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MINIMAL VOLUME ENTROPY AND FIBER GROWTH

by Ivan Babenko & Stéphane Sabourau

Abstract. — This article deals with topological assumptions under which the minimal volume
entropy of a closed manifold M , and more generally of a finite simplicial complex X, van-
ishes or is positive. These topological conditions are expressed in terms of the growth of the
fundamental group of the fibers of maps from a given finite simplicial complex X to lower
dimensional simplicial complexes P . This leads to a complete characterization of spaces with
positive minimal volume entropy for finite simplicial complexes whose fundamental group has
uniform exponential growth with no subgroup of intermediate growth. As pointed out to us
by Vitali Kapovitch, these conditions are related to collapsing with Ricci curvature bounded
below and lead to a refinement of Gromov’s isolation theorem. We also give examples of finite
simplicial complexes with zero simplicial volume and arbitrarily large minimal volume entropy.

Résumé (Entropie volumique minimale et croissance de fibres). — Cet article traite d’hypothèses
topologiques sous lesquelles l’entropie volumique minimale d’une variété fermée M , et plus géné-
ralement d’un complexe simplicial fini X, est nulle ou non nulle. Ces conditions topologiques
sont exprimées en termes de croissance du groupe fondamental des fibres des applications d’un
complexe simplicial fini X vers des complexes simpliciaux P de dimension inférieure. Cela
conduit à une caractérisation complète des espaces ayant une entropie volumique minimale non
nulle pour les complexes simpliciaux finis dont le groupe fondamental possède une croissance
exponentielle uniforme sans sous-groupe de croissance intermédiaire. Comme nous l’a fait re-
marquer Vitali Kapovitch, ces conditions sont liées à l’effondrement avec courbure de Ricci
minorée et permettent d’affiner le théorème d’isolement de Gromov. Nous donnons également
des exemples de complexes simpliciaux finis ayant un volume simplicial nul et une entropie
volumique minimale arbitrairement grande.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
2. Simplicial complexes with zero minimal volume entropy. . . . . . . . . . . . . . . . . . . . . . 488
3. Simplicial complexes with positive minimal volume entropy. . . . . . . . . . . . . . . . . . . 505
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Mathematical subject classification (2020). — 53C23, 57N65.
Keywords. — Minimal volume entropy, collapsing, exponential and subexponential growth, fiber
growth, Urysohn width.

Partially supported by the ANR project Min-Max (ANR-19-CE40-0014).

e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


482 I. Babenko & S. Sabourau

1. Introduction

The notion of volume entropy has attracted a lot of attention since the early works
of Efremovich [26], Švarc [68] and Milnor [57]. This Riemannian invariant describes
the asymptotic geometry of the universal cover of a Riemannian manifold and is
related to the growth of its fundamental group; see [68] and [57]. It is also connected
to the dynamics of the geodesic flow. More specifically, the volume entropy agrees
with the topological entropy of the geodesic flow of a closed non-positively curved
manifold and provides a lower bound for it in general; see [25] and [53]. In this article,
we study the minimal volume entropy of a closed manifold (and more generally of a
finite simplicial complex), a topological invariant introduced by Gromov [33] related
to the simplicial volume. More precisely, we give topological conditions which ensure,
in one case, that the minimal volume entropy of a finite simplicial complex is positive
and, in the other case, that it vanishes. Before stating our results, we need to introduce
some definitions. Unless stated otherwise, all spaces are path-connected.

Definition 1.1. — The volume entropy of a connected finite simplicial complex X

with a piecewise Riemannian metric g is the exponential growth rate of the volume
of balls in the universal cover of X. More precisely, it is defined as

(1.1) ent(X, g) = lim
R→∞

1

R
log(vol B̃(R)),

where B̃(R) is a ball of radius R centered at any point in the universal cover of X. The
limit exists and does not depend on the center of the ball. Observe that the volume
entropy of a finite simplicial complex with a piecewise Riemannian metric is positive
if and only if its fundamental group has exponential growth; see Definition 1.2.

The minimal volume entropy of a connected finite simplicial m-complex X, also
known as asymptotic volume, see [4], is defined as

ω(X) = inf
g

ent(X, g) vol(X, g)1/m,

where g runs over the space of all piecewise Riemannian metrics on X. This topolog-
ical invariant is known to be a homotopic invariant for closed manifolds M , see [4],
and more generally, an invariant depending only on the image of the fundamental
class of M under the classifying map, see [16]. The exact value of the minimal vol-
ume entropy (when nontrivial) of a closed manifold is only known in a few cases;
see [46], [11], [65], [66], [22], [55]. For instance, the minimal volume entropy of a
closed m-manifold M which carries a hyperbolic metric is attained by the hyperbolic
metric and is equal to (m− 1) vol(M,hyp)1/m; see [46] for m = 2 and [11] for m ⩾ 3.

The simplicial volume of a connected closed orientable m-manifold M is defined as

∥M∥∆ = inf
{∑k

s=1 |rs| |
∑k
s=1 rs σs real singular m-cycle representing

the fundamental class [M ] ∈ Hm(M ;R) with k ∈ N∗
}
,
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where rs ∈ R and σs : ∆m → M is a singular m-simplex. The definition extends to
finite simplicial m-complexes X whose fundamental class is well-defined, that is, with
Hm(X;R) ∼= R.

The following inequality of Gromov [33, p. 37] connects the minimal volume entropy
of a connected closed manifold to its simplicial volume (see also [10] for a presentation
of this result). Namely, every connected closed orientable m-manifold M satisfies

(1.2) ω(M)m ⩾ cm ∥M∥∆
for some positive constant cm depending only on m. Thus, every closed manifold with
positive simplicial volume has positive minimal volume entropy. In particular, the
minimal volume entropy of a closed manifold which carries a negatively curved metric
is positive; see [33]. Other topological conditions ensuring the positivity of the minimal
volume entropy have recently been obtained in [64] and extended in [8, §4] or [7];
see [13] for a presentation of numerous examples and cases where these conditions
apply. These conditions are related to the topology of the loop space of the manifold.
In a different direction, the minimal volume entropy provides a lower bound both on
the minimal volume, see [33], and on the systolic volume of a closed manifold, see [63]
and [16].

A natural question to ask in view of (1.2) is whether every closed orientable man-
ifold with zero simplicial volume has zero minimal volume entropy. This is known
to be true in dimension two [46] and in dimension three [62] (see also [2] combined
with Perelman’s resolution of Thurston’s geometrization conjecture), where the cube
of the minimal volume entropy is proportional to the simplicial volume. In dimension
four, the same is known to be true but only for closed orientable geometrizable mani-
folds; see [67]. The techniques developed in this article allow us to provide a negative
answer for finite simplicial complexes; see Proposition 1.9. The question for closed
orientable manifolds remains open despite recent progress made with the introduc-
tion of the volume entropy semi-norm; see [9]. This geometric semi-norm in homology
measures the minimal volume entropy of a real homology class throughout a stabi-
lization process. Namely, given a path-connected topological space X, it is defined for
every a ∈ Hm(X;Z) as

∥a∥E = lim
k→∞

ω(k a)m

k
,

where ω(a) is the infimum of the minimal relative volume entropy of the maps
f :M → X from an orientable connected closed m-pseudomanifold M to X such
that f∗([M ]) = a; see [9] for a more precise definition. The volume entropy semi-norm
shares similar functorial features with the simplicial volume semi-norm. Moreover, the
two semi-norms are equivalent in every dimension. That is,

(1.3) cm ∥a∥∆ ⩽ ∥a∥E ⩽ Cm ∥a∥∆
for some positive constants cm and Cm depending only on m. Thus, a closed manifold
with zero simplicial volume has zero volume entropy semi-norm, but its minimal
volume entropy may be nonzero a priori. See [9] for further details.
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More generally, one may ask for a topological characterization of closed manifolds
or simplicial complexes with positive minimal volume entropy. Such a topological
characterization holds for the systolic volume, a topological invariant sharing similar
properties with the minimal volume entropy; see [4], [5], [6], [16]. Namely, a closed
m-manifold or simplicial m-complex has positive systolic volume if and only if it is
essential (i.e., its classifying map cannot be homotoped into the (m − 1)-skeleton of
the target space); see [34] and [4]. Though this condition is necessary to ensure that
a closed manifold or simplicial complex has positive minimal volume entropy, see [4],
it is not sufficient. Therefore, one should look for stronger or extra assumptions.

In this article, we present topological conditions in this direction. The first one
implies that the minimal volume entropy of a given simplicial complex vanishes and
the second one ensures it is positive. Both these conditions are expressed in terms
of the exponential/subexponential growth of the fundamental group of the fibers of
maps between a given simplicial complex and simplicial complexes of lower dimension.
We will need the following notions.

Definition 1.2. — Let G be a finitely generated group and S be a finite generating
set of G. Denote by BS(t) ⊆ G the ball centered at the identity element of G and of
radius t for the word distance induced by S. The group G has exponential growth if
the exponential growth rate of the number of elements in BS(t) defined as

ent(G,S) = lim
t→∞

1

t
log |BS(t)|

is nonzero for some (and so any) finite generating set S. (By convention, a non-
finitely generated group has exponential growth.) The group G has uniform exponen-
tial growth at least h > 0 if the exponential growth rate of the number of elements
in BS(t) is at least h for every finite generating set S. That is, its algebraic entropy
satisfies

ent(G) = inf
S

ent(G,S) ⩾ h.

We define a group G to be δ-thick if it has exponential growth and every finitely
generated subgroup H ⩽ G with exponential growth has uniform exponential growth
at least h. It is thick if it is δ-thick for some δ > 0. This notion is also referred
to as uniform uniform exponential growth or locally uniform exponential growth in
the literature; see [39] and [52] for instance. The class of thick groups is fairly large,
for instance, generic finitely presented groups are thick; see Section 3.2 for further
examples.

The group G has subexponential growth if it does not have exponential growth.
In this case, the subexponential growth rate of G is defined as

ν(G) = lim sup
t→∞

log log |BS(t)|
log t

.

Note that the subexponential growth rate does not depend on the chosen finite gen-
erating set S.
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The group G has polynomial growth if for some (and so any) finite generating set,
there exists a polynomial P such that

|BS(t)| ⩽ P (t)

for every t ⩾ 0. By a celebrated result of Gromov [32], a finitely generated group has
polynomial growth if and only if it is virtually nilpotent.

The group G has intermediate growth if its growth is subexponential but not poly-
nomial. The first group of intermediate growth was constructed by Grigorchuk [30]
and [31], answering a question raised by Milnor. Still, it is an open problem whether
finitely presented groups of intermediate growth exist.

Examples of finitely generated groups of exponential growth which do not have
uniform exponential growth were first constructed by Wilson [69], answering a ques-
tion of Gromov [36, Rem. 5.12] (already asked in the 1981 edition). Still, it is an open
question whether all finitely presented groups of exponential growth have uniform
exponential growth.

For our topological conditions, we consider connected finite simplicial m-com-
plexes X along with simplicial maps π : X → P onto simplicial complexes P of dimen-
sion at most k < m, where m ⩾ 2. The simplicial complexes considered in this article
are geometric simplicial complexes. Thus, unless specified otherwise, p ∈ P represents
a point of P which is not necessarily a vertex. We denote by i∗ : π1(Fp) → π1(X)

the homomorphism induced by the inclusion map i : Fp ↪→ X of a connected compo-
nent Fp of a fiber π−1(p) of π.

The first condition considered for X is the fiber π1-growth collapsing assumption
(or fiber collapsing assumption for short).

Fiber π1-growth collapsing assumption (FCA). — Let X be a finite connected simpli-
cial m-complex. Suppose there exists a simplicial map π : X → P onto a simplicial
complex P of dimension at most k < m such that for every connected component Fp
of every fiber π−1(p) with p ∈ P , the finitely generated subgroup i∗[π1(Fp)] ⩽ π1(X)

has subexponential growth.
The fiber π1-growth collapsing assumption with polynomial growth rate is defined

similarly with the condition that all the finitely generated subgroup i∗[π1(Fp)] ⩽
π1(X) have polynomial growth.

Likewise, the fiber π1-growth collapsing assumption with subexponential growth rate
at most ν is defined similarly with the condition that the subexponential growth rate
of all the finitely generated subgroup i∗[π1(Fp)] ⩽ π1(X) is at most ν.

The following result shows that if the subexponential growth rate in the fiber
collapsing assumption is small enough then the minimal volume entropy ofX vanishes.

Theorem 1.3. — Let X be a connected finite simplicial m-complex satisfying the fiber
π1-growth collapsing assumption with subexponential growth rate at most ν onto a
simplicial k-complex P . Suppose that ν < (m− k)/m. Then X has zero minimal
volume entropy, that is,

ω(X) = 0.
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In Section 2.8, we give an example of a closed manifold satisfying the assumption of
Theorem 1.3 with a fiber whose image of the fundamental group is a finitely generated
group of intermediate growth (which coincides with the first Grigorchuk group). Recall
that it is an open question whether finitely presented groups of intermediate growth
exist.

