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ON SELF-SIMILAR BLOW UP FOR
THE ENERGY SUPERCRITICAL SEMILINEAR
WAVE EQUATION

BY Jiror Kim

Asstract. — We analyse the energy supercritical semilinear wave equation
By — AD — |DPT1D =0

in R space. We first prove in a suitable regime of parameters the existence of a countable family
of self-similar profiles which bifurcate from the soliton solution. We then prove the non-radial
finite codimensional stability of these profiles by adapting the functional setting of [22].

Riésumic (Sur explosion auto-similaire pour I’équation d’onde semi-linéaire supercritique en
énergie)
Nous analysons ’équation d’onde semi-linéaire supercritique en énergie
By — AD — |P7ID =0

dans I’espace R%. Nous prouvons d’abord, dans un régime approprié de paramétres, lexistence
d’une famille dénombrable de profils auto-similaires qui bifurquent & partir de la solution du
soliton. Nous prouvons ensuite la stabilité non radiale en codimension finie de ces profils en
adaptant le cadre fonctionnel de [22].
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1484 J. Kim

1. INnTRODUCTION

1.1. SerrinG oF THE PrOBLEM. — We consider the semi-linear focusing wave equation
{Q“—A@—@P1®—Q

(t,z) € R x R™.
(I)|t:0 = Do, atq)|t:0 = &1,

(1.1)

This model admits a scaling invariance: if ®(¢,x) is a solution, then so is

2
D)\ (t,z) = AP\, Ax), A >0, a:= —
p—
This transformation is an isometry on the homogeneous Sobolev space with critical
exponent:
d 2
(1.2) 93 e = 1 e 5e= 5= =

In this paper, we focus on the energy super-critical case where space dimension d > 3
and s, > 1. The question we address is the existence and stability of self-similar blow
up regimes.

The problem of singularity formation in semi-linear dispersive equations has at-
tracted a considerable attention in the last fifty years both in the physics and math-
ematics communities, with a substantial acceleration in the last twenty years. The
series of works by Merle and Zaag [26, 25, 24, 23] give a detailed description of sin-
gularity formation mechanism in energy sub-critical ranges s. < 1 where the leading
order expected behaviour is the self-similar ODE blow up. In the energy critical range,
the situation is very different and new so called type II blow up scenario was discov-
ered in the setting of the energy-critical wave and Schrodinger map [16, 29, 28, 20|
and semi-linear problems [15]. The soliton solution

AQ+QP =0

hm|m|~>+00 Q($> =0
plays a distinguished role in the analysis as it serves as blow up profile for the main
part of the singular bubble. The stability analysis of the obtained type II blow up
bubbles then relies on delicate energy estimates built on repulsivity properties of the
linearized self-similar flow near the soliton.

In the energy super-critical range, and in analogy with the pioneering results for
the non-linear heat equation [14, 19, 18, 6], the situation is quite different. Solitonic
type II bubbles still exist but only for p > p;, large enough, [21, 5] where Joseph-
Lundgren exponent p;, is defined in (3.2), and a new type of self-similar blow up
arises, different from the ODE blow up, as governed by explicit stationary self-similar
solutions. More explicitly, the ansatz

o z
(1.3) et,r) =T 1) ulp), p=lyl, yv:=5—
maps (1.1) onto the radially symmetric non-linear ODE
d—1
(1.4) (1—p*)u’ + T 2(1+ oz)p] v — a1l 4 Q)u+ |[ulP"tu = 0.

JE.P — M., 2024, tome 11



ON SELF-SIMILAR BLOW UP FOR THE ENERGY SUPERCRITICAL SEMILINEAR WAVE EQUATION I/|85

The program of existence of self-similar dynamics then becomes a two-step analysis.
First construct solutions to the non-linear ODE (1.4) with regularity at the origin
and good boundary condition at +o0

¢
u(p) ~ W as p — +o0.

These solutions however never belong to the energy space in which (1.1) is naturally
well posed, hence a global in space stability analysis is required to ensure that a
suitable truncation of these profiles can be stabilized, at least for a finite dimensional
manifold of initial data. This second step relies on both a linear and non-linear analysis
of the linearized flow around self-similar profiles.

