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L2 WELL-POSED CAUCHY PROBLEMS AND

SYMMETRIZABILITY OF FIRST ORDER SYSTEMS

by Guy Métivier

Abstract. — The Cauchy problem for first order system L(t, x, ∂t, ∂x) is known to be well-posed
in L2 when it admits a microlocal symmetrizer S(t, x, ξ) which is smooth in ξ and Lipschitz
continuous in (t, x). This paper contains three main results. First we show that a Lipschitz
smoothness globally in (t, x, ξ) is sufficient. Second, we show that the existence of symmetrizers
with a given smoothness is equivalent to the existence of full symmetrizers having the same
smoothness. This notion was first introduced in [FL67]. This is the key point to prove the
third result saying that the existence of microlocal symmetrizer is preserved if one changes the
direction of time, implying local uniqueness and finite speed of propagation.

Résumé (Problèmes de Cauchy bien posés dans L2 et symétrisabilité pour les systèmes du
premier ordre)

Le problème de Cauchy est bien posé dans L2 pour les systèmes du premier ordre
L(t, x, ∂t, ∂x) qui admettent un symétriseur microlocal S(t, x, ξ) C∞ en ξ 6= 0 et lipschitzien en
(t, x). Cet article contient trois principaux résultats. D’abord, il est montré qu’une régularité
lipschitzienne globale en (t, x, ξ) pour le symétriseur est suffisante. Ensuite, il est établi que
l’existence de symétriseurs microlocaux est équivalente à l’existence de symétriseurs complets
Σ(t, x, τ, ξ) de même régularité, notion introduite dans [FL67]. Cette étape est le point clé dans
la démonstration du troisième résultat qui affirme que l’existence de symétriseurs microlocaux
est préservée par changement de variable de temps. Un corollaire en est l’unicité locale et la
vitesse finie de propagation.
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1. Introduction

This paper is concerned with the well-posedness in L2 of the Cauchy problem for
first order N ×N systems

(1.1)

Lu := A0(t, x)∂tu+

d∑
j=1

Aj(t, x)∂xju+B(t, x)u = f, t > 0,

u|t=0 = u0.

The starting point is the well-known theory of hyperbolic symmetric systems in the
sense of Friedrichs ([Fri54, Fri58]): if the matrices Aj are Lipschitz continuous on
[0, T ] × Rd, Hermitian symmetric, and if A0 is positive definite with A−1

0 bounded,
then for all u0 ∈ L2(Rd) and f ∈ L1([0, T ];L2(Rd)), the equation (1.1) has a unique
solution u ∈ C0([0, T ];L2(Rd)) which satisfies

(1.2)
∥∥u(t)

∥∥
L2(Rd)

6 C
∥∥u0

∥∥
L2(Rd)

+ C

∫ t

0

∥∥Lu(s)
∥∥
L2(Rd)

ds,

for some constant C independent of u0. Additional properties are local uniqueness and
finite speed propagation. The question discussed in this paper is to know for which
systems these properties remain true.

For scalar equations of order m, the analogue would be the well-posedness in
Sobolev spaces Hm−1, for which strict hyperbolicity is necessary ([IP74]) and suf-
ficient ([Går63, Ler53]). This completely settles the question for scalar equations but
for systems, the situation is much more complex.

A necessary condition has been given by V. Ivrii and V.Petkov ([IP74]): they have
shown that if the estimate (1.2) is valid for u ∈ C∞0 (]0, T [×Rd), then there exists a
bounded microlocal symmetrizer S(t, x, ξ) for (1.1) (the precise definition is recalled
below). This is equivalent to a strong form of hyperbolicity of the principal symbol,
which we call strong hyperbolicity of the symbol, namely that L + B1 is hyperbolic
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L2 well-posed Cauchy problems and symmetrizability of first order systems 41

for all matrix B1(t, x). Of course it is stronger than hyperbolicity, which is known
to be a necessary condition for the Cauchy problem to be well-posed in C∞ (see
[Lax57, Miz62, Går51] and the review paper [Går98]). In particular, (1.2) are the best
estimates in terms of regularity that one can expect for the Cauchy problem.

On the side of sufficient conditions, except in the constant coefficient case, where
the energy estimate (1.2) is easily obtained on the space-Fourier transform of the
equation, the existence of a bounded symmetrizer does not imply in general that
the problem is well-posed, even in C∞, A counterexample is given in [Str66] and
another one is proposed in Section 3. Besides the case of symmetric systems recalled
above for which the symmetrizer S(t, x) is independent of ξ, the Cauchy problem is
known to be well-posed in L2 when the microlocal symmetrizer is smooth in ξ and
at least Lipschitz continuous in (t, x) (see [Lax63, Mét08] and Theorem 1.4 below for
a precise statement). In this case, the energy estimates are proven using the usual
pseudo-differential calculus or the para-differential calculus when the coefficient have
limited smoothness. This covers the case of strictly hyperbolic systems and the more
general case of hyperbolic systems with constant multiplicity (e.g. [Cal60], [Yam59]).
This also applies to the case of “generic” double eigenvalues, still assuming the strong
hyperbolicity of the symbol, see Theorem 3.6 below.

The first objective of this paper is to revisit these questions under the angle of
the smoothness of the symmetrizer. We prove that the Lipschitz continuity in (t, x, ξ)

for ξ 6= 0 of the symmetrizer S is sufficient to obtain the L2 estimates and the L2

well-posedness. In addition, we give examples and counterexamples showing that the
Lipschitz condition is sharp.

The second main result of this paper is to prove that the existence of microlocal
symmetrizer is preserved by a change of time, as this is essential to obtain local
uniqueness and the precise description of the propagation of the support of solutions
(see [JMR05, Rau05]). More surprisingly, we show that the existence of symmetrizers
of a given smoothness is equivalent to the existence of full symmetrizers of the same
smoothness, a notion introduced in [FL67]. This link is the key point in the proof of
existence of microlocal symmetrizers in any direction of hyperbolicity.

We now briefly present the results. Note that (1.2) applied to eγtu, with
u ∈ C∞0 (]0, T [×Rd), implies that

(1.3) ∀γ > γ0, γ
∥∥u∥∥

L2(R1+d)
6 C

∥∥(L+ γA0)u
∥∥
L2(R1+d)

,

for some constants C and γ0 independent of u. This estimate is elliptic like: with
χ ∈ C∞0 (R1+d) and u ∈ CN , applying it to

u(t, x) = eiλ(tτ+xξ)λ−αd/2χ(λ1/2(t− t0, x− x0))u,

and to γ = λγ0, and letting λ tend to +∞ implies

Lemma 1.1. — Suppose that the coefficients of L are continuous and bounded on the
open set Ω and there are constants γ0 and C such that

(1.4) γ
∥∥u∥∥

L2(Ω)
6 C

∥∥(L+ γA0)
)
u
∥∥
L2(Ω)
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42 G. Métivier

for all γ > γ0 and u ∈ C∞0 (Ω). Then the principal symbol L1(t, x, τ, ξ) of L satisfies
for all (t, x) ∈ Ω, all γ ∈ R and u ∈ CN :

(1.5) |γ|
∣∣u∣∣ 6 C∣∣(L1(t, x, τ, ξ) + iγA0(t, x))u

∣∣.
There is no sign condition on γ, as seen by changing ξ̃ to −ξ̃. When (1.5) holds, we

say that the symbol is strongly hyperbolic in the time direction. The condition (1.5)
has several equivalent formulations, see Section 4. One of them is that the symbols
admits a bounded symmetrizer.

Definition 1.2. — A microlocal symmetrizer for L1 is a bounded matrix S(t, x, ξ),
homogeneous of degree 0 in ξ 6= 0, such that S(t, x, ξ)A0(t, x) is symmetric and
uniformly positive definite, and S(t, x, ξ)A(t, x, ξ) is symmetric, where A(t, x, ξ) =∑
Aj(t, x)ξj .

Combining Lemma 1.1 and Theorem 4.10 below, we recover the the necessary
condition given in [IP74]:

Proposition 1.3. — If L has continuous coefficient on the open set Ω and there are
constants γ0 and C such that (1.4) is satisfied, then the principal symbol L1 must
admit a bounded symmetrizer S(t, x, ξ) on Ω× Rd r 0.

In the constant coefficients case, the existence of a bounded symmetrizer is also
sufficient, as immediately seen by Fourier synthesis. For variable coefficients, this con-
dition is far from being sufficient for the well-posedness of the Cauchy problem (1.1):
in section 3 we give an example of a 3 × 3 systems in space dimension d = 2, whose
symbol L(x, τ, ξ) is strongly hyperbolic uniformly in x, and such that the Cauchy
problem (1.1) is ill-posed, even locally and with C∞ data.

On the side of sufficient conditions, let us first recall the following result:

Theorem 1.4. — Suppose that the coefficients Aj ∈W 1,∞([0, T ]×Rd) and there exists
a microlocal symmetrizer S, homogeneous of degree 0 and C∞in ξ 6= 0 which satisfies
∂βt,x∂

α
ξ S ∈ L∞([0, T ] × Rd × Sd−1) for all α ∈ Nd and all |β| 6 1. Then, there are

constants C and γ such that for all u0 ∈ L2(Rd) and f ∈ L1([0, T ];L2(Rd)), the
Cauchy problem (1.1) has a unique solution u ∈ C0([0, T ];L2(Rd)) which satisfies

(1.6)
∥∥u(t)

∥∥
L2(Rd)

6 Ceγ0t
∥∥u0

∥∥
L2(Rd)

+ C

∫ t

0

eγ0(t−s)∥∥Lu(s)
∥∥
L2(Rd)

ds.

When the symmetrizer does not depend on ξ, this is Friedrichs theory, in which case
the estimate (1.6) is easily obtained by forming the real part of the scalar product
of SLu with u and performing integrations by parts. For microlocal symmetrizers,
one replaces the multiplication by S by the action of the pseudodifferential oper-
ator S(t, x,Dx) ([Lax63]) when the coefficients are also smooth in x, or by a para-
differential version when the coefficients are Lipschitz (see e.g. [Mét08]). This theorem
applies to hyperbolic systems with constant multiplicities which admit smooth sym-
metrizers. Indeed, multiple eigenvalues of A(t, x, ξ) with variable multiplicities are
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L2 well-posed Cauchy problems and symmetrizability of first order systems 43

the main difficulty for the construction of smooth symmetrizers. However, we note in
Proposition 3.6 that the theorem above applies to strongly hyperbolic systems which
have only generic double eigenvalues.

The first main result of the paper extends this result to Lipschitz symmetrizers,
using a Wick quantization of the symbols.

