w ∈ ΛqL2(ΩM), d∗w ∈ Λq−1L2(ΩM)

}
are equipped with their natural graph norms. Let us recall the convention Λ−1L2 =

Λd+1L2 = {0}. Secondly, we state trace estimates and regularity estimates for forms
w ∈ ΛqHd(Ω

M)∩ΛqHd∗(Ω
M) such that tw = 0 on ΓM

D and nw = 0 on ΓM
N. Indeed (see

[12, 49]), a trace in ΛqL2(∂ΩM) does not exist in general for such forms except if ΓM
D

and ΓM
N meet at an angle strictly smaller than π (measured in ΩM), in the sense of

Definition 31. This explains the role of item (3) in Proposition 30. Finally, we introduce
the Witten Laplacians of interest, together with an associated Green formula. This
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formula will be crucial to study the spectral properties of these operators in the next
section.

Weak definitions of traces for elements in ΛqHd(Ω
M) or in ΛqHd∗(Ω

M). — Let us recall
that for a differential form u in ΛqL2(∂ΩM), the tangential and normal components
are defined as follows:

(167) u = tu+ nu with tu = inΩM (n
♭
ΩM ∧ u) and nu = n♭ΩM ∧ (inΩMu),

where the superscript ♭ stands for the usual musical isomorphism (n♭ΩM is the 1-form
associated with nΩM , nΩM being is the unit outward normal to ΩM). Notice that tu is
orthogonal to nu in ΛqL2(∂ΩM). Let us recall that the mapping

(168) w ∈ ΛqH1(ΩM) 7−→ w|∂ΩM ∈ ΛqH1/2(∂ΩM)

is well-defined, continuous, and surjective. We would like here to recall the procedure
to extend the notion of traces to elements in the subspaces of ΛqH1(ΩM): ΛqHd(Ω

M)

and ΛqHd∗(Ω
M). This is achieved using a duality argument and the standard Green

formula which reads for differential forms (u, v) ∈ ΛqH1(ΩM)× Λq+1H1(ΩM):

⟨du, v⟩L2(ΩM) − ⟨u, d∗v⟩L2(ΩM)(169)

=

∫
∂ΩM
⟨n♭ΩM ∧ u, v⟩T∗

σΩ
Mdσ =

∫
∂ΩM
⟨n♭ΩM ∧ u,nv⟩T∗

σΩ
Mdσ

=

∫
∂ΩM
⟨u, inΩM v⟩T∗

σΩ
Mdσ =

∫
∂ΩM
⟨tu, inΩM v⟩T∗

σΩ
Mdσ,

where we used the fact that the adjoint of n♭ΩM∧ in ΛqL2(∂ΩM) is inΩM . Let us now
consider w ∈ ΛqHd(Ω

M). Then, n♭ΩM ∧w is defined as an element in Λq+1H−1/2(∂ΩM)

by: ∀ϕ ∈ Λq+1H1/2(∂ΩM),

(170) ⟨n♭ΩM ∧ w, ϕ⟩H−1/2(∂ΩM),H1/2(∂ΩM) = ⟨dw,Φ⟩L2(ΩM) − ⟨w, d∗Φ⟩L2(ΩM),

where Φ is any form in Λq+1H1(ΩM) whose trace in Λq+1H1/2(∂ΩM) is ϕ. Recall that
this definition is independent of the chosen extension Φ of ϕ (this follows from (169)
and the density of ΛqC∞(

ΩM
)

in ΛqHd(Ω
M), see for example [49, Prop. 3.1]). Sim-

ilarly, for any w ∈ ΛqHd∗(Ω
M), inΩMw ∈ Λq−1H−1/2(∂ΩM) is defined by: ∀ϕ ∈

Λq−1H1/2(∂ΩM),

(171) ⟨inΩMw, ϕ⟩H−1/2(∂ΩM),H1/2(∂ΩM) = ⟨w, dΦ⟩L2(ΩM) − ⟨d∗w,Φ⟩L2(ΩM),

where Φ is any extension of ϕ in Λq−1H1(ΩM).
Let us now recover the decomposition (167) for forms w ∈ ΛqHd(Ω

M)∩ΛqHd∗(Ω
M)

such that, on a subset Γ of ∂ΩM, the tangential trace or the normal trace are defined
in a weak sense. Let w ∈ ΛqHd(Ω

M). If n♭ΩM ∧ w ∈ Λq+1L2(Γ), we define tw|Γ, the
tangential trace of w on Γ, by

(172) tw|Γ := inΩM (n
♭
ΩM ∧ w) ∈ ΛqL2(Γ), so that ∥tw∥L2(Γ) = ∥n♭ΩM ∧ w∥L2(Γ).
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In particular tw|Γ = 0 if n♭ΩM ∧ w|Γ = 0. Let us now consider w ∈ ΛqHd∗(Ω
M). When

inΩMw ∈ Λq−1L2(Γ), we define nw|Γ, the normal trace of w on Γ, by

(173) nu|Γ := n♭ΩM ∧ (inΩMu) ∈ ΛqL2(Γ), so that ∥nu∥L2(Γ) = ∥inΩMu∥L2(Γ).

In particular, nu|Γ = 0 if inΩMw|Γ = 0. Lastly, if w ∈ ΛqHd(Ω
M)∩ΛqHd∗(Ω

M) is such
that n♭ΩM ∧ w|Γ ∈ Λq+1L2(Γ) and inΩMw ∈ Λq−1L2(Γ) then w admits a trace w|Γ in
ΛqL2(Γ) defined by (see (172) and (173)),

(174) w|Γ := tw|Γ + nw|Γ.

In addition, one has for such w:

∥w|Γ∥2L2(Γ) = ∥tw|Γ∥
2
L2(Γ) + ∥nw|Γ∥

2
L2(Γ) = ∥n

♭
ΩM ∧ w∥2L2(Γ) + ∥inΩMw∥2L2(Γ).

Let us mention that all the above definitions coincide with the usual ones when w

belongs to ΛqH1(ΩM). In particular, (174) can be seen as an extension of (167).

Trace estimates for forms ΛqHd(Ω
M) ∩ ΛqHd∗(Ω

M) satisfying mixed Dirichlet-Neumann
boundary conditions and when ΩM is not smooth. — Let Γ be any open Lipschitz subset
of ∂ΩM. According to [49, Prop. 3.1], the space{

w ∈ ΛqC∞(
ΩM

)
, w = 0 in a neighborhood of ∂ΩM ∖ Γ

}
is dense in

ΛqHd,Γ(Ω
M) :=

{
w ∈ ΛqHd(Ω

M), supp(n♭ΩM ∧ w) ⊂ Γ
}

and in
ΛqHd∗,Γ(Ω

M) :=
{
w ∈ ΛqHd∗(Ω

M), supp(inΩMw) ⊂ Γ
}
.

We are now in position to state the following result which is a consequence of [49,
Th. 1.1 & 1.2] (see also [36, Th. 4.1 & 4.2]).

Proposition 32. — Let us assume that ΩM ⊂ Rd is a Lipschitz domain. Let ΓM
D

and ΓM
N be two disjoint Lipschitz open subsets of ∂ΩM such that ΓM

D ∪ ΓM
N = ∂ΩM

and such that ΓM
D and ΓM

N meet at an angle strictly smaller than π (in the sense of
Definition 31). Then, the following results hold:

(i) Let w be a differential form such that (see (165), (166), (172), and (173))

w ∈ ΛqHd(Ω
M) ∩ ΛqHd∗(Ω

M), tw|ΓM
D
= 0 and nw|ΓM

N
= 0.

Then w satisfies

w ∈ ΛqH1/2(ΩM) and inΩMw, n♭ΩM ∧ w ∈ ΛL2(∂ΩM)

as well as the regularity estimate:

(175) ∥w∥H1/2(ΩM)+∥w|∂ΩM∥L2(∂ΩM) ⩽ C
(
∥w∥L2(ΩM)+∥dw∥L2(ΩM)+∥d∗w∥L2(ΩM)

)
,

where w|∂ΩM is defined by (174) and C > 0 is independent of w.
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(ii) Assume that f :ΩM→R is a C∞ function. The unbounded operators d
(q)
f,h,T(Ω

M)

and δ(q)f,h,N(ΩM) on ΛqL2(ΩM) defined by

d
(q)
f,h,T(Ω

M) = d
(q)
f,h

with domain

D
(
d
(q)
f,h,T(Ω

M)
)
=

{
w ∈ ΛqL2(ΩM), df,hw ∈ Λq+1L2(ΩM), tw|ΓM

D
= 0

}
,

and
δ
(q)
f,h,N(ΩM) = d

(q)
f,h

∗

with domain

D
(
δ
(p)
f,h,N(ΩM)

)
=

{
w ∈ ΛqL2(ΩM), d∗f,hw ∈ Λq−1L2(ΩM), nw|ΓM

N
= 0

}
,

are closed, densely defined, and adjoint one of each other in ΛqL2(ΩM).

On can check that (see [27, Eq. (130])

(176)
{
Im df,h,T ⊂ Ker df,h,T and d2f,h,T = 0,

Im δf,h,N ⊂ Ker δf,h,N and δ2f,h,N = 0.

Witten Laplacian with mixed Dirichlet-Neumann boundary conditions on ∂ΩM

We are now in position to define the Witten Laplacians with mixed Dirichlet-
Neumann boundary conditions on ∂ΩM (see also [27, p. 89]).

Proposition 33. — Let us assume that ΩM, ΓM
D, and ΓM

N satisfy the assumptions of
Proposition 32. Let q = 0, . . . , d. Let us define on ΛL2(ΩM) the operator

(177) ∆
M,(q)
f,h (ΩM) := d

(q−1)
f,h,T(ΩM) ◦ δ(q)f,h,N(ΩM) + δ

(q+1)
f,h,N(ΩM) ◦ d(q)f,h,T(Ω

M),

in the sense of composition of unbounded operators, see Proposition 32 for the defini-
tions of df,h,T(Ω

M) and δf,h,N(ΩM). This operator is a densely defined nonnegative
self-adjoint operator and its domain is given by

(178) D
(
∆

M,(q)
f,h (ΩM)

)
=

{
w ∈ ΛqL2(ΩM), df,hw, d

∗
f,hw, d

∗
f,hdf,hw, df,hd

∗
f,hw∈ΛL2(ΩM),

tw|ΓM
D
= 0, td∗f,hw|ΓM

D
= 0, nw|ΓM

N
= 0, ndf,hw|ΓM

N
= 0

}
.

In addition, the domain D
(
Q

M,(q)
f,h (ΩM)

)
of the closed quadratic form Q

M,(q)
f,h (ΩM)

associated with ∆
M,(q)
f,h (ΩM) is given by

D
(
Q

M,(q)
f,h (ΩM)

)
= D

(
d
(q)
f,h,T(Ω

M)
)
∩D

(
δ
(q)
f,h,N(ΩM)

)
=

{
w ∈ ΛqHd(Ω

M) ∩ ΛqHd∗(Ω
M), tw|ΓM

D
= 0 and nw|ΓM

N
= 0

}
and for any u,w ∈ D

(
Q

M,(q)
f,h (ΩM)

)
,

Q
M,(q)
f,h (ΩM)(u,w) = ⟨df,h,Tu, df,h,Tw⟩L2(ΩM) + ⟨δf,h,Nu, δf,h,Nw⟩L2(ΩM).
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Let us mention an important consequence of Proposition 32. For w∈D
(
∆
M,(q)
f,h (ΩM)

)
,

the traces td∗f,hw and ndf,hw are a priori defined in ΛH−1/2(∂ΩM) but actually
belong to ΛL2(∂ΩM). Indeed, ndf,hu|ΓM

N
= 0 by definition of D

(
∆

M,(q)
f,h (ΩM)

)
and

tdf,hw|ΓM
D

= 0 using (176). Therefore, df,hw is in D
(
Q

M,(q+1)
f,h (ΩM)

)
and therefore

has a trace in ΛL2(∂ΩM) according to Proposition 32. This argument also holds for
d∗f,hw ∈ D

(
Q

M,(q−1)
f,h (ΩM)

)
.

We end up this section with a Green formula which will be frequently used in the
sequel (see [60, Lem. 2.10]).

Lemma 34. — Let us assume that ΩM, ΓM
D, and ΓM

N satisfy the assumptions of Propo-
sition 32. Let q = 0, . . . , d. Let φ be a real-valued Lipschitz function on ΩM. Then,
for any w ∈ D

(
Q

M,(q)
f,h (ΩM)

)
, one has:

(179) Q
M,(q)
f,h (ΩM)(w, e(2/h)φw) = h2

∥∥d(eφ/hw)∥∥2
L2(ΩM)

+ h2
∥∥d∗(eφ/hw)∥∥2

L2(ΩM)

+
〈
(|∇f |2 − |∇φ|2 + hL∇f + hL∗

∇f )e
φ/hw, eφ/hw

〉
L2(ΩM)

+ h

(∫
ΓM
N

−
∫
ΓM
D

)
⟨w,w⟩T∗

σΩ
M e(2/h)φ∂nΩM f dσ,

where we recall that L stands for the Lie derivative. Moreover, when w belongs to
D
(
∆

M,(q)
f,h (ΩM)

)
, the left-hand side of (179) equals ⟨e(2/h)φ∆M,(q)

f,h (ΩM)w,w⟩L2(ΩM).

In the following, we will use this lemma several times with (ΩM,ΓM
D,Γ

M
N) =

(ΩM
k ,Γ

M
k,D,Γ

M
k,N) (for k ∈ {1, . . . , n}), in which case ∂nΩM f = 0 on ΓM

D and ∂nΩM f > 0

on ΓM
N (see items (1b) and (2) in Proposition 30).

3.3.2. Spectral properties of ∆M,(q)
f,h (ΩM

k )

In view of Proposition 30, the results of Section 3.3.1 can be applied, for any
k ∈ {1, . . . , n}, to (ΩM,ΓM

D,Γ
M
N) = (ΩM

k ,Γ
M
k,D,Γ

M
k,N). The main result of this section

concerns the spectrum of the operator ∆
M,(q)
f,h (ΩM

k ), defined in Proposition 33.

Proposition 35. — Let us assume that (Ω-f) is satisfied. Let k ∈ {1, . . . , n} and ΩM
k

be the domain introduced in Proposition 30. For q ∈ {0, . . . , d}, let ∆
M,(q)
f,h (ΩM

k ) be
the unbounded nonnegative self-adjoint operator on ΛqL2(ΩM

k ) defined by (177)–(178)
with (ΩM,ΓM

D ,Γ
M
N) = (ΩM

k ,Γ
M
k,D,Γ

M
k,N). Then, the following holds true:

(i) The operator ∆
M,(q)
f,h (ΩM

k ) has compact resolvent.
(ii) For any eigenvalue λ of ∆

M,(q)
f,h (ΩM

k ) and any associated eigenform w(q) in
D
(
∆

M,(q)
f,h (ΩM

k )
)
, one has

df,hw
(q) ∈ D

(
∆

M,(q+1)
f,h (ΩM

k )
)

and d∗f,hw
(q) ∈ D

(
∆

M,(q−1)
f,h (ΩM

k )
)
,

with
df,h∆

M,(q)
f,h (ΩM

k )w(q) = ∆
M,(q+1)
f,h (ΩM

k )df,hw
(q) = λdf,hw

(q)

d∗f,h∆
M,(q)
f,h (ΩM

k )w(q) = ∆
M,(p−1)
f,h (ΩM

k )d∗f,hw
(q) = λd∗f,hw

(q).and

If in addition λ ̸= 0, either df,hw
(q) or d∗f,hw

(q) is non-zero.
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(iii) There exist c > 0 and h0 > 0 such that for any q ∈ {0, . . . , d} and h ∈ (0, h0),

dimRan π[0,ch]
(
∆

M,(q)
f,h (ΩM

k )
)
=

{
1 if q ∈ {0, 1},
0 if q ∈ {2, . . . , d},

In addition, for all h ∈ (0, h0), there exists λ(ΩM
k ) ⩾ 0 such that for q ∈ {0, 1},

Sp
(
∆

M,(q)
f,h (ΩM

k )
)
∩ [0, ch] = {λ(ΩM

k )}.

Finally, λ(ΩM
k ) is non-zero and is exponentially small when h→ 0.

Proof. — Item (i) is a consequence of the compactness of the embedding
ΛqH1/2(ΩM

k ) ↪−→ ΛqL2(ΩM
k )

and of the continuous inclusion D
(
∆

M,(q)
f,h (ΩM

k )
)
↪→ ΛqH1/2(ΩM

k ) (see Proposition 32).
Item (ii) is a straightforward consequence of the characterization of the domain of
∆

M,(q)
f,h (ΩM

k ) together with (176). Moreover, if λ ̸= 0, then
0 ̸= λ∥w(q)∥2L2(ΩM

k )
= ⟨∆M,(q)

f,h (ΩM
k )w

(q), w(q)⟩L2(ΩM
k )

= ⟨df,hw(q), df,hw
(q)⟩L2(ΩM

k )
+ ⟨d∗f,hw(q), d∗f,hw

(q)⟩L2(ΩM
k )
,

which implies that either df,hw
(q) or d∗f,hw

(q) is non-zero. Let us now prove item (iii)
in Proposition 35. It is a consequence of Lemma 34 (with φ = 0) and the fact that
the normal derivative of f on ΓM

k,N is non negative (see item 2 in Proposition 30)
together with arguments already used in Section 2.4. Let us be more precise on this.
The function f is C∞ on ΩM

k and its critical points in ΩM
k are exactly x0 and zk.