Let us stress that the program of constructing self-similar solutions and showing
their finite codimensional stability goes way beyond the scope of non-linear wave
equations, and is in particular a very active field of research in fluid related problems,
[22], hence the need for robust analytic methods.

1.2. EXISTENCE OF SELF-SIMILAR PROFILES. The existence of self-similar profiles with
suitable boundary conditions is in general a delicate problem, and here we take advan-
tage of symmetry reductions to transform the problem into the non-linear ODE prob-
lem (1.4) which is of shooting type. However the understanding of solutions is non
trivial, and relies on the derivation of explicit monotonicity formulas to follow the
non-linear flow. The existence of a countable family of solutions to (1.4) is obtained
in [3, 8] in the expected range

(1.5) 1<sc<%<:>1+$<p<1+d4f3.

Our first result in this paper describes the asymptotic behaviour of the branch of
solutions to (1.4) leading to an explicit sequence of solutions that concentrate at
the origin to a soliton profile. Our approach generalizes the analogous result for the
semi-linear heat equation implemented in [2, 7]. The advantage of this method is its
robustness as it can be applied to more complicated problems, see e.g. [1], and also
allows for a full description of the profile in space.

Turorem 1 (Existence and asymptotes of excited self-similar solutions)
Assume (1.5). There exists N € N such that for all n > N, there exists a smooth
radially symmetric self-similar solution to equation (1.1) such that for

A=a+y-V,

Au, vanishes exactly n times on (0,00). Moreover:
(i) Behaviour at infinity: as n — oo the solutions u,, converge to the explicit singular
solution

oo (p) = boop ™™, e = (a(d — 2 — @))"2
to (1.4) in the following sense: for all py > 0,

lim sup (1 4+ p%)|un(p) — uso(p)| = 0.
n—oo p)po

JEP — M., 2024, lome 11



1486 J. Kim

(ii) Behaviour at the origin: There exist 0 < pg < 1 and p, — 0 such that
lim sup |un(p) — pn, *Q(p/pin)| = 0,
o0 p<po

where the soliton Q is the unique non trivial radially symmetric solution to
AQ+Q" =0, Q(p) =boop™ ™+ Opssca(p ™).

1.3. NoN-LINEAR sTABILITY. — The non-linear stability of self-similar blow up is a
classical problem. It has been addressed for the energy super-critical non-linear heat
equation in [7] and the stability proof relies on a two-step argument: linear exponential
decay in time for local in space norms around the singularity which in the parabolic
case rely on self-adjoint spectral methods, and then propagation of space time decay
using energy estimates which provide strong enough control to close the non-linear
terms.

In the setting of energy super-critical non-linear wave equations, a non-self adjoint
spectral method is developed in the pioneering works by Donninger and Schérkhuber
for wave maps [9], see also [13] and references therein, but decay is restricted to
the light cone only |x| < T — ¢ and hence does not allow the full control of the
solution. In [22], a full linear and non-linear analysis is performed for the stability
study of quasilinear self-similar blow up. Our claim in this paper is that this robust
framework can be adapted to (1.1) to show the stability of any self-similar profile,
modulo a finite number of unstable modes. We moreover claim that full non-radial
perturbations can be considered as opposed to previous works which restrict to data
with radial symmetries.

Tueorem 2 (Non-linear stability). — Let d = 3 and u, be the self-similar profiles
constructed in Theorem 1 with corresponding initial data (©(0), ®:(0)) = P, for

1 1
(1.6) Po = (7 un(r/T), oy Auin(r/T) )
For T <« 1, there exists a finite codimensional Lipschitz manifold of smooth initial
dataV) (®(0),®4(0)) € N0 H™(R3,R?) such that in the neighbourhood of P,, the
corresponding solution (®,®;) to (1.1) develops a Type I blow up at time T at the
origin i.e., ast — T,

[@@E)][Loe ~ (T —1)"7.

More precisely, there holds the decomposition:

(@, B,) (ﬁ(un L) (b, )(T — 1)), W(Aun +O)(tr/(T - 1))

with the asymptotic behaviour in the limit t — T': there exist c,,d, > 0 with

(1) Subcritical norms:

(1.7) limsup ||®||%, + ls>1||<I>t||%[s,1 <oo for 0<s< s,
t—T

(1)See comments on the results below for the precise definition of the Lipschitz manifold.