Theorem 1.5. — Suppose that the coefficients Aj ∈ W 2,∞(Rd+1) and there exists a
microlocal symmetrizer, homogeneous of degree 0 in ξ 6= 0 and Lipschitz continuous
in (t, x, ξ) on Rd+1 × Sd−1. Then, there are constants C and γ such that for all
u0 ∈ L2(Rd) and f ∈ L1([0, T ];L2(Rd)), the Cauchy problem (1.1) has a unique
solution u ∈ C0([0, T ];L2(Rd)) which satisfies (1.6).

This theorem is proved in Section 2. In Section 3 we discuss the existence of Lips-
chitz symmetrizers. In particular, we give examples of systems which admit a Lipschitz
symmetrizer but no C1 symmetrizer. We also prove that the Lipschitz condition is
sharp, in the sense that for all µ < 1, there are examples of systems admitting Hölder
continuous symmetrizers of order µ < 1, for which the Cauchy problem with C∞ data
is locally ill-posed.

Remark 1.6. — In this theorem we assume that the coefficients are W 2,∞ whereas
W 1,∞ was sufficient when the symmetrizers are smooth in ξ. This is due to the use
of the Wick quantization. One one hand it helps to deal with symbols which are
not smooth in ξ. On the other hand, the symbolic calculus is less precise, and the
W 2,∞ smoothness of the coefficient is used to prove that in OpWick(S) ◦ A(x, ∂x) −
OpWick(iSA) is bounded in L2. At the present time, it is not known wether this
additional smoothness which is crucial for the proof is necessary or not for the validity
of the result.

The second part of the paper is concerned with the local theory of the Cauchy
problem and the finite speed propagation property for the support of the solutions.
A classical proof of this property relies on the invariance of the assumptions by changes
of time variables, so that one can convexify the initial surface. The existence of a local
symmetrizer is clearly invariant by change of time, as well as strict hyperbolicity or
the property that the characteristic variety is smooth with constant multiplicities. In
all these cases the local theory was well established. This invariance is not clear for
the existence of smooth microlocal symmetrizers. However, when there are smooth
symmetrizers, local uniqueness and finite speed of propagation are proved in [Rau05]
using another approach based on finite difference approximation schemes and uniform
estimates due to [LN66, Vai70].

The second main theorem of this paper asserts that the existence of a Lipschitz
[resp. C∞] symmetrizer is preserved by change of timelike directions. This is a key
step for establishing a local theory, starting with local uniqueness, finite speed of
propagation and ending with the sharp description of the propagation of support as
stated in [JMR05, Rau05].
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44 G. Métivier

Let x̃ denote the space-time variables (t, x) and set accordingly ξ̃ = (τ, ξ) Assuming
that L1(x̃, ξ̃) is hyperbolic in the time direction (1, 0) ∈ R1+d, denote by Γx̃ the cone
of hyperbolic directions that is the component of (1, 0) in {ξ̃ : detL1(x̃, ξ̃) 6= 0}.

Theorem 1.7. — Suppose that the coefficients Aj are Lipschitz continuous [resp. C∞]
on Rd+1 and that there exists a microlocal symmetrizer S(t, x, ξ), homogeneous of
degree 0 in ξ 6= 0 and Lipschitz continuous [resp. in C∞] (t, x, ξ) on Rd+1 × Sd−1.
Then, for any time-like direction ν̃ ∈ Γt,x, the symbol L(t, x, ν̃)−1A(t, x, ξ) admits a
Lipschitz [resp. C∞] symmetrizer.

Corollary 1.8. — Under the assumptions of Theorem 1.5, the Cauchy problem for L
with initial data on any space like hyperplane is well-posed in L2.

In Theorem 4.13, we prove that one can choose symmetrizers which also depend
smoothly on ν̃. As said above, with Theorems 1.4 and 1.5, this implies local unique-
ness, and finite speed of propagation. Together with the Lipschitz dependence of the
cone of propagation implied by Proposition 5.4, this allows to the results on the pre-
cise propagation of support stated in [JMR05, Rau05]. We refer the reader to these
papers for precise statements.

The proof of this theorem is based on an intrinsic characterization of the existence
of Lipschitz symmetrizers which uses the notion of full symmetrizers introduced by
K.O. Friedrichs and P. Lax [FL67]:

Definition 1.9. — A full symmetrizer for (1.1) is a bounded matrix S̃(t, x, τ, ξ),
homogeneous of degree 0 in (τ, ξ) 6= 0, such that S̃(t, x, τ, ξ)L(t, x, τ, ξ) is symmetric.

The matrix S̃ is said to be positive in the direction ν̃, if Re S̃(t, x, τ, ξ)L(t, x, ν̃) is
positive definite on kerL(t, x, τ, ξ) for all (t, x, τ, ξ).

Of course the condition is nontrivial only near characteristic points, but says noth-
ing about hyperbolicity. Our third main theorem is the following:

Theorem 1.10. — Suppose that L is hyperbolic in the time direction. Then, L admits a
continuous [resp. Lipschitz] microlocal symmetrizer S(t, x, ξ) if and only if it admits a
continuous [resp. Lipschitz] full symmetrizer S̃(t, x, τ, ξ) which is positive in the time
direction.

In this case, S̃ is positive in any direction of hyperbolicity ν̃.

2. Lipschitz symmetrizability is sufficient for the L2 well-posedness

The goal of this section is to prove Theorems 1.5. We consider a system

(2.1) Lu =

d∑
j=0

Aj(x̃)∂x̃ju

with coefficients Aj which are at least W 1,∞([0;T ]× Rd).
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2.1. Wave packets and localization. — For u∈L2(Rs), λ > 0 and B∈L∞(Rd×Rd),
let

(2.2) Wλ,Bu(x, ξ) =
1

(2π)d/2

(λ
π

)d/4 ∫
ei(x−y)ξ− 1

2λ|x−y|
2

B(x, y)u(y) dy.

Lemma 2.1. — The operator Wλ,B is bounded from L2(Rd) to L2(R2d) and

(2.3)
∥∥Wλ,Bu

∥∥
L2(Rd×Rd)

6
∥∥B∥∥

L∞

∥∥u∥∥
L2(Rd)

.

Moreover, if B(x, z) ≡ Id, Wλ := Wλ,Id is isometric from L2(Rd) into L2(Rd × Rd).

Proof. — Let F denote the Fourier transform and vx(y) = B(x, y)e−
1
2λ|x−y|

2

u(y).
Then

Wλ,Bu(x, ξ) =
1

(2π)d/2

(λ
π

)d/4
eiλxξF

(
vx
)
(ξ).

Therefore∫ ∣∣WBu(x, ξ)
∣∣2 dx dξ =

(λ
π

)d/2 ∫ ∣∣vx(y)
∣∣2 dx dy

=
(λ
π

)d/2 ∫
e−λ|x−y|

2 ∣∣B(x, y)u(y)
∣∣2 dx dy 6 ∥∥B∥∥2

L∞

∥∥u∥∥2

L2(Rd)
.

When B = 1, the inequality is an equality. �

We will adapt the scale λ to the size of the frequency |ξ|. One has

Wλu(x, ξ) = (2π)−d
( 1

πλ

)d/4 ∫
eixη−

1
2λ |ξ−η|

2

û(η) dη.

This shows that for a fixed ξ, Wλu( ·, ξ) is the inverse Fourier transform of wξ(η) =(
1
πλ

)d/4
e−

1
2λ |ξ−η|

2

û(η). Therefore

(2.4)

∫ ∣∣Wλu(x, ξ)
∣∣2 dx = (2π)−d

∫ ∣∣wξ(η)
∣∣2 dη

= (2π)−d
( 1

πλ

)d/2 ∫
e−

1
λ |ξ−η|

2

|û(η)|2 dη.

Integrating in ξ, we recover the isometry of Wλ, but the important point is that we
use (2.4) to localize in |ξ|.

Consider a dyadic partition of unity

(2.5) 1 = ϕ0(ξ) +

∞∑
j=1

θj(ξ)

with ϕ0 ∈ C∞0 (Rd), supported in {|ξ| 6 2} and equal to one on {|ξ| 6 1}, θj(ξ) =

ϕj(ξ) − ϕj−1(ξ) and ϕj(ξ) = ϕ0(2jξ) for j > 1. To unify notations, we set θ0 = ϕ0

and for j > 0 we denote by define Θj the operator

Θju = F−1
(
θj û
)
,

J.É.P. — M., 2014, tome 1



46 G. Métivier

so that

(2.6) u =

∞∑
j=0

Θju.

Proposition 2.2. — For all n, m and α, there is a constant C such that for all j > 0

(2.7)
∥∥|ξ|m(1− ϕj+2)W2j∂

α
y Θju

∥∥
L2(R2d)

6 C2−jn
∥∥Θju

∥∥
L2(Rd)

.

Proof. — By (2.4)∥∥(1− ϕj+2)W2j∂
α
y Θju

∥∥2

L2(R2d)

= (2π)−d
( 1

π2j

)d/2 ∫
e−2−j |ξ−η|2(1− ϕj+2(ξ))2|ηα|2(θj(η))2|û(η)|2 dη dξ.

On the support of (1 − ϕj+2(ξ))θj(η), one has |ξ| > 2j+2, |η| 6 2j+1 so that
|ξ − η| > 1

2 |ξ| and therefore 2−j |ξ − η|2 > 1
22−j |ξ − η|2 + 1

2 |ξ|. Hence,∥∥2jn|ξ|m(1− ϕj+2)W2j∂
α
y Θju

∥∥2

L2(R2d)

6 (2π)−d
( 1

π2j

)d/2
2jn2(j+1)|α|e−2j

∫
|ξ|2me− 1

2 |ξ|e−
1
2 2−j |ξ−η|2 |θj(η)û(η)|2 dη dξ

6 C
∥∥Θju

∥∥2

L2(Rd)
. �

Corollary 2.3. — There is a constant C such that for all j > 0,

(2.8)
∥∥(1− ϕj+2)W2jΘj∂xku

∥∥
L2(R2d)

6 C
∥∥Θju

∥∥
L2(Rd)

.

2.2. The main estimate. — Let

(2.9) A(x, ∂x) =

d∑
j=1

Aj(x)∂xj , A(x, ξ) =

d∑
j=1

ξjAj(x).

We assume that we are given a matrix S(s, ξ), homogeneous of degree 0 in ξ such
that S(x, ξ)A(x, ξ) is Hermitian symmetric.

Let ψ ∈ C∞0 (Rd), and for λ > 1 introduce ψλ(ξ) = ψ(λ−1ξ).

Proposition 2.4. — Suppose that the coefficients Aj belong to W 2,∞(Rd) and that
S ∈W 1,∞(Rd × Sd−1). Then, there is a constant C such that for all λ > 1 and u

(2.10)
∣∣∣Re

(
ψλSWλu,WλA(x, ∂x)u

)
L2(R2d)

∣∣∣ 6 C∥∥u‖2L2 .

