QOLYTEG,

o'\”v, INSTITUT

°

8 POLYTECHNIGUE
& bE PARIS

4, \d
og o®

ATUT

5

"

ECOLE
POLYTECHNIQUE

r

ournal de I’Ecole polytechnique
M&ztbémarique’s

Pierre Germain, Valentin Scawinte, & Laurent Taomany
On the stability of the Abrikosov lattice in the lowest Landau level

Tome 12 (2025), p. 585-640.

https://doi.org/10.5802/jep.298

© Les auteurs, 2025.
Cet article est mis a disposition selon les termes de la licence

LICENCE INTERNATIONALE D’ ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses /by /4.0/

Publié¢ avec le soutien
du Centre National de la Recherche Scientifique

<
>

MERSENNE

Publication membre du
Centre Mersenne pour [’édition scientifique ouverte
WWwWw.centre-mersenne.org
e-ISSN : 2270-518X


https://doi.org/10.5802/jep.298
https://creativecommons.org/licenses/by/4.0/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org

%)ul*nal de I'Ecole polytechnique
C

Mathématiques

Tome 12, 2025, p. 585-640 DOI: 10.5802/jep.298

ON THE STABILITY OF THE ABRIKOSOV LATTICE IN
THE LOWEST LANDAU LEVEL

BY PIErRRE GERMAIN, VALENTIN ScwiINTE & LAURENT THOMANN

ApstracT. — We study the lowest Landau level equation set on simply and doubly-periodic
domains (in other words, rectangles and strips with appropriate boundary conditions). To begin
with, we study well-posedness and establish the existence of stationary solutions. Then we
investigate the linear stability of the lattice solution and prove it is stable for the (hexagonal)
Abrikosov lattice, but unstable for rectangular lattices.

Résumi (Sur la stabilité du réseau d’Abrikosov dans le plus bas niveau de Landau)

Nous étudions ’équation du plus bas niveau de Landau sur des domaines simplement et
doublement périodiques (en d’autres termes, sur des rectangles et des bandes avec des conditions
aux limites appropriées). Tout d’abord, nous montrons que I’équation d’évolution est bien posée
et établissons I'existence de solutions stationnaires. Nous étudions ensuite la stabilité linéaire de
la solution sur un réseau et prouvons qu’elle est stable pour le réseau d’Abrikosov (hexagonal),
mais instable pour les réseaux rectangulaires.
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586 P. Germarn, V. Scnwinte & L. Trnomany

1. INTRODUCTION AND MAIN RESULTS

1.1. Trae eQuarion. — Consider the lowest Landau level equation
10pu = II(|ul?

- 0 = T([ulw),
u(0,+) = uo,

where 1II is the projector in L?(C) on the Fock-Bargmann space
€ = {u(z) = exp(—|2|*/2) f(z), f entire holomorphic} N L*(C),
which is given by the kernel
1 _
(1.1) [Mu)(z) = = exp(—|z[*/2) /Cexp(wz — |w|?/2)u(w) dL(w),

(L being simply the Lebesgue measure on C). Notice that IT extends as an operator
from .#’(C) onto the space
&= {u(2) = exp(—|2|*/2) f(2), f entire holomorphic : 3M, |u(z)| < ()™ },

on which IT is the identity operator. For this reason, we shall extend equation (LLL)
to E

1.2. Tue Puvsics or (LLL). — The reviews [3, 18] provide very good overviews of the
physics of rotating Bose-Einstein condensates. Different experiments showed that they
exhibit triangular arrays of vortices [1, 29, 40], known as Abrikosov lattices, which
are stable and support oscillations known as Tkachenko waves [8]. These patterns are
interpreted as minimizers of the Gross-Pitaevskii energy to which a trapping term
and a rotation term are added. It can be written as follows

1 ‘ 1 1
E(u) = / [5 |(V —iQA)ul* + S Q2) |z |*ul* + §|u|4} dz.
R2

Here, A = (_z”i? ), Q) is the speed of rotation, and the other physical constants were
scaled out.

In order to make sense of these arrays, further simplifications are needed. One
possibility is the Thomas-Fermi regime, examined in [19]. Another possibility, which
will occupy us here, is to consider the lowest Landau level regime, which arises under
two physical assumptions. To start with, we require that 2 — 1, so that the second
term in E becomes negligible compared to the first one. Furthermore, we assume that
the first term in F is dominant compared to the third, and that the energy levels of
Ay =Vy-Vy with V4 =V —iQA are well separated. This means that states of low
energy E will be in the ground state of A 4.

This ground state is very degenerate; this is the lowest Landau level which is well-
known in quantum Hall physics [25, 35]. Let us describe the lowest Landau level in
the case 2 = 1. Observe that, writing z = x1 + izs,

I(V = iA)ulZe = 2|ullF= + 120z + 2)ul .

This formula implies that the ground state of Ay (when = 1) is the whole Fock-
Bargmann space €. Summarizing, we reduced the problem to the energy

H(u) = lu|* + (1 — Q2)|2|?|u|?| dL(2), u€E.
Ll |
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/

Considering now the time-dependent problem, it turns out that the Hamiltonian flow
given by [ |z]?|u|? is trivial, and that it commutes with the Hamiltonian flow given
by [|ul*, which is (LLL); thus the full time-dependent problem reduces to (LLL).

In the lowest Landau level regime, the energy has been considerably simplified,
and the state space has a very rigid structure; this enabled theoretical progress on
the distribution of vortices of minimizers in [5, 28, 51]. Tkachenko waves can also be
considered in the lowest Landau level regime [9, 46].

It is in the context of superconductors that regular arrays of vortices [2] and the
Tkachenko waves they support [50] were first observed and theoretically described.
These systems are described by the Ginzburg-Landau equations of superconductivity.
Focusing on the wave function and neglecting the self-consistent magnetic field, one
finds the same energy as above, also defined on the Bargmann-Fock space, but there
is a major difference: the relevant time-dependent problem is not Hamiltonian, but
rather a gradient flow. For this reason, the results derived in the present paper apply
to the Ginzburg-Landau equations as long as they only pertain to properties of H
on the space & (typically, its Hessian at critical points). But the results describing
properties of the Hamiltonian system (LLL) do not have a good counterpart in the
context of time-dependent Ginzburg-Landau.

1.3. Maruemaricar resurts. — The mathematical analysis of (LLL) was initiated
in [6] for the time-independent and [34] for the time-dependent problem. These works
were later extended in [21, 41]. In [42, 49], systems of coupled (LLL) equations were
studied and traveling waves were constructed, providing examples of solutions with
growing Sobolev norms.

Many works were devoted to the analysis of rotating Bose-Einstein condensates
[4, 13, 37, 38, 39], studying the variational problem at the level of the Gross-Pitaevskii
equation and also proving its convergence to the time-independent version of (LLL).

The existence and stability of doubly periodic solutions to the Ginzburg-Landau
equations has been studied in [44, 43, 45]. These doubly periodic solutions appear in a
regime corresponding to the lowest Landau level reduction; but, as noticed above, the
time-dependent problem is parabolic and hence very different from the Hamiltonian
system (LLL).

The equation (LLL) also arises as the completely resonant system for the cubic
nonlinear Schrodinger equation. The completely resonant system was derived from
the cubic (NLS) on the two-dimensional torus in [17], and was studied in [23, 22].
An analogous derivation can be followed from the confined Gross-Pitaevskii equa-
tion [30, 20]. Finally, the completely resonant system can also be interpreted as the
modified scattering limit of the cubic nonlinear Schrédinger equation with partial
harmonic confinement [27]. In all these works, vortex arrays have not been reported.

We also refer to [24, 11, 12, 16, 41] for more results on (LLL) and related equations.

1.4. THE THETA FUNCTION AND THE ABRIKOSOV LATTICE. — We now turn to the mathe-
matical description of the Abrikosov lattice, which relies on the Jacobi theta functions.

JE.P.— M., 2095, tome 12



588 P. Germarn, V. Scnwinte & L. Trnomany

Let 7 = 7 + i € C with 79 > 0. The Jacobi theta function on the lattice
L. =7 & 7Z is defined (see [14, Chap. V]) by
“+o0
0,(z) = —i Z (=" exp(iﬂ'r(n +1/2)* +i(2n + 1)71'2), z e C.

n—=—oo

The ©. function vanishes exactly on £, and is such that
(1.2) O,(—2) = —0,(2), O.(2+1)=—-0,(2), O,(2+7)=—e e 2720 (2).

For more results on theta functions, we refer to [26, §4] (in this book, the notation
01(z,7) = ©,(z) is used) and we refer as well to the book [31]. We also mention the
expository paper [33] of F. Nier making connections with various point of views.

To every theta function, we associate the function

D(2) =eXp<Z;_i:Z_ ?) @T<§_ T;l)'

For the choice of v2m5 = v2Jm7 = 7, this function is L>° and belongs to . Fur-
thermore, it is a stationary solution of the (LLL) equation (see Remark 2.10 below).
Finally, its period is the lattice L., = y(Z + 72); it T = j = exp(2i7r/3) and
72 = 2m/+/3, this period is given the hexagonal array known as the Abrikosov lattice!

Introduce now the magnetic translation in the direction a € C:
az —az
Rou(z) = exp<T>u(z + ).

For any a € C, R, is a symmetry of (LLL) (and in particular, it leaves & invariant).
The symmetries of the ©. function translate into the following identity for ®y:

(1.3) R,®y = R, P = Py.

1.5. Resurrs osrainep. — The main theme of the present paper is the stability of
vortex lattices under the flow of (LLL). Since it is quite difficult to make progress on
this question in full generality, we simplify the problem by considering perturbations
which respect the symmetries (1.3) of @, resulting into doubly- or simply-periodic
functions.

In Section 2, we investigate the case of doubly periodic functions, namely elements
of & which satisfy R u = R,;u = u with the necessary quantization condition v, €
7wN. The equation (LLL) turns into a finite-dimensional Hamiltonian system, for which
we propose a convenient coordinate system, and establish some elementary properties.

In Section 3, we consider simply periodic functions, namely elements of € such that
R.,u = u; they can be thought of as being defined on a vertical strip of width v and
extended by periodicity. We develop the theory of (LLL) in this setting by establishing
local well-posedness and characterizing stationary solutions which decay at infinity.
We also exhibit a Hilbert basis

Un(2) = Rinejytho(2),  with  th(2) = (2/(my2) " exp(22/2 — |2[2/2)

JIEP. — M., 2095, tome 12



ON THE STABILITY OF THE ABRIKOSOV LATTICE IN THE LOWEST [LANDAU LEVEL 589

for periodic functions in € which are square integrable on the strip. This basis provides
a very natural coordinate system for (LLL): the formulation is simple and stationary
solutions are very easy to express.

In Section 4, we consider the linearization of (LLL) around ®¢ with 7 = in/4?,
which corresponds to rectangular lattices. The linearized problem is given by

(1.4) O + M = T1[2|®o[*v + D7D

We are able to completely analyze this problem by viewing it in the Hilbert basis (1),
identifying a convolution structure, and then taking the Fourier transform. This leads
to the following result.

Turorem 1.1 (Instability for rectangular lattices). For any v > 0 and T = im/7?,
the linearized problem (1.4) is exponentially unstable.

We refer to Theorem 4.1 for a precise statement. Finally, in Section 5, we turn to
the linearization of (LLL) around Abrikosov lattices, namely ®q with 7 = exp(2ir/3).
When viewed in the appropriate functional framework, this linearization is stable in L?
and even exhibits decay in L°°. The approach is similar to the case of rectangular
lattices: switching to the Hilbert basis, identifying a convolution structure, and taking
the Fourier transform; but the analysis is more involved.

Tueorem 1.2 (Stability for the Abrikosov lattice). — Consider a solution v of the
linearized problem (1.4) around the Abrikosov lattice, expand it in the Hilbert basis
(1) and take the Fourier transform of the coefficients to obtain f(t,§), with € € [0,1],
and define g(t,€) = f(t,—€). In particular, fo corresponds to the initial value v(t = 0)
viewed through this transformation. Then L? stability holds in the following form

| =] |
I I

) + 12 oy S ) + I foll2 (0,17

L2([0,1 L2([0,1]

while L>° decay can be captured as follows
Jo+ 90 H

I

where 1 is a smooth 1-periodic function such that u(&) ~ c€? when & — 0.

1
l@®l~© S 77 ] ol

H1([0,1

We refer to Theorem 5.10 and Theorem 5.11 for more precise statements.

1.6. Perspectives. — Preliminary computations seem to indicate that the Abrikosov
lattice (72 = 27/ V3, 1= ) is the only stable lattice, at least when perturbations are
restricted to simply periodic functions, but it is still an open question. We refer to
Remark 5.2 for a short discussion of this question.

It seems very natural to try and prove nonlinear stability by building upon the
decay proved for the linearized problem around the Abrikosov lattice. However, the
rather weak decay rate t /3, which is optimal, makes this problem quite challenging.

Finally, the stability of the Abrikosov lattice, both at the linearized and at the
nonlinear level, remains an outstanding problem.

JE.P. — M., 2095, tome 12



590 P. Germarn, V. Scnwinte & L. Trnomany

2. (LLL) oN DOUBLY PERIODIC DOMAINS (CELLS)

In this section, we construct solutions to (LLL) such that |u| is doubly periodic.
We will rely on results of Aftalion-Serfaty [7, §3]. In the sequel, we work with the
general lattice

Lry=v(Z&TZ)
with v > 0, and we consider the space

Erny = {u cé: Rou=1u, Ryu= u}

= {u €& iulz47) = eXp(%(z —?))U(z)’

u(z +7) = exp(% (7'1(2 —Z)—ir(z+ E)))u(z) = exp(%(?z — TE))U(Z)},

so that in particular for all u € €, 5 and z € C, |u(z +7)| = |u(z +7)| = |u(2)|.
We define the fundamental cell of £, by

Ky ={z="(r1+r27), 11,72 € [0,1]}.