JE.P — M., 2024, tome 11
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(2) Critical norm:
(1.8) (@I 12 -) = (eny du) (1 + 0psr (1)) log(T = )],
(3) Supercritical norms:

. 2 2
. : : = c < 2.
(1.9) th_{r% IU)%. + Q.- =0 for s.<s<2

Comments on the results

(1) Stability of the self-similar blow up. As in [22], a key step in the analysis is to
realize the linearized operator close to a self-similar profile as a compact perturbation
of a maximally dissipative operator in a global in space weighted Sobolev space with su-
percritical regularity. Using sufficient regularity and propagating additional weighted
energy estimates then allows to close bound for the nonlinear terms. Hence counting
the exact number of instability is reduced to an explicit spectral problem.

(2) Restriction on the parameters. The second restriction s, < 3/2 in (1.5) is
essential in the proof of Theorem 1. In particular it is used to ensure that the second
integrand in the definition of the resolvent map (3.12) is integrable (see (3.9)). Note
also that in Theorem 2, there is a further restriction on the parameters:

d=3 < p>5.

This is due to the poor regularity of the nonlinearity. In particular, the nonlinearity
® + |®[P~1® has CP) regularity for p ¢ 2N + 1. The role of this constraint is to
allow us to take k < |p] — 1 derivatives when closing the nonlinear estimates. We are
only able to take one less derivative than the regularity of |®[P~1® since the Lipschitz
dependence of the nonlinear term on ® in the weighted H” space means we lose one
more power in the nonlinear term (see Lemma D.1). Furthermore, we require k > d/2
by Sobolev embedding which is what we use to bound the nonlinear term. Since (1.5)
implies that p — 1 <« 1 for large values of d, the codimensional stability result cannot
be generalized into higher dimensions. Also, note that the constraint p41 > s. which
is implied by (1.5) is essential in the development of the local theory (see [12] for the
related well-posedness result).
(3) Manifold structure of the initial data. Let

B = {X [ | X[lz <e}, Bff ={X|[IX]m <5}
with e, § < 1, where
H = H, x Hs,

where the spaces Hj, are defined in Section 2 and H is the weighted W *°-space
defined in the proof of Proposition 8.1. Consider the self-similar profile and the damp-
ened profile in self-similar variables:

(1.10) Py = (un(p), Aun(p)), PP = (n(e”* p)un(p),n(e”* p)Aun(p)),

where 7 is a smooth, rapidly decaying function defined in (8.1). Profiles are dampened
to achieve finite energy. We then, construct the finite codimensional manifold of initial

JIEP. — M., 2024, tome 11



14188 J. Kim

data in Theorem 2 as follows: consider a direct sum decomposition
H=UoV
into subspaces U and V stable and unstable under the semigroup action of the lin-
earized operator with dim V' < oo. Then consider the Lipschitz map
®:BIN(BE +PP —P)NU —V

obtained by solving a Brouwer type fixed point problem and a linear map Z: V — U
on the finite dimensional space V' such that

Id+Z:V — (BE + PP - P,).
Then, the finite codimensional manifold can be realized as

M=P,+ (Id+Id+Z)0®) (BEn(Bf + PP — P,)nU) c H+ PP.

Note that the modifier = is there to ensure that our initial data does not leave the
neighbourhood H + PP which is essential in obtaining finite energy initial data. Also,

in Lemma D.1, it is proved that ® is a Lipschitz map with respect to the topology
of H. Similar properties of the stable manifold are proved in [13], [7], [5].

Aknowledgements. — The author is indebted to his PhD supervisor P. Raphaél for
stimulating discussions and guidance on this work.

2. NoraTrons

Let us introduce some notations before we start. We write for the generator of
scaling operator A:

2
A=a+y-V, a=——.
p—1
We will denote by (¢, ) the original variables and (s,y) for the self-similar variables:
x
=—log(T —1t =
s og(T—1), y=m—y

and denote their modulus:
r=lzl, p=lyl.
For real-valued functions f and g, we write
foyg
if there exists A € R such that f = Ag.
Define the Japanese bracket

() = (]2,

— AT =2,
VAT j=2i+]1,

and for scalar (or vector) valued functions f, g on R%,

(f,g):/Rdf'gdy-

We also write

JE.P — M., 2024, tome 11
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Now fix d = 3. Let x € C2°(R3,[0,00)) be a radial smooth cut-off function with

x(y) = {1 |y:

For k € N, denote by Hj, the completion of C2°(R?) with respect to the norm induced
by the inner product

Y

1
2.