Moreover, for ε > 0 small enough,
(180) ΩM

k ∩ {x ∈ Ω, xd(x) ∈ [0, ε]} = Cα ∩ {x ∈ Ω, xd(x) ∈ [0, ε]} = Cε.

In particular, ΩM
k is smooth near zk and

(181) nΩM
k
= nCα = nΩ on ΓM

k,D.

From assumption (Ω-f), it thus holds ∂n
ΩM
k

f = 0 on ΓM
k,D. Therefore, we can consider

two neighborhoods Vx0
and Vzk of respectively x0 and zk in ΩM

k such that
– Vx0

⊂ ΩM
k and x0 is the only critical point of f in Vx0

,
– Vzk ∩ ΓM

k,N = ∅, ∂n
ΩM
k

f = 0 on ∂ΩM
k ∩ Vzk and, zk is the only critical point of f

in Vzk ,
– Vx0 ∩ Vzk = ∅.

For y ∈ {x0, zk}, let χy : ΩM
k → [0, 1] be a C∞ supported in Vy and such that χy = 1

in a neighborhood of y in ΩM
k . Then, one defines:

χ̃ :=
√

1− χ2
x0
− χ2

zk
,

so that on ΩM
k , χ̃2+χ2

x0
+χ2

zk
= 1. Let w ∈ D(Q

M,(q)
f,h (ΩM

k )). The IMS formula [19, 42]
yields:
Q

M,(q)
f,h (ΩM

k )(w) = Q
M,(q)
f,h (χ̃w)− h2 ∥w∇χ̃∥2L2(ΩM

k )

+
∑

y∈{x0,zk}

Q
M,(q)
f,h (χyw)− h2

∥∥w∇χy∥∥2L2(ΩM
k )
.
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This formula easily follows from Lemma 34 (with φ = 0) and the fact that χ̃2+χ2
x0

+

χ2
zk

= 1 and χw ∈ D(Q
M,(q)
f,h (ΩM

k )) for any smooth function χ : ΩM
k → R.

In the following C > 0 and c > 0 are constants independent of h and w, and which
can change from one occurrence to another. Since |∇f |2 ⩾ c on the support of χ̃
in ΩM

k , one deduces from Lemma 34 (applied to χ̃w with φ = 0), and the fact that
∂n

ΩM
k

f > 0 on ΓM
k,N that for h small enough

Q
M,(q)
f,h (ΩM

k )(χ̃w) ⩾ c∥w χ̃∥2L2(ΩM
k )
.

Then, using the previous IMS formula, it holds for h small enough,

(182) Q
M,(q)
f,h (ΩM

k )(w) ⩾ c∥w χ̃∥2L2(ΩM
k )

+
∑

y∈{x0,zk}

Q
M,(q)
f,h (ΩM

k )(χyw)−Ch2∥w∥2L2(ΩM
k )
.

Let us assume that q ⩾ 2. Then, by the same analysis as in item (2) in Step 1b
and item (2) in Step 3 in Section 2.4, one has (up to choosing Vx0

and Vzk smaller),
for all y ∈ {x0, zk} and h small enough Q

M,(q)
f,h (ΩM

k )(χyw) ⩾ Ch∥χyw∥2L2(ΩM
k )

. Hence,
using (182), it follows that, when q ⩾ 2,

Q
M,(q)
f,h (ΩM

k )(w) ⩾ Ch∥w∥2L2(ΩM
k )
.

This proves the first statement in item (iii) in Proposition 35 when q ⩾ 2.
Let us now consider q ∈ {0, 1}. By the same analysis as in item (2) in Step 1b and

item (1) in Step 3 in Section 2.4, one has that (up to choosing Vx0 and Vzk smaller)
for h small enough Q

M,(0)
f,h (ΩM

k )(χzkw) ⩾ Ch∥χzkw∥2L2(ΩM
k )

and Q
M,(1)
f,h (ΩM

k )(χx0w) ⩾

Ch∥χx0
w∥2

L2(ΩM
k )

. Let us now assume that

Q
M,(q)
f,h (ΩM

k )(w) ⩽ ch∥w∥2L2(ΩM
k )
,

for some c > 0. Using the same arguments than those used in Step 4 in Section 2.4
(up to choosing Vx0 and Vzk smaller), one obtains that, if q = 0 (resp. q = 1), w is
at a distance (

√
c + o(1))∥w∥L2(ΩM

k )
of the one dimensional vector space spanned

by Φx0

h = χx0
Ψx0

h / ∥χx0
Ψx0

h ∥L2(ΩM
k )

, see (102), (103), and (117) (resp. spanned by
Φzkh = χzkΨ

zk
h / ∥χzkΨ

zk
h ∥L2(ΩM

k )
, see (111), (112), and (117)). Hence, for c > 0 small

enough and h small enough

dimRan π[0,ch]
(
∆

M,(q)
f,h (ΩM

k )
)
⩽ 1.

Besides, using Proposition 33, Φx0

h ∈ D(Q
M,(0)
f,h (ΩM

k )) because the function Φx0

h is
smooth and is supported in Vx0

⊂ ΩM
k . It also holds Φzkh ∈ D(Q

M,(1)
f,h (ΩM

k )). Indeed,
the 1-form Φzkh is smooth, supported in Vzk ⊂ ΩM

k and Vzk ∩ ΓM
k,N = ∅, and there-

fore: tΦzkh = 0 on ΓM
k,D and Φzkh = 0 on ΓM

k,N. Using the Min-Max principle, Equa-
tions (103) (with y = x0) and (112) (with y = zk), one deduces that ∆

M,(q)
f,h (ΩM

k )

admits at least one eigenvalue λM,(q) of order O(h2) when h → 0. This shows that
dimRan π[0,ch]

(
∆

M,(q)
f,h (ΩM

k )
)
= 1 if q ∈ {0, 1}.

Using the complex property (see (ii) in Proposition 35), it holds λM,(0) = λM,(1) =:

λ(ΩM
k ) for h small enough. In addition, λM,(0) > 0 because e−(1/h)f does not belong
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to the domain of ∆M,(0)
f,h (ΩM

k ). Finally, the fact that λM,(0) is exponentially small when
h→ 0 follows by standard arguments, using the test function χx0

e−(1/h)f in the Min-
Max principle for ∆

M,(0)
f,h (ΩM

k ) (see the end of the proof of Corollary 25 for a similar
reasoning). The proof of Proposition 35 is complete. □

3.3.3. Asymptotic equivalents of λ(ΩM
k ) and of

∫
ΓM
k,D

u
(1)
k · nΩM

k
e−(1/h)f . — Let us now

provide asymptotic results on the principal eigenvalue and eigenform of ∆M,(1)
f,h (ΩM

k ).

Proposition 36. — Let us assume that assumption (Ω-f) is satisfied. Let k ∈
{1, . . . , n} and ΩM

k be the domain introduced in Proposition 30. For q ∈ {0, 1}, let
∆

M,(q)
f,h (ΩM

k ) be the unbounded nonnegative self-adjoint operator on ΛqL2(ΩM
k ) defined

by (177)–(178) with (ΩM,ΓM
D ,Γ

M
N) = (ΩM

k ,Γ
M
k,D,Γ

M
k,N).

Let λ(ΩM
k ) be the principal eigenvalue of ∆M,(q)

f,h (ΩM
k ) (as introduced in item (iii) of

Proposition 35). Then, it holds in the limit h→ 0:

λ(ΩM
k ) = Ax0,zkh e

−(2/h)(f(zk)−f(x0))(1 +O(
√
h))(183)

with

Ax0,zk :=
2|µzk |

(
detHess f(x0)

)1/2
π
∣∣detHess f(zk)

∣∣1/2 ,(184)

where µzk is the negative eigenvalue of Hess f(zk).
Let u

(1)
k be a L2(ΩM

k )-normalized eigenform of ∆
M,(1)
f,h (ΩM

k ) associated with the
eigenvalue λ(ΩM

k ). The 1-form u
(1)
k is unique up to a multiplication by ±1. This mul-

tiplicative factor can be chosen such that: in the limit h→ 0,∫
ΓM
k,D

u
(1)
k · nΩM

k
e−(1/h)f = −bkhm e−(1/h)f(zk)(1 +O(

√
h)),(185)

where

bk :=
√
Ax0,zkκx0 , κx0 :=

πd/2√
detHess f(x0)

, and m :=
d

4
− 1

2
.(186)

Proof. — The proof of Proposition 36 is divided into three steps.

Step 1: Construction of the quasi-mode φM,(0)
k for ∆

M,(0)
f,h (ΩM

k ). — Let ε > 0 be small
enough such that ΩKα/2 ⊂ {xd > 5ε}. Then it holds (see (180) and (135))
(187) ΩM

k ∩ {x ∈ Ω, xd(x) ∈ [0, 4ε]} = Cα ∩ {x ∈ Ω, xd(x) ∈ [0, 4ε]} = C4ε.

Notice that since x0 ∈ ΩKα/2 , it then holds
(188) x0 ∈ ΩM

k ∩ {x ∈ Ω, xd(x) > 4ε}.

Since zk belongs to the open set ΓM
k,D, one can consider r > 0 small enough such that

B∂Ω(zk, r) ⊂ ΓM
k,D (where B∂Ω(zk, r) is the open ball of radius r > 0 centered at zk in

∂Ω). Define
(189) Vr4ε(zk) := {x ∈ Ω, z(x) ∈ B∂Ω(zk, r) and xd ∈ [0, 4ε]} ⊂ C4ε.

A schematic representation of Vr4ε(zk) is given in Figure 6.
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Figure 6. A schematic representation of Vr4ε(zk).

For each z ∈ ΓM
k,D, recall that x′ = (x1, . . . , xd−1) is a system of coordinates

defined in a neighborhood of z in ∂Ω such that (131), (132), and (133) hold. Recall
that x 7→ (z(x), xd(x)) introduced in (105) and (129) defines a C∞ diffeomorphism on
{x ∈ Ω, xd(x) ∈ [0, 3ε)}. To ease the notation, from now on, we simply write {xd ∈ O}
for the set {x ∈ Ω, xd(x) ∈ O} for O ⊂ R+. Recall that by (106) and since nM(zk)

is an eigenvector of Hess f(zk) for the eigenvalue µzk < 0, up to choosing ε > 0 and
r > 0 smaller,
(190) ∀x = (x′, xd) ∈ Vr4ε(zk),

f(x) = f(0) +
1

2
x′ ·Hessf |∂Ω(zk)x′ −

|µzk |
2

x2d +O(|x|3).

Since Hessf |∂Ω(zk) is positive-definite, we may assume in the following that r > 0

and ε > 0 are small enough such that
(191) {zk} = argmin

Vr4ε(zk)

(f + |µzk |x2d).

Moreover, because
ΓM
k,D ⊂ Γzk and Γzk ⊂W+

zk

(see (14)), one has {zk} = argmin
ΓM
k,D

f . With a slight abuse of notation, we still
denote by f the function f in the (z, xd) variable. Since f(z, xd) = f(z, 0) + oε(1)

uniformly on x = (z, xd) ∈ C4ε as ε → 0, it thus holds if in addition z ∈ ΓM
k,D ∖

B∂Ω(zk, r), f(z, xd) ⩾ f(zk) + c − oε(1) for some c > 0 independent of xd ∈ [0, 4ε].
This implies that up to choosing ε > 0 smaller, it holds for some c > 0,

(192) f > f(zk) + c/2

on C4ε ∖ Vr4ε(zk) = {x = (z, xd), z ∈ ΓM
k,D ∖ B∂Ω(zk, r), xd ∈ [0, 4ε]}.
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Let us consider χ ∈ C∞(R+, [0, 1]) such that supp χ ⊂ [0, ε] and χ = 1 on [0, ε/2].

Inspired by [8] (see also [58, §4.2] and [25]), we build a quasi-mode for ∆
M,(0)
f,h (ΩM

k )

using the function ϕ
M,(0)
k defined on Cα ∩ {xd ∈ [0, 2ε]} = C2ε (see (135)) by:

(193) ∀x = (z, xd) ∈ C2ε, ϕ
M,(0)
k (z, xd) :=

∫ xd
0
χ(t)e−(1/h)|µzk | t

2

dt∫ 2ε

0
χ(t) e−(1/h)|µzk | t2dt

.

Notice that the function ϕ
M,(0)
k only depends on the variable xd. Moreover, one has:

ϕ
M,(0)
k ∈ C∞(

C2ε

)
and ∀x = (z, xd) ∈ C2ε, ϕ

M,(0)
k (x) = 1 if xd ∈ [ε, 2ε].

Let us set for x = (z, xd) ∈ C2ε:

(194) ψ
M,(0)
k (x) = ϕ

M,(0)
k (z, xd).

We extend ψ
M,(0)
k from C2ε = ΩM

k ∩ {xd ∈ [0, 2ε]} (see (187)) to ΩM
k by setting

ψ
M,(0)
k = 1 on ΩM

k ∩ {xd > 2ε} = ΩM
k ∖ C2ε. One then has ψM,(0)

k ∈ C∞(
ΩM
k

)
. Notice

that from (188),

(195) ψ
M,(0)
k = 1 in a neighborhood of x0 in ΩM

k .

Then, define on ΩM
k :

(196) φ
M,(0)
k =

ψ
M,(0)
k e−(1/h)f

∥ψM,(0)
k e−(1/h)f∥L2(ΩM

k )

∈ C∞(
ΩM
k

)
.

Let us check that φM,(0)
k belongs to the domain of ∆

M,(0)
f,h (ΩM

k ), defined in (178).
Because it is smooth on the bounded set ΩM

k , one just has to check that it satis-
fies the boundary conditions on ∂ΩM

k . By definition of ϕM,(0)
k above, φM,(0)

k (x) = 0

for all x = (z, xd) ∈ C2ε ∩ {xd = 0} = ΓM
k,D (see (135)). Let us now check that

∂n
ΩM
k

(ef/hφ
M,(0)
k )(x) = 0 for a.e. x ∈ ΓM

k,N, i.e., that ∂n
ΩM
k

ψ
M,(0)
k (x) = 0 for a.e.

x ∈ ΓM
k,N. Recall that ΓM

k,N = ∂ΩM
k ∩ Ω (see (147)). Let us first consider the case

x ∈ ΓM
k,N ∩ {xd ∈ (0, 3ε)}. From (187) and (138), it holds:

(197) ∂ΩM
k ∩ {xd ∈ (0, 3ε)} = Σlateral

3ε .

Because ΩKα/2⊂{xd>5ε} and Σlateral
3ε ⊂∂Cα, one deduces that (see (150) and (151)),

Σlateral
3ε = ΓM

k,N ∩ {xd ∈ (0, 3ε)} ⊂ A2.

Then using (154) and (140), nΩM
k
= −∇x1/|∇x1| on Σlateral

3ε . Since ∇ψM,(0)
k is collinear

to ∇xd on C3ε which is, in view of (106), orthogonal to ∇x1, it holds:

∂n
ΩM
k

ψ
M,(0)
k (x) = 0 for x ∈ ΓM

k,N ∩ Σlateral
3ε .

Let us now consider the case x ∈ ΓM
k,N∩{xd ⩾ 3ε}. Because ψM,(0)

k = 1 on ΩM
k ∖Cε =

ΩM
k ∩ {xd > ε} (therefore |∇ψM,(0)

k |(x) = 0 on this set) and ΓM
k,N ∩ {xd ⩾ 3ε} =

∂ΩM
k ∩ {xd ⩾ 3ε}, it holds,

∂n
ΩM
k

ψ
M,(0)
k (x) = 0 for a.e. x ∈ ΓM

k,N ∩ {xd ⩾ 3ε}.
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In conclusion, one has

(198) φ
M,(0)
k ∈ D(∆

M,(0)
f,h (ΩM

k )).

Step 2: Asymptotic estimates of

⟨φM,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k ⟩L2(ΩM

k )
and ∥∆M,(0)

f,h (ΩM
k )φ

M,(0)
k ∥2L2(ΩM

k )
as h −→ 0.