Since the subexponential growth rate of a group with polynomial growth is zero,
we immediately derive the following corollary.

Corollary 1.4. — Every connected finite simplicial complex satisfying the fiber
π1-growth collapsing assumption with polynomial growth rate has zero minimal
volume entropy.

As an application of Kapovitch-Wilking’s generalized Margulis lemma (Theo-
rem 2.20), see [44] and also [23], V. Kapovitch pointed out to us that collapsing with
Ricci curvature bounded below implies the fiber π1-growth collapsing assumption;
see Proposition 2.21 for a more general statement. Combined with Corollary 1.4, this
immediately implies the following.

Corollary 1.5. — For every positive integer m, there exists vm > 0 such that every
closed Riemannian m-manifold M with RicM ⩾ −(m− 1) and vol(M) ⩽ vm has zero
minimal volume entropy.

This statement can be seen as a refinement of Gromov’s isolation theorem [33,
§0.5], which asserts that under the same assumption as Corollary 1.5 the manifold M
has zero simplicial volume.

The second condition considered for X is the fiber π1-growth non-collapsing
assumption (or non-collapsing assumption for short).

Fiber π1-growth non-collapsing assumption (FNCA). — Let X be a finite connected
simplicial m-complex. Suppose that for every simplicial map π : X → P onto a simpli-
cial complex P of dimension k < m, there exists a connected component Fp0 of some
fiber π−1(p0) with p0 ∈ P such that the finitely generated subgroup i∗[π1(Fp0)] ⩽
π1(X) has uniform exponential growth at least h for some h = h(X) > 0 depending
only on X.

This topological condition ensures that the minimal volume entropy of X does not
vanish.

Theorem 1.6. — Let m ⩾ 3. Every connected finite simplicial m-complex X with
thick fundamental group satisfying the fiber π1-growth non-collapsing assumption has
positive minimal volume entropy, that is,

ω(X) > 0.

It follows that if the simplicial complex X in Theorem 1.6 has small enough volume,
its minimal volume entropy is bounded away from zero. This result still holds true if
the unit balls of X (instead of the whole simplicial complex X) have small enough
volume; see Remarks 3.17 and 3.24.
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As showed in Section 3.2, closed aspherical manifolds whose fundamental group is
a non-elementary word hyperbolic group satisfy the conditions of Theorem 1.6.

Remark 1.7. — Note that the fibers of the simplicial map π : X → P in the definition
of the fiber collapsing and non-collapsing conditions can always be assumed to be
connected; see Proposition 2.4.

The definitions of the fiber collapsing and fiber non-collapsing assumptions are
mutually exclusive but are not necessarily complementary a priori. However, every
simplicial complex with a thick fundamental group satisfies either the fiber collapsing
assumption or the fiber non-collapsing assumption; see Proposition 3.4. This leads
to a complete characterization of spaces with positive minimal volume entropy for
finite simplicial complexes whose fundamental group is thick with no subgroups of
intermediate growth.

Corollary 1.8. — Let X be connected finite simplicial m-complex with m ⩾ 3 whose
fundamental group is thick with no subgroups of intermediate growth. Then, either X
satisfies the fiber collapsing assumption, in which case its minimal volume entropy is
zero, or X satisfies the fiber non-collapsing assumption, in which case its minimal
volume entropy is positive.

We also give alternative formulations of both the fiber collapsing and non-collapsing
assumptions in terms of open coverings of the simplicial complex X, namely, the
covering collapsing assumption (CCA) and the the covering non-collapsing assumption
(CNCA); see Proposition 2.2 and Proposition 3.2. This yields a result similar to
Theorem 1.6 which also applies to simplicial complexes with non-thick fundamental
group; see Theorem 3.16.

The techniques developed in this article allow us to investigate the relationship
between the minimal volume entropy and the simplicial volume of simplicial complexes
whose fundamental class is well-defined. In view of the lower and upper bounds (1.3),
one can ask whether there is a complementary inequality to the bound (1.2). Namely,
does there exist a positive constant Cm such that

ω(M)m ⩽ Cm ∥M∥∆
for every connected closed orientable m-manifold M? The question also makes sense
for every connected finite simplicial m-complex X whose fundamental class is well-
defined (to which the notion of simplicial volume extends). Our next result provides
a negative answer in this case.

Proposition 1.9. — There exists a sequence of connected finite simplicial com-
plexes Xn with a well-defined fundamental class such that the simplicial volume
of Xn vanishes for all n ∈ N and the minimal volume entropy of Xn tends to infinity.

We emphasize that both Theorem 1.3 and Theorem 1.6 hold for the class of finite
simplicial complexes (including compact CAT(0) simplicial or cubical complexes) and
not solely for closed manifolds. This contrasts with all previous works, which focus

J.É.P. — M., 2025, tome 12



488 I. Babenko & S. Sabourau

on closed manifolds. In particular, the topological conditions ensuring the positivity
of the minimal volume entropy, see Theorem 1.6, apply to simplicial complexes for
which the simplicial volume is zero and the inequality (1.2) does not readily extend.
This is exemplified by Proposition 1.9.

Since a first version of this work appeared as the first part of our preprint [8]
(before we extended it and decided to split it), the results established in this article
have already found applications in [14] and [49].

Acknowledgements. — The second author would like to thank the Fields Institute and
the Department of Mathematics at the University of Toronto for their hospitality while
part of this work was completed. We express our gratitude to Rostislav Grigorchuk
for multiple stimulating discussions and to Vitali Kapovitch for pointing out to us a
connection to collapsing with Ricci curvature bounded from below. Finally, we thank
Corey Bregman and Matt Clay who pointed out a mistake in a previous version of
this article and drew our attention on their recent work [14].

2. Simplicial complexes with zero minimal volume entropy

In this section, we first introduce the covering collapsing assumption and show that
it is equivalent to the fiber growth collapsing assumption. Then, we show the central
result of this section, namely, the minimal volume entropy of a finite simplicial complex
satisfying the fiber growth collapsing assumption with small subexponential growth
rate vanishes. Several examples of manifolds satisfying the fiber growth collapsing
assumption are presented throughout this section. We conclude this section with an
extension of Gromov’s isolation theorem.

Let us give an outline of the proof of the central theorem of this section, namely
Theorem 2.10, as a motivation for the upcoming constructions and technical lem-
mas. Given a simplicial m-complex X admitting a simplicial map π : X → P onto
a simplicial k-complex P with k < m, we construct a family of piecewise flat met-
rics gt on X which collapses onto P by shrinking the fibers of π by a factor t so that
vol(X, gt) = O(tm−k). To estimate the volume entropy of (X, gt), we show that the
paths of X joining two vertices can be deformed into the 1-skeleton of X without
increasing their gt-length too much. It follows that the volume entropy of (X, gt) can
be approximated by the exponential growth rate of the number of homotopy classes of
edge-loops of length at most T . We finally show that the volume entropy of X for the
metric gt collapsing X to P satisfies ent(X, gt) = O( 1

tν ), where the subexponential
growth rate of all the subgroups of π1(X) generated by the loops in the fibers of π
is at most ν. Combining the volume and volume entropy estimates thus-obtained,
we deduce that X has zero minimal volume entropy.

2.1. Covering collapsing assumption. — We begin with the following definition.

Definition 2.1. — A path-connected open subset U of a path-connected topological
space X has subexponential π1-growth (resp. polynomial π1-growth) in X if the sub-
group ΓU := i∗[π1(U)] of π1(X) has subexponential growth (resp. polynomial growth),
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where i : U ↪→ X is the inclusion map. In this case, the subexponential π1-growth
rate of U in X is defined as the subexponential growth rate of ΓU .

Covering collapsing assumption (CCA). — Let X be a finite connected simplicial
m-complex. Suppose there exists a covering of X of multiplicity at most m by open
subsets of subexponential π1-growth in X (with subexponential growth rate at most ν
or polynomial growth rate).

The following classical result implies that the notions of collapsing in terms of open
coverings (CCA) or of fiber growth (FCA) are equivalent.

Proposition 2.2. — A connected finite simplicial m-complex X admits a covering of
multiplicity k + 1 by open subsets of subexponential π1-growth in X (with subexpo-
nential growth rate at most ν or polynomial growth rate) if and only if there exists a
simplicial map π : X → P onto a simplicial k-complex such that for every connected
component Fp of every fiber π−1(p), the subgroup i∗[π1(Fp)] ⩽ π1(X) has subexponen-
tial growth (with subexponential growth rate at most ν or polynomial growth rate).

Proof. — Suppose that X satisfies the fiber collapsing assumption. Then there exists
a simplicial map π : X → P onto a simplicial k-complex P such that for every
connected component Fp of every fiber π−1(p), where p is a vertex of P , the subgroup
i∗[π1(Fp)] of π1(X) has subexponential growth (resp. polynomial growth). Since P
is a finite simplicial complex of dimension k, the open covering formed by the open
stars st(p) ⊆ P of the vertices p of P has multiplicity k+1. The connected components
of the preimages π−1(st(p)) ⊆ X of these open stars form an open covering of X with
the same multiplicity k + 1 as the previous covering of P . Furthermore, the open
subsets of this open covering of X strongly deformation retract onto the connected
components Fp of the fibers π−1(p). In particular, they have subexponential π1-growth
in X with the same subexponential growth rate as the subgroups induced by the fibers
(resp. polynomial growth). This proves the first implication.

For the converse implication, let {Ui}i=0,...,s be a covering of X of multiplicity k+1

by open subsets of subexponential π1-growth (resp. polynomial π1-growth) in X. Take
a partition of unity {ϕi} of X, where each function ϕi : X → [0, 1] has its support
in Ui. Consider the map Φ : X → ∆s defined by

Φ(x) = (ϕ0(x), . . . , ϕs(x))

in the barycentric coordinates of ∆s. The nerve P of the covering {Ui} is a simplicial
complex with one vertex vi for each open set Ui, where vi0 , . . . , vin span an n-simplex
of P if and only if the intersection

⋂n
j=1 Uij is nonempty. By construction, the dimen-

sion of the nerve P is one less than the multiplicity of the covering {Ui}. That is,
dimP = k. We identify in a natural way the vertices {vi} of P with the vertices
of ∆s. With this identification, the nerve P of X lies in ∆s. Furthermore, the image
of Φ lies in P . By [41, §2.C], subdividing X and P if necessary, we can approximate
Φ : X → P by a simplicial map π : X → P close to Φ for the C0-topology, whose nor-
malized barycentric coordinates πi : X → [0, 1] have their support in Ui. Thus, every
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490 I. Babenko & S. Sabourau

fiber π−1(p) lies in one of the open subsets Ui. Therefore, for every connected compo-
nent Fp of π−1(p), the subgroup i∗[π1(Fp)] lies in some subgroup i∗[π1(Ui)]. Since the
open subsets Ui have subexponential π1-growth (resp. polynomial π1-growth) in X,
the subgroups i∗[π1(Fp)] have subexponential growth with a subexponential growth
rate bounded by the one of the subsets of the open covering (resp. polynomial growth)
and the simplicial complex X satisfies the fiber collapsing assumption as required. □

An illustration of the characterization of the fiber collapsing assumption in terms
of open coverings is given by the following example.

Example 2.3. — For i = 1, 2, let Mi be a connected closed manifold of dimen-
sion m ⩾ 3 with fundamental group π1(Mi) of subexponential growth rate at most ν <
(m− 1)/m. Let N be a connected closed n-manifold embedded both in M1 and M2

with n ⩽ m − 3. Suppose that the embedding N ⊆ Mi induces a π1-monomorphism
and that its normal fiber bundle Ni(N) ⊆ TMi is trivial for i = 1, 2. Define the
m-manifold

X = (M1 ∖ U1(N)) ∪
N×Sm−n−1

(M2 ∖ U2(U)),

where Ui(N) is a small tubular neighborhood of N in Mi. By van Kampen’s theorem,
π1(Mi∖Ui(N)) is isomorphic to π1(Mi), and thus has subexponential growth rate at
most ν. Take a small tubular neighborhood Ui of Mi∖Ui(N) in X for i = 1, 2. Since Ui
strongly deformation retracts onto Mi ∖ Ui(N), its fundamental group π1(Ui) is iso-
morphic to π1(Mi ∖ Ui(N)). This yields a covering of X of multiplicity two by open
subsets U1 and U2 with subexponential π1-growth at most ν inX. According to Propo-
sition 2.2, the closed m-manifold X satisfies the fiber collapsing assumption. Note
however that the fundamental group of X has exponential growth in general. This
construction provides numerous examples of closed essential manifolds with a funda-
mental group of exponential growth and zero minimal volume entropy. For instance,
when N is reduced to a singleton, the manifold X is the connected sum M1#M2

of M1 and M2. This special case can also be recovered from [9, Th. 2.8].