Proof. — Let Sλ = ϕλS and consider the self-adjoint operator Σλ = W ∗λSλWλ:

Σλu(x) = κλd/2
∫
eΦλ(x,y,z,ξ)Sλ(z, ξ)u(y) dz dξ dy,

where κ is a normalization factor and

Φλ(x, y, z, ξ) = i(x− y)ξ − 1

2
λ(|x− z|2 + |y − z|2).

The estimate to prove is

(2.11)
∣∣∣Re

(
A(x, ∂x)∗Σλu, u

)
L2

∣∣∣ 6 C∥∥u∥∥2

L2 .
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One can replace A(x, ∂x)∗ by Ã∗ :=
∑
−A∗j∂xj since the difference is bounded in L2

with norm O(supj ‖Aj‖W 1,∞). One has

A∗j∂jΣλu(x) = κ

∫
eΦλA∗j (x)

(
iξj − λ(xj − zj)

)
Sλ(z, ξ)u(y) dz dξ dy.

Therefore

(2.12) Ã∗(x, ∂x)Σλ = W ∗λ (−iA∗Sλ)Wλ +
∑
j

(R1
j +R2

j ),

where

R1
ju(x) = iκ

∫
eΦλξj

(
A∗j (z)−A∗j (x))

)
Sλ(z, ξ)u(y) dz dξ dy,

R2
ju(x) = κ

∫
eΦλλ(xj − zj)A∗j (x)

)
Sλ(z, ξ)u(y) dz dξ dy.

Because S is a symmetrizer for
∑
Ajξj , the matrix iA∗(x, ξ)Sλ is skew-symmetric

and thus the real part of the first term in (2.12) vanishes and it is sufficient to show
that the remainders R1,2

j are bounded in L2. Write

(2.13) A∗j (x)−A∗j (z) =
∑
k

(xk − zk)Ãj,k(x, z),

with Ãj,k ∈W 1,∞, and use that
2λ(xk − zk) = ∂zkΦλ − iλ∂ξkΦλ := ZkΦλ.

Integrating by parts in (z, ξ) yields that R1
j =

∑
k R

1
j,k with

R1
j,ku(x) = − iκ

λ

∫
eΦλZ∗k

(
ξjA

∗
j,kSλ

)
u(y) dz dξ dy.

Note that 1
λZ
∗
k

(
ξjA

∗
j,kSλ

)
is a sum a terms of the form Bl(x, z)Sl(z, ξ, λ) where

the Bl and Sl are uniformly bounded. Therefore R1
j,k is of the sum of the opera-

tors W ∗λ,BlSlWλ where the definition of Wλ,Bl is given in 2.2. Lemma 2.1 implies that
the R1

j are uniformly in λ.
The analysis of R2

j is similar and the proof of the proposition is complete. �

2.3. Proof of Theorem 1.5. — Suppose that the operator L in (2.1) has W 2,∞ coef-
ficients. Without loss of generality, multiplying L on the left by A−1

0 , we assume that
the coefficient of Dt is A0 = Id so that L = ∂t +A(t, x, ∂x). We are given a Lipschitz
symmetrizer S(t, x, ξ) which is uniformly positive definite and such that

(2.14) S, ∂t,xS, |ξ|∂ξS ∈ L∞.

Consider the energy

(2.15) Et(u) =

∞∑
j=0

(
S(t)W2jΘju,W2jΘju

)
L2(R2d)

.

Lemma 2.5. — There are constants C > c > 0 such that

c
∥∥u∥∥2

L2(Rd)
6 E(u) 6 C

∥∥u∥∥2

L2(Rd)
.
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Proof. — Because S(t, x, ξ) is positive definite bounded from above and from below,

Et(u) ≈
∞∑
j=0

∥∥W2jΘju
∥∥2

L2(R2d)
=

∞∑
j=0

∥∥Θju
∥∥2

L2(R2d)
≈
∥∥u∥∥2

L2(R2d)
. �

The theorem follows from the energy estimate.

Proposition 2.6. — If u satisfies Lu = f , then

(2.16) d

dt
Et(u(t)) 6 C

(∥∥f(t)
∥∥
L2(R2d)

∥∥u(t)
∥∥
L2(R2d)

+
∥∥u(t)

∥∥2

L2(R2d)

)
.

Proof. — One has
d

dt
Et(u(t)) = (∂tE)(u(t)) + 2 Re Ẽt(u(t), ∂tu(t)))

= (∂tE)(u(t)) + 2 Re Ẽt(u(t), f(t)))− 2 Re Ẽt(u(t), Au(t))),

where ∂tEt is the expression (2.15) with S replaced by ∂tS and Ẽ is the bilinear version
of E . Because ∂tS ∈ L∞, the first term is O(‖u(t)‖2L2). Similarly, the second term is
O(‖u(t)‖L2‖f(t)‖L2) and it remains to prove that

(2.17)
∣∣Re Ẽt

(
u(t), Au(t)

)∣∣ 6 C∥∥u(t)
∥∥2

L2 .

For simplicity we drop the time from the notations, t being a parameter and all the
estimates below being uniform in t.

The expression to consider is

(2.18) Ẽ(u,Au) =

∞∑
j=0

(
SW2jΘju,W2jΘjAu

)
L2(R2d)

.

Corollary 2.3 implies that∣∣∣((1− ϕj+2)SW2jΘju,W2jΘjÃu
)
L2(R2d)

∣∣∣ .∑
k

∥∥Θju
∥∥
L2

∥∥Θj(Aku)
∥∥
L2 ,

and the sum over j of these terms is O(‖u‖2L2). Next, we replace Θj(Au) by AΘju

using the following lemma.

Lemma 2.7. — The gj = [A,Θj ]u satisfy

(2.19)
∑∥∥gj(t)∥∥2

L2 .
∥∥u(t)

∥∥2

L2 .

Since S(x, ξ) is bounded and since the Wλ are isometries one has∣∣∣ ∞∑
j=0

(
ϕj+2SW2jΘju,W2jgj

)
L2(R2d)

∣∣∣ . ∞∑
j=0

∥∥Θju‖L2

∥∥gj∥∥L2 .
∥∥u‖2L2 .

Summing up, we have proved that

Ẽ(u,Au) =

∞∑
j=0

(
ϕj+2SW2jΘju,W2jAΘju

)
L2(R2d)

+O(
∥∥u∥∥2

L2).

By Proposition 2.4, the real part of the sum is O(
∑
‖Θju‖2L2) = O(‖u‖2L2) finishing

the proof of 2.17 and of the proposition. �
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Proof of Lemma 2.7. — Using the para-differential calculus (see e.g. [Mét08]), one has

A(x, ∂x) = TiA +R,

where TiA is a para-differential operator of symbol iA(x, ξ) and R is bounded from L2

to L2. Thus
gj = [TA,Θj ]u+RΘju−ΘjRu.

The last two terms satisfy (2.19). The symbolic calculus implies that the [TiA,Θj ] are
uniformly bounded in L2 since the coefficients of A belong to W 1,∞. Moreover, the
spectral properties of the para-differential calculus shows that [TiA,Θj ] = [TiA,Θj ]Θ̃j

where the cut-off function θ̃j is supported in the annulus {2j−n 6 |ξ| 6 2j+n} for
some fixed n if j > 1 and in the ball {|ξ| 6 2n} if j = 0. Therefore g′j = [TiA,Θj ]u

satisfies ∥∥g′j∥∥L2 .
∥∥Θ̃ju

∥∥
L2

and thus (2.19). �

3. Examples and counterexamples

In this section, we discuss the existence of symmetrizers of limited smoothness.
The case of generic double eigenvalues is specific, as shown in the next subsection.
But for eigenvalues of higher order, it is easy to construct examples of systems with
symmetrizers which necessarily have no, or a limited, smoothness.

Second, we show on an example that Lipschitz smoothness is sharp, even for well-
posedness in C∞.

3.1. Example of non smooth symmetrizers. — In space dimension two consider, near
the origin, a system of the form

(3.1) L0(x, ∂t, ∂x, ∂y) = L0(∂t, ∂x, x∂y) = ∂t +A∂x + xB∂y,

with L0(τ, ξ, η) strictly hyperbolic. Consider next a perturbation

(3.2) La(x, ∂t, ∂x, ∂y) = L0(x, ∂t, ∂x, ∂y) + xa(x)C∂y = L(a(x), ∂t, ∂x, x∂y).

We will give explicit examples below. For a small, L(a, τ, ξ, η) is still strictly hyper-
bolic and therefore it has smooth symmetrizers S(a, ξ, η) for (ξ, η) 6= (0, 0), providing
bounded symmetrizers for La(x, τ, ξ, η)

(3.3) S(a, x, ξ, η) = S(a, ξ, xη)

for (x, ξ) 6= (0, 0). On the unit sphere ξ2+η2 = 1, they are smooth when (x, ξ) 6= (0, 0).
The definition of S can be extended at (x, ξ) = (0, 0), but in general they have a
singularity there.

Lemma 3.1. — Suppose in addition that L0 is symmetric. Then, for a small, there is
a symmetrizer S of the form

(3.4) S(a, ξ, η) = Id +aS1(a, ξ, η),
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with S1 homogeneous of degree 0 in (ξ, η) and smooth in (a, ξ, η) for (ξ, η) in the unit
sphere ξ2 + η2 = 1.

Proof. — The spectral projectors Πj(a, ξ, η) are smooth in (a, ξ, η) for (ξ, η) in the
unit sphere ξ2 + η2 = 1 and S =

∑
Π∗jΠj is a symmetrizer. Since L0 is symmetric,

the Πj are symmetric when a = 0 and therefore S(0, ξ, η) = Id, implying (3.4). �

Substituting in (3.3) implies the following corollary.

Corollary 3.2. — If L0 is symmetric and strictly hyperbolic and a(x) = |x|α with
0 < α < 1, La admits Hölder continuous symmetrizers S(a, x, ξ, η) of class Cα.

If a(x) = x, it admits a Lipschitz symmetrizer.

Example 1. — Consider

(3.5) La = ∂t +

 0 ∂x + xa∂y x∂y
∂x − xa∂y 0 0

x(1 + a2))∂y 0 0

 .

In this case, detL(a, τ, ξ, η) = τ(τ2 − ξ2 − η2) is always strictly hyperbolic.

Lemma 3.3. — If a 6= 0 is a constant, there are bounded symmetrizers S(x, ξ, η) for La,
but no continuous symmetrizers at (x, ξ) = (0, 0) when η = 1.