Let us first deal with Zzk := ∥ψM,(0)
k e−(1/h)f∥L2(ΩM

k )
. Because |ψM,(0)

k | ⩽ 1, {x0} =

argmin
ΩM
k

f (which follows from the fact that x0 ∈ ΩM
k ⊂ Ω and Lemma 4) and

ψ
M,(0)
k = 1 near x0 in ΩM

k (see (195)) it holds, using Laplace’s method, in the limit
h→ 0:

(199) Zzk =
√
κx0 h

d/4 e−(1/h)f(x0)
(
1 +O(h)

)
,

where κx0 is defined in (186).
Let us now consider the term ⟨φM,(0)

k ,∆
M,(0)
f,h (ΩM

k )φ
M,(0)
k ⟩L2(ΩM

k )
. One has (see (198)

and Proposition 33):

⟨φM,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k ⟩L2(ΩM

k )
=

∫
ΩM
k

|df,hφM,(0)
k |2 =

h2
∫
C2ε
|∇ψM,(0)

k |2e−(2/h)f

Z2
zk

,

where we also used the fact that ψM,(0)
k = 1 on ΩM

k ∖ C2ε. For η ∈ [0, 2ε], set Γ(η) =

{x ∈ C2ε, xd(x) = η}. Note that Γ(0) = ΓM
k,D and that for any η ∈ [0, 2ε], Γ(η) is

naturally parametrized by ΓM
k,D through the mapping z ∈ ΓM

k,D 7→ (z, η) with Jacobian
determinant j(z, η) with j(z, 0) = 1. One has using (194), (193), the co-area formula [32]
(dx = dσΓ(η)|∇xd|−1dη), and the fact that |∇xd| = 1:

h2
∫
C2ε

|∇ψM,(0)
k |2e−(2/h)f =

∫ 2ε

η=0
χ2(η)

∫
Γ(η)
|∇xd|2 e−(2/h)(f+|µzk |η

2)dσΓ(η)|∇xd|−1dη(∫ 2ε

0
χ(t) e−(1/h)|µzk | t2dt

)2
=

∫ 2ε

η=0
χ2(η)

∫
z∈ΓM

k,D
e−(2/h)(f(z,η)+|µzk |η

2)j(z, η)dσΓM
k,D
dη(∫ 2ε

0
χ(t) e−(1/h)|µzk | t2dt

)2 .

A straightforward computation implies that there exists c > 0 such that in the limit
h→ 0,

Nzk :=

∫ 2ε

0

χ(t) e−(1/h)|µzk | t
2

dt =

√
πh

2
√
|µzk |

(
1 +O(e−c/h)

)
.(200)

Using (192) and (189), one has for h small enough:∫ 2ε

η=0

χ2(η)

∫
z∈ΓM

k,D

e−(2/h)(f(z,η)+|µzk |η
2)j(z, η)dσΓM

k,D
dη

=

∫ 2ε

η=0

χ2(η)

∫
|z|⩽r

e−(2/h)(f(z,η)+|µzk |η
2)j(z, η)dσΓM

k,D
dη

+O(e−(2/h)(f(zk)+c)),
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for some c > 0 independent of h. Using in addition (190), the same computations as
in the proof of the step 1.b of [58, Prop. 24] imply that in the limit h→ 0:∫ 2ε

η=0

χ2(η)

∫
|z|⩽r

e−(2/h)(f(z,η)+|µzk |η
2)j(z, η)dσΓM

k,D
dη =

(πh)d/2e−(2/h)f(zk)

2
√
µ1 · · ·µd−1|µzk |

(
1 +O(

√
h)
)
,

where the O(
√
h) is optimal in general. In conclusion, using also (199), one has as

h→ 0:

(201) ⟨φM,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k ⟩L2(ΩM

k )
= Ax0,zkh e

−(2/h)(f(zk)−f(x0))(1 +O(
√
h)).

Let us now consider the term ∥∆M,(0)
f,h (ΩM

k )φ
M,(0)
k ∥2

L2(ΩM
k )

. Using (118) and the def-

inition of ψM,(0)
k , it holds on ΩM

k :

(202) ∆
(0)
f,hφ

M,(0)
k =

2he−(1/h)f

∥ψM,(0)
k e−(1/h)f∥L2(ΩM

k )

( h
2
∆

(0)
H +∇f · ∇

)
ψ

M,(0)
k

is supported in C2ε.

By (194), (200), and (193), for h small enough,
∥∆(0)

H ψ
M,(0)
k ∥L∞(C2ε) and ∥∇ψM,(0)

k ∥L∞(C2ε)

are O(hν) for some ν ∈ R. Then, using (192) and (199), one has for h small enough
(see (189)):

(203) ∥∆M,(0)
f,h (ΩM

k )φ
M,(0)
k ∥2L2(ΩM

k )
= ∥∆M,(0)

f,h (ΩM
k )φ

M,(0)
k ∥2L2(C2ε)

= ∥∆M,(0)
f,h (ΩM

k )φ
M,(0)
k ∥2L2(Vr2ε(zk))

+O(e−(2/h)(f(zk)−f(x0)+c)),

for some c > 0 independent of h. Let us recall that g denotes the metric tensor in
the (x′, xd) coordinates (see (106)). In the following, with a slight abuse of notation,
we also denote by g the matrix (G, 0; 0, 1). In the (x′, xd)-coordinates, ∆(0)

H writes

∆
(0)
H ϕ

M,(0)
k = − 1√

|g|

d∑
i,j=1

∂xi
(√
|g|gi,j∂xjϕ

M,(0)
k

)
,

where |g| denotes the determinant of g and gi,j the (i, j) entry of g−1. Then, from
(202) and (193), one has on Vr2ε(zk),

∆f,hφ
M,(0)
k =

2h e−f/h

Zzk

[
− h

2
√
|g|

d∑
i,j=1

∂xi
(√
|g|gi,j∂xjϕ

M,(0)
k

)
+

d∑
i,j=1

gi,j∂xif∂xjϕ
M,(0)
k

]

=
2h e−(1/h)(f+|µzk |x

2
d)

ZzkNzk

[
− h

2
√
|g|

d∑
i=1

∂xi
(√
|g|gi,d

)
χ(xd) + gd,dχ(xd)|µzk |xd

+ χ(xd)

d∑
i=1

gi,d∂xif −
h

2
χ′(xd)g

d,d
]

=
2h e−(1/h)(f+|µzk |x

2
d)

ZzkNzk

[
O(h) +O(|x|2)

]
,
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where Nzk is defined in (200), and where in the last inequality we have used that
gi,d = 0 for i = 1, . . . , d − 1 (see (106)), and ∂xdf(x

′, xd) = −|µzk |xd + O(|x|2) (see
(190)). Notice the cancellation of the O(x) terms in the previous computations due
to the precise form of the quasi-mode φ

M,(0)
k . Thus, by (191), (199), (190), (200),

and (201), one deduces using Laplace’s method that as h→ 0,∥∥∆M,(0)
f,h (ΩM

k )φ
M,(0)
k

∥∥2
L2(Vrε(zk))

=
h2hd/2

hd/2h
O(h2) e−(2/h)(f(zk)−f(x0))

= O(h2)
∣∣⟨φM,(0)

k ,∆
M,(0)
f,h (ΩM

k )φ
M,(0)
k ⟩L2(ΩM

k )

∣∣.
Consequently, one deduces using (203), that

(204) ∥∆M,(0)
f,h (ΩM

k )φ
M,(0)
k ∥L2(ΩM

k )
= O(h)

√∣∣⟨φM,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k ⟩L2(ΩM

k )

∣∣.
Step 3: End of the proof of Proposition 36. — Let us introduce the constant c > 0 from
item (iii) in Proposition 35. Because φM,(0)

k ∈ D(∆
M,(0)
f,h (ΩM

k )), see indeed (198), and
since λ(ΩM

k ) is exponentially small when h → 0 (actually o(h) as h → 0 would be
enough), using the fact that (see the proof of [58, Prop. 27])(

1− π[0,ch]
(
∆

M,(0)
f,h (ΩM

k )
))
φ

M,(0)
k = − 1

2πi

∫
C(ch/2)

z−1(z −∆
M,(0)
f,h )−1∆

M,(0)
f,h φ

M,(0)
k dz,

where C(ch/2) ⊂ C is the circle of radius ch/2 centered at 0, it holds for h small
enough∥∥(1− π[0,ch](∆M,(0)

f,h (ΩM
k )

)
)φ

M,(0)
k

∥∥
L2(ΩM

k )
⩽ Ch−1

∥∥∆M,(0)
f,h (ΩM

k )φ
M,(0)
k

∥∥
L2(ΩM

k )
.

Therefore, using (204), it holds:

(205)
∥∥(1− π[0,ch](∆M,(0)

f,h (ΩM
k )

)
)φ

M,(0)
k

∥∥
L2(ΩM

k )

⩽ C
√∣∣⟨φM,(0)

k ,∆
M,(0)
f,h (ΩM

k )φ
M,(0)
k ⟩L2(ΩM

k )

∣∣.
In particular, using (201) and the fact that ∥φM,(0)

k ∥L2(ΩM
k )

= 1, there exists c > 0

(because f(zk) > f(x0) see Lemma 4) such that, for h > 0 small enough,

(206)
∥∥π[0,ch](∆M,(0)

f,h (ΩM
k )

)
φ

M,(0)
k

∥∥
L2(ΩM

k )
= 1 +O(e−c/h),

and the following function is therefore well-defined:

(207) u
(0)
k =

π[0,ch]
(
∆

M,(0)
f,h (ΩM

k )
)
φ

M,(0)
k∥∥π[0,ch](∆M,(0)

f,h (ΩM
k )

)
φ

M,(0)
k

∥∥
L2(ΩM

k )

.

One has

λ(ΩM
k ) = ⟨u

(0)
k ,∆

M,(0)
f,h (ΩM

k )u
(0)
k

〉
L2(ΩM

k )

(208)
= ⟨π[0,ch]

(
∆

M,(0)
f,h (ΩM

k )
)
φ

M,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k

〉
L2(ΩM

k )
(1 +O(e−c/h)),
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since the orthogonal projector π[0,ch]
(
∆

M,(0)
f,h (ΩM

k )
)

and ∆
M,(0)
f,h (ΩM

k ) commute on
D(∆

M,(0)
f,h (ΩM

k )) and φ
M,(0)
k ∈ D(∆

M,(0)
f,h (ΩM

k )). In addition, one has, using (205)
and (204),〈
π[0,ch]

(
∆

M,(0)
f,h (ΩM

k )
)
φ

M,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k

〉
L2(ΩM

k )

=
〈
φ

M,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k

〉
L2(ΩM

k )

−
〈
(1− π[0,ch]

(
∆

M,(0)
f,h (ΩM

k )
)
)φ

M,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k

〉
L2(ΩM

k )

=
〈
φ

M,(0)
k ,∆

M,(0)
f,h (ΩM

k )φ
M,(0)
k

〉
L2(ΩM

k )
(1 +O(h)),

= Ax0,zkh e
−(2/h)(f(zk)−f(x0))(1 +O(

√
h)),

where we used (201). This proves (183). It remains to prove Equation (185).
Let u

(1)
k be a L2(ΩM

k )-normalized eigenform of ∆
M,(1)
f,h (ΩM

k ) associated with the
eigenvalue λ(ΩM

k ). In view of item (ii) and (iii) in Proposition 35 it holds (u(0)k is
indeed a L2(ΩM

k )-normalized principal eigenform of ∆
M,(0)
f,h (ΩM

k ), see (207)), u
(1)
k =

±df,hu(0)k /∥df,hu(0)k ∥L2(ΩM
k )

. Let us choose

(209) u
(1)
k =

df,hu
(0)
k

N
(1)
k

with N
(1)
k =

∥∥df,hu(0)k ∥∥
L2(ΩM

k )
.

From (208), one has,

λ(ΩM
k ) =

〈
df,hu

(0)
k , df,hu

(0)
k

〉
L2(ΩM

k )
= (N

(1)
k )2,

and thus, using (207) and the fact that

df,hπ[0,ch]
(
∆

M,(0)
f,h (ΩM

k )
)
= π[0,ch]

(
∆

M,(1)
f,h (ΩM

k )
)
df,h

(see item (ii) in Proposition 35),

λ(ΩM
k ) =

N
(1)
k ⟨df,hφ

M,(0)
k , u

(1)
k

〉
L2(ΩM

k )∥∥π[0,ch](∆M,(0)
f,h (ΩM

k )
)
φ

M,(0)
k

∥∥
L2(ΩM

k )

=
N

(1)
k ⟨dψ

M,(0)
k , he−(1/h)fu

(1)
k

〉
L2(ΩM

k )∥∥π[0,ch](∆M,(0)
f,h (ΩM

k )
)
φ

M,(0)
k

∥∥
L2(ΩM

k )
Zzk

,

where we also used (196) at the last line. Therefore, because N(1)
k =

√
λ(ΩM

k ), it follows
from (183), (199) and (206), that, as h→ 0, it holds:

(210) ⟨dψM,(0)
k , he−(1/h)fu

(1)
k

〉
L2(ΩM

k )
=

√
Ax0,zk hκx0

hd/2 e−(1/h)f(zk)(1 +O(
√
h)).

Besides, using the fact that u
(1)
k ∈ D(∆

M,(1)
f,h (ΩM

k )) (see item (ii) in Proposition 35)
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and the Green formula (171), one deduces that

(211)
〈
dψ

M,(0)
k , he−(1/h)fu

(1)
k

〉
L2(ΩM

k )
= −⟨d(1− ψM,(0)

k ), he−(1/h)fu
(1)
k

〉
L2(ΩM

k )

=
〈
(1− ψM,(0)

k )e−(1/h)f , d∗f,hu
(1)
k

〉
L2(ΩM

k )
− h

∫
∂ΩM

k

(1− ψM,(0)
k )u

(1)
k · nΩM

k
e−(1/h)f ,

(where here and in the following, we use the notation u
(1)
k · nΩM

k
= in

ΩM
k

u
(1)
k ) and

u
(1)
k · nΩM

k
= 0 on ΓM

k,N.

Moreover, ψM,(0)
k = 0 on ΓM

k,D. Thus,

(212)
∫
∂ΩM

k

(1− ψM,(0)
k )u

(1)
k · nΩM

k
e−(1/h)f =

∫
ΓM
k,D

u
(1)
k · nΩM

k
e−(1/h)f .

Let us now deal with the term ⟨(1− ψM,(0)
k )e−(1/h)f , d∗f,hu

(1)
k

〉
L2(ΩM

k )
. It holds,∣∣⟨(1− ψM,(0)

k )e−(1/h)f , d∗f,hu
(1)
k

〉
L2(ΩM

k )

∣∣ ⩽ ∥∥(1− ψM,(0)
k )e−(1/h)f

∥∥
L2(ΩM

k )

√
λ(ΩM

k )

⩽ Ce
−(1/h)min

supp(1−ψM,(0)
k

)
f
√
λ(ΩM

k )

⩽ Ce−(1/h)(f(x0)+δ)
√
λ(ΩM

k )

⩽ Ce−(1/h)(f(zk)+δ),

where we used the fact that, from (195) and since x0 is the global minimum of f in Ω

(see Lemma 4), minsupp(1−ψM,(0)
k )

f ⩾ f(x0) + δ, for some δ > 0. Notice that we also
used (183) at the last line of the previous computation. Equation (185) then follows
from the previous inequality together with (210), (211), and (212). This concludes
the proof of Proposition 36. □

3.3.4. Agmon estimates on u
(1)
k . — The aim of this section is to prove that u

(1)
k (the

principal eigenform of ∆M,(1)
f,h (ΩM

k )) decays exponentially fast away from zk (see Propo-
sition 38 below): these are so-called Agmon estimates.

Recall the Definition 3 of the Agmon distance. These are basic properties of the
Agmon distance which follows from [44, App. 2], see also [65, Lem. 3.2]:

Proposition 37. — Let us assume that f : Ω → R is a C∞ function. Then, the
Agmon pseudo-distance (x, y) ∈ Ω×Ω 7→ da(x, y) (see Definition 3) is symmetric and
satisfies the triangular inequality. In addition, it is a distance if f has a finite number
of critical points in Ω. Moreover, for any fixed y ∈ Ω, x ∈ Ω 7→ da (x, y) is Lipschitz
(therefore, its gradient is well-defined almost everywhere). For all subset U of Ω and
for almost every x ∈ Ω,

(213) |∇xda (x, U) | ⩽ |∇f(x)|.

Moreover, for all x, y ∈ Ω, we have

(214) |f(x)− f(y)| ⩽ da(x, y).
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The main result of this section if the following:

Proposition 38
Let us assume that assumption (Ω-f) is satisfied. Let k ∈ {1, . . . , n} and ΩM

k

be the subdomain of Ω introduced in Proposition 30. Let ∆
M,(1)
f,h (ΩM

k ) be the un-
bounded nonnegative self-adjoint operator on Λ1L2(ΩM

k ) defined by (177)–(178) with
(ΩM,ΓM

D ,Γ
M
N) = (ΩM

k ,Γ
M
k,D,Γ

M
k,N). Let u

(1)
k be a L2(ΩM

k )-normalized eigenform of
∆

M,(1)
f,h (ΩM

k ) associated with the eigenvalue λ(ΩM
k ), as introduced in Proposition 35.

Then, for any δ > 0, there exists hδ > 0 such that it holds for h ∈ (0, hδ):∥∥eΨk/hu(1)k ∥∥
L2(ΩM

k )
+
∥∥d(eΨk/hu(1)k )∥∥

L2(ΩM
k )

+
∥∥d∗(eΨk/hu(1)k )∥∥

L2(ΩM
k )

⩽ eδ/h,

where Ψk(x) := da(x, zk).