2.2. Connected and non-connected fibers. — The following result shows that we
can assume that the fibers of the simplicial map π : X → P in the definition of the
fiber collapsing and non-collapsing conditions are connected.

Proposition 2.4. — Let π : X → P be a simplicial map between two finite simplicial
complexes. Denote by k the dimension of P . Then there exists a surjective simplicial
map π : X → P to a finite simplicial complex P of dimension at most k such that the
fibers of π : X → P agree with the connected components of the fibers of π : X → P .

Proof. — Without loss of generality, we can assume that the simplicial map π:X→P

is onto. Define P = X/∼ as the quotient space of X, where x ∼ y if x and y lie in
the same connected component of a fiber of π : X → P . Since the map π : X → P is
simplicial, the quotient space P is a simplicial complex of the same dimension as P .
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By construction, the map π : X → P factors out through a simplicial map π : X → P

whose fibers agree with the connected components of the fibers of π : X → P . □

2.3. Construction of a family of piecewise flat metrics. — Let π : X → P be
simplicial map from a connected finite simplicial m-complex X to a simplicial k-com-
plex P with k < m. We will assume that the map π : X → P is onto and that its
fibers Fp are connected; see Proposition 2.4.

The goal of this section is to construct a family of piecewise flat metrics gt on X

which collapses onto P (i.e., for which the map π : X → P is 1-Lipschitz and the
length of its fibers goes to zero). The construction relies on some simplicial embeddings
of X and P into an Euclidean space E of large dimension.

Let ∆s = ∆s(p0, . . . , ps) be the abstract s-simplex with the same vertices p0, . . . , ps
as P . Fix an (s + 1)-dimensional Euclidean space H with an orthonormal basis
e0, . . . , es. Identify the abstract s-simplex ∆s with the regular s-simplex of H with
vertices 1√

2
e0, . . . ,

1√
2
es. Define the subcomplex

Ri = π−1(pi) ⊆ X.

As previously, let ∆(Ri) be the abstract simplex with the same vertices as Ri. Denote
by mi the dimension of ∆(Ri). Fix an (mi+1)-dimensional Euclidean space Hi with
an orthonormal basis ei0, . . . , eimi

. Identify the abstract mi-simplex ∆(Ri) with the
regular mi-simplex of Hi with vertices 1√

2
ei0, . . . ,

1√
2
eimi

.
Consider the orthogonal sum

(2.1) E = H ⊕H0 ⊕ · · · ⊕Hs.

Denote by gE the scalar product on E. There is a natural piecewise affine embedding
χ : X ↪→ E taking every vertex v ∈ X, identified with some element 1√

2
eij with

0 ⩽ i ⩽ s and 0 ⩽ j ⩽ mi, to

χ(v) = 1√
2
ei +

1√
2
eij .

(Here, a piecewise affine embedding means an embedding whose restriction to each
simplex is an affine map.) Note that the distance between the images of any pair of
vertices of X is bounded by

√
2. By construction, the whole space Ri is sent under

χ : X ↪→ E into the subspace H ′
i =

1√
2
ei + Hi orthogonal to H, parallel to Hi and

passing through 1√
2
ei. By our choices of identification, the composition of χ : X ↪→ E

with the orthogonal projection pH : E → H onto H coincides with the simplicial map
π : X → P , that is,

π = pH ◦ χ.
The piecewise flat metric on X induced by the piecewise affine embedding χ:X ↪→E

can be deformed as follows. Let ht : E → E be the endomorphism of E preserving
each factor of the decomposition (2.1) whose restriction to H is the identity map and
restriction to each Hi is the homothety with coefficient t. For every t ∈ (0, 1], the map
χt : X ↪→ E defined as

χt = ht ◦ χ
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is a piecewise affine embedding. Note that ht preserves the subspaces H ′
i. By con-

struction, we still have
π = pH ◦ χt.

Endow X with the piecewise flat metric gt induced by the piecewise affine embed-
ding χt : X ↪→ E defined as

(2.2) gt = χ∗
t (gE).

Endow also P with the natural piecewise flat metric gP where all its simplices are
isometric to the standard Euclidean simplex induced by the piecewise affine embed-
ding P ⊆ H ⊆ E. The projection pH : E → H is 1-Lipschitz both for the metrics gE
and h∗t (gE) on E, where H is endowed with the restriction of gt to H. It follows that
π = pH ◦ ht ◦ χ : X → P is 1-Lipschitz. Observe also that the gt-length of every
edge lying in some fiber π−1(pi) ⊆ X over a vertex pi ∈ P is equal to t. Since P is a
k-dimensional simplicial complex, we conclude that

(2.3) vol(X, gt) = O(tm−k)

as t goes to zero. Note also that for every simplex ∆ of X, we have

(2.4) diam(∆, gt) ⩽
√
2.

2.4. Construction of Lipschitz retractions around each fiber. — Using the same
notations as in the previous section, let π : X → P be simplicial map from a connected
finite simplicial m-complex X to a simplicial k-complex P with k < m. We will assume
that the map π : X → P is onto and that its fibers Fp are connected. We construct a
Lipschitz retraction from a neighborhood of each fiber of π : X → P above a vertex
of P onto the fiber itself. This is an important technical result which will be used in
Section 2.5 to deform paths of X into the 1-skeleton of X without increasing their
gt-length too much (uniformly in t).

More precisely, we have:

Lemma 2.5. — There exist some constants τm⩾1/2 and εm, σm∈(0, 1) with εm⩽τm
depending only on m such that for every v ∈ P , there exists a closed neighbor-
hood Xv ⊆ X of π−1(v) such that the following properties hold for every t ∈ (0, 1].

(1) The subset Xv ⊆ X lies in the (open) star of π−1(v) and contains all the points
of X at gt-distance at most τm from π−1(v).

(2) For every point z ∈ ∂Xv, denote by ∆X the smallest simplex of X containing z.
Pick a vertex z− ∈ ∆X lying in π−1(v) and a vertex z+ ∈ ∆X not lying in π−1(v) at
minimal gt-distance from z. Then,

(2.5) dgt(z, z+) ⩽ dgt(z, z−)− εm

and

(2.6) dgt(z, z+) + σm ⩽ τm.
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Furthermore, there exists κm-Lipschitz retraction

ϱt : Xv −→ π−1(v),

where κm is a constant depending only on m.

Proof. — Say v = p0. Let ∆q = ∆q
P be a q-simplex of P containing v. Recall that ∆q

lies in H; see Section 2.3. Denote by ∆q−1
v the (q − 1)-face of ∆q opposite to v.

Consider a p-simplex ∆p
X of X mapped onto ∆q

P under π : X → P . The intersec-
tion π−1(v) ∩∆p

X is a simplex ofX, whose dimension is denoted by r. By construction,
the map π : X → P sends the r-simplex δr0 := π−1(v) ∩∆p

X of ∆p
X to v. Construct a

retraction
ϱt : ∆

p
X ∖ π−1(∆q−1

v ) −→ δr0

onto δr0 as follows. First, embed ∆p
X into the Euclidean space E through χt : X ↪→ E.

Under this identification, the image ht(δr0) of δr0 lies in the subspace Hv
0 orthogonal

to H, parallel to H0 and passing through v. Then, take the orthogonal projection
toH⊕H0. Note that the image of ∆p

X under the composition of these maps agrees with
the convex hull Conv(ht(δr0)∪∆q−1

v ). Thus, every point x ∈ ∆p
X ∖ π−1(∆q−1

v ) is sent
to a point x ∈ Conv(ht(δ

r
0)∪∆q−1

v ). Then, for every x ∈ Conv(ht(δ
r
0)∪∆q−1

v )∖∆q−1
v

not lying in ht(δr0), take the orthogonal projection x′ ∈ ∆q of x to ∆q, send x′ to the
point x′′ ∈ ∆q−1

v where the ray arising from v and passing through x′ meets ∆q−1
v , and

map x to the point y′ ∈ ht(δ
r
0) where the ray arising from x′′ and passing through x

intersects ht(δr0). The map taking x to y′ extends by continuity into the identity map
on ht(δr0). Finally, take the image y ∈ δr0 of y′ under the inverse map χ−1

t : ht(δ
r
0) → δr0.

The resulting map ϱt : ∆
p
X ∖ π−1(∆q−1

v ) → δr0 sending x to y is a retraction onto δr0.
The map ϱt : ∆p

X ∖ π−1(∆q−1
v ) → δr0 is not Lipschitz as the Lipschitz constant

at a point goes to infinity when the point moves to ∆p
X ∩ π−1(∆q−1

v ). For the map
to be Lipschitz, we need to restrict it to a domain away from π−1(∆q−1

v ) ∩ ∆p
X .

In order to use the map as a building block to construct further maps on simplicial
complexes, we also need to take domains that are coherent in terms of face inclusion.
Extend ∆q into a regular Euclidean m-simplex ∆m ⊆ H, where ∆q is a face of ∆m.
The perpendicular bisector hyperplane of the segment joining the barycenters of ∆m

and ∆m
v intersects ∆q along a subspace H. Let τq,m = d(v,H) be the distance from v

to H in ∆q. Observe that the sequence τq,m is decreasing in q. In particular,

τq,m ⩾ τm := τm,m.

Note also that τm ⩾ 1/2. See Figure 1 below.
Consider the domain ∆q(v) of ∆q containing v delimited by H. The restriction

ϱt : π
−1(∆q(v)) ∩∆p

X −→ δr0

of ϱt is κm-Lipschitz for some constant κm ⩾ 1 depending only on m. Note that this
construction is coherent. That is, if ∆P and ∆′

P are two simplices of P containing v,
and ∆X and ∆′

X are two simplices of X mapped onto ∆P and ∆′
P under π : X → P ,

then the retractions ϱt defined on π−1(∆P (v)) ∩∆X and π−1(∆′
P (v)) ∩∆′

X coincide
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τq,m

∆qH

∆m

H′

v

Figure 1. Construction of H.

with the intersection of their domains of definition. This will allow us to put together
the retractions ϱt.

Given a point z of ∆p
X lying in π−1(H), let z− be a vertex of ∆p

X lying in δr0
and z+ be a vertex of ∆p

X not lying in δr0 at minimal gt-distance from z. Recall
that ∆p

X collapses onto ∆q
P in E as t goes to zero. By our choice of H, there exist

εm, σm ∈ (0, 1) depending only on m such that

dgt(z, z+) ⩽ dgt(z, z−)− εm

and
dgt(z, z+) + σm ⩽ τm.

We can further assume that εm ⩽ τm.
Now, define

(2.7) Pv =
⋃

∆q
P (v) ⊆ P

as the union over all the closed domains ∆q
P (v) ⊆ ∆q

P , where ∆q
P is a simplex of P of

any dimension q containing v. Denote also

(2.8) Xv = π−1(Pv) ⊆ X.

By construction, the subset Xv ⊆ X is a closed neighborhood of π−1(v), lying in the
(open) star of π−1(v) and containing all the points of X at gt-distance at most τm
from π−1(v).

Putting together the retractions ϱt : π−1(∆q(v))∩∆p
X → δr0 where ∆p

X is a simplex
of Xv projecting to a simplex ∆q

P of P containing v and δr0 = π−1(v)∩∆p
X , we obtain

a κm-Lipschitz retraction of Xv onto π−1(v), still denoted by

ϱt : Xv −→ π−1(v). □

2.5. Deforming arcs into edge-arcs. — Considering the family of piecewise flat met-
rics gt on X defined in (2.2), we show the following result about the deformation of
arcs of X into its 1-skeleton. This result will allow us to apply combinatorial tech-
niques to count homotopy classes in Section 2.6.
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Proposition 2.6. — Let X be a connected finite simplicial m-complex endowed with
the piecewise flat metric gt defined in (2.2). Then, every arc γ of X joining two
vertices can be deformed into an arc γe lying in the 1-skeleton of X (i.e., γe is an
edge-arc), while keeping its endpoints fixed, with

(2.9) lengthgt(γe) ⩽ Cm lengthgt(γ)

for every t ∈ (0, 1], where Cm is a positive constant depending only on m.

Proof. — Let us start with a simple observation. Every arc of a regular Euclidean sim-
plex ∆m with endpoints on ∂∆m can be deformed into an arc of ∂∆m with the same
endpoints at the cost of multiplying its length by a factor bounded by a constant λm
depending only on m. Applying this observation successively on the simplices of the
skeleta of X, we deduce by induction that the inequality (2.9) holds with Cm = λ′m
for t = 1, where λ′m =

∏m
i=2 λi, and, more generally, when every simplex of X is

isometric to a regular Euclidean simplex of the same size.
Endow P with its natural piecewise flat metric where all simplices are isometric

to the standard Euclidean simplex of the same dimension. Denote by v the image
of the starting point of γ by π : X → P . Note that v is a vertex of P . Consider
the domains Pv and Xv introduced in (2.7) and (2.8). For every q-simplex ∆q ⊆ Pv
containing v, the distance between v and its opposite side in ∆q(v) is at least τm.
Since the map π : Xv → Pv is 1-Lipschitz, we deduce that if γ leaves Xv then its
gt-length is greater than τm.