Proof. — Fix η = 1. If S(x, ξ) is a symmetrizer, then its complex conjugate is also
a symmetrizer, so that S + S is a symmetrizer. Thus, it is sufficient to consider the
case where S has real coefficients sj,k. The symmetry condition reads

(ξ + ax)s11 = (ξ − ax)s22 + (1 + a2)xs23

ηs11 = (ξ − ax)s23 + (1 + a2)xs33

ηs12 = (ξ + ax)s13.

The third condition is independent of the first two, it only involves s12 and s13, and
is trivially satisfied by s12 = s13 = 0.

There is no restriction in assuming that s22 = 1. Setting s′11 = s11 − 1, s′33 =

(1 + a2)s33 − s11, one must have

(3.6)
(ξ + ax)s′11 = −2ax+ (1 + a2)xs23,

xs′33 = −(ξ − ax)s23.

Suppose that the coefficients are continuous at (x, ξ) = (0, 0). Then taking x = 0

and ξ 6= 0 in the equations above, dividing by ξ and letting ξ tend to 0 implies that
s2,3(0, 0) = s′11(0, 0) = 0. Taking ξ = 0 dividing by x and letting x tend to 0 implies
that s′11(0, 0) = −2 + (1 + a2)s′23(0, 0) and s′33(0, 0) = as2,3(0, 0). These conditions
can be met only if a = 0. �

When a(x) = x, by Corollary 3.2, there is a Lipschitz symmetrizer, but it turns
out that in this specific case, one can construct a C∞ symmetrizer. The next example
shows that this is not always the case.
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Example 2. — Consider the 4× 4 system with symbol

(3.7) La = ∂t +

(
Ω aJ

0 2Ω

)
, Ω =

(
ξ xη

xη −ξ

)
, J =

(
xη 0

0 0

)
.

By Corollary 3.2, when a(x) = x, La has a Lipschitz symmetrizer but

Lemma 3.4. — When a(x) = x, there are no C1 symmetrizers for La.

Proof. — Fix η = 1. Suppose that S(ξ, x) is a C1 symmetrizer near (x, ξ) = (0, 0).
We can assume that S has real coefficients. Using the block notation

(3.8) S =

(
S11 S12

S21 S22

)
,

the symmetry conditions imply

(3.9) ΩS12 − 2S12Ω = x2J0S11, J0 =

(
1 0

0 0

)
.

This is a linear system in S12 and since Ω and 2Ω have no common eigenvalue it has
a unique solution.

If S12 is C1 near the origin, plugging its Taylor expansion Σ0 + xΣ1 + ξΣ2 in (3.9)
and using the notation Ω = xΩ1 + ξΩ2, yields at first order

Ω1Σ0 − 2Σ0Ω1 = Ω2Σ0 − 2Σ0Ω2 = 0,

which implies that Σ0 = 0. The term in ξ2 is

Ω2Σ2 − 2Σ2Ω2 = 0,

showing that Σ2 = 0. The term in xξ is then

Ω2Σ1 − 2Σ1Ω2 = 0,

implying that Σ1 =0, which is incompatible with the equation given by the term in x2:

Ω1Σ1 − 2Σ1Ω1 = −2J0S11(0, 0) 6= 0

since S11(0, 0) must be positive definite. �

3.2. Existence of smooth symmetrizers for generic double eigenvalues

Consider a symbol τ Id +A(a, ξ) which is strongly hyperbolic in the time direction,
thus admitting a bounded symmetrizer S(a, ξ). At (a, ξ), ξ 6= 0, the characteristic
polynomial p(a, τ, ξ) = det(τ Id +A(a, ξ)) has roots τ j of multiplicity mj . Near this
point, it can be smoothly factored as

(3.10) p(a, τ, ξ) =
∏
j

pj(a, τ, ξ),

with pj of order mj .
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Assumption 3.5. — In a neighborhood of (a, ξ), ξ 6= 0, the roots of p are either of
constant multiplicity or of multiplicity at most two.

In the second case, we assume that the multiplicity is two on a smooth manifoldM.
Denoting by pj the corresponding factor in (3.10), we further assume that either

(i) M has codimension one and the discriminant of pj vanishes on M at finite
order,
or

(ii)M has codimension two and the discriminant of pj vanishes onM exactly at
order two.

Theorem 3.6. — Under these assumptions, there is a smooth symmetrizer S(a, ξ) on
a neighborhood of (a, ξ).

Proof. — The construction is local in ρ = (a, ξ) and one can perform a block reduction
of A near ρ and it is sufficient to construct a symmetrizer for each block. They are
either diagonal and thus symmetric, or of dimension two. Eliminating the trace, it is
therefore sufficient to consider matrices

(3.11) A(ρ) =

(
−a b

c a

)
.

The hyperbolicity condition is that the discriminant ∆ = a2 + bc is real and non-
negative. Strong hyperbolicity holds if and only if there exists ε > 0 such that

(3.12) ∆ = a2 + bc > ε(|a|2 + |b|2 + |c|2).

Our assumption is that ∆ vanishes on a manifoldM, at finite order if codimM = 1

and at order two if codimM = 2.
(a) If ∆ vanishes at finite order on a manifold of codimension 1 of equation {ϕ = 0},

then (3.12) implies that for some integer k,

(3.13) A = ϕkAr

with detAr 6= 0 and still strongly hyperbolic. Thus Ar has distinct real eigenvalues
and is therefore smoothly diagonalizable.

(b) Suppose that ∆ vanishes exactly at second order onM given by the equations
{ϕ = ψ = 0}. This means that ∆ > ε1(ϕ2 + ψ2). Together with (3.12), this implies
that A vanishes onM and that

(3.14) A = ϕA1 + ψA2,

and A1 and A2 have distinct real eigenvalues at ρ. We can smoothly conjugate A1 to
a real diagonal and traceless form and changing ϕ we are reduced to the case where

A1 =

(
−1 0

0 1

)
, A2 =

(
−a2 b2
c2 a2

)
.

Moreover, changing ϕ to ϕ− Re a2ψ, we can assume that Re a2 = 0. Since ∆ is real

(3.15) 2ϕIm a2 + ψIm (b2c2) = 0.
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Moreover, (3.12) implies for ϕ = 0

(3.16) Re(b2c2) > (Im a2)2,

and this remains true in a neighborhood of ρ. In particular b2(ρ) 6= 0 and conjugating
by a diagonal matrix with diagonal entries b2/|b2| and 1 changes b2 into |b2|, meaning
that we can assume that b2 is real. Having performed these reductions, one easily
checks using (3.15) that

(3.17)
(

Re c2 iIm a2

−iIm a2 b2

)
is a smooth symmetrizer for ϕA1 + ψA2, which is positive definite by (3.16). �

3.3. Ill-posedness for non-Lipschitz symmetrizers. — Consider the system (3.5)
with a = a(x) = |x|α. For η large and β to be determined, we look for solutions of
LaU = 0 of the form

(3.18) U(t, x, y) = eiβ
√
η t+iyη

u(
√
η x)

v(
√
η x)

w(
√
η x)

 .

With ε = η−α/2, the equation LU = 0 is equivalent to

(3.19) v(x) =
i

β
(∂x − iεxa)u(x), w = − 1

β
(1 + ε2a2)u(x),

and the scalar equation for the first component is(
β2 + (∂x + iεxa)(∂x − iεxa(x))− x2(1 + ε2a2)

)
u = 0,

that is, since ∂x(xa) = (α+ 1)a,

(3.20)
(
β2 + ∂2

x − x2 − iε(α+ 1)a
)
u = 0.

The example has been cooked up precisely to get an eigenvalue problem for a pertur-
bation of the harmonic oscillator.

When α = 0, ε = 1 and u(x) = e−
1
2x

2 is a a solution when

(3.21) β2 = i− 1.

Choosing the root with negative imaginary part, this yields exact solutions of LaU = 0

of the form

(3.22) Uλ(t, x, y) =

∫
eiβ
√
η t+iyηe−

1
2ηx

2

(U0 +
√
η xU1)ϕ(η/λ) dη

with constant vectors U0 and U1 not equal to 0 and ϕ ∈ C∞0 (R) with support in the
interval [1, 2]. The exponential growth of eit

√
η β implies that there is no control of any

H−s norm at positive time by an Hs′ norm of the initial data. This can be localized
in (x, y) and

Proposition 3.7. — When a = 1, La has bounded symmetrizers but the Cauchy prob-
lem for (3.5) is ill-posed in L2 as well as in C∞.
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Consider now the case α ∈]0, 1[. By standard perturbation theory the eigenvalue
problem (3.20) has a solution

(3.23) u = e−
1
2x

2

+ εu1, β2 = 1 + iελ1 +O(ε2)

with

(3.24) λ1

∫
e−x

2

dx = (α+ 1)

∫
a(x)e−x

2

dx > 0,

so that λ1 > 0. Therefore one can choose β = −1− i
2ελ1 +O(ε2), so that

(3.25) Im (β
√
η) ∼ 1

2
λ1η

1
2 (1−α) < 0,

which is arbitrarily large if α < 1. This provides solutions of LaU = 0, with exponen-
tially amplified L2 norms implying the following proposition.

Proposition 3.8. — When a = |x|α with 0 < α < 1, La has Cα symmetrizers but the
Cauchy problem for (3.5) is ill-posed in L2.

4. Strong hyperbolicity of first order symbols

In this section we introduce the notion of strong hyperbolicity and show that it is
equivalent to the existence of symmetrizers. Next we discuss the existence of smooth
symmetrizers. We show that these notions are preserved by a change of the time
direction. For the convenience of the reader, we postpone to the appendix the proof
of several independent results on matrices.

4.1. Basic properties. — We denote by x̃ ∈ R1+d the time-space variables and by ξ̃
the dual variables. We consider N × N first order system systems

∑d
j=0Aj∂x̃j + B.

Their characteristic determinant is p(ξ̃) = det
(∑d

j=0 iξ̃jAj + B
)
, the principal part

of which is pN (ξ̃) = det
(∑d

j=0 iξ̃jAj
)
.

Definition 4.1
(i)
∑d
j=0Aj∂x̃j +B is said to be hyperbolic in the direction ν ∈ R1+d if pN (ν) 6= 0

and there is γ0 such that p(iτν + ξ̃) 6= 0 for all ξ ∈ R1+d and all real τ such that
|τ | > γ0.

(ii) L =
∑d
j=0Aj∂x̃j is strongly hyperbolic in the direction ν if and only if for all

matrix B, L+B is hyperbolic in the direction ν.

The classical definition of hyperbolicity is that the roots of p(iτν + ξ) 6= 0 are
located in τ < γ0. But, since hyperbolicity in the direction ν implies hyperbolicity in
the direction −ν, the definition above is equivalent to the usual one.

