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HYPERBOLICITY FOR LARGE AUTOMORPHISM

GROUPS OF PROJECTIVE SURFACES

by Serge Cantat & Romain Dujardin

Abstract. — We study the hyperbolicity properties of the action of a non-elementary automor-
phism group on a compact complex surface, with an emphasis on K3 and Enriques surfaces.
A first result is that when such a group contains parabolic elements, Zariski diffuse invariant
measures automatically have non-zero Lyapunov exponents. In combination with our previous
work, this leads to simple criteria for a uniform expansion property on the whole surface, for
groups with and without parabolic elements. This, in turn, has strong consequences on the
dynamics: description of orbit closures, equidistribution, ergodicity properties, etc. Along the
way, we provide a reference discussion on uniform expansion of non-linear discrete group actions
on compact (real) manifolds and the construction of Margulis functions under optimal moment
conditions.
Résumé (Hyperbolicité pour les groupes d’automorphismes des surfaces projectives)

Nous étudions les propriétés d’hyperbolicité de l’action des groupes non élémentaires d’auto-
morphismes des surfaces complexes compactes, notamment des surfaces K3 et d’Enriques. Si un
tel groupe contient un élément parabolique, nous montrons que toute mesure invariante Zariski-
diffuse admet un exposant de Lyapunov non nul. Avec nos travaux antérieurs, on en déduit des
critères simples pour l’expansion uniforme de la dynamique aléatoire, que le groupe contienne
des éléments paraboliques ou non. Cette propriété d’expansion a des conséquences dynamiques
importantes : classification des adhérences des orbites, équidistribution, propriétés d’ergodicité,
etc. Nous en profitons pour faire le point sur la notion d’expansion uniforme pour les actions
de groupes discrets de difféomorphismes de variétés compactes et la construction de fonctions
de Margulis, ceci sous des hypothèses de moment optimales.
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1. Introduction

Let X be a compact complex surface and denote by Aut(X) its group of automor-
phisms, i.e., of holomorphic diffeomorphisms. Let Γ be a subgroup of Aut(X). We say
that Γ is non-elementary if the subgroup Γ∗ ⩽ GL(H∗(X,C)) induced by the action
of Γ on the De Rham cohomology of X contains a non-abelian free group; the existence
of a non-elementary subgroup of Aut(X) implies that X is projective (see [19]). In a
series of articles [20, 21, 22] we have explored the dynamics of such a non-elementary
group Γ on X, notably by means of random walk techniques. In this paper, we study
the hyperbolicity properties of such random actions and their consequences.

1.1. Wehler examples. — To understand the motivation behind our general results,
it is interesting to start with the Wehler family W of surfaces of degree (2, 2, 2) in
P1 × P1 × P1, which has been a recurring example in our work (see e.g. [20, §3]).
This family W depends on 26 parameters and is naturally parameterized by P26(C);
we shall denote by W0 ⊂ W the Zariski open subset of smooth Wehler surfaces which
do not contain any fiber of the three coordinate projections P1 × P1 × P1 → P1.
Note that Aut(P1)3 acts on P1 × P1 × P1 as well as on W and W0. For X ∈ W0,
the three natural projections X → P1 × P1 are ramified covers of degree 2; their
deck transformations yield three holomorphic involutions σ1, σ2, and σ3; the group Γ

generated by these involutions is non-elementary and isomorphic to Z/2Z ∗ Z/2Z ∗
Z/2Z.

Since every X ∈ W0 is a K3 surface, there is a canonical Aut(X)-invariant volume
form volX on X(C); furthermore, when X is defined over R there is a canonical
area form volX(R) on X(R) which is invariant under the action of Aut(XR) (see
Example 1.5 below). Slightly abusing notation, we respectively denote by volX and
volX(R) the associated measures on X and X(R), normalized to have mass 1.

Our first main result is a complete description of orbit closures for most parameters
X ∈ W0. Recall that a 2-dimensional real submanifold Y ⊂ X is totally real if for
every x ∈ Y , TxY spans TxX as a complex vector space.

Theorem 1.1. — There exists a dense and Zariski open subset Wexp ⊂ W0(C) such
that for every X ∈ Wexp, the action of Γ = ⟨σ1, σ2, σ3⟩ on X satisfies the following
properties. There exists a Γ-invariant finite set F ⊂ X and a Γ-invariant totally real
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analytic surface Y ⊂ X (with possibly finitely many singular points) such that for
every x ∈ X,

(a) either x ∈ F (and its orbit is finite);
(b) or Γ(x) is a union of connected components of Y ;
(c) or Γ(x) = X.

As a general convention in the paper, by “dense” we mean dense for the Euclidean
topology; when working with the Zariski topology, we specify “Zariski dense”. Note
also that a Zariski open subset of a variety W is dense if and only if it intersects
every component of W . In this statement both F and Y may be empty, depending
on X. For instance, [21, Th. A] says that F is empty for a very general Wehler surface
X ∈ W0(C), i.e., for X in the complement of countably many proper Zariski closed
subsets. A typical situation for case (b) is that X is defined over R and Y = X(R).

Remark 1.2. — To check that an orbit Γ(x) is dense, it suffices to find a point x′ =
(x′1, x

′
2, x

′
3) in Γ(x) such that (1) the fiber Xx′

3
of the third projection containing x′ is

a smooth curve and (2) σ1 ◦ σ2 acts on this genus 1 curve Xx′
3

as a translation with
dense orbits. Then, the closure of Γ(x) is infinite and is not contained in a totally
real surface, so case (c) occurs. Now, for x3 outside a countable union of real analytic
curves, σ1 ◦ σ2 has dense orbits along Xx3

. Thus, it is easy to produce examples of
dense orbits. On the other hand, given a specific Wehler surface X, it is a priori hard
to decide whether there is a Γ invariant real analytic surface Y ⊂ X.

If we restrict to real parameters in W, we also have a fairly complete understanding
of the asymptotic distribution of random orbits. By this we mean the following. Let ν
be the probability measure on Γ defined by ν = 1

3 (δσ1
+ δσ2

+ δσ3
). For any x in

X(R), and for any sequence (gi) of automorphisms gi ∈ Γ chosen independently
with distribution ν, consider the trajectory (gn · · · g0(x))n⩾0. Let X ′(R) be a union
of connected components of X(R). We say that these random trajectories, starting
at x, are equidistributed in X ′(R) if for νN-almost every (gi), the empirical measures
1
n

∑n−1
k=0 δgk···g0(x) converge to the normalized volume form induced by volX(R) on

X ′(R) as n → ∞. The appearance of X ′(R) is due to the fact that Γ may not act
transitively on the components of X(R).

Theorem 1.3. — There exists a dense and Zariski open subset Wexp(R) ⊂ W0(R)

such that for every X ∈ Wexp(R), there exists a Γ-invariant finite set F ⊂ X(R)

such that for every x ∈ X(R):
(a) either x ∈ F ;
(b) or the random trajectories starting at x are equidistributed in a union of con-

nected components of X(R).

An interesting point in Theorems 1.1 and 1.3 is that their conclusions hold for every
x ∈ X. Let us explain how these theorems fall within the progression of [20, 21, 22]
and what the last missing ingredient was until the present paper.
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424 S. Cantat & R. Dujardin

First, the existence of the maximal finite invariant set F follows from [21, Th. C].
One key point here is that Γ contains parabolic elements, that is automorphisms whose
action on H∗(X;C) is virtually unipotent and of infinite order (see Section 6).

Now, the scheme of proof of Theorem 1.3 is as follows. The random walk on Γ

induced by ν gives rise to a random dynamical system on X. We refer to [42, 13] for
general references on this topic, and to Sections 4 and 7 of [20] for our holomorphic
context. In particular, we shall use the notions of stationary and invariant measures µ,
of fibered entropy hµ(X, ν), etc. Fix x ∈ X ∖ F . By Breiman’s ergodic theorem, for
almost every sequence (gn)n⩾0 with respect to the measure νN, every cluster value
of the sequence of empirical measures 1

n

∑n−1
k=0 δgk···g0(x) is a ν-stationary measure

(see [5, §2.2]). We proved in [20] that every ν-stationary measure is Γ-invariant,(1)

and in [22] we showed that any invariant measure is either supported on F , or of the
form volX′(R), for some union of components X ′(R) of X(R). Therefore, any cluster
value of 1

n

∑n−1
k=0 δgk···g0(x) is a convex combination of point masses on F and volX′(R).

Thus the last step is to show that if Γ(x) is infinite, the limiting empirical measures
give no mass to F .

For Theorem 1.1 the situation is similar: most of the work was done in [22, §8],
except that there we could not exclude that the accumulation locus of an infinite
orbit could be contained in a finite invariant set. Note that since we are talking about
orbit closures and not asymptotic distribution, the full classification of stationary
measures, which is much harder and not yet complete in the complex surface X(C),
is not required here.

These difficulties were already addressed for homogeneous random dynamical sys-
tems in [4, 31] and in the context of non-linear actions on real surfaces in [45, 24]. The
key is to show that if X belongs to the dense Zariski open set Wexp of Theorem 1.1
(resp. Wexp(R) of Theorem 1.3), the maximal finite invariant set F is repelling for
the random dynamics. Since we do not know the set F , nor its cardinality (examples
of Wehler surfaces with large finite invariant sets were recently constructed in [35]),
we make a large detour and prove a uniform hyperbolicity property for the dynamics
on the whole of X, which is interesting in its own right: this is the uniform expansion
property that we present in detail in Section 1.3. Establishing this property relies on
ergodic-theoretic arguments, the first of which is an automatic hyperbolicity property
that we describe in the next paragraph.

1.2. Hyperbolicity of invariant measures. — It is a fundamental (and widely open)
problem in conservative dynamics to show the typicality of non-zero Lyapunov ex-
ponents on a set of positive Lebesgue measure. In deterministic dynamics, a recent
breakthrough is the work of Berger and Turaev [6]. Adding some randomness makes
such a hyperbolicity result easier to obtain: see [8] for random perturbation of the
standard map, and [2, 47] for random conservative diffeomorphisms on closed real

(1)Here, we use the fact that on a typical Wehler surface there is no Γ-invariant curve, see [21,
Lem. 2.3].
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surfaces. The results of Barrientos and Malicet [2] and of Obata and Poletti [47] are
perturbative in nature, so they do not give explicit examples. In our context, the
rigidity properties of holomorphic diffeomorphisms will enable us to exhibit explicit
criteria ensuring such a non-uniform hyperbolicity.

In [22] we have classified invariant measures for non-elementary groups containing
parabolic elements. We say that a measure µ onX is Zariski diffuse if it gives zero mass
to proper Zariski closed subsets. If µ is Γ-invariant and ergodic for some Γ ⊂ Aut(X),
this is equivalent to its support Supp(µ) being Zariski dense. Roughly speaking, our
classification of invariant measures says that every Zariski diffuse, ergodic, invariant
probability measure is given by an analytic 4-form on X or by an analytic 2-form
on some invariant, real analytic subset Y ⊂ X of dimension 2. Here we proceed to a
finer study of the dynamical properties of these invariant measures. For this, we fix a
probability measure ν on Aut(X) satisfying the moment condition

(M)
∫ Ä

log ∥f∥C1(X) + log ∥f−1∥C1(X)

ä
dν(f) < +∞;

(see Sections 2.1 and 4.2 and Remark 4.2 for discussions of stronger moment con-
ditions), and we view any invariant measure µ as a ν-stationary measure, that is,∫
f∗µdν(f) = µ. Then by (M), the Lyapunov exponents of µ are well defined: for

νN-almost every sequence (gi), and µ-almost every x ∈ X, 1
n log ∥Dx(gn−1 ◦ · · · ◦ g0)∥

converges towards the upper Lyapunov exponent λ+(x) ∈ R; by ergodicity of µ,
λ+(x) is almost surely equal to some constant λ+(µ). Similarly, one defines the lower
Lyapunov exponent λ−(µ), and µ is said to be hyperbolic if λ+(µ) > 0 > λ−(µ).

We denote by Γν ⊂ Aut(X) the closed subgroup generated by Supp(ν).(2)

Theorem 1.4. — Let X be a compact complex surface and Γ be a non-elementary
subgroup of Aut(X) containing parabolic elements. Let µ be a Zariski diffuse ergodic
Γ-invariant probability measure on X. Let ν be any probability measure on Aut(X)

satisfying Γν = Γ and the moment condition (M).
Then, viewed as a ν-stationary measure, µ is hyperbolic and its fiber entropy

hµ(X, ν) is positive.

A variant of this result will also be obtained when Γν contains a Kummer example
instead of a parabolic element (see Theorem 7.4).

Example 1.5. — When X is a torus or a K3 surface, the canonical bundle KX is
trivial and, up to multiplication by a complex number of modulus 1, there is a unique
section ΩX of KX that satisfies

∫
X
ΩX ∧ΩX = 1. The volume form volX := ΩX ∧ΩX

is Aut(X)-invariant. Likewise, every Enriques surface S inherits such an invariant
volume form volS from its universal coverX (a 2-to-1 cover by a K3 surface). Under the
assumptions of Theorem 1.4, volX is Γ-ergodic, thus we conclude that it is hyperbolic.
Other examples are provided by some rational surfaces (see the discussion on Coble
surfaces in [19]).

(2)Note that Aut(X) is discrete unless X is a torus, see [20, §3] so in most cases Γν = ⟨Supp(ν)⟩.
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In these situations the 2-form ΩX also induces a natural measure volY on any totally
real surface Y ⊂ X (see [22, Rem. 2.3]). For instance, if X is projective and defined
over R, Γ is contained in Aut(XR), and Y is a Γ-invariant connected component of
X(R), Theorem 1.4 asserts that volY is hyperbolic.

1.3. Uniform expansion. — Fix a Riemannian metric on X. We say that the mea-
sure ν on Aut(X) is uniformly expanding if there exists c > 0 and an integer n0 such
that for every x ∈ X and every v ∈ TxX ∖ {0},

(1.1)
∫
Aut(X)

log(∥Dxf(v)∥/∥v∥) dν(n0)(f) ⩾ c;

here ν(n) denotes the nth convolution power of ν. This notion is taken from [24, 26,
45, 52] (see also [31, 48] for the linear context) and has a number of strong ergodic
and topological consequences on the action of Γν . So far, uniform expansion has been
verified only in the context of homogeneous dynamics, or for certain perturbative
situations, or with the help of numerical methods. The geometric analysis of stationary
measures developed in [20] together with Theorem 1.4 will be used to obtain the
following result.

Theorem 1.6. — Let X be a compact complex surface which is not rational. Let ν be a
probability measure on Aut(X). Assume that: (i) ν satisfies the moment condition (M)
and (ii) the group Γ = Γν is non-elementary and contains parabolic elements.

Then ν is uniformly expanding if and only if the following two conditions hold:
(1) every finite Γ-orbit is uniformly expanding;
(2) there is no Γ-invariant algebraic curve.

Here, by definition, a finite orbit F of Γ is said to be uniformly expanding if Con-
dition (1.1) holds for every x ∈ F . This is the repulsion property alluded to at the
end of Section 1.1.

Checking Condition (2) of Theorem 1.6 is not hard in practice and boils down to
cohomological computations (see Section 6.3). Therefore, most of the complexity in
applying this theorem to practical situations comes from the analysis of finite orbits.
The simplest instance is when there are no finite orbits at all:

Corollary 1.7. — Under the assumptions of Theorem 1.6, if there is no proper alge-
braic Γν-invariant subset, then ν is uniformly expanding.

By [21, Th. A] the automorphism group of a very general Wehler surface has no
proper Zariski closed invariant set. Since uniform expansion is an open property in
the C1 topology, it holds on an open and dense set – in the Euclidean topology – of
Wehler examples. In the next few paragraphs we explain why it actually holds on a
dense Zariski open set, which is the main point in Theorems 1.1 and 1.3.

First, for a given finite Γ-orbit F , if ν is symmetric and satisfies a slightly stronger
moment condition (M+), Theorem 8.14 provides a checkable necessary and sufficient
condition for F to be uniformly expanding: it is equivalent to the tangent action
of Γ being proximal and strongly irreducible. It follows that when ν is symmetric
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and X is not rational the uniform expansion property depends only on Γ, and not
on ν (Corollary 8.15). Anticipating on these results, for a non-elementary subgroup
Γ ⊂ Aut(X) on a non-rational surface X, we can say that the action is uniformly
expanding if this property holds for some (hence any) symmetric probability measure ν
satisfying (M+) and generating Γ.

In Section 9.1 we show that uniform expansion can be checked algorithmically.
The starting point is the fact that if X is not a torus and Condition (2) of The-
orem 1.6 holds, then by [21, Th. C], there are only finitely many finite orbits. The
difficulty is that there is no a priori bound on their number so far, even in the Wehler
family. Fortunately, we prove that the number of non-expanding finite orbits can be
controlled:

Proposition 1.8. — Let X be a smooth projective surface and Γ be a non-elementary
subgroup of Aut(X) containing parabolic elements and without invariant algebraic
curve. Then there is a computable number N(X,Γ) such that any finite orbit of length
greater than N(X,Γ) is uniformly expanding. Moreover, in the Wehler family, the
number N(X, ⟨σ1, σ2, σ3⟩) is uniformly bounded.

See Theorem 9.1 for details on what we mean by computable. To conclude from
Condition (2) that uniform expansion holds on a Zariski open subset of W, we use
the fact from [21] that on a Zariski open subset WN ⊂ W, all finite orbits have length
greater than N (see Theorem 9.3 below). We do not know the value of N for the
Wehler family but we do not expect it to be large.(3) In particular the equations
defining Wexp and Wexp(R) could in principle be written down explicitly.

1.4. Ergodicity. — Given an action of a general non-elementary group Γ on a com-
pact complex surface X, one may ask the following two basic questions: does there
exist a dense orbit? Is the action ergodic with respect to Lebesgue measure? (The
latter makes sense even when there is no invariant volume form.) If Γ contains a par-
abolic element, by [22] the answer to both questions is ‘yes’, but without parabolic
elements, the answer is unknown. A natural obstruction to the existence of a dense
orbit could be the presence of a non-trivial Fatou component for Γ. No example of
such a Fatou component is known so far; note that examples do exist for algebraic
actions on affine surfaces (see [15, §4.1] or [49, Th. E]).

As a matter of fact, the failure of ergodicity is associated to a lack of expansion:
indeed a theorem of Dolgopyat and Krikorian [26, §10] asserts that a conservative
uniformly expanding action on a (real) surface must be ergodic. It is not difficult to
extend their argument to the complex setting (see Theorem 10.2). In Theorem 8.9 we
state a general criterion (i.e., without parabolic elements) for uniform expansion which
shows that under the conditions (1) and (2) of Theorem 1.6, the failure of uniform
expansion is due to the existence of a Γ-invariant measure with exceptional properties

(3)We show that N depends on the cardinality of a set of special “non-twisting” fibers of elliptic
fibrations with automorphisms, which seems to be quite scarce, see [28, Rem. 7.7.14].
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(see Theorems 8.9 and A.1). We expect it to be an extremely rare phenomenon.
Incidentally, this shows that the question of ergodicity for general non-elementary
groups (i.e., without parabolic elements) ultimately boils down to the classification of
Γ-invariant measures.

Another consequence of our results, together with [26], is that a generic real Wehler
example is stably ergodic among C2 volume preserving actions, that is, if X belongs
to the open set Wexp(R) of Theorem 1.3 and σ′

1, σ′
2, σ′

3 are C2 volume preserving
diffeomorphisms sufficiently close to of σ1, σ2, σ3 in the C1 topology, then Γ′ :=

⟨σ′
1, σ

′
2, σ

′
3⟩ is ergodic for volX(R).

In an opposite direction, the examples from [22, §9] of Aut(XR)-invariant domains
with boundary in X(R) (which admit an invariant curve) provide explicit coun-
terexamples to uniform expansion. For another example, start with the round sphere
x2+y2+z2 = 3 in the affine space, and view it as a singular Wehler surface. The three
involutions act by changing the signs of the coordinates and the points (ε1, ε2, ε3) with
εi = ±1 form an orbit of size 8. Now, choose a smooth Wehler surface X contain-
ing these 8 points and tangent to the sphere at each of them; this imposes 16 linear
conditions on the coefficients of the equation defining X, thus such examples exist.
For such a surface, the 8 points form a finite, non-expanding orbit of ⟨σ1, σ2, σ3⟩ (the
action of the stabilizer of (1, 1, 1) on the tangent space is identical to that of the round
sphere so it factorizes through a finite group).

1.5. Organization of the paper. — The first part of this paper (Sections 2 to 5)
is devoted to a general study of the notion of uniform expansion on compact (real)
manifolds. Much of this material is inspired from other sources; the novelty here is that
we strive for optimal moment conditions. We see several reasons for this. First, it is an
important trend in random dynamics to look for optimal conditions in the measure
rigidity results (an explicit motivation of [31] is to extend the results of Benoist
and Quint to measures with finite first moment). Next, when a random dynamical
system is generated by a probability measure ν with finite support S = Supp(ν)

and one considers a finite index subgroup Γ0 of Γ := ⟨S⟩, then the support of the
measure induced by ν on Γ0 is infinite (albeit with exponential moments). Also, when
looking for random dynamical systems with atypical features, the first examples are
usually given by probability measures with only weak moment conditions. Finally,
we expect fine moment estimates to be important in the process of trying to improve
Theorem 4.5 to include the case of some singular subvarieties Y ⊂ X (possibly in the
spirit of [3, Th. B’]).