VoA

(U, )y, :(vkxp,v’@w/ XU Wdy.
R3
3 COI\'STRUCTION OF EXTERIOR SOLUTIONS

Our aim in this section is to construct a family of outer solutions to the self-similar
equation (1.4). The key is that the outer spectral problem, including the singularity
through the renormalized light cone p = 1, is explicit.

We introduce relevant notations for this section.

Linearized operator. — Recall the generator of scaling operator A:
A=a+y-V.

Introduce the linearized operator
d? d—1

d -2
df'02+[7—2(1+a)p d—p—a(1+a)+pa(d—2—a)p

for (1.4) near the singular solution © = u, where we recall

Uoo (p) = boop™ @, boo = (a(d — 2 — a))*/2.

(3.1) Loo=(1-p%

Also, let

Note that w € R if

4
3.2 1+ — =
( ) + P <p<DpjL 14 4
d—4—-2v/d-1
with sufficient condition being 1 < s. < 3/2. pyr, is known as the Joseph-Lundgren
exponent.

Hypergeometric functions. — We denote by o F; the Gauss hypergeometric functions:

(3.3) 2Fi(a,b,c;2) = ZM£7

n=0

where (a), =a(a+1)---(a+n—1).

JEP — M., 2024, lome 11



1490 J. Kim

3.1. FUNDAMENTAL SOLUTIONS AND EXTERIOR RESOLVENT. Recall the definition of lin-
earized operator L., above. In this section, we compute the fundamental solutions of
the linearized operator L., and use calculus of variation to invert L., in a suitable
space of functions.

Lemma 3.1 (Fundamental solutions of £.). — Recall the definition (1.2) of sc.

(i) Interior solution: In the region p € (0,1), the homogeneous equation Lo () =0
has a basis of solutions

; l—s.+iw 2—s.+1 .
) YL =Re [plf(d)/QJrzw 2F1< 5; W7 52 Zw,l _|_Zw’p2)}’
3.4 . .
YL = Im [pl—(d)/2+iw2F1(1 - S;-l-lw, 2 - S;-FZOJ’l +iw7p2>]

(ii) Exterior solution: In the region p € (1,00), the homogeneous equation Lo (1)) =0
has a basis of solutions

c— W 2—8S.+iw 3 _g
2 ) D) aiap )7
l—sc—tw 1—s.+ww 1 _o

2 2 2f )

2—5
Pt =p ! 2F1(
(3.5)

Y =p 2F1<

Proof. — For p € (0,1), consider solutions of the form ¢ = p7 3> Ja,p™ for (an)s,
bounded sequence in R with ag # 0 so the sum is absolutely convergent in (0, 1). Then

Loo() = [y(v +d —2) + pbB aop” 2 + [(v+ 1) (v +d — 1) + pbZ arp? "

oo

+ > [+ n+2)(y+n+ &)+ pians
n=0

_ [(’y+n)(’y+n+1—|—2a)—|—a(1+a)]an}.

Equating first two terms to 0, we infer v = 1 —(d/2) £iw and a; = 0. Equating higher
order terms to 0,

(htnta)ly+ntl+a)
y+n+(d/2)+ 1+ iw)(y+n+(d/2) + 1 —iw)

Ap42 = ( Qp, .

The cases v =1 — (d/2) 4+ iw and 1 — (d/2) — iw give rise to complex conjugate solu-
tions. Thus, real and imaginary parts of the complex solution satisfying the recursion
relation above:

_ iw 1—s.4+iw 2—s5.+1iw
plm izt 2F1( 5 ; 5

i, p?)

yield two linearly independent real solutions. In the region (1, 00), consider solutions
of the form ¢ = p=7 Y > ja,p~ ™ and proceed as in the region (0, 1). O

We now investigate the regularity of the fundamental solutions at the singular
point p = 1. First, we recall some results on the singular ODEs.