Proposition 4.2. — L =
∑d
j=0Aj∂x̃j is strongly hyperbolic in the direction ν if and

only if there is a constant C such that
(i) for all ξ̃ ∈ R1+d and all matrix B, the roots of det

(
L(ξ̃ + λν) + B

)
= 0 are

located in the strip |Imλ| 6 C|B|.
With the same constant C, this condition is equivalent to
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(ii) for all (γ, ξ̃, u) ∈ R× R1+d × CN :

(4.1)
∣∣γu∣∣ 6 C∣∣L(ξ̃ + iγν)u

∣∣.
Other equivalent formulations can be deduced from Proposition 5.1 below.

Proof
(a) By homogeneity, (ii) is equivalent to the condition

(4.2)
∣∣Imλ| > C =⇒

∣∣L(ξ̃ + λν)−1
∣∣ 6 1.

By Lemma 5.2 below, this is equivalent to the condition that for all matrices B such
that |B| < 1, L(ξ̃ + λν) + B is invertible when |Imλ| > C. This is equivalent to
saying that the roots of det

(
L(ξ̃ + λν) + B

)
= 0 are contained in {|Imλ| < C}. By

homogeneity, this is equivalent to (i).
(b) Note that (4.1) applied to ξ̃ = 0 implies that L(ν) is invertible. It is then clear

that (i) implies strong hyperbolicity. Conversely, assume that L is strongly hyperbolic.
Consider the matrix Bj,k with all entries equal to zero, except the entry of indices
(j, k) equal to one. Then

det
(
L(ξ̃) +Bj,k

)
= detL(ξ̃) +mjk(ξ),

where mj,k is the cofactor of indices (j, k) in the matrix L(ξ̃). Following Theorem
12.4.6 in [Hör83], the hyperbolicity condition implies that there is a constant C such
that ∣∣mj,k(ξ̃ + iν)

∣∣ 6 C∣∣ detL(ξ̃ + iν)
∣∣.

Since L(ξ̃ + iν)−1 = (detL(ξ̃ + iν))−1M̃(ξ̃ + iν) where M̃ is the matrix with entries
(−1)j+kmk,j , this implies that there is another constant C such that (4.1) is satisfied
for γ = 1. By homogeneity, it is also satisfied for all γ. �

When p is hyperbolic in the direction ν, the component of ν in the set {pN 6= 0}
is a convex open cone, which we denote by Γ(ν), and p is hyperbolic in any direction
ν′ ∈ Γ(ν). This property is also true for strong hyperbolicity. We give a quantitative
version of this result, as we will need it later on.

Lemma 4.3. — Suppose that L is hyperbolic in the direction ν. For all ν′ ∈ Γ(ν),
the ball centered at ν′ of radius ε := |pN (ν′)|/K|ν′|N−1 is contained in Γ(ν), where
K = max|ξ̃|62 |∇ξ̃ detL(ξ̃)|.

Proof. — By homogeneity, one can assume that |ν′| = 1. In this case, |pN (ν′′)| >
|pN (ν′)| −K|ν′ − ν”| if ν”− ν′| 6 1. Noticing that |pN (ν′)| = |ν′∇ξ̃pN (ν′)| 6 K, this
implies that |pN (ν′′)| > 0 if |ν”− ν′| 6 ε. �

Proposition 4.4. — Suppose that L(ξ̃) satisfies (4.1) and let ν′ ∈ Γ(ν) such that∣∣detL(ν′)
∣∣ > c > 0. Then

(4.3)
∣∣γu∣∣ 6 C1

∣∣L(ξ̃ + iγν′)u
∣∣,

with C1 = KC|ν|/c|ν′| and K = max|ξ̃|62 |∇ξ̃ detL(ξ̃)|.
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Proof. — Let p(ξ̃) = det(L(ξ̃) + B) and pN = detL(ξ) its principal part. Suppose
that |ν| = |ν′| = 1. The general case follows immediately. By Proposition (4.2), one
has

(4.4) p(ξ̃ + iγν) 6= 0 for |γ| > C|B|.

We choose ν′′ = ν′ − εν with ε = c/K. By Lemma 4.3 ν′′ ∈ Γ(ν) and following
[Går51, Hör83], (see e.g. [Hör83] vol 2, chap 12), one has

(4.5) p(ξ̃ + iγν + iσν′′) 6= 0 for γ > C, σ > 0,

and also for γ < −C|B| and σ 6 0. Indeed, all the roots of pN (tν + ν′′) are real and
negative:

(4.6) pN (tν + ν′′) = 0 =⇒ t < 0.

By (4.4), p(ξ̃ + iγν + zν′′) = 0 has no root on the real axis, so that the number of
roots in {Im z > 0} is independent of ξ̃ and γ > C|B|. Taking ξ̃ = 0 and letting γ
tend to +∞, (4.6) implies that this number is equal to zero, hence (4.5). The proof
for γ 6 −C|B| and σ 6 0 is similar.

Substituting ν′′ = ν′ − εν in (4.5) and choosing γ = ε′σ we conclude that

p(ξ̃ + iσν′) 6= 0

if ε|σ| > C|B|. Applying again Proposition 4.2, (4.3) follows. �

In most applications, the coefficients of the system L and even the direction ν

may depend on parameters, such as the space time variables, the unknown itself etc.
The direction ν itself can be seen as a parameter. This leads to consider families of
systems, L(a, ∂x̃) and directions νa, depending on parameters a ∈ A. Their symbol is

(4.7) L(a, ξ̃) =

d∑
j=0

ξ̃jAj(a).

When considering such families, we always assume that the matrices Aj(a) and the
directions νa are uniformly bounded.

Definition 4.5. — We say that the family L(a, · ) is uniformly strongly hyperbolic
in the direction νa for a ∈ A if,

(i) cA := infa∈A |detL(a, νa)| > 0,
(ii) the equivalent conditions (i) and (ii) of Proposition 4.2 are satisfied with a

constant C independent of a ∈ A.

The next result is an immediate consequence of Proposition 4.4. It shows that one
can enlarge the set of strongly hyperbolic directions, preserving uniformity: let Γa
denote the component of νa in {detL(a, ξ̃) 6= 0}; for c ∈ ]0, cA] and C > 0, introduce
the set

(4.8) Ã =
{

(a, ν) | a ∈ A, ν ∈ Γa, |ν| 6 C, |detL(a, ν)| > c
}
.
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Proposition 4.6. — Suppose that L(a, · ) is uniformly strongly hyperbolic in the di-
rection νa for a ∈ A. Then L(a, · ) is uniformly strongly hyperbolic in the direction ν,
for (a, ν) ∈ Ã.

4.2. Symmetrizers. — We start with the notion of full symmetrizer introduced in
[FL67].

Definition 4.7. — A full symmetrizer for L(ξ̃) =
∑
ξ̃jAj is a bounded matrix S(ξ̃),

homogeneous of degree 0 on R1+d r {0}, such that S(ξ̃)L(ξ̃) is self-adjoint. It is
positive in the direction ν 6= 0 if there is a constant c > 0 such that for all ξ̃ 6= 0:

(4.9) u ∈ kerL(ξ̃) =⇒ Re
(
S(ξ̃)L(ν)u, u

)
> c|u|2.

Given a family of systems L(a, ·) and directions νa, a bounded family of full sym-
metrizers S(a, · ) for a ∈ A is said to be uniformly positive in the direction νa if the
constant c above can be chosen independent of a.

In (4.9), (f, u) denotes the Hermitian scalar product in CN . More intrinsically, it
should be thought as the antiduality between covectors f ∈ V∗ and vectors u ∈ V,
where V is a vector space of dimension N , so that the adjoint P ∗ of the operator P
from V to V satisfies (f, Pu) = (P ∗f, u). In this spirit, the symbol L(ξ̃) must be
thought as linear mapping from a vector space V to another vector space W and the
symmetrizer S(ξ̃) maps W to V∗ so that the antiduality (SLu, u) makes sense.

Note that outside a conical neighborhood of the the characteristic variety, the
symmetrizer can be chosen arbitrarily and thus contains no information.

A different and more familiar notion of symmetrizer depends on the choice of a
time direction ν. Choosing a space E such that R1+d = E ⊕ Rν the symmetrizer is
seen as a function of frequencies ξ ∈ E. Since the open cone Γ(ν) is strictly convex,
one can also require that Γ(ν) ∩ E = ∅. In a more intrinsic definition, it can be seen
as a symmetrizer invariant by translation in the direction ν, or defined on R1+d/Rν.
To avoid technicalities, we choose the first option choosing a space E. and when
considering families (L(a), νa), we assume that we can choose E in such a way that
there is a compact set K such that

(4.10) ∀a ∈ A, νa ∈ K and K ∩ E = ∅.

This condition can always be met locally. In particular, uniformly in a ∈ A:

(4.11) c(|ξ|+ |τ |) 6 |ξ + τνa| 6 C(|ξ|+ |τ |), ξ ∈ E, τ ∈ R.

Definition 4.8. — A symmetrizer for L(ξ̃) =
∑
ξ̃jAj in the direction ν is a bounded

matrix S(ξ), homogeneous of degree 0 in ξ ∈ E such that S(ξ)L(ξ) and S(ξ)L(ν) are
self-adjoint for all ξ and there is c > 0 such that:

(4.12) ∀ξ ∈ E r {0}, ∀u ∈ CN ,
(
S(ξ)L(ν)u, u

)
> c|u|2.

Given a family of systems L(a, ·) and directions νa satisfying (4.10), a uniform fam-
ily of symmetrizers S(a, · ) for {L(a, ·), νa}, a ∈ A, is a bounded family S(a, ·) of
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symmetrizers for L(a, ·) in the direction νa, such that the constant c can be chosen
independent of a.

Remark 4.9. — S(ξ + τν) = S(ξ), is almost a full symmetrizer, except that it not
necessarily defined on the line Rν. But (4.12) implies that L(ν) is invertible and one
can always choose S(ν) so that S(ν)L(ν) is positive definite. This modification can
be extended to a conical neighborhood of ν where L(ξ̃)) remains invertible. This con-
struction obviously preserves positivity. This remains true for families and uniformity
can be preserved.

The existence of symmetrizers is equivalent to strong hyperbolicity, in the following
sense.

Theorem 4.10. — Consider a family {L(a, · ), νa, a ∈ A}.
(i) Assuming (4.10), L(a, ·) is strongly hyperbolic in the direction νa if and only if

there exists a uniform family of symmetrizers S(a, ·).
(ii) L(a, ·) is strongly hyperbolic in the direction νa if and only if

(1) it is hyperbolic in the direction νa and infa∈A |detL(a, νa)| > 0,
(2) there is a bounded family of full symmetrizer S(a, ·) which is uniformly pos-

itive in the direction νa.

Proof

(i) If L(a, ·) is uniformly strongly hyperbolic in the direction νa, then L(a, νa)

and L(a, νa)−1 are uniformly bounded, Similarly, (4.12) implies that L(a, νa)−1 is
bounded.