Let us argue by induction on the integer n ⩾ 0 such that

nεm ⩽ lengthgt(γ) < (n+ 1)εm,

where εm is given by Lemma 2.5. The value of Cm in (2.9) can be taken to be equal
to Cm = 12λ′mκm/σm, where κm and σm are given by Lemma 2.5, and λ′m is defined
above.

Suppose that γ lies in Xv. (This is the case for instance if lengthgt(γ) < τm and in
particular if n = 0.) The image γ′ of γ under the κm-Lipschitz retraction ϱt : Xv →
π−1(v) satisfies

lengthgt(γ
′) ⩽ κm lengthgt(γ).

By construction, the fiber π−1(v) is a simplicial complex of dimension at most m
composed of regular Euclidean simplices of size t. As observed at the beginning of the
proof, the arc γ′ lying in π−1(v) can be deformed into an arc γe lying in the 1-skeleton
of π−1(v), and so of X, with the same endpoints multiplying its length by a factor
bounded by at most λ′m. This concludes the proof of the proposition in this case with
Cm = κmλ

′
m.

Suppose that γ leavesXv. Denote by z the first point where γ leavesXv. The point z
splits γ into two subarcs, γ′ and γ′′, with γ′ ⊆ Xv. Let ∆X be the smallest simplex
of X containing v and z. Pick a vertex z− of ∆X lying in π−1(v) and a vertex z+ of ∆X

not lying in π−1(v) at minimal gt-distance from z. By Lemma 2.5, (2.5), we have

(2.10) dgt(z, z+) ⩽ dgt(z, z−)− εm ⩽ lengthgt(γ
′)− εm.
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Since z and z± lie in the same simplex ∆X , the arc γ is homotopic to α′∪[z−, z+]∪α′′,
where the two arcs

α′ = γ′ ∪ [z, z−] and α′′ = [z+, z] ∪ γ′′

start and end at vertices of X. As previously observed, we have lengthgt(γ
′) ⩾ τm.

Recall also that diamgt(∆X) ⩽
√
2; see (2.4). Thus,

lengthgt(α
′) ⩽ lengthgt(γ

′) +
√
2 ⩽

(
1 +

√
2/τm

)
lengthgt(γ

′)

for t ∈ (0, 1]. The arc α′ lies in Xv and is sent to an arc of π−1(v) with the same
endpoints under the κm-Lipschitz retraction ϱt : Xv → π−1(v). In turn, this arc can
be deformed into an arc α′

e lying in the 1-skeleton of X with the same endpoints with

(2.11)
lengthgt(α

′
e) ⩽ λ′mκm lengthgt(α

′)

⩽ λ′mκm
(
1 +

√
2/τm

)
lengthgt(γ

′).

Now, by (2.10), we have

lengthgt(α
′′) ⩽ lengthgt(γ

′′) + dgt(z, z+)

⩽ lengthgt(γ)− εm.

By induction, the arc α′′ can be deformed into an edge-arc α′′
e with the same endpoints

with

(2.12)
lengthgt(α

′′
e ) ⩽ Cm lengthgt(α

′′)

⩽ Cm lengthgt(γ
′′) + Cm dgt(z, z+).

As a result of (2.11) and (2.12), the arc γ can be deformed into the edge-arc γe =

α′
e ∪ [z−, z+] ∪ α′′

e , where

lengthgt(γe) ⩽ λ′mκm
(
1+

√
2/τm

)
lengthgt(γ

′)+
√
2+Cm lengthgt(γ

′′)+Cm dgt(z, z+).

In order to have lengthgt(γe) ⩽ Cm lengthgt(γ), it is enough to have

Am lengthgt(γ
′) +

√
2 + Cm dgt(z, z+) ⩽ Cm lengthgt(γ

′),

where Am = λ′mκm
(
1 +

√
2/τm

)
⩽ 4λ′mκm (recall that τm ⩾ 1/2). That is,

Cm d(z, z+) +
√
2

Cm −Am
⩽ lengthgt(γ

′).

Recall that dgt(z, z+) + σm ⩽ τm; see Lemma 2.5, (2.6). Thus, for Cm large enough
(e.g. Cm ⩾ 12λ′mκm/σm ⩾ (1 +

√
2 + σm)Am/σm), we have

Cm dgt(z, z+) +
√
2

Cm −Am
⩽ dgt(z, z+) + σm ⩽ τm ⩽ lengthgt(γ

′),

as desired. □
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2.6. Edge-loop entropy. — In this section, we introduce the edge-loop entropy –
a discrete substitute for the volume entropy – and show that the growth of the edge-
loop entropy of (X, gt) is controlled as t goes to zero.

Definition 2.7. — Let X be a connected finite simplicial complex with a piecewise
Riemannian metric g. The volume entropy of (X, g), see (1.1), can also be defined as
the exponential growth rate of the number of homotopy classes induced by loops of
length at most T . Namely,

(2.13) ent(X, g) = lim
T→∞

1

T
logN(X, g;T ),

where
N(X, g;T ) = card{[γ] ∈ π1(X, ⋆) | γ loop of g-length at most T}.

See [63, Lem. 2.3] for instance, for a proof of this classical result.
It will be convenient to consider a similar notion for edge-loops. Define the edge-

loop entropy of (X, g) as

ente(X, g) = lim
T→∞

1

T
logNe(X, g;T ),

where

Ne(X, g;T ) = card{[γ] ∈ π1(X, ⋆) | γ edge-loop of g-length at most T}.

Clearly, one has ente(X, g) ⩽ ent(X, g). Let A be a subcomplex of X with basepoint a.
We also define

N(A ⊆ (X, g);T ) = card
{
[γ] ∈ π1(X, a) | γ ⊆ A and lengthg(γ) ⩽ T

}
as the number of homotopy classes (in X) of loops of A based at a of g-length at
most T .

The edge-loop entropy of (X, gt) can be bounded as follows.

Proposition 2.8. — Suppose that the subexponential growth rate of all the subgroups
i∗[π1(Fp)] of π1(X) is at most ν, where Fp = π−1(p) is a (connected) fiber of π:X→P

and i : Fp ↪→ X is the inclusion map. Then
(2.14) ente(X, gt) = O (1/tν)

as t goes to zero.

Proof. — Let us introduce a couple of definitions. An edge of X is said to be long if
it is sent to an edge of P by the simplicial map π : X → P . It is said to be short
otherwise (in which case, it is sent to a vertex of P ). By construction, every long edge
of X is of length

√
1 + t2 and every short edge of X is of length t. Denote also by ne

the number of edges of X.
Observe that gt = t2g1 on every (connected) fiber Fp = π−1(p) of π : X → P .

Hence,
diam(Fp, gt) = t · diam(Fp, g1) −−−→

t→0
0.

Thus, by taking t small enough, we can assume that diam(Fp, gt) < 1/2 for every
vertex p ∈ P .
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Let us estimate the number of homotopy classes of edge-loops in X of gt-length at
most T . Every edge-loop γ in X of gt-length at most T decomposes as
(2.15) γ = α1 ∪ β1 ∪ α2 ∪ · · · ∪ βN

where αi is a long edge of X and βi is a possibly constant edge-path lying in a
(connected) fiber Fi = π−1(pi) of π : X → P over a vertex pi ∈ P , which joins the
terminal endpoint of αi to the initial endpoint of αi+1.

Fix a basepoint ai ∈ Fi. Denote by ℓi the gt-length of βi. Let βi be the loop
of Fi based at ai obtained by connecting the endpoints xi and yi of βi to the base-
point ai along two paths of Fi of gt-length at most diam(Fi, gt) < 1/2. The number
Ne
xi,yi(Fi ⊆ (X, gt); ℓi) of homotopy classes (relative to the endpoints) in X of edge-

paths in Fi with endpoints xi and yi, and gt-length at most ℓi is bounded by the
number of homotopy classes in X of loops in Fi based at ai of gt-length at most
ℓi + 2diam(Fi, gt). Thus,

(2.16)
Ne
xi,yi(Fi ⊆ (X, gt); ℓi) ⩽ N(Fi ⊆ (X, gt); ℓi + 2diam(Fi, gt))

⩽ N
(
Fi ⊆ (X, g1); (ℓi + 1)/t

)
,

since gt = t2g1 on the fiber Fi, where we refer to Definition 2.7 for the definition of N.
By assumption, the subgroups i∗[π1(Fp)] ⩽ π1(X) have a subexponential growth

at most ν and the same holds for N(Fp ⊆ (X, g1);T ); see [54]. More specifically, there
exists a function Q(T ) = A exp(T ν) with A > 0 such that
(2.17) N(Fp ⊆ (X, g1);T ) ⩽ Q(T )

for every vertex p ∈ P and every T ⩾ 0.
It follows from (2.16) and (2.17) that the number of homotopy classes in X induced

by the different possibilities for the edge-path βi of length ℓi is at most
Ne
xi,yi(Fi ⊆ (X, gt); ℓi) ⩽ Q

(
(ℓi + 1)/t

)
,

where ℓi is the gt-length of βi.
Now, there are at most ne possible choices for each long edge αi. (Recall that ne is

the number of edges of X.) Hence, the number of homotopy classes of edge-loops in X
of gt-length at most T which decomposes as in (2.15) with βi of gt-length ℓi ⩽ θi,
where θi = ⌈ℓi⌉, is bounded by

nNe

N∏
i=1

Q
(
(θi + 1)/t

)
.

Since every edge αi is of gt-length at least 1, we have N ⩽ T and
∑N
i=1 ℓi ⩽ T −N .

Since θi = ⌈ℓi⌉, we also have
∑N
i=1 θi ⩽ T . Therefore, the number Ne(X, gt;T ) of

homotopy classes of edge-loops in X of gt-length at most T is bounded by

(2.18) Ne(X, gt;T ) ⩽
∑

N⩽⌊T⌋

∑
(θi)N⩽⌊T⌋

nNe

N∏
i=1

Q
(
(θi + 1)/t

)
,

where the second sum is over all N -tuples (θ1, . . . , θN ) of positive integers such that∑N
i=1 θi ⩽ ⌊T ⌋.
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The double sum (2.18) has at most T 2T terms (the first sum has ⌊T ⌋ terms and the
second sum has 2⌊T⌋−1 terms given by the distinct decomposition of the integer ⌊T ⌋).
Consider the largest term of (2.18) attained by some N ⩽ T and (θi)N ⩽ T . We have

(2.19)
Ne(X, gt;T ) ⩽ T 2TnTe

N∏
i=1

Q
(
(θi + 1)/t

)
⩽ T 2TnTe A

T exp
(
(1/tν)

∑N
i=1(θi + 1)ν

)
.

Applying Hölder’s inequality to the sum
∑N
i=1(θi + 1)ν with p = 1/(1− ν) and q =

1/ν, we obtain
N∑
i=1

(θi + 1)ν ⩽

( N∑
i=1

1p
)1/p

·
( N∑
i=1

(θi + 1)

)1/q

⩽ T 1−ν · 2νT ν ⩽ 2T

since νq = 1, N ⩽ T and
∑N
i=1(θi + 1) ⩽

∑N
i=1 θi +N ⩽ 2T . Hence,

Ne(X, gt;T ) ⩽ T 2T nTe A
T exp(2T/tν).

This implies that
ente(X, gt) ⩽ log(2neA) +

2

tν
. □

Remark 2.9. — If X satisfies the fiber collapsing assumption with polynomial growth
rate, we can derive a stronger bound than (2.14). Namely, the edge-loop entropy
of (X, gt) has a logarithmic growth when t goes to zero, that is,

ente(X, gt) = O
(
log(1/t)

)
.

The argument is similar to the proof of Proposition 2.8 until the inequality (2.19),
except that Q should be replaced by a polynomial of the form Q(T ) = a(T + 1)d

with a > 0. Now, using the expression of Q, the concavity of the nondecreasing
function log(1 + ·), and the inequalities N ⩽ T and

∑N
i=1(θi + 1) ⩽ 2T , we obtain

(2.20)
log

( N∏
i=1

Q
(
(θi + 1)/t

))
⩽ T log(a) + d

N∑
i=1

log
(
1 + (θi + 1)/t

)
⩽ T log(a) + dN log

(
1 + 2T/Nt

)
.

Introduce ft(x) = x log(1 + 1/xt) with x ∈ [0, 1]. For t ⩽ 1/(e− 1), we have

f ′t(x) = log(1 + 1/xt)− 1/(xt+ 1) ⩾ log(1 + 1/t)− 1 ⩾ 0.