Proof. — Using Lemma 34 on ΩM
k with w = u

(1)
k and since ∇f · nΩM

k
> 0 a.e. ΓM

k,N

(see item (2) in Proposition 30), it holds,

(215) λ(ΩM
k )∥eφ/hu

(1)
k ∥

2
L2(ΩM

k )
⩾ h2

∥∥d(eφ/hu(1)k )
∥∥2
L2(ΩM

k )
+ h2

∥∥d∗(eφ/hu(1)k )
∥∥2
L2(ΩM

k )

+
〈
(|∇f |2 − |∇φ|2 + hL∇f + hL∗

∇f )e
φ/hu

(1)
k , eφ/hu

(1)
k

〉
L2(ΩM

k )
.

Using (215) and (213), it is then standard to get the estimate of Proposition 38 with
da(·, {zk} ∪ {x0}) instead of da(·, zk) using the same arguments as those used in the
boundaryless case [39, Prop. 3.3.1]. Proving Proposition 38 requires a finer analysis.
To this end, we follow the analysis of [43, §2.2] and [29, §6.c]. The proof is divided
into two steps.

Step 1: A Witten Laplacian on 1-forms with a spectrum bounded from below by ch

Roughly speaking, recall that in view of the proof of item (iii) in Proposition 35,
zk is the only point which “creates” a small eigenvalue for ∆M,(1)

f,h (ΩM
k ), namely λ(ΩM

k ).
Thus, if we “remove” zk from ΩM

k , the spectrum of the Witten Laplacian ∆
M,(1)
f,h will

be bounded from below by ch. To do so, we proceed as follows. Let us take η > 0

small enough such that Ba(zk, 3η) ∩ Ω ⊂ ΩM
k and zk is the only critical point of f

in Ba(zk, 3η), where Ba(x, r) denotes the open ball of center x and radius r for the
Agmon distance da (which is indeed a distance since f is a Morse function). Define

Dk,η := ΩM
k ∖ Ba(zk, η).

We have ∂Dk,η = Σk,N ∪ Σk,D ∪ Σk,FD, where

Σk,N := ΓM
k,N, Σk,D := ΓM

k,D ∖ Ba(zk, η) ∩ ∂ΩM
k , and Σk,FD := ∂Ba(zk, η) ∩ ΩM

k .

We refer to Figure 7 for a schematic representation of Dk,η and its boundary. We use
the subscript FD because we will consider a Witten Laplacian with full Dirichlet
boundary conditions on Σk,FD.

Following the procedure of Section 3.3.1, we can consider the Friedrichs exten-
sion ∆

M,(1)
f,h (Dk,η) (which has different boundary conditions from the mixed Lapla-

cian ∆
M,(1)
f,h introduced in Proposition 33, hence the different notation) of the closed
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Figure 7. A schematic representation of Dk,η.

quadratic form
Q

M,(1)
f,h (Dk,η)(u,w) = ⟨df,hu, df,hw⟩L2(Dk,η) + ⟨d

∗
f,hu, d

∗
f,hw⟩L2(Dk,η),

for all u,w ∈ D
(
Q

M,(1)
f,h (Dk,η)

)
, where

D
(
Q

M,(1)
f,h (Dk,η)

)
:=

{
w ∈ Λ1L2(Dk,η), df,hw and d∗f,hw ∈ ΛL2(Dk,η) with

nw|Σk,N = 0, tw|Σk,D = 0, and w|Σk,FD
= 0

}
.

Let w ∈ D
(
Q

M,(1)
f,h (Dk,η)

)
and φ be a real-valued Lipschitz function on Dk,η. Since

w|Σk,FD
= 0 and ∇f · nΩM

k
= 0 on ΓM

k,D ⊃ Σk,D, one has using the same arguments as
those used to prove Lemma 34,

(216)

Q
M,(1)
f,h (Dk,η)(w, e

(2/h)φw)

= h2
∥∥d(eφ/hw)∥∥2

L2(Dk,η)
+ h2

∥∥d∗(eφ/hw)∥∥2
L2(Dk,η)

+
〈
(|∇f |2 − |∇φ|2 + hL∇f + hL∗

∇f )e
φ/hw, eφ/hw

〉
L2(Dk,η)

+ h

∫
Σk,N

⟨w,w⟩T∗
σDk,η e

(2/h)φ∂n
ΩM
k

f dσ

⩾ h2
∥∥d(eφ/hw)∥∥2

L2(Dk,η)
+ h2

∥∥d∗(eφ/hw)∥∥2
L2(Dk,η)

+
〈
(|∇f |2 − |∇φ|2 + hL∇f + hL∗

∇f )e
φ/hw, eφ/hw

〉
L2(Dk,η)

,

where we have used that ∂n
ΩM
k

f ⩾ 0 a.e. on ΓM
k,N = Σk,N. Thus, using (216) and the

same analysis as the one made to prove item (iii) in Proposition 35, there exists c > 0

such that for h small enough:

(217) σ
(
∆

M,(1)
f,h (Dk,η)

)
⩾ ch.
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Step 2: Resolvent estimates. — When D is a subdomain of Ω, and w ∈ Λ1L2(D) is such
that dw and d∗w belong to ΛL2(D), we define

(218) ∥w∥2W1(D) := ∥w∥
2
L2(D) + ∥dw∥

2
L2(D) + ∥d

∗w∥2L2(D).

Notice that by (215) (with φ = 0), it holds

(219) ∥u(1)k ∥W1(ΩM
k )

⩽ Ch−1/2.

By (217) and since λ(ΩM
k ) is exponentially small as h goes to 0 (see (183)), the

distance of λ(ΩM
k ) to σ

(
∆

M,(1)
f,h (Dk,η)

)
is bounded from below by ch/2, as h → 0.

Then, adopting the notation of [29, p. 56], and using (213) and (216), we obtain
using resolvent estimates as in the proof of [29, Prop. 6.5] (with, in our context,
K(h) = {λ(ΩM

k )}),

(220)
(
∆

M,(1)
f,h (Dk,η)− λ(ΩM

k )
)−1

(x, y) = Ô(e−(1/h)da(x,y)
)

for all x, y ∈ Dk,η.

The Ô in (220) means that for any x, y ∈ Dk,η and ε > 0, there exist neighborhoods Vx
and Vy in Dk,η of x and y respectively such that for h small enough,∥∥(∆M,(1)

f,h (Dk,η)− λ(ΩM
k )

)−1
w∥W1(Vx) ⩽ e−(1/h)(da(x,y)−ε)∥w∥L2(Vy),

for all w∈Λ1L2(Dk,η) supported in Vy. We are now in position to prove Proposition 38.

Step 3: Proof of the Agmon estimate. — Let χη be a smooth cut-off function supported
in Ba(zk, 2η) which equals 1 on Ba(zk, 3η/2) and such that ∇χη · nΩM

k
= 0. We claim

that

(221)
(1− χη)u(1)k ∈ D(∆

M,(1)
f,h (Dk,η)),

∆
M,(1)
f,h (Dk,η)((1− χη)u(1)k ) = ∆

(1)
f,h((1− χη)u

(1)
k ).

To prove (221), we use the integration by parts formula [27, Eq. (120)] on Dk,η with,
using the notation there, u = (1−χη)u(1)k and an arbitrary v ∈ D

(
Q

M,(1)
f,h (Dk,η)

)
and

we observe that all the boundary terms vanish. To do so, we check that u = (1−χη)u(1)k
satisfies the required regularity, and that the boundary terms are zero. This shows
that QM,(1)

f,h (Dk,η)(u, v) = ⟨∆(1)
f,h(u), v⟩L2(Dk,η) is bounded by C(u)∥v∥L2(Dk,η). Thus

u ∈ D(∆
M,(1)
f,h (Dk,η)), and ∆

M,(1)
f,h (Dk,η)u = ∆

(1)
f,hu.

Let us give some more details on the regularity and trace of u = (1 − χη)u
(1)
k .

It is easy to check that u ∈ D
(
Q

M,(1)
f,h (Dk,η)

)
. Moreover, ndf,hu = 0 on Σk,N and

d∗f,hu = 0 on Σk,FD ∪ Σk,D are consequences of the fact that u
(1)
k ∈ D(∆

M,(1)
f,h (ΩM

k ))

and u = 0 in a neighborhood of Σk,FD in Dk,η. In particular, d∗f,hu = 0 on Σk,D,
since, d∗f,hu = −∇χη ·u(1)k = 0 on Σk,D (because d∗f,hu

(1)
k = 0 and tu

(1)
k = 0 on ΓM

k,D ⊃
Σk,D). This yields QM,(1)

f,h (Dk,η)(u, v) = ⟨∆(1)
f,hu, v⟩L2(Dk,η), using [27, Eq. (120)], since

v ∈ D
(
Q

M,(1)
f,h (Dk,η)

)
, ndf,hu = 0 on Σk,N and d∗f,hu = 0 on Σk,FD ∪ Σk,D, and thus

concludes the proof of 221.
We have, using (221), and since Dk,η ⊂ ΩM

k ,(
∆

M,(1)
f,h (Dk,η)− λ(ΩM

k )
)
((1− χη)u(1)k ) =

[
∆

(1)
f,h, (1− χη)

]
u
(1)
k
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is supported in Ba(zk, 2η) ∖ Ba(zk, 3η/2) (we used here the commutator brackets
notation). Using (219) and (220), and the fact that

[
∆

(1)
f,h, (1 − χη)

]
is a bounded

linear operator from Λ1W1(Dk,η) to Λ1L2(Dk,η), for all x ∈ Dk,η and ε > 0, there
exists a neighborhood Vx of x in Dk,η such that for h small enough:

∥(1− χη)u(1)k ∥W1(Vx)⩽e
ε/he−(1/h)(da(x,zk)−2η)∥u(1)k ∥W1(Dk,η)⩽e

ε/he−(1/h)(da(x,zk)−3η).

Proposition 38 is a consequence of the previous estimate, a compactness argument,
and the fact that u(1)k = χηu

(1)
k +(1−χη)u(1)k and ∥e(1/h)da(x,zk)χηu(1)k ∥W1(ΩM

k )
⩽ e3η/h

(by (219) and the continuity of the Agmon distance da(·, zk)). □

3.4. Quasi-modes associated with (zk)k=1,...,n. — The principal eigenform u
(1)
k of

∆
M,(1)
f,h (ΩM

k ) introduced in Proposition 36 (see (209)) will be used as a quasi-mode for
∆

Di,(1)
f,h (Ω). To do so, we multiply it by a smooth cut-off function χM

k whose gradient is
supported as close as needed to ΓM

k,N and so that χM
k u

(1)
k belongs to the form domain

of ∆Di,(1)
f,h (Ω), namely Λ1H1

T(Ω) (as required by item (1) in Proposition 26, see also
(119)). More precisely, we have the following result.

Proposition 39. — Let us assume that the assumptions of Proposition 38 hold.
Let u

(1)
k be defined by (209). Let β > 0 and χM

k (β) : ΩM
k → [0, 1] be a C∞ function

such that

(222) χM
k (β) = 1 on

{
x ∈ ΩM

k , dΩ(x,Γ
M
k,N) > 2β

}
,

and,

(223) χM
k (β) = 0 on

{
x ∈ ΩM

k , dΩ(x,Γ
M
k,N) ⩽ β

}
,

where we recall that dΩ denotes the geodesic distance in Ω. We extend χM
k (β) by 0 on

Ω ∖ ΩM
k , and thus χM

k (β) ∈ C∞(Ω) (see Figure 8 for a schematic representation of
the support of χM

k ). Then, one defines

(224) v
(1)
k :=

χM
k (β)u

(1)
k

∥χM
k (β)u

(1)
k ∥L2(Ω)

,

for any β ∈ (0, β0) with β0 > 0 small enough so that χM
k (β) ̸= 0. For ease of notation,

we do not refer to β when writing v
(1)
k . Then

v
(1)
k ∈ Λ1H1

T(Ω) ∩ Λ1C∞
c (Ω).

Finally, for any δ > 0, there exists hδ > 0 such that for all h ∈ (0, hδ) and β ∈ (0, β0):∥∥df,hv(1)k ∥∥2
L2(Ω)

+
∥∥d∗f,hv(1)k ∥∥2

L2(Ω)
⩽ Cλ(ΩM

k ) + eδ/he
−(2/h) inf

supp∇χM
k

(β)
da(·,zk)

,

where C > 0 is independent of h, β, and δ.

Notice that since Σzk is included in the open subset ΓM
k,D of ∂ΩM

k = ΓM
k,D ∪ ΓM

k,N

(see item (1) in Proposition 30), from (222), for β > 0 small enough,

(225) χM
k (β) = 1 in a neighborhood of Σzk in ΩM

k ,
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Figure 8. Schematic representation of the cut-off function χM
k (β), see

Proposition 39. The support of ∇χM
k (β) is as close as needed to ΓM

k,N,
and ΓM

k,N can be as closed as needed to ∂Ω∖ Γzk .

or equivalently, in a neighborhood of Σzk in Ω, by (180)–(135)). In addition, one also
has that, since x0 ∈ ΩM

k , for β > 0 small enough,

(226) χM
k (β) = 1 in a neighborhood of x0 in ΩM

k (or equivalently, in Ω).

In the following, we assume that β > 0 is small enough such that (225) and (226)
hold.

Proof. — From (178), u
(1)
k , du

(1)
k , d∗u

(1)
k ∈ Λ1L2(ΩM

k ) and tu
(1)
k |ΓM

k,D
= 0. Since

χM
k (β) = 0 on Ω∖ ΩM

k ,
v
(1)
k , dv

(1)
k , d∗v

(1)
k ∈ Λ1L2(Ω).

Since χM
k (β) = 0 on ∂Ω∖ ∂ΩM

k and tu
(1)
k |int (∂Ω∩∂ΩM

k )
= 0 (because int (∂ΩM

k ∩ ∂Ω) =
ΓM
k,D, see item (1) in Proposition 30), it holds: tv(1)k = 0 on ∂Ω. Then, by [27, Lem. 73],

v
(1)
k ∈ Λ1H1

T(Ω).

In addition, since ∆
(1)
f,hu

(1)
k = λ(ΩM

k )u
(1)
k ∈ Λ1L2(ΩM

k ) with, on the smooth open subset
ΓM
k,D of ΩM

k , tu(1)k = 0 and td∗f,hu
(1)
k = 0, it holds, by local elliptic regularity (see for

example [17]), u(1)k ∈ Λ1C∞(ΩM
k ∪ ΓM

k,D). Therefore,

v
(1)
k ∈ Λ1C∞

c (Ω).

Let us now compute the energy of v(1)k in Ω. Let us first deal with ∥χM
k (β)u

(1)
k ∥L2(Ω).

First of all, ∥χM
k (β)u

(1)
k ∥L2(Ω) = ∥χM

k (β)u
(1)
k ∥L2(ΩM

k )
⩽ 1 (we have used that
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∥u(1)k ∥L2(Ω) = 1, χM
k (β) = 0 on Ω ∖ ΩM

k , and χM
k ∈ [0, 1]). On the other hand,

it holds
∥χM

k (β)u
(1)
k ∥L2(ΩM

k )
⩾ 1−

∥∥[1− χM
k (β)]u

(1)
k

∥∥
L2(ΩM

k )

and ∥∥[1− χM
k (β)]u

(1)
k

∥∥
L2(ΩM

k )
=

∥∥[1− χM
k (β)]e

−Ψk/h u
(1)
k eΨk/h

∥∥
L2(ΩM

k )
,

where we introduced the function Ψk(x) = da(x, zk). Furthermore, χM
k (β) = 1 in a

neighborhood of zk in Ω (by (225) together with the fact that zk ∈ Σzk). Thus, there
exists c > 0 such that

inf
supp(1−χM

k (β))
Ψk > c.

Then, using Proposition 38, one deduces that
∥∥[1 − χM

k (β)]u
(1)
k

∥∥
L2(ΩM

k )
= O(e−c/h),

for some c > 0 and as h→ 0. Consequently,

∥χM
k (β)u

(1)
k ∥L2(Ω) = 1 +O(e−c/h).(227)

In addition one has, using again Proposition 38,∥∥df,h(χM
k (β)u

(1)
k )

∥∥
L2(Ω)

⩽ ∥χM
k (β)df,hu

(1)
k

∥∥
L2(ΩM

k )
+ h

∥∥∇χM
k (β) ∧ u

(1)
k

∥∥
L2(ΩM

k )

⩽
√
λ(ΩM

k ) + eδ/he
−(1/h) inf

supp∇χM
k

(β)
Ψk
.

The same inequality holds for
∥∥d∗f,h(χM

k (β)u
(1)
k )

∥∥
L2(Ω)

because∥∥d∗f,h(χM
k (β)u

(1)
k )

∥∥
L2(Ω)

⩽ ∥χM
k (β)d

∗
f,hu

(1)
k

∥∥
L2(ΩM

k )
+ h

∥∥∇χM
k (β) · u

(1)
k

∥∥
L2(ΩM

k )
.

The proof of Proposition 39 is complete using (227) and (224). □

According to (126), (222), and (223), for any γ > 0, one can choose ΩM
k in Propo-

sition 30 and β > 0 small enough in Proposition 39 (see Figure 8) such that:

sup
x∈supp∇χM

k (β)

dΩ(x, ∂Ω∖ Γzk) ⩽ γ.