JE.P — M., 2024, tome 11
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Prorosition 3.2 (Solutions to singular ODEs, [31]). Let f € C™([0,T],R"),
A e C™([0,T],R™™™) for anm > 1, m > maxy, co(a(0)) Re(Ax), where o(M) denotes
the spectrum of a matriz M. Suppose we have 1 < £ < m such that

(AO)N{lE+1,--} =2

and vectors u(()o), e uée Y e R™ such that

(3.6) (kI —A©0)ul = f®(0) Z()M Do, k=001

holds, then there exists a unique solution u € C™([0,T],R"™) of the problem
t/(t) = Au(t) + f(t), 0<t<T, uDO0)=ul, j=0,-- -1

Cororrary 3.3. There exists a unique 11 € C((0,00)) solution to Loo(¢)) = 0
with ¥ (1) = 1. Moreover, 11 is smooth.

Proof. — We write L(¢) = 0 in the form required by Proposition 3.2, so for
(W1, W2) = (¥, 0,0),

(p—1)0,¥4 :(pl— 1)\Ifg,d , o
(0= 100,02 = [po‘( ;2 =% _ o+ a)}xyl + ﬁ[T —2(1+ a)p]\Il

Hence, we can write for some constant ¢(a),

(p—1)d, @;) = A(p) @;) , A0) = (c(?m) S O3/2>

for A smooth in (0,00). Then since o(A(1)) = {s. — 3/2,0}, by Proposition 3.2
with the values £ = 1, f = 0 and n = 2, we infer for a € R, there exists a unique
Yo € C((0,00)) solving Lo (1,) = 0 with

($a (1), ¥4 (1) = a(1,c(e) /(s — 3/2))
and in fact, ¥, € C*((0,00)) so done by setting a = 1. a

For 0 < pg < 1, define the spaces of functions on which we invert our linearized
operator L.,

Xy = {w: (p0.00) > R | fwllx,, = sup oD ] 4-sup pu] < oo},
po<p<l pz1

(3.7) Yo, = {w : (po,00) = R ‘

1 pd/2 o0 p(d—l)/2
= — — |w| < )
[wlly,, /po 11— plse—1/2 |w] +/1 11— plse—1/2 |wl oo}

JEP — M., 2024, lome 11
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Prorosirion 3.4 (Exterior resolvent)
(i) Basis of fundamental solutions: There exists vy given by

W:{clwf ifpe(0,1),
P et ifpe (00),

for some ¢; € R which is linearly independent of the smooth homogeneous solution
found in Corollary 3.3 and with the Wronskian given by

(3.8)

(3.9) W = i — iy = p! 1 — P50/,
The fundamental solutions have asymptotic behaviors:

(3.10) i o p' 2 sin(wlog p + 6;) [1+ 0,p0(p%)]
and

(3.11) p~ Yy, aha, Atpy ox pm @7t [1 + O;Hoo(p_l)]

for some §; € R.
(ii) Continuity of the resolvent: There exists a bounded linear operator T:Y,, — X,
such that Log o T =idy, — given by

_ e fi
(3.12) ‘J'(f)——wl/p A= dr — )y / =2 Wdr
with |T'| 2 (v, x,,) < 1 for all po € (0, 1).

Proof
(i) Since Lo (F) = 0 and L (') = 0, we have from the definition of the Wron-
skian that

(1- )W + %—2<1+a>p}w=o7 p e (0,00) ~ {1},

Then W o p' =41 — p?|*>=3/2 in (0,1). Also, in view of the asymptotic behavior of

the hypergeometric functions at p = 1 (see [27, §15.4(ii)]), 8,4¥ is singular. Then, 17

and v are linearly independent, so there exists ¢; € R such that (3.9) holds. Similarly,

W oo p =41 — p?|*<=3/2 in (1, 00) and 9T and v, are linearly independent, so we can

choose ¢g with (3.9). The asymptotic behaviors then follow from the definitions (3.4).
(ii) Integrals in (3.12) are well-defined since

p~>oo(p “) OPHOO(IO_Q_I)’ (1—=p )W Op%oo(p2a)7
(

(see [27, §15.4(ii)]). Using variation of constants,
_ < fabe P f
v [ ) -l [ )

Loo(w) = f.