Thus, for x = N/2T and t small enough, we deduce that

(2.21) 1

2
· N
T

log(1 + 2T/Nt) = ft(N/2T ) ⩽ ft(1) = log(1 + 1/t).

Taking the log in (2.19), dividing by T and letting T go to infinity, we obtain
from (2.20) and (2.21) that

ente(X, gt) = O
(
log(1/t)

)
as t goes to zero.
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2.7. Fiber collapsing assumption and zero minimal volume entropy. — We show
the following result (stated in the introduction as Theorem 1.3).

Theorem 2.10. — Let X be a connected finite simplicial m-complex. Suppose there
exists a simplicial map π : X → P to a simplicial k-complex P with k < m such
that for every connected component Fp of every fiber π−1(p) with p ∈ P , the finitely
generated subgroup i∗[π1(Fp)] of π1(X) has subexponential growth rate at most ν.
Suppose that ν < (m− k)/m. Then X has zero minimal volume entropy.

Proof. — By Proposition 2.4, we can assume that the simplicial map π : X → P

in Theorem 2.10 is onto and that its fibers Fp are connected. Consider the family
of piecewise flat metrics gt on X defined in Section 2.3. Recall that ente(X, gt) ⩽
ent(X, gt); see Definition 2.7. By Proposition 2.6, a reverse inequality holds true.
Namely, there exists Cm > 0 such that

ent(X, gt) ⩽ Cm ente(X, gt)

for every t ∈ (0, 1]. By (2.3) and (2.14), we deduce that

ent(X, gt) vol(X, gt)
1/m = O

(
t(m−k)/m−ν).

Since ν < (m− k)/m, we conclude that ent(X, gt) vol(X, gt)
1/m converges to zero

as t goes to zero. □

Combining Theorem 2.10 and Proposition 2.2, we immediately derive the following
result, which can also be expressed in terms of covering collapsing assumption.

Corollary 2.11. — Every connected finite simplicial m-complex X which admits a
covering of multiplicity k + 1 by open subsets of subexponential π1-growth in X with
subexponential growth rate at most ν < (m− k)/m has zero minimal volume entropy.

We conclude with an application. Let us recall the definition of an F -structure,
first introduced by Cheeger-Gromov in a different context; see [20] and [21].

Definition 2.12. — A closed manifold M admits an F -structure if there are a locally
finite open covering {Ui} of M , finite normal covers πi : Ũi → Ui and effective smooth
actions of tori Tki on Ũi which extend the action of the deck transformation group
such that if Ui and Uj intersect each other, then π−1

i (Ui ∩Uj) and π−1
j (Ui ∩Uj) have

a common cover space on which the lifting actions of Tki and Tkj commute. We also
assume that some orbits have positive dimension. The rank of an F -structure is the
minimal dimension of the orbits.

As an application of Corollary 1.4, we derive the following result, which is also a
consequence of Paternain and Petean’s work on the connection between the topolog-
ical entropy of the geodesic flow and F -structures; see [61, Th. A].

Corollary 2.13. — Every closed manifold admitting an F -structure (of possibly zero
rank) has zero minimal volume entropy.
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Proof. — By the slice theorem and its consequences, see [38, App. B], we derive the
following properties. The orbits of the F -structure of a closed m-manifold M parti-
tion the manifold into closed submanifolds covered by tori. The trivial orbits form a
submanifold of codimension at least one (at least two if the manifold is orientable)
and the orbit space is an orbifold of dimension at most m− 1. Now, since the fibers
of the natural projection from M to the orbit space have virtually abelian fundamen-
tal groups (and virtually abelian groups have polynomial growth), the manifold M

satisfies the fiber collapsing assumption with polynomial growth rate and has zero
minimal volume entropy by Corollary 1.4. □

2.8. Examples of manifolds satisfying the fiber collapsing assumption

In this section, we construct a closed orientable manifold with fundamental group
of exponential growth satisfying the fiber collapsing assumption with fibers of subex-
ponential growth which do not have polynomial growth. Furthermore, this example
satisfies the condition on the subexponential growth rate of the subgroups i∗[π1(Fp)]
of Theorem 2.10 (which implies that their minimal volume entropy is zero).

The first Grigorchuk group G was defined in [29]. It is the first example of a finitely
generated group of intermediate growth, that is, its growth is subexponential but not
polynomial; see [30] and [31]. The exact value of the subexponential growth rate of G
has recently been computed in [27]. It is roughly equal to

ν(G) ≃ 0.7674 ∈ [3/4, 4/5].

The group G is a finitely generated recursively presented group – a description of
its presentation can be found in [51] – but it is not finitely presented. It is an open
question whether finitely presented groups of intermediate growth exist. By Higman’s
embedding theorem [42], the group G can be embedded into a finitely presented group.
A concrete realization of such an embedding is given in [31, Th. 1]. The construction
goes as follows.

Consider the group G given by the following presentation:

(2.22) G =
〈
a, c, d, u | a2 = c2 = d2 = (ad)4 = (adacac)4 = e;

u−1au = aca, u−1cu = dc, u−1du = c
〉
.

The group G contains the first Grigorchuk group G. More precisely, the group G is
an HNN-extension of G:

G =
〈
G, u | u−1xu = σ(x) for every x ∈ G

〉
,

where σ : G → G is a monomorphism. The subgroup G ⩽ G is generated by a, c
and d. Note that G contains a free sub-semigroup with two generators, and therefore
has exponential growth.

Let us construct an orientable closed 5-dimensional manifold M with π1(M) = G

as follows. Define

(2.23) N = (RP 5)a#(RP 5)c#(RP 5)d#(S1 × S4)u,
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where the indices a, c, d and u correspond to the generators of G. Note that RP 5

is orientable and so is N . Take five loops γ1, . . . , γ5 in the homotopy classes (ad)4,
(adacac)4, u−1auaca, u−1cudc and u−1duc of π1(N) = Z2 ∗Z2 ∗Z2 ∗Z. Since N is ori-
entable, the normal bundles of γ1, . . . , γ5 are trivial. Placing the curves in generic posi-
tion, we can assume that the loops γ1, . . . , γ5 are smooth simple closed curves which do
not intersect each other. Denote by M the orientable closed manifold obtained from N

by spherical surgeries of type (1, 4) along γ1, . . . , γ5. See [56, §3] for an account on
spherical surgeries. Since spherical surgeries of type (1, 4) correspond to attaching
index 2 handles, the fundamental group of M is given by the presentation (2.22).
That is, π1(M) = G.

Let us construct a piecewise linear map π : M → S1 with subexponential growth
fibers. Consider the natural map N → S1 which takes the first three terms

(RP 5)a#(RP 5)c#(RP 5)d

in the connected sum (2.23) to a point p0 ∈ S1 and projects the last term (S1 ×S4)u
to the S1-factor of the product. By the expression of the relations of the presen-
tation (2.22) of G, the images by N → S1 of the loops γ1, . . . , γ5 are contractible
in S1. Thus, the map N → S1 extends to the handles of M , which yields a map
M → S1. Deforming the map, if necessary, by sending the complement of a tubular
neighborhood of a regular fiber F of M → S1 to a point, we can assume that the
map M → S1 is smooth with a unique critical value p0 ∈ S1 and that the inverse
image π−1(S1∖{p0}) has a product structure (0, 1)×F whose vertical slices coincide
with the fibers of M → S1. We can further deform M → S1 into a piecewise linear
map π :M → S1 by taking fine enough triangulations of M and S1, and by applying
the simplicial approximation theorem, without changing the topology of the fibers
above S1 ∖ {p0}.

Let us show that kerπ∗ = G, where π∗ : π1(M) → π1(S
1) is the π1-homomorphism

induced by π : M → S1. Since the subgroup G ⩽ G is generated by a, c and d,
the inclusion G ⩽ kerπ∗ is obvious. For the reverse inequality, observe that every
element w ∈ kerπ∗ can be represented by a word in the letters a, b, d and u with a
minimal number of occurrences of u±1. By construction, π∗(a) = π∗(c) = π∗(d) = 0

and π∗(u) is a generator of π1(S1). Thus, the word w has as many u’s as u−1’s. If the
word w contains a letter u or u−1, then it contains a sub-word uw′u−1 or u−1w′u,
where w′ is a word in a, c and d (without u). According to the presentation (2.22),
these sub-words can be replaced with sub-words in the letters a, b, d (without u)
in the representation of w, which contradicts the choice of the word representing w.
Thus, w lies in the subgroup G of G generated by a, c and d. That is, kerπ∗ ⩽ G.
Hence, kerπ∗ = G.

Now, since i∗[π1(Fp0)] is a subgroup of kerπ∗ containing the generators a, c and d
of G, we derive that i∗[π1(Fp0)] = kerπ∗ = G. All the other fibers Fp ≃ F with
p ∈ S1 different from p0 can be deformed into Fp0 . More precisely, there is a homo-
topy ht : Fp → M starting at the inclusion map i : Fp ↪→ M and ending in Fp0
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(i.e., h1 : Fp → Fp0). This implies that i∗[π1(Fp)] is a subgroup of i∗[π1(Fp0)] = G.
Since G has subexponential growth, the image i∗[π1(Fp)] of the fundamental group
of every fiber Fp of π :M → S1 has also subexponential growth, where p ∈ S1.

Since ν(G) < (m− k)/m = 4/5 (with m = 5 and k = 1), the orientable closed
5-dimensional manifold M satisfies the fiber collapsing assumption of Theorem 2.10.

Remark 2.14. — This example shows that the effect of the collapsing can be due
to fiber subgroups of intermediate growth (which are not finitely presented) and not
merely of polynomial growth.

Remark 2.15. — Anticipating on the notion of amenable group, see Definition 2.17,
observe that the group G is amenable; see [31]. Therefore, by Gromov’s vanishing sim-
plicial volume theorem (see Theorem 2.18), every manifold with fundamental group G
has zero simplicial volume.

Remark 2.16. — One can show that the manifold M is essential. (This is not direct
and requires some work.) An easier way to obtain an essential manifoldM ′ is to modify
our construction by taking the connected sum of M with a nilmanifold, say Tm. In this
case, we collapse M ′ = Tm#M to the graph P = [0, 1]∪{1}=p1S

1 so that the preimage
of p1 ̸= p0 is the attaching sphere of the connected sum, the torus Tm ∖ Bm with
a ball removed is sent to [0, 1] and the term M ∖ Bm is sent to S1 as before. The
manifold M ′ still satisfies the fiber collapsing assumption of Theorem 2.10 with the
map π :M ′ → P , and the image i∗[π1(F ′

p0)] of the fundamental group of the fiber F ′
p0

of π :M ′ → P still agrees with the group G of intermediate growth.

2.9. Fiber collapsing assumption and zero simplicial volume. — Drawing a parallel
with the simplicial volume through Gromov’s vanishing simplicial volume theorem,
we show that a manifold satisfying the fiber collapsing assumption has zero simplicial
volume.

Definition 2.17. — A group G is amenable if it admits a finitely-additive left-
invariant probability measure. A path-connected open subset U of a path-connected
topological space X is amenable in X if i∗[π1(U)] is an amenable subgroup of π1(X),
where i : U ↪→ X is the inclusion map.

Gromov’s vanishing simplicial volume theorem can be stated as follows.

Theorem 2.18 ([33], see also [43]). — Let M be a connected closed m-manifold. Sup-
pose that M admits a covering by amenable open subsets of multiplicity at most m.
Then

∥M∥∆ = 0.

In particular, the simplicial volume of a connected closed manifold with amenable
fundamental group is zero.

The characterization of the fiber collapsing assumption in terms of coverings allows
us to derive the following result about the effect of the fiber collapsing assumption on
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the simplicial volume. Note that, contrarily to Theorem 2.10, there is no hypothesis
about how the subexponential growth rate compares to the dimensions.

Proposition 2.19. — Every closed m-manifold M satisfying the fiber collapsing
assumption has zero simplicial volume.

Proof. — Recall that every finitely generated group with subexponential growth is
amenable; see [1] or [18, Th. 6.11.12] for instance. Thus, every open subset U⊆M with
subexponential π1-growth in M , see Definition 2.1, is amenable in M . By Proposi-
tion 2.2, the manifold M admits a covering of multiplicity at most m by open subsets
of subexponential π1-growth in M , and so by amenable open subsets. It follows from
Theorem 2.18 that M has zero simplicial volume. □

2.10. Collapsing with Ricci curvature bounded below. — In this section, we show
that the collapsing of manifolds with Ricci curvature bounded below is connected to
the fiber collapsing assumption.

Recall the following result of V. Kapovitch and B. Wilking.

Theorem 2.20 (Generalized Margulis lemma, see [44] and also [23])
For every positive integer m, there exist two constants εm ∈ (0, 1) and Cm > 0

such that for every complete Riemannian m-manifold M with RicM ⩾ −(m− 1), the
image of the natural homomorphism

(2.24) π1(B(x, εm)) −→ π1(B(x, 1))

induced by the inclusion contains a nilpotent subgroup of index at most Cm.
In particular, the image of (2.24) is virtually nilpotent and so has polynomial

growth.