In Section 2 we give several equivalent definitions of uniform expansion: this is
inspired by Liu [45] and Chung [24]. In Section 3 we show that uniform expansion
is preserved when restricting to a finite index subgroup or taking a finite extension
(Proposition 3.3); this is useful when dealing with invariant sets made of finitely many
connected components. Section 4 deals with the construction of Margulis functions.
In a nutshell, a Margulis function near a finite uniformly expanding invariant set F
is a function u : M ∖ F → R+ that tends to infinity at F and decreases on average
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along orbits. The existence of such a function guarantees that empirical measures of
random orbits do not accumulate at F . These functions have played an important
role in random dynamics since the work of Eskin and Margulis [32]. Here, thanks to
the work by Bénard and De Saxcé [3], we construct such Margulis functions under op-
timal moment conditions (Theorem 4.1); note that the usual average decay property∫
u(f(x))dν(f) ⩽ au(x) + b, a < 1, is then replaced by

∫
u(f(x))dν(f) ⩽ u(x) − γ,

γ > 0. This repulsion property does not hold if F is an invariant submanifold (see
Example 4.6). However in the holomorphic context, Margulis functions can be con-
structed for invariant totally real manifolds of maximal dimension (Theorem 4.5):
a typical situation is that of X(R) ⊂ X for real projective manifolds. In Section 5, we
elaborate on an ergodic-theoretic criterion for uniform expansion borrowed from [24].

In the second part of the paper (Sections 6 to 10), we consider groups of automor-
phisms of projective surfaces. Theorem 1.4 is established in Section 7. In Section 8,
we prove a general version of Theorem 1.6 and study uniform expansion along pe-
riodic orbits; this makes essential use of the results of the first part. The focus in
Section 9.1 is on finding algorithmically checkable conditions for uniform expansion
along finite orbits (Theorem 9.1); this leads to a precise description of the locus of
uniform expansion in the Wehler family (Theorem 9.3). In Section 9.2, we construct
uniformly expanding actions by perturbing Kummer examples in the Wehler family; in
particular this work for “thin” subgroups of Aut(X) containing no parabolic element.
In Section 10 we study orbit closures and equidistribution by proving general versions
of Theorems 1.1 and 1.3; we also explain the adaptation to the complex setting of the
ergodicity theorem of Dolgopyat and Krikorian [26].

The paper ends with an appendix on the rigidity of zero entropy measures.

1.6. Notes and comments. — Theorem 1.4 was included in the first preprint version
of [20]. We were informed of ongoing projects by Aaron Brown, Alex Eskin, Simion
Filip and Federico Rodriguez Hertz, as well as Megan Roda, on the classification of
stationary measures for uniformly expanding actions. This should fit nicely with our
work; indeed, parts of this article are written so as to to be easily combined with such
a classification (see e.g. Theorem 10.5),

Acknowledgements. — We are grateful to Jean-François Quint for useful comments
on Margulis functions and to the anonymous referees for their detailed reports and
constructive suggestions.

Part 1. Uniform expansion for discrete group actions on manifolds

2. Generalities

In this section, M denotes a compact manifold. The group Diff1(M) of C1 dif-
feomorphisms of M endowed with the C1 topology is a polish space (see [50]) and
we consider a Borel probability measure ν on it. We fix a Riemannian metric on M .
We denote by ∥·∥ the norm induced by the metric on the tangent bundle TM , and
by T 1M the unit tangent bundle.
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2.1. Moment conditions. — If f is a C1-diffeomorphism of M , we denote by f∗ its
action on TM . Note that if v ∈ TM is a tangent vector based at x (that is, v ∈ TxM),
then f∗v = Dxf(v) is based at f(x). By definition, ∥f∥C1(X) is the supremum of
v 7→ ∥f∗v∥ on T 1M . For f ∈ Diff1(M) we put

(2.1) L(f) = log ∥f∥C1(X) + log ∥f−1∥C1(X);

this quantity is subadditive: L(f ◦g) ⩽ L(f)+L(g). For p ⩾ 1 we consider the moment
conditions ∫

L(f)p dν(f) < +∞,(Mp)

∃p > 1, (Mp) holds,(M+)

∃t > 0,

∫
∥f∥tC1(X) + ∥f−1∥tC1(X) dν(f) < +∞.(Mexp)

When p = 1, (Mp) coincides with the moment condition (M) from the introduction.
For p > 1, (Mp) implies (M+) which implies (M). The subadditivity of L and the
convexity inequality (r−1

∑r
i=1 Li)

p ⩽ r−1
∑r

i=1 L
p
i imply

(2.2)
∫

L(f)p dν(r)(f) ⩽ rp
∫

L(f)p dν(f)

for p ∈ [1,+∞[ and r ∈ N∗, where ν(r) denotes the rth convolution power of ν.

2.2. Notation for random compositions. — Set Ω = Diff1(M)N; its elements are
sequences ω = (fn)n⩾0 of diffeomorphisms. We use the probabilistic notation E(·)
and P(·) for the expectation and probability with respect to νN on the probability
space Ω. We let (Fn)n⩾1 be the increasing sequence of σ-algebras in Ω generated by
cylinders of length n, so that an event is Fn-measurable if it depends only on the
first n terms f0, . . . , fn−1 of ω = (fn)n⩾0. For ω = (fn)n⩾0 ∈ Ω we put f0ω = id and

fnω = fn−1 ◦ · · · ◦ f0

for n ⩾ 1; in particular f1ω = f0. For x in M and v ∈ TxM ∖ {0} we set

xω,n = fnω (x) and vω,n =
(fnω )∗(v)

∥(fnω )∗(v)∥
∈ T 1

xω,n
M.

For any sequence of integers 0 = k0 < k1 < · · · < kp = n the chain rule gives

(2.3) log ∥(fnω )∗v∥ =

p−1∑
j=0

log
∥∥(fkj+1−kj

σkjω

)
∗vω,kj

∥∥.
If x is a point of M , we denote by δx the Dirac mass at x. If µ is a probability measure
on M , ν ⋆ µ is the measure defined by (ν ⋆ µ)(B) =

∫
(f∗µ)(B) dν(f) for every Borel

subset B of M .
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2.3. Equivalent conditions for uniform expansion. — Recall that the probability
measure ν on Diff1(M) is uniformly expanding if there exists a real number c > 0 and
an integer n0 ⩾ 1 such that

(2.4) for every v ∈ T 1X,

∫
log ∥f∗(v)∥ dν(n0)(f) ⩾ c.

Then, the cocycle relation for log(∥f∗(v)∥/∥v∥) implies that

(2.5)
∫

log ∥f∗(v)∥ dν(kn0)(f) ⩾ kc

for every k ⩾ 1. Thus, ν is uniformly expanding if and only if ν(n) is uniformly expand-
ing for some (and hence for all) n. It follows that the uniform expansion property does
not depend on our choice of a Riemannian metric on M .

Remark 2.1. — If ν is uniformly expanding and the submanifold N ⊂M is invariant
under every diffeomorphism in the support of ν, then ν induces a uniformly expanding
measure on Diff1(N).

Lemma 2.2. — Let ν be a probability measure on Γ satisfying (M). It is uniformly
expanding if and only if

(2.6) ∀v ∈ T 1M, ∃n = n(v) such that
∫

log ∥f∗v∥ dν(n)(f) > 0.

This is Lemma 4.3.1 of [45], but Liu assumes that the support of ν is compact;
thus we briefly reproduce his proof, assuming only (M).

Proof. — We have to show that (2.6) implies (2.4). Since |log ∥f∗v∥| ⩽ L(f) for every
v ∈ T 1X, the dominated convergence theorem implies that, for every n,

v 7−→
∫

log ∥f∗(v)∥ dν(n)(f)

is continuous. Thus by compactness, there exists a finite open cover V1, . . . , Vp of
T 1M , positive real numbers ci, and integers ni such that∫

log ∥f∗(v)∥ dν(ni)(f) ⩾ ci

for every v∈Vi. Set c0=min(ci) and n0=max(ni). For v ∈ T 1X and ω ∈ Ω, define the
stopping time τ1(v, ω) to be the first integer n⩾1 such that

∫
log ∥f∗v∥ dν(n)(f)⩾c0,

and then define inductively

τk+1(v, ω) = τk(v, ω) + τ1(vω,k, σ
k(ω)).

By construction, τ1 depends on v (hence on x) but not on ω, while τk depends on
both v and ω when k ⩾ 2; in addition τk(v, ω) ⩽ kn0 for all k ⩾ 1. For n ⩾ 1, define
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Kn(v, ω), or K(n) for short, by Kn(v, ω) = max {k : τk ⩽ n}. Then K(n) ⩾ n/n0 and
n−K(n) ⩽ n0 − 1. With the convention τ0 = 0, the chain rule (2.3) gives

E (log ∥(fnω )∗v∥) = E
ÅK(n)−1∑

j=0

log
∥∥(fτj+1−τj

στjω

)
∗vω,τj

∥∥ã+ E
((
f
n−τK(n)

σ
τK(n)ω

)
∗vω,τK(n)

)
⩾

n

n0
c0 − max

1⩽q⩽n0

E (L(fqω))

⩾
n

n0
c0 − n0

∫
L(f)dν(f).

Thus, for n ⩾ n0/2 + (n20/c0)
∫
L(f)dν(f), we have E (log ∥(fnω )∗v∥) ⩾ c0/2 > 0

independently of v, as was to be shown. □

Lemma 2.3. — Under the moment condition (M+), ν is uniformly expanding if and
only if

(2.7) ∀v ∈ T 1X,∃c > 0 such that P
( 1

n
log ∥(fnω )∗v∥ ⩾ c

)
−→
n→∞

1.

Under the moment condition (M), Property (2.7) implies uniform expansion.

Proof. — Let us first show that (2.7) implies (2.6) under the assumption (M). Fix
v ∈ T 1X, set Ωn =

{
ω ∈ Ω : 1

n log ∥(fnω )∗v∥ ⩾ c
}

, and split E
(
1
n log ∥(fnω )∗v∥

)
into

the sum of an integral over Ωn and an integral over Ω∁
n. The first one is larger than

cP(Ωn), and P(Ωn) tends to 1 as n goes to +∞. The second one satisfies∣∣∣E( 1

n
log ∥(fnω )∗v∥1Ω∁

n

)∣∣∣ ⩽ E
( 1

n
L(fnω )1Ω∁

n

)
.

The moment condition and Kingman’s subadditive ergodic theorem show that 1
nL(f

n
ω )

is uniformly integrable and converges almost surely to some finite constant; since
P(Ω∁

n) converges to 0, we conclude that E
(
1
n log ∥(fnω )∗v∥

)
⩾ c/2 for large n.

For the converse implication we use a martingale convergence argument, as in [45,
Lem. 4.3.5] and [24, Prop. 2.2].(4) Choose p > 1 such that (Mp) holds. For convenience,
let us first replace ν by ν(n0), where n0 is given by the expansion property (2.4). Define
(for some fixed unit vector v)

(2.8) Xk = log
∥∥(f1σkω)∗vω,k

∥∥−
∫

log ∥f∗(vω,k)∥dν(f).

These increments Xk are uniformly bounded in Lp because

E
Ä∣∣log ∥∥(f1σkω)∗vω,k

∥∥∣∣pä1/p ⩽ E
(
L(f1σkω)

p
)1/p

=

Å∫
L(f)pdν(f)

ã1/p

and the second term in (2.8) is pointwise bounded by∣∣∣∣∫ log ∥f∗vω,k∥dν(f)
∣∣∣∣ ⩽ ∫

L(f)dν(f) ⩽
Å∫

L(f)pdν(f)

ã1/p

.

(4)Chung only assumes the moment condition (M) however it seems to us that a stronger assump-
tion is needed for the control of the martingale differences.
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Thus, the sums Sn =
∑n−1

k=0 Xk are all in Lp. Since E(Xn | Fn) = 0 and Sn is Fn−1-
measurable, (Sn) is a martingale relative to the filtration (Fn−1). It follows from
Theorem 2.22 in [38, §2.7] that 1

nSn converges to 0 in probability and in Lp. Now,
the chain rule gives

1

n
Sn(ω) =

1

n
log ∥(fnω )∗v∥ −

1

n

∫
log ∥f∗v∥dν(n)(f),

and (2.5) asserts that
∫
log ∥f∗v∥dν(n)(f) ⩾ cn, so we conclude that for any c′ < c

(2.9) P
( 1

n
log ∥(fnω )∗v∥ ⩾ c′

)
−→
n→∞

1,

as desired. Recall however that we are working with ν(n0): coming back to ν this
means that (2.9) holds along the subsequence (nn0). We then write n = kn0+ r, with
0 ⩽ r ⩽ n0 − 1, so that

(fnω )∗v = (frσkn0ω)∗(f
kn0
ω )∗v

and what we have to show is that applying fr
σkn0ω

does not affect the linear growth
of log

∥∥(fkn0
ω )∗v

∥∥. But the inequality (2.2), applied with p = 1, gives

P
(
∃0 ⩽ r ⩽ n0 − 1,

∣∣log ∥∥(frσkn0 )∗
∥∥∣∣ ⩾ εk

)
⩽

n0−1∑
r=0

ν(r) (L(f) ⩾ εk) ⩽
Cn20
εk

,

and we are done. □

Remark 2.4. — In the first part of the proof, the implication (2.7) ⇒ (2.6) is true
for a given v, while the converse implication requires uniform expansion on the whole
of X.

Remark 2.5. — This proof shows that if ν satisfies (M2), then the convergence in
probability in (2.7) can be replaced by an almost sure convergence. (Indeed by [34,
Th. 3, p. 243], 1

nSn converges almost surely to 0 when the Xk are uniformly L2.)

Remark 2.6. — So far, we have not really used that we are dealing with diffeomor-
phisms: the results from this section hold for a semigroup action, by replacing L(f)

by ∥f∥C1(X).

3. Inducing on a finite index subgroup

3.1. Hitting times and hitting measures (see [5, Chap. 5]). — Let ν be a Borel prob-
ability measure on Diff1(M) and let G be the closed sub-semigroup of Diff1(M) gen-
erated by ν. Let H ⊂ G be a closed finite index sub-semigroup; this means that there
is a continuous and transitive action G× F → F on some finite set F such that H is
the stabilizer of some element x0 ∈ F ; the index of H is [G : H] = |F | and F is the
quotient space. For instance, H can be the stabilizer of a point x in a finite G-orbit.

The hitting time TH of H for the random walk induced by ν (starting from the
neutral element) is

TH(ω) = min
{
n ⩾ 1 : fnω ∈ H

}
.
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Lemmas 5.4 and 5.5 in [5] show that TH is almost surely finite, admits an exponential
moment, and satisfies E(TH) = [G : H]. By definition the hitting measure (or induced
measure) νH is the probability measure on H describing the distribution of fTH(ω)

ω .
Define the k-th hitting time TH,k of H by TH,1 = TH and the induction

TH,k+1(ω) = min{n ⩾ TH,k + 1 : fnω ∈ H}.

The convolution ν
(k)
H describes the distribution of fTH,k(ω)

ω . If H is a finite index
semigroup and g ∈ H, hg belongs to H if and only if h belongs to H. Thus,
TH,k+1(ω) − TH,k(ω) = TH,1(σ

TH,k(ω)(ω)) and the Markov property implies that the
random variables (TH,k+1 − TH,k) are independent and identically distributed: each
of them is distributed as TH . Since their expectation equals [G : H], the law of large
numbers gives

lim
k→+∞

1

k
TH,k(ω) = [G : H]

νN-almost surely.

Theorem 3.1. — The hitting measure on a finite index subgroup satisfies the following
properties

(1) if νH satisfies (Mp) for some p ⩾ 1, then so does ν;
(2) if ν satisfies (Mp), then νH satisfies (Mp′) for any 1 < p′ < p;
(3) ν satisfies (M), or (M+), or (Mexp) if and only if νH does.

Moreover, νH generates H as a semigroup, which means that H is the smallest closed
sub-semigroup of G containing the support of νH .

This result still holds if we substitute any subbaditive function to log ∥f∥C1(X) in
the definition of L (see Equation 2.1), with exactly the same proof.

Proof. — Consider the finite quotient F of G by H and denote the action of G on F
by left translations by (u 7→ au, a ∈ G); by definition H is the stabilizer of some
x0 ∈ F . Set K = |F | = [G : H].

For each u ∈ F , choose a sequence of measurable subsets A1(u), A2(u), . . . , Ak(u)

in G, with k = k(u) ⩽ K such that ν(Ai(u)) > 0 for each i and, for all sequences
ai ∈ Ai(u), (ak · · · a1)u = x0 while (aj · · · a1)u ̸= x0 if j < k. Since F is finite, there
is a real number ε > 0 such that ν(A1(u)) · · · ν(Ak(u)(u)) is larger than ε for all u.
Shrinking the Ai(u) if necessary, we may assume that L(g) ⩽ C for some C > 0 and
all g in

⋃
u,iAi(u).

We split the integral of L(f)p as a finite sum∫
L(f)pdν(f) =

∑
u∈F

∫
{fx0=u}

L(f)pdν(f).

If
(ak(u), . . . , a1) ∈ Ak(u)(u)× · · · ×A1(u),

then L(f) ⩽ L(ak(u) · · · a1f) +KC because L is subadditive; thus,∫
{fx0=u}

L(f)pdν(f) ⩽
∫
{fx0=u}

(L(ak(u) · · · a1f) +KC)pdν(f).
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By construction, the product ak(u) · · · a1f is a first return in H. Thus, integrating
over the Ai(u), the distribution of ak(u) · · · a1f contributes positively to νH , and we
get

ε

∫
{fx0=u}

L(f)pdν(f) ⩽
∫
H

(L(g) +KC)pdνH(g).

Assertion (1) follows from this estimate.
For Assertion (2), we must bound

∫
L(f)p

′
dνH(f) = E(L(fTH(ω)

ω )p
′
). By subaddi-

tivity of L and convexity of s 7→ sp, we have

L
(
fTH(ω)
ω

)p
⩽ TH(ω)p−1

TH(ω)−1∑
i=0

L(fi)
p
.

Raising this inequality to power p′/p gives

L
(
fTH(ω)
ω

)p′

⩽ TH(ω)p
′(1−1/p)

ÅTH(ω)−1∑
i=0

L(fi)
p
ãp′/p

.

On the other hand, Lemma 5.4 of [5] says that E(
∑TH(ω)

i=1 φ◦σi) = E(TH)E(φ), for any
integrable function φ. This shows that

∑TH(ω)−1
i=0 L(fi)

p is integrable, and in particular
its p′/p power is in Lp/p′

(Ω; νN). Since the hitting time TH admits moments of all
orders, we can apply the Hölder inequality with parameters r = p/p′ > 1 and q such
that 1/q + 1/r = 1: it shows that L

(
f
TH(ω)
ω

)p′

is integrable, as desired.
Assertion (3) follows from Assertions (1) and (2) and [5, Cor. 5.6]. For the last

assertion, fix an element h of H and an open neighborhood U of h in H. Since H
is of finite index in G, it is open and closed, so U is also a neighborhood of h in G.
By assumption the support of ν generates a dense sub-semigroup of G, so the random
walk induced by ν starting at the neutral element visits U , thus νH generates H as a
semigroup. □

3.2. Uniform expansion of the induced measure

Proposition 3.2. — Let ν be a probability measure on Diff1(M) satisfying (M).
Assume that ν is uniformly expanding and let n0 be as in (2.4). Then, the measure
induced by ν(n0) on H is uniformly expanding.

In fact, Proposition 3.3 below shows that, under condition (M+), ν is uniformly
expanding if and only if νH is. The proof of Proposition 3.2 is based on a simple
martingale argument, while Proposition 3.3 relies on the criterion of Lemma 2.3.

Proof. — We use ideas from [45, §4.3] and [24, Prop. 2.2]. To ease notation we
rename ν(n0) into ν so that (2.4) holds with n0 = 1 and some c > 0; as above,
we denote by νH the measure induced by ν (i.e., by ν(n0)) on H. Fix v ∈ T 1X, and
define a sequence of random variables (Yk)k⩾0 by

Yk(ω) = log
∥∥(f1σkω)∗vω,k

∥∥− c.
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Then for all k ⩾ 1, E(Yk | Fk) ⩾ 0, so that the sequence (Sn)n⩾1 defined by Sn =∑n−1
k=0 Yk is a submartingale relative to the filtration (Fn): E(Sn+1 | Fn) ⩾ Sn. The

moment condition (M) implies that E(|Sn+1 − Sn| | Fn) = E(|Yn| | Fn) is uniformly
bounded. Since the hitting time TH is integrable, we can apply the optional stopping
theorem [30, Th. 4.7.5], which implies that E(STH

) ⩾ E(S1) ⩾ 0. Unwinding the
definitions and applying the chain rule, we see that

E(STH
) =

∫
log ∥f∗v∥ dνH(f)− c[G : H],

where we use E(TH) = [G : H]. Therefore
∫
log ∥f∗v∥ dνH(f) ⩾ c[G : H] > 0, and νH

is uniformly expanding. □

Proposition 3.3. — Let ν be a probability measure on Diff1(M) satisfying (M+).
Let νH be the measure induced on a closed finite index sub-semigroup. Then ν is
uniformly expanding if and only if νH is uniformly expanding.

Proof. — Let us show that if νH is uniformly expanding then ν is uniformly expand-
ing. The converse implication is similar and is left to the reader (in this direction,
Proposition 3.2 will actually be sufficient for our purposes). Fix v ∈ T 1M . In view of
Lemma 2.3, we have to show that for some c > 0,

P
( 1

n
log ∥(fnω )∗v∥ ⩾ c

)
−→
n→∞

1.

Consider the sequence of hitting times (TH,k) defined in Section 3.1 and denote it by
(Tk) for simplicity (hence T1 = TH). By Theorem 3.1, νH satisfies (M+), so we can
apply Lemma 2.3 to get a real number c > 0 such that

(3.1) P
(1
k
log ∥(fTk(ω))∗v∥ ⩾ c

)
−→
k→∞

1.