Hence, for any δ > 0, one can choose β > 0 and ΩM
k such that:

(228) inf
supp∇χM

k (β)
da(·, zk) ⩾ inf

∂Ω∖Γzk

da(·, zk)− δ/4.

Then, once (228) is satisfied, one can use (183) and Proposition 39 with such β > 0

and ΩM
k fixed as a function δ, to obtain the following result.

Corollary 40. — Let us assume that the assumptions of Proposition 38 hold. For
any δ > 0, there exists a domain ΩM

k , β > 0, and hδ > 0 such that for h ∈ (0, hδ):∥∥df,hv(1)k ∥∥2
L2(Ω)

+
∥∥d∗f,hv(1)k ∥∥2

L2(Ω)
⩽Che−(2/h)(f(zk)−f(x0))+eδ/he−(2/h) inf∂Ω∖Γzk

da(·,zk),

where C > 0 is independent of h > 0 and δ > 0.
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By Corollary 40, and because infz∈∂Ω∖Γzk
da(z, zk) > 0 and f(zk) > f(x0), there

exists c > 0 such that for h small enough:∥∥df,hv(1)k ∥∥2
L2(Ω)

+
∥∥d∗f,hv(1)k ∥∥2

L2(Ω)
⩽ Ce−c/h.

This implies that v
(1)
k is a quasi-mode associated with the spectrum in [0, ch] of

∆
M,(1)
f,h (ΩM

k ) because, using in addition Lemma 11 and the fact that, by Proposition 39,
v
(1)
k ∈ Λ1H1

T(Ω) = D(Q
Di,(1)
f,h (Ω)), it holds:

(229)
∥∥[1− π[0,ch](∆Di,(1)

f,h (Ω))
]
v
(1)
k

∥∥2
L2(Ω)

⩽ Ce−c/h.

4. Proofs of the main results

In this section, we give the proofs of the main results stated in Section 1.2.4.

4.1. Proofs of Theorem 1, Proposition 7, Theorem 2, and Corollary 8

The quasi-modes for L
Di,(0)
f,h (Ω) and L

Di,(1)
f,h (Ω) are defined as follows.

Definition 41. — Let us assume that (Ω-f) is satisfied. Then, one defines for k ∈
{1, . . . , n} (see (209) and (224)):

f
(1)
k := e(1/h)fv

(1)
k ∈ Λ1H1

w,T(Ω).

For r ∈ (0,min∂Ω f − f(x0)), consider χr ∈ C∞
c (Ω) such that χr = 1 on the set

{f < min∂Ω f − r}. Then, one defines:

u(0) :=
χr

∥χr∥L2
w(Ω)

∈ C∞
c (Ω).

For ease of notation, we do not refer to r > 0 in the notation of u(0). Recall that
the family {f(1)1 , . . . , f

(1)
n } depends on the parameter δ > 0 introduced in Corollary 40.

Let us now check that there exist r > 0 and δ > 0 such that the family of quasi-modes
{f(1)1 , . . . , f

(1)
n }∪{u(0)} introduced in Definition 41 satisfies the assumptions of Propo-

sitions 26 and 27. As explained at the end of this section, Theorem 1, Proposition 7,
Theorem 2, and Corollary 8 are then consequences of the results of Propositions 26
and 27.

Let us start with the following lemma.

Lemma 42. — Let us assume that (Ω-f) is satisfied. Let {f(1)1 , . . . , f
(1)
n } and u(0) be as

introduced in Definition 41. Then, item (1) in Proposition 26 is satisfied as well as
item (2b). Furthermore, there exists C > 0 such that for all h small enough:

(230)
∥∥uh − u(0)

∥∥
L2
w(Ω)

⩽ C h−d/4+1/2e−(1/h)(f(z1)−f(x0)−r),

where we recall that r ∈ (0, f(z1)− f(x0)). Finally, (28) is satisfied.

Proof. — Item (1) in Proposition 26 is satisfied by Definition 41. First of all, because
{x0} = argminΩ f (see Lemma 4) and since χr = 1 near x0 in Ω (see Definition 41),
it holds, using Laplace’s method, in the limit h→ 0:

(231) ∥χr∥2L2
w(Ω) = κx0h

d/2e−(2/h)f(x0)
(
1 +O(h)

)
,
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where κx0
is defined in (186). Recall that from Corollary 25 (see also (122) for the

definition of π(0)
h ), the L2

w(Ω)-orthogonal projector π(0)
h associated with L

Di,(0)
f,h (Ω) has

rank 1. Because u(0) ∈ D(Q
Di,(0)
f,h (Ω)) (see Proposition 24 and Section 1.2.3), it holds

thanks to Lemma 11:∥∥(1− π(0)
h )u(0)

∥∥2
L2
w(Ω)

⩽
1

c
Q

Di,(0)
f,h (Ω)(u(0)) =

h

2c
∥∇u(0)∥2L2

w(Ω).

Using (231) and because χr ∈ C∞
c (Ω) such that χr = 1 on {f < min∂Ω f − r}, one

has for h small enough:

h

2
∥∇u(0)∥2L2

w(Ω) =
h

2

∥∇χr∥2L2
w(Ω)

∥χr∥2L2
w(Ω)

⩽ C∥∇χr∥2L∞(Ω) h
−d/2+1 e−(2/h)(min∂Ω f−f(x0)−r).

Hence, because f(z1) = min∂Ω f (see Lemma 4 and (15)), u(0) satisfies item (2b) in
Proposition 26. In addition, one has:∥∥(1− π(0)

h )u(0)
∥∥2
L2
w(Ω)

⩽ C∥∇χr∥2L∞(Ω) h
−d/2+1 e−(2/h)(f(z1)−f(x0)−r).

Choosing r > 0 small enough, it hence holds for h small enough:
∥π(0)

h u(0)∥L2
w(Ω) = 1 +O(e−c/h) ̸= 0,

and then (using in addition the fact that uh and u(0) are non negative),

uh =
π
(0)
h u(0)

∥π(0)
h u(0)∥L2

w(Ω)

=
u(0)

∥π(0)
h u(0)∥L2

w(Ω)

+
(π

(0)
h − 1)u(0)

∥π(0)
h u(0)∥L2

w(Ω)

in L2
w(Ω).

Equation (230) is a direct consequence of the three last equations. Moreover, the latter
equation implies∫

Ω

uh e
−(2/h)f = (1 +O(e−c/h))

[ ∫
Ω

u(0) e−(2/h)f + eh

]
,

where
|eh| ⩽

∥∥(1− π(0)
h )u(0)

∥∥
L2
w(Ω)

∥∥1∥∥
L2
w(Ω)

⩽ Ce−(1/h)(f(x0)+cr),

where cr = f(z1) − f(x0) − r > 0 (since r ∈ (0, f(z1) − f(x0))). On the other
hand, from (231) together with the fact that

∫
Ω
χ e−(2/h)f has the same asymptotic

equivalent as
∫
Ω
χ2 e−(2/h)f when h→ 0,∫

Ω

u(0) e−(2/h)f = hd/4
√
κx0

e−(1/h)f(x0)
(
1 +O(h)

)
.

This proves (28) and concludes the proof of Lemma 42. □

Let us now check that {f(1)1 , . . . , f
(1)
n } satisfies item (2a) and item (3) in Proposi-

tion 26.

Lemma 43. — Assume that (Ω-f) is satisfied. Let {f(1)1 , . . . , f
(1)
n } be the family of

1-forms introduced in Definition 41. Let k ∈ {1, . . . , n}. Then, for any δ > 0, there
exists hδ > 0 such that for h ∈ (0, hδ):
(232)

∥∥(1−π(1)
h

)
f
(1)
k

∥∥2
H1
w(Ω)

⩽Ch−2e−(2/h)(f(zk)−f(x0))+eδ/he−(2/h)(inf∂Ω∖Γzk
da(·,zk)),
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and for all ℓ ∈ {1, . . . , n}, ℓ ̸= k,

(233)
∣∣〈f(1)k , f

(1)
ℓ

〉
L2
w(Ω)

∣∣ ⩽ eδ/he−(1/h)da(zk,zℓ).

In particular, choosing δ > 0 small enough, {f(1)1 , . . . , f
(1)
n } satisfies items (2a) and (3)

in Proposition 26, and if (25) and (26) hold, then {f(1)1 , . . . , f
(1)
n } satisfies items (1)

and (2) in Proposition 27.

Proof. — Using Lemma 11 and Proposition 10,

∥∥[1− π[0,ch](∆Di,(1)
f,h (Ω))

]
v
(1)
k

∥∥2
L2(Ω)

⩽

∥∥df,hv(1)k ∥∥2
L2(Ω)

+
∥∥d∗f,hv(1)k ∥∥2

L2(Ω)

ch
.

Therefore, using Corollary 40, for any δ > 0, there exists hδ > 0 such that for
h ∈ (0, hδ):∥∥[1− π[0,ch](∆Di,(1)

f,h (Ω))
]
v
(1)
k

∥∥2
L2(Ω)

⩽ Ce−(2/h)(f(zk)−f(x0)) + eδ/he−(2/h)(inf∂Ω∖Γzk
da(·,zk)).

Let us prove that this inequality also holds in Λ1H1(Ω). Set

v
(1)
k,π =

[
1− π[0,ch](∆

Di,(1)
f,h (Ω))

]
v
(1)
k .

It holds, using Proposition 10,[
1− π[0,ch](∆

Di,(2)
f,h (Ω))

]
df,hv

(1)
k = df,hv

(1)
k,π = hdv

(1)
k,π +∇f ∧ v

(1)
k,π.

Therefore,
h∥dv(1)k,π∥L2(Ω) ⩽ ∥df,hv

(1)
k ∥L2(Ω) + C∥v(1)k,π∥L2(Ω).

Similarly, one has h∥d∗v(1)k,π∥L2(Ω) ⩽ ∥d∗f,hv
(1)
k ∥L2(Ω) +C∥v(1)k,π∥L2(Ω). Hence, using also

the standard Gaffney inequality in Ω (see [81]), since v
(1)
k,π ∈ Λ1H1

T(Ω) (by Proposi-
tion 39), it holds:

CGaffney
∥∥v(1)k,π∥∥2H1(Ω)

⩽
∥∥v(1)k,π∥∥2L2(Ω)

+
∥∥dv(1)k,π∥∥2L2(Ω)

+
∥∥d∗v(1)k,π∥∥2L2(Ω)

⩽ Ch−2
(
∥df,hv(1)k ∥

2
L2(Ω) + ∥d

∗
f,hv

(1)
k ∥

2
L2(Ω) + ∥v

(1)
k,π∥

2
L2(Ω)

)
.(234)

This implies that for h ∈ (0, hδ):

(235)
∥∥v(1)k,π∥∥2H1(Ω)

⩽ Ch−2
[
e−(2/h)(f(zk)−f(x0)) + eδ/he−(2/h)(inf∂Ω∖Γzk

da(·,zk))].
From (119), it holds:

π[0,ch](∆
Di,(1)
f,h (Ω)) = e−(1/h)fπ

(1)
h e(1/h)f .

Therefore, by definition of f(1)k (see Definition 41) and from (235),∥∥(1− π(1)
h )f

(1)
k

∥∥2
H1
w(Ω)

⩽ Ch−2e−(2/h)(f(zk)−f(x0)) + eδ/he−(2/h)(inf∂Ω∖Γzk
da(·,zk)).

This proves Equation (232).
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Let us now prove (233). One has (see Definition 41) using the triangular inequality
for da,∣∣〈f(1)k , f

(1)
ℓ

〉
L2
w(Ω)

∣∣ = ∣∣〈v(1)k , v
(1)
ℓ

〉
L2(Ω)

∣∣
⩽ e−(1/h)da(zℓ,zk)∥v(1)k e(1/h)da(·,zk)∥L2(Ω) ∥v

(1)
ℓ e(1/h)da(·,zℓ)∥L2(Ω).

Equation (233) is thus a consequence of the previous inequality together with Propo-
sition 38 and (227) (see also (224)).

Since f(zk)− f(x0) > 0, da(zk, zℓ) > 0, and infz∈∂Ω∖Γzk
da(zk, z) > 0 (because da

is a distance), {f(1)1 , . . . , f
(1)
n } satisfies items 2(a) and 3 in Proposition 26 hold choosing

δ > 0 small enough in (232) and (233). Finally, since zℓ ∈ ∂Ω∖Γzk (because zℓ /∈W+
zk

and Γzk ⊂W+
zk

, see (14))

da(zk, zℓ) ⩾ inf
z∈∂Ω∖Γzk

da(zk, z).

In addition, f(zk)− f(x0)⩾f(z1)− f(x0) and if k>ℓ, f(zk)− f(z1)⩾f(zk)− f(zℓ).
Thus, if (25) and (26) hold, then {f(1)1 , . . . , f

(1)
n } satisfies items 1 and 2 in Proposi-

tion 27. □

Lemma 44. — Let us assume that (Ω-f) is satisfied. Let {f(1)1 , . . . , f
(1)
n } be the family

of 1-forms introduced in Definition 41. Let k, ℓ ∈ {1, . . . , n}. Then, it holds,∫
Σzℓ

f
(1)
k · nΩ e−(2/h)fdσ =

{
0 if k ̸= ℓ,

−bk hm e−(1/h)f(zk) (1 +O(
√
h)) if k = ℓ,

where bk and m are defined in (186). Let u(0) be as introduced in Definition 41. Then,
for all k ∈ {1, . . . , n}, there exists c > 0 such that as h→ 0:

〈
∇u(0), f(1)k

〉
L2
w(Ω)

=

{
Kkh

p e−(1/h)(f(z1)−f(x0))(1 +O(
√
h)) if k ∈ {1, . . . , n0},

O(e−(1/h)(f(z1)−f(x0)+c)) if k > n0,

where Kk and p are defined in (237) below. In particular, {f(1)1 , . . . , f
(1)
n } and u(0)

satisfy item (4) in Proposition 26. If moreover (25) and (26) hold, one has as h→ 0,〈
∇u(0), f(1)k

〉
L2
w(Ω)

= Kkh
p e−(1/h)(f(zk)−f(x0))(1 +O(

√
h)).

Hence, if (25) and (26) hold, {f(1)1 , . . . , f
(1)
n } and u(0) satisfy items (3) and (4) in

Proposition 27.

Proof. — Recall the definitions of u(0) and {f(1)1 , . . . , f
(1)
n } in Definition 41. The proof

is divided into several steps.

Step 1. — Let us first compute
∫
Σzk

u
(1)
k · nΩ e−(1/h)f . One has since Σzk ⊂ ΓM

k,D (see
item (1) in Proposition 30),∫

Σzk

u
(1)
k · nΩ e−(1/h)f =

∫
ΓM
k,D

u
(1)
k · nΩ e−(1/h)fdσ −

∫
ΓM
k,D∖Σzk

u
(1)
k · nΩ e−(1/h)f .

J.É.P. — M., 2025, tome 12



962 T. Lelièvre, D. Le Peutrec & B. Nectoux

It holds, using the trace estimate (175) and Proposition 38, for any δ > 0, there exists
hδ > 0 such that for h ∈ (0, hδ):∣∣∣ ∫

ΓM
k,D∖Σzk

u
(1)
k · nΩ e−(1/h)f

∣∣∣ ⩽ e
−(1/h) inf

ΓM
k,D

∖Σzk
(da(·,zk)+f(zk))

eδ/h.

Notice that we have used that f ⩾ f(zk) on ΓM
k,D (because ΓM

k,D ⊂ Γzk ⊂ W+
zk

, see
Lemma 14). Thus, since infΓM

k,D∖Σzk
da(·, zk) > 0, for δ > 0 small enough, one has

for h small enough∣∣∣ ∫
ΓM
k,D∖Σzk

u
(1)
k · nΩ e−(1/h)f

∣∣∣ ⩽ e−(1/h)(f(zk)+c).(236)

Using (185), it then holds as h→ 0:∫
Σzk

u
(1)
k · nΩM

k
e−(1/h)f = −bkhm e−(1/h)f(zk)(1 +O(

√
h)),

where bk and m are defined in (186).

Step 2. — Let us deal with the terms
∫
Σzℓ

f
(1)
k · nΩ e−(1/h)f . One has χM

k (β) = 0 on

∂Ω∖ ΓM
k,D. Indeed, χM

k (β) is supported in ΩM
k (see (222), and (223)) and

ΩM
k ∩ ∂Ω = ∂ΩM

k ∩ ∂Ω = ΓM
k,D

(see item (1) Proposition 30). In particular, because ΓM
k,D ⊂ Γzk , and Γzk ∩ Σℓ ⊂

Γzk ∩ Γzℓ = ∅ when k ̸= ℓ (see the line after the proof of Lemma 4 and (16)),
χM
k (β) = 0 on Σzℓ when k ̸= ℓ. Then, one has using (224), (225) and (227),∫

Σzℓ

f
(1)
k · nΩ e−(2/h)f =

∫
Σzℓ

v
(1)
k · nΩ e−(1/h)fdσ

=
1

∥χM
k (β)u

(1)
k ∥L2(Ω)

∫
Σzℓ

χM
k (β)u

(1)
k · nΩ e−(1/h)f

= (1 +O(e−c/h))×

{
0 if k ̸= ℓ,∫
Σzk

u
(1)
k · nΩ e−(1/h)f if k = ℓ,

=

{
0 if k ̸= ℓ,

−bk hm e−(1/h)f(zk) (1 +O(
√
h)) if k = ℓ.