2.1. MULTIPLICATIVE DESCRIPTION OF &1
Prorosirion 2.1 ([7]). — Let v >0 and 7 € C with 72 = Jm7 > 0.
(i) If v*72 ¢ 7N, then &, = {0}.
(ii) If v*r2 = N for some N € N, then &, ., is a complex vector space of dimen-

sion N. It can be described as the set of functions vanishing N times modulo £, -
(counting multiplicity), which can be written under the form

N
(2.1) u(z) = AeXp(22/2 + bz — \z|2/2) H O-((z—z)/7),

j=1
where X € C and (zj)1<k<n € C are representatives of the zeroes of u modulo L,
and finally b € C and the (z;) satisfy the relations

vb = i(—N + 2k)r,
N
(2.2) S z= %(T “ )N — kry + b4,

j=1

for some k,l € Z.

A few remarks are in order

— This theorem appears in [7] with a minor misprint in the equation for b;
we include the proof, which follows that in [7], in Appendix B.

— Up to selecting the representatives modulo £ ., of the zeroes of u, we can ensure
that Z;\Ll y; = yYN(r —1)/2 4+ +¢, or in other words k = 0.

— The condition on 7 can be understood in the following way: let v € €, -, u # 0.
Then clearly RyR,;u = Ry ;R u = u. Next, from (A.2) we obtain the quantification
condition 271, € 7N.

JIEP. — M., 2095, tome 12



ON THE STABILITY OF THE ABRIKOSOV LATTICE IN THE LOWEST [LANDAU LEVEL 5()]

— Geometrically, this theorem is stating that €, . is non empty when the volume
of the fundamental cell has area N, and elements of the space vanish N times on it.
— By Lemma 2.3, for N =1, a = 8 =7 in (2.4), v = v~ !, h = 1, we recover the
function defined in [6, Prop. 4.1].
In the sequel we assume that
TN
T:Tl—‘rmT for some N € N.
Y

2.2. Abprrive pescripTioN ofF €, ,. — For 0 <k < N — 1 define

Ernk = {u €& Ryu=u, Ry, /yu= exp(—2ik7r/N)u}

= {u c&:u(z+7) = exp(%(z —Z))u(z),
_ —2ikn/N = =
u(z+~7/N)=e exp(2N (Tz TZ))U(Z)}
We observe immediately that
ET,"/,]C - 87,77

as follows by iterating the periodicity condition in the direction 7 and using (A.3).
Define next

@3)  Polz) = eXp(%zz - %Z - %|z|2)97/1\'((2 —20)/7), 2= %(N - 1),

which satisfies R,®g = ®g and R,/ yPo = ®o. Then, for 0 <k < N — 1, set
e 1, ir 1
Di(z) = R;W/Nq)()(z) — e~ tkT/N exp(iz2 - 72 — §|z\2 @T/N((z — zk)/’y),
(&) 3
==—=-1)——
k 2\ N N77
so that R, ®, = ®; and R, /nPy = exp(—2ik7r/N)<I>k.

The €., turn out to provide an orthogonal decomposition of €, -, as is stated in
the following proposition; this result appeared in [33] in a slightly different guise. See
also [36, 32] for more results in this direction.

Prorosition 2.2, Recall that v > 0 and v?>mo = N for some N € N.

(i) For any k, the space €, . 1 is generated by Py :

Ermk = spaumc{(I)k}7

and the space €, is the direct sum of the &, 4 1:

N-1
Cry = S Er ke
k=0

(ii) The family (®y) is orthogonal in L*(K. ) and furthermore for any k € Z,

I CRIOEY gexp(;;).

Y

JE.P. — M., 2095, tome 12



592 P. Germarn, V. Scnwinte & L. Trnomany

(iii) For any k € Z,
2 2

| et ane = 2 en(5) X ew(—?ig—1):

kel JAEL

Proof

(i) The proof follows closely that of Proposition 2.1, given in Appendix B. Consider
u € &4 k- Let {2, }1<;<p be the zeros of u in the fundamental cell K, /y -, of the lattice
L7/n,- With the second periodicity condition, the z;, = 2z; + {y7/N are the zeroes
of u in the fundamental cell K., of the lattice £, so that u has p/N zeroes in K .
From Proposition 2.1 and €, 41 C &, +, we get p = 1. Then u has only one zero in
K, /N~ and we write as in (B.1),

_ L.
u(z) = )\exp(— 5 +oaz” + Bz)@T/N((z — zl)/'y),

where a, 5, A € C. We take for simplicity A = 1 in the following. The first periodicity
condition Ryu = w of € ,  requires that o = 1/2 and 8 = —in /y+2iln /v, with £ € 7Z.
The second periodicity condition of €, . differs from Proposition 2.1: the relation
contains a R, ,n magnetic translation and an additional phase factor exp(f2z’k7r /N )
Since 75 = ™N/v?2, the coefficient on z in this periodicity condition already match,
and give no further information. Nevertheless, by matching the constant terms, one
gets

:1(1_)_5 (L) v=2+ (L-1%)
212N1N7+L€N72k+L€N7,

where L € Z. Taking (1.2) into account to get rid of (L — ¢7/N)~, we obtain a
multiplicative factor )\exp(—2i7r€z/7), where A € C is a constant. Overall,

Er ke C spanc{Py}.

The reverse inclusion is easily obtained from the definition of ®. It follows from the
periodicity condition that the spaces €, are in direct sum; and this direct sum
equals €, by comparing the dimensions.

(i) Denoting K} = {z = v(ry + ro7/N), r1,72 € [0,1]}, for 0 < k, £ < N —1,
we have

2

@, (2)Pe(2) dL(2)

/ D1 (2)B4(2) dL(2)
K

Y

z=vy(r1+ra7/N)
=0 "o<ri<1,j<ra <G+l
1

<

N—
=3 [ Rl i) i)
7=0 Y
N-1
— <Z 62ij(kf)7T/N>/ ka(z)‘I)g(z) dL(Z)
=0 LR

SN / B4(2)? dL(2).
K1

JIEP. — M., 2095, tome 12
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To compute the above right-hand side, matters reduce to the case k = 0, by periodicity
and since ®y = Ry, nPo. Next, we observe that

1 ; 1 1 1
R, , ®o(z) = exp(izg - %ZO - §\ZO|2) exp(§z2 — §|z\2)@T/N(z/'y).

Still using periodicity, and also that Re(z3/2 — imzo/y — |20|%/2) = 72/(47?),

[ mePde = [ iea@P )
K1 K1
w2 2
:exp(ﬁ)/ ’exp(z2/27 \Z|2/2)@T/N(z/’y)| dL(z).
v KL
From [6, last equality on p.681], we have
2

/ |¢k<z>|2dL<z>—vﬁexp(;2).

(iii) Arguing as in item (ii), we obtain

/K |y, (2)[* dL(z) = N/K%W D (2)|* dL(z) = N/K%W |®0(2)|* dL(2)

1
T,y

~Newp(55) /K |exp(22/2 - |2[2/2) 0 x (2/7)| dL(2),

and from [6, first equality on p.682], we have
2 2
4 7 ™ 2. T 2
/Klv [Pk (2)]" dL(z) = ?exp(ﬁ) j%EZeXP(—V |]N =1 )7

as claimed. O

In the work [6], the authors consider functions v € & such that |v(z + 7)| =
|v(z + v7)| = |v(2)|. The next result, which is proved in [33, §3], shows that we can
reduce to the study of the space &, 5.

Lemma 2.3, — Lety > 0 and 7 € C such that o = Jm71 > 0. Assume that v € & and
v Z 0 satisfies

[v(z +7)| = |v(z +97)| = |[v(2)].
Then there exists § € C such that u = Rsv € &7 4.

Proof. — We have for all z € C, |R,u(z)| = |u(z)|. Thus there exists a(z) € R such
that Ryu(z) = exp(ia(z))u(z). Since a is entire, a is constant. Similarly, there exists
B € R such that R, u(z) = exp (zﬁ)u(z) Now apply R, to the first relation and R,
to the second, by (A.2) we get that there exists N € N such that 7 = 7N /92. Set

g i

(24) :ﬁ(ﬁ—aTl)—Z%:m(ﬁ—O{T),

then u = Rsv € &, 4. O

JE.P. — M., 2095, tome 12



504 P. Germarn, V. Scawinte & L. THomans

2.3. THE NONLINEAR TERM. The aim of this subsection is to understand the struc-
ture of the nonlinear term H(|u|2u) in the space € -, more specifically in the basis
provided by the ®. The first step is to realize that II can be interpreted as an orthog-
onal projector, as will now be explained. Define the space

Frny= {u € L*(K.,),u(z+7) = exp(%(z — E))u(z),

u(z +7) = exp(%(?z — TE))u(z)},
so that

Levya 2.4, — For all u,v € 7 4,

/ Mu(z)v(z2) dL(z) = / u(2)II(v(2)) dL(2).
K K

il

T

Proof. — With the change of variable £ = w — kT — £ and the fact that
u(€ + kry + £y) = exp (1 — 8)/2 + k(7€ — 78)/2)u(©),

we get
Mu(z) = %exp(—|z|2/2) /Cexp(zw— lw|?/2) u(w) dL(w)
lex —|z|? exp (2w — |w|? u(w w
Fon(aF/) 3 Lo o (e 2w digw
= %/ Z exp(—|z|?/2) exp(—’yQ\kT+€|2/2+(k?+€)'yz)
Koy ke
X exp((z — kvt — y)w — |w|2/2> u(w) dL(w).
Then
/ u(z)v(z) dL(z) =
Ko

1 2 2 2 —
— E — 2 —v\kr +0|7/2 + (kT + ¢
7T/Kmem Mezexp( |Z‘ / )QXP< ! | ' | / ( ' )72)

X exp((z — kyT — 0y)w — \w|2/2>u(w)v(z) dL(w) dL(z)

:/ w(w)I(v(w)) dL(w)
K

kR

hence the result. O

Given an element u of J7; 4, it can be thought of as a function on C, or as a function
on K, . Therefore we introduce the following notations.

Derinition 2.5, — Given an element u of F; ., we write u™* (extended), if u is

res (

considered as a function on C and u restricted) if u is considered as a function

on K, .

JIEP. — M., 2095, tome 12
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With these notations, we have the following result:

Lemya 2.6. —  The projector I1 on -, can be interpreted as the orthogonal projec-
tor I" in L*(K,.,) on &, .. In other words,
ext — T17/,,r€s
(TTu )‘Kw = IT'u™".

Proof. — On the one hand, if u € €, -, then both IT and II' act as the identity. It is
clear as far as Il is concerned. Turning to II, we have that ITu®™* € and TTuet € Ty
(since R, and IT commute), hence ITu belongs to Fgﬂﬁ}ﬁ = &, . Furthermore, by the
previous lemma, (TTu®**, V) 2K,y = (U, v) 2k, ) for any v € €, ,, hence u = Ilu.

On the other hand, choose u in the orthogonal set to & ., in L?(K ). By definition
of II', we get IT'u™® = 0. Turning to Hu®™", it is in &, by the same argument as
above, and satisfies (Tlu®™*, v) 2k ) = (", v)r2(k, ) = 0 for any v € &, ,; hence
IMus*t = 0. O

ext res

By the previous lemma, we will identify henceforth IT and II’, and we will also
ignore the distinction between u®** and u*es.

Prorosrrion 2.7. If uj € &+, for j = k,{,m, then IL(uptzt,) € Errm with
n=k—4{+m mod N. Furthermore,

(0P, ®,,) = AP, with \= |M)01||2L2/ D (2)Pp(2) Py (2) P (2) dL(2).

Koy
Proof. — By (A.3), for all a € C,
R, (H(ukWum)) = I(Ryur Rote Rotin,).
Thus,
Ry NI (wiTgt) = T(Ryr v Ryr N e Ry v tim)
_ e%(k*”m)”/NH(ukufgum),

which gives the first assertion. The formula for A follows from the fact that (@) is
an orthonormal basis and Lemma 2.4. ]

2.4. DYNAMICAL CONSEQUENCES

Proprosition 2.8. Recall that v > 0 and ¥?>15 = ©N for some N € N. Then, for all
k € C, the function
u(t, z) = kexp(—ido|k|*t) Px(z)

is a stationary solution of (LLL), where

fe 14" d() .
25) o= fi |c1>],: 12 dL(2) }e’q’( :) 2 en(— ‘JN_ZD'

JAEL

In particular,

JE.P. — M., 2095, tome 12



596 P. Germarn, V. Scnwinte & L. Trnomany

— If N =1 and 7 = in/¥?, which corresponds to the rectangular lattice, then
2 2

(2.6) Ao = \}iexp(;’;) (QGZZ eXp(_nyg ))2

—IfN=1,17T=exp (2i7r/3) and y = /21 /3%, which corresponds to the hezagonal
lattice, then

_ 1 ™ 2 2
(2.7) Y= 5 exp<ﬁ> (12 +21] — J?),

with
=Y oo(-TER) = S )

JEZ

Proof. — The result of Proposition 2.8 directly follows from Proposition 2.2(ii)
and (iii). Let us take a closer look at the cases of interest.