Let γ = [G : H] and fix a positive real number ε < c/γ. Let also ε1 ≪ ε which will be
specified later. For K ⩾ 1, set

Ω1(K) =
{
ω : ∀k ⩾ K,

∣∣∣Tk(ω)
k

− γ
∣∣∣ < ε1

}
.

If K > γ/(2ε1) and ω ∈ Ω1(K), then for n ⩾ Kγ + 1 we get

(3.2) T⌊n/(γ+ε1)⌋(ω)−
4ε1
γ
n ⩽ n ⩽ T⌊n/(γ+ε1)⌋(ω) +

4ε1
γ
n.

Now, define Ω2(n) to be the set of sequences ω such that the inequality involved
in (3.1) is satisfied at time T⌊n/(γ+ε1)⌋(ω); in other words, ω ∈ Ω2(n) if and only if

(3.3) log
∥∥(fT⌊n/(γ+ε1)⌋(ω)

)
∗v
∥∥ ⩾ c⌊n/(γ + ε1)⌋.

Then P(Ω1(⌊
√
n⌋)∩Ω2(n)) converges to 1 as n goes to +∞ and as soon as n ⩾ γ

√
n+1,

any ω ∈ Ω1(⌊
√
n⌋) ∩ Ω2(n) satisfies (3.2) and (3.3).

Now consider the set Ω3(n) ⊂ Ω1(⌊
√
n⌋) ∩ Ω2(n) made of those ω such that

L
(
fn−Tk

σTkω

)
< εn for k = ⌊n/(γ + ε1)⌋. Then

P(Ω3(n)
∁) ⩽ P

(
L
(
fn−Tk

σTkω

)
⩾ εn

)
⩽ P

(
max

0⩽q⩽4ε1n/γ

∑q−1
i=0 Li ⩾ εn

)
,
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where (Li)i⩾0 is a sequence of independent random variables, each of which
being distributed as L(g) for dν(g). Since the Li are non-negative, P(Ω3(n)

∁) ⩽

P
(∑4ε1n/γ

i=0 Li ⩾ εn
)
. If ε1 is chosen such that (4ε1/γ)E(L1) < ε, the law of large

numbers entails that

P
(4ε1n/γ∑

i=0

Li ⩾ εn
)

−→
n→∞

0,

thus P (Ω3(n)) tends to 1 as n→ ∞.
Then, for ω ∈ Ω3(n), the estimates (3.2), (3.3) and L(fn−Tk

σTkω
) < εn imply that

1
n log ∥(fnω )∗v∥ ⩾ c/γ − ε and the conclusion follows. □

4. Margulis functions

In this section we develop some tools for the proof of the equidistribution The-
orem 1.3. Under appropriate assumptions, we show that the measures νn ∗ δx and
1
n

∑n
k=1 δfk

ω(x) do not cluster at a Γ-periodic orbit, except when Γ(x) is itself finite. The
basic tool is the construction of a proper function, defined on the complement of such
a periodic orbit, which “essentially decreases” along random trajectories. After [32] it
is often referred to as a Margulis function, even if this strategy has a long history in
the Markov chain literature (see [46]). Our presentation is greatly influenced by [4]
and [3].

4.1. A general recurrence criterion. — For concreteness, instead of general Mar-
kov chains, we consider the setting of group actions.

Theorem 4.1 (Bénard-De Saxcé [3]). — Let U be a locally compact topological space.
Let Γ be a group of homeomorphisms of U , and ν be a probability measure on Γ.
Assume that there exists a function u : U → R+ satisfying the assumptions:

∃A > 0, ∃γ > 0, ∀x ∈ U, u(x) ⩾ A =⇒
∫
u(f(x))dν(f) ⩽ u(x)− γ,(4.1)

∃B > 0,∃η > 0,∀x ∈ U,

∫
|u(f(x))− u(x)|1+η

dν(f) ⩽ B.(4.2)

Then for every ε > 0 there exists R > 0 such that for all x in U ,
(1) there exists nx ⩾ 0, such that (νn ∗ δx)({u ⩾ R}) ⩽ ε for all n ⩾ nx;
(2) for νN-almost every ω,

lim sup
n→∞

1

n
#
{
k ∈ {1, . . . , n} : u

(
fkω(x)

)
⩾ R

}
⩽ ε.

Furthermore the integer nx in (1) depends only on u(x).

In the most interesting cases, u will be a proper function on U . Then, Equa-
tion (4.1) expresses that, on average, the random dynamics does not send points too
far off at infinity, and Equation (4.2) can be understood as a moment condition in
the u-variable; then, the conclusions (1) and (2) correspond to “non-escape of mass”
and “quantitative recurrence” properties.
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For the proof, see [3, Prop. 1.2], and the comments following it. More precisely,
we refer to [3, Prop. 2.5] for the conclusion (1), including the uniformity statement
on nx, and to [3, Prop. 2.7] for (2).

The original decay property for the Margulis function u in [32, 4] is

(4.3) ∃0 < a < 1, ∃b > 0, ∀x ∈ U,

∫
u(f(x))dν(f) ⩽ au(x) + b

instead of (4.1). One easily checks that if u satisfies (4.1) and the following strong
integrability property

(4.4) ∃B > 0, ∀x ∈ U,

∫
exp (|u(f(x))− u(x)|) dν(f) ⩽ B,

then eδu satisfies (4.3) for small δ > 0. Under this assumption, Theorem 4.1 was
established in [4].

4.2. Finite orbits of C2 actions. — Let ν be a probability measure on the group
of C2 diffeomorphisms of a compact Riemannian manifold M of dimension d. As in
Section 2.1 we consider the moment conditions∫ (

log ∥f∥C2 + log
∥∥f−1

∥∥
C2

)p
dν(f) < +∞,(M2,p)

∃p > 1, (M2,p) holds,(M2,+)

Remark 4.2. — For a holomorphic action on a compact complex manifold X, these
conditions are equivalent to their respective C1 analogues (Mp) and (M+), because
a uniform control on the first derivatives provides a uniform control on the higher
derivatives as well. Here is an outline of the argument. Cover X by finitely many
charts Ωi. Then there exists c > 0 such that for every x ∈ X and every f ∈ Aut(X),
the balls B(x, r) and f(B(x, r)) are contained in a single chart, as soon as r ⩽ c∥f∥−1

C1 .
Then the Cauchy estimates imply that

∥∥f |B(x,r/2)

∥∥
C2 ⩽ (C/r)

∥∥f |B(x,r)

∥∥
C1 ⩽ C∥f∥2C1

and the result follows.

Before stating our next result, recall that the notion of uniform expansion along a
finite orbit was defined in Section 1.3.

Theorem 4.3. — Let Γ be a group of C2 diffeomorphisms of a compact Riemannian
manifold M , and ν be a measure on Γ satisfying the moment condition (M2,+). Let F
be a finite orbit of Γ such that ν is uniformly expanding on F . Then for every x ∈
M ∖ F , for every ε > 0 there exists a compact set K ⋐M ∖ F such that:

(1) (νn ∗ δx)(K) ⩾ 1− ε for n ⩾ nx, and
(2) for νN-almost every ω,

lim sup
n→∞

1

n
#
{
k ∈ {1, . . . , n} : fkω(x) ∈ K

}
⩾ 1− ε.

Furthermore the integer nx in (1) is locally uniform in M ∖ F .
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This result seems to be new: it appears under stronger (exponential) moment
assumptions in e.g. [45, 24]. Note that such a result is not expected to hold under
the first moment condition (M2,1), as explained in Examples 1 and 2 of Section 2
in [3].

Proof. — First, the proof of Proposition 3.3 in [3] shows that if the conclusions (1)
and (2) hold for ν(n0), then they hold for ν. So we can replace ν by ν(n0) and hence
assume that the uniform expansion property (1.1) holds (on F ) for n0 = 1.

Let d(·, ·) be the Riemannian distance on M . According to Theorem 4.1, we only
need to show that u : x 7→ − log d(x, F ) is a proper function M ∖ F → R+ satisfying
Properties (4.1) and (4.2).

Preliminaries. — We set N(f) = ∥f∥C2 +
∥∥f−1

∥∥
C2 and note that N(f) ⩾ Lip(f) +

Lip(f−1) for every f ∈ Γ. In particular, for every x ∈ X

(4.5) 1

N(f)
⩽
d(f(x), F )

d(x, F )
⩽ N(f).

For R > 0, set Γ(R) = {f ∈ Γ : N(f) ⩽ R}. We choose η > 0 such that the moment
condition (M2,p) is satisfied with p = 1 + η. Then,

Iη :=

∫
Γ

(log(N(f)))
1+η

dν(f)

is a finite positive number. In what follows, we choose R > 1 such that
2Iη

(log(R))η
<
c

4
,

where c is the expansion factor in Equation (1.1) (along the finite orbit F ).
Take s > 0 such that
– s is smaller than the injectivity radius of M at y, for every y ∈ F ;
– the balls B(y; s), for y in F , are pairwise disjoint;
– C0R

2s < c/4, where c is the expansion factor as above, and C0 is the constant
appearing below in the Taylor expansion (Equation (4.6)).
Then, define V and V ′ by

V =
⋃

y∈F

B(y; s), V ′ =
⋃

y∈F

B(y; s/R).

By (4.5) we have f(V ′) ⊂ V for every f ∈ Γ(R).
If x belongs to V , we denote by π(x) the unique point of F at distance ⩽ s from x,

and we denote by wx the unique vector in Tπ(x)M such that expπ(x)(wx) = x and
∥wx∥ = d(x, π(x)).

First estimate. — For f in Γ(R) and x ∈ V ′, Taylor’s second order formula yields

(4.6)
∣∣d(f(x), f(π(x)))− ∥f∗(wx)∥

∣∣ ⩽ C0N(f)d(x, π(x))2,

for some uniform constant C0, that does not depend on f . This gives∣∣∣d(f(x), F )
d(x, F )

− ∥f∗(wx)∥
∥wx∥

∣∣∣ ⩽ C0N(f)d(x, F ).
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Using the Lipschitz estimate (4.5) and the fact that |log(a)− log(b)| ⩽ N |a− b| when
a, b ∈ [N−1,∞[, we obtain

(4.7)
∣∣∣log(d(f(x), F )

d(x, F )

)
− log

(∥f∗(wx)∥
∥wx∥

)∣∣∣ ⩽ C0N(f)2d(x, F ).

By the definition of Γ(R) and the requirements on s, we get∫
f∈Γ(R)

∣∣∣log(d(f(x), F )
d(x, F )

)
− log

(∥f∗(wx)∥
∥wx∥

)∣∣∣dν(f) ⩽ C0R
2d(x, F ) ⩽

c

4
,

because d(x, F ) ⩽ s.

Second estimate. — Now, for any f in Γ we also have

(4.8)
∣∣∣log(d(f(x), F )

d(x, F )

)
− log

(∥f∗(wx)∥
∥wx∥

)∣∣∣ ⩽ 2 log(N(f))

hence Markov’s inequality and our choice of R give∫
f∈Γ(R)∁

∣∣∣log(d(f(x), F )
d(x, F )

)
− log

(∥f∗(wx)∥
∥wx∥

)∣∣∣dν(f) ⩽ 2

log(R)η
Iη ⩽

c

4
.

Conclusion. — Summing the integrals over f in Γ(R) and Γ(R)∁, we obtain

(4.9)
∫
f∈Γ

∣∣∣log(d(f(x), F )
d(x, F )

)
− log

(∥f∗(wx)∥
∥wx∥

)∣∣∣dν(f) ⩽ c

2
.

Since wx is a vector tangent to M at π(x) ∈ F , the uniform expansion along F yields∫
log

(∥f∗(wx)∥
∥wx∥

)
dν(f) ⩾ c

and then (4.9) implies that∫
− log d(f(x), F )dν(f) ⩽ − log(d(x, F ))− c/2.

In other words, u : x 7→ − log(d(x, F )) satisfies Property (4.1) (with A = − log(s)).
Property (4.2) is obtained from (4.5) and the moment condition. Thus, as announced
above, u satisfies the assumptions of Theorem 4.1, and we are done. □

The local uniformity of nx in Theorem 4.3 has the following interesting conse-
quence.

Proposition 4.4. — Under the assumptions of Theorem 4.3, any stationary Radon
measure on M ∖ F has finite mass.

Proof. — Let µ be such a stationary measure. Fix ε > 0, say ε = 1/2 and let K be
as in Theorem 4.3. The stationarity of µ implies that for every n ⩾ 0,

(ν(n) × µ) ({(g, x) : gx ∈ K}) = µ(K),

hence for every Borel set B ⊂M ∖ F ,

(4.10)
∫
B

ν(n) ({g : gx ∈ K}) dµ(x) ⩽
∫
X

ν(n) ({g : gx ∈ K}) dµ(x) = µ(K).
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Now if B is an arbitrary compact subset of M ∖ F , the uniformity statement in
Theorem 4.3 implies that there exists n = nB such that for every x ∈ B,

ν(nB) ({g : gx ∈ K}) ⩾ 1

2
.

Plugging this into (4.10), we obtain 1
2µ(B) ⩽ µ(K). Since B is arbitrary, this implies

that µ(M ∖ F ) ⩽ 2µ(K) and we are done. □

4.3. Totally real invariant manifolds. — We now consider a situation which is
specific to the complex setting.

Theorem 4.5. — Let X be a compact complex manifold of dimension d. Let Γ be a
group of holomorphic diffeomorphisms of X, endowed with a probability measure ν

satisfying (M+). Let Y ⊂ X be a Γ-invariant, real analytic, totally real submanifold
of maximal (real) dimension d, such that ν is uniformly expanding on Y . Then for
any x ∈ X ∖ Y and any ε > 0, there exists a compact subset K ⋐ X ∖ Y such that
the conclusions (1) and (2) of Theorem 4.3 hold.

By “uniformly expanding along Y ” we mean that the restriction of Γ to Y is
uniformly expanding viewed as an action on Y , or equivalently that the uniform
expansion condition (1.1) holds in X for every x ∈ Y ; the equivalence between the
two conditions comes from the fact that for every x ∈ Y , the complex span of TxY is
TxX. When Y is singular, we require that (1.1) holds in X along Sing(Y ).

Note also that this statement is specific to totally real submanifolds and holomor-
phic actions. In other words, there is no analogue of Theorem 4.1 when F is replaced
by an arbitrary submanifold: see Example 4.6 below.

Proof. — We suppose Y smooth and show that there exists n ⩾ 1 such that x 7→
− log d(x, Y ) defines a Margulis function (i.e., satisfies (4.1) and (4.2)) for ν(n). Then,
as explained before, [3] shows that (4.1) and (4.2) are automatically satisfied with
n = 1. As in Theorem 4.3, Property (4.2) follows from the invariance of Y and the
bilipschitz property; so we focus on (4.1).

For every x ∈ Y there exists a local chart in which the equation of Y becomes
Im(z) = 0, where Im(z) = Im(z1, . . . , zd) = (Im(z1), . . . , Im(zd)) (see [1, Prop. 1.3.8 &
1.3.11]). We fix a finite family ϕi : Ui → Cd of such charts, covering a neighborhood
of Y . The charts being bilipschitz, there exists an absolute constant D such that if
x ∈ Ui,

|log d(ϕi(x), ϕi(Y ))− log d(x, Y )| ⩽ D.

Then from (2.5), replacing ν by ν(n) we may assume that the uniform expansion holds
for n = 1 and the expansion constant c is bigger than 10D. We will work in local
charts to show that − log d(·, Y ) is a Margulis function.

Let dUi
denote the Euclidean distance in the i-th chart (pulled back by ϕi).

In Ui, write ϕi(x) = z = (z1, . . . , zd) and ϕi(Y ) = {Im(z) = 0}. Let π(ϕi(x)) =

(Re(z1), . . . ,Re(zd)) be the projection of ϕi(x) on Y , so that

(4.11) dUi
(x, Y ) = ∥ϕi(x)− π(ϕi(x))∥ = ∥(Im(z1), . . . , Im(zd))∥ = ∥Im(ϕi(x))∥.
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As before let Γ(R) = {f ∈ Γ : N(f) ⩽ R}, where N(f) = ∥f∥C2 +
∥∥f−1

∥∥
C2 , and fix

f ∈ Γ(R). If x is sufficiently close to Y , then so does f(x), hence f(x) belongs to some
chart Uj and working in this chart we get dUj (f(x), Y ) = ∥Im(ϕj(f(x)))∥. Applying
Taylor’s formula to the coordinate expression f̃ of f , we obtain

ϕj(f(x)) = f̃(ϕi(x))

= f̃(π(ϕi(x))) + df̃π(ϕi(x))(ϕi(x)− π(ϕi(x))) +O
(
∥ϕi(x)− π(ϕi(x))∥2

)
.

Now, observe that the vector df̃π(ϕi(x))(ϕi(x)−π(ϕi(x))) is purely imaginary because
ϕi(x)−π(ϕi(x)) is purely imaginary and df̃π(ϕi(x)) is real, since it preserves Y . Thus,
taking imaginary parts and using (4.11) yields∣∣∣dUj (f(x), Y )

dUi
(x, Y )

− ∥dfπ(x)(vx)∥
∣∣∣ ⩽ CRdUi

(x, Y ),

where
vx = ϕ∗i

( ϕi(x)− π(ϕi(x))

∥ϕi(x)− π(ϕi(x))∥

)
, π(x) = ϕ−1

i π(ϕi(x)),

and the constant C depends only on the charts. Arguing as in (4.7), plugging in the
bilipschitz estimate for the distance to Y , and increasing C if necessary we get∣∣∣log d(f(x), Y )

d(x, Y )
− log ∥dfπ(x)(vx)∥

∣∣∣ ⩽ CR2d(x, Y ) + 2D.

Finally, using the moment condition to deal with the contribution of Γ∖ Γ(R) as in
Theorem 4.1, we obtain∫

Γ

∣∣∣log d(f(x), Y )

d(x, Y )
− log ∥dfπ(x)(vx)∥

∣∣∣dν(f) ⩽ CR2d(x, Y ) + 2D +
C

(logR)η
,

and we conclude that log d(·, Y ) is a Margulis function by first fixing a large R and
then choosing x sufficiently close to Y , as in Theorem 4.1. □

Example 4.6. — There exists a group Γ = ⟨f, g⟩ of diffeomorphisms of the 3-torus
R3/Z3 and a finitely supported measure ν on Γ with ⟨Supp(ν)⟩ = Γ such that:

– Γ preserves Y := R2/Z2 × {0};
– there exists a neighborhood U of Y on which the dynamics of (Γ, ν) is uniformly

expanding;
– for every x ∈ U and almost every trajectory ω, fnω (x) converges to Y .

Proof. — Let 0 < γ < 1 and ψ be a diffeomorphism of the circle R/Z such that
(i) ψ fixes 0, ψ(z) = γz on [−1/8, 1/8], and ψ([−1/4, 1/4]) = [−1/4, 1/4];
(ii) in the interval [−1/4, 1/4], the only fixed points of ψ are −1/4, 0 and 1/4.
Then there is a diffeomorphism φ : ]− 1/4, 1/4[→ R that conjugates ψ|]−1/4,1/4[ to

t 7→ γt.
Pick A and B in SL(2,Z) and (c1, c2) in Z2 such that
(iii) A and B generate a non-elementary subgroup;
(iv) γ is not an eigenvalue of B and (c1, c2) ̸= (0, 0).
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Define two diffeomorphisms g and h of R3/Z3 by

g(x, y, z) = (A(x, y) + (c1z, c2z), ψ(z)) and h(x, y, z) = (B(x, y), ψ(z)).

Let ν be a probability measure supported on
{
g, h, g−1, h−1

}
such that 0 < ν(g−1) <

ν(g) and 0 < ν(h−1) < ν(h).
First, let us prove that there exists Ω0 ⊂ Ω of full νN-measure such that fnω (p)

converges towards Y for every p = (x, y, z) ∈ R2/Z2 × ] − 1/4, 1/4[, and ω ∈ Ω0.
Indeed, writing fnω (p) = (xn, yn, zn), we have:

(1) zn ∈ ]− 1/4, 1/4[ because ψ preserves ]− 1/4, 1/4[;
(2) φ(zn) = γ

∑n
i=1 εiφ(z), where (εn) is a sequence of independent random variables

with P(ε = 1) = ν(g) + ν(h) and P(ε = −1) = ν(g−1) + ν(h−1). Since, ν(g−1) +

ν(h−1) < ν(g) + ν(h), φ(zn) converges almost surely to 0.
Now, we show that the dynamics of (Γ, ν) is uniformly expanding in the product

R2/Z2 × ]− 1/4, 1/4[. Indeed, if p ∈ R2/Z2 × ]− 1/4, 1/4[ and ω ∈ Ω0, there is n(ω)
such that fnω (p) ∈ R2/Z2 × ]− 1/8, 1/8[ for n ⩾ n(ω). Now, in R2/Z2 × ]− 1/8, 1/8[

the dynamics is linear, and the tangent action is generated by

g̃ =

Ö
A

Ç
c1
c2

å
0 γ

è
and h̃ =

Ç
B 0

0 γ

å
.