solves

JE.P — M., 2024, tome 11
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Since we require T : Y, — X, we choose a; = 0. Since ¢ = O(|p — 1|%73/2) as
p — 1 (see [27, §15.4(ii)]), by requiring T(f) to be differentiable at p = 1 we take
as = 0. It suffices to prove that T is bounded. For all p > 1

pe el 5 (1] [ [ L]l [ | L)

— 2
< sup <p/oo (@372 (p—1)1/2) =
p

u |d7’—|—/ (dl)/Q(T_l)(1/2)5c|f|dr> < Hf||yp0.
p=

For all p such that py < p <1,
PYDHT(f)(p)]

1
< pa=1 (g5 fl/Jz d / Jin d
p (l T+‘w | (17T2)W r
S lfll,, + su / o 11
po<r<1
where in the final inequality, we used ¢; = O(p*~%2) and 1/(1 — p?)W = O(p® 1) as
p = 0. Thus, [T()llx,, S If1lv,,- 0
3.2. Exterior sorutions. — We now solve (1.4) in the exterior region p > pg as

a fixed point problem involving £.,. We first prove a Lipschitz type bound on the
nonlinear term.

Lemwya 3.5 (Non-linear bounds). — For w € X, and € > 0, define
1
(3.13) G, elw = (1 + w)z/ (1= ) (uoo + se(t1 +w))P > ds.
~———J0
=AY ]w
=B ,e]w

Then for all ¢ < pi~" and wy, wy € Bx, ={we X,, | |lw]x,, <1},

1—s.

|G, elwilly,, S po >,
|G, elwy — Glibr, elwally,, S py*°
Proof. — Note that for all p > 1
Y1) + [wi(p)] S |uco(p)]-

Since Y1 = O(p~*) as p > oo and € < 1,

(3.14)

wy — wa|x,,

Gln, i ()] S (] + a2 [Juoe| + (] + [wi))] S Jusel? S o772,

SO
/1 p(dfl)/2|1 o p|(1/2)78c|G[,¢)l’5]w1| dp S /1 p5c75/2‘1 _ p|(1/2)*su dp g 1.

Note that since 1, = O(p'~%?) as p — 0, for all py < p < 1,

[V1(p)] + lwi(p)| S p' =2 S ph e

Uoo(p)]-

JEP — M., 2024, lome 11
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Then since ¢ < pie~ !,

Gl lwi|  p°~H (1 +ep ) uos (p) 772 < p* 77

Then
1

1
/ P2 (1= p) VD7 Glipy, efwn | dp S / poe (1= p) VD7 dp S pyoe
Po Po

Hence, the first bound in (3.14) holds. For the contraction estimate, recall the defini-
tion of nonlinear functionals A and B in (3.13) and observe that

|G[1/)1,5]w1 — G[¢1,€]’LU2| < |A’LU1 — AU}2| |B’LU1| + |Aw2| |Bw1 — Bw2|
p—2
S 1201 + w1 + wsf [wy = wa| || + (4] + wr )
+ elwi — wa| (Y1 + W) Loy s

where

1
Ly, 0 = /5*13,,}3[77/11,5}10 do
0

wa+o(wi—ws)

1 1
S / s(1— s)/ (oo + s6(P1 + w3) + ose(wy — w2))P~3 dods
0 0

- p73
S (ool + (] + ] + hwal)] " S b,
where the final inequality follows since e < pgc_l. Then

|G, elwr — Gy, elwe|
< [l o]+ e faoe =2 4 2l |+ ) e [P~ 1 = .

Since 11 = O(p~%) as p — o0,

/ P(d_l)/2\1 — P|(1/2)_SC|G[¢175]U71 — G[i1, €lwa| dp
1

< / T2 = p| (275 dp fluy — .,
1

Since 11 = O(p*~%?) as p — 0, for all p such that py < p <1,
|Glp1, e]wr — Gy, elws|

< (p2(17d/2)7a(p72) +€p3(17d/2>*a<17*3>> sup YD —w,
po<r<l

S 0wy —wallx,,

where the final inequality holds because ¢ <« pff_l. Thus,

1
/ P21 = p| VD7 Gl ewn — G, lwa|dp S po =" lwr — wal|x,, -
PO

Hence, the second bound in (3.14) holds. O
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We are now in position to solve (1.4). We in particular, prove the existence of a
one-parameter family of smooth solutions in the region p > pg.