In both case, A(a, ξ)=L(a, νa)−1L(a, ξ) for |ξ|=1 is bounded, and strong hyperbo-
licity is equivalent to the existence of a constant C such that for all λ, a, ξ∈E and u:

(4.13) |Imλ|
∣∣u∣∣ 6 C∣∣A(a, ξ)u− λu

∣∣.
By Proposition 5.1 this is equivalent to the existence of a symmetric matrix SA(a, ξ),
bounded and uniformly positive definite, such that SAA is symmetric. This is equiv-
alent to the condition that S(a, ξ) = SA(a, ξ)L(a, νa)−1 is a symmetrizer for L(a, ·)
bounded and uniformly positive in the direction νa.

(ii) Strong hyperbolicity implies the existence of a symmetrizer, thus of a full
positive symmetrizer by Remark 4.9. Hence it only remains to prove the converse
part of (ii).

Let S(a, ·) be a full symmetrizer for L(a, ·), positive in the direction νa. Suppose in
addition that L(a, ·) is hyperbolic in this direction, so that L(a, ν) is invertible. Then,
Proposition 6.1 implies that when kerL(a, ξ̃) 6= {0}, 0 is a semi-simple eigenvalue of
A(a, ξ̃) = L(a, νa)−1La, ξ̃). Moreover, the spectral projectors, that is the projectors
on kerA = kerL parallel to the range of A, are uniformly bounded. Applied to
ξ̃+ τν, this implies that all the real eigenvalues of A(a, ξ̃) are semi-simple and all the
corresponding spectral projectors are uniformly bounded. Since L is hyperbolic, all the
eigenvalues are real and with Proposition 5.1 this implies that (4.13) is satisfied. �
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4.3. Smooth symmetrizers. — We now consider a family {L(a, · ), νa, a∈A} where A
is an open set of some space Rm. We assume that the condition (4.10) is satisfied.

Theorem 4.11. — Suppose that the coefficients of L(a, ·) are continuous, [resp. W 1,∞]
[resp. C∞] on A and that the mapping a 7→ νa is continuous, [resp. W 1,∞] [resp. C∞].
Then, there exists a full symmetrizer S(a, ξ̃) which is continuous, [resp. W 1,∞]
[resp. C∞] on A× Sd and uniformly positive in the direction νa, if and only if there
is a symmetrizer S(a, ξ) which is continuous, [resp. W 1,∞] [resp. C∞] on A × Sd−1

and uniformly positive in the direction νa.

Proof. — By Remark 4.9 passing from a symmetrizer to a full symmetrizer is immedi-
ate. The converse statement follows from a more general result given in Theorem 4.13
where the construction is extended to other directions ν ∈ Γ(νa). �

4.4. Invariance by change of time. — Proposition 4.6 shows that strong hyperboli-
city, thus the existence of bounded symmetrizers or of full symmetrizers, extends
from νa to all directions in the cone of hyperbolicity Γa, preserving uniformity in sets
such as (4.8). We now prove that this is also true for smooth symmetrizers. The key
point, is to prove that for a continuous full symmetrizer, positivity extends from νa
to Γ(νa).

Proposition 4.12. — Consider a family {L(a, · ), νa, a ∈ A} and assume that L(a, ·)
is uniformly strongly hyperbolic in the direction νa. For c > 0 and C given, define Ã
as in (4.8).

Suppose that S(a, ·) is a full symmetrizer of L(a, ·) which depends continuously
on ξ̃ ∈ R1+d r {0}, such that S(a, ·) is uniformly positive in the direction νa. Then,
S(a, ·) is uniformly positive in the direction ν for (a, ν) ∈ Ã.

Proof. — Since S(a, ξ̃ + sη)L(a, ξ̃ + sη̃) is symmetric, for u and v in kerL(a, ξ̃) one
has (

S(a, ξ̃ + sη)L(a, η̃)u, v
)

=
(
u,S(a, ξ̃ + sη)L(a, η̃)v

)
.

Letting s tend to 0, shows that for all η, the matrices S(a, ξ̃)L(a, η̃) are symmetric
on kerL(a, ξ̃).

By Lemma 4.3, there is ε such that for all (a, ν) ∈ P, the ball centered at ν and
radius ε is contained in Γa(νa). Therefore, there is t0 ∈]0, 1[ such that for all (a, ν) ∈ P,
there is ν′ ∈ Γa(νa) on the line joining νa and ν such that ν = tνa + (1 − t)ν′ with
t ∈ [t0, 1[. By Proposition 4.4, L(a, )̇ is strongly hyperbolic in the direction ν′, implying
that L(a, ν′)−1L(a, ξ̃) has only real an semi-simple eigenvalues. Therefore, the result
follows from Proposition 6.2 applied to Jt = (1− t)L(a, νa) + tL(a, ν). �

We are now ready to prove that the existence of a regular full symmetrizer implies
the existence of a symmetrizer, having the same smoothness, in all directions ν∈Γ(νa).
In particular, this finishes the proof of Theorem 4.11. Consider a strongly hyperbolic
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family {L(a, · ), νa, a ∈ A}. Assume that the condition (4.10) holds. For c > 0 and
C > 0 and O an open neighborhood of K such that O ∩ E = ∅ let

(4.14) Ã0 =
{

(a, ν) | a ∈ A, ν ∈ Γa ∩ O, |ν| 6 C, |detL(a, ν)| > c
}
.

Theorem 4.13. — Suppose that the coefficients of L(a, ·) are continuous, [resp. W 1,∞]
[resp. C∞] on A and that the mapping a 7→ νa is continuous, [resp. W 1,∞] [resp. C∞].
Suppose that S(a, ξ) is a uniform bounded family of symmetrizers for {L(a, · ) in the
directions νa for a ∈ A, which is continuous, [resp. W 1,∞] [resp. C∞] on A×E. Then,
there exist a continuous, [resp. W 1,∞] [resp. C∞] uniform family of symmetrizers
S(a, ν, ξ) for L(a, ·) in the direction ν, which is continuous, [resp. W 1,∞] [resp. C∞]
on Ã0 × E.

Proof. — For ã = (a, ν) ∈ Ã0, consider

L̃(ã, τ, ξ) = τL(a, ν) + L(a, ξ) = L(a, ξ + τν).

Then S̃(ã, τ, ξ) = S(a, ξ + τν) symmetrizes L̃(ã, τ, ξ). By (4.11), L̃ and S̃ are contin-
uous, [resp. W 1,∞] [resp. C∞] functions on Ã0 × R× Sd−1. The positivity condition

(4.15) Re
(
S̃(ã, τ, ξ)L(a, ν)u, u

)
> c|u|2

on ker L̃(ã, τ, ξ) = kerL(a, ξ+ τν) follows from Proposition 4.12 and the construction
of a symmetrizer S(a, ν, ξ), with the same smoothness as S̃, is given by Theorem 6.5.

�

5. Appendix A: Strongly hyperbolic matrices

We collect here the various technical results on matrices which have been used in
the previous section. Changing slightly the notations, for instance including ξ or ν
among the parameters, we consider a family of N ×N matrices, A(a) depending on
parameters a ∈ Ω where Ω is an open subset of Rn. We denote by Σ(a) the spectrum
of A(a).

5.1. Definition and properties

Proposition 5.1. — The following properties are equivalent
(i) There is a real C1 such that

(5.1) ∀t ∈ R,∀a ∈ Ω,
∣∣eitA(a)

∣∣ 6 C1.

(ii) All the the eigenvalues λ of A(a) are real and semi-simple and there is a real C2

such that all the eigen-projectors Πλ(a) satisfy

(5.2) ∀a ∈ Ω,
∣∣Πλ(a)

∣∣ 6 C2.

(iii) A(a)− λ Id is invertible when Imλ 6= 0 and there is a real C3 such that

(5.3) ∀λ /∈ R ∀a ∈ Ω,
∣∣(A(a)− λ Id

)−1∣∣ 6 C3

∣∣Imλ|−1.
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(iv) There are positive definite matrices S(a) and there are constants C4 and c4 > 0

such that for all a ∈ Ω, S(a)A(a) is symmetric, and

(5.4)
∣∣S(a)

∣∣ 6 C4, S(a) > c4 Id .

(v) There is a real C5 such that for all matrix B, all a ∈ Ω and all ρ ∈ R, the
eigenvalues of ρA(a) +B are located in {|Imλ| < C5|B|}.

Proof

(a) (ii) implies that A(a) has the spectral decomposition A =
∑
λjΠj with

real λj ’s. Thus (5.2) implies that
∣∣eitA)

∣∣ =
∣∣∑ eitλjΠj

∣∣ 6 NC2.
Conversely, (i) implies that the eigenvalues λj of A(a) are real, and semi-simple

and thus that A(a) =
∑
λjΠj . Moreover,

lim
T→∞

1

2T

∫ T

−T
eit(A(a)−λj Id)dt =

∑
k

lim
T→∞

1

2T

∫ T

−T
eit(λk−λj Id)Πkdt = Πj .

Thus, |Πj | 6 C1 if (5.1) is true.
(b) Suppose that (ii) is satisfied so that A =

∑
λjΠj and Id =

∑
Πj . Then

(5.5) S(a) =
∑

Π∗jΠj

is positive definite, satisfies S > N−1 Id, |S| 6 NC2
2 , and SA =

∑
λjΠ

∗
jΠj is self-

adjoint.
If (iv) holds then, with ε = sign(γ),

c4|γ|
∣∣u∣∣2 6 Re ε

(
S(−iA+ γ Id)u, u

)
6 C4

∣∣(A+ iγ)u
∣∣ ∣∣u∣∣,

implying (iii) with C3 = C4/c4.
If (iii) is satisfied, then the eigenvalues of A(a) are real, and semi-simple, for if

there were a nondiagonal block in the Jordan’s decomposition of A− λj Id, the norm
of (A− (λj − iγ) Id)−1 would be at least of order γ−2 when γ → 0. Thus A =

∑
λjΠj

and
lim
γ→0

iγ
(
A− (λj − iγ) Id)−1 =

∑
k

lim
γ→0

iγ

(λk − λj + iγ
Πk = Πj ,

hence |Πj | 6 C3.
(c) By homogeneity, (iii) is equivalent to the condition

∀a ∈ Ω,∀ρ ∈ R,
∣∣Imλ| > C3 =⇒

∣∣(ρA(a)− λ Id
)−1∣∣ 6 1.

By Lemma 5.2 below, this is equivalent to the condition that for all matrix B such
that |B| < 1, ρA−λ Id +B is invertible when |Imλ| > C3, meaning that the spectrum
of ρA+B is contained in {|Imλ| < C3. By homogeneity, this is equivalent to (v) with
C5 = C3.