We claim that the linear action of (Γ̃, ν̃) on R3 is uniformly expanding, where
Γ̃ = ⟨g̃, h̃⟩ and ν̃ is the measure naturally corresponding to ν. Indeed, the action is
uniformly expanding on R2 × {0} and if it were not uniformly expanding on R3,
by Furstenberg-Kifer [36], there would exist a Γ̃-invariant line transverse to R2 ×{0}
along which the Lyapunov exponent would be non-positive. But the hypothesis (iv)
guarantees that such a line does not exist. From this, we deduce that there exists
c > 0 (any constant smaller than the Lyapunov exponent of the random product
generated by A and B will do) such that for every p ∈ R2/Z2 × ] − 1/4, 1/4[, every
unit tangent vector v at p and almost every ω, 1

n log ∥(fnω )∗v∥ ⩾ c if n is large enough.
Applying Lemma 2.3 finishes the proof. □

5. An ergodic-theoretic criterion for expansion

5.1. Construction of stationary measures. — Let M be a compact manifold en-
dowed with a Riemannian metric; let T 1M denote its unit tangent bundle and
π : T 1M → M be the canonical projection. As in Section 2, if f is a diffeomorphism
of M , we denote by f∗ its action on TM . Let ν be a probability measure on Diff1(M)

satisfying the moment condition (M). We apply a classical strategy to get the
following theorem (see e.g. [24, Prop. 3.17], and [39, Lem. 3.3]).

Theorem 5.1. — Assume that there exists an increasing sequence (nk) ∈ NN and a
sequence of unit tangent vectors (uk) ∈ (T 1M)N such that

lim
k→∞

1

nk

∫
log ∥f∗uk∥dν(nk)(f) = χ0.
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Then, there exists a real number χ ⩾ χ0, an ergodic ν-stationary probability measure µ̂
on T 1M , and a ν-almost surely invariant sub-bundle V ⊂ TM such that the top
Lyapunov exponent of the projected measure µ := π∗µ̂ in restriction to V is equal
to χ.

Likewise, there exists a real number χ′ ⩽ χ0 that satisfies the same property for
some pair (µ̂′, V ′) and the projection µ′ := π∗µ̂

′.

Note that if µ̂ is a probability measure on T 1M that is ν-stationary for the tangent
action, then its projection µ on M is ν-stationary as well; and if µ̂ is ergodic, so is µ.
When χ > 0, one typically obtains V = TM .

Proof (see [24, 39]). — Consider the sequence of measures µ̂k on T 1M defined by

µ̂k =
1

nk

nk−1∑
j=0

ν(j) ⋆ δuk
=

1

nk

nk−1∑
j=0

∫
f∗uk
∥f∗uk∥

dν(j)(f),

where ν(j) ⋆ δuk
denotes the convolution for the action of Diff(M) on the unit tangent

bundle. Since T 1M is compact and the µ̂k are probability measures, we can extract
a subsequence (still denoted by µ̂k for simplicity) that converges weakly towards a
probability measure µ̂∞ on T 1M . By construction, this measure is ν-stationary.

The function Dil(f, u) := log ∥f∗u∥ is continuous on Diff1(M)× T 1M . And by our
moment assumption, so is the function u ∈ T 1M 7→

∫
Dil(f, u)dν(f). For u ∈ T 1M

the chain rule gives

1

n

∫
log ∥(fnω )∗u∥dνN(ω) =

1

n

n−1∑
j=0

∫
Dil

(
fj ,

(f jω)∗u

∥(f jω)∗u∥

)
dνN(ω)

=

∫
g∈Diff(M)

Å
1

n

n−1∑
j=0

∫
Dil

(
g,

h∗u

∥h∗u∥

)
dν(j)(h)

ã
dν(g).

If we apply this equation to n = nk and u = uk the term between parentheses in the
last integral is equal to

∫
Dil (g, u) dµ̂k(u), so, letting k go to +∞, we conclude that

lim
k→∞

1

nk

∫
log ∥f∗uk∥dν(nk)(f) = χ0 =

∫
Diff1(M)

∫
T 1M

Dil(g, u)dµ̂∞(u)dν(g).

Thus, there exists χ ⩾ χ0 (resp. χ ⩽ χ0) and an ergodic component µ̂ of µ̂∞ such
that ∫

Diff1(M)

∫
T 1M

Dil(g, u)dµ̂(u)dν(g) = χ.

As observed above, µ = π∗µ̂ is an ergodic ν-stationary probability measure. Denote
by µ̂x the conditional measures obtained by disintegration of µ̂ with respect to the
fibers of π, that is, µ̂ =

∫
µ̂xdµ(x). For µ-almost every x, let V (x) be the linear span

of Supp(µ̂(x)). Since Supp(µ̂) is ν-almost invariant and f∗ acts linearly along the
fibers of TM , we infer that V is a ν-almost invariant measurable sub-bundle. The
Furstenberg formula asserts that the top Lyapunov exponent of µ in restriction to V
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is equal to χ. For completeness let us recall the argument: the ergodic theorem shows
that for (νN × µ)-almost every (ω, x) and µ̂x-almost every u ∈ T 1

xM ,

(5.1) lim
n→+∞

1

n

n−1∑
j=0

Dil
(
fj , (f

j
ω)∗u

)
=

∫
Diff1(M)N

∫
T 1M

Dil(f1ω, u) dµ̂(u)dν
N(ω) = χ,

where as usual ω = (f0, f1, . . . ), f1ω = f0, and f jω = fj−1 ◦ · · · ◦ f0. On the other hand
the Oseledets theorem asserts that for (νN × µ)-almost every (ω, x), there exists a
proper subspace W (ω, x) ⊂ V (x) such that for u /∈W (ω, x), 1

n log ∥(fnω )∗u∥ converges
to the top Lyapunov exponent χ+(µ, V ) of µ in restriction to V . Thus by (5.1),
χ+(µ, V ) = χ, and the proof is complete. □

5.2. Application: Chung’s criterion. — The following theorem, taken from [24,
Prop. 3.17], plays an important role in this paper; a variant of this result appears
in [12]. It is stated in [24] for C2 actions on surfaces but it holds in greater generality.
The proof follows directly from the second assertion of Theorem 5.1.

Theorem 5.2 (Chung). — Let M be a compact manifold. Let ν be a probability measure
on Diff1(M) that satisfies (M). If ν is not uniformly expanding there exists an ergodic
ν-stationary measure µ on M and a µ-measurable subbundle W ⊂ TM such that

(a) 0 < dim(W ) ⩽ dim(M);
(b) W is ν-almost surely invariant;
(c) in restriction to W , the top Lyapunov exponent of µ is non-positive.
Conversely, if such a pair (µ,W ) exists, then ν is not uniformly expanding.

When M is a surface and ν is supported by the group of diffeomorphisms preserving
some fixed area form the Lyapunov exponents of any ergodic stationary measure µ
satisfy λ+(µ)+λ−(µ) = 0. Thus, in Chung’s theorem, either λ−(µ) = λ+(µ) = 0 and
we can take W = TM or λ−(µ) < 0 < λ+(µ) and W coincides with the stable line
field provided by the Oseledets theorem; thus, µ is not hyperbolic or it is hyperbolic
and its stable line field is non-random.

Part 2. Non-elementary actions on complex surfaces

From now on we denote by X a compact complex surface, endowed with a group Γ

of holomorphic diffeomorphisms. Recall from [20, 19] that if Γ is non-elementary,
then X is necessarily projective and Γ ⊂ Aut(X).

6. Preliminaries

In this section we briefly recall some results from [22] (see also [14, 17]).

6.1. Parabolic automorphisms and their dynamics (see [22, §3]). — Let h be a par-
abolic automorphism of a compact projective surface X (most of this discussion is
valid for a compact Kähler surface). Then, h preserves a genus 1 fibration πh : X → B,
and every h-invariant holomorphic (singular) foliation – in particular any invariant
fibration – coincides with π. Let hB denote the automorphism of B such that

π ◦ h = hB ◦ π.
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If X is not a torus there is a positive integer m such that hm preserves every fiber
of π, i.e., hmB = idB . When hB = idB we say that h is a Halphen twist. The set of
Halphen twists in a given subgroup Γ ⊂ Aut(X) is denoted by Hal(Γ).

Remark 6.1. — If Γ is non-elementary and contains a Halphen twist (resp. a para-
bolic automorphism) h, then the conjugacy class of h in Γ contains Halphen twists
(resp. parabolic automorphisms) associated with infinitely many distinct invariant
fibrations (see [21, §3.1]).

Suppose now that h is a Halphen twist. Then, h acts by translation on every
smooth fiber of π (see [22, §3]). To be more precise, denote by Crit(π) ⊂ B the finite
set of critical values of π and set B◦ = B ∖Crit(π). Fix some simply connected open
subset U ⊂ B◦, endowed with a section σ of π and a continuous choice of basis for
H1(Xw,Z). Each fiber Xw := π−1(w), w ∈ U , is an elliptic curve with zero σ(w), and
one can find a holomorphic function τ on U , with values in the upper half plane, such
that Xw is isomorphic to C/Lat(w) for Lat(w) = Z⊕Zτ(w). On Xw, h is a translation
hw(z) = z + t(w), for some holomorphic function w ∈ U 7→ t(w) ∈ C/Lat(w).
Moreover, Lemma 6.2(4) says that h behaves like a “complex Dehn twist”, with a
shearing property in the direction which is transversal to the fibers; thus shearing
(or twisting) occurs along Xw whenever t and τ are “transverse” at w (see Section 9.1
for more details on the non-twisting locus).

The points w for which hw is periodic are characterized by the relation t(w) ∈
Q⊕Qτ(w). If

t(w)− (α+ βτ(w)) ∈ R · (p+ qτ(w))

for some (α, β) ∈ Q2 and (p, q) ∈ Z2, the closure of Zt(w) in C/Lat(w) is an abelian
Lie group of dimension 1, isomorphic to Z/kZ × R/Z for some k > 0; then, the
closure of each orbit of hw is a union of k circles. This occurs along a countable union
of analytic curves Rα,β

p,q ⊂ U . Otherwise, the orbits of hw are dense in Xw, and the
unique hw invariant probability measure is the Haar measure on Xw.

The following lemma summarizes this discussion.

Lemma 6.2. — Let h be a Halphen twist with invariant fibration π : X → B. Then,
(1) h acts by translation on each fiber Xw = π−1(w), w ∈ B◦;
(2) for w in a dense countable subset of B◦, the orbits of hw are finite;
(3) there is a dense, countable union of analytic curves Rj in B◦, such that:

(a) for w /∈
⋃

j Rj, the action of h in the fiber Xw is a totally irrational
translation (it is uniquely ergodic, and its orbits are dense in Xw);

(b) for w ∈
⋃

j Rj the orbits of hw are either finite or dense in a finite union
of circles;

(4) there is a finite subset NTh such that for x /∈ π−1 (NTh)

lim
n→±∞

∥Dxh
n∥ −→ +∞
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locally uniformly in x; more precisely for every v ∈ TxX∖TxXπ(x), ∥Dxh
n(v)∥ grows

linearly while 1
nπ∗(Dxh

n(v)) converges to 0.
If moreover h preserves a totally real 2-dimensional real analytic subset Y ⊂ X, then:

(5) the generic fibers of π|Y are union of circles, there exists an integer m such
that hm preserves each of these circles, and hm is uniquely ergodic along each of these
circles, except for countably many fibers.

Property (4) is the above mentioned twisting property of h. Property (5) occurs,
for instance, when X and h are defined over R and Y = X(R) is the real part of X.
There are also examples of subgroups Γ ⊂ Aut(X) preserving a totally real surface
Y ⊂ X which is not the real part of X for any real structure, see [22, §9].

6.2. Classification of invariant measures. — Recall from Example 1.5 that if X is
a torus, a K3 surface, or an Enriques surface it admits a canonical Aut(X)-invariant
volume form volX . The associated probability measure will also be denoted by volX .
Such an area form exists also on any totally real surface, by virtue of the following
lemma.

Lemma 6.3 (see [22, Rem. 2.3]). — Let X be an Abelian surface, or a K3 surface,
or an Enriques surface with universal cover X̃. Let Y ⊂ X be a totally real surface
of class C1, and Aut(X;Y ) be the subgroup of Aut(X) preserving Y . If Y is totally
real, the canonical holomorphic 2-form ΩX (resp. ΩX̃) induces a smooth Aut(X;Y )-
invariant probability measure volY on Y .

Theorem 6.4 (see [22, Th. A]). — Let X be a projective surface. Let Γ be a non-
elementary subgroup of Aut(X) containing a parabolic element. Let µ be a Γ-invariant
ergodic probability measure on X. Then, µ satisfies exactly one of the following prop-
erties.

(a) µ is the average on a finite orbit of Γ;
(b) µ is non-atomic and supported on a Γ-invariant algebraic curve D ⊂ X;
(c) there is a Γ-invariant proper algebraic subset Z of X, and a Γ-invariant, totally

real analytic surface Y of X ∖ Z such that (1) µ(Y ) = 1 and µ(Z) = 0; (2) Y has
finitely many irreducible components; (3) the singular locus of Y is locally finite in
X ∖ Z; (4) µ is absolutely continuous with respect to the Lebesgue measure on Y ;
and (5) its density (with respect to any real analytic area form on the regular part
of Y ) is real analytic;

(d) there is a Γ-invariant proper algebraic subset Z of X such that (1) µ(Z) = 0,
(2) the support of µ is equal to X; (3) µ is absolutely continuous with respect to the
Lebesgue measure on X; and (4) the density of µ with respect to any real analytic
volume form on X is real analytic on X ∖ Z.

If X is not a rational surface, then in case (c) (resp. (d)) we can further conclude
that the invariant measure is proportional to volY (resp. volX).
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6.3. Invariant curves. — By [20, Lem. 2.12], any action of a non-elementary group Γ

on a projective surface X admits a maximal invariant curve DΓ, which can be eas-
ily detected from the action of Γ on H2(X,Z) since it corresponds to an invariant
class. Bounds on the degrees of such invariant curves in terms of the action are given
in [21, §3]. If in addition Γ contains a parabolic element, DΓ is the set of common com-
ponents of the singular fibers of all elliptic fibrations associated to parabolic elements
in Γ (see [22, §4.1]).

7. Hyperbolicity of invariant measures

Here, X is a compact Kähler surface. We fix a Kähler form κ0 on X; norms of
tangent vectors and differentials will be computed with respect to it.

7.1. Ledrappier’s invariance principle and invariant measures on PTX

In this paragraph we collect some preliminary results for the proof of Theorems 1.4
and 7.4. The reader should also consult [2] and [47] for comparison; [47] relies on the
“pinching and twisting” formalism of Avila and Viana (see [51] for an introduction.(5)

Most of this discussion is valid for a random holomorphic dynamical system on an
arbitrary complex surface (not necessarily compact) satisfying (M).

We denote by PTX the projectivized tangent bundle of X; if f is an automorphism
of X, we denote by P(Df) the induced action on PTX.

Let ν be a probability measure on Aut(X) that satisfies the moment condition (M).
We endow Ω := Aut(X)N (resp. Σ := Aut(X)Z) with the probability measure νN

(resp. νZ), and set X+ = Ω × X (resp. X = Ω × X); σ will denote the shift (on Ω

or Σ). For ω = (fi)i⩾0 ∈ Ω, we keep the notation fnω from Section 2.2. Then, we define
F+ : X+ → X+ by F+(ω, x) = (σ(ω), f1ω(x)); F : X → X is defined by the same formula.
For further standard notations, we refer to [20, §7].

Let µ be an ergodic ν-stationary measure on X. We introduce the projectivized
tangent bundles PTX+ = Ω×PTX and PTX = Σ×PTX. The bundles TX and PTX
admit measurable trivializations over a set of full measure. Consider any probability
measure µ̂ on PTX that is stationary under the random dynamical system induced
by (X, ν) on PTX and whose projection on X coincides with µ, i.e., π∗µ̂ = µ where
π : PTX → X is the natural projection. Such measures always exist: indeed, the set
of probability measures on PTX projecting to µ is compact and convex, and it is
non-empty since it contains the measures

∫
δ[v(x)]dµ(x) for any measurable section

x 7→ [v(x)] of PTX. Thus, the operator
∫
P(Df) dν(f) has a fixed point on that set.

The stationarity of µ̂ is equivalent to the invariance of νN×µ̂ under the transformation“F+ : Ω× PTX → Ω× PTX defined by“F+(ω, x, [v]) = (σ(ω), f1ω(x),P(Dxf
1
ω)[v])

for any non-zero tangent vector v ∈ TxX. We denote by µ̂x the family of probability
measures on the fibers PTxX of π given by the disintegration of µ̂ with respect to π.

(5)Beware that the word “twisting” has a different meaning there.
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The conditional measures of νN × µ̂ with respect to the projection PTX+ → X are
given by µ̂ω,x = νN × µ̂x.

Remark 7.1. — Even when µ is Γν-invariant, this construction only provides a sta-
tionary measure on PTX. This is exactly what happens for non-elementary subgroups
with a parabolic automorphism: indeed, we show in Section 7.2 that projectively
invariant measures do not exist in this case.

The tangent action of our random dynamical system induces a stationary product
of matrices in GL(2,C). To see this, fix a measurable trivialization P : TX → X×C2,
given by linear isomorphisms Px : TxX → C2. It conjugates the action of DF+ to that
of a linear cocycle A : X+ ×C2 → X+ ×C2 over (X+, F+, ν

N × µ). In this context,
Ledrappier establishes in [43] the following “invariance principle”.

Theorem 7.2. — If λ−(µ) = λ+(µ), then for any stationary measure µ̂ on PTX pro-
jecting to µ, we have P(Dxf)∗µ̂x = µ̂f(x) for µ-almost every x and ν-almost every f .

The second ingredient in the proof of Theorem 1.4 is a description of such projec-
tively invariant measures; this is where we follow [2]. To explain this result a bit of
notation is required. Let V and W be hermitian vector spaces of dimension 2; we fix
two isometric isomorphisms ιV : V → C2 and ιW : W → C2 to the standard hermitian
space C2, and we endow the projective lines P(V ) and P(W ) with their respective
Fubini-Study metrics. If g : V →W is a linear isomorphism, we set

[[g]] = ∥P(g)∥C1 ,

where P(g) : P(V ) → P(W ) is the projective linear map induced by g and ∥·∥C1 is
the maximum of the norms of DzP(g) : TzP(V ) → TP(g)(z)P(W ) with respect to the
Fubini-Study metrics. If ιW ◦g ◦ ι−1

V = k1ak2 is the KAK decomposition of ιW ◦g ◦ ι−1
V

in GL(2,C), we get

[[g]] =
∥a∥2

|det(a)|
=

∥∥ιW ◦ g ◦ ι−1
V

∥∥2∣∣det(ιW ◦ g ◦ ι−1
V )

∣∣ ,
where ∥·∥ is the matrix norm in GL2(C) associated to the Hermitian norm of C2.
In particular,

(a) [[g]] = 1 if and only if P(g) is an isometry from P(V ) to P(W );
(b) for a sequence (gn) of linear maps V → W , [[gn]] tends to +∞ with n if and

only if P(ιW ◦ g ◦ ι−1
V ) diverges to infinity in PGL2(C).

If f is an automorphism of X and x is a point of X, then κ0 endows TxX and Tf(x)X
with hermitian structures, and we can apply this discussion to Dxf : TxX → Tf(x)X.
We are now ready to state the classification of projectively invariant measures.

Theorem 7.3. — Let (X, ν) be a random dynamical system on a complex surface and
let µ be an ergodic stationary measure. Let µ̂ be a stationary measure on PTX such
that π∗µ̂ = µ and P(Dxf)∗µ̂x = µ̂f(x) for µ-almost every x and ν-almost every f .
Then, exactly one of the following two properties is satisfied:
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(1) For (νN×µ)-almost every (ω, x), the sequence [[Dxf
n
ω ]] is unbounded and then:

(a) either there exists a measurable Γν-invariant family of lines E(x) ⊂ TxX

such that µ̂x = δ[E(x)] for µ-almost every x;
(b) or there exists a measurable Γν-invariant family of pairs of lines

E1(x), E2(x) ⊂ TxX and positive numbers λ1, λ2 with λ1 + λ2 = 1 such that
µ̂x = λ1δ[E1(x)] + λ2δ[E2(x)] for µ-almost every x.

(2) The projectivized tangent action of Γν is reducible to a compact group, that is
there exists a measurable trivialization of the tangent bundle (Px : TxX → C2)x∈X ,
such that for almost every f ∈ Γν and every x, P

(
Pf(x) ◦Dxf ◦ P−1

x

)
belongs to the

unitary group PU2(C).

In Assertion (1b), the pair is not ordered: there is no natural distinction of E1

and E2, the elements of Γν may a priori permute these lines. The proof can be obtained
by adapting the arguments of [2] to the complex case; full details are given in [18, §7.4].
We provide a shorter proof, suggested by one of the referees, that relies on results of
Furstenberg and Zimmer. Yet another approach, suggested by another referee, would
be to view P1(C) as the boundary of H3 and use the notion of the conformal barycenter
of Douady-Earle [27].

Proof. — Consider a probability space (Y,A,m) together with an ergodic mea-
sure preserving transformation T : Y → Y and a measurable cocycle η : (Y,A) →
(GL2(C),B(GL2(C)). Suppose we are given a measurable map m̂ : Y → Prob(P1(C))

from Y to the space of probability measures on P1(C) (equipped with its Borel
σ-algebra) and that this map is η-equivariant, i.e.,

m̂Ty = η(y)∗m̂y

for almost every y in Y . The ergodicity of m and Theorem 3.2.6 of [53] imply that, on a
subset of full measure in Y , m̂ takes values in a unique GL2(C)-orbit in Prob(P1(C)).
Let λ ∈ Prob(P1(C)) be a point in this orbit. The equivariance of m̂ : Y → GL2(C)∗λ

means that m̂ is cohomologous to a cocycle taking values in the stabilizer of λ
in GL2(C), that is, there exists a measurable map Y ∋ y 7→ Ay ∈ GL2(C) such
that A−1

TyηyAy ∈ Stab(λ). Indeed m̂y = (Ay)∗λ for some Ay. Then, according to
Lemma 3.2.1 of [53] and its Corollary 3.2.2, there are only three possibilities. Either λ
is a Dirac mass, or λ is an average of two Dirac masses, or the stabilizer of λ is
compact.