This proves the first statement in Lemma 44. In particular, {f(1)1 , . . . , f
(1)
n } satisfies

item (4b) in Proposition 26 and item (4) in Proposition 27.
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Step 3. — Let us finally deal with the terms
〈
∇u(0), f(1)k

〉
L2
w(Ω)

. One has, since χr = 0

on ∂Ω, from (224),〈
∇u(0), f(1)k

〉
L2
w(Ω)

=
1

∥χr∥L2
w(Ω)

〈
∇χr, e−(1/h)fv

(1)
k

〉
L2(Ω)

= − 1

∥χr∥L2
w(Ω)

〈
∇(1− χr), e−(1/h)fv

(1)
k

〉
L2(Ω)

=
1

∥χr∥L2
w(Ω)

[
h−1

〈
(1− χr), e−(1/h)fd∗f,hv

(1)
k

〉
L2(Ω)

−
∫
∂Ω

e−(1/h)fv
(1)
k · nΩ

]
=

1

∥χr∥L2
w(Ω)

[
h−1

〈
(1− χr)e−(1/h)f , d∗f,hv

(1)
k

〉
L2(Ω)

−
∫
∂Ω∩suppχM

k (β)

e−(1/h)fv
(1)
k · nΩ

]
.

Let us first deal with the boundary term in the previous equality. Because χM
k (β) = 0

on ∂Ω∖ ΓM
k,D, from (224) and (227), it holds:∫

∂Ω∩suppχM
k (β)

e−(1/h)fv
(1)
k · nΩ = (1 +O(e−c/h))

∫
ΓM
k,D

χM
k (β)e

−(1/h)fu
(1)
k · nΩ

= (1 +O(e−c/h))
[ ∫

ΓM
k,D

(χM
k (β)− 1)e−(1/h)fu

(1)
k · nΩ +

∫
ΓM
k,D

e−(1/h)fu
(1)
k · nΩ

]
.

It holds, from (225),∣∣∣ ∫
ΓM
k,D

(χM
k (β)− 1)e−(1/h)fu

(1)
k · nΩ

∣∣∣ = ∣∣∣ ∫
ΓM
k,D∖Σzk

(χM
k (β)− 1)e−(1/h)fu

(1)
k · nΩ

∣∣∣
⩽ C

∣∣∣ ∫
ΓM
k,D∖Σzk

e−(1/h)fu
(1)
k · nΩ

∣∣∣.
Thus from (236) and (185), it then holds as h→ 0:∫

∂Ω∩suppχM
k (β)

e−(1/h)fv
(1)
k · nΩ = −bkhm e−(1/h)f(zk)(1 +O(

√
h)).

Hence, as h→ 0, one has using (231) (see also (186)):

− 1

∥χr∥L2
w(Ω)

∫
∂Ω∩suppχM

k (β)

e−(1/h)fv
(1)
k · nΩ = Kkh

p e−(1/h)(f(zk)−f(x0))(1 +O(
√
h)),

with

Kk =
bk√
κx0

=
√
Ax0,zk and p = m− d

4
= −1

2
,(237)

where Ax0,zk is defined in (184).
Let us now deal with the error term

〈
(1−χr)e−(1/h)f , d∗f,hv

(1)
k

〉
L2(Ω)

. Using Propo-
sition 39 and Corollary 40, for any δ > 0, there exists hδ > 0 such that for h ∈ (0, hδ):∣∣〈(1− χr), e−(1/h)fd∗f,hv

(1)
k

〉
L2(Ω)

∣∣ ⩽ Ce−(1/h)minsupp(1−χr) f∥d∗f,hv
(1)
k ∥L2(Ω)

⩽ Ce−(1/h)(f(z1)−r)
[
e−(1/h)(f(zk)−f(x0)) + eδ/he−(1/h)(infz∈∂Ω∖Γzk

da(zk,z))
]
.
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Therefore, using (231),∣∣〈(1− χr)e−(1/h)f , d∗f,hv
(1)
k

〉
L2(Ω)

∣∣
∥χr∥L2

w(Ω)

⩽ C
[
h−d/4e−(1/h)(f(zk)−f(x0))e−(1/h)(f(z1)−f(x0)−r)

+ eδ/he−(1/h)(infz∈∂Ω∖Γzk
da(zk,z))e−(1/h)(f(z1)−f(x0)−r)

]
⩽ e−(1/h)Ek(r,δ),

where, for r > 0 and δ > 0 small enough, one can choose Ek(r, δ) > f(z1) − f(x0).
Moreover, if (25) and (26) hold, then infz∈∂Ω∖Γzk

da(zk, z) > f(zk) − f(z1) and
f(z1) − f(x0) > f(zk) − f(z1). Thus, for r > 0 and δ > 0 small enough, one can
choose Ek(r, δ) > f(zk)− f(x0). The proof of Lemma 44 is complete. □

In this section, we proved (see Lemmas 42, 43, and 44) that the quasi-modes
{f(1)1 , . . . , f

(1)
n } ∪ {u(0)} satisfy all the assumptions of Propositions 26 and 27. We can

now conclude the proofs of Theorem 1, Proposition 7, Theorem 2, and Corollary 8,
using the results of Propositions 26 and 27. Theorem 1 is a consequence of Proposi-
tions 26 and 27 together with the formulas (186) and (237) for the constants bk, m, Kk,
and p. Proposition 7 is a consequence of Lemma 42 and Proposition 26 (notice that
using Lemma 4, Proposition 7 is also a consequence of the results of [58]: we thus
here provide a new proof using 1-forms). Theorem 2 is a consequence of Theorem 1
and Proposition 7 together with (21). Corollary 8 is a consequence of Theorem 1,
Proposition 7, and (22). It remains to prove Theorem 3.

4.2. Generalization to deterministic initial conditions: proof of Theorem 3

The proof of Theorem 3 relies on so-called leveling results (see Corollary 47 below)
which only requires that f : Ω→ R is a C∞ function which satisfies item (1) in (Ω-f).
For F ∈ C∞(∂Ω,R), let us define
(238) ∀x ∈ Ω, wh(x) = Ex[F (Xτ )],

where τ is defined by (2).

4.2.1. Leveling result on wh. — For any closed subset F ⊂ Rd, one denotes by

τF = inf{t ⩾ 0, Xt ∈ F}

the first time the process (1) hits F (in particular, τ = τΩc). Let x0 be a local minimum
of f in Ω. Let us recall that B(x0, h) is the open ball centered at x0 of radius h. Let
us assume that h is small enough so that B(x0, h) ⊂ Ω, where B(x0, h) is the closure
of B(x0, h). The function

px0
: x 7−→ Px[τΩc < τB(x0,h)

]

is called the committor function (or the equilibrium potential) between Ωc and
B(x0, h). We have the following precise leveling result on px0

: Ω→ R.
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Proposition 45. — Let us assume that f : Ω → R is a C∞ Morse function which
satisfies item (1) in (Ω-f). Let K be a compact subset of {f < min∂Ω f}. Then, there
exist CK > 0 and h0 > 0 such that for all h ∈ (0, h0) and x ∈ K:

(239) px0(x) ⩽ CK h
−de−(2/h)(min∂Ω f−f(x)).

We refer to Figure 9 for a schematic representation of {f < min∂Ω f} and B(x0, h)

(recall that since item (1) in (Ω-f) holds, f satisfies item (1) in Lemma 4).

{f = min∂Ω f}

{f < min∂Ω f}
Ω

∂Ω

h

x0

z1

z2

Figure 9. Schematic representation of {f < min∂Ω f} and B(x0, h).
On the figure, it holds ∂{f < min∂Ω f} ∩ ∂Ω = {z1, z2}.

Proof. — The proof of this result is inspired by the proofs of [8, Lem. 4.6] and [53,
Prop. 7.9]. Let x ∈ Ω. If x ∈ B(x0, h), then px0

= 0. Let us thus deal with the case
when x ∈ Ω∖ B(x0, h).

Step 1. First inequality for px0
(x) using capacities. — In this step, we prove Equa-

tion (242) below. Let us denote by dRd the standard Euclidean distance in Rd. Let Gh
be the Green function of LDi,(0)

f,h (Ω∖B(x0, h)), see [8, Eq. (2.3)]. Set for x ∈ Ω∖B(x0, h),

(240) c = dRd(x,Ω
c ∪ B(x0, h))/2.

Define
ρ = ch > 0 and R = ρ/3.

On the one hand, using this pair (ρ,R) in the proof of [8, Lem. 4.6], one deduces that
there exists CH > 0 such that for all x ∈ Ω∖ B(x0, h), h ∈ (0, 1],

(241) sup
z∈∂B(x,ρ)

Gh(x, z) ⩽ C
πρ/R
H inf

z∈∂B(x,ρ)
Gh(x, z).

Notice that c depends on h and x (which was a priori not the case in [8, Lem. 4.6]).
Let us explain more precisely why (241) remains valid in our setting. To get Equa-
tion (241), one uses k times the Harnack inequality [35] (see also [8, Lem. 4.1]) on k

balls B(xi, ρ) where xi ∈ ∂B(x, ρ) with B(xi, R) ∩ B(xi+1, R) ̸= ∅ (i = 1, . . . , k,
xk+1 = x1), and where k ⩽ πρ/R. The constant CH in (241) is the one from the
Harnack inequality used on each B(xi, R). In addition, this constant CH depends
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on h−2R2 and thus can be chosen independently of h since for all x ∈ Ω ∖ B(x0, h)

and h > 0,
h−2R2 ⩽ d2Rd(x,Ω

c ∪ {x0})/62 ⩽ M2
0/36,

where M0 := maxy∈Ω dRd(y,Ω
c ∪{x0}). The condition h ⩽ 1 in (241) ensures that we

can use the Harnack inequality, since for all x ∈ Ω∖ B(x0, h) and all i = 1, . . . , k,

B(xi, 2R) ⊂ Ω∖ B(x0, h),

which follows from the fact that, if h ⩽ 1, ρ + 2R = 5dRd(x,Ω
c ∪ B(x0, h))h/6 <

dRd(x,Ω
c ∪ B(x0, h)). Finally notice that we have that

C
πρ/R
H = C

π/3
H .

On the other hand, using the arguments of the proof of [53, Prop. 7.9] with C =

B(x, ρ) there, together with (241), one deduces that there exists C > 0 such that for
all x ∈ Ω∖ B(x0, h) and h small enough:

(242) px0
(x) ⩽ C

cap(B(x, ρ),Ωc)

cap(B(x, ρ),B(x0, h) ∪ Ωc)
,

where we recall that (see [8, §2]) for two subsets C and D of Rd such that C∩D = ∅,

cap(C,D) =
h

2
inf

φ∈HC,D

∫
Rd∖(D∪C)

∣∣∇φ(x)∣∣2e−(2/h)f(x)dx,(243)

where
HC,D =

{
φ ∈ H1(Rd), φ(x) = 1 for x ∈ C, φ(x) = 0 for x ∈ D}.

Step 2. Upper bound on cap(B(x, ρ),Ωc) and lower bound on cap(B(x, ρ),B(x0, h) ∪Ωc)
Let us first obtain a lower bound on cap(B(x, ρ),B(x0, h)∪Ωc). By the variational

principle for capacities (243), it holds:

cap(B(x, ρ),B(x0, h) ∪ Ωc) ⩾ cap(B(x, ρ),B(x0, h)).

Let K be a compact subset of Ω. Following the proof of [53, Lem. 7.10] (see also [8,
Prop. 4.7]) with here ρ : [0, 1] → Ω a smooth path connecting x to x0 and such that
t ∈ [0, 1] 7→ f(ρ(t)) is decreasing, there exists C > 0 such that for all x ∈ K and h > 0

(recall x0 is the global minimum of f in Ω),

(244) cap(B(x, ρ),B(x0, h)) ⩾ Chde−(2/h)f(x).

Let us now deal with cap(B(x, ρ),Ωc). Let Uh be the subdomain of {f < min∂Ω f}
such that Uh ⊂ {f < min∂Ω f} and for all x ∈ ∂Uh, dRd(x, {f < min∂Ω f}c) = h.
It then follows that for h small enough,

(245) min
{f<min∂Ω f}∖Uh

f ⩾ min
∂Ω

f − εh,

for some ε > 0 independent of h. Let ϕh be a smooth function on Rd such that ϕh = 0

on {f < min∂Ω f}c, ϕh = 1 on Uh, and for some C > 0 independent of h,

(246) ∥∇ϕh∥L∞(Ω) ⩽ Ch−1.
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Assume now that K is a compact subset of {f < min∂Ω f}. Then, for h small enough,
it holds for all x ∈ K:

B(x, ρ) ⊂ Uh,

where we recall ρ = ch > 0 where c is defined by (240) and satisfies c ⩽ M0/2. Hence,
using the variational formula (243), it holds, for h small enough and all x ∈ K,

cap(B(x, ρ),Ωc) ⩽
h

2

∫
Rd
|∇ϕh|2e−(2/h)f =

h

2

∫
{f<min∂Ω f}∖Uh

|∇ϕh|2e−(2/h)f .

Using in addition (245) and (246), one deduces that for h small enough and all x ∈ K,

(247) cap(B(x, ρ),Ωc) ⩽ Ce−(2/h)(min∂Ω f−ch)

where C > 0 is a constant independent of x ∈ K and h. In conclusion, Equations (242),
(244), and (247) imply (239). This concludes the proof of Proposition 45. □

Let us recall that wh(x) = Ex[F (XτΩc )] (see (238)). We will need the following
leveling result on wh in B(x0, h) (see [52, Lem. 1] or [75, Lem. 3] for a proof).

Lemma 46. — Let us assume that f : Ω → R is a C∞ Morse function. Let x0 be a
local minimum of f in Ω. Then, it holds for h small enough

sup
x∈B(x0,h)

|wh(x)− wh(x0)| ⩽ C
√
hwh(x0).

The two previous results have the following consequence on wh.

Corollary 47. — Let us assume that f : Ω → R is a C∞ Morse function which
satisfies item (1) in (Ω-f). Let K be a compact subset of {f < min∂Ω f}. Then, for h
small enough and uniformly in x ∈ K, one has,

wh(x) = wh(x0)(1 +O(
√
h)) +O(h−de−(2/h)(min∂Ω f−maxK f)).

Let us mention that a similar result was proved in [27, §5.1.4] using [30, Th. 1]
when f has no critical point on the boundary of Ω. When this is no longer the case,
[30, Th. 1] does not apply and we prove this result using the strong Markov property
together with Proposition 45 and Lemma 46.

Proof. — Let K be a compact subset of {f < min∂Ω f} and x ∈ K. Then write:

(248) Ex[F (XτΩc )] = Ex
[
F (XτΩc )1τB(x0,h)<τΩc

]
+ Ex

[
F (XτΩc )1τB(x0,h)⩾τΩc

]
.

By the strong Markov property,

Ex
[
F (XτΩc )1τB(x0,h)<τΩc

]
= Ex

[
1τB(x0,h)<τΩcEXτB(x0,h) [F (XτΩc )]

]
.

Using Proposition 45 and Lemma 46, for all h small enough and x ∈ K, it holds:

(249)
Ex

[
F (XτΩc )1τB(x0,h)<τΩc

]
=

(
1 +O(e−c/h)

)(
1 +O(

√
h)
)
wh(x0),

uniformly in x ∈ K,

where c > 0 is any constant such that c < 2(min∂Ω f −maxK f). Let us now deal with
the last term in (248). For x ∈ K, it holds:

Ex
[
F (XτΩc )1τB(x0,h)⩾τΩc

]
⩽ ∥F∥L∞(∂Ω)Px[τB(x0,h) ⩾ τΩc ].
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Using Proposition 45, it thus holds for h small enough:
max
x∈K

Ex
[
F (XτΩc )1τB(x0,h)⩾τΩc

]
⩽ Ch−de−(2/h)(min∂Ω f−maxK f).

Together with (249) and (248), this concludes the proof of Corollary 47. □

4.2.2. Proof of Theorem 3. — We are now in position to prove Theorem 3.

Proof of Theorem 3. — Let us assume that Assumption (Ω-f) is satisfied. Let us define
for α ∈ R,

Kα := {f ⩽ α}.
In the following we consider f(x0) < α < min∂Ω f so that

Kα is a non empty compact subset of {f < min∂Ω f}.

Write
(250) Eνh [F (XτΩ)] = Z−1

h

∫
Ω∖Kα

wh uh e
−(2/h)f + Z−1

h

∫
Kα

wh uh e
−(2/h)f ,

where we have defined Zh :=
∫
Ω
uh e

−(2/h)f . Let us deal with the first term in the
right-hand side of (250). It holds:

Z−1
h

∫
Ω∖Kα

wh uh e
−(2/h)f ⩽ ∥F∥L∞(∂Ω) Z

−1
h

∫
Ω∖Kα

uh e
−(2/h)f .