As an application of this theorem, Vitali Kapovitch pointed out to us that col-
lapsing with Ricci curvature bounded below (studied by Cheeger and Colding in [19])
implies the fiber collapsing assumption. More precisely, we have the following result.

Proposition 2.21. — For every positive integer m, there exists vm > 0 such that every
closed Riemannian m-manifold M with RicM ⩾ −(m− 1) and vol(M) ⩽ vm satisfies
the fiber collapsing assumption with polynomial growth rate.

In this case, the manifold M has zero minimal volume entropy.

Proof. — Let εm ∈ (0, 1) be the constant in the generalized Margulis lemma; see
Theorem 2.20. By the nerve construction of [33, §3.4], if every ball of radius εm/4
in M has volume at most vm with vm > 0 small enough (in particular, if vol(M) ⩽ vm)
then there exists a continuous map f : M → P to a finite simplicial complex P of
dimension at most m− 1 such that for every p ∈ P , the fiber f−1(p) lies in some ball
of radius εm in M ; see [33, Cor., p. 52]. By the last statement of Theorem 2.20, the
subgroup i∗[π1(Fp)] ⩽ π1(M), where i : Fp ↪→M is the inclusion map of a connected
component Fp of f−1(p), has polynomial growth (recall that a subgroup or a quotient
of a virtually nilpotent group is virtually nilpotent). Thus, the manifoldM satisfies the
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fiber collapsing assumption with polynomial growth rate. By Corollary 1.4, it follows
that M has zero minimal volume entropy. □

Remark 2.22. — This is a refinement of Gromov’s isolation theorem [33, §0.5] which
asserts that every manifold M in Proposition 2.21 has zero simplicial volume.

3. Simplicial complexes with positive minimal volume entropy

In this section, we introduce the covering non-collapsing assumption and show that
it is equivalent to the fiber growth non-collapsing assumption when the fundamental
group is thick, Then, relying on the notion of Urysohn width, we show that the min-
imal volume entropy of simplicial complexes satisfying the covering non-collapsing
assumption and some mild combinatorial conditions is positive. We also establish a
similar result for simplicial complexes satisfying the more manageable fiber growth
non-collapsing assumption, without the combinatorial conditions, when the funda-
mental group is thick. Finally, we construct simplicial complexes with zero simplicial
volume and arbitrarily large minimal volume entropy.

3.1. Covering non-collapsing assumption. — As in Section 2.1, we begin with some
definitions.

Definition 3.1. — A covering U = {Ui} of a path-connected topological space X by
path-connected open subsets has uniform exponential π1-growth at least h if for at
least one open subset U of U, the subgroup ΓU := i∗[π1(U)] of π1(X) has uniform
exponential growth at least h, where i : U ↪→ X is the inclusion map.

Covering non-collapsing assumption (CNCA). — Let X be a finite connected simplicial
m-complex. Suppose that every finite open covering of X of multiplicity at most m
has uniform exponential π1-growth at least h, for some h = h(X) > 0 depending only
on X (and not on the open covering).

Contrarily to the collapsing case, see Proposition 2.2, the equivalence between the
various non-collapsing assumptions holds only for thick groups.

Proposition 3.2. — Let X be a connected finite simplicial m-complex.
(1) If X satisfies the covering non-collapsing assumption with constant h then X

satisfies the fiber non-collapsing assumption with the same constant h.
(2) Suppose that π1(X) is δ-thick. If X satisfies the fiber non-collapsing assumption

then X satisfies the covering non-collapsing assumption with constant δ.

Proof. — We argue as in the proof of Proposition 2.2.
Let π : X → P be a simplicial map onto a simplicial complex P of dimension k < m.

By Proposition 2.4, we can assume that the fibers of π : X → P are connected. Since P
is a finite simplicial complex of dimension k, the covering of P formed of the open stars
st(p) ⊆ P of the vertices p of P has multiplicity k+1. The preimages π−1(st(p)) ⊆ X of
these open stars form an open covering U of X with the same multiplicity k+1 ⩽ m as
the previous covering of P . Since X satisfies the covering non-collapsing assumption,
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there exists an open subset U0 of U such that the subgroup ΓU0
⩽ π1(X) has uniform

exponential growth at least h. By construction of U, the open subset U0 strongly
deformation retracts onto a fiber Fp0 = π−1(p0). It follows that the subgroup Γp0 =

i∗[π1(Fp0)] is isomorphic to ΓU0
and has also uniform exponential growth at least h.

This proves the point (1).
Let U = {Ui} be a finite open covering of X of multiplicity at most m. Consider

a simplicial map π : X → P onto the nerve P of the covering U constructed from a
partition of unity subordinate to U as in the proof of Proposition 2.2. By construction,
the normalized barycentric coordinates πi : X → [0, 1] have their support in Ui.
In particular, every fiber Fp = π−1(p) overt p ∈ P lies in some open subset Ui. Since X
satisfies the fiber non-collapsing assumption, there exists a fiber Fp0 , contained in some
open subset Ui0 , such that the subgroup Γp0 has (uniform) exponential growth. Since
Fp0 ⊆ Ui0 , we have Γp0 ⩽ ΓUi0

and the subgroup ΓUi0
⩽ π1(X) has also exponential

growth. Since π1(X) is δ-thick, it follows that ΓUi0
has uniform exponential growth

at least δ. This proves the point (2). □

Remark 3.3. — If π1(X) is δ-thick, the notions of non-collapsing in terms of open
coverings (CNCA) and of fiber growth (FNCA) are equivalent. Furthermore, the con-
stant h in the definitions of the non-collapsing assumptions satisfies h ⩾ δ, but a
priori, this inequality can be strict.

The collapsing and non-collapsing assumptions, whether in terms of open coverings
or fiber growth, are not necessarily complementary a priori. However, they are com-
plementary for simplicial complexes with thick fundamental groups; compare with [14,
Lem. 3.8].

Proposition 3.4. — Let X be a connected finite simplicial m-complex with thick fun-
damental group. Then X satisfies either the covering collapsing assumption, or the
covering non-collapsing assumption.

Similarly, X satisfies either the fiber collapsing assumption, or the fiber non-
collapsing assumption.

Proof. — Suppose that X does not satisfy the covering collapsing assumption. Let U

be an open covering of X of multiplicity at most m. There is a subset U of U such
that the subgroup ΓU := i∗[π1(U)] has exponential growth. Since π1(X) is thick,
the subgroup ΓU has uniform exponential growth. Therefore, X satisfies the covering
non-collapsing assumption.

For the second statement, either we argue similarly, or we use the fact that FCA
⇔ CCA and FNCA ⇔ CNCA when π1(X) is thick. □

3.2. Examples of thick groups and non-collapsing simplicial complexes. — Let us
give some examples of δ-thick groups:

(1) G is a group whose 2-generated subgroups are free, with δ = log(3). Examples
of such groups can be found in [37], [17] and [3]. Generically, all finitely presented
groups satisfy this property; see [3].
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(2) G is a torsion-free non-elementary word hyperbolic group with δ = δ(G)

depending on G; see [24].
(3) G is a discrete subgroup of the isometry group of an m-dimensional Cartan-

Hadamard manifold of pinched sectional curvature −a2 ⩽ K ⩽ −1, with δ = δ(m, a)

depending only on m and a; see [12]. More generally, G is a discrete subgroup of
the isometry group of a geodesic Gromov hyperbolic space with bounded geometry;
see [13] and [15].

(4) G has exponential growth (i.e., non virtually abelian in this case) and acts
freely on a CAT(0) cube complex of dimension two or three, with δ > 0 depending
only on the dimension (e.g. δ = 1

10 log(2) in the 2-dimensional case); see [45] and [39].
(5) G has exponential growth (i.e., non virtually abelian in this case) and acts

freely on a CAT(0) cube m-complex with isolated flats or freely and weakly prop-
erly discontinuously on a Gromov hyperbolic CAT(0) cube m-complex, with δ = δm
depending only on m; see [39].

(6) G is a triangle-free Artin group or the Higman group, with δ = log 2/600;
see [39].

(7) G is the mapping class group of a compact orientable surface S, with δ = δS
depending on S; see [52].
Of course, any subgroup with exponential growth of a δ-thick group is δ-thick.

The following result provides examples of simplicial complexes satisfying the cov-
ering/fiber non-collapsing assumption.

Proposition 3.5. — Let X be a finite aspherical simplicial m-complex with Hm(X;R)
nontrivial, where m ⩾ 2. Suppose the fundamental group of X is a non-elementary
word hyperbolic group. Then X satisfies the covering non-collapsing assumption (and
thus the fiber non-collapsing assumption).

In particular, every closed orientable aspherical manifold whose fundamental
group is a non-elementary word hyperbolic group satisfies the covering non-collapsing
assumption (and thus the fiber non-collapsing assumption).

Proof. — First observe that since X is aspherical, its fundamental group π1(X) is
torsion-free, otherwise there would exist a finite-dimensional aspherical space with a
finite fundamental group, which is impossible; see [41, Prop. 2.45]. Suppose X does not
satisfy the covering non-collapsing assumption. Since π1(X) is a thick group, it fol-
lows from Proposition 3.4 that X satisfies the covering collapsing assumption. That
is, there is a covering of X of multiplicity ⩽ m by open subsets of subexponential
π1-growth. In particular, the open subsets of this covering are amenable in X; see Def-
inition 2.17. According to the generalization given by [43, Th. 9.2] (also proved via dif-
ferent approaches in [28] and [50]) of Gromov’s vanishing simplicial volume theorem,
see Theorem 2.18, the canonical homomorphism Hm

b (X;R) → Hm(X;R) between
bounded cohomology and singular cohomology vanishes. By [58], the canonical homo-
morphism Hm

b (X;R) → Hm(X;R) is also surjective. Hence, Hm(X;R) is trivial,
which leads to a contradiction. Indeed, by assumption, Hm(X;R) is nontrivial, and
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by the universal coefficient theorem for cohomology, Hm(X;R) = Hom(Hm(X;R),R)
is also nontrivial. Therefore, X satisfies the covering non-collapsing assumption and
so the fiber non-collapsing assumption by Proposition 3.2. □

In connection with Proposition 2.19, one can ask the following question.

Question 3.6. — Does every closed orientable manifold M satisfying the fiber
non-collapsing assumption have positive simplicial volume? Otherwise, find examples
of closed orientable manifolds with zero simplicial volume satisfying the fiber non-
collapsing assumption. This question is related to the problem of finding a reciprocal
to Gromov’s vanishing simplicial volume; see Theorem 2.18.

3.3. Urysohn width and volume. — Let us go over the notion of Urysohn width in
metric geometry; see [35] for further context.

Definition 3.7. — The Urysohn q-width of a compact metric space X, denoted by
UWq(X), is defined as the least real w > 0 such that there exists a finite covering U

of X of multiplicity at most q + 1 by (path-connected) open subsets U of diameter
less than w in X. That is,

UWq(X) = inf
U∈U

m(U)⩽q+1

diamX(U).

For a simplicial m-complex X, we will simply write UW(X) for UWm−1(X).

The Urysohn width can also be interpreted in terms of fiber diameter; see [40,
Lem. 0.8] for instance.

Proposition 3.8. — A compact metric space X has Urysohn q-width less than w if and
only if there exists a continuous map π : X → P from X to a simplicial q-complex P ,
where all the fibers π−1(p) have diameter at most w in X. That is,

(3.1) UWq(X) = inf
π:X→P

sup
p∈P

diamX [π−1(p)],

where π : X → P runs over all continuous map from X to a simplicial q-complex P
and p runs over all points of P . Note that the simplicial complex P may vary with π :

X → P .

In the case of simplicial complexes, we can further require extra structural prop-
erties on the map π : X → P in the previous proposition.

Proposition 3.9. — Let X be a finite simplicial complex with a piecewise Riemannian
metric. Subdividing X if necessary, we can assume that the maps π : X → P in the
relation (3.1) are surjective and simplicial, and that their fibers are connected.

Proof. — Suppose UWq(X) < w. By definition, there is a finite open covering U =

{Ui}i=1,...,s of X of multiplicity q+1 and diameter less than w. Consider the natural
map Φ : X → P ⊆ ∆s−1 to the nerve P of U given by a partition of unity of the
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covering. As in the proof of Proposition 2.2, subdividing X and P , we can approx-
imate Φ : X → P by a simplicial map π : X → P close to Φ for the C0-topology,
whose normalized barycentric coordinates πi : X → [0, 1] have their support in Ui;
see [41, §2.C]. Thus, every fiber π−1(p) lies in one of the open sets Ui. Therefore,
diamX [π−1(p)] < w. As a result, we can assume that the map π : X → P is simplicial
in Proposition 3.8; see (3.1). Now, by Proposition 2.4, we can replace π : X → P with
a surjective simplicial map π : X → P onto a simplicial complex P of dimension at
most q, whose fibers are connected and of diameter less than w. □

We will need the following recent result of Liokumovich–Lishak–Nabutovsky–Rot-
man [48], extending a theorem of L. Guth [40]. The proof of this result was later on
simplified by P. Papasoglu [60]; see also [59].