In our situation, we take Y to be X+ = Ω × X, T is F+, m is νN ⊗ µ, and m̂
is the family of disintegrations (ω, x) 7→ µ̂x, which is a Borel map since it is the
disintegration of a Borel measure on X × P1 relative to the projection X × P1 → X.
Applying the above results, we get the desired conclusion, except for one point, which
is the fact that in the conclusion of the theorem, the trivialization P in Assertion (2)
(resp. the lines in Assertion (1)) depends only on x, and not on (ω, x), Theorem 7.3.
a fact that will be used later. Since the lines in Assertion (1) are directly determined
by µ̂x it is obvious that they depend uniquely on x.
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Assume that we are in the situation where Stab(λ) is a compact subgroup. To show
that P can be chosen to depend only on x we argue as follows. First, observe that
Stab(λ) ⊂ P−1

0 U2(C)P0 for some P0 ∈ GL2(C), so with notation as above we obtain
that Dxf is of the form AF+(ω,x)P0UP

−1
0 A−1

(ω,x), for some U ∈ U2. We need to show
that A(ω,x) can be chosen to depend on x only. Let

E =
{
(x,A) ∈ X × GL2(C) : A∗λ = µ̂x

}
.

Since x 7→ µx is Borel, E is a Borel subset of X × GL2(C) whose fibers in GL2(C)

are empty or compact.(6) From the Borel selection theorem (see [9, Th. 6.9.6] or
[53, App. A]), there exists a Borel map x 7→ A′

x such that for every x ∈ X, (x,A′
x)

belongs to E; replacing A(ω,x) by A′
x concludes the proof. □

7.2. Proof of Theorem 1.4. — By Theorem 6.4, µ is either equivalent to the
Lebesgue measure on X, or to the 2-dimensional Lebesgue measure on some compo-
nents of an invariant totally real surface Y ⊂ X.

7.2.1. Proof of the hyperbolicity of µ. — Let us assume, by way of contradiction, that
µ is not hyperbolic. Hence its Lyapunov exponents vanish, and by Theorem 7.2 and
Theorem 7.3, there is a measurable set X ′ ⊂ X with µ(X ′) = 1 such that one of the
following properties is satisfied along X ′:

(a) there is a measurable Γν-invariant line field E(x);
(b) there exists a measurable Γν-invariant splitting E(x) ⊕ E′(x) = TxX of the

tangent bundle; here, the invariance should be taken in the following weak sense: an
element f of Γν maps E(x) to E(f(x)) or E′(f(x));

(c) there exists a measurable trivialization Px : TxX → C2 such that in the corre-
sponding coordinates the projectivized differential P(Dfx) takes its values in PU2(C)

for all f ∈ Γν and µ-almost all x ∈ X ′.
Fix a small ε > 0. By Lusin’s theorem, there is a compact set Kε with µ(Kε) > 1−ε

such that the data x 7→ E(x), or x 7→ (E(x), E′(x)) or x 7→ Px in the respective cases
(a), (b), and (c) are continuous on Kε. In particular, in case (c), the norms of Px

and P−1
x are bounded by some uniform constant C(ε) on Kε; hence, if g ∈ Γν and

(x, g(x)) belongs to K2
ε , [[Dgx]] is bounded by C(ε)2.

Fix a pair of parabolic elements g and h ∈ Γν with distinct invariant fibrations
πg : X → Bg and πh : X → Bh respectively (see Remark 6.1). These two fibrations
are tangent along some curve in X, denoted by Tang(πg, πh).

– In a first stage we assume that X is not a torus. According to Section 6.1, there
is an integer N > 0 such that gN and hN preserve every fiber of their respective
invariant fibrations. From now on, we replace g by gN and h by hN . Also, Γν is
discrete, so we may also assume ν(g)ν(h) > 0 (see footnote 2).

(6)On the null set where the fibers are empty, we may replace the fiber by some fixed matrix, say
A = id.
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First assume that µ is absolutely continuous with respect to the Lebesgue measure
on X, with a positive real analytic density on the complement of some invariant,
proper, Zariski closed subset. We apply Lemma 6.2 to h and remark that (πh)∗µ can
not charge the union of the curves Rj . Then, we disintegrate µ with respect to πh to
obtain conditional measures µb, for b ∈ Bh; since πh is holomorphic, the measures µb

are absolutely continuous with respect to the Haar measure on almost every fiber
π−1
h (b). By Lemma 6.2, there exists a fiber π−1

h (b) such that (1) the Haar measure of
Kε ∩ π−1

h (b) is positive, (2) b /∈ NTh and (3) the dynamics of h in π−1
h (b) is uniquely

ergodic. These properties hold for b = πh(z), for µ-almost all z in Kε. Then we can
pick x ∈ π−1

h (b) such that (hk(x))k⩾0 visits Kε infinitely many times.(7) The fifth
assertion of Lemma 6.2 rules out case (c) because the twisting property implies that
the projectivized derivative [[Dhnx ]] tends to infinity, while it should be bounded by
C(ε)2 when hn(x) ∈ Kε. Case (b) is also excluded: under the action of hn, tangent
vectors projectively converge to the tangent space of the fibers, so the only possible
invariant subspace of dimension 1 is ker(Dπh). Thus we are in case (a) and moreover
E(x) = kerDxπh for µ-almost every x. But then, using g instead of h and the fact
that µ does not charge the curve Tang(πg, πh), we get a contradiction. This shows
that the last alternative (a) does not hold either, and this contradiction proves that µ
is hyperbolic.

If µ is supported by a 2-dimensional real analytic subset Y ⊂ X, the same proof
applies, except that we disintegrate µ along the singular foliation of Y by circles
induced by πh and we use the fact that a generic leaf is a circle along which h is
uniquely ergodic (see Lemma 6.2(4)).

– IfX is a torus its tangent bundle is trivial and the differential of an automorphism
is constant. In an appropriate basis, the differential of a Halphen twist h is of the formÇ

1 α

0 1

å
with α ̸= 0.

Thus we are in case (a) with E(x) = kerDxπh for µ-almost every x. Using another
twist g transverse to h we get a contradiction as before.

7.2.2. Proof of the positivity of the fiber entropy. — This follows from classical argu-
ments. Since µ is invariant the measure m := νZ × µ on X is F -invariant. In both
cases µ ≪ volX and µ ≪ volY , respectively. The absolute continuity of the foliation
by local Pesin unstable manifolds implies that the unstable conditionals of m cannot
be atomic, see e.g. [44, Th. B, §3]. Since the unstable conditionals of a zero entropy
stationary measure are automatically atomic (see [20, Cor. 7.14]), we conclude that µ
has positive fiber entropy.

This concludes the proof of Theorem 1.4 □

(7)Note that we use the invariance of µ here, not mere ν-stationarity.
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7.3. A variant of Theorem 1.4. — Let us first recall the definition of classical Kum-
mer examples (see [21, §4] for a thorough treatment)). Let A = C2/Λ be a complex
torus and let η be the involution given by η(z1, z2) = (−z1,−z2); it has 16 fixed
points. Then A/⟨η⟩ is a surface with 16 singular points, and resolving these singu-
larities (each of them requires a single blow-up) yields a Kummer surface X. Let
fA be a loxodromic automorphism of A which is induced by a linear transformation
of C2 preserving Λ; then fA commutes to η and goes down to an automorphism f

of X; such automorphisms will be referred to as loxodromic, classical, Kummer exam-
ples. They preserve the canonical volume volX . The Kummer surface X also supports
automorphisms which do not come from automorphisms of A (see [41] and [25] for
instance).

In the following statement we do not assume that Γν contains a parabolic element.

Theorem 7.4. — Let (X, ν) be a non-elementary random dynamical system on a Kum-
mer K3 surface satisfying (M) and such that Γν contains a loxodromic classical Kum-
mer example. Then any ergodic Γν-invariant measure giving no mass to proper Zariski
closed subsets of X is hyperbolic.

Proof. — The proof is similar to that of Theorem 1.4 so we only sketch it. Assume by
contradiction that µ is not hyperbolic. Since X is a K3 surface, the invariance of the
volume shows that the sum of the Lyapunov exponents of µ vanishes (see [20, §7.3]),
thus both are equal to 0, and one of the alternatives of Theorem 7.3 holds, referred
to as (a), (b), (c) as in in the beginning of Section 7.2.1.

By assumption, Γν contains a loxodromic, classical Kummer example f associated
to a linear automorphism fA of a torus A. This automorphism f is uniformly hyper-
bolic in a dense Zariski open subset U , which is thus of full µ-measure: its complement
is given by the sixteen rational curves coming from the resolution of the singularities
of A/η. We denote by x 7→ Eu

f (x)⊕Es
f (x) the associated splitting of TX|U . The line

field Eu
f (resp. Es

f ) is everywhere tangent to an f -invariant (singular) holomorphic
foliation Fu (resp. Fs) coming from the fA invariant linear unstable (resp. stable) fo-
liation on A. Since f is uniformly expanding/contracting on E

u/s
f , alternative (c) is

not possible.
If alternative (a) holds, then E(x) being f -invariant on a set of full measure, it must

coincide with Eu
f or Es

f , say with Eu
f . By continuity any g ∈ Γν preserves Eu

f pointwise
on Supp(µ). Since in addition µ is Zariski diffuse, g preserves Eu

f everywhere on X,
so it preserves the unstable holomorphic foliation Fu. From this, we shall contradict
the fact that Γν is non-elementary. We use a dynamical argument, based on basic
constructions which are surveyed in [17]; one can also derive a contradiction from [23].

Every leaf of Fu, except a finite number of them, is parametrized by an injective
entire holomorphic curve φ : C → X, the image of which is Zariski dense. Fix a Kähler
form κ on X and consider the positive currents defined by

α 7−→
Å∫ R

0

∫
D(0;t)

φ∗κ
dt

t

ã−1 ∫ R

0

∫
D(0;t)

φ∗α
dt

t
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for any smooth (1, 1)-form α. As R goes to +∞, it is known that this sequence
of currents converges to a closed positive current T+

f that does not depend on the
parametrization φ of the leaf, nor on the leaf itself (provided it is Zariski dense). This
current is uniquely determined by Fu and the normalization ⟨T+

f |κ⟩ = 1. Dynam-
ically, it is the unique closed positive current T+

f that satisfies ⟨T+
f |κ⟩ = 1 and

f∗T+
f = λ(f)T+

f for some λ(f) > 1. Its cohomology class [T+
f ] is a non-zero ele-

ment of H1,1(X;R) of self-intersection 0.
Now, pick any element g of Γν . Since g preserves Fu, it permutes its leaves and

preserves the ray generated by [T+
f ]. Thus, Γν preserves an isotropic line for the

intersection form inH1,1(X;R), and this contradicts the non-elementarity assumption
(see [20, §2.3]).

Finally, if alternative (b) holds, any g ∈ Γν preserves {Eu
f (x), E

s
f (x)} on a set of full

measure so, since µ is Zariski diffuse, it must either preserve or swap these directions.
Passing to an index 2 subgroup both directions are preserved, and we again contradict
the non-elementary assumption, as in case (a). □

8. Characterization of uniform expansion

In this section we build on the previous results, in conjunction with the measure
rigidity results from our previous work [20], to find sufficient conditions for as well as
obstructions to uniform expansion for a non-elementary action on a compact complex
surface.

8.1. Proof of Theorem 1.6 and related results

8.1.1. Applying Chung’s criterion

Definition 8.1. — Let ν be a probability measure on Aut(X). A ν-stationary measure
µ on X is said to be non-expanding if every ergodic component µ′ of µ satisfies:

(i) either both Lyapunov exponents of µ′ are non-positive,
(ii) or µ′ is hyperbolic and its field of Oseledets stable directions is non-random.

Recall that for a hyperbolic stationary measure µ, for νN × µ-a.e. (ω, x), the sta-
ble Oseledets subspace Es(ω, x) ⊂ TxX is defined by v ∈ Es(ω, x) if and only if
lim supn→∞

1
n log ∥(fnω )∗v∥ < 0. The field of Oseledets subspaces is said to be non-

random if for µ-a.e. x, ω 7→ Es(ω, x) is constant mod. 0.
Theorem 5.2 asserts that the existence of non-expanding ν-stationary measures is

the obstruction to uniform expansion of ν:

Corollary 8.2 (of Theorem 5.2). — Let X be a compact complex surface and ν be
a probability measure on the group Aut(X), satisfying the moment condition (M).
Then ν is uniformly expanding if and only if non-expanding ν-stationary measures do
not exist, hence if and only if every ergodic ν-stationary measure µ on X satisfies one
of the following properties:

J.É.P. — M., 2025, tome 12



Hyperbolicity for automorphism groups of surfaces 455

– µ has a positive Lyapunov exponent and its stable distribution depends non-
trivially on the itinerary;

– the two Lyapunov exponents of µ are strictly positive.

8.1.2. Groups with invariant curves

Proposition 8.3. — Let X be a compact complex surface. Let Γ be a subgroup of
Aut(X) that preserves a complex curve C ⊂ X. If ν is a probability measure on Γ

satisfying (M), then ν is not uniformly expanding.

Remark 8.4. — We leave the reader check that the proof adapts to the real case in
the following sense: if X, Γ and C are defined over R and C(R) is of dimension 1

(that is, neither empty nor a finite set), then ν is not uniformly expanding in restriction
to C(R).

Lemma 8.5. — Let C be a compact Riemann surface. Then, Aut(C) does not support
any uniformly expanding probability measure.

Proof. — Let κ be a Kähler form on C that satisfies
∫
C
κ = 1. For every f ∈ Aut(C),∫

C
f∗κ = 1 =

∫
C
∥Dxf∥2κ = 1, so by the Jensen inequality

∫
C
log ∥Dxf∥κ ⩽ 0. Now,

if ν is any probability measure on Aut(C), then∫
C

∫
Aut(C)

log ∥Dxf∥dν(f)κ ⩽ 0,

hence Property (2.4) cannot be satisfied by ν (for any n0 ⩾ 1). □

Note that the same argument applies to conformal diffeomorphisms, in particular
for C1 diffeomorphisms of S1. Lemma 8.5 and Remark 2.1 imply Proposition 8.3
when C is smooth; we now prove Proposition 8.3 in full generality.

Proof of Proposition 8.3. — Arguing by contradiction, we assume that ν is uniformly
expanding. Let Γ1 ⩽ Γ be the finite index subgroup fixing each component of C,
and each of its branches at each of its singular points; let ν1 be the hitting measure
on Γ1 associated to ν(n0), where n0 is as in Equation (2.4). By Proposition 3.2, ν1 is
uniformly expanding, so by replacing ν by ν1 and C by one of its components we
assume now that C is irreducible and all branches at its singular points are fixed
by Γ. To get a contradiction we will construct a stationary measure µ supported on C
such that the tangential Lyapunov exponent along TC is non-positive.

By Lemma 8.5 we may assume that the singular set Sing(C) is non-empty. If the
genus of C is ⩾ 0, the invariance of Sing(C) forces Γ|C to be finite, in contradiction
with the uniform expansion of ν. Thus, C is a rational curve; denote by π : Ĉ → C its
normalization and by Γ̂ ⊂ Aut(Ĉ) ≃ PGL2(C) the group induced by Γ; the measure ν
induces a measure ν̂ on Γ̂. Fix p̂ ∈ Ĉ such that p := π(p̂) is singular. The germ of
curve given by Ĉ at p̂ determines one of the branches of C at p; our assumptions
imply that p̂ is fixed by Γ̂. There are local coordinates t ∈ (C, 0) for (Ĉ, p̂) and
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(z, w) ∈ (C2, (0, 0)) for (X, p) in which π is expressed as a Puiseux expansion

t 7−→ (π1(t), π2(t)) = (αtq, βtr) modulo higher order terms,

where 1 ⩽ q < r; if q = 1 the branch is smooth at p. In these coordinates, the
tangent direction to C at p corresponding to the branch determined by p̂ is given
by (1, 0) ∈ C2. Let λ(Ĉ,p̂) be the Lyapunov exponent of ν̂ at p̂, and λ(C,p) be the
Lyapunov exponent of ν in the tangent direction of this branch.

Lemma 8.6. — With notation as above λ(C,p) = qλ(Ĉ,p̂). In particular λ(C,p) and λ(Ĉ,p̂)

have the same sign.

Proof. — Pick f ∈ Γ, write f(z, w) = (f1(z, w), f2(z, w)) in the local coordinates
(z, w), and expand f1 in power series: f1(z, w) =

∑
i,j ai,jz

iwj . Since the branch
determined by λ(Ĉ,p̂) is f -invariant, we have Dpf(1, 0) = (a1,0, 0) with a1,0 ̸= 0.
Thus,

f1(π(t)) =

∞∑
i,j=0

ai,jα
iβjtqi+rj = a1,0αt

q mod (tq+1).

Now, f lifts to an automorphism f̂ of Ĉ fixing p̂. Writing f̂(t) = λt mod (t2), we get
π1(f̂(t)) = αλqtq mod (tq+1). Then, the semi-conjugacy f1(π(t)) = π1(f̂(t)) gives
λq = a1,0, and we are done. □

We resume the proof of Proposition 8.3. We fix an affine coordinate s on Ĉ ≃ P1(C)

such that p̂ = ∞. Then, every lift ĝ ∈ Γ̂ can be written as an affine map ĝ(s) = ags+bg.

Lemma 8.7. — The functions log |ag| and log+ |bg| are ν-integrable and E(log |ag|)<0.

Proof. — For the spherical metric, the derivative of ĝ at ∞ in Ĉ is 1/ag. The compu-
tations of Lemma 8.6 show that the derivative of g acting on X in the direction of the
branch of C at π(∞) is 1/aqg for some q ⩾ 1. So (M) implies that E(|log |ag||) < ∞.
Since ν is uniformly expanding, this direction is repelling on average: by Lemma 8.6,
we get E(log

∣∣∣a−1
j

∣∣∣) > 0. To estimate |bg|, we note that distX(π(s), p) ≍ |s|−q when
s ∈ C approaches ∞. Changing the affine coordinate s if necessary, we may assume
that π(0) ̸= p. We get

1

|bg|q
≍ distX(π(ĝ(0)), π(∞)) = distX(g(π(0)), g(p)) ⩽ ∥g∥C1 distX(π(0), p).

From this and (M) it follows that E(log+ |bg|) <∞. □

The integrability provided by Lemma 8.7 now allows us to construct a stationary
measure with full mass in the affine chart C ⊂ C with non-positive Lyapunov expo-
nent (relative to the affine metric). This is classical, we briefly recall the argument for
completeness (see [11]). For ω = (gn)n⩾0, write gn(s) = ans + bn, and consider the
sequence of right products rn(ω) = g0 · · · gn−1. One easily checks that

(8.1) rn(ω)(s) = a0 · · · an−1s+

n−1∑
j=0

a0 · · · aj−1bj .
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For νN-almost every ω, 1
n log |a0 · · · an−1| converges to λ := E(log |ag|) < 0. Fix

ε < |λ|. Since E(log+ |bg|) < ∞,
∑∞

j=0 ν{|bg| > eεj} < ∞. By the Borel-Cantelli
Lemma, |bj | ⩽ eεj for νN-almost every ω and for large j; hence, the series on the
right hand side of (8.1) converges. It follows that rn(ω)(s) converges almost surely
to a limit eω that does not depend on s ∈ C. The distribution of eω is the desired
stationary measure µC. If µ is any stationary measure with µ(C) = 1, then rn(ω)∗µ

converges to δeω almost surely: this shows that µC is the unique stationary measure
with µ(C) = 1; in particular, µC is ergodic. Since the affine derivative of g is the
constant ag, the Lyapunov exponent of µC, relative to the affine metric, is equal to λ.

To conclude the proof, note that µ := π∗(µC) is an ergodic ν-stationary measure
on X which has a well-defined Lyapunov exponent, thanks to the moment condi-
tion (M). If µ gives positive mass to the singular set of C, then it must be concentrated
on a single singular point of C (and likewise µC is a single atom in Ĉ). By Lemma 8.6
the corresponding branch is attracting on average, which contradicts uniform expan-
sion. Therefore µ gives no mass to Sing(C), and we claim that its Lyapunov exponent
λ(µ)|TC in the direction of C equals λ (even if the ratio between the ambient and
affine metrics on C ⊂ C is unbounded). Indeed, for µ × νN-almost every (x, ω) and
v ∈ T 1

xC, we can fix a subsequence nj such that fnj
ω (x) is far from the singularities

of C (hence from p = π(∞)). If j is large, 1
nj

log
∥∥Dxf

nj
ω

∥∥ is both close to λ and to
λ(π∗µ)|TC . We conclude that λ(π∗µ)|TC < 0, which again is contradictory. The proof
is complete. □

8.1.3. Zariski diffuse measures. — From now on we focus on the case of a minimal
Kähler surface X of Kodaira dimension zero, that is, a torus, a K3 surface, or an
Enriques surface. In this case Aut(X) preserves a canonical volume form volX (see
Example 1.5).

From Corollary 8.2, the obstruction to uniform expansion is the existence of a
non-expanding stationary measure µ. Moreover, in the first case of Definition 8.1,
both exponents must vanish because we are in a volume preserving setting. In this
situation, Theorems 7.2 and 7.3 give a precise description of µ.

Theorem 8.8. — Let X be a torus, a K3 surface, or an Enriques surface. Let ν be a
probability measure on Aut(X) satisfying (M) such that Γν is non-elementary. If µ is
a Zariski diffuse ν-stationary measure, the following properties are equivalent

(a) µ is non-expanding;
(b) the fiber entropy hµ(X, ν) vanishes.
Moreover under these assumptions, µ is invariant and hµ(f) = 0 for every f ∈ Γν .