—If N=1and 7 = im/?, then by (2.5)

> exp(=7"liT =€) = exp(—VQ(jif + %))

GHEL JHEL
= <Z exp( )) (Z exp 2€2 )
JEZ LeZ

By the Poisson summation formula (C.3) with a =2 and 2z = 0,

2€2
Z exp(—'y2£2 )
which implies (2.6).

ez ez
~If N =1,7=exp(2in/3) = -1/2+ iv/3/2 and v = /27 /34, then

A= Z exp(—72|j7 — €|2) = Z exp(—’yQ((ﬁ + %j)2 + %]2))

JLET GAET

From (C.3) with a =2 and z = j/2 we deduce that

2

Zexp( 20+ j ) fZeXp< ﬂlyn +z7rnj>

LEL

On the other hand, using that 3v2/4 = 72 /42, we find
™
A—{Z(exp( )Zexp(
JEZ
_ ‘f([(z )+ (=)

n2

+Z7T7’Lj>)

{ (1% + 210 — J?),
which was the claim. OJ
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Turorem 2.9. The equation (LLL) is globally well-posed in &~ ., for all uy € €+,
there exists a unique u € C°(R; &, ) which depends smoothly on uy. Moreover, the
following quantities are conserved: for all t € R

/K fult, 2) 2 dL(z) = /K Jup(2) 2 dL(2),

T,y it

| weartae = [ e e

Y Y

Furthermore, the solution can be represented in any of the following forms:

and

(i) Assume that (zj0)1<i<n satisfy (2.2) for some k,£ € Z, then the solution
of (LLL) with data
N

up(z) = Ao eXp(%z2 + %T(—N +2k)z — %|z|2) ITe- (%(z — Zj,o)),

j=1
takes the form

1, ir 1, o\ 1
ult,z) = A1) exp(iz + (N +20)z = S ) H@T(;(zfzj(t)))

j=1
and we have for allt € R

(2.8) sz Zz] 0= %(T —1)N — kry + 4.

(i) Assume that ug € &7~ reads ug(z) = Z;y:_ol Xjo®;(2), with (Xj0)ogj<n—1 then

J
where (A;(t))ogj<n—1 satisfy for all0 < j< N —1

(2.9) i\j=Cn > < / D0, ®,, D, (2) dL(z)) MeAeAm
o<k, m<N—1 Y Kry
k—t+m=j [N]

o1 2
— . 2 _ — —_
Cn = (/K |D;| dL> S \/;exp(

and we have for allt € R ’

with

N—

=

N-1
NP = Aol

i=0 j=0

<

Remark 2.10
— When N = 0 we recover the solution

u(t,z) = kexp(itp) exp(2%/2 — |2|°/2)
found in [21, Prop.6.1].

JE.P. — M., 2095, tome 12



598 P. Germarn, V. Scnwinte & L. Trnomany

— When N =1, we obtain the stationary solution

2

) ) i 2 1
u(t, z) = e ®y(2) = e exp(% - %z - %)@T (;(z - zo)), 20 =

no |2

(r—1).

This stationary solution has already been obtained in [6]. Indeed, set v = 1/v, then
the function f; which is defined in [6, Th.1.4] is the function

v(z) = exp(2°/2 — |2*/2) O, (2/7).

Set u := R_ v, where zo = y(1 —1)/2, then u € &, with 7 = m/~%. Notice however
that v ¢ £, ., because R,v = —v and R,;v = —v.

— The conservation law (2.8) is a condition such that u belongs to the space & .
By the previous result, for all ¢ € R, any solution of (LLL) has exactly N zeros
(counted with multiplicity) in a fundamental cell K ... We can understand this fact in
the following way: by the contour formula, the number of zeros of u is locally preserved,
until one zero crosses 0K ~, but then in this case, the number of zeros in K, has
to be conserved by the quasi-periodicity condition |u(z + )| = |u(z + y7)| = |u(z)].

— Assume that v € €, , then R, ,yv € &7 ,. As a consequence we can show that
if u is solution to (LLL), then R, yu is also solution with initial condition R, nuo.
This can be reformulated for the system (2.9) as: if (Ao(t), A1(¢),..., An—_1(t)) satis-
fies (2.9), then (A1(¢),..., An—1(t), Ao(t)) also.

Proofof Theorem 2.9. — This is a direct consequence of Proposition 2.2(ii). For ug €
&~ we deduce that the map u — uo — zfot (Jul*u)(s)ds sends &, into itself, and
the fixed point argument implies that for all ¢t € R, u(t) € &, ,.

The second part of the result follows from the characterization of &, given in
Proposition 2.1. O

3. (LLL) oN SIMPLY PERIODIC DOMAINS (STRIPS)
3.1. Periopic runcrions iN THE Fock-Baremany space. — Denote by F, the space
F,={ue&:Ru=u}.

A subspace of J, is given by functions which are LP-integrable on a fundamental
domain associated to the translation z — z 4 ~. For convenience, we fix the vertical
strip

Sy ={2€C, —7/2<Rez<~/2},

and we consider the natural LP(S,) norm. Similarly, LP**(S,) N JF, is the subspace
of J, for which the following norm is finite

llullLe.a s,y = () ullLr(s,)-

9 \ /4 2 2
wi= () (3 5)

Denote
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ON THE STABILITY OF THE ABRIKOSOV LATTICE IN THE LOWEST [LANDAU LEVEL 599

and for n € Z
7r2n2 .
Yn(z) = Rine y0(2) = 00—~ ) exp(2imm72) o 2).

Remark 3.1. Alternatively, we could have defined

QZn(Z) = Rnr’y/NQZJO(Z)

with the usual quantification condition on 7 and N. This results in

2rm wn? 2inm

Du2) = Rurvii(z) = exp( P = T + 2o

So the only dependence on 7 is through the number eXp(Z"I’LQ?TTl /N ) which has absolute
value 1 and is thus irrelevant.

32 ()N THE RESTRICTION OF THE PROJECTOR II oN g‘iy

Lemma 3.2, — Let I be the orthogonal projector from the space of R~-invariant func-
tions to L*(S,) NF,, and denote K (z,w) its kernel, for (z,w) € S,.

(i) The kernel K is given by the formula

2 2 1 1 1 1 ;

(3.1) K(z,w)= p—) exp(—%) exp(iz2 - §|z\2 + Eﬁz - §|w|2 - Z%(z —@))

1 _oam oy
Onnyre (e - - T 1))

X Ogjn /2 7(2 w 5 + 2)

(ii) It enjoys the bound
A 2
(3.2) (K (2 w)] S exp (- T2 TMOTY,

(iii) For all u,v € F, N L*(S,)

(3.3) fs Tu(=)0(2) dL(z) = /S w()TI(0(2)) dL(2).

vy vy

(iv) The projector I on {u, R,u = u}NL?(S,) can be identified with the orthogonal
projector from L*(S,) to F, N L3(S,).

(v) For any p > 2 and « > 0, the orthogonal projector 11 has a unique extension
to LP(S,) and LP*(S,).

Proof

(i) We show that the periodized projection operator in the whole space agrees with
the projection operator given by (3.1). To get a formula for the periodized projection
operator, we write, if u is R,-invariant,

u(z + k) = exp(ky(z — 2)/2)u(2).

The change of variable w = w’ 4+ kv results in

1 — 1 — 1
exp(@z - §|w\2>u(w) = exp(w’z - §|w’|2 +ky(z —w') — §k272>u(w’).
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600 P. Germarn, V. Scnwinte & L. Trnomany

Making this change of variable in the integral after splitting it into vertical strips
yields

IMu(z)

%exp(—|z|2/2) /(Cexp(wz — |w[?/2)u(w) dL(w)
%exp(—|z|2/2)z

kez weSy+kvy

%exp(—|z|2/2)/s exp(wz — |w|*/2)
X [Z exp(ky(z — W) — k272/2)] u(w) dL(w).

kEZ
Comparing with the above formula, we need to check that

2 2ik 2722
1/7T—,yzexp(22/2+ﬁ2/2>Zexp< Z,yw(zfﬁ)— 7;2 )

kEZ

1 - 1
_ Wz k _ _ *k2 2)
e kgezexp< v(z — W) 5K )

but this follows from the Poisson formula (C.3) with z = (z —w)/y and a = 72 /2.
This proves (3.1).
(ii) Let N =2, 7 = 2in /4%, and 2; = 2z = v(7 — 1)/2. Then, the function

u(z) = eXp(Z2/2 — 2z [y — |z|2/2) @%iﬁ/va ((z==1)/7)

is of the form (2.1). Therefore, u is periodic over the lattice £, 5, so that it is bounded.
This implies that

1 . am im .1 _ 1 _
‘@21‘#/’y2 (;(z —w) — — + Z)) exp(—?(z —w)+ Z(z —w)? — Z'Z - w|2>‘ <1

Then, using (i) and

1 1 1 1 1 1 1
Z(z T Z‘Z —w|* = 122 - Z|Z|2 + ZEQ - Z|w|2 - Z(2ZE— Zw — ZW),
we get
1 1 1 1 1
|K(z,w)] < ’exp(zzz — Z|Z|2 + 1@2 — Z|w|2 — 1(22@ — zw —W)) ‘
We write, for z = 2 +iy,w =a+1ib € 5,,
1 1 1 1 1
Zz2 - 1|z|2 + 1@2 - 1|w|2 - 1(22@— 2w — ZW)
) 1 ) 1
= %a:y - §y2 - %ab — §b2 + yb + 2i(ya — xb)
1 )
= —§(y —b)%+ §<xy —ab+ 2(ya — ab)),

and obtain the bound
(Jmz — Jmw)? )

K (2,w)| S exp( -
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(iii) Can be proved like Lemma 2.4.
(iv) Can be proved like Lemma 2.6.
(v) By the assertion (ii), we can write for u € L

[Mullzeecs,) = / K(z,w)u(w) dL(w)
Lr(S,)
Jmz—7J 2
< ‘ / exp(—w) ((w)* + (2 — ) u(w) dL(w)
S, 2 Lr(s,)
S  ull s,y = lullzeacs,),
and the result follows. O

We shall now prove hypercontractivity estimates for all LP — L.
Lemya 3.3, — Letu € J,. Then for any 1 < p < g < +00,
(3.4) ullzags,) S ||UHLP(S )-

Proof. — By interpolation, it is sufficient to prove the result for p > 1 and ¢ = 4oc.
Ifued,,

u(2) / K(z,w)u(w) dL(w).
By (3.2), the kernel K and the Holder 1nequahty, for all z € S,
[u(z)| < 1K (2, ) o sy lullzeesy) S llullpees,),
which is the desired result. |

3.3. The raviLy (5 )nez 18 A HiLBERTIAN BAsts oF L2(S,) N T,
Lemva 3.4. The family (¥n)nez s orthonormal and forms a Hilbertian basis of

L*(S,)Nd,.

In particular, the function @ defined in (2.3) has a natural expansion in the family
(¥n)nez, namely a direct computation shows that, with zo = y(7/N —1)/2,

22 imz |2)?
‘I)()(Z) = eXp(? — 7 — 7)@-,—/1\[((2 - Zo)/’}/)
(35) — —77'r7'/(4N) 77’}/ /2 Z em, T{'Tl/N (Z)

Proof. — Tt is clear that 1y € F,, and this remains true for 1, since [Rjnx /-, Ry] = 0.
Furthermore,

1/2 27 27
/wk Vb dL(2) (ﬂ"y) / /exp 2y +7(k Oz — S (k—i—ﬁ)y)dmdy

1/2 )
A
= ( > 5k,z7/ eXp(*?y2 - 7;%,) dy = O ¢,
T2 v

—0o0

which shows that the family is orthonormal.
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We now show that the family is complete. Let u € L*(S,) N F,. For z = z + iy,
we set v(z,y) = u(z)exp(—izy). Then for all y € R, the function = — v(z,y) is
~-periodic. We expand it in Fourier series v(z,y) = 3, o5 cx(y) exp(2irka /) and we

have
fulBegs,) = Nolags, = 3 / )Py < oo.
kEZ

Therefore, for all k € Z, ¢, € L?(R). We now expand c in the Hilbertian basis
of L?(R) given by (translated) Hermite functions. Namely, for all k € Z, there exists
a family of polynomial (P} );>0 where P;; has degree j and such that

Emy o\ w=
cx(y) = eXp<f(y + 7) ) > Pik(y).
Coming back to u, it can be written as the following convergent series

u(z) = X S ewp iy + 275~ (+ 5)) Pty

k€EZ 520

where the summands are orthogonal. To show that the family (1)) is complete, using
the continuity of IT on L?(S.,) by Lemma 3.2(iii), it suffices to show that the orthogonal
projection of each summand can be written as a linear combination of these functions.

We will do so by showing that, for all £k € Z and j > 0, there exists C}; € C such
that

36 A= 11{esp(~(+ ) (0 + Y exp iy + ) ) = Gl

By the formula for the projection

1 20 _ 9 w—w kw2, w—w kr
Aj,k:;e [=I%/ /(Cexp(wz—|w| /2)exp<—( 5; +7) )( 5 _|_7)]

1 ik
X exp(i(w2 — %) + ZL(w +E)) dL(w)
v
2imk 1 2k j
= e 7| /2/exp —|w|2+@z+ il w+7w2)(w—@+ ! 7T)J dL(w)
C gl 2 gl
2v/2imk
= ||/2/exp 2\w|2+\f2ﬁz+ \Cm w+w2)
C
2ik
o V2ikm
Y

x (w—w

)j dL(w).

+oo NG o4d ;
m(21)) 1 A; 2|2 2iknt
S gt — (< + )

X /(Cexp(—2\11)|2 + (2\/%.7716 +t)w + (V2z — t)w + UJQ) dL(w).
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From [21, §6] we recall the formula
2 - 2 s
/exp<—2|w| +aw + bw + cw ) dL(w) = 3 exp(b(cb + 2a)/4).