Theorem 3.10 ([40], [48], [60], [59]). — Let X be a finite simplicial m-complex with a
piecewise Riemannian metric. Then

vol(X) ⩾ Cm UW(X)m,

where Cm is an explicit positive constant depending only on m.
More generally, if for some R > 0, every ball B(R) ⊆ X of radius R has volume

at most CmRm then
UW(X) ⩽ R.

A more general statement involving the lower dimensional widths and the Hausdorff
content of balls holds true; see [48], [60], [59].

3.4. Modified Urysohn width and regular simplicial complexes. —

Definition 3.11. — Let X be a length metric space and A ⊆ X be a path-connected
subset of X. The intrinsic distance between any pair of points of A is defined as the
infimum length of paths of A between this pair of points. The intrinsic diameter of A,
denoted by diam+(A), is the diameter of A with respect to the intrinsic metric of A.

The modified Urysohn q-width of X, denoted by UW+
q (X), is defined as the least

real w > 0 such that there exists a finite covering of X of multiplicity at most q + 1

by (path-connected) open subsets of intrinsic diameter less than w (compare with
Definition 3.7).

As previously, for a simplicial m-complex X, we will simply write UW+(X) for
UW+

m−1(X).

Since X is a length metric space, the intrinsic diameter of an open subset of X is
greater or equal to its extrinsic diameter. That is,

UWq(X) ⩽ UW+
q (X).

Let us show that a reverse inequality holds up to a factor two under some combina-
torial conditions.
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Definition 3.12. — Let X be a simplicial complex. A vertex v of X is locally sepa-
rating in X if st(v)∖ {v} is not connected, where st(v) is the star of v. A k-simplex
∆k ⊆ X is isolated if it is not the face of a (k + 1)-simplex of X. The simplicial
complex X is k-regular if its simplices of dimension at most k are not isolated.

Proposition 3.13. — Let X be a 2-regular finite simplicial m-complex without locally
separating vertices with m ⩾ 3 endowed with a piecewise Riemannian metric. Then

UW+
q (X) ⩽ 2 UWq(X)

for every q ∈ {2, . . . ,m− 1}.

Proof. — Fix ε > 0. By Proposition 3.9, subdividing X if necessary, there exists a
surjective simplicial map π : X → P from X onto a simplicial q-complex P whose
fibers are connected and satisfy

(3.2) diamX [π−1(p)] < UWq(X) + ε

for every p ∈ P .
Denote by Θ(P ) the triangulation of P and by Θn(P ) its n-th barycentric sub-

division (the integer n will be set later). Let {pi} be the vertices of Θn−1(P ). The
closed stars st(pi) ⊆ P of pi in the triangulation Θn(P ) form a finite covering of P of
multiplicity q+1. Note that the points of P of maximal multiplicity q+1 are exactly
the (iso)-barycenters of the q-simplices of the triangulation Θn−1(P ).

Consider the covering {Fi} of X by the polyhedral closed subsets

Fi = π−1(st(pi)) ⊆ X.

This covering is of multiplicity q + 1 and the points of X of maximal multiplic-
ity q+1 are exactly the points lying in the fibers of the barycenters of the q-simplices
of Θn−1(P ). Observe that for n large enough, we have

diamX(Fi) < diamX [π−1(pi)] + ε

< UWq(X) + 2ε,

where the second inequality comes from (3.2).
Take an ε-dense net {xij | j ∈ Ji} in each polyhedral subset Fi with respect to

its intrinsic metric. We can further assume that the points xij are not vertices of X.
Connect every pair of points xij and xij′ with a length-minimizing geodesic γij,j′ of X.
Clearly,

length(γij,j′) ⩽ diamX(Fi) < UWq(X) + 2ε.

Define
F+
i = Fi

⋃( ⋃
j ̸=j′

γij,j′
)

as the union of Fi with these geodesics. By construction, the subsets F+
i form a closed

covering of X with intrinsic diameter

(3.3) diam+(F+
i ) < 2 UWq(X) + 6ε.
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Since the vertices of X are not locally separating, we can slightly move the
curves γij,j′ without increasing their length too much (keeping the intrinsic diameter
bound (3.3)) so that the curves γij,j′ avoid the vertices of X. Since the simplices
of X of dimension 1 and 2 are not isolated, we can also slightly move the curves γij,j′
without increasing their length too much so that the curves γij,j′ are pairwise disjoint
and avoid the fibers over the barycenters of Θn−1(P ) corresponding to the points of
maximal multiplicity q + 1 of the covering {st(pi)}. See Figure 2. Note that these
fibers are of codimension q ⩾ 2 in each simplex of X they intersect. We can even
assume that the curves γij,j′ are piecewise linear. Despite the risk of confusion, we still
denote by F+

i the union of Fi with the curves γij,j′ thus-modified.

π(Fi)
pi

P

π(γij,j′)

Figure 2. Projection diagram of Fi and γij,j′ onto P .

Now, recall that the covering {Fi} is of multiplicity q + 1. Since the curves γij,j′
are disjoint, the only way for the multiplicity of {F+

i } to be greater than q + 1 is
if some curve γi0j,j′ intersects a region of multiplicity q + 1 of {Fi | i ̸= i0}. That is,
if γi0j,j′ intersects a region of maximal multiplicity of {Fi}, given by the fibers of the
barycenters of Θn−1(P ). This is excluded after the previous curve deformation. Hence,
the closed covering {F+

i } has multiplicity q + 1 and satisfies the intrinsic diameter
bound (3.3).

By taking small enough open neighborhoods of the F+
i , we obtain an open covering

of X with the same properties. Subdividing X even further and slightly moving the
curves γij,j′ if necessary, we can assume that this open covering of X is given by
the open stars of the F+

i . This shows that UW+
q (X) ⩽ 2 UWq(X) + 6ε. Hence the

proposition. □

Remark 3.14. — The end of Proposition 3.13 shows that there is a finite covering
of X of multiplicity at most q+1 by open simplicial subsets of intrinsic diameter less
than 2 UWq(X) + 6ε.
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3.5. Diameter and uniform group growth. — Let us present the following classical
result relating the diameter and the volume entropy of a space, similar in spirit to the
Švarc-Milnor lemma; see [36, §5.16]. We refer to Definition 1.2 and Definition 2.7 for
the basic definitions.

Proposition 3.15. — Let U be a connected open simplicial subset in a connected finite
simplicial complex X with a piecewise Riemannian metric. Then

diam+(U) · ent(X) ⩾
1

2
ent(ΓU ),

where ΓU := i∗[π1(U)] is the image of π1(U) under the group homomorphism induced
by the inclusion map i : U ↪→ X.

Proof. — The proof of this result is classical; see [36, Prop. 3.22] for the details.
Since U is a simplicial subset of a finite simplicial complex, its fundamental
group π1(U) is finitely generated and so is ΓU . Fix ε > 0. Take a system of loops
of U with basepoint x0 whose homotopy classes in X form a finite generating set
of ΓU = i∗[π1(U, x0)] ⩽ π1(X,x0). Decompose these loops into segments of length less
than ε and connect the endpoints of these segments to x0 with almost-minimizing
arcs of U . The triangular loops γi ⊆ U thus-formed induce a finite generating set S
of ΓU in homotopy with

length(γi) < 2 diam+(U) + ε.

Clearly, every homotopy class α ∈ ΓU can be represented by a loop γ ⊆ U based at x0
of length at most (

2 diam+(U) + ε
)
· dS(e, α),

where dS is the word distance on ΓU induced by S. Thus, the number N(X;T ) of
homotopy classes represented by loops based at x0 of length at most T , see Defini-
tion 2.7, satisfies

N(X;T ) ⩾ card
{
α ∈ ΓU | dS(e, α) ⩽

T

2 diam+(U) + ε

}
.

It follows from (2.13) that

ent(X) ⩾
1

2 diam+(U) + ε
ent(ΓU , S)

for every ε > 0. Hence the result. □

3.6. Covering non-collapsing assumption and minimal volume entropy. — We can
now prove the following result complementing Corollary 2.11 under some mild com-
binatorial assumptions.

Theorem 3.16. — Every connected finite 2-regular simplicial m-complex X with-
out locally separating points and with m ⩾ 3 satisfying the covering non-collapsing
assumption has positive minimal volume entropy.

More precisely,
ω(X) ⩾ C ′

m h(X),
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where h(X) is the constant in the covering non-collapsing assumption on X and C ′
m

is an explicit positive constant depending only on m.

Proof. — By Proposition 3.13 and Remark 3.14, for every ε > 0, there exists an open
simplicial covering U = {Ui} of X of multiplicity at most m with

diam+(Ui) < 2UW(X) + ε.

By the covering non-collapsing assumption, there is an open simplicial subset Ui0
of U such that the subgroup ΓUi0

= i∗[π1(Ui0)] has uniform exponential growth at
least h(X). It follows from Proposition 3.15 that

1

2
h(X) ⩽

1

2
ent(Γi0) ⩽ diam+(Ui0) · ent(X) ⩽ (2UW(X) + ε) · ent(X).

Letting ε go to zero, we obtain

(3.4) ent(X) ·UW(X) ⩾
1

4
h(X).

By Theorem 3.10, this yields

ent(X) · vol(X)1/m ⩾ C ′
m h(X)

with C ′
m = 1

4C
1/m
m . □

Remark 3.17. — If the simplicial complex X in Theorem 3.16 has small enough
volume, its minimal volume entropy is bounded away from zero. This result still
holds true if the unit balls of X (instead of the whole simplicial complex X) have
small enough volume. Indeed, in this case, we have UW(X) ⩽ 1 by Theorem 3.10,
and the lower bound (3.4) leads to ent(X) ⩾ 1

4h(x).

Remark 3.18. — When π1(X) is thick, we can replace the covering non-collapsing
assumption in Theorem 3.16 with the fiber non-collapsing assumption by Proposi-
tion 3.2. In this case, we will see in Theorem 3.23 that we can drop the extra combi-
natorial assumptions.

3.7. Handling non-regular simplicial complexes. — In this section, we start with a
simplicial complex satisfying the FNCA and replace it with a 2-regular simplicial com-
plex without locally separating vertices preserving the FNCA with the same constant.
Our goal is to drop the extra combinatorial assumptions in Theorem 3.16 for simpli-
cial complexes X (with a thick fundamental group) satisfying the FNCA, namely the
fact that X is regular and without locally separating vertices. See Theorem 3.23.

Recall that a finite connected simplicial m-complex X satisfies the FNCA if there
exists h(X) > 0 such that for every simplicial map π : X → P onto a simplicial
complex P of dimension k < m, there exists a connected component Fp0 of some
fiber π−1(p0) with p0 ∈ P such that the finitely generated subgroup i∗[π1(Fp0)] ⩽
π1(X) has uniform exponential growth at least h(X).

Let X be a finite simplicial m-complex with m ⩾ 3. Define an extension

(3.5) X̂ = X
⋃
i

∆3
i
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of X by attaching a 3-simplex ∆3
i along every isolated edge ∆1

i or triangle ∆2
i of X

so that the resulting simplicial m-complex X̂ is 2-regular. Note that the inclusion
X ↪→ X̂ is a π1-isomorphism.

The following lemma shows that replacing X with the 2-regular simplicial com-
plex X̂ does not alter the fiber non-collapsing assumption.

Lemma 3.19. — Let X be a finite simplicial m-complex with m ⩾ 3. If X satisfies
the FNCA with constant at least h, then X̂ also satisfies the FNCA with constant at
least h.

Proof. — Let π̂ : X̂ → P be a simplicial map onto a simplicial q-complex P with
q < m. Denote by π : X → P the restriction of π̂ : X̂ → P to X. For every vertex
p ∈ P , the π̂-fiber over p decomposes as

π̂−1(p) = π−1(p)
⋃
i

(
π̂−1(p) ∩∆3

i

)
,

where ∆3
i runs over the 3-simplices of X̂ ∖ X. Since the map π̂ : X̂ → P is simpli-

cial, every block π̂−1(p) ∩ ∆3
i in the previous decomposition is a k-face of ∆3

i with
0 ⩽ k ⩽ 3. If π̂−1(p) ∩∆3

i is disjoint from π−1(p), then π̂−1(p) ∩∆3
i is a contractible

connected component of π̂−1(p). If π̂−1(p) ∩ ∆3
i intersects π−1(p) along a vertex,

an edge or a triangle, then π̂−1(p) ∩ ∆3
i deformation retracts onto this vertex, edge

or triangle. Therefore, every connected component F̂p of π̂−1(p) is either contractible
or deformation retracts onto a connected component Fp of π−1(p). In both cases, the
subgroups i∗[π1(Fp)] ⩽ π1(X) and i∗[π1(F̂p)] ⩽ π1(X̂) have the same growth. Hence
the result. □

We can split simplicial complexes at their locally separating vertices as follows.