The proof of the proposition is now complete. �

Lemma 5.2. — The matrix A is invertible with |A−1| 6 κ if and only if A + B is
invertible for all B such that |B| < κ−1.
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Proof. — If |A−1| 6 κ, then A+B = A−1(Id +A−1B) is invertible for all B such that
|A−1B| 6 κ|B| < 1.

Conversely, if A is not invertible or if |A−1| > κ, there is u such that |u| = 1 and
|Au| < κ−1. Pick a linear form ` such that `(u) = 1 and |`| = 1. Then the matrix B
defined by Bu = `(u)Au satisfies |B| = |Au| < κ−1 but A− B is not invertible since
u is in its kernel. �

5.2. Lipschitz dependence of the eigenvalues

Assumption 5.3. — The family {A(a), a ∈ Ω} ofN×N matrices, is uniformly strongly
hyperbolic in the sense that the equivalent properties of Proposition 5.1 are satisfied.

Proposition 5.4. — Suppose that A(·) ∈ W 1,∞(Ω) satisfies Assumption 5.3. Denote
by λj(a), 1 6 j 6 N , the eigenvalues of A(a), labelled in the increasing order and
repeated accordingly to their multiplicity. Then, the functions λj belong to W 1,∞(Ω).

Proof. — The continuity of the roots of a polynomial with respect to the coefficients
is well-known. The Lipschitz smoothness with respect to parameters of the roots of
hyperbolic polynomials is true in general, provided that the coefficients are smooth
enough (see [Bro79]). The proposition says that when the polynomial is the charac-
teristic determinant of a strongly hyperbolic system, the Lipschitz smoothness of the
coefficients is sufficient.

Fix a ∈ Ω and an eigenvalue λ = λp(a) = λp+m(a) of A(a) of multiplicity m + 1.
Let δ > 0 denote the distance of λ to the remainder part of the spectrum of A(a).
By Assumption 5.3, there is C which depends only on an upper bound of the norms
of the spectral projectors, thus independent of a, such that

∀z ∈ C, |z − λ| 6 δ/2,
∣∣(A(a)− z Id

)−1∣∣ 6 C|z − λ|−1.

Therefore, A− z Id is invertible when |A−A(a)| < |z − λ| 6 δ/2C.
Let Ω1 ⊂ Ω denote a convex open neighborhood of a. Because A ∈W 1,∞(Ω) for a

and a′ ∈ Ω1 there holds

(5.6)
∣∣A(a)−A(a′)

∣∣ 6 K|a− a′|,
with K =

∥∥∇aA∥∥L∞(Ω)
. Therefore, A(a)−z Id is invertible if a ∈ Ω1 and CK|a−a| 6

|z − λ| 6 δ/2. By Rouché’s theorem, this implies that A(a) has m + 1 eigenvalues
(counted with their multiplicity) in the disk {|λ−λ| 6 KC|a−a|}. They must be real
by assumption, and by continuity they are {λp(a), . . . , λp+m(a)}. Hence, |λj(a)−λ| 6
KC|a− a| for p 6 j 6 p+m, provided that a ∈ Ω1 and KC|a− a| < δ/2.

Gluing these estimates together, we have proved that there are constants C and K
such that: for all a ∈ Ω, there is a convex neighborhood ω of a, such that for a ∈ ω
and all j,

|λj(a)− λj(a)| 6 CK|a− a|.
The following independent lemma implies that

∣∣∇aλj∣∣L∞(Ω)
6 CK and the proposi-

tion follows. �
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Lemma 5.5. — Suppose that K is a positive real number and f is a function defined
on the open set Ω ⊂ Rn such that for all a ∈ Ω, there is a neighborhood ω of a, such
that

(5.7) ∀a ∈ ω, |f(a)− f(a)| 6 K|a− a|.

Then
∥∥∇af∥∥L∞(Ω)

6 K.

Proof. — Note that (5.7) implies that f is continuous at a, thus f is continuous.
We first shown that for all convex open set Ω1 ⊂ Ω the inequality

(5.8) |f(b)− f(a)| 6 K|b− a|

is satisfied for all a and b in Ω1. Indeed, let T denote the set of real numbers t ∈ [0, 1]

such that

(5.9) ∀s ∈ [0, t], |f(a+ s(b− a))− f(a)| 6 Ks|b− a|.

By assumption, the property (5.8) is satisfied on a neighborhood of a, implying that T

is not empty. By definition T is an interval, and by continuity of f it is closed. Using
the assumption (5.7) near a+ t(b−a), implies that T is open so that T = 1 and (5.8)
is proved.

This implies that f is Lipschitz continuous on Ω1 and that
∥∥∇af∥∥L∞(Ω1)

6 K.
Since this is true for all balls Ω1 ⊂ Ω, the lemma follows. �

5.3. Lipschitz dependence of the eigen-projectors

Proposition 5.6. — Suppose that A(·) ∈W 1,∞(Ω) satisfies Assumption 5.3. Let a ∈ Ω

and consider Λ := {λj(a), j ∈ J} a subset of the spectrum of A(a). Let Λ′ = Σ(a)rΛ =

{λj(a), j ∈ J ′} and define

(5.10) δ = dist(Λ,Λ′) = min
(j,j′)∈J,×J′

∣∣λj(a)− λj′(a)
∣∣ > 0.

Let ω be a neighborhood of a such that |λj(a) − λj(a)| 6 δ/4 for all j ∈ {1, . . . , N}
and a ∈ ω. With Λ(a) = {λj(a), j ∈ J}, consider the spectral projector

(5.11) ΠΛ(a) =
∑

λ∈Λ(a)

Πλ(a).

Then, ΠΛ(a) is continuous on ω and

(5.12)
∣∣ΠΛ(a)−ΠΛ(a′)

∣∣ 6 CKδ−1
∣∣a− a′∣∣,

where C depends only on an upper bound of the norms of the spectral projectors of
A(·) and K =

∥∥∇aA∥∥L∞(Ω)
.

Proof. — There are finitely many Jordan curves Γk in the complex domain, of total
length less than Cδ, such that |z − λj(a)| > δ/2 for all z ∈ ∪Γk and all j ∈ J ,
surrounding Λ so that

ΠΛ(a) =
∑
k

1

2iπ

∫
Γk

(z Id−A(a))−1 dz.
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This formula extends to a ∈ ω. Moreover, using the estimate∣∣(z Id−A(a))−1 − (z Id−A(a′))−1
∣∣

6
∣∣(z Id−A(a))−1

∣∣ ∣∣A(a)−A(a′)
∣∣ ∣∣(z Id−A(a′))−1

∣∣
6 CKδ−2

∣∣a− a′∣∣
for z ∈

⋃
Γk, implies (5.12). �

5.4. A piece of functional calculus. — We study the smoothness of f(A(a)), given
the smoothness of f and A. We extend the analysis to vector or matrix valued func-
tions S(λ, a) using the following definition

(5.13) SA(a) =
∑

λ∈Σ(a)

S(λ, a)Πλ(a).

Theorem 5.7. — Suppose that A(·) is continuous [resp. W 1,∞] [resp. C∞] on Ω and
satisfies Assumption 5.3. Suppose that S(λ, a) is continuous [resp. W 1,∞] [resp. C∞]
on R× Ω. Then SA(a) is continuous [resp. W 1,∞] [resp. C∞] on Ω.

(1) The C∞ case. — If S were holomorphic in λ one would have

SA(a) =
1

2iπ

∫
∂D

S(z, a)(z Id−A(a))−1 dz,

where D is a rectangle [−R,R] + i[−δ, δ] containing Σ(a) in its interior, implying the
result since (z Id−A(a))−1 is smooth in a for z ∈ ∂D. In the C∞ case, we modify this
proof considering an almost holomorphic extension of S in the variable λ. It is a C∞
function in (z, a) ∈ C× Ω such that, for z in bounded sets,

(5.14) ∂zS(z, a) = O(|Im z|∞).

Since the result is local, we can assume that Ω is bounded and fix R such that for
a ∈ Ω, the spectrum of A(a) is contained in {|z| 6 R}. Let D denote the disc of radius
R+ 1 in C. Then,

SA(a) =
1

2iπ

∫
∂D

S(z, a)(z Id−A(a))−1 dz +
1

2iπ

∫
D

∂zS(z, a)(z Id−A(a))−1 dz dz.

The first integral is C∞ in a as explained above. In the second, we note that for all m,
∂zS(z, a) = (Im z)mRm(z, a) with Rm smooth and (Im z)m(z Id−A(a))−1 has m− 1

uniformly bounded derivatives in a, for z ∈ DrR, implying that the second integral
is Cm−1 with respect to a ∈ Ω. �

(2) Continuity. — Fix a ∈ Ω and denote by µj , 1 6 j 6 m, the distinct eigenvalues
of A(a) and introduce δ = minj 6=k |µj − µk|. For a in a neighborhood ω of a, the
spectrum of A(a) is contained in nonoverlapping intervals Ij = ]µj − δ/4, µj + δ/4[.
Write

(5.15) SA(a) =
∑
j

S(µj , a)ΠIj (a) +
∑
j

∑
λ∈Ij∩Σ(a)

(
S(λ, a)− S(µj , a)

)
Πλ(a),
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with

(5.16) Πj(a) =
∑

λ∈Ij∩Σ(a)

Πλ(a).

Using a uniform bound for the Πλ(a) and the continuity of the eigenvalues at a one
concludes that the second sum in (5.15) tends to 0 as a tends to a. By Proposition 5.6,
Πj is continuous and hence SA is continuous at a. �

(3) Lipschitz continuity. — By Lemma 5.5 it is sufficient to prove that there is a posi-
tive constant K such that for all a ∈ Ω, there is a neighborhood ω of a, such that

(5.17) ∀a ∈ ω, |SA(a)− SA(a)| 6 K|a− a|.

The proof starts as in (2) with the decomposition (5.15). Shrinking ω if necessary, the
Lipschitz continuity of S and of the eigenvalues implies that for a ∈ ω and λ ∈ Ij∩Σ(a)∣∣∣S(λ, a)− S(µj , a)

∣∣∣ 6 C|a− a|,
where C depends only

∥∥∇aA∥∥L∞(Ω)
and

∥∥∇λ,aS∥∥L∞(R×Ω)
. Since the Πλ are uniformly

bounded, this implies that the second sum in (5.15) is uniformly O(|a− a|) so that it
remains to prove that, with Sj = S(µj , a) and pj(a) = Πj(a)−Πj(a)

)
, one has

(5.18)
∣∣∣∑
j

Sjpj(a)
∣∣∣ 6 K|a− a|,

with K independent of a and ω. Since S ∈W 1,∞, the Sj satisfy

(5.19)
∣∣Sj∣∣ 6 K1,

∣∣Sj − Sk∣∣ 6 K1|µj − µk|.