Prorosition 3.6 (Exterior solutions). — For all 0 < & < pi*™", there exists a smooth
solution to (1.4) of the form

U= Us + (Y1 + W)

with
(3.15) lwllx,, Seps " IlAwlx,, $epy.
Furthermore,

wlemo =0, [[9wl=ollx,, S 05"

Proof. — The function u = us + ev > 0 solves (1.4) if and only if

Loo(v) = e Hul, + pulTtev — (uoo + £v)P)]

=—p(p— 1)51}2/0 (1 — 8)(uoo + 56v)P~2 ds.

We further decompose v = 11 + w. Since Loo(¥1) = 0, it suffices to construct w
satisfying
(3.16) w = —p(p—1)eT o G, e|w.

Lemma 3.5 together with Proposition 3.4 states precisely that for e < pf)“*l,

—p(p — 1)eT o Gy, el : Bx, — Bx,,

is a contraction map. From the Banach fixed point theorem, there exists a unique
solution w to (3.16) with [lw|x, < epy . Clearly, w is smooth in (0,00) ~ {1}.
In view of (3.16), w € C'((0,)) so u € C'((0,00)). Writing (1.4) in the form

required by Proposition 3.2, for (Uy, ¥s) = (u,u’),
(p—=1)0,¥1 = (p— 1)¥q,

ala+1) 1 rd-1
19, Ty = — v
(p—1)8,0> o, 1+p[

o= (2) =40 (32) + 551 ().

where A is smooth in (0, 00) and

A1) = % (_a(o?+ 1) 2560— 3> 7

with o(A(1)) = {s. — 3/2,0}. By Proposition 3.2, since u € C1((0,0)), (u,u’) €
C1((0,00)) so u € C?((0,00)). Iterating this, we conclude that u is smooth.
Applying A to (3.16), we infer

Aw = —p(p — 1)8 |:(Aw1) /pOc W dr — (A'(/J2) /1p W dr

uP
1+p

—2a+ 1)4\1/2 +

Hence,
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Hence, by considering the asymptotes of A1; and proceeding as in the proof of Propo-
sition 3.4, we infer
1—s,
[Aw]x,, < ellGlrelwlly,, Sepp ™

po "~

In view of (3.16), w|.—o = 0. Differentiating (3.16) in e,
8511}‘5:0 = —p(P - 1) (T © G[wh 0]w|5:0 + 67(68G[¢17 €}w)|5:0)

= —pp~ )T 0 Gl Oul.mo = ~22-Vuazyd)

so by continuity of the resolvent and the asymptotic behaviour of ¥; as p — 0 and
p— X,

10:w]e=ollx,, < luis Vil

1 s}
S/p’s‘:\l—pl(lm’sf* dp+/ p*e 2|1 — |1/ =5 dp < piToe. O
1

PO

4. CONSTRUCTION OF INTERIOR SOLUTIONS

In this section, we construct inner solutions to the self-similar equation (1.4) which
are perturbations of a rescaled soliton. The steps are similar to that of the previous

section.
Let us first introduce some notations for this section.

Linearized operator. — Recall the definition of soliton solution
(4.1) AQ+QP =0, Qp) = bap™ + Oy suc(p ).
We let the linearized operator H., near

Qxrlp) = A""Q(p/N), A>0.

for the profile equation (1.4) be

? d-14d
4.2 H, = —-A— p—1_ 2z -7 pfl.
( ) oo pQ dp2 P dp pQ
Lemma 4.1 (Fundamental solutions of Hoo). — Recall from above the definition of the

soliton QQ. We then have a basis of fundamental solutions
Hoo(AQ) =0, Hoop =0

with the following asymptotic behavior as p — oo

(4.3) AQ, o x pt= 2 sin(wlog p + 8,) + O(p?~4F)

for some 0rq, 0, € R. By scaling ¢ if necessary, we assume that the Wronskian is
given by
W= (AQ)'¢ — ¢'AQ = —p' 7.
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Proof. Recall the definition of @, above. Then, for all A > 0,
A+ QY =0

and differentiating with respect to A and evaluating at A = 1 yields H,(AQ) = 0.
Let ¢ be another solution to Heo(¢) = 0 which does not depend linearly on AQ,
we aim at deriving the asymptotic of both AQ and ¢ as p — co. We first solve