We set a = 2v/2iwk/y +t, b= /22 —t and ¢ = 1, thus

- |
24)) 7 A; 2 2ikmt
(1) 3o IR BAw g R Vaikety

2i/241 41 2 2 v

0

<

X /«:exp(—2|w\2 + (2\/§i7rk; +t)w + (V2z —t)w + w2) dL(w)

Y
2 2 2k
_ T t2/a exp(i 2 42 WZ) = Ce 1y (2).
2 2 2
Finally, by identifying the powers of ¢ in the expansion (3.7) we get (3.6). O
Remark 3.5. — Since the (1) form a Hilbertian basis of L?(S,)NF,, we can recover
the expression of the kernel K as follows:
K(z,w) =Y ¢n(2)n(w)
kEZ
[2 1, 1,, 1., 1, ., 2ikr . 2m2k?
= W—V?exp(iz —§|Z| —|—§w —§|w\ )k%exp( 5 (z —w) — 2 )

2 2 2 1 LT
— 2, (, _g T 1)
ﬂQe Zém/ 7 7(2 v v +2)

i 1, 1T 5, 1 5, 1 2)
X ——(z—W)+ =2* — |2+ =w® — = )
exp( S (z —w) 5% 2|z| 50 2|w|
3.4. Tue equation (LLL) on F: BASIC STRUCTURE
3.4.1. The equation in physical space

Lemwa 3.6. The following quantities are formally conserved by the flow of (LLL)
%) = [ fu)l dL),
S“{

M(u) = /S u(2)[? dE(2),

~

Pl = [ W) aie) =i [z =2uCe) di),

v vy

(Hamiltonian, mass and momentum respectively).

Proof. — The proof of the first point and the two first conservation laws are similar
to what we did previously.
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Let us check the equality of the two different expressions of P(u). We write u(z) =
f(2) exp(—|z|?/2), where f is an holomorphic function. Then

| wIt) dr) =i [ FE(AE) - o) dr)
s s,

’Y

=i [ alf@Pe T ar) i [ 1fG)PoL(e ) du)
S’Y

Sy

= z/ (z — 2)|u(2)|? dL(2).
s

~

The conservation of P(u) follows from the action of R, on JF, but we can give a
direct proof: Set 0, = (0, — 10y)/2, Oz = (0 + i0y)/2. First we check that for all
u,v € Fy

/ d.u(2)v(z) dL(z) = —/ u(z)0zv(z) dL(z).
s, s

Writing u(z) = f(z) exp(—|z]?/2), we have II(zu) = 0. f(z) exp(—|z|?/2), which im-
plies that
[ P i) = [ TR @ )
s S,
1 ——2

~

== z 2(2))e 2= z
=5 [ T& o e)e " arge)

~

~

— z z4e_2‘2|2 z) = Zlu(2)]* z).
/SW 1) aL(2) /5 ()| dL(2)

Together with (3.3), this implies that

% ‘. (2 = 2)|u(2)]? dL(z) = —2i Re /SW(Z — Z)u(2)(|ul?u)(2) dL(z)
— _9i%e /S w T((z — 2)u(2)) [uu(z) dL(z)
— 2i%e / (2 — Blulz)|* dL(z) = 0,
hence the result. W O

The symmetries of the equation (LLL) on a strip are as follows:

— Phase rotation: u — exp(i6)u, for 6§ € R.

— Horizontal magnetic translation: u — Ryu, for 6 € R.

— Vertical magnetic translation: v — R,/ u.

— Symmetry around the origin: u(z) — u(—2z).

By Noether’s theorem, the two continuous symmetries (phase rotation and horizon-
tal magnetic translation) are related to the conserved quantities (mass and momentum
respectively).
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3.4.2. The equation in the Hilbertian basis (Vy)kez.- From now on, we denote
1 72
) A =— —((t—k)? —m)?)).
(3.8) him = == exp( (=R + (= m) )

Then, the following result holds true.
Lemvia 3.7. — Ifk, 0, m,n € Z are such that k — ¢ +m —n # 0, then

YePmibn Apom ifk—C+m—n=0,
/:;Wwwmwn(z)d[/(z):{ ke Of m—n=0

0 ifk—0+m—n#D0.
In other words, when m =k — £ + n, we have
(39) H(wk%wm) = Ak,l,mwrr
Proof. — We write
/ Uk embn (2) dL(2) / /eXP (k—C+m— n)x——(k+£+m+n) )

X exp(—ély2 — %(k2 + 02 +m?+ n2))dy dz,

which vanishes if £ — ¢ +m —n # 0. Assuming that k — ¢ +m —n =0,

[ ) dnge) =
S'Y
2 2 2
= — exp(——ﬂ-(kz + 04+ m+n)y — 4y* — %(k2 + 02 4+ m? + n2)>dy
™ Jr Y Y
:iexp( 2(/<;—|—£—|—m+n) 2(k2+€2+m2+n2))/e4y2dy
Ty \y? 72 R ’
which gives the desired formula. O

Expanding a solution of (LLL) in the Hilbertian basis
= Ml(t)vr(2)
kEZ
it follows from the above proposition that the coordinates (\,) satisfy the equation

d _
1 i—An = A m m\l), Z, R.
(310)  izAa(t) k,;l:n kemA(OA(DAn(t), nEZ, te

The Hamiltonian, the mass and the momentum can be expressed in the Hilbertian
basis as

J{(U):Z Z Ak tm M AAmAn,
k—fl+m=n

= Zp‘k'Z’

kEZ

= SR,

kez
as follows by expressing these quantities in the Hilbertian basis (¢).
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As for symmetries in this new coordinate system, they can be expressed as follows:

— Phase rotation: Ax — exp(i@))\k, for 6 € R.
— Horizontal magnetic translation: Ay — exp(2m'k9/7) Ak, for 6 € R (since Rptby, =

exp(2mik6/v) k).
— Vertical magnetic translation: A\g = Apy1 (since Rix/y¥n = rq1).
— Symmetry around the origin: A; — A_j (since ¥i(—2z) = Y_(z)).

3.5. LOCAL AND GLOBAL SOLUTIONS OF PERIODIC .- >0, w
3.5, L A LLL For any a > 0, we define the
Banach space £°“ constituted of sequences, given by the norm

[(Ak) oo = sup () [Ar].
keZ
We also define LP*(S,) the weighted Lebesgue space by the norm
I fllzee(s,y = 1K) fllLe(s.,)-

In this section, we will prove well-posedness results. We also refer to [21, §3] where
similar results are obtained for (LLL) in the whole space.

Prorosition 3.8. — We have local well-posedness results on the following spaces:

(i) For any p € [1,00], the equation (LLL) is locally well-posed in F., N LP(S,):
for any data wy € F, N LP(S,) there exists T > 0 and o unique solution u €
@([O,T], I N LP(S.Y)), which depends smoothly on ug.

(ii) For anyp € [1,00], 0 > 0, the equation (LLL) is locally well-posed in LP**(S.,):
for any data uwy € F, N LP< (Sv) there exists T > 0 and a unique solution u €
G([O,T], F, N Lp’a(Sv)), which depends smoothly on ug.

(iii) By writing w = ),y Mtr, the equation (LLL) is locally well-posed in £
for a > 0.

Proof

(i) and (ii): It suffices to prove that the map u + II(|u|?u) is smooth on the
weighted spaces L”*(S,), for 2 < p < 400 and a > 0, with a differential bounded on
bounded subsets. This follows from both Lemma 3.2(iii), and the hypercontractivity
estimates (3.4):

[ (2)* T(fgh)llrs,y S 12 fahlloecs,) S (2" Fllres)lgllne s )1l s,)
S Fllzes )1 {20 gllLes)y1{2)" hlle(s,)
= Ifllera(syllgllizeasllbllLeacs,)-

(iii) The equation in (\,) coordinates can be written

. d 1 2 9 ) _
= _Z: exp(—$((z—k) (0 —m) ))AWA,,,
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We need to prove that R maps (£°°%)3 to £°%, that is to say
o2 P2 1 272 P2 1
Op = ZGXP(*ﬁ(n -3) )704 Z eXP(*j(m -3) )ﬁ
= gl 20/ p—m)" = gl 27/ {m)" (p—m)
1
(n)*

We first deal with the sum over m € Z:

<

2

> oo (S b= 3) Gy e S o 2 (09 S

meEZ meEZ v

It remains the sum over p € Z. It is similarly bounded:

272 P2 1 1
s L eo(-Tr =) o S

PEZL

which is the result. O

Finally, we state a global well-posedness result for (LLL) on the strip, which is very
similar to the case of the equation posed in the whole space, therefore we refer to [21,
Prop. 3.7] for the proof.

Prorosition 3.9. — Assume that 2 < p < 4. The equation (LLL) is globally well-posed
for data ug € F, N LP(S,) and such data lead to solutions in € (R,F, N LP(S,)),
depending smoothly on ug.

We stress that the global well-posedness for data uy € F, N L>(S5,) is an open
problem.
3.6. CLASSIFICATION OF STATIONARY SOLUTIONS WITH A FINITE NUMBER OF ZEROS IN A STRIP
Derinirion 3.10. An M-stationary wave is a solution of (LLL) of the form

u(t) = e "“'uy, wherea € R, ug € F,,.
An MQ-stationary wave is a solution of (LLL) of the form
u(t) = e " R_,ug, wherea € R, a = a; +iay € C, ug € .

They are given, respectively, by the solutions of
(M) au = II(|u*u)
(MQ) au+ o - Tu =I(|ulu),
where, by (A.1), a-T' = a;I'1 + asT's is the operator on F, defined by

' =i(z—-0,-7%/2), I'y=(2+40.+7%/2).
Since 'y = (2k7 /)Y, the operator I'; can be expressed in the Hilbertian basis as
F2 (k) = ((27k/7)00), .

We define the set

G = {u €, and v has a finite number of zeros modulo ~}.
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To begin with, we provide a complete characterization of the space G.

Lemwva 3.11. We have the following descriptions:

(i) (Multiplicative description) The function uw € § has N zeros modulo v if it can
be written as

. N
1 2imL 1
u(z) = /<;exp(§z2 + Z;T z— §|z\2) H( 2/ gin ,y(z - Zk)))

where L € Z, k € C and (2x)1<h<n 1 Sy.
(ii) (Additive description) The function uw € G has N zeros if it can be written as

2? |Z|2 Lp
3~y )2,

where Z = exp(?m'z/v) and P is a complex polynomial of degree N such that
P(0) # 0.
Notice that this proves the embedding § C L*(S,).

u(z) =k exp(

Proof. The proof of the multiplicative description is similar to the proof of Propo-
sition 2.1: denote by (2zx)1<k<n the zeroes of w in the strip —v/2 < Rez < v/2 and
write

N
u(z) = exp(—|2?/2) (=) [T (77 sin(Z (= = 2)) ).
k=1 v

By construction, ¢ does not vanish on C, and is entire; thus, it can be written ¢ =
exp (111), with U entire. Furthermore, denoting

A=C~ U B(z +nv,¢)

for € > 0 small enough, it is easy to see that [p(z)| < Cexp(C|z|?) on A, hence on C
by the maximum modulus principle. This implies that Re ¥(z) < C|z|? on C, and
applying the Borel-Carathéodory theorem gives that ¥ is a polynomial of degree 2.
Therefore, we can write

N
u(z) = wexp(~|22/2 4+ az? + Bz) [ (/7 sin

’Y(Z - zk))>

Finally, the periodicity condition R u = u leads to o =1/2 and 8 = 2iwL/~.

To prove the additive description, notice that exp (iwz/’y) sin (7r(z — zk)/v) can be
written under the form aZ + b, with b # 0. This proves that any function which in the
multiplicative form above can also be expressed in the additive form. Conversely, if a
function can be put in the additive form, it belongs to § and has N zeros modulo y
since z — Z is a bijection from S, to C ~\ {0}. O

Prorosition 3.12. The M -stationary solutions to (LLL) in G are given by the
formula

||t
u(t, z) = ki (z )exp( %/E), keZ, keC.

There are no M Q-stationary solutions beyond the above examples.
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ON THE STABILITY OF THE ABRIKOSOV LATTICE IN THE LOWEST [LANDAU LEVEL G()()

Notice that the previous waves belong to L?(S,) and that for

u(t, z) = kipx(2) exp (iyﬁ\%)

1
M(u) = s, Q(u)=kls*,  H(u) = ZHUH%%) =

st
dyy/m
Proof. — Let u € G be a MQ-stationary solution to (LLL), namely

u(t,z) = e “"R_,,U(2)
for some a € R, « € C and U € G. Thus there exists L € Z such that

_ Lo 1. 9\, 1
U(z) —cexp(iz §|z| )Z P(Z),
where the polynomial P satisfies the hypotheses of Lemma 3.11. Next, U satisfies the
equation aU + o - TU = II(|U*U). Let 8 € C, then by (A.4) and (A.5),
(a+23m(af))RsU + (a-T)RgU =1I1(|RgU|*RsU).
Next, observe that
Riin/r [BZQ/Q—\Z\Z/QZLP(Z)] _ MLZLzl:lp(luZ)e—ﬂ-z/ny622/2—|z|2/27

with p = exp(q:27r2/72), thus choosing 8 = —imwL /v and setting V' = RgU, it suffices
to treat the case L = 0. Moreover [R,, Rg] = 0, so that V' € G. Then, V can be
expanded as

N N
V(z) = o= /2-127/2 Z c;e20m/7 = Zdﬂ/}j(»%’),

§=0 §=0

with dg # 0 and dy # 0. Therefore,
VI*V(z) = Z Ay dm Vet (2).
0<k,b,m< N

We compute the coefficient of highest degree in II(|V|*V): it is given by k = m = N,
¢=0. By (3.9),

—_— 1 _on2N2/~2
n(qp]?\,%) = me 272 N2/~ Yo

On the other hand, we observe that I'a1h, = (22 + 2inm/v)¢,. Then, if V satisfies
(a+23m(aB))V + (a-T)V = I(|V|?V), then we must have N = 0, and ay = 0.
Finally, U = kRir1/4%0 = k%1, hence the result. |

/I. IJNE/\RIZE]) ANALYSIS AROUND RECTANGULAR LATTICES

From now on and in the following sections, we assume that N = 1. In the present
section, we assume furthermore that the lattice is rectangular, namely that m = 0
and 75 = 7/v?%, so that 7 = im /2.