Moreover, using Lemma 42, it holds (see Definition 41)∫
Ω∖Kα

uh e
−(2/h)f =

∫
Ω∖Kα

χre
−(2/h)f

∥χr∥L2
w

+O
(
h−d/4+1/2e−(1/h)(f(z1)−f(x0)−r)

)√∫
Ω∖Kα

e−(2/h)f .

Recall that when h→ 0 (see Proposition 7, (231), and (186)),
Zh =

√
κ0 h

d/4 e−(1/h)f(x0)(1 +O(h)) and ∥χr∥L2
w
=
√
κ0 h

d/4 e−(1/h)f(x0)(1 +O(h)).

Then, since f ⩾ α on Ω∖ Kα, there exists β > 0 such that:

Z−1
h

∫
Ω∖Kα

uh e
−(2/h)f ⩽ Ch−β

[
e−(2/h)(α−f(x0)) + e−(1/h)(f(z1)+α−2f(x0)−r)

]
.

Therefore, because min∂Ω f = f(z1) ⩾ α, for any r > 0, it holds for h small enough:

(251) Z−1
h

∫
Ω∖Kα

uh e
−(2/h)f ⩽ e−(2/h)(α−f(x0)−r).

In conclusion, the first term in the right-hand side of (250) satisfies the following
upper bound: for any r > 0, it holds for h small enough:

(252) Z−1
h

∫
Ω∖Kα

wh uh e
−(2/h)f ⩽ e−(2/h)(α−f(x0)−r).

Let us now deal with the second term in the right-hand side of (250). Using Corol-
lary 47 with K = Kα there, it holds:

Z−1
h

∫
Kα

wh uh e
−(2/h)f =

[
wh(x0)(1 +O(

√
h)) +O(h−de−(2/h)(min∂Ω f−maxKα f))

]
×

∫
Kα
uh e

−(2/h)f∫
Ω
uh e−(2/h)f

.
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In addition, by (251),∫
Kα
uh e

−(2/h)f∫
Ω
uh e−(2/h)f

= 1− Z−1
h

∫
Ω∖Kα

uh e
−(2/h)f = 1 +O(e−c/h).

Thus, the second term in the right-hand side of (250) satisfies the equivalent in the
limit h→ 0:

(253) Z−1
h

∫
Kα

wh uh e
−(2/h)f

=
[
wh(x0)(1 +O(

√
h)) +O(h−de−(2/h)(min∂Ω f−α))

]
(1 +O(e−c/h)).

Choosing r > 0 small enough, Equations (35) and (36) when x = x0 are then
consequences of (252), (253), (250) together with (30) and (31) in Theorem 2, and
the fact that f(x0) < α < min∂Ω f . The asymptotic result on Px0(Xτ ∈ Σzk) is
obtained as a consequence of the asymptotic result on Ex0

(F (Xτ )) for smooth test
functions F by writing F ⩽ 1Σzk ⩽ G for two smooth test functions F,G : ∂Ω→ [0, 1]

supported in Γzk such that G ≡ 1 and F ≡ 1 around zk. For more details, see the
analysis led just after Equation (268) in [27].

To obtain (35) and (36) uniformly on all x in any compact subset K of
{f < min∂Ω f}, one uses in addition Corollary 47 with Kα where K is such that
K ⊂ Kα (with f(x0) < α < min∂Ω f). Using the procedure of step 2 of the proof of [64,
Prop. 14] and since the domain of attraction A({f < min∂Ω f}) of {f < min∂Ω f} for
the dynamics (12) (see [64, §1.2.2] for the definition of A({f < min∂Ω f})) is equal
to Ω (by item (1) of (Ω-f)), (35) and (36) extends to all x ∈ K, K a compact set of Ω.

It remains to prove (38). To this end, assume that (25) and (26) are satisfied.
Assume in addition there exists ℓ0 ∈ {n0 + 1, . . . , n} such that (see (37))

2(f(zℓ0)− f(z1)) < f(z1)− f(x0).

Let k0 ∈ {n0 + 1, . . . , ℓ0} and α∗ ∈ R be such that f(x0) < α∗ < 2f(z1) − f(zk0).
Notice that we can assume without loss of generality (up to increasing α∗ if α∗ is
smaller than f(x0) + f(zk0)− f(z1), see (37)) that

(254) f(x0) + f(zk0)− f(z1) < α∗ < 2f(z1)− f(zk0).

Let us consider x ∈ Kα∗ and k ∈ {n0 + 1, . . . , k0}. Thanks to (254) and the fact that
f(zk) ⩽ f(zk0)

min
∂Ω

f − α∗ = f(z1)− α∗ > f(zk0)− f(z1) ⩾ f(zk)− f(z1),

and
α∗ − f(x0) > f(zk0)− f(z1) ⩾ f(zk)− f(z1).

Choosing r > 0 small enough in (252), and using (253) and (250) together with (32)
in Theorem 2, one then deduces Equation (38) when x = x0. Using Corollary 47, one
proves that (38) holds uniformly on x ∈ Kα∗ . The proof of Theorem 3 is complete. □
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Appendix. Proofs of some technical results and additional comments

A.1. Proof of Lemma 4

Proof of Lemma 4. — The proof is divided into two steps.

Step 1: Proof of item (1) in Lemma 4. — Let us prove that ∂nΩf ⩾ 0 on ∂Ω. Let us
assume that there exists z ∈ ∂Ω such that ∂nΩf(z) < 0. Then, there exists sz > 0

such that φz(t) /∈ Ω for all t ∈ (0, sz]. Let ε > 0 be such that B(φz(sz), ε) ⊂ Rd ∖ Ω.
Since (s, x) 7→ φx(s) is continuous, there exists α > 0 such that if |s − sz| ⩽ α and
|x− z| ⩽ α, then φx(s) ∈ B(φz(sz), ε). Therefore, for all x ∈ Ω such that |x− z| ⩽ α,
φx(s) /∈ Ω, which contradicts item (1) in (Ω-f). Therefore ∂nΩf ⩾ 0 on ∂Ω.

The fact that x0 is the only critical point of the function f in Ω is also a direct
consequence of item (1) in (Ω-f). In addition, there is no local minimum x ∈ ∂Ω of f
in Ω. Indeed, assume the existence of such a point x ∈ ∂Ω. Necessarily ∂nΩf(x) ⩽ 0,
and by the previous discussion, ∂nΩf(x) = 0. Then, x is a critical point of f and a
local minimum of f in Rd. Since Hess f(x) > 0, x is (positively) asymptotically stable
for the flow (12). This contradicts item (1) in (Ω-f).

Let us now prove that f(x0) = minΩ f < min∂Ω f . For β > 0, set Vβ =

f |−1
Ω ((−∞, f(x0) + β)). Since Hess f(x0) > 0, for β > 0 small enough, Vβ is a

nonempty open neighborhood of x0 in Ω such that x0 is the unique global minimum
of f on Vβ . Let x ∈ Ω∖ Vβ . Let tx := inf{t ⩾ 0, φx(tx) ∈ Vβ}. By item (1) in (Ω-f),
tx < +∞. In addition, by continuity of t 7→ φx(t), φx(tx) ∈ ∂Vβ ⊂ {f = f(x0) + β}.
Thus,

f(x) = f(φx(tx)) +

∫ tx

0

|∇f(φx(s))|2ds ⩾ f(x0) + β.

Let us now consider x ∈ ∂Ω. Let xn ∈ Ω be such that xn → x as n → +∞. Since
for n large enough f(xn) ⩾ f(x0) + β, it follows that f(x) ⩾ f(x0) + β. In conclusion

f(x0) = min
Ω
f < min

∂Ω
f.

It remains to prove that {f < min∂Ω f} is connected and ∂{f < min∂Ω f} ∩ ∂Ω =

argmin∂Ω f . The fact that {f < min∂Ω f} is connected follows from the facts that
{f < min∂Ω f} is actually an open subset of Ω and that there is only one local
minimum of f in Ω (namely x0). Let us now prove that ∂{f < min∂Ω f} ∩ ∂Ω =

argmin∂Ω f . It is clear that ∂{f < min∂Ω f}∩∂Ω ⊂ argmin∂Ω f . Let z ∈ argmin∂Ω f .
If z /∈ ∂{f < min∂Ω f}, then there exists ε > 0 such that for all x ∈ B(z, ε) ∩ Ω,
f(x) ⩾ min∂Ω f = f(z). Thus, z is a local minimum of f in Ω, which is not possible.
Consequently z ∈ ∂{f < min∂Ω f}. Therefore, ∂{f < min∂Ω f} ∩ ∂Ω = argmin∂Ω f .
This ends the proof of item (1) in Lemma 4.

Step 2: Proof of item (2) in Lemma 4. — Let z ∈ ∂Ω be such that |∇f |(z) = 0. Let
(e1, , . . . , ed) be an orthonormal basis such that (i) Span(e1, . . . , ed−1) = Tz∂Ω and
(ii) ed = nΩ(z). Let us introduce the affine change of variables:

φ : (y1, . . . , yd) 7→ z +
∑d
i=1 yiei.
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The Hessian of f at point z is unitarily equivalent to the matrix with (i, j)-component
∂2f

∂yi∂yj
(0) for 1 ⩽ i, j ⩽ d (where with a slight abuse of notation, f(y) refers to

f(φ(y))). Let us prove that ∂2f
∂yi∂yd

(0) = 0 for all i ∈ {1, . . . , d− 1}. For any such i, let
t ∈ (−1, 1) 7→ γ(t) ∈ ∂Ω be a curve such that γ(0) = z and γ′(0) = ei. By item (2)
in (Ω-f), one has d

dt∇f(γ(t)) · nΩ(γ(t))
∣∣
t=0

= 0 (since ∇f(γ(t)) · nΩ(γ(t)) = 0 on a
neighborhood of t = 0). This writes: ∂2f

∂yi∂yd
(0) = 0. This implies that (0, . . . , 0, 1)T is

an eigenvector of
(

∂2f
∂yi∂yj

(0)
)
1⩽i,j⩽d

associated with the eigenvalue ∂2f
∂y2d

(0). Since f

is a Morse function in Ω, one has ∂2f
∂y2d

(0) ̸= 0. Finally, item (1) in (Ω-f) then implies

that necessarily ∂2f
∂y2d

(0) < 0. This proves that nΩ(z) is an eigenvector of the Hessian
of f at z associated with a negative eigenvalue. □

A.2. On WKB-approximation for v
(1)
k . — As explained in Section 3, the quasi-

modes f
(1)
k for L

Di,(1)
f,h (Ω) are built using the principal 1-eigenform v

(1)
k of a Wit-

ten Laplacian on ΩM
k with mixed Dirichlet-Neumann boundary conditions. Since

|∇f(zk)| = 0, the constructions of the domain ΩM
k and of the quasi-mode v

(1)
k are

very different from the ones done in [27] and require to overcome a major technical
issue.

Indeed, we do not have a satisfactory WKB-approximation of v(1)k near Σzk in ΩM
k .

An accurate WKB-approximation, constructed in [42], was used in [27] (see also [28]
for similar computations) to estimate (in the limit h→ 0), the quantities

(255)
∫
Σzk

v
(1)
k · nΩe

−(1/h)f , k = 1, . . . , n,

which were in turn used to compute asymptotically
∫
Σzk

∂nΩuhe
−(1/h)f , since (see

Corollary 25, (40) and (119))∫
Σzk

∂nΩuhe
−(1/h)f ∼

n∑
k=1

∫
Ω

∇uh · v(1)k e−(1/h)f

∫
Σzk

v
(1)
k · nΩ e

−(1/h)f .

In our context (see [58, §1.4] for more details), the only possible candidate is the
WKB ansatz constructed in [44, §2] on B(zk, ρ) (for some ρ > 0). However, only
its first term ω0e

−(1/h)da(.,zk)|Ω belongs to the form domain of ∆Di,(1)
f,h (Ω) in general,

i.e., satisfies ta0 = 0 on ∂Ω ∩ B(zk, ρ). Thus, only this first term can be used to
approximate v

(1)
k with the help of Lemma 11, but this approximation is not accurate

enough. Let us briefly explain why, by showing that for a smooth function ξ supported
in B(zk, ρ/2) which equals 1 in B(zk, ρ/3), the 1-form

uwkb,0 =
ξω0e

−(1/h)da(.,zk)|Ω
∥ξω0e−(1/h)da(.,zk)|Ω∥L2(Ω)

is in general not close enough to v
(1)
k in Λ1H1(Ω) (recall that we are looking for an

equivalent of (255)). Using (14), by construction of ω0 in [44, Th. 2.5] and using an
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integration by parts, it holds, for h small enough:

∥ξω0e
−(1/h)da(.,zk)|Ω∥2L2(Ω)

(
∥df,huwkb,0∥2L2(Ω) + ∥d

∗
f,huwkb,0∥2L2(Ω)

)
= ⟨∆(1)

f,huwkb,0, uwkb,0⟩L2(Ω) − h
∫
∂Ω∩B(zk,ρ)

td∗f,huwkb,0 uwkb,0 · nΩ

= O(h2)∥e−(2/h)da(.,zk)ξω0∆Hω0∥2L2(Ω) +O(e−c/h)

− h
∫
∂Ω∩B(zk,ρ)

ξ2e−(2/h)da(.,zk)t
[
hd∗ω0 + i∇(da(·,zk)+f)(ω0)︸ ︷︷ ︸

=0

]
ω0 · nΩ.

Therefore, using Laplace’s method and [44, Th. 2.5], one cannot expect in general a
better estimate when h→ 0 than

∥df,huwkb,0∥2L2(Ω) + ∥d
∗
f,huwkb,0∥2L2(Ω) ⩽ Ch3/2,

which only implies, using Lemma 11, that uwkb,0 is at a distance of the order O(h1/4)

from v
(1)
k in Λ1L2(Ω). In view of the computations made in the proof of [27, Prop. 90]

(which is very similar to the proof of Lemma 43, see in particular (234)), this is not
sufficient to prove that the distance between uwkb,0 and v

(1)
k converges to 0 in Λ1H1(Ω)

as h→ 0. One would indeed at least need that ∥df,huwkb,0∥2L2(Ω)+∥d
∗
f,huwkb,0∥2L2(Ω) =

o(h3) as h→ 0.

A.3. Proofs of Propositions 28 and 29

Proof of Proposition 28. — Let k ∈ {1, . . . , n}. The proof of Proposition 28 is divided
into several steps.

Step 1: Properties of Γzk and preliminary definitions. — Let us recall that since Γzk ⊂
W+
zk

(see (14) in (Ω-f)), it holds

for all x ∈ Γzk , ∇f(x) = ∇Tf(x) ∈ Tx∂Ω.

Moreover, for all y ∈ Γzk , since φy(s) ∈ Γzk for all s ⩾ 0 (see (12)), it holds:
lims→+∞ φy(s) = zk. Let r > 0 and define:

Czk = (f |Γzk )
−1

(
(−∞, f(zk) + r)

)
.

For r > 0 small, |∇f | ≠ 0 on ∂Czk and thus, Czk is a smooth open neighborhood of zk
and ∇f · nCzk > 0 on ∂Czk . For y ∈ Γzk ∖ Czk , let:

(256) tCzk (y) = inf{ s ⩾ 0, φy(s) ∈ Czk },

which is finite since lims→+∞ φy(s) = zk. By continuity of s ⩾ 0 7→ φy(s), for
y ∈ Γzk ∖ Czk , φy(tCzk (y)) ∈ ∂Czk and for all s > tCzk (y), φy(s) ∈ Czk . Moreover,
tCzk (y) is defined by∫ tCzk

(y)

0

|∇f(φy(s))|2ds = f(y)− (f(zk) + r),

and thus since |∇f | ≠ 0 on ∂Czk , by the implicit functions theorem,

(257) y ∈ Γzk ∖ Czk 7−→ tCzk (y) is C∞.
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For all x ∈ ∂Czk and s ∈ R, let γx(s) := φx(−s) (see (12)) which satisfy for all
s ∈ R

(258) d

ds
γx(s) = ∇f(γx(s)) with γx(0) = x.

Let us define for all x ∈ ∂Czk ,

(259) sΓzk (x) := inf{s ⩾ 0, γx(s) /∈ Γzk}.

Let us prove that

(260) sΓzk : ∂Czk −→ R+ is lower semicontinuous.

Let us first prove that for all x ∈ ∂Czk , sΓzk (x) < +∞. It it is not the case, there
exists y ∈ ∂Czk such that γy(s) ∈ Γzk for all s ⩾ 0. Thus, the curve γy converges
to a critical point of f in Γzk , the only one being zk (by (14)), which is impossible
because γy(s) /∈ Czk for all s ⩾ 0. Let us now prove that sΓzk is lower semicontinuous.
To this end, let (xn)n⩾0 be a sequence in ∂Czk converging to x∞ ∈ ∂Czk and a
limit s∗ of a subsequence of (sΓzk (xn))n⩾0. If s∗ = +∞, then, sΓzk (x∞) ⩽ s∗. Let us
then consider the case when s∗ < +∞. Up to extracting a subsequence, we assume
that sΓzk (xn) → s∗ when n → ∞. Notice that for all n ⩾ 0, since sΓzk (xn) < +∞
and s 7→ γxn(s) is continuous, γxn(sΓzk (xn)) ∈ ∂Γzk . In addition, since s∗ < +∞,
∂Γzk is a closed set, and by continuity of (x, t) 7→ γx(t), it holds

γxn(sΓzk (xn)) −→ γx∞(s∗) ∈ ∂Γzk when n −→∞.