Proof. — As a preliminary step, observe that almost every ergodic component of µ is
Zariski diffuse: this follows from the fact that there are only finitely many invariant
curves and countably many isolated periodic points. In addition, by convexity of the
entropy (see [40, Prop. 4.3.16]), if hµ(X, ν) = 0 then almost every ergodic component
of µ has zero fiber entropy as well. Thus for both implications we may further assume
that µ is ergodic as a stationary measure.
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Let us show that Property (a) implies Property (b). Since there is an invariant
volume form, either both Lyapunov exponents of µ vanish or µ is hyperbolic. In the
first case, the invariance principle guarantees that µ is Γν-invariant and the fibered
version of the Ruelle inequality (see e.g. [20, §7]) implies that its fiber entropy vanishes.
If µ is hyperbolic, the invariance of µ and the vanishing of the entropy follow from
[20, Th. 9.1]. Thus, (a) implies (b) together with the invariance of µ.

Consider the converse implication. Again, if µ has zero Lyapunov exponents then it
is non-expanding and invariant. Otherwise it is hyperbolic and by applying the whole
argument of [13] in the complex case (see Remark 8.10 below for a few comments on
this generalization), we infer that if the stable directions of µ depend on the itinerary,
its conditionals along Pesin unstable manifolds admit a non-trivial translation invari-
ance; in particular they are non-atomic. It follows that hµ(X, ν) > 0 (see also [20,
Rem. 9.2]). So under assumption (b) the stable directions are non-random and, as
already explained, µ is invariant by [20, Th. 9.1].

The fact that hµ(f) = 0 for all f ∈ Γν will be shown in Theorem A.1. □

8.1.4. Refined criterion. — The discussion of the previous paragraphs leads to a ver-
sion of Theorem 1.6 that does not require Γν to contain parabolic elements:

Theorem 8.9. — Let X be a compact Kähler surface which is not rational. Let ν be a
probability measure on Aut(X) satisfying (M) such that Γν is non-elementary. Then
ν is uniformly expanding if and only if the three following conditions hold:

(1) every finite Γν-orbit is uniformly expanding;
(2) there is no Γν-invariant algebraic curve;
(3) there is no Zariski diffuse invariant measure µ with zero fiber entropy.

Proof. — If a compact Kähler surface X is ruled (over a curve of positive genus) or has
a positive Kodaira dimension, then Aut(X) is elementary (in the first case, it preserves
the ruling; in the second case, it preserves the Kodaira-Iitaka fibration, acting as a
finite group on the base). Thus, the Kodaira dimension of X vanishes. If X is not
minimal, the uniqueness of the minimal model shows that there is a Aut(X)-invariant
curve, and we know this is incompatible with uniform expansion (Proposition 8.3).
Now if kod(X) = 0, X is minimal, and Aut(X) is non-elementary, then X is a torus,
a K3 surface, or an Enriques surface; hence, we can assume that X is such a surface.

If ν is uniformly expanding, Property (1) is obvious, Property (2) follows from
Proposition 8.3, and Property (3) follows from Corollary 8.2 and Theorem 8.8.

Conversely, if these properties hold, and if µ is an ergodic ν-stationary measure then
by Property (2) µ is either Zariski diffuse or finitely supported. Then, Theorem 8.8 and
Property (1) imply that µ is not non-expanding, and we conclude with Corollary 8.2.

□

Proof of Theorem 1.6. — This follows directly from Theorem 1.4 and Theorem 8.9.
□
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Remark 8.10. — The proof of (b) ⇒ (a) in Theorem 8.8 relies on the following fact: for
a hyperbolic stationary measure, if the stable directions of µ depend on the itinerary,
then its unstable conditionals satisfy some non-trivial translation invariance. This is
the “easy part” of the adaptation of [13] to complex surfaces; the “difficult part” would
be to obtain stiffness and some SRB property from this invariance (either on X or on
some totally real surface associated to the stationary measure). We did not provide a
proof for this fact because the arguments of [13] can be applied directly. This program
was recently carried out by Roda and will appear shortly. As a consequence, this fact
is also used in the implication “uniformly expanding implies (3)” in Theorem 8.9. On
the other hand, it is not used in Theorem 1.6 because in this case the condition (3) of
Theorem 8.9 is automatically satisfied, thanks to Theorem 1.4; it is not used either
for the part of Theorem 8.9 asserting that the assumptions (1), (2) and (3) imply
uniform expansion.

Remark 8.11. — Using Theorem 7.4 instead of Theorem 1.4 gives a version of Theo-
rem 1.6 where the existence of a parabolic element in Γ is replaced by the existence
of a Kummer element. The details of the adaptation are left to the interested reader.

8.2. Uniform expansion along finite orbits. — Using classical results on random
products of matrices, it is easy to characterize when a fixed point under Γν is uniformly
expanding. We say that a subgroup of GL2(C) is strictly triangular if it is reducible
with exactly one invariant direction.

Proposition 8.12. — Let X be a torus, a K3 surface, or an Enriques surface. Let ν
be a probability measure on Aut(X) satisfying (M), and let x0 be a fixed point of Γν .
Then ν is uniformly expanding on Tx0

X if and only if one of the following holds
(a) the induced action of Γν on Tx0X is non-elementary;
(b) this action is strictly triangular and its invariant direction is expanding.
If ν is symmetric, it is uniformly expanding on Tx0

X if and only if (a) holds.

In case (b) there exists u ∈ Tx0
X such that f∗u = λfu for every f ∈ Γν , and the

expansion means that
∫
log |λf | dν(f) > 0.

Proof (see also [48]). — By Lemma 2.3, to prove uniform expansion it is enough to
show that for every v ∈ Tx0

X, lim infn→∞
1
n log ∥(fnω )∗v∥ > 0. The proof is based on

the work of Furstenberg and Kifer [36] (see also [10, §3.7]). These references deal with
general random products of matrices in GLd(R); in our volume preserving situation
the Lyapunov exponents λ2 ⩽ λ1 of the random product in GL2(C) satisfy λ1+λ2 = 0,
so they can be read off directly from the action on PTx0

X. According to [36, Th. 3.5
& 3.9], there are two possibilities:

(i) for every v ∈ Tx0X and νN-almost every ω, 1
n log ∥(fnω )∗v∥ → λ1;

(ii) there exists a non-random, Γν-invariant filtration {0} = L2 < L1 < L0 = Tx0
X

and β1 < β0 such that for i = 0, 1 for any v ∈ Li ∖ Li+1, for νN-almost every ω,
1
n log ∥(fnω )∗v∥ → βi. Furthermore β0 = λ1.
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We now compare this dichotomy with the classification of subgroups of PGL2(C)

(with a slight abuse of notation, we also denote by Γν the induced subgroup of
PGL2(C)).

− If Γν is strongly irreducible, we are in case (i) and there are two possibilities.
If Γν is proximal (hence non-elementary) then λ1 > 0 and ν is uniformly expanding.
If Γν is not proximal, it is contained in a compact subgroup and ν is not uniformly
expanding.

− If Γν is irreducible but not strongly irreducible, we are in case (i) and there are
two lines which are permuted by Γ. In some affine coordinate z on PTx0

X, Γν is then
conjugated to a subgroup of{

z 7−→ λzε : λ ∈ C×, ε = ±1
}

where ε = −1 with positive probability. In this case λ1 = 0 (see e.g. [29, Prop. 5.3]),
so ν is not uniformly expanding.

− If Γν is reducible it preserves one or two directions in Tx0
X. If Γ preserves a

direction with a non-positive exponent, then ν is not uniformly expanding. So, we can
assume that Γ preserves a unique direction, and that the corresponding exponent β
is positive. By (i) and (ii) we see that limn→∞

1
n log ∥(fnω )∗v∥ ⩾ β for any v ∈ Tx0

X

and almost every ω; so ν is uniformly expanding.
This covers all possible cases and the proof is complete. □

Let F be a finite set, viewed as a 0-dimensional manifold, and V be a real or
complex vector bundle of dimension d over F ; identify V with F × Kd, for K = R

or C. Let GL(V ) be the group of bijections of V acting linearly on fibers: it is a
semi-direct product GL(V ) ≃ S(F ) ⋉ GLd(K)F where S(F ) acts on GLd(K)F by
permuting the factors. We say that a subgroup of GL(V ) is strongly irreducible if it
acts transitively on F and the stabilizer of any x ∈ F acts strongly irreducibly on
the fiber {x} ×Kd of V ; or equivalently, if there is no invariant and finite collection
of proper positive dimensional subspaces in some fibers of V . Similar notations and
notions are defined for PGL(V ).

Now, if F is a finite Γ-orbit on X, consider the induced action of Γ on TX|F :=⋃
x∈F TxX. We say that this action is non-elementary if its image in PGL (TX|F ) is

strongly irreducible and unbounded. When Γ preserves a volume form on X, its image
in GL (TX|F ) is unbounded if and only if it is unbounded in PGL (TX). We say that
it is strictly triangular if the only proper Γ-invariant subbundle in TX|F is given by
a 1-dimensional subbundle L ⊂ TX|F .

Pick a point x in F and set Γx = StabΓ({x}). Since F is an orbit, [Γ : Γx] = |F |
and the image of Γ in PGL (TX|F ) is unbounded if and only if the image of Γx in
PGL (TxX) is unbounded. Thus, one easily gets the following lemma.

Lemma 8.13. — If F is a finite Γ-orbit, the action of Γ on TX|F is non-elementary
(resp. strictly triangular) if and only if for some, hence any, x ∈ F the action of
StabΓ({x}) on TxX is non-elementary (resp. strictly triangular).
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Theorem 8.14. — Let X be a torus, a K3 surface, or an Enriques surface. Let ν be
a probability measure on Aut(X) satisfying (M+), and F be a finite Γν-orbit. Then ν

is uniformly expanding on F if and only if the induced action of Γν on TF is
(a) either non-elementary (in the sense of the above definition);
(b) or strictly triangular and the field of invariant directions L ⊂ TX|F is uni-

formly expanding.
If ν is symmetric, it is uniformly expanding on F if and only if (a) holds.

Proof. — Let ΓF be the finite index subgroup fixing every point of F . Assume that ν
is uniformly expanding. Then by Proposition 3.2, for some n0, the induced mea-
sure (ν(n0))ΓF

is uniformly expanding. Therefore, by Proposition 8.12, ΓF satisfies
Property (a) or (b) at every point of F , and we conclude by Lemma 8.13. Con-
versely, assume that (a) or (b) holds. Note that by Theorem 3.1, νΓF

satisfies (M+).
By Lemma 8.13 and Proposition 8.12, νΓF

is uniformly expanding on F , hence by
Proposition 3.3, ν is uniformly expanding on F , as desired. □

This theorem shows that when ν is symmetric all conditions in Theorem 8.9 depend
only on Γν , and not on ν. Thus we obtain:

Corollary 8.15. — Let X be a torus, a K3 surface, or an Enriques surface. Let Γ be
a non-elementary subgroup of Aut(X). Let ν and ν′ be symmetric probability measures
on Aut(X) satisfying (M+) such that Γν = Γν′ = Γ. Then ν is uniformly expanding
if and only if ν′ is uniformly expanding.

9. Examples of uniformly expanding actions

9.1. A finitary version of Theorem 1.6 and application to Wehler surfaces

In [24, §§7-8], Chung uses computer assistance to prove the uniform expansion of
some concrete algebraic actions on real surfaces. In our situation Theorem 1.6 can
be used to check uniform expansion, but this requires a description of all invariant
Zariski-closed subsets. As already explained, invariant curves can be determined by
cohomological computations; for instance, if X is a generic Wehler surface, there is
no Aut(X)-invariant curve. Thus the main problem is to study finite orbits.

If the group Γ is non-elementary, contains parabolic elements, and has no invariant
curve, the main result of [21] says that Γ admits only finitely many finite orbits,
except when (X,Γ) is a Kummer example. However, the proof given in [21] does
not provide any bound on the number or the lengths of such orbits; so, there is
a priori no hope of numerically checking uniform expansion along all of them, nor
proving that there are no finite orbits. The next result explains how to overcome this
issue. To state it, we denote by NS(X;R) the Néron-Severi group of X that is, the
subgroup of H1,1(X;R) obtained by all Chern classes of holomorphic line bundles
on X; it coincides with the intersection of H1,1(X;R) with the torsion free part of
H2(X;Z) (see [37, p. 163]).
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Theorem 9.1. — Let X be a smooth projective surface and Γ be a non-elementary sub-
group of Aut(X) containing parabolic elements, which does not preserve any algebraic
curve. Assume that we are given:

(i) algebraic equations for X, and the formulas defining a generating subset S of Γ;
(ii) a basis of NS(X;R) and the matrices of s∗ : NS(X;R)→NS(X;R), for s in S;
(iii) a parabolic element g ∈ Γ, given as a word in the generators s ∈ S, and its

invariant fibration π : X → B.
Then, there is an analytically computable integer N(X,Γ) such that every finite

Γ-orbit of length greater than N(X,Γ) is uniformly expanding (in the sense of Sec-
tion 1.3).

By analytically computable, we mean computable by a computer able to solve real
analytic equations; by algebraically computable, we mean computable by a computer
able to solve algebraic equations. The proof will provide an analytically computable
subset containing all possible non-expanding finite orbits.

Example 9.2. — Let g be a parabolic element of Γ, and let h ∈ Γ be a conjugate of g
with a distinct invariant fibration. Denote by TorN (g) the finite set of fibers of the
g-invariant fibration in which g is a periodic translation of period ⩽ N . Then, the set
of finite orbits of Γ of length ⩽ N is algebraically computable since it is contained in

TorN (g) ∩ TorN (h) = {x ∈ X : gN (x) = hN (x) = x}.

A typical application of Theorem 9.1 is to the Wehler family. Recall from Section 1.1
that W0 is the family of Wehler surfaces which are smooth and do not contain any
fiber of the three natural projections to (P1)2. Under these assumptions the group Γ

generated by the three basic involutions σ1, σ2 and σ3 is non-elementary and has no
invariant curve (see [21, Prop. 2.2]). It turns out that in this case N(X,Γ) is constant
on a Zariski dense open subset (see Proposition 9.7 below). This leads to the following
theorem, which will be proved in Section 9.1.3:

Theorem 9.3. — There is a dense Zariski open subset of W0 (resp. of the family
W0(R) of real Wehler surfaces), in which the action of Γ = ⟨σ1, σ2, σ3⟩ is uniformly
expanding on X.

9.1.1. Preliminaries on Halphen twists. — Let us resume the discussion from Sec-
tion 6.1 and add a few preliminaries on Betti foliations and the non-twisting locus.
Let h be a Halphen twist with associated fibration π : X → B. Consider a simply con-
nected open subset U of B◦ together with a section σ : U → X of π and a continuous
frame for the homology of the fibers above U . For w ∈ U , one can identify the fiber Xw

to C/Lat(w) (σ(w) corresponding to the zero of C/Lat(w)), as in Section 6.1. Then,
above U , there is a unique real-analytic diffeomorphism Ψ : π−1(U) → U × R2/Z2

such that
(a) π ◦Ψ = Ψ ◦ πU , where πU is the projection onto U ;
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(b) Ψ maps σ to the zero section w 7→ (w, (0, 0)) of πU , and maps the basis of
H1(Xw;Z) to the standard basis of H1(R

2/Z2;Z) = Z2;
(c) on each fiber, Ψ is a real analytic isomorphism of real Lie group.
Above U , the Betti foliation is the foliation by submanifolds of the form

Ψ−1(U × {(x, y)}); these leaves are local holomorphic sections of π, with σ cor-
responding to Ψ−1(U × {(0, 0)}). Conjugating by Ψ, we get

(9.1) Ψ ◦ h ◦Ψ−1 : (w, (x, y)) 7−→ (w, (x, y) + T (w)),

where T : U → R2/Z2 is real analytic. By [22, Lem. 3.9], the map T is an (orientation
preserving) branched covering, so it behaves topologically like w 7→ wk. In U , the
non-twisting locus NTh is the set {w ∈ U : DwT = 0}; equivalently, NTh ∩ U =

π({t1, . . . , tq}), where {t1, . . . , tq} is the set of tangencies between the Betti foliation
and the section h ◦ σ. These definitions do not depend on the above choices and NTh

can indeed be defined globally on B◦. A key fact is that NTh is a finite subset of B◦

(see [22, Prop. 3.14] or [28, Cor. 7.7.10]). We denote by |NTh| its cardinality, and by
mult(NTh) its cardinality counted with multiplicity, that is, taking into account the
degree of the local branched covering T .

Note that, once h and π are given, the set NTh ⊂ B◦ is analytically computable: one
has to compute the periods of Xw to get Lat(w), then Ψ is R-linear from C/Lat(w)

to R2/Z2, and T is then obtain from h by conjugacy.

9.1.2. Proof of Theorem 9.1. — As in [22], for (g, h) ∈ Hal(Γ)2 we set

STang(πg, πh) = Sing(πg) ∪ Sing(πh) ∪ Tangtt(πg, πh),

where Sing(πg) is the union of all singular and multiple fibers, and Tangtt(πg, πh) is the
part of the tangency locus of πg and πh which is not contained in Sing(πg)∪Sing(πh).
Put NTX

g = π−1
g (NTg) (so that NTX

g is a curve in X) and likewise NTX
h = π−1

h (NTh).

Lemma 9.4. — Let g, h be a pair of Halphen twists in Γ with distinct invariant fibra-
tions, and let x ∈ X be a point with a finite Γ-orbit. If this orbit is not uniformly
expanding, then it is contained in STang(πg, πh) ∪NTX

g ∪NTX
h .

Proof. — We argue by contraposition: replacing x by another point in its orbit if
necessary, we assume that x /∈ STang(πg, πh) ∪ NTX

g ∪ NTX
h , and we want to show

that its orbit is uniformly expanding. Since Γ(x) is finite, there are positive integers
k and ℓ such that gk and hℓ are in StabΓ(x). By definition of the non-twisting locus,
gk and hℓ induce parabolic homographies on P(TxX); and since x /∈ Tangtt(πg, πh),
the fixed points of these homographies are distinct; thus, the action of ⟨gk, hℓ⟩ on
P(TxX) is non-elementary. By Proposition 8.12 and Lemma 8.13, the orbit of x is
uniformly expanding. □

The intersection number of NTX
g ∪ STang(πg, πh) (resp. NTX

h ∪ STang(πg, πh))
with a smooth fiber Xh

w (resp. Xg
w) does not depend on the fiber. Let n0(g, h) be the

maximum of these intersection numbers:

(9.2) n0 = max
{
[NTX

g ∪ STang(πg, πh)] · [Xh
w], [NTX

h ∪ STang(πg, πh] · [Xg
w])

}
.
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The set STang(πg, πh) can be computed algebraically, thus

n0(g, h) ⩽ A(g, h)max
{
|NTg|, |NTh|

}
+B(g, h),

where A(g, h) and B(g, h) can be computed algebraically (by computing the tangency
loci and intersection numbers). Then, we set

(9.3) n(g, h) = n0(g, h)!

Lemma 9.5. — Let g, h be a pair of Halphen twists in Γ with distinct invariant fibra-
tions. Let x ∈ X be such that Γ(x) is finite and not uniformly expanding. Then Γ(x)

is contained in

STang(πg, πh) ∪ (NTX
g ∩NTX

h ) ∪ (NTX
g ∩NTX

hngh−n) ∪ (NTX
h ∩NTX

gnhg−n),

where n = n(g, h) is defined by (9.3).

Proof. — The statement of the lemma concerns the orbit Γ(x), but we only have to
prove it for x itself. If x ∈ STang(πg, πh) ∪ (NTX

g ∩NTX
h ) we are done. Otherwise by

Lemma 9.4, x belongs to NTX
g ∖NTX

h or NTX
h ∖NTX

g . Assume that x ∈ NTX
g ∖NTX

h .
The h-orbit of x is finite and by Lemma 9.4 again, for every q, hq(x) is contained
in Xh

x ∩ (NTX
g ∪ STang(πg, πh)) (here we abuse notation and write Xh

x for Xh
πh(x)

).
Thus, hn(x) = x, where n = n(g, h). Set f = hngh−n. The fiber Xf

x associated to f
through x is hn(Xg

x), and since x /∈ NTX
h , Xf

x is transverse to Xg
x at x, as well as

to Xh
x . Moreover, x belongs to NTX

f , because x belongs to NTX
g and hn(x) = x. Hence

x ∈ NTX
g ∩NTX

hngh−n . Doing the same in the case where x ∈ NTX
h ∖NTX

g completes
the proof. □

The set NTg is analytically computable (by Section 9.1.1), and Crit(πg) is alge-
braically computable. Similarly, if h is in Hal(Γ), Tangtt(πg, πh)∩NTX

f is analytically
computable. The previous lemma shows that all non uniformly expanding finite orbits
are contained in

Bad(g, h) := STang(πg, πh)∪(NTX
g ∩NTX

h )∪(NTX
g ∩NTX

hngh−n)∪(NTX
h ∩NTX

gnhg−n)

for every pair (g, h) ∈ Hal(Γ)2 with distinct invariant fibrations, where n = n(g, h)

as in Equation (9.3). Intersecting these sets for various choices of (g, h), we expect
to get a finite analytically computable set. Observe that Bad(g, h) is the union of
STang(πg, πh) and a finite set, because NTX

g ∩ NTX
h is finite when πg and πh are

distinct. So, what remains to do is to exhibit an explicit finite set of pairs (g, h) such
that the intersection of the STang(πg, πh) is finite. We first treat the case of Wehler
surfaces, which is sufficient to proceed with Theorem 9.3.
Conclusion of the proof of Theorem 9.1 in the Wehler case. Fix a Wehler surface
X ∈ W0 and consider the three pairs (g1, g2), (g2, g3), (g3, g1), where g1 = σ2◦σ3, g2 =

σ3 ◦ σ1 and g3 = σ1 ◦ σ2. Note that the gi-invariant fibration is the i-th projection πi.
Assume that the intersection of the divisors STang(πi, πj) contains an irreducible

curve D ⊂ X. If D is contained in Sing(πi) ∩ Sing(πj) with i ̸= j, then (πi, πj)

maps D onto a point and this contradicts the fact that X ∈ W0. If D is contained
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in, say, Tangtt(π1, π2) and Tangtt(π2, π3), the three fibrations are pairwise tangent
along D, and we obtain a contradiction because there is no tangent vector v ̸= 0

to (P1)3 which is mapped to 0 by each Dπi. The last possibility is that D is con-
tained in, say, Tangtt(π1, π2) and Sing(π3). In this case, there is a point p on D at
which Dpπ3 : TpX → Tπ3(p)P1 is equal to 0, and at such a point, the same contradic-
tion applies. This shows that

(9.4) F (g1, g2, g3) := Bad(g1, g2) ∩ Bad(g2, g3) ∩ Bad(g3, g1)

is finite, with an analytically computable cardinality, and the proof is complete. □

Remark 9.6. — The above proof provides a computation of the integer N(X,Γ) in-
volving:

(1) algebraic quantities that are constant on W0, like STang(πi, πj) ·STang(πj , πk),
(2) |NTgi | for i = 1, 2, 3.