Recall the definition of the strip

Sy={z=z+iy:x€[0,7], y € R},

which we regard as a fundamental domain for functions in J,.
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610 P. Germarn, V. Scnwinte & L. Trnomany

Also recall the Hilbert basis
2

wer= () e - ),

2 2ikm 2k? 2|7

1/4 P 2
Vi(2) = Rigr/y%0(2) = (7’72) exp( 5 - e ClE 7), keZ.
It is such that Ry = exp(2ik7ra/*y)wk if « € Rand T, = (Qﬂk/y)wk.
By (3.5) we have the expansion

a(z) = (20)"° exp(:;) jf Un(2)
- o (o 7 )

and it was observed in Remark 2.10, that this function gives the M-stationary wave
B(t,2) = e MDy(2).
Ignoring its phase, this solution is periodic with respect to translations in yZ and v7Z,
and thus corresponds physically to a rectangular lattice. The aim of this section is
to linearize (LLL) around the rectangular lattice, and describe the spectrum of this
linearization.
Linearizing (LLL) equation around ®, yields
(4.1) iOpu = I1[2|®|*u + ®%u] = I1[2|®[*u + e *MO37],
so that the function v = exp(i\t)u satisfies the equation
(4.2) O + M = T1[2|®o[*v + D7D
Tarorem 4.1. — Writing
v(t) =Y en®n  and () =D enl(t)e T,

neEZ nez

Equation (4.2) becomes

i0 (f () ) G (f (" ) ,
f(tv _5) f(tv _f)

for a 2x2 matriz A(€). The matriz Arect(§) can be diagonalized for € # 0, resulting in

Arear(€) = P(€) (“ (05) _5( £)> P

(we refer to the proof for exact formulas for A, P and p, which are somewhat lengthy
and therefore omitted here).

Furthermore,

— forany v >0, u(&) € iR~ {0} if € is close to 0;

— if T =i (square lattice), then pu(§) € iR~ {0} for any £ # 0.

In particular, all rectangular lattices are exponentially unstable in L*(S,) N F,.
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Remark 4.2. It turns out that for a general rectangular lattice, det(A(§)) can
take negative values in (0,7), leading to the eigenvalues of A being real. Numerical
simulations show that this happens for values of v exceeding vy ~ 2.51. In any case,
we have det(A(£)) > 0 for £ > 0 close enough to 0, leading to exponential growth for
some initial data being non-zero close to £ = 0.

Proof. The linearized operator in the Hilbert basis (¢,,). — Setting
—+oo

v(t, z) = Z Cn(t)wn(z>7
n=-—oo
the equation (4.2) becomes

10t + Aey = (E)I/Z ’Yexp(ﬂf2

5 52 Z Apo.m (201 + ),

k4, m€EZ
k—l+m=n

thanks to the equation (3.9), recalling the notation (3.8)

1 7'('2
Ak oym = ﬁexp(—? ((g_ k‘)2 + (0 - m)2)>,

For n € Z, ) )
1 ™ T
Z Apemcr = ——= Z eXP(—*g(” - k)2>0k Z exp(——z(é - k)2)
k,£,meEZ W kEZ v £,mez v
k—0+m=n m——_=n—k
1 2 q
——z:exp(——2 n—k )ck exp| — 7 )
’yﬁ keZ qEZ
and
o m? 2 2
Z Ag,mCi = \f Z Ce Z eXp(—fQ((n —k)*+({—k) ))
k,6,mET ez k,neZ v
k—fl+n=m k+m=n-+~
2
T
IZCgZeXp( )exp(—?(n—ﬁ k) )

leZ k€L

In other words,

a Cn 7 Lrect —\Id Mrect Cn
10 d,, - —9y(rect _(Lrect _ /\Id) d, )

where (d,,) := (¢,) and
L sy — CpLxu, Cp= \fexp<2 ) Zexp(

+)

q€Z
(4.3) L, = exp( )
Mty —s CyM xu, C L i,
(4.4) M, = Z exp(— 2 )exp(—?(n_pf) = [L* L|(n),
p=—o0

where * stands for the discrete convolution of sequences.
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The linearized operator in the Fourier variable §. Define the discrete Fourier trans-
form F : (2(Z) — L>*([0,1])(respectively the inverse Fourier transform F~1) for a
sequence u = (up)nez € £%(Z)(respectively a function f € L%([0,1])) by

+o0
@) WO = Y we ™ Fnm = [ s

k=—o00 0

As is well-known, F(u * v) = F(u)F(v), so that
FLret gl f = CLF(L) f,
FMeTF L = Oy F (M) f = Oy F (L L) f = CprF(L)?f.

Turning to the Fourier transform of L, is is given by

+o00 ) 00 n2k2
F(L)(E) = Z Lye 2imhe — Z exp(—?iﬂkf -— )
k=—o00 k=—o0 v
(4.6) e -
Tk
=1+2 Zexp(— 2 ) cos (2wk€) =: £(€).
k=1

All functions and constants above can now be expressed through £ and C);:
CL =2000(0), A= Cu(0), F(M)(E) = £3(¢).
Overall, we find the expression

Lrect _ )\Id Mrect
F
_Mrect _(Lrect _ )\ Id

)> ?_I(X)] (f) = Arect(f)X7
al€)  b(e) ) e (aox%(s) —() ) )
) —L%(€) —£(0)(26(6) = (0)) )
Diagonalizing the matrix Ay . The characteristic polynomial of A,ect(€) is
Pi(e)(X) = X2+ D(€), where D(§) = det(Arect (€)) = b*(€) — a®(€).

Whether the eigenvalues at frequency ¢ are real or imaginary (and therefore, stable
or unstable) depends on the sign of D(§), which can be factorized as follows

D(€) = O3 [(3(€) + £(0)(26(€) — €(0))] [£2(€) — €(0)(26(€) — £(0))]
= C2,[£(6) — £(0)][£(€) + (1 + V2)€(0)] [€(€) — (V2 — 1)£(0)].

>0

(where the above term is non-negative since [£(£)| is maximum at & = 0). We will
denote

n(&) = —D(§),
with the convention that Jm./z > 0 if z < 0. The eigenvalues of Ayect(§) are
p+ (&) = £4/—D(€), and the corresponding eigenvectors e (&) = (b(€), p+ (&) —a(f)).
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Denoting P for the change of base matrix P(£) = (e4(§)|e—(£)), we obtain the diag-
onalization formula

Al =P ("5 S0 P

The sign of the determinant. — As demonstrated above, D(§) and
F(€) = £(&) = (V2= 1)(0)

have the same sign. By continuity of F, it appears that F'(£), and hence D(§), is pos-
itive in a neighborhood of £ = 0.

To obtain a more precise bound, we resort to the geometric series formula to
bound F' from below:

+oo 21.2
F(&)=2-V2+ QZexp(—ﬂ’y—lj) (cos (27k€) — V2 + 1)
k=1

+OO 7_‘_2]{2 q
22—\/5—22\/§exp(— 2)22—\/5—2\@7,
— Y l1-g¢g

where ¢ := exp(—m?/9?). Then, F(§) > 0 as soon as

212
1< -—F= =
2V2+2-+2
which is the case for the square lattice, for which 42 = =, so that we have
q= exp(—ﬂ') ~0.0432...

~ 0.1716,

Linear instability. — We claim that the equation (4.2) is unstable in L%(S,) N F,.
We note first that

ot 2)ll2(s,) = llen®)llezizy = 11 (& )l L2(0,1)
(where the first equality is a consequence of the fact that (1,,) is a Hilbert basis, and
the second equality is Parseval’s theorem).
As a consequence, it suffices to establish instability in the f variable. Set fy(&) =
£(0,€). By the above diagonalization formula, f satisfies

PO (O 0\ )
<f(t,—§)>P “)( 0 eiw@)P © (m(—&))'

As we saw above, Re(—iu(§)) > 0 for £ close to zero. Therefore, exponential growth
fo(€)
fo(—¢
easy to arrange, and it is even the generic situation! As an example, we give v(0) = vy,

leading to fo(£) =1, and

PHe) ol® ) _ Mé)(blzg)ﬁcfg)w(&)) 7
fo(=8)

whose first coordinate is non-zero. O

will be observed as soon as the first coordinate of P_l(f)( )) is non-zero. This is
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5. LINEARIZED ANALYSIS AROUND THE HEXAGONAL LATTICE

5.1. WRITING THE PROBLEM IN THE ORTHONORMAL BAsis. — We consider the lattice
Lry=7Z@&7Z)for N=1and 7 =j = exp(2i7r/3). This is the hexagonal lattice
(or Abrikosov lattice) £, for which v/3/2 = 7 = 7/+? so that

2
A2 = T 3.6276.

V3
We denote again

2 \1/4 9 9
o(z) := (T’ﬂ) exp(2°/2 — |2]?/2),
but for k € Z, the family (¢) will be given by

(5.1)  u(2) = Rertbo(2) = (%2) o exp 20k /vz +inrk? + 22/2 |2 /2).

Also recall the definition of the vertical strip of width ~:
Sy={z€C:—y/2 <Rez < v/2}.

The new definition of the () is meant to simplify computations hereafter. With this
new definition, Lemmas 3.4 and 3.7 need to be adapted, which is the purpose of the
following lemma.

From now on, we denote

2

(5.2) B om = exp(—%((( — k)2 + (0 — m)2)> (—1) (=R E=m),

L
VA
Then, the following result holds true.

Lemma 5.1

(i) The family (x)kez is orthonormal and forms a Hilbertian basis of F,MNL*(S.).
(ii) If k,£,m,n € Z,

Bi.o,m ifk—0+m—n=0,

/SW Vibedm¥a(2) dL(z) = {0 ifk—L0+m—n#0.

In other words,

(5.3) I (Yr0etm) = Bio,t,m¥n,
withn =k — {0+ m.
Proof

(i) For all k,¢ € Z, and z =z + iy € C,

_ 9 \1/2 . L 2im o
Yr(2)e(2) = (T’YQ> exp(iﬂ'(Tk -7/ )) exp(—2y + T(k —O)x — 7(14; + K)y),
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which gives

X
:ﬁ\\
=
>

29 2
exp(—2y2 + g(k —Ox — %(k‘ + E)y) dx dy

—y/2<x<y/2

2 \1/2 . _ 4
= (ﬁ) el “‘”%,m/ exp(—292 - lky) dy = Or.c
yeR Y

since T — 7 = 2iy = 2im/y? and by the Gaussian integral (C.1). We can prove that
the family is a Hilbertian basis as in Lemma 3.4.
(ii) For k,¢,m,n € Z, and z =  + iy € C,

D ()2 ()t () (2) = %72 exp (i (K + m?) — i (£ + %))
X exp(—4y2 + ?(k—ﬁ—i—m—n)x— 2%(/6+€+m+n)y).

If Kk — ¢+ m —n # 0, integrating in x gives 0. Otherwise, kK — £+ m —n = 0 and we
obtain

/S U ()T ()T (2) dI(2)

2 2
= —exp (iﬂ'r(k2 +m?) —in7T(0? + / exp 4y2 - —ﬂ-(k +l+m+ n)y) dy
™y ve gl
_ 2 - 2 2 £ *(k+t+m+n)?
= exp (Zﬂ'r(k: +m?) —inT (0 + )) 5 ( e )
— 1 ei'er(k,Z,m,n)
VY
y (C.1), where
_ n(k+£+m+n)?
Q(k,t,m,n) == 7(k* +m?) = 7(£* +n?) —i ( o ) .

We use that 7 — 7 = 2in/y? and k + £ +m +n = 2(k +m) = 2(£ +n) to derive

Q(k, 6, m,n) = 7(k* + m?) — 7(£* + n?) — é(k+€+m+n)2(77?)

(k2 m —f(k'—i-m)>_?(€2+n2—%(£+n)2)

(¢ —n)2.

SRR [

g(k —m)? —
This gives

(54) QUi Lmm) = (=) ({0~ R+ (= m)?) + (7 +7) (k ~ O)(¢ —m),
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where we used the identities
(k=m)® = ((k=0) 4+ (t—m))* = (L —k)> + (£ —m)? = 2(L — k)(¢£ — m),
(C=n)?=(L—k)+(—m)> ==k + (L —m)+2( —k)(—m).

We now rely on the specific value 7 = exp (22'71'/3)7 giving 7 +7 = —1, which had not
been used up to that point.
Overall, we proved that

/S O (2Bt (2) o (20 (2) dL(2)

(T A (=12 4+ (0 — m)? (0 — ) (f —
- exp( =) (= k)4 (= m) )) exp(m(e k)(¢ m))
1 2 9 9
_ T e _ _1)(t—R)(e=m)
e (=5 (K7 + (= m)) ) () ,
which was the claim. O
Remark 5.2. — The equation (5.4) does not rely on any specific value of 7. The

fact that the projection (5.3) is real-valued for any values of the integers k, £, m, n is
specific to the two cases of rectangular and hexagonal lattices, at least for |7] = 1. Our
conjecture is that other lattices would still give a convolution structure (see hereafter),
but with much more complexity in the computations, leading to a complex, non real,
matrix A,(§), and in the end, to instability.