Definition 3.20. — Let X be a finite simplicial complex. Denote by X⋆ the finite sim-
plicial complex obtained by locally disconnecting X at its locally separating vertices.
This construction comes with a natural simplicial map

j : X⋆ −→ X

injective away from the vertices of X⋆ with

X = X⋆/∼,

where x1 ∼ x2 if j(x1) = j(x2). Observe that the map j : X⋆ → X is π1-injective on
each connected component of X⋆.

Splitting a simplicial complex at its locally separating vertices does not alter the
fiber non-collapsing assumption either.

Lemma 3.21. — Let X be a finite simplicial m-complex with m ⩾ 2. Denote by X⋆ the
finite simplicial m-complex obtained by locally disconnecting X at its locally separating
vertices. If X satisfies the FNCA with constant at least h, then X⋆ also satisfies the
FNCA with constant at least h.
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Proof. — Suppose that X satisfies the FNCA with constant at least h. Without loss
of generality, we can assume that X is connected.

Let x be a locally separating vertex of X. We can split X at x into k connected
simplicial complexes {Xi | 1 ⩽ i ⩽ k} with ki non locally separating vertices Vi =
{xij | 1 ⩽ j ⩽ ki} in each Xi such that

X = (X1 ⊔ · · · ⊔Xk)/∼,

where all the vertices xij ∈ Xi are identified with x. The simplicial complex X can also
be described as the bouquet of the quotients X̂i = Xi/∼, where the vertices (xij)1⩽j⩽k
of Xi are identified. That is, X = ∨ki=1X̂i. Each space X̂i is homotopy equivalent
to Xi ∪ Cone(Vi), where Cone(Vi) is the cone over Vi. It follows from [47, Lem. 3.4]
that π1(X̂i) ∼= π1(Xi) ∗ Fki−1. By van Kampen’s theorem, we have

π1(X) ∼= ˚k
i=1

(
π1(Xi) ∗ Fki−1

)
,

where Fr is the free group of rank r.
Let Vi = {Vi,α | α ∈ Ai} be an open covering of Xi of multiplicity at most m

with Vi,α connected. Slightly perturbing the covering if necessary, we can assume that
xij /∈ ∂Vi,α for all the indices. In particular, we can fix three (small) contractible open
metric balls B−

i,j ⊊ Bi,j ⊊ B+
i,j ⊆ Xi around each vertex xij ∈ Xi such that

(1) the closures sB−
i,j , sBi,j and sB+

i,j of these balls are still contractible;
(2) the balls sB+

i,j are disjoint;
(3) sB+

i,j lies in Vi,α if xij ∈ Vi,α;
(4) sB+

i,j is disjoint from Vi,α if xij /∈ Vi,α.
Loosely speaking, for every vertex xij , we choose an open set Vi,αi

j
containing xij

and remove from each open set Vi,α a ball sB−
i,j or sB+

i,j around each vertex xij , where
this ball is sB−

i,j if Vi,α is the chosen open set Vi,αi
j

containing xij and is sB+
i,j otherwise.

Observe that the resulting open sets Ui,α ⊆ X are connected and that removing the
contractible balls sB−

i,j or sB+
i,j from the open sets Vi,α does not change the images

of their fundamental groups in π1(X). In particular, the images of the fundamental
groups of Ui,α and Vi,α in π1(X) are the same. Now, the multiplicity of the Ui,α is
the same as the multiplicity of the Vi,α at every point of X, except in the neighbor-
hood

⋃
i,j

sB−
i,j of x, where it is equal to zero, and on the corona

⋃
i,j

sB+
i,j∖ sB−

i,j , where
it is equal to one. To obtain an open covering of X with the desired properties, we add
the contractible open neighborhood

⋃
i,j Bi,j of x ∈ X.

More formally, for every 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ ki, fix αij ∈ Ai such that xij ∈ Vi,αi
j
.

It may happen that αij = αij′ for j ̸= j′. Let

J iα = {j | αij = α}.

Define the open sets Ui,α ⊆ Xi ∖ {xij | 1 ⩽ j ⩽ ki} ⊆ X with α ∈ Ai as follows:

Ui,α = Vi,α ∖
[( ⋃

j∈Ji
α

sB−
i,j

)
∪
( ⋃
j /∈Ji

α

sB+
i,j′

)]
.
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Define also the open neighborhood U0 ⊆ X of x as

U0 =
⋃
i,j

Bi,j .

By construction, the subsets U0 and Ui,α are connected and form an open covering U

of X of multiplicity at most m with i∗[π1(U0)] = {e} and

i∗[π1(Ui,α)] ∼= i∗[π1(Vi,α)]

by contractibility of sBi. Since X satisfies the FNCA with constant at least h, one
of the subgroups i∗[π1(Ui0,αi0

)] has uniform exponential growth at least h and so
does i∗[π1(Vi0,αi0

)]. Thus, the simplicial complex X1 ⊔ · · · ⊔ Xk also satisfies the
FNCA with constant at least h.

Repeating this process over and over with the remaining locally separating vertices,
we obtain the simplicial complex X⋆, which shows that X⋆ satisfies the FNCA with
constant at least h. □

Splitting a simplicial complex at its locally separating vertices does not increase
its volume entropy.

Lemma 3.22. — Let X be a finite simplicial m-complex with a piecewise Riemannian
metric. Denote by X⋆ the finite simplicial m-complex obtained by locally disconnect-
ing X at its locally separating vertices. Endow X⋆ with the piecewise Riemannian
metric pulled back by the simplicial map j : X⋆ → X. Then every connected compo-
nent Z of X⋆ satisfies

ent(Z) ⩽ ent(X).

Proof. — By construction, the π1-injective map j : Z → X is 1-Lipschitz and volume-
preserving, and so is its lift j̃ : Z̃ → X̃ to the universal covers of Z and X. Therefore,

j̃(BZ̃(R)) ⊆ BX̃(R)

and
vol BZ̃(R) = vol j̃(BZ̃(R)) ⩽ vol BX̃(R)

for some R-balls BZ̃(R) ⊆ Z̃ and BX̃(R) ⊆ X̃. Hence,

ent(Z) ⩽ ent(X). □

3.8. Fiber non-collapsing assumption and minimal volume entropy. — We can now
prove the following result complementing Theorem 2.10 when the fundamental group
is thick.

Theorem 3.23. — Let X be a connected finite simplicial m-complex with thick funda-
mental group and m ⩾ 3. If X satisfies the fiber non-collapsing assumption, then X

has positive minimal volume entropy.
More precisely,

ω(X) ⩾ C ′
m h(X)

where h(X) is the constant in the fiber non-collapsing assumption on X and C ′
m is

an explicit positive constant depending only on m.
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Proof. — Suppose that X is equipped with a piecewise Riemannian metric g. Let
ε > 0. The metric g can be extended into a piecewise Riemannian metric ĝε on the
2-regular simplicial complex X̂ defined in (3.5) so that the inclusion X ↪→ X̂ε is
distance preserving (for simplicity, we write X = (X, g) and X̂ε = (X̂ε, ĝε)) with

(3.6) lim
ε→0

vol(X̂ε) = vol(X) and lim
ε→0

ent(X̂ε) = ent(X)

by taking a suitable Riemannian metric on each 3-simplex ∆3
i in (3.5) collapsing to

the Riemannian metric of the edge ∆1
i or triangle ∆2

i of X to which the 3-simplex ∆3
i

is attached. Endow the simplicial m-complex X̂⋆
ε obtained by locally disconnecting X̂ε

at its locally separating vertices with the piecewise Riemannian metric pulled back
by the π1-injective natural map j : X̂⋆

ε → X̂ε; see Definition 3.20. By Lemma 3.22,
every connected component Z of X̂⋆

ε satisfies

(3.7) vol(Z) ⩽ vol(X̂ε) and ent(Z) ⩽ ent(X̂ε).

By Lemma 3.19 and Lemma 3.21, there exists a connected component Z0 of X̂⋆
ε

satisfying the fiber non-collapsing assumption with constant at least h(X). Observe
that the simplicial complex Z0 is of dimension m, otherwise we would obtain a con-
tradiction by taking for π : Z0 → P the identity map Z0 → Z0 in the definition of the
fiber non-collapsing assumption.

Now, since the simplicial complex X̂⋆
ε is 2-regular without locally separating ver-

tices, see Section 3.7, its connected component Z0 is also 2-regular without locally
separating vertices. It follows from the estimates (3.7) and Theorem 3.16 that

ω(X̂ε) ⩾ ω(Z0) ⩾ C ′
m h(X)

where C ′
m = 1

4C
1/m
m . The relations (3.6) imply that limε→0 ω(X̂ε) = ω(X). Hence,

the minimal volume of X is positive. □

Remark 3.24. — As in Remark 3.17, if the unit balls of a simplicial complex X in
Theorem 3.23 have small enough volume, the minimal volume entropy of X is bounded
away from zero.

Remark 3.25. — By Proposition 3.5, Theorem 3.23 applies to finite aspherical sim-
plicial m-complexes X with a non-elementary word hyperbolic fundamental group
and Hm(X;R) nontrivial. Thus, these simplicial complexes X have positive mini-
mal volume entropy. This result can also be obtained using filling techniques; see [7]
and [64].

3.9. Simplicial volume and minimal volume entropy. — We construct a sequence of
simplicial complexes Zm with zero simplicial volume and arbitrarily large minimal
volume entropy.

Remove a ball from a closed manifold of dimension m = 2k ⩾ 4 with positive
simplicial volume. The resulting space Σ is a manifold with boundary ∂Σ ≃ S2k−1.
Fix an integer d ⩾ 3. Denote by Y the quotient of Σ by the natural free action of Zd
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on S2k−1 given by rotation of the Hopf fibration. Observe that π1(Y ) ∼= π1(Σ) ∗ Zd
and Hm(Y ;Z) = 0. Define the simplicial m-complex

Xn = #n
i=1Yi

by taking the connected sum of n copies of Y . Note that Hm(Xn;Z) = 0.
The space Xn admits a d-sheeted cyclic cover which can be described as follows.

The connected sum #n
i=1Σi of n copies of Σ is a manifold whose boundary identifies

with the disjoint union ⊔S2k−1
i of n spheres. Let X̂n be the space obtained by gluing

d copies of #n
i=1Σi along this disjoint union

X̂n = (⊔S2k−1
i ) ∪ψ1

(#n
i=1Σi) · · · ∪ψd

(#n
i=1Σi)

where the attaching maps ψj are given by the action of αj on the boundary compo-
nents of #n

i=1Σi (for a fixed generator α of Zd). The cover X̂n → Xn is the natural map
sending the d copies #n

i=1Σi to Xn. By the comparison principle, see [16, Lem. 4.1],
we have

(3.8) ω(X̂n) ⩽ d1/m ω(Xn).

Now, take two copies #n
i=1Σi and #n

i=1Σi in X̂n. By construction, the bound-
aries ∂Σi and ∂Σi agree and the union

Mn = (#n
i=1Σi) ∪ (#n

i=1Σi)

is a closed m-manifold homeomorphic to

Mn ≃ #n
i=1(Σi#Σi) #

n
i=1(S

1 × S2k−1).

Since the simplicial volume is additive under connected sums in dimension at least
three, see [33], we obtain

∥Mn∥∆ = 2n ∥Σ∥∆ > 0.

Thus, by (1.2), the minimal volume entropy ω(Mn) of Mn goes to infinity when n

tends to infinity.
To conclude, consider the simplicial m-complex Zn defined as the connected sum

Zn = Xn#Tm.

Clearly, Hm(Zn;Z) = Z and ∥Zn∥∆ = 0. Observe that Zn is a cellular m-complex
with a single m-cell. Note also that Zn is not aspherical since its fundamental group
has torsion. By the estimate ω(N1)

m ⩽ ω(N1#N2)
m established in [9, Th. 2.12] for

connected closed m-pseudomanifolds N1 and N2 with m ⩾ 3 and N2 orientable (which
still holds when N1, here Xn, is a cellular m-complex with a single m-cell), we have
ω(Zn) ⩾ ω(Xn). Since π1(Mn) is a subgroup of π1(X̂n) and the manifold Mn con-
tained in X̂n has the same dimension m as X̂n, we deduce that ω(X̂n) ⩾ ω(Mn).
Thus, by (3.8), the minimal volume entropy ω(Zn) of Zn goes to infinity.

Remark 3.26. — Similar examples exist in odd dimensions but their construction is
more technical.
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