Therefore, if |NTgi | ⩽ B, then N(X,Γ) ⩽ N(B) for some N(B) depending only on B.
Indeed, the number n in Lemma 9.5 depends only on n0 (see Equations (9.3)) and

by Equation (9.2)) n0 is bounded by a function of B. Then, because the norm of
(gn0

i )∗ : NS(X) → NS(X) is bounded by Cn20 for some uniform constant C, we obtain
NTX

gi ∩NTX
gn
j gig

−n
j

⩽ C ′n20B
2 for some constant C ′ and the result follows. □

Conclusion of the proof of Theorem 9.1 in the general case. — By assumption, Γ is non-
elementary and has no invariant curve. Let Γ∗ be its image in GL(NS(X;Z)).

If g is the parabolic element given in assumption (iii) of the theorem, up to sign,
there is a unique integral primitive class c(g) ∈ NS(X) such that g∗c(g) = c(g) and
c(g) · c(g) = 0. By the assumptions (ii) and (iii), this class can be computed explicitly.
An element f of Aut(X) preserves the g-invariant fibration π (permuting its fibers) if
and only if it fixes c(g). Since Γ is non-elementary, it is not contained in the stabilizer
of c(g). Thus, according to Proposition 3.2 of [33], there is a computable integer N ,
and a composition f of length N in the generators s ∈ S that does not preserve c(g).
Then, h := f ◦ g ◦ f−1 is a parabolic element of Γ with invariant fibration π ◦ f ̸= π.

Since g and its invariant fibration π, as well as f , are explicit, we can compute
the degree of the subvariety STang(πg, πh) (for the embedding X ⊂ Pm(C) given by
assumption (i)). Denote by (Ci)i∈I the irreducible components of STang(πg, πh); we
have |I| ⩽ deg(STang(πg, πh)).

Suppose that for each Ci, one can exhibit some fi ∈ Γ for which fi(Ci) ̸⊂
STang(πg, πh). Then the set of pairs

{(g, h)} ∪
{
(figf

−1
i , fihf

−1
i ) : i ∈ I

}
satisfies |

⋂
i STang(πgi , πhi)| < +∞, and we are done because the cardinality of this

finite set is algebraically computable. So, we now fix such an irreducible component Ci,
and we construct such an fi.
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First, assume that Ci is an irreducible component of Tangtt(πg, πh). Then Ci is
generically transverse to π, hence deg(gn(Ci)) tends to infinity. We can thus set
fi = gni for some large enough ni (explicitly computable from the action on NS(X)).

The second case is when Ci is an irreducible component of Sing(πg)∪ Sing(πh); in
particular, its self-intersection C2

i is ⩽ 0. By [21, Th. D], there exists a loxodromic
element f0 ∈ Γ without invariant curve; in particular f |I|!0 (Ci) ̸= Ci. Since f0 is
loxodromic, this inequation is equivalent to (f

|I|!
0 )∗[Ci] ̸= [Ci]. Indeed, either C2

i = 0

and we readily get a contradiction since a loxodromic element does not fix any non-zero
isotropic class, or C2

i < 0 and this follows from f
|I|!
0 (Ci) ̸= Ci since [Ci] determines Ci

when the self-intersection is negative. Thus, if we set

Wi :=
{
f ∈ GL(NS(X,R)) : f

|I|!
∗ [Ci] = [Ci]

}
,

we see that Γ∗ is not contained in Wi. Proposition 3.2 of [33] then provides a
computable element f ∈ Γ such that f /∈ Wi. Now, if fq(Ci) were contained in
STang(πg, πh) for 0 ⩽ q ⩽ |I|, we would find two integers q1 < q2 ⩽ |I| such that
fq2−q1(Ci) = Ci; in particular, f |I|!(Ci) would be equal to Ci, a contradiction. Thus,
there is an iterate fi := fqi , with qi ⩽ |I|, such that fi(Ci) ̸⊂ STang(πg, πh), and the
proof is complete. □

9.1.3. Proof of Theorem 9.3. — Recall that, for Wehler surfaces, Γ = ⟨σ1, σ2, σ3⟩.

Proposition 9.7. — There exists an analytically computable integer N such that for
any Wehler surface X ∈ W0, any finite Γ-orbit of length > N is non-elementary
(hence uniformly expanding by Theorem 8.14).

This uniform bound is the main step towards Theorem 9.3. In view of Remark 9.6,
this proposition follows from Theorem 9.1 and the following uniformity result.

Proposition 9.8. — For any g ∈ {g1, g2, g3}, the cardinality of NTg is uniformly
bounded in W0.

Let X ⊂ W0 × (P1 × P1 × P1) be the universal family of Wehler surfaces, as in
[21, §2]. As X varies in W0, the automorphisms gi and their invariant fibrations πi
depend on X, but for notational simplicity we drop the dependence in X.

From now on, we fix g ∈ {g1, g2, g3}; its invariant fibration π : X → P1 is the
restriction of one of the projections πi to X; its base does not depend on X.

Lemma 9.9. — Let X0 ∈ W0, w0 ∈ NTg, and k be the multiplicity of w0 in NTg.
Let U ⊂ P1 be a topological disk such that U ∩ NTg = {w0} and U ∩ Crit(π) = ∅.
Then, there exists a neighborhood V of X0 in W0 such that for any X in V , the total
multiplicity of NTg in U is equal to k.

Proof. — Fix an open connected neighborhood V of X0 such that for X in V ,
– U does not intersect any of the sets Crit(π);
– there is a section w 7→ ςX(w) of X → W0 × P1 above V × U , together with a

continuous choice of basis for the homology of the fibers of π above U .
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Then the sections, the Betti foliations (above U), and their lifts to U ×C all depend
continuously on X in V . In particular, we can find a disk U ′ ⊂ P1, with w0 ∈ U ′ ⋐ U ,
whose boundary is a smooth Jordan curve γ, and such that for any X ∈ V , the Betti
foliation is transverse to g ◦ ςX above γ. In particular, NTg is disjoint from γ.

Now, recall that the map T defined in Equation (9.1) behaves topologically like
w 7→ wk+1; in such a local coordinate, k + 1 is the winding number of the curve
T ◦ γ around T (0). Since NTg stays disjoint from γ for X in V , this winding number
is constant in V ; thus, the number of points of NTg enclosed by γ (counted with
multiplicity) stays constant on V . The lemma follows. □

Lemma 9.10. — There exists a proper semi-algebraic subvariety Zg ⊂ W0 of positive
codimension such that mult(NTg) is locally constant in W0 ∖ Zg.

Proof

Step 1: Keeping away from the singular fibers. — Fix X0 ∈ W0 and w0 ∈ P1 a critical
value of π. It is shown in [22, Lem. 3.11] that NTg does not accumulate w0. Here,
we show that outside a semi-algebraic subvariety Zg ⊂ W0 this non-accumulation
holds uniformly with respect to X: we shall construct a neighborhood V × U of
(X0, w0) such that U is disjoint from NTg for every X in V . For this, we review the
proof of [22, Lem. 3.11] and make it locally uniform in X under appropriate hypotheses
on X0.

Define W1 to be the dense, Zariski open subset(8) of W1 such that for any X ∈ W1

and any i ∈ {1, 2, 3}, all singular fibers of πi are of type I1. In this case there are
24 such fibers (the Euler characteristic of a K3 surface is 24, the contribution to the
Euler characteristic of a smooth fiber is 0, and the contribution of an I1 fiber is 1).
Suppose that X0 ∈ W1.

Fix a small disk U ⊂ P1 centered at w0 and containing no other singular value
of π : X0 → P1. Fix a neighborhood V of X0 in W1, and local coordinates on U

(depending on X), so that (i) this property persists for X ∈ V and (ii) the unique
singular value of π in U is w0 = 0. Let X#

U be the complement in Xg
U := π−1(U) of

the unique singular point of Xg
w0

. We fix a reference section ςX : U → X#
U depending

holomorphically on X ∈ V and w ∈ U .
For X ∈ V and w ∈ U∖{w0} we can write Xg

w ≃ C/Z⊕ZτX(w), as in Section 6.1.
Since the singular fiber Xg

w0
is of type I1 and w0 = 0, the monodromy along a

simple loop around 0 maps the basis (1, τX(w)) to (1, τX(w) + 1). Moreover, X#
U is

biholomorphic to the quotient of U ×C by the family of lattices Z⊕ ZτX(w), where

(8)To show that W1 is dense, we only have to show that it is non-empty. This is a consequence
of the following fact. Let X be in W0, let π1 : X → P1 be the first projection, and let m be a critical
point of π1. Let F be the fiber of π1 containing m. Then, each of the conditions
(1) the singularity of F at m is degenerate (in the sense of Morse, i.e., it is not an A1-singularity);
(2) F contains a second singular point m′

defines a proper subset of W0. In other words, these properties (1) and (2) disappear after a generic
small perturbation of X in W0, which can be checked directly.
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τX(w) = 1
2iπ log(kX(w)) for a function kX : U → C which has a single zero at the

origin and depends holomorphically on X ∈ V and w ∈ U . Since g ◦ ςX is another
section of π above U , there is a holomorphic function tX(w) of X and w such that
the lift of g to U × C is given by (w, z) 7→ (w, z + tX(w)). The calculations of [22]
(see §3.3.2 and Lem. 3.11 there) show that the equation for NTg in U is

(9.5) −i log(|kX(w)|)kX(w) t′X(w) = k′X(w)Im(tX(w)).

We claim that if Im(tX(0)) ̸= 0, then by reducing V and U if necessary, NTg∩Xg
U = ∅.

Indeed if U is small enough, there exist positive constants ε, c such that for any X ∈ V ,

|kX(w)| ⩽ ε, |k′X(w)| ⩾ c, |Im(tX(w))| ⩾ c, and |t′X(w)| ⩽ c−1.

Reducing U further, ε can be chosen arbitrary small while c remains bounded away
from 0. If ε log ε < c3, this is not compatible with the equality (9.5), so NTg ∩U = ∅.

Lemma 9.11. — The locus

(9.6) {X ∈ V : Im(tX(w0)) = 0}

is a semi-algebraic subset of positive codimension.

Proof of Lemma 9.11. — Consider the Wehler surfaces X ⊂ V ⊂ W1, and their equa-
tions

A222x
2y2z2 +A221x

2y2z + · · ·+A100x+A010y +A001z +A000 = 0.

Permuting coordinates if necessary, we suppose that π : X → P1 is the projection
onto the first coordinate. As X varies near X0, the critical value of π near w0 and
the corresponding critical point in X can be computed algebraically in terms of the
Aijk. Using the action of PGL(2,C)3 on P1 × P1 × P1, we may assume that w0 = 0

(as above) and the unique singular point of the fiber Xg
w0

:= X ∩ {x = 0} is (0, 0).
So, the equation of Xg

w0
in P1 × P1 is

ay2z2 + by2z + cyz2 + dyz + ey2 + fz2 = 0,

for some coefficients a, . . . , f given by algebraic expressions in the Aijk. Since X ∈ W1,
Xg

w0
has two transverse branches at (0, 0): their tangent directions are given by the

solutions of dyz + ey2 + fz2 = 0 in P1.
One can also write Xg

0 ∖{0, 0} as the quotient of {0}×C by the lattice Lat(0) = Z;
in this coordinate, g acts as multiplication by exp(2iπtX(0)). Thus, Im(tX(0)) = 0

means that g induces a rotation, instead of a loxodromic homography, on the rational
curve Xg

0 . Writing down g = σy ◦ σz in coordinates, we obtain

g(y, z) =

Ç
−1− d2/ef d/e

−d/f −1

åÇ
y

z

å
+O

(
∥(y, z)∥2

)
for (y, z) ∈ Xg

0 . Thus, D(0,0)g ∈ GL(T0,0X) has determinant 1 and trace −2− d2/ef .
As a consequence, g acts as a rotation on Xg

0 if and only if 2 + d2/ef ∈ [−2, 2]: this
is a semi-algebraic condition. □
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To conclude, we let Wg ⊂ W0 be the intersection of W1 with the complement of
the subsets defined by

{X ∈ W1 : Im(tX(wi) = 0}
for each of the 24 singular values wi of π. We finally define Zg to be the complement
of Wg; by Lemma 9.11, it is a proper semi-algebraic set of positive codimension.

Step 2: Conclusion. — Pick X0 ∈ W0 ∖ Zg and cover P1 by a finite family F of
topological disks, such that for every U ∈ F , U contains at most one point of Crit(π)∪
NTg. If U ∈ F contains a critical value of π (and no point of NTg), then, as already
explained, this property persists in a neighborhood of X0. By Step 1, for X sufficiently
close toX0, U is disjoint from NTg as well. For the remaining disks, the local constancy
of mult(NTg) follows from Lemma 9.9. The proof is complete. □

Proof of Proposition 9.8. — We use a semi-continuity argument. Since the excep-
tional set Zg defined in Lemma 9.10 is semi-algebraic, the open set W0 ∖ Zg is also
semi-algebraic, so it admits finitely many connected components (see [7, Cor. 2.7]
for instance). Thus, by Lemma 9.10, mult(NTg) and therefore |NTg| are uniformly
bounded on W0 ∖ Zg, say |NTg| ⩽ B. Now, pick X0 ∈ Zg (thus X0 ∈ W0) and
assume that for X0 one has |NTg| > B. We can then consider a finite number of
small topological disks Ui with disjoint closures in P1, such that |NTg| ∩

⋃
Ui > B.

By Lemma 9.9, these non-twisting points persist for X close enough to X0. Since
W0 ∖ Zg is dense in W0, this contradicts the definition of B and the proof is
complete. □

Proof of Theorem 9.3. — The main point of [21, Th. A] is that the set of X ∈ W0

possessing a finite orbit of length ⩽ B is a proper Zariski closed subset ZB of W0.
For N as in Proposition 9.7, for any X ∈ W0∖ZN , all finite orbits of Γ are uniformly
expanding. We conclude by applying Theorem 1.6 (with ν = 1

3 (δσ1
+ δσ2

+ δσ3
)). The

proof of the corresponding statement in W0(R) is identical. □

Remark 9.12. — We expect that an analogue of Theorem 9.3 holds for other families
with large automorphism groups containing parabolic elements, like Enriques surfaces,
or the family associated to pentagon folding (see [19]).

Remark 9.13. — The proof of Proposition 9.8 suggests that there should exist a no-
tion of multiplicity, including singular fibers, for which mult(NTg) would be constant
on W0 and would be an algebraically computable invariant of the parabolic automor-
phism g. A variant of this question is mentioned in [28, Rem. 7.7.4].

9.2. Thin subgroups. — In this section we consider the total space W of all Wehler
surfaces and the universal family X ⊂ W × (P1 × P1 × P1). We change a little bit
the notation: Γ will be a subgroup of Z/2Z ∗ Z/2Z ∗ Z/2Z, and ΓX will be the
corresponding subgroup of Aut(X).

Let E be an elliptic curve. Consider the following classical Kummer construction
(see [21, §4]): let η be the involution η(x, y) 7→ (−x,−y) on A := E×E; the associated
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Kummer surface is the desingularization ÿ�E × E/η; the natural GL(2,Z) action on
E × E descends to E × E/η and induces a non-elementary automorphism group ofÿ�E × E/η. The surface E×E/η can be realized as a singular Wehler example (see [16,
§8.2]); in addition the action of Z/2Z ∗ Z/2Z ∗ Z/2Z is induced by a finite index
subgroup of GL(2,Z). Let us briefly recall the construction: write E in Weierstrass
form y2 = 4x3 − g2x − g3, with the neutral element of the group law on E located
at infinity. To (m1,m2) ∈ E × E, mi = (xi, yi), we associate m3 = −(m1 +m2) and
ϕ(m1,m2) = (x1, x2, x3), where m3 = (x3, y3). Then, ϕ is η-invariant and determines
a biregular map ϕ : E×E/η → XE onto a singular Wehler surface XE with 16 nodal
singularities.

Assume that Γ ⊂ Z/2Z ∗ Z/2Z ∗ Z/2Z is not virtually cyclic. Then for X ∈ W0,
ΓX is non-elementary (see [20, §3]).

Theorem 9.14. — Let Γ be a subgroup of Z/2Z ∗ Z/2Z ∗ Z/2Z which is not virtually
cyclic. For X ∈ W0 sufficiently close to XE, the subgroup ΓX is uniformly expanding
on X.

Thus for every “abstract” non-elementary subgroup Γ of Z/2Z ∗ Z/2Z ∗ Z/2Z,
the open subset Wexp(Γ) of those X ∈ W0 for which the action of ΓX is uniformly
expanding is non-empty. The group Γ can be arbitrarily thin, in particular it is not
assumed to contain parabolic elements. In view of Theorem 8.9, it is natural to expect
that Wexp(Γ) is actually dense in the Euclidean topology.

Proof. — The difficulty is that we cannot directly argue that uniform expansion is
an open property, because XE is singular.

Lemma 9.15. — Fix f ∈ Z/2Z ∗ Z/2Z ∗ Z/2Z, and denote also by f the induced
fibered map on the universal family of (2, 2, 2)-surfaces in (P1)3. Then f is regular on
a neighborhood of XE.

Proof of Lemma 9.15. — Pick a (2, 2, 2) surface X. If X does not contain any fiber
of the projection π12 = (π1, π2) : (P1)3 → (P1)2, then the same property holds in a
neighborhood V ofX in the universal family of (2, 2, 2)-surfaces; furthermore, σ3 deter-
mines an automorphism(9) of V. Thus, we only have to prove that XE does not contain
any fiber of the projections πij . Let us show that XE does not contain any vertical

(9)Indeed, denote by V0 the projection of V in the space of Wehler surfaces W0 (see Section 1.1),
and let o ∈ W0 be the image of X. For v ∈ V0, let Xv ⊂ V be the corresponding Wehler surface. Pick
a point (x, y, z) ∈ X, say in an affine chart of (P1)3 where none of the coordinates is ∞. In other
words, z = [z0 : z1] ∈ P1 with z1 ̸= 0 and z = z0/z1, and similarly for x and y. For simplicity, we use
affine coordinates x, y for the first two coordinates and homogeneous coordinates [z0 : z1] for the
third one. The equation for Xv ⊂ V can be written Av(x,y)z2

0+Bv(x,y)z0z1+Cv(x,y)z2
1 = 0 and

then σ3(x,y, [z0 : z1]) = (x,y, [−Bv(x,y)z1 − Av(x,y)z0 : Av(x,y)z1]). We have to show that
this map is regular near (x, y, z). Since we work near a point at which z1 ̸= 0, the only problem could
be that, at some point (x′, y′, [z′0 : z′1]) of some Xv , we have both Av(x′, y′) = 0 and Bv(x′, y′) = 0,
but then C(x′, y′) should be 0 too, and Xv should contain a vertical line.
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line {x = x0, y = y0}. Such a line would provide a family of points (m1,m2) on
E × E with fixed first coordinates x1 = x0, x2 = y0, for which the first coordinate
of m3 := −(m1 +m2) takes arbitrary values. This is impossible. The same argument
applies to the lines {y = y0, z = z0} and {z = z0, x = x0} because the relation
m1 +m2 +m3 = 0 is symmetric (equivalently, the equation of XE given in [16, §8.2]
is symmetric in (x, y, z)). □

There is a finite index subgroup of Γ that fixes each singularity of XE . By Proposi-
tion 3.3 and the fact that uniform expansion does not depend on the measure, we can
replace Γ with this finite index subgroup, endow Γ with a finitely supported, sym-
metric measure ν with Γ = Γν , and then we have to prove that (ΓX , νX) is uniformly
expanding for X ∈ W0 near XE ; here, νX is the measure induced by ν on ΓX .

Endow P1×P1×P1 with the Fubini study metric, and the Wehler surfaces X with
the induced metric. Recall that T 1X denotes the unit tangent bundle.

Assume, by way of contradiction, that there is a sequence Xn → XE along
which νXn is not uniformly expanding. For each n, let ϖ denote the natural projec-
tion T 1Xn → Xn (resp. T 1XE → XE). Denote by T 1XE the subset of T 1(P1×P1×P1)

which coincides with T 1Reg(XE) above the regular part of XE and coincides with
T 1
x (P1 × P1 × P1) above each singularity x ∈ Sing(XE). With this definition it is

obvious that if xk is any sequence such that xk ∈
⋃
Xn ∪XE and xn → x ∈ XE then

we have the semicontinuity lim supT 1
xn
Xn ⊂ T 1XE . Theorem 5.1 provides a sequence

of stationary measures µ̂Xn
on T 1Xn (with projections µXn

:= ϖ∗µ̂Xn
) such that∫

log ∥f∗u∥dνXn
(f) dµ̂Xn

(u) ⩽ 0.