With the help of the above lemma, we can write (LLL) in the orthonormal basis:
if u is expanded as > ¢y 1y, then the coefficients (¢,,) satisfy the equation

(5.5) 10¢Cp, = E By ¢ mCrCeCm, n € Z.
ko m€eZL
k—fl+m=n
5.2, LANEARIZING AROUND THE ABRIKOSOV LATTICE. By Proposition 2.8, the following

function is a stationary solution of (LLL):
U(t,z) = e My (2)
(5.6)  Wolz) i= ro(z) = mexp(:2/2 — [22/2 — im2/1)0, (= — 20) /),

with zo = v(7 — 1)/2, and where the constants are = exp(ir/47) (2/(7r72))1
A = X\o|k|2. By (3.5), ®¢ can be expanded in the orthonormal basis as

/4 and

+oo
\IIO<Z): Z "/}n(z)

n=—oo
(and the reason for the choice of « is now apparent: in the basis (¢), all the coefficients
are 1). Abusing the terminology slightly, we call this solution the Abrikosov lattice,
or hexagonal lattice.

Linearizing (LLL) around the Abrikosov lattice ¥ gives

(5.7) iOpu = 11 2|0 Pu + U] = II[2|¥o[*u + e 2 T3a).
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Then the function v = e*Mu satisfies the equation

(LLLhexa) i0w + v = I1[2|To[*v + U37].

Lemma 5.3, — Writing
v(t) = Z cn () and f(t,€) = Z Cn(£)e~2mINE,
nez ne

the equation (LLLhexa) becomes

with

2
(€)= == (1910 — 20(&)h(0))

1
T

and where the functions a and b are defined by

(2(8) — 202(5)),

n2k?
0E) =142 exp(f 2 ) cos(2mk€),
. w2 (2k + 1)
h(€) :=23755 exp(—(’ﬂ)) cos(2(2k + 1)x¢€).
Proof. — Expanding v in the orthonormal basis v(t,z) = :f_oo Cn
coordinates satisfy the equation
(5.8) 10rCn, + Ay = Z B o.m(2¢k + @),
k,0,meZ
k—0+m=n

thanks to (5.5).
We will now try and compute the sums

E By.o.mCk and E By;.0.mCe-

kAl meZ k. lmeZ
k—l+m=n k—f+m=n

by considering separately the cases H = (£ —k)(¢ —m) even and H odd.

617

o ( 1(t.6) ) _ (a(f) b(¢) ) (f(t,f) ) — An(®) ( f(t,6) )
ft.-6))  \~b(&) ~a(&)) \7(t.-¢) F(t. =€)

(£)¢n(2), the

Note that H

is odd if and only if (¢ is even and k,m are odd) or (¢ is odd and k,m are even).
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We have
1 w2
BitmCr = exp( —— ((K — k) (- m)2) Ch
k—l+m=n k'—ll—i-mzn, H even 9
T 2 2
-— k;;iz exp(—gg(MAfk)‘+(€—4n)))ck
k—{¢+m=n, H odd
1 2
= — e ——((t—k)?+(t—m)?
wr kkvazm:ez XP( 7 (( ) ( " )>Ck
—L+m=n
2 2 9 9
o Z exp(—? (t—k)?+(L—m) ))c;€

k,t,m€eZ
k—{¢+m=n, H odd

The first sum is the same as in Section 4 above, and can be computed accordingly.
We then focus on the second sum. In the case H odd, k and m have same parity,
so that ¢ and n = k — £ + m also have the same parity.

First case: k even. Since k (and hence /) is even, the condition H odd means that k
and m are both odd. We compute

2
Si(n) == Z exp(—% ((€ — k)2 + (- m)2))ck
k#ﬁrfﬂ??{ odd
2 ) 2 ,
e T,
T eo(G-w)e T ew(Te-w)
I
w2 2
——(n—k)? _ T 2\ _ (qoddfodd
kegz;_le){p( 2 (n ) )Ck q@zZ:HeX ( 72(1 ) (T L *c)(n),

where 7044 = > ge2z1 exp(—m2¢*/4*) and

2.2
¢ (qu)'f €27 +1

(5.9) L = 5, om0 exp(— g ) = &P 2 mm )
K 0 if m € 2Z.

Similarly, we have

2

> o=z 3 en(-G -k - m?)a

k4 meZ k., meZ

k—l+m=n k—f0+m=n
-2 Y eGSR -
YW ¥? ’

k., m€EeZL
k—f¢+m=n, H odd
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the first sum being the same as in Section 4 above. We compute

m° 2 2\ =—
Sa(n) == E exp(f—2 ((0—k)*+ (€ —m) ))Cg
k,l,m€EZL v
k—f¢+m=n, H odd

2

2
= Z 73 Z exp(—%(ﬂ - k‘)Q) exp(—%(n — k)z)
el s,

_ w2 9 2 )
= ZCg Z exp(——2(€—k:) )eXp(——Z(n—k) ),
£€27.  ke€2Z+1 v v
Then, with a change of variables, we get

52(”)2275 Z EXP(—:zW)exp(—Zi(n—m—ﬁ)?)

£e27  me2Z+1

— 2076@622 Z exp(—zzm2) exp(—zz(n -—m — 5)2)

LE me2Z+1

= ch Z O(k—tye2z exp(—zzm2) exp(—zz(n -—m — 6)2)

LeZ  me2Z+1
= (MOdd *¢)(n),

with
o 2 w2
MY (n) = kegz:ﬂ exp(—?k‘z)énegz eXp(—?(n - k)2)
2 2
= Z Oke2z+1 GXP(—%kz)(s(n—k)ezZH GXP(—%(TL - k‘)z)
ke v v
(5.10) = (L°% L) (n).

Second case: k odd. Since k (and hence £) is odd, the condition H odd means that k
and m are both even. We compute just as Si:

S3(n) = Z exp<f7r—2 ((€—k)?+ (£ m)Q))ck
k., m€EL v
k—f¢+m=n, H odd

:Zexp(—:z(n—k)2>ck Z exp(—%(é—kV)

kE2Z Le27+1
me27Z
m—L=n—k

2
=74 Z O(n—k)e2z+1 eXP(—j(n - k)2)0k
kEZ v

_ (ToddLodd * C) (TL),
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which is the same expression as in the case k even. Now, we compute the last sum:

Sim= 3 e (R (- m)?) e

k,l,m€EZL
k—f+m=n, H odd

_ w2 9 2 )
Z &7} Z eXp(——Q(Z—kz) )exp(——Q(n—k) )
te2n+l  kmen v v

Z Ty Z exp(——m)exp( e (k m— E))

Le2Z+1 me2Z+1

Therefore we get

2

m
:Z@5€EZZ+1 Z eXP(—?ﬂﬂ) exp(—

LeZ me2Z+1

fzce Z O(k— gegzexp( 72 )exp(

teZ  me2Z+1
= (M°%xe)(n),

2

%(k —m — 5)2)

2

- (kfme)Q)

with M°44 defined in (5.10), and this is the same expression as Sy above.
Overall, we get

o Cn Lhexa —2\Id Mhexa Cn

(3 = s
t dn _Mhexa _(Lhexa —\ Id) dn
where (d,,) := (), and

2 4
chexa gy (C’LL — ngdLOdd) * U, C,=—=T codd — _—_odd

W W
1 2
ME? sy (CoyM — COMOYY) wu,  Cyy=—=, O3 =

SRVL /7'

here L, M are defined in (4.3) and (4.4) and we introduced the final notation

T = Zexp( )

qE€Z
Recall that the Fourier transform was defined in (4.5); applied to the convolution

2

kernel L2 it gives
2k2
F(Led (¢ exp| —2ikm€ —
= 2 el )
(5.11) - 2Zexp( 21;* Dk ) cos(2(2k + 1)mé) =: h(€),
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and we recall (4.6)

+oo 21.2
F(L)(E) = Z exp(—2ik7r§— 7T712€ )
k=—oc0
= w2k?
(5.12) =1+ QkZﬂeXp(— 2 ) cos(2mkE) = £(&).
Then,
Lhexa ~\Id Mhexa 3
(513) f ?< 7Mhexa 7([Jhexa - )\Id)) F 1(X)‘| (f)
_ [ al§) b .
(950 -
with
(:14) (€)= T (CLL = CFLM) = X = 2 (£(E)(0) = 20(OH(0)) — A
and
(5.15) b(E) = 7 (CarM = CEA™™) = —— (1%(6) — 21(6)

(here, we used that M°d9 = [0dd x [0dd gee (5.10)).
The value of A follows from (2.7), taking into account the normalization factor

6] = (2/(772)) " exp(~7V/3/8):

1 1

5.16 A= Nl = I? 4217 — J%) = —— (£*(0) — 2h2(0)) .
(5.16) = = ( ) = = (O - 22(0)
Gathering the above elements yields the statement of the lemma. (|
5.3. AnavLysis oF THE MATRIX Apexa(§). It follows from the previous lemma that

the stability of the linearized equation is equivalent to the stability of the matrix
i Apexa(€) for any €. To understand the spectrum of Apexa(€), it suffices to find the
sign of its determinant; this is the object of the following proposition.

Prorosririon 5.4. For any &£ € (0,1), det Apexa(§) < 0.

Proof. — Since det Apexa(€) = b(€)? — a(€)?, it suffices to prove that a(£),b(£) > 0
and that a(€) > b(&). This will be achieved in the two following lemmas. O

Levva 5.5. For any £ € [0,1], a(§) > 0 and b(&) > 0.
Proof. Sign of a(§). — By definition of a(§), it is > 0 if and only if

£(0) [26(€) — £(0)] > 2h(0) [2h(&) — R(0)] -
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622 P. Germarn, V. Scnwinte & L. Trnomany

This inequality holds if £(0) > 2h(0) > 0, 20(&) — £(0) > 0 and 2((§) — £(0) >
2h(&) — h(0). It is clear from the definition of h that h(0) > 0. We define then

too 2 2
& :=1+2 Zexp(—7T (“Y22k) ) cos(47rk§)7
k=1
so that £(€) = g(&) + h(&). Then,

£(0) — 2h(0) = g(0) — R (0)

=1- Qexp(—:z) +2+f(exp<_7r2(22k)2) - exp(—ﬂQ(z—zlk)Z)).

b1 v v

Since
2

qi= exp<—l) ~ 0.0658,
7

it is clear that the sum in the above right-hand side is positive, and hence that
£(0) > 2h(0).

Next, we compute

w2k2 w2k2
) (2cos(27rk:§ —1 1—GZexp< )
>-3
“+o0 2 k
s 1—-"7q
>1-6 eXp(—)) —1—67 > 0.
; ( 72 l-q 1-g
There remains to prove that

2h(8) = h(0) < 2£(£) — £(0),
which is equivalent to 2g(§) — ¢g(0) > 0. By a similar argument,

20(€) — £(0 —1+2Zexp<

2g(&) — =1+2 Zexp( k2) (2 cos(47rk:§) — 1) 11_7;: > 0,

which completes the proof that a(£) > 0.

Stgn of b(§). — By definition of b(§),

b(e) = Vlf [2(6) — 212(€)]
(5.17) - % [(£(6) — 20(6)) (L(E) + 20(E)) + 212(E)]-

Still denoting ¢ = eXp(77r2/72)’

“+o0
£€) +2h(€) = 1 + 4qcos (2m€) + 23 {qkz cos (2mk€) + 20D’ cos(2mE (2K + 1))}
k=1
¢  1-1lg+4¢
1—-¢  1—g¢

>1-4¢—6
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To justify the last inequality, we observe that the polynomial 1 — 11¢ +4¢? is positive
as soon as ¢ < ¢ := (11 — /105)/8 or equivalently v> < 72/In(1/q_) ~ 4.2, which
can be checked numerically.

Next, we write

+oo
(&) — 2h(&) =1 — 4qcos (2mE) + 2 Z [qk2 cos(2mkE) — 2¢(2k+D)* cos(2m&(2k + 1))}

k=1
1—11q+ 4¢°
>1-4¢-6-9 — ate oy
1—g¢q 1—gq
by the same token. Gathering the above inequalities, we obtain that b(§) > 0. O

Lemva 5.6. — For any & € (0,1), a(&) > b(&).
Proof. — The inequality a(&) > b(§) holds if and only if
(£0) = £(6)* < 2(h(0) = h(€))*.
Since £(0) > £(¢) and h(0) > h(§), it suffices to prove that
F(€) = V2(h(0) = h(€)) = (£(0) = £()) > 0.
It follows from the formulas giving h and ¢ that

i Qi1 = 2(v/2 — 1)g"+D7
= Z o, (1 — cos(2km)), with

k=1 Qop = —Zq(Q")Q.

Now we write

+o00 +oo
€)= (1 —cos(2kmf)) =23 agsin® (k&) = 2sin®(r€) F(£),

k=1 Pt
where
i sin? kwf
o sin®
and we then need to prove that F'(§) > 0. We clalm that
Vr e R ‘sm(kx) ’ <
’ Sin(m)
Indeed,
sm(k:c ‘ et —emihny P R e LI G )
SlIl elfl’ — e 1T
Therefore,
+oo too ]
F() > a1 =) laxlk® >2(V2—1)g— ) 20" k.
k=2 -

We compute

q S 19 =4q J T =4q S .
k=2 j=4 j=1 (1-q)* 1-¢ (1-q)?
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Furthermore, we know that 0 < ¢ = exp(—72/9?) < 107! so that

F(£>>2q(xf214_q3q)2) >0,

(1
which completes the proof. O
Proposrrion 5.7. We have
(5.18) ettty _ [ ONE) G imul©) i sin(in(©)
i sin(tp(€)) cos(tu(§)) + i-4E sin(tp(€))
where
1/2
() = (a*(€) — ().
As a result,
+ it (&) - - —itu(§)
(5.19)  e~itAnena(©) (f0> - <(k [ fot K go)e™0 + (ki fo + Ky e )
go (k3 fo + ki go)e™™ &) + (k3 fo + ki go)e™ ()
with
1 b(§)
5.20 FE(E) = 5= (&) Fal©), k(&) =F5 -
Proof. — In this proof we write A = Ayexa. From Proposition 5.4 we deduce that for

all 0 < & < 1, the matrix A(£) has two real eigenvalues with opposite signs, u and —p,
and thus is diagonalizable. For £ = 0 or £ = 1, u vanishes, so that 0 has algebraic
multiplicity 2. The corresponding matrix is not diagonalizable, and for this reason,
we will trigonalize A(€) for all £ € [0, 1].