Moreover, Proposition 5.6 implies that for all J ⊂ {1, . . . ,m} with J 6= ∅ and J 6=
{1, . . . ,m},

(5.20) PJ =
∑
j∈J

pj(a)

satisfies, with ε = |a− a|:

(5.21)
∣∣PJ ∣∣ 6 K2ε

(
min

j∈J,k/∈J
|µj − µk|

)−1

.

Moreover, when J = {1, . . . ,m},

(5.22) P{1,...,m} = 0.

The next lemma implies (5.18), finishing the proof of the proposition. �

Lemma 5.8. — There is a constant Cm which depends only on m, such that for all Sj
and pj, 1 6 j 6 m, satisfying (5.19) (5.21)and (5.22), the sum S =

∑
Sjpj satisfies

(5.23)
∣∣S∣∣ 6 CmK1K2ε.
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Proof. — By homogeneity, we can assume that K1 = K2 = 1. The proof is by in-
duction on m. When m = 1, the condition (5.19) reduces to |S1| 6 1, the condition
(5.21) is void and p1 = 0.

We assume that the lemma is proved up to order m− 1 > 1 and we prove it at the
order m. Let

(5.24) δ := min
j 6=k
|µj − µk| > 0.

Permuting the indices we can assume that the infimum is attained for (j, k) =

(m− 1,m), which means that

(5.25) ∀j 6= k, |µm−1 − µm| 6 |µj − µk|.

We split S in two terms:

(5.26) S = S̃ + (Sm − Sm−1)pm,

with

(5.27) S̃ =

m−1∑
j=1

Sj p̃j ,

where p̃j = pj when j 6 m− 2 and p̃m−1 = pm−1 + pm.
The condition (5.21) applied to J = {m} and (5.25) imply that |pm| 6 εδ−1 while

(5.19) and (5.25) imply that |Sm − Sm−1| 6 δ. This shows that the second term in
(5.26) satisfies |(Sm − Sm−1)pm| 6 ε.

We now check that the induction hypothesis can be applied to S̃. The condition
(5.19) is clear, so we only have to show that the conditions (5.21) and (5.22) are
satisfied for the p̃j .

Consider a non empty subset J̃ ⊂ {1, . . . ,m− 1}. Then P̃J̃ = PJ with
(1) J = J̃ ∪ {m} if m− 1 ∈ J̃ ,
(2) J = J̃ if m− 1 /∈ J̃ .

In particular, P̃{1,...,m−1} = P{1,...,m} = 0 so that (5.22) for S̃ is satisfied.
Suppose that J̃ 6= {1, . . . ,m − 1} and let J be as above. Introduce also K̃ =

{1, . . . ,m − 1} r J̃ and K = {1, . . . ,m} r J . One has K = K̃ in case (1) and
K = K̃ ∪ {m} in case (2). By assumption, we know that∣∣P̃J̃ ∣∣ =

∣∣PJ ∣∣ 6 ε( min
j∈J,k∈K

|µj − µk|
)−1

.

We claim that

(5.28) min
j∈J̃, k∈K̃

|µj − µk| 6 2 min
j∈J,k∈K

|µj − µk|.

Indeed, if it is true, it implies that

(5.29)
∣∣P̃J̃ ∣∣ 6 2ε

(
min

j∈J̃,k∈K̃
|µj − µk|

)−1

,

so that the induction hypothesis is satisfied for S̃ with ε replaced by 2ε. Thus∣∣S̃∣∣ 6 2Cm−1ε and (5.23) follows with Cm = 1 + 2Cm−1.
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Therefore, to complete the proof, it remains to prove the claim (5.28). In this
estimate, J̃ and K̃ play symmetric roles, and therefore we can assume that m ∈ J ,
that is, m − 1 ∈ J̃ . Comparing the sets J̃ × K̃ and J × K, we see that the only
nontrivial case concerns |µm − µk| when k ∈ K = K̃. In this case, since m − 1 ∈ J̃ ,
the claim follows from the inequality

|µm−1 − µk| 6 |µm − µk|+ |µm−1 − µm| 6 2|µm − µk|,

where we have used (5.25). The proof of the lemma is now complete. �

6. Appendix B: Symmetrizable matrices

6.1. Positivity of symmetrizers and bounds

Proposition 6.1. — Suppose that L and S are matrices such that SL is Hermitian
symmetric. Suppose that J is an invertible matrix such that

(6.1) ∀u ∈ kerL, Re
(
SJu, u

)
> c|u|2.

Then, 0 is a semi-simple eigenvalue of J−1L and the associated eigen-projector Π

satisfies

(6.2) Π∗SJΠ = Π∗SJ

and

(6.3)
∣∣Π∣∣ 6 |ΣJ |/c .

Moreover,

(6.4) Sf ∈ (kerL)⊥ ⇐⇒ f ∈ range(L).

Proof. — Let K and R denote respectively the kernel and the range of L. The
identity (SLu, v) = (u,SLv) implies that SR ⊂ K⊥ and hence R ⊂ S−1(K⊥).
Next we note that (6.1) implies that if u ∈ K and SJu ∈ K⊥, then u = 0, so that
JK ∩ S−1(K⊥) = {0}:

(6.5) R ⊂ S−1(K⊥), JK ∩ S−1(K⊥) = {0}.

In particular JK ∩R = {0} and K ∩ J−1R = {0}. This means that the kernel K of
AJ − τ Id has a trivial intersection with the range J−1R of AJ − τ Id, that is that τ is
a semi-simple eigenvalue of AJ . Moreover, since dimR + dim JK = N , (6.5) implies
that R = S−1(K⊥), that is (6.4).

In the splitting u = Πu+ (Id−Π)u, Πu ∈K and there is v such that (Id−Π)u =

J−1Lv. Therefore (SLv,Πu) = 0 and
(
SJΠu,Πu) =

(
SJu,Πu). Hence,

c
∣∣Πu∣∣2 6 Re

(
SJΠu,Πu) = Re

(
SJu,Πu) 6

∣∣SJu∣∣ ∣∣Πu∣∣,
and (6.3) follows.

For f ∈ K⊥ and u ∈ CN one has (Π∗f, u) = (f,Πu) = 0. Thus K⊥ ⊂ ker Π∗

and indeed K⊥ = ker Π∗ since the two spaces have the same dimension. For all u,
(Id−Π)u ∈ J−1R, hence SJ(Id−Π)u ∈ K⊥ and therefore Π∗ΣJ(Id−Π)u = 0 that
is (6.2). �
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Proposition 6.2. — Suppose that L and S ares matrices such that SL is Hermitian
symmetric. We now assume that we are given two matrices J0 and J1 such that, for
all t ∈ [0, 1], Jt = (1− t)J0 + tJ1 is invertible, and for all u and v in ker,

(6.6)
(
SJtu, v

)
=
(
u,SJtv

)
.

Suppose that J0 satisfies

(6.7) ∀u ∈Ka,
(
SJ0u, u

)
> c|u|2,

and suppose that for t ∈ [0, 1[, 0 is a semi-simple eigenvalue of J−1
t L. Then for all

t ∈ [0, 1],

(6.8) ∀u ∈ kerL,
(
SJtu, u

)
> (1− t)c|u|2.

Proof. — The assumption (6.6) means that the restriction of SJt to kerL is sym-
metric. By (6.7), it is positive definite for t = 0. By continuity, it remains positive
as long as it remains definite. It is indefinite when there is a u ∈ kerL, u 6= 0 such
that SJtu(∈ kerL)⊥. By (6.4), this would imply that u 6= 0 would belong both to the
kernel and to the range of J−1

t L, contradicting the assumption that 0 is a semi-simple
eigenvalue. By continuity, SJ1 is nonnegative and (6.8) follows. �

6.2. From full symmetrizers to symmetrizers. — We consider here N ×N matrices

(6.9) L(τ, a) = τJ(a)−A(a),

which depend on parameters a in an open set Ω and τ ∈ R. We always assume that
J(a) is invertible. We link the spectral properties of AJ(a) := J(a)−1A(a) to the
existence of symmetrizers and full symmetrizers of L(τ, a).

Assumption 6.3. — We assume that the matrices J(a), J(a)−1 are uniformly bounded
and that there are uniformly bounded matrices S(τ, a) is such that for all τ and a,
S(τ, a)L(τ, a) is Hermitian symmetric and

(6.10) ∀u ∈ kerL(τ, a), Re
(
S(τ, a)J(a)u, u

)
> c|u|2.

where c is independent of a and τ .
We further assume that all the complex roots in τ of detL(τ, a) = 0 are real.

Proposition 6.1 implies that the eigenvalues τ of J(a)−1A(a) are real and semi-
simple and that the corresponding eigen-projectors are uniformly bounded:

Corollary 6.4. — Under Assumption 6.3, the family AJ(a) is uniformly strongly
hyperbolic in the sense of Assumption 5.3.

Theorem 6.5. — In addition to Assumption 6.3, suppose that J , A and S are con-
tinuous [resp. Lipschitz continuous] [resp. C∞] in a ∈ Ω and τ ∈ R. Then there is
a bounded and continuous [resp. Lipschitz continuous] [resp. C∞] matrix S(·) on Ω

such that

(6.11) S(a)J(a) =
(
S(a)J(a)

)∗
> c1 Id, S(a)A(a) =

(
S(a)A(a)

)∗
,

with c1 > 0 independent of a.
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Proof. — Multiplying L by J−1 reduces to the case J = Id. A symmetrizer is

(6.12) S(a) =
∑

τ∈Σ(a)

Π(τ, a)∗S(τ, a)Π(τ, a),

where Σ(a) ⊂ R denotes the spectrum of A(a).
For u and v in kerL(τ, a), one has L(τ +σs, a)u = σJ(a)u and a similar expression

for v. The symmetry implies(
S(τ + σν)J(a)u, v

)
=
(
u,S(τ + σu)J(a)v

)
,

and letting σ tend to zero implies

(6.13)
(
S(τ, a)J(a)u, v

)
=
(
u,S(τ, a)J(a)v

)
.

This shows that each term of the sum (6.12) is symmetric and S is symmetric.
Moreover, by (6.10) and Corollary 6.4, it is uniformly bounded and uniformly positive.
By construction, S(a)A(a) is symmetric and by (6.2) and symmetry, one has

(6.14) S(a) =
∑

τ∈Σ(a)

Π(τ, a)∗S(τ, a) =
∑

τ∈Σ(a)

S∗(τ, a)Π(τ, a).

Theorem 5.7 implies that S is continuous [resp. Lipschitz continuous] [resp. C∞] in a,
finishing the proof of the theorem. �
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