From Lemma 9.15, we can extract a subsequence, still denoted by (Xn), such that
(µ̂tn) converges to a stationary measure µ̂XE

on T 1XE satisfying∫
log ∥f∗u∥dνXE

(f) dµ̂XE
(u) ⩽ 0.

By iterating and using the stationarity of µ̂XE
, the same inequality holds with ν

(m)
XE

instead of νXE
for every positive integer m. To get the desired contradiction, we shall

show that no such measure exists.

Step 1: near the singularities. — Here we show that there exists n0 ∈ N, c0 > 0, and
an open neighborhood U of Sing(XE) such that if u ∈ T 1XE and ϖ(u) ∈ U , then

(9.7)
∫

log ∥f∗u∥ dν(n0)
XE

(f) ⩾ c0.

By Lemma 9.15 and the above mentioned semicontinuity of unit tangent bundles it
is enough to prove this when x = ϖ(u) ∈ Sing(XE). Recall that ΓXE

fixes Sing(XE)

pointwise. Around each of its singularities, XE is locally isomorphic to the quotient
C2/η, η(u, v) = (−u,−v), embedded in the standard way in C3 by

ϕ : (u, v) 7−→ (u2, uv, v2) = (ξ, η, ζ),
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whose image is the quadratic cone {ξζ − η2 = 0} ⊂ C3. The level-2 congruence
subgroup G of GL2(Z) fixes each torsion point of A := E × E of order ⩽ 2, and ΓXE

is induced by a non-elementary subgroup G0 of G. The standard linear action of G
on C2 (or more precisely on a neighborhood of any 2-torsion point of A) commutes
to η and induces a linear action on C3 via the homomorphism

ϕ∗ :

Ç
a b

c d

å
7−→

Ñ
a2 2ab b2

ac ad+ bc bc

c2 2cd d2

é
.

Thus, the action of ΓXE
on the tangent cone of XE at the origin (which is naturally

identified with {ξζ − η2 = 0}) is, up to a linear conjugacy, given by ϕ∗(G0). Since
this cone is Zariski-dense in TxXE = Tx((P1)3) and the action of Γ on the universal
family of (2, 2, 2) surfaces is smooth at (XE , x), we deduce that the action of Γ on
T 1
xXE is also induced by ϕ∗(G0).

This is a subgroup of O(q;R) ≃ O2,1(R), where q is the quadratic form q(x, y, z) =

xz− y2. By assumption, it is a non-elementary group of isometries of q, hence it acts
strongly irreducibly and proximally on R3 ⊂ C3 (loxodromic elements of GL2(Z) are
mapped to loxodromic elements in O(q;R)). It preserves the real decomposition C3 =

R3 ⊕R iR3 and the action on R3 and iR3 are linearly conjugate (by multiplication
by i). Therefore, as in Section 8.2, the Inequality (9.7) follows from [36] (see also [10,
Chap. III, Cor. 3.4(iii)]).

Step 2: away from the singularities. — We shall show that there exists a neighborhood
U ′ ⊂ U of Sing(XE) and c > 0 such that for any fixed u ∈ T 1XE such that ϖ(u) /∈ U ′,

(9.8) P
( 1

m
log ∥(fmω )∗u∥ ⩾ c

)
−→
m→∞

1.

By Lemma 2.3 (see also Remark 2.4), this implies that E (log ∥(fmω )∗u∥) ⩾ mc/2

for large m. Then, the first step and a compactness argument identical to that of
Lemma 2.2 show that uniform expansion holds on T 1XE , which is the desired con-
tradiction.

Let U ′ be an open neighborhood of Sing(XE) which will be specified later. There
is a constant δ = δ(U ′) such that

(9.9) if ϖ(u) /∈ U ′ and ϖ(f∗u) /∈ U ′, then log ∥f∗u∥ ⩾ log ∥f∗u∥flat − δ,

where ∥·∥flat is the Riemannian metric on Reg(XE) induced by the flat metric of
E × E.

The pull-back of ν to GL(2,Z) generates G0 and its support is finite. Since G0 ⊂
GL(2,Z) is non-elementary, we have uniform expansion with respect to the flat metric.
By Lemma 2.3, there exists a constant c1 > 0 and sets of trajectories Ω1

m ⊂ Ω such
that P(Ω1

m) → 1 as m→ ∞ and

(9.10) if ω ∈ Ω1
m,

1

m
log ∥(fmω )∗u∥flat ⩾ c1.
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Fix ε > 0 and c such that 0 < c < c1. We claim that there is a Margulis function
on XE with poles at Sing(XE). Indeed, to construct it we view XE as E × E/η. Let
π : E×E → E×E/η ≃ XE be the natural map. On E×E, π−1(Sing(XE)) = Fix(η)

is invariant under the GL2(Z)-action, which is uniformly expanding, so u : x 7→
− log dflat(x,Fix(η)) defines a Margulis function. Since η is an isometry for the flat
metric, u is η-invariant so it descends to a Margulis function on XE , as asserted.
We deduce that there is an open set U ′ = U ′(ε) ⊂ U with the following property:
for large enough m, the set Ω2

m of trajectories ω ∈ Ω such that (fmω )(ϖ(u)) /∈ U ′

satisfies P(Ω2
m) ⩾ 1 − ε/2. Now, U ′ being fixed, for m large enough we have that

P(Ω1
m ∩ Ω2

m) ⩾ 1− ε and by (9.9) and (9.10), if ω ∈ Ω1
m ∩ Ω2

m,

1

m
log ∥(fmω )∗u∥ ⩾ c1 −

δ(U ′)

m
⩾ c.

Thus, the convergence (9.8) holds and the proof is complete. □

10. Applications

10.1. Orbit closures. — The following is a version of the orbit closure Theorem E
of [22] in which periodic orbits are allowed. Combined with Theorem 9.3, it gives
Theorem 1.1.

Theorem 10.1. — Let X be a torus, a K3 surface, or an Enriques surface. Let Γ ⊂
Aut(X) be a non-elementary subgroup which contains parabolic elements and does not
preserve any algebraic curve. Assume that for any finite orbit O, the induced action
of Γ on TX|O is non-elementary. Then there exists a finite set F and a real analytic,
totally real, and Γ-invariant surface Y ⊂ X with Sing(Y ) ⊂ F such that for every
x ∈ X:

(a) either x belongs to F (and its orbit is finite);
(b) or x belongs to Y ∖ F and Γ(x) is a union of components of Y ;
(c) or Γ(x) = X.

Proof. — First observe that under these assumptions, [21, Th. C] implies that there
exists a maximal finite invariant subset F . Fix a symmetric measure ν such that
Γν = Γ and satisfying the moment condition (M+). By Theorems 1.6 and 8.14, ν
is uniformly expanding. We now resume the discussion from [22, §8], in particular
Remark 8.6 there: STangΓ is a finite invariant set and if x ∈ X is such that Γ(x) is
infinite but not dense, then there are two possible situations:

(1) either Γ(x)∖ STangΓ is discrete outside STangΓ;
(2) or Γ(x) ∖ STangΓ =: Y (x) is a totally real analytic surface, whose singular

locus Sing(Y ) is discrete outside STangΓ.
In case (1), Γ(x) is finite. Indeed Γ(x) is at most countable, so if µ is any cluster

value of 1
n

∑n−1
k=0 ν

k ⋆ δx, then µ is a purely atomic stationary measure. In this case it
follows from Theorem 4.3 that the orbit of x must be finite, hence contained in F .
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If case (2) holds, we first claim that Sing(Y (x)) is finite. Indeed, Sing(Y (x)) is a
Γ-invariant countable set, which clusters only at STangΓ. By the previous argument,
every orbit Γ(y) in Sing(Y (x)) is finite, so by the finiteness of the set of finite orbits [21,
Th. C] we conclude that Sing(Y (x)) itself is finite.

Now, let µ′ be a cluster value of 1
n

∑n−1
k=0 ν

k ⋆δx. By Theorem 4.3, µ′ is an atomless
stationary measure supported on Y (x) such that µ′(Reg(Y (x))) = 1. Since Γ has no
invariant curve, µ′ is Zariski diffuse. Let µ be any ergodic component of µ′. Theo-
rems 8.8 and 1.4 imply that µ is hyperbolic and its stable directions depend genuinely
on the itinerary. Then the argument of [13, Th. 3.1] adapts immediately to show that µ
is SRB.(10) The canonical invariant 2-form of X induces a Γ-invariant measure volY (x)

on Y (x) (see Lemma 6.3). Since Reg(Y (x)) admits a Margulis function, we conclude
from Proposition 4.4 that the volume volY (x) is finite. Therefore we can copy verbatim
the argument of [13, Th. 3.4] to conclude that µ is Γ-invariant. Since [22, Th. C] says
that there are only finitely many Γ-invariant measures, there are only finitely many
possible surfaces Y (x). Taking Y to be their union, the proof is complete. □

10.2. Ergodicity. — In [26], the original motivation to introduce uniform expansion
was a criterion for ergodicity. The same holds in our setting, with a few caveats which
will be explained below.

Theorem 10.2 (Dolgopyat-Krikorian [26, Cor. 2], see also [45, 24]). — Let X be a
torus, a K3 surface, or an Enriques surface. Let Γ ⊂ Aut(X) be a non-elementary
subgroup with a uniformly expanding action on X. Then volX is Γ-ergodic.

Likewise, if Y ⊂ X is a Γ-invariant totally real analytic subset such that Γ acts
transitively on the set of irreducible components of Y , then volY is Γ-ergodic.

Note that the notion of irreducible component in real analytic geometry is not well-
behaved in general (see [22, §5.1] for a short discussion). Here we content ourselves
with saying that Y is irreducible when Reg(Y ) is connected. Observe also that the
ergodicity of volX follows directly from Theorem 6.4 when Γ contains a parabolic
element.

Proof (sketch). — The proof in [26] is a bit sketchy, but it was already expanded
in [45, 24] (see also [52]). Here we just make a few comments on (1) the extension
to the holomorphic case for the action on X, and (2) how to deal with the possible
singularities for the action on totally real surfaces Y .

(10)We are not claiming that we can extend [13] to non-compact surfaces here. All the necessary
estimates on the Lyapunov norms and Pesin charts hold by viewing µ as a hyperbolic stationary
measure on the compact complex manifold X. The only issue appears when considering the size
and intersection properties of real stable and unstable manifolds in Y (x), starting from §9.7 of [13].
At this stage Brown and Rodriguez-Hertz already discard a set of small measure of points with bad
properties (see the definition of Λ(γ1) on p. 1087); so it is enough to remove from this Λ(γ1) the set
of small measure of points too close to Sing(Y (x)), and proceed with their argument.
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Regarding the action on X, let us recall that the proof of [26] is a variation on the
Hopf argument in which the asymptotic behavior of the Birkhoff sums 1

n

∑n−1
k=0 δfn

ω (x)

is propagated along chains of local stable manifolds (associated to different ω’s), to
ultimately conclude that there is a uniform r so that almost every point x is located
at distance at least r from the boundary of its ergodic component. The key technical
ingredients are the facts that under the uniform expansion assumption:

– stable directions at a given point do not concentrate, more precisely there
exists α > 0 such that for any x ∈ X and any [v] ∈ P(TxX), the probability that
dP1 ([v], [Es(x, ω)]) < α is smaller than 1/100: this follows from a compactness
argument (see [45, Prop. 4.4.4]);

– the Pesin local stable manifolds have uniformly bounded geometry (e.g. uniformly
bounded size in the sense of [20, §7.4]): this follows from the usual proof of the local
stable manifold theorem;

– the absolute continuity of the local stable foliation in Pesin charts: we can copy
the usual proof or notice that in the holomorphic case this follows from the fact that
the holonomy of a holomorphic motion is quasiconformal.

Given these facts, we can copy the proof of [26] by plugging in §10.4 the following
elementary geometric property, whose proof is left to the reader: let w = (w1, w2) ∈ C2

with ∥w∥ < 1 (possibly close to 1) and Ew be the direction perpendicular to the line
(0w); then if L is a complex line containing w, such that the angle in P1 between
the direction of L and Ew is greater than α, then L ∩ B(0, 1) contains a disk of
radius r ⩾ r(α).

For the second statement of the theorem we can directly resort to [45, 24], except
that we have to take into account the possibility of singular points on Y , which affect
the size and geometry of local stable manifolds on Y . For this, we may argue exactly
as in Theorem 10.1: first, the existence of a Margulis function guarantees that volY is
finite. Next, since uniform expansion holds on X, the size and angle change of local
complex stable manifolds is uniformly controlled. Thus, when restricting to Y , we also
have a uniform control of this geometry outside any δ-neighborhood of Sing(Y ). Since
the Hopf argument is local, we get that there is a single ergodic component outside
a δ-neighborhood of Sing(Y ), for every δ > 0, and we conclude by letting δ tend to
zero. □

Remark 10.3. — The argument of [26] works for a random dynamical system on
a (real) compact manifold of dimension 2d, enjoying a uniform expansion property
along d dimensional tangent subspaces. This assumption does not hold in our setting
since along a totally real subspace one may witness both expansion and contraction.
In particular the complex uniform expansion condition is not stable under C1 per-
turbations by (real) volume preserving diffeomorphisms of X. Still, the philosophy
of the above proof is that the argument is robust enough so that uniform expansion
along complex 1-dimensional tangent subspaces in a 2-dimensional complex surface
guarantees ergodicity.
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10.3. Equidistribution. — In the following results, given an action of (Γ, ν) on M

we say that random trajectories from x equidistributes towards µ if 1
n

∑n
k=1 δfk

ω
→ µ

for νN-almost every ω, where the convergence is in the weak∗ topology. By averaging
with respect to νN and applying the dominated convergence theorem, this implies
that 1

n

∑n
k=1 ν

k ∗ δx → µ as well.
The following theorem already appears under stronger moment assumptions in [24,

Th. D].

Theorem 10.4. — Let XR be a smooth real projective surface and ν a probability
measure on Aut(XR) satisfying (M+). Assume that Γν preserves a smooth volume
form vol on X(R) and that ν is uniformly expanding on X(R). Then for any x ∈ X

one of the following alternatives holds:
(a) either Γν · x is finite;
(b) or the random trajectories from x equidistribute towards volX′(R), the normal-

ized induced volume on a union of components of X(R).

Recall from Theorem 1.6 that the uniform expansion assumption holds when Γν

contains parabolic elements, has no invariant curve, and that the induced action of Γν

on finite orbits is uniformly expanding. In this case by [21, Th. C], the number of finite
orbits is finite. By Theorem 9.3 this applies to generic real Wehler surfaces and yields
Theorem 1.3.

Proof. — Breiman’s ergodic theorem says that that for νN-almost every ω, any cluster
limit µ of the sequence of empirical averages 1

n

∑n
k=1 δfk

ω(x) is stationary. Since ν is
uniformly expanding, the existence of a Margulis function (Theorem 4.3) shows that
if Γν ·x is infinite, µ gives no mass to finite orbits. Since ν is uniformly expanding, any
ergodic stationary measure µ′ is hyperbolic and its stable directions are non-random,
so by [13, Th. 3.4], µ′ is absolutely continuous with respect to volX(R). The ergodicity
Theorem 10.2 shows that for any component X0(R) of X(R), volX0(R) is ergodic, so
we conclude that, up to scaling, µ is a finite combination of measures of this type. □

The next result is conditional to the ν-stiffness property of complex non-elementary
uniformly expanding actions. We expect that it will be established in the near future.

Theorem 10.5. — Let X be a K3 or Enriques surface and ν be a probability measure
on Aut(X) satisfying (M+). Assume that

(1) Γν is non-elementary, contains parabolic elements, has no invariant curve, and
every finite Γ-orbit is uniformly expanding;

(2) ν-stiffness holds, that is, every ν-stationary measure is invariant;
(3) every compact, real analytic, totally invariant surface Y ⊂ X is smooth.

Then there exists a finite set F and a (possibly singular) totally real analytic surface Y
such that for every x ∈ X:

(a) either x belongs to F ;
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(b) or x belongs to Y ∖ F and its orbit equidistributes towards volY ′ , where Y ′ is
a union of components of Y ;

(c) or x /∈ F ∪ Y and its orbit equidistributes towards volX .

The third hypothesis is a weakness of this statement, since we do not know how to
study the singularities of invariant real analytic surfaces (except, of course, when we
know how to exclude the existence of finite orbits).

Proof. — The sets F and Y were already constructed in Theorem 10.1, whose proof
also implies property (b). The classification of invariant measures (Theorem 6.4) and
the stiffness property show that the only ν-stationary measure giving no mass to
Y ∪ F is volX . Therefore the equidistribution property (c) follows from Breiman’s
ergodic theorem and the existence of a Margulis function associated to finite orbits
and totally real surfaces (Theorems 4.1 and 4.5). □

Appendix. Rigidity of zero entropy measures

We complete the proof of Theorem 8.8 with the following result of independent
interest.
Theorem A.1. — Let X be a torus or a K3 or an Enriques surface, and ν be a
probability measure on Aut(X) such that Γν is non-elementary. Assume that µ is a
Zariski diffuse ν-stationary measure such that hµ(X, ν) = 0. Then µ is Γν-invariant
and for every f ∈ Γν , hµ(f) = 0.

Proof. — As in Theorem 8.8, we may assume that µ is ergodic as a stationary mea-
sure, and its Γν-invariance was already established there. Pick f ∈ Γν . Assume by
way of contradiction that hµ(f) > 0, in particular f must be loxodromic. If µ is
ergodic for f , then the result follows rather immediately from the measure rigidity
theorem 11.1 in [20]. Indeed in that theorem we consider an ergodic measure µ of
positive entropy for f and study the group of automorphisms of X preserving µ,
under the additional assumption that µ is supported on a real surface. We reduce
the argument to the case of Γ = ⟨f, g⟩ for some g, and divide the proof into 3 cases:
(1) either there is a Γ-invariant measurable line field, or (2) there is a Γ-invariant pair
of measurable line fields, or (3) none of the above. In cases (1) and (2) we conclude
that Γ is elementary by adapting the argument of [20, Th. 9.1]: this does not rely on
the additional real structure. In case (3), since µ is hyperbolic for f , Theorems 7.2
and 7.3 imply that µ is hyperbolic as a stationary measure and as in the proof of
Theorem 8.8 we deduce that hµ(X, ν) > 0, which is contradictory. Thus, case (3)
does not happen, and we deduce that Γ is elementary for every g ∈ Γν , which is a
contradiction. Therefore hµ(f) = 0.

What remains to do is to adapt this argument to the case where µ is not ergodic
under f . So consider f ∈ Γν and assume that hµ(f) > 0 so that f is loxodromic.
As before there are 3 cases: either (1) there is a Γν-invariant measurable line field,
or (2) there is a Γν-invariant pair of measurable line fields, or (3) none of (1) and (2).
We first observe that as before case (3) does not happen: indeed if there is no invariant
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line field or pair of invariant line fields, by Theorems 7.2 and 7.3, either µ is hyperbolic
as a ν-stationary measure, or the projectivized tangent action of Γν reduces to a
compact subgroup. But since hµ(f) > 0, f admits non-zero Lyapunov exponents
on a set of positive measure so the latter is impossible. Hence µ is hyperbolic as
a ν-stationary measure, and since there is no invariant line field, stable directions
depend on the itinerary and as before we conclude that hµ(X, ν) > 0, a contradiction.
So one of cases (1) or (2) holds.

So assume there exists a measurable Γν-invariant line field x 7→ [E(x)] ∈ P(TxX)

and pick g ∈ Γν . Assume further that g is loxodromic. We will derive a contradic-
tion by showing that ⟨f, g⟩ must be elementary: this is a contradiction because any
non-elementary subgroup of Aut(X) contains a purely loxodromic non-elementary
subgroup. Let P be the measurable partition into ergodic components (under f) and
denote by µP the conditional measure on P ∈ P, so that µ =

∫
µP(x)dµ(x) is the er-

godic decomposition of µ. Since the entropy function is affine, there exists a f -invariant
set B of positive measure such that for any x ∈ B, hµP(x)

(f) > 0. In particular f is
non-uniformly hyperbolic along B, so along B, E must coincide almost everywhere
with one of Es

f or Eu
f . Reducing B to a smaller invariant subset we may assume that

E = Es
f almost everywhere along B. For every n ∈ Z, the automorphism g−nfgn is

loxodromic, preserves µ, is non-uniformly hyperbolic along g−n(B), and E coincides
with Es

g−nfgn almost everywhere. By measure preservation there exists m ̸= n such
that µ(g−n(B) ∩ g−m(B)) > 0, so µ(B ∩ gm−n(B)) > 0. Letting h = gm−nfg−(m−n)

and A = B ∩ gm−n(B) we are exactly in the situation of Lemma 11.2 of [20], and we
conclude that W s(f, x) = W s(h, x) for µ-almost every x ∈ A, from which it follows
that T+

f = T+
h and finally (gm−n)∗T+

f = cT+
f . Since g is loxodromic, this implies that

T+
f = T+

g or T+
f = T−

g , and finally that ⟨f, g⟩ is elementary, which is the sought-after
contradiction.

Finally, if there is a measurable pair {E1, E2} of line fields which is ν-a.s. invari-
ant, we get a f -invariant set B of positive measure along which {E1(x), E2(x)} =

{Es
f (x) = Eu

f (x)}, and a set A = B ∩ gm−n(B) of positive measure along which
{Es

f (x) = Eu
f (x)} = Es

h(x) = Eu
h(x), where h = gm−nfg−(m−n), and we conclude as

before. □
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