The eigenspace corresponding to the eigenvalue +4(€) is

(©)

Note that we have d1(0) = d2(0) = —1. The same relation holds for £ = 1. We consider

the matrix
P - (‘”5) ?) € GLy(R),

Span (@ff)) with  04(6) =~ (a(6) £ p(6).

whose inverse is

Then we have the following relation:

(5.21)  A(€) = P(E)B()P~'(€),  where B(¢) = <

Exponentiating gives

VE€[0,1], e tA©) = p(g)eitBE p=1(g).
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Since
e=tBE) — cos(tu(€)) Iy — ﬁ sin(tu(€)) B(8),
we find that
ey _ (st — i sin(tp(€))  —in sin(tu(©))
P29 sin(tu(€)  cos(tul(e >> ﬁgsmofu(s)) ’
as claimed. -

In the sequel, we will use the expression (5.19) both for f and g functions of the
space variable w and frequency variable £. The four functions kji, j = 1,2 are not
defined for £ = 0, since p vanishes at 0 but the two functions a and b do not. The
following proposition gives a finer understanding of the vanishing of .

Prorosrtion 5.8. The following holds true:

(i) The functions a,b, p and k]i are even.
(ii) There exists co € R such that

a(§) = A+ o€ + 0(¢Y), b(€) = A+ o€ 4+ 0(£Y).
(iii) Setting

0 = /A (a(0) —09(0)) /12,
there holds

2
(5.22) (&) o e,
and
A B A
(5.23) KO 5o ace O 00

Proof. — Recall the expressions (5.16), (5.14) and (5.15) giving A, a and b respec-
tively. In particular, a(0) = b(0) = A, and 1(0) = 0. Recall also the expressions (5.11)
and (5.12) of h and £. To compute the derivatives of a and b at 0, we need the deriva-
tives of ¢ and h. Since these are even functions, the odd derivatives vanish at 0 and
furthermore

oo 2.2
§) =1+ QZexp(— 5 ) cos (2mkE)
k=
+00 1
(&) =-2 Z(27Tk‘)2 eXp(—
k=1

“+o0
(D) =2 Z(Qﬂ'k)4 exp(—
k=1

2];2 ) cos (27Tk§)

i ];2 ) cos(2mk€).
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function 1 and its derivatives
T T

0.5

VAR

-0.5

BN B |

function p

function 41"
function 0,5." | —
@)

function 0,1/
x=112

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ficure 1. Plot of the function p and its derivatives, with multiplica-
tive constants.

This implies that 0 < h(0) < £(0), £/(0) < h”(0) < 0 and 0 < ™M (0) < £((0).
We now compute the derivatives of a and b at 0; once again, since these are even
functions, the odd derivatives vanish and

a(€) = %(E”(ﬁ)ﬁ(o) —2H(€)h(0)).

D (¢) = %(W (£)0(0) — 20D (E)1(0)),
b(€) = % (C(€)E(E) + £/(€)? — 20" (E)h(€) — 21 (£)?),
@Wiey— 2 (@ 3) (e g1 172

BO(E) = = (€ (©©) + 369 () (€) +30"(€)

— 20 (O)R(€) — 6K (R (¢) — 6h”(§)2>,
giving

1 /! 2
a”(0) =b (0)—%/7»r
6
T
Inserting the expansions of a and b up to the fourth order in £ in the expression of
(&) gives the result. O

(€"(0)£(0) — 2" (0)h(0)),

b (0) — a®(0) (¢7(0)* — 21" (0)?) < 0.

We recall that v =~ 1.90, and we plot the function p and its first three derivatives
in Figure 1.
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The equation
z@tU(f) = Ahexa(f)U(g)
solves in

U(t,€) = e MO, (€).
Denote by v(t,2) = >, .z cn(t)¥n(2), U(t,2) =3 cp ( Yhn(z) and V = (;i]), then

+oo
(5.24) V(t.2) = Z </162¢kw56itAhexa(ﬁ)VO(g)dg) Vi (2)
k=—o00 0
+00 1
— 22k7"§ *ZtAhexm(ﬁ —2inmé
> ([ Lzof [, Vot Tz d o)

_ / K, (w, 2)V(w) dL(w),
S’Y

where
1
(5.25) Kow,z) = / 2R 1IE (VT A .
k,nEZ 0
5.4. STABILITY AND DECAY FOR THE LINEARIZED EQUATION. — As in Lemma 5.3, we write
z) = Z n(t)¥n(2) and f(t,8) = Z Cp(t)e2mine,
nez e

and we set furthermore

g(ta g) = ?(tv _5) = Z Cn (t)€27Tin£~

nez
We state a first stability result.

Tueorem 5.9. — We write

= Z n()hn(2)

neZ

and suppose that Y, . [¢n(0)|* < 400, meaning vo € L*(S,). We assume that for all
n € Z, we have c,(0) € iR. Then

lvo(t)[l2(s,) < CllvollL2(s., )-
Proof. — We write

U, €) IILz D ek = llv(t, 2)]72
keZ
and recall:
U(t,€) = e~ 4O, ¢).
We denote
0@ = (10). 0 = T e, gn(e) = X anloje 2,

kEZ keZ
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We suppose that for all n € Z, ¢, (0) € iR, that is to say fo(£) = —go(§). Then, from
equality (5.19), we have

Ut &) = efitAhexa(é)UO(f) — o it Anexa(§) ( fO(f)))
fo(€

(ki — k)& 4 (k] — kg )e (&)
(ky — ky)e™& 4 (kf — ke~ (&) Jo(&)-
We have

— s oy € CE(R).

Similarly, k1 — k; € CZ°(R). We deduce that:
lo(t, 2)llz2 = U €z < Clifo(€)llzz = Cllvo(2)llz2,
where C' > 0 is some absolute constant. O

The statement of Theorem 5.9 is elementary, but it has the drawback that the
condition ¥n € Z, ¢,(0) € iR, is not preserved by the flow of (LLLhexa). A more
natural stability condition is given in the result below.

Tueorem 5.10. For allt > 0, the solution f(t) of (LLLhexa) satisfies

f +9‘ ‘ Jo+ go‘
12 oy * 200 S o+ Hollz2gon
and more generally, for all j € R
(5.26) ‘“g Hf <Hf0+90‘ ‘fo*go‘
' pI L2 (jo,1)) L2([0,1]) w3t lr2(jo,1)) 7 (o))

Actually, the condition || (fo+ 90 /yHLQ([O 1) < is equivalent to

me(z cn(O)) - me(z ncn(O)) —0,
nez nez

which is propagated by the flow of (LLLhexa), using Lemma D.1. More generally,
by Lemma D.1, one can check the norms appearing in (5.26) are also propagated by
the flow.

Proof. — We deduce from Proposition 5.7 that
FEg= (ki £k3)fo+ (kf k7 )go)e™ @ + (ki k) fo+ (k3 + ki )go)e ().
Setting F' = (a — b)/p and G = (a + b)/p, we have

1 1

kf+k;:§(1—F), k;+k+:§(1+F),
1 1

kf—kgzi(l—G), k;—k;:§(1+0),
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so that
f+g9=(fo+ go)cos(tp) —i(fo— go)F sin(tu),
f—9=(fo—go)cos(tp) —i(fo + go)G sin(tp).

Close to & = 0, Proposition 5.8 gives that F'(£) = O(£?) and G(§) = O(£7?) with a
symmetrical behavior at £ = 1. As a consequence, for all j € R,

’f ’f0—90’ ‘fo-i—go‘

£2([0,1]) pd - llez(o,1)) pI T MLz (o,
Hf ’foJrgo’ ‘fo*go‘

I+ 1Lz ([o,1) I+ HlL2((o,1)) pi Az (o)’

hence the result. O
Taeorem 5.11. Consider a function vg € I, N &. We write
= Z cn(t)¥n(z)
nez

Then,
(i) If Yn € Z, ¢, € 1R,
lo(t)l|Loe(s,) S fl/g””oHLl(s”
(ii) We have

_|_
JoOllscs,) S 7 ol oy + |22

HHI [01)}

Proof
(i) Going back to (5.24) and (5.25), we study exp(—itApexa(€))Vo(w). Using the
equation (5.19), we have

kn
Ky (w, 2)Vo(w Z Y (2) 5 (w) <]knEt w;) 7

k,n€EZ
where, for t > 0 and w € C,

Ikn(t w) = /0 e2im(k—n)g [(k+(£)vo(w) +f+(§)ﬁo(w))eit“(5)

+ (k_(g)vo(w) + 0~ (5)’170(10))@_”#(5)} de,
Igv”(t, w) = /0 p2im(k=n)é {(2‘ (&vo(w) + k_(f)ﬁo(w))e““(@

+ (5 (©vo(w) + k*(g)ao(w))efitu@)} .

In the sequel, we will only study the integral I f . We have:

1 /o ) )
17 w) = /0 HTIE (H(E) | ) )y (w) de

. /O T8 (b(€)70 (w) + a@%(w))w .
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We define T'y (&) = (&) +2n(k—n)é/t and T_(€) = —pu(&) +2m(k—n)&/t. We have
(&) = p'(€), T (&) = =" (€), and p” only has two zeros in [0, 1], that we denote
& € (0,1/2) and & € (1/2,1). Close to & and &, the function p®) is not close to
zero, as can be seen by a graphical study (see Figure 1). Then by the van der Corput
lemma (see for example [47]), we have

/ exp(itfi(g))df‘ <Ot /3
[£1—6,61+7]

and ‘/ exp(itfi(f))df‘ < Oyt~ Y3,
[£2—6,6247]

with C7 > 0 a constant independent of k£ and n. Outside the two intervals
[€1 — 0,&1 + 8] and [§2 — §, &2 + 6], the function p” does not vanish, so that

g 02t71/27

/ exp (z‘tFi(f))dE
[0,61—4]

with Cy > 0 a constant independent of £ and n. We have the same bound on
[€1 4+ 6,& — 4] and [£2 + 6,]. Finally, adding up those five inequalities:

1
/0 exp (itPi (f)) dg

We now make the assumption, in the spirit of Theorem 5.9, that vg(w) = —vo(w),
meaning that for all n € Z, ¢,(0) € {R. With this, we obtain

—q leQiTr(k—n) Tolw al&vn(w Sln(tu(§)>
/ “((€)T(0) + () )
where

(5.27) < Cst™Y/3,

d¢ = —vo(w) (J" () — TH"(1)),

R T O

From the computations of Proposition 5.8, we have

c
F(g) E:O 552,

the constant C' > 0 being defined in Proposition 5.8. Then F' € €(¢) with F(0) =
F'(0) = 0. We denote
13
Ge(©) = [ explitt'c(n)dn,
0

so that

JEn(r) = / F(@%Gi@df.

We recall that
Ve [0,1], |GL(§)] < Ot

Then, an integration by part and F(1) = 0 yield

Ji’”(t)lz‘F(l)Gi(l)—/ F’(é)Gi(f)d§‘<03t‘1/3/o [F(€)]dg,

0
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that is to say,

(5.28) |TE" ()] < et V3,

the constant ¢ > 0 being absolute. Finally, combining (5.27) and (5.28):
" (t w)] < et P lug(w)],

so that we have asymptotic stability:

(5.29) [o(t, 2)] S V3| e s, x5 100l s,

where

Uizw)= 3 [n()in(w)]

k,n€Z
We compute
W(z,w) = [Po(=)Tu(w)] 3 exp(~n2(? + 2)/7? — 2m(kIm(z) + n Im(w)) /7).
k,n€Z
which is a function of L>(S, x S).

(ii) As before, we write

f(t, 6 = Z Cn(t)e2mE, g(t,€) = Zme—%nﬂg’

nez nez

and fo(§) = £(0,€), go(€) = 9(0,&). Then,
F(t,€) = cos(tu(€)) fo(§) — i(a(€) fo(€) + b(€)g0(8))

so that for all k € Z,

sin(tu(€))
n) 7

(5.30) cx(t) = /0 > cos(t) fo(€)dE — i / e%’”ﬁ(afo(g)+bgo(g))smffﬂ) dc.

0

The second integral is well-defined because, for all ¢ > 0, |M_1sin(tu)’ < t. Denoting
Ty (&) = £p(€) + 2wkE/t for the phase functions,

1 1
(531) [ 4 cos(tul€) fo €€ = 5 [ (exp(is(9) +esp(itr(©)) fo) e
Integrating by parts and denoting G4 (&) = fog exp(itfi(é))dm

(5.32) / exp(itT£(€)) fo(€)dE = / G (©)fol€) = fol1)Ce (1) / G (€)f)(€)de.