This implies that sΓzk (x∞) ⩽ s∗ by definition of sΓzk . This implies that sΓzk is lower
semicontinuous and concludes the proof of (260).

Finally, since Γzk is open, one can consider an open subset OF of Γzk such that

Czk ∪ F ⊂ OF and OF ⊂ Γzk .

Step 2: Construction of a set VF ⊂ Γzk containing OF which is stable for (12). — Define
for all x ∈ ∂Czk , sOF

(x) := sup{s ⩾ 0, γx(s) ∈ OF}. Let us prove that

(261) sOF
< +∞ and sOF

< sΓzk .

To prove the first statement in (261), we argue by contradiction: assume that there
exists x ∈ ∂Czk such that sOF

(x) = +∞. Then, there exists a sequence sn ∈ (R+)
N

such that sn → +∞ when n→ +∞ and for all n, γx(sn) ∈ OF. Thus, γx(sn) converges
when n→ +∞ to a critical point of f in OF, the only one being zk, which is not pos-
sible because γx(sn) /∈ Czk for all n. This proves the first statement in (261). To prove
the second statement in (261), let us consider x ∈ ∂Czk . Notice that since sOF

(x) is
finite and the trajectories of (258) are continuous in time, γx(sOF

(x)) ∈ OF ⊂ Γzk .
Since Γzk is stable for the dynamics (12), γx(s) = φγx(sOF

(x))(sOF
(x)− s) ∈ Γzk for all

s ∈ [0, sOF
(x)] (see (12) and (258)). Moreover, since Γzk is open, and the trajectories

of (258) are continuous, there exists εx > 0 such that:

(262)
{
γx(s), x ∈ ∂Czk and s ∈ [0, sOF

(x) + εx]
}
⊂ Γzk .

Therefore, sΓzk (x) ⩾ sOF
(x) + εx. This concludes the proof of (261).
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Let us now define:

(263) VF := Czk ∪
{
γx(s), x ∈ ∂Czk and s ∈ [0, sOF

(x)]
}
.

By construction, the set VF is stable for the dynamics (12). From (262) and since
Czk ⊂ Γzk , one has VF ⊂ Γzk . We now claim that

(264) sOF
: ∂Czk −→ R+ is upper semicontinuous and VF is a closed set.

Let us first prove the first statement in (264). To this end, let (xn)n⩾0 be a sequence in
∂Czk converging to x∞ ∈ ∂Czk and s∗ a limit of a subsequence of (sOF

(xn))n⩾0. Up to
extracting a subsequence, we assume that sOF

(xn) → s∗ when n → ∞. Notice that
for all n ⩾ 0, γxn(sOF

(xn)) ∈ OF. Let us prove that s∗ is finite. Assume that it is not
the case, i.e., that sOF

(xn) → +∞. From (261), for all t ∈ [0, sOF
(xn)], γxn(t) ∈ Γzk .

Let T > 0 and consider N ⩾ 1 such that sOF
(xn) ⩾ T for all n ⩾ N . Then, for all

t ∈ [0, T ] and n ⩾ N , γxn(t) ∈ Γzk . Passing to the limit, one obtains that γx(t) ∈ Γzk
for all t ∈ [0, T ]. Since T > 0 is arbitrary, one deduces that γx(t) ∈ Γzk for all t > 0.
This is not possible because, as already explained, the limit points of the curve γx are
outside Γzk . Thus s∗ is finite. Since OF is a closed set, by continuity of (x, t) 7→ γx(t),
it holds γxn(sOF

(xn)) → γx∞(s∗) ∈ OF when n → ∞. Therefore, sOF
(x∞) ⩾ s∗, and

thus, sOF
(x∞) ⩾ lim supn→+∞ sVF

(xn). This proves that sOF
is upper semicontinuous.

This proves the first statement in (264).
Let us now prove the second statement in (264). To prove that VF is a closed set

it is sufficient to show that A =
{
γx(s), x ∈ ∂Czk and s ∈ [0, sOF

(x)]
}

is a closed set.
To this end, let (yn)n⩾0 be a sequence in A converging to y∗. Let us show that y∗ ∈ A.
Write yn = γxn(sn) where xn ∈ ∂Czk and 0 ⩽ sn ⩽ sOF

(xn). By compactness and
up to extracting a subsequence, let x∞ ∈ ∂Czk such that xn → x∞ when n → +∞.
Since sOF

< +∞ is upper semicontinuous on the compact set ∂Czk , sOF
is bounded

on ∂Czk . Therefore, (sn)n⩾0 and (sOF
(xn))n⩾0 are bounded. Denote by s∗ a limit of

a subsequence of (sn)n⩾0. Then, it holds

s∗ ⩽ lim sup
n→+∞

sn ⩽ lim sup
n→+∞

sOF
(xn) ⩽ sOF

(x∞),

where the last inequality follows from the fact that sOF
is upper semicontinuous. Since

yn = γxn(sn) → γx∞(s∗) = y∗ when n → +∞, and s∗ ⩽ sOF
(x∞), this implies that

y∗ ∈
{
γx(s), x ∈ ∂Czk and s ∈ [0, sOF

(x)]
}

. The set A is therefore closed and thus,
so is VF.

Finally, let us prove that,

(265) OF ⊂ VF.

To prove (265), we consider y ∈ OF. The curve

s ∈ [0, tCzk (y)] 7−→ γφy(tCzk (y))
(s) = φy(tCzk (y)− s)

passes through y ∈ OF at time s = tCzk (y) (see (12), (258), and (256)). Thus, by def-
inition of sOF

, it holds tCzk (y) ⩽ sOF
(φy(tCzk (y))) and thus, by definition of VF,
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y = γφy(tCzk (y))
(tCzk (y)) ∈ {γφy(tCzk (y)](s), s ∈ [0, sOF

(x))} = VF. This proves (265)
and in particular F ⊂ VF.

The interior of VF might be a good candidate to be ΓF but this set is not necessarily
smooth or does not satisfy (125). This is due to the fact that the function sOF

is not
necessarily smooth. For this reason, we approximate sOF

from above by a smooth
function: this is made in the next step, see (268).

Step 3: Construction of ΓF

Step 3a: Approximation of sOF
from above by a smooth function and definition of ΓF

Since sOF
is upper semicontinuous (see (264)), from [89, Th. 3], there exists a

decreasing sequence of continuous functions s̃n : ∂Czk → R, n ⩾ 1, such that for
all n ⩾ 1, s̃n ⩾ sOF

and for all x ∈ ∂Czk , s̃n(x)→ sOF
(x) when n→ +∞. Let us prove

that there exists n0 ⩾ 1 such that:

(266) for all x ∈ ∂Czk , sOF
(x) ⩽ s̃n0(x) < sΓzk (x).

We just have to prove the second inequality in (266). For that purpose, we argue by
contradiction: assume that

(267) for all n ⩾ 1, there exists xn ∈ ∂Czk such that s̃n(xn) ⩾ sΓzk (xn).

By compactness and up to extracting a subsequence, let x∞ ∈ ∂Czk such that
xn→x∞ when n → +∞. Let ε > 0. There exists N0 ⩾ 1 such that for all n ⩾ N0,
s̃n(x∞)− sOF

(x∞) ⩽ ε/2. One then has for all n ⩾ N0, using that s̃n ⩽ s̃N0
,

s̃n(xn)− sOF
(x∞) = (s̃n(xn)− s̃N0

(x∞)) + (s̃N0
(x∞)− sOF

(x∞))

⩽ s̃N0(xn)− s̃N0(x∞) + ε/2.

Moreover, because s̃N0
is a continuous function, there exists N1⩾1 such that for all

n ⩾ N1, |s̃N0
(xn)− s̃N0

(x∞)|⩽ε/2. Thus, for n⩾max(N0, N1), s̃n(xn)− sOF
(x∞)⩽ε,

i.e., lim supn→+∞ s̃n(xn) − sOF
(x∞) ⩽ 0. Now, since sΓzk is lower semicontinuous

(see (260)) and from (267), it holds:

sOF
(x∞) ⩾ lim sup

n→+∞
s̃n(xn) ⩾ lim inf

n→+∞
sΓzk (xn) ⩾ sΓzk (x∞).

This contradicts the second statement in (261), and thus concludes the proof of (266).
Since the function sΓzk − s̃n0

is lower semicontinuous and ∂Czk is compact, sΓzk − s̃n0

attains its infimum on ∂Czk and since sΓzk > s̃n0
(see (266)), this minimum is positive.

Let us then consider 0 < ε < min∂Czk (sΓzk − s̃n0
) so that

(268) s̃n0 + ε < sΓzk on ∂Czk .

Since ∂Czk is compact and s̃n0
+ε is continuous on ∂Czk , there exists β ∈ C∞(∂Czk ,R)

such that s̃n0
+ ε/2 ⩽ β ⩽ s̃n0

+ 3ε/4, so that in view of (266) and (268),

(269) sOF
< β < sΓzk on ∂Czk .

We now define

(270) ΓF := Czk ∪
{
γx(s), x ∈ ∂Czk and s ∈ [0, β(x))

}
.
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Step 3b: Properties of ΓF. — Let us finally prove that ΓF satisfies all the properties
listed in Proposition 28. First notice that by construction, ΓF is included in Γzk , this
indeed follows from (270) together with the second inequality in (269). Moreover,
ΓF contains VF (since sOF

< β, see (269) and (263)) and thus, F ⊂ ΓF. Further-
more, by construction, ΓF is simply connected. Let us now prove that ΓF is open and
satisfies (125).

(1) Proof of the fact that ΓF is open. To this end, let us first show that ΓF ∖Czk is
open. Let us denote by d∂Ω the geodesic distance in ∂Ω. Let y1 ∈ ΓF ∖ Czk and write
y1 = γx1(s1) where x1 ∈ ∂Czk and s1 ∈ (0, β(x1)). Then, there exists t1 ∈ (s1, β(x1))

such that γy1(−t1) ∈ Czk . Since the mapping x 7→ β(x) is continuous and t1 < β(x1),
there exists ε1 > 0 such that for all x ∈ ∂Czk ,

(271) d∂Ω (x, x1) ⩽ ε1 =⇒ t1 < β(x).

Let ε0 = d∂Ω(γy1(−t1), ∂Czk) > 0. Since the mapping y 7→ γy(−t1) is continuous,
there exists ε2 > 0 such that if d∂Ω (y, y1) ⩽ ε2 then

d∂Ω(γy(−t1), γy1(−t1)) ⩽ ε0/2,

and thus γy(−t1) ∈ Czk . Let y ∈ Γzk . Write y = γx(tCzk (y)) where x = φy(tCzk (y)) ∈
∂Czk , see (256). Since when d∂Ω (y, y1) ⩽ ε2 one has φy(t1) = γy(−t1) ∈ Czk , it holds:

(272) for all y ∈ Γzk , d∂Ω (y, y1) ⩽ ε2 =⇒ tCzk (y) < t1.

Since y ∈ Γzk ∖ Czk 7→ φy(tCzk (y)) ∈ ∂Czk is smooth (see indeed (257)), there
exists ε3 > 0 such that if d∂Ω (y, y1) ⩽ ε3, then y ∈ Γzk ∖ Czk and d∂Ω(x, x1) ⩽ ε1
with x = φy(tCzk (y)) and x1 = φy1(tCzk (y1)). In conclusion, from (271) and (272),
if d∂Ω (y, y1) ⩽ min(ε2, ε3), then tCzk (y) < t1 < β(x), where x = φy(tCzk (y))

and y = γx(tCzk (y)). Thus, from (270), if d∂Ω (y, y1) ⩽ min(ε2, ε3), then y ∈ ΓF∖Czk .
The set ΓF ∖Czk is therefore open. In addition, since Czk ⊂ OF ⊂ ΓF and OF is open,
ΓF = (ΓF ∖ Czk) ∪ Czk ⊂ int(ΓF). Therefore the set ΓF is open.

Moreover, using the same arguments as those used to prove the second statement
of (264), it holds:

(273) ΓF = Czk ∪
{
γx(s), x ∈ ∂Czk and s ∈ [0, β(x)]

}
.

Consequently, since β < sΓzk and the trajectories of (258) are continuous (see
also (259)), one has:

ΓF ⊂ Γzk .

In addition, from (273) and (270), one has:

(274) ∂ΓF =
{
γx(β(x)), x ∈ ∂Czk

}
.

(2) Proof of the fact that the set ΓF satisfies (125), i.e., that ∇f · nΓF
> 0 on ∂ΓF,

where we recall that nΓF
∈ T∂Ω is the unit outward normal to ΓF. Notice that by

construction, the set ΓF is a stable set for the dynamics (12) and thus ∇f · nΓF
⩾ 0
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on ∂ΓF. Let us prove that this inequality is actually a strict inequality. Let us define
the function

Υ : y ∈ Γzk ∖ Czk 7−→ (x, t) ∈ ∂Czk × R∗
+ such that γx(t) = y.

Notice that if Υ(y) = (x, t), then t = tCzk (y) (see (256)) and x = φy(tCzk (y)). The
mapping Υ is a C∞ diffeomorphism from Γzk ∖ Czk into its range. Let us denote by
F := Υ−1 its inverse function, i.e.,

(275) F (x, t) = γx(t).

Thus, for all x ∈ ∂Czk , (JacF )(x, β(x)) is a bijection between Tx∂Czk × R and
Tγx(β(x))Γzk . For all x ∈ ∂Czk and v = (v1, v2) ∈ Tx∂Czk × R, one has:

(276) (JacF )(x, β(x))v = (∂xF )(x, β(x))v1 + (∂tF )(x, β(x))× v2 ∈ Tγx(β(x))Γzk ,

where (∂tF )(x, β(x)) = ∇f(γx(β(x)) (see (275) and (258)). Using the chain rule, one
has:

(277)
Jacx

(
F (x, β(x))

)
v1 = (∂xF )(x, β(x))v1 + (∂tF )(x, β(x)))

(
∇β(x) · v1

)
= (∂xF )(x, β(x))v1 +∇f(γx(β(x))

(
∇β(x) · v1

)
,

where Jacx
(
F (x, β(x))

)
v1 ∈ Tγx(β(x))ΓF and ∇β(x) ∈ Tx∂Czk . To prove (125) we

argue by contradiction: assume that there exists x ∈ ∂Czk such that

∇f(γx(β(x))) · nΓF
(γx(β(x))) = 0

(see (274)) which is equivalent to ∇f(γx(β(x))) ∈ Tγx(β(x))∂ΓF. This implies, in view
of (276) and (277) that Ran(JacF )(x, β(x)) ⊂ Tγx(β(x))∂ΓF, which contradicts the
fact that F is a diffeomorphism. This concludes the proof of (125).
The proof of Proposition 28 is complete. □

Proof of Proposition 29. — For all y ∈ Ω, recall that φy(s) ∈ Ω for all s ⩾ 0 (see (12))
and lims→+∞ φy(s) = x0. Define for r > 0:

Cx0
= (f |Ω)−1

(
(−∞, f(x0) + r)

)
.

For r > 0 small enough, Cx0
⊂ Ω and |∇f | ̸= 0 on ∂Cx0

. Thus, Cx0
is a smooth

open neighborhood of x0 and ∇f · nCx0 > 0 on ∂Cx0 . For all x ∈ ∂Cx0 and s ∈ R, let
γx(s) := φx(−s) (see (12)) which satisfy for all s ∈ R

d

dt
γx(s) = ∇f(φx(s)) with γx(0) = x.

Let us define for all x ∈ ∂Cx0 ,

sΩ(x) := inf{s ⩾ 0, γx(s) /∈ Ω}.

The proof of Proposition 29 follows exactly the same lines as the proof of Proposi-
tion 28 if one shows that sΩ is lower semicontinuous. The difference here, compar-
ing sΓzk (see (259)) and sΩ, is that sΩ can be infinite due to the existence of critical
points of f on ∂Ω. Let us thus prove that sΩ : ∂Cx0

→ R+ ∪ {+∞} is lower semicon-
tinuous. To this end, let (xn)n⩾0 be a sequence in ∂Cx0

converging to x∞ ∈ ∂Cx0
and

s∗ ∈ R+ ∪ {+∞} a limit of a subsequence of (sΩ(xn))n⩾0. For ease of notation, up to
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extracting a subsequence, we assume that sΩ(xn) → s∗ when n → +∞. If s∗ = +∞
then, s∗ ⩾ sΩ(x∞). Let us now consider the case when s∗ < +∞. In particular,
sΩ(xn) is finite for n large enough. In this case, sΩ(x∞) ⩽ s∗ by the same proof as the
one made to show (260). In conclusion sΩ is lower semicontinuous. Then, the same
arguments as those used to prove Proposition 28 allows us to conclude the proof of
Proposition 29. □
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