Furthermore, I, (§) = £4 (), so that |[TL(¢)| + [TY(€)]| = ¢ > 0,V¢ € [0,1]. Then,
the van der Corput lemma gives the bound

(5.33) vee(o.1], G St
Combining (5.31), (5.32) and the estimate (5.33), we get

(5.34)

) 1
/0 e2ikme COS(tM)def‘ <St/3 {|f0(0)| + /0 |f6(§)|df} ,
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the implicit constant being independent of k € Z, and using that fo(1) = fo(0).
We now turn to the second integral in (5.30). We write ¢ (0) = oy, + 8k, ak, fr € R,

so that
f é’ = n 72in7r§7
{fo(£)=f1(€)+ifz(£), N 1(6) = 2 ane
W1
90(8) = 11(6) = £2(6), 12(6) 1= 3 e,

nez
(observe that f; and fo are not real valued). In the sequel, we assume that

H Jo+ 90 H
H([0,1])
which is equivalent to the condltlon f1(0) = f1(0) = 0. Then,

afo+bgo = (a+b)f1 +i(a—0b)fa.
We then split the second integral in (5.30) into four integrals:
1
. ik sin(t _ _
i [t ag o)™ g = Sf - 17 v 1f — 1),
0
where
1 1
b —-b
I = / exp(itle) 22 fide,  and  IE=i / exp (il ) = fode.
0 0

From Proposition 5.8, the function (a — b)/p is bounded with a derivative being also
bounded. Then, we get the same decay we obtained in (5.34) with an analogous
method:

IF] < et [|f2<o> + [ 1 Ifé(E)Idf] <ot [|fo<o>| + [ 1 |f5<5>|ds].

Similarly, writing

we show that

(5.35) E] < =1/ [|F<o>| T / F’(é)dﬁ],

when those quantities are defined. From (a + b)(0) = 2X\ > 0, and u(¢) ~ C&2, the
condition f1(0) = f1(0) = 0 (or equivalently >~ _, a, =", ., na, = 0) is necessary.
Furthermore, this condition implies that the function F' is well-defined on [0, 1], and
of class C!, so that the right hand side of (5.35) is defined and finite. Then,

/01 |F'(§)|d¢ < [[(a +b)' || /1 [f1/pldg + lla+ bf| - /O1 [(f1/m)'| dg
Hf(H‘QOH

wii(]o, 1])
Overall,

R [ O

Lo ([0,1]) w1, 1(01])]
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and we conclude that

Jo+ g0
()] < et [l oll oy + el zaoy + |7

[P

+Hf°+g°H }
f—|—g wt1(]o,1])
0 0

<ol gomn + | = o)

where the last line is obtained by Sobolev embeddings and the Cauchy-Schwarz in-
equality. Now, for all z € S, we have

[u(t, 2) Z ler ()Y (2)] < C(fo,go)t™/? Z Y (2)

kEZ keZ
which implies the result because the function z + ), -, [¢x(2)] is bounded. O
5.5. GROWTH FOR THE LINEARIZED EQUATION. — Recall the equation (LLLhexa)

10w + Av = 12|V [*v 4+ UED].

In this paragraph, we will prove the following result which show the possible growth
of the solution in the case where H fo+ 90 /uHL2 (0.1]) = +o00.

Tueorem 5.12. — We write
= Z en(t)¥n(2)
nez

with vo(2) = Y, ez ¢n(0)¥n(2) and suppose that -, o, |cn(0)]* < +00, meaning that
vo € L?(S,). Then, the equation (LLLhexa) is globally well-posed in the space v €
L*(S,).

Moreover, we have the polynomial bound on the possible growth of the L*-norm:
forallt >0

(5.37) [v#)l|L2(s,) < C(1+t)|lvollL2(s,)-

The previous bound is optimal in the sense that for all € > 0, there exists vy € L? (S4)
such that

[o(®)ll2(s,) = C(L+ )" lvollL2(s,)
Proof. — We denote again

CCR ) BERNCGED SPTU PG SETO

keZ kez
We compute with equality (5.19) that

2

IIU(t,E)IIZLz _ H it Apexa (€) (go & )H Hcos tp) fo —i(afo +b90)sml(ju)‘

2
L£

Sln
=&

<2 [ leostmn @ +2 [ [ ) + HOm(e

The first integral is bounded by 2Hf0||L§ = 2||Uo||L§~

O
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— Let us prove (5.37). He we only use that a and b are bounded functions, and we
use the estimate | sin(tu(€))| < tu(€), and the result follows.

— Let ko > 2 so that 27% < 1/2. Define the indicator function Jj, = R
consider the function defined on [0, 1] by

+oo +oo
&= k22 u&)+ Y k20 -9,

k=Fko k=Fko
which is extended as an even 1—periodic function. Assume that 6 > 1/2, then fy €
L3([0,1]). Since f is a real-valued even function, we have cx(0) € R and thus fy = go.
There exist two functions «, 8 such that a(§) = A+ «(§) and b(&) = A+ 5(€), and if
0 > 0 is small enough, for all |£] < 0, |a(£)] < ¢[¢| and |B()| < ¢|£]. As a consequence,

|a(€) fo(€) + b(€)90(&)| = 2A1fo ()] — 2¢[¢]| fo ()] = Al fo(€),

so that we have
. o [ sin(tu(€) 2, [
0.0l > [ [[ate) o) + b () LD Cae > e [ e D[

Let k; > ko be such that 2251 < t < 22k1+1, Therefore, for ¢ € [27F~ 1,2 ], we have
|sin(tu(€))] = cltu(€)| = c22F1=F) 5o that ’sin(tu(f))/u(ﬁ)‘2 > c2%%1. Hence,

sin t,u

§ +oo
/ |f Sln ‘ dg 624k1/ Z k7292ka(£)d£
0 k=k,
> c24k1 Z k_20 24k1k1 20 > t2(1 8)
k=k1
which was the claim. O

Arpenpix A. SymmEeTriEs oF (LLL)
For o € C, define the magnetic translation
Ro s u(z) — u(z + a) exp((za — 2@)/2).
Let us recall some material from [42, App. A]. We have
Rou = 6i(""r)u,

with @« = a3 +iag and a - T := a1I'1 + asl's, where I'; and I's are defined by

(A1) I =i(z-09.—%/2), Iy =(z2+0,+7%/2).
Notice that the operators R, do not commute in general. Indeed, for all o, 8 € C
(A.2) RoRp =™ “PR4R,.

We also record the following formulas
RoRg = Royp if a, B are colinear,
(A.3) (R.)™'=R_,
Rau(=2)] = [R-au](—2).
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Furthermore,
(A.4) R lu =TIR u if [u(z)| < (x)M
(Ro)" = R_, on L2,
and
(A.5) R_g(a-T)Rg = (a-T) — 2Tm(ap).
Arrexpix B. Proor or Prorosition 2.1
Let v € €, , and find first a fundamental cell ) with respect to £, , such that u

does not vanish on 9Q. Let {2z }1<k<n be the zeroes of u on @, and write
N
1
u(z) = exp(~12/2)¢(2) [T 0 (2 (c — 20)).
k=1

By construction, ¢ does not vanish on C, and is entire; thus, it can be written ¢ =
exp (), with ¥ entire. Furthermore, denoting A = C\Uaeﬁm B(a,¢) for € > 0 small
enough, it is easy to see that |©.(2)| > Cexp(—C|z|?) on A. Since u is bounded on C,
this implies that 9ie ¥(2) < C|z|? on A, hence on C by the maximum principle; but the
Borel-Carathéodory theorem implies then that ¥ is actually a polynomial of degree 2.
Therefore, we can write

(B.1) u(z) = Nexp(—|z|*/2 + az® + Bz) H @T<%(z - zk)),
k=1

where «, 5, A € C. We take for simplicity A = 1 in the following. The first periodicity
condition of &, ., requires that u(z+ ) = exp(y(z — %) /2)u(z). Given the above form
of w and (1.2), this is equivalent to

1
(1Y exp(—5left = 37 4zt 4 2(=3 + 207 +8) + (o746 - 1))

1
= exp(g(z - E)) exp<—§|z\2 +az? + Bz)
Identifying the coefficients of the polynomials in the exponential, we see that this
equality holds if and only if &« = 1/2 and 8 = —iNw/vy + 2ikn /7, with k € Z. The

second periodicity condition of € , demands that u(z+77) = exp(y(7z — 72)/2) u(z).
For u as above, and taking (1.2) into account, which yields

CH (%(z —zp + 77’)) =0, (%(z —zx) + 7') = —e e Hm(Emm/Ng, (%(Z - Zk))7

the periodicity condition is equivalent to

1 1 2N
cxp( B e b T s T BV )
2 % 2
X eXp((—%|T|2 + Nim — Nintm + %SN + %72 + 577)>

1 1
— exp(%(?z — TE)) exp(—§|z\2 + 52'2 + 52)7
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where Sy = 211:[:1 zk. ldentifying the coefficients in the polynomials, this equality
holds if and only if 75 = N7 /42 (this comes from the identification of the factor z)
and

2 2 2
Lt = Lt + Nim — Nint + 228y + 897 = 2itr, with L€ Z,
0

coming from the constant term. Since 7 = N/42, this simplifies to N + 2Sx /v —
Nt + 2kt = 2¢, with ¢ € Z. Therefore, Sy = YN(7 — 1)/2 + v£ — ~y7k. Overall,
we found that u reads

N
1 1
k=1
with
N
Z (r—1) 4+~ —~Tk.
k=1
There remains to show that €., is a vector space of dimension N. This follows from
two observations: on the one hand, it is a vector space by definition, and on the other

hand the number of free parameters in the formula for w is N (the multiplicative
constant, and the N zeros which have a prescribed sum).

AppenDIX (. USEFUL FORMULAS

C.1. GaussiaN INTEGRAL. — If a > 0, b € R,

(C.1) /]Rexp(—at2 + bt)dt = fexp(i)

C.2. Poisson summation. — Let us recall the Poisson summation formula (see for
instance [48, Chap. VII]): for g € .¥(R) a 1-periodic function set

1
3 = [ glwye >,
0
then for all x € R

(C.2) S gla+n) = 3 Gmerie,

neZ n€EZ

In particular, for « > 0 and g : =z — exp(—amg), and by an analytical extension,
we get that for all z € C

(C.3) Z exp(—a(z + n)? \/7 Z exp(— 2n? /o + 2iTnz).

nez nez
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AppPENDIX D. SoMmE conNservaTiON TAws For LLILhexa
Lemva D.1. — The set
A= {u = nez Cnthn, Re (ZnEZ cn) = NRe (ZnEZ ncn) = 0}

is preserved by the flow of (LLLhexa). More precisely, supposevo=> ., ¢n(0)Yn €Fy
and consider the solution v(t) = > _,cn(t), € F, of (LLLhexa) with initial
data vy. For an mteger j =0, we denote
= nlen(t) = Ry(t) +il;(t)
ne”Z
with Rj, I; € R. Then:

(i) For 0 < j < 3 an integer, the real part of K;(t) is constant: R;(t) = R;(0).
Furthermore, zf] € {0,1} and R;(0) = 0, then the imaginary part I;(t) is also
constant.

(ii) The real part of K;(t) is not always constant for j = 4.

Recall that by (5.6), >, %n = £®g. Then, if v = 37, cythy,, for all j > 0
we have om
J oy
FIU_Z( v ) Cn"/}nv

nez
therefore,

(Z n cn> _ mﬂ)j /S7 I (v + 0)®o.

Proof. — We multiply equation (5.8) by n/, for n € Z, and take the sum over n € Z:
(D.1) 0K +AK; =Y 0l Y Apem(20k + )

neZ k,l,m€EZ
k—fl+m=n

=Y e Y I (CLL—CFMLY), Y w@ Y n (O M — CRfMe),

meEZ nezZ mEZ neE”Z

where L, M, L°3 and M°%d are defined in (4.3), (4.4), (5.9) and (5.10) respectively.
We compute by a binomial formula

b= o)

nez keZ

I
TN
~ .
~—

)

|

g

SQ

~

@

"

o)
—~

3
[
\23
o |

g

~—

nGZ £=0 ) ‘
E Qg e ) (o

where Ty := ", ¢" exp(—m2¢?/~?). Note that T, = 0 if £ € 27 + 1. Similarly,

i,
Z njdedm _ Z (;) mjfeT[odd, Todd Z q exp(

nez =0 q€27+1

2

)
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so that the sum

Z Cm Z nj(CLL — CzddLOdd)nfm

meZ nez
has a natural expansion in K, for 0 < ¢ < j with the coeflicients 7}, and Todd,
It remains the sum with the coefﬁcients Cm:

Sk, m—Zexp( )Z(k m—p+m+p) exp( M)

kez pEL ke v

= > en(-ZF) ;) (7)o -4z,

PEZL

- () S e renl )

and we have an analogous expression for the remaining sum. Going back to (D.1),
we write 10, K; + AK; has a sum of K, and K for 0 < g < 7, with explicit coefficients
in T; and Tl}’dd. The explicit formulas for the coefficients for a general j € N have no
relevance, and we give only the formulas for 0 < j < 4:

—~Forj=0o0rj=1:
i0,K; + \K; = \2K; + K),
so that 0;R; = 0 and —0:1; = 2AR;.
— For 5 =2:

i0; Ko + AKy = AN(2Ky + K3) + L(Ko + Ko), L:= I(TOTQ — 27ddT9ddy,
Y

so that the equation on Ko = Ry +ils becomes 0; Ry = 0 and —0:1s = 2ARs + 2L Ry.
— For j =3: o o
10; K35 + A\K3 = AM(2K3 + K3) + 3L(K; + K,),
which implies the result.
— For j =4:
10Ky + ANKy = MN2K, + Ky) + 6L(Ko + Ks) + La(Ko + Ko) + L3 Ko,
where

Lo = \F (ToTy — 275754, Ls= 5 f(

Then, 0;Ry = —L3ly and —0;14 = 2AR4 + 12LRs + (2L2 + Lgv)}%()7 so that Ry is not
preserved when Iy # 0. ]

T3 — 2(T5)?) > 0.
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