d_1~/_pbgo_l~

4.4 -¢" - @ =

(4.4) 5 =

The homogeneous problem admits the explicit basis of solutions
(4.5) p1 = p' " sin(wlogp), 2 = p' " cos(wlog p),

and the corresponding Wronskian is given by

W = @2 — phpr =wp' ™%

Using the variation of constants, the solutions to (4.4) are given by

oo ,r,dfl oo Td71
o(p) = 1 <a1 + / fop2 dr) + 2 <a2 - / feo1 d7“>.
P w P w

Then, we rewrite the equation Ho,(¢) = 0:
1

2 pbP= _ pr-1
oA 00 _ p—1 Yoo
v G p(Q ) )<p,
and hence
(4.6) ¢ =a1p1 +axp2 + 6, ¢ =5(0)
where
. oS} B bgo—l . ,,,d—l
S(o)(p) = 901/ P(Qp - = )(am + a2pa + ¢) 2 dr
P r w

p—1

o b ~ T
- 4,02/ P(QZF1 - %) (a1<,01 + azps + ¢)§01
o

d—1
dr.

w

In view of the asymptotic behaviour (4.1) for @, we infer for all p > 1,
p—1

1 b 1s
(@t =) s

We infer for p > 1

S@E o [ o al)dr S g g [
p p

and similarly,

S0(0) — 5@ < [ 107113, — Fuldr.

P
Thus, for R > 1 large enough, the Banach fixed point theorem applies and yields a
unique solution ¢ to (4.6) in the space corresponding to the norm

sup p?"7?|g).
p=R
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In particular, in view of the explicit formula (4.5) for ¢; and @9, and in view of the
fact that Hoo (AQ) = 0 and Heo () = 0, we infer (4.3) O

For p; > 1, we define the space of functions on which we invert our linearized
operator Hoo:

X, :{w:(O,pl)—ﬂR’

(@.7) lollg,, = suw (1+ P) 273 (|w| + plw'| + p?|w"]) < oo}7
IPXRP1

Y, = {w :(0,p1) = R ’ ||w||}~,p1 = 0<su£ 1+ p)(d/z)fl‘w| < oo}.
IPXRPL

Prorosirion 4.2 (Interior resolvent). — There exists a bounded linear operator § :

Y, — )A(:pl such that Heo 08 = idf,p given by
1

m s =1e [ raitar— [(inar

with ”SHL(?mJ?pl) <1 forallp; > 1.

Proof. We recall from the previous lemma that W = —p!'=¢. Let Ry > 0 be
sufficiently small so that AQ > 0 in [0, Ry]. Then solving the Wronskian equation,
we assume without loss of generality that for ¢,

Ro dr
Y= _AQ/p (AQ)2rd—1

on (0, Ro] which ensures that as p — 0,

(4.9) ol S P27 1S e ST

where we have used that ) and hence, AQ is a smooth radial function. Using the
variation of constants

w=AQ (‘11 + /” f@rd_ldr> + ¢ (az - /” fAQrd_ldr>
0 0

Hoo(w) = f.

In particular, 8(f) corresponds to the choice a; = as = 0. Finally, using the estimates
(4.3), (4.9), we estimate for 0 < p < 1:

solves

p P
IS(f)I=‘AQ [ sorttir o [ pacr-tan

P P
< ( [ rars i d) swp 1115 £, -
0 0 0<p<1 !
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Similarly, taking derivatives,

p p
W&ﬁq:P(AQy/ ﬂwwﬁh—@c/fﬂQﬁ_Wr
0 0
P P
< <p2/ rdr+p27d/ rdldr> sup |fI S Iflls -
0 0 0<r<1 o1

and

1p*S(f)"] = p?

P 13
(AQ)" /0 fortVdr — o /0 fAQr“drf’

p p
<(# [Crars i [Tetar ) s 11,
0

0 0<p<1

For 1 < p < py,

(140 UDIYS(f)] = (1+ )23

p p
AQ/ faprd_ldr—cp/ FAQri—tdr
0 0

P
<(1+p)7? / (1 -+ )2 fldr

P
SWep? [ndr sw (L9 YDA S Sl
0

0<p<p1
Similarly, taking derivatives,

(L+p) D 73p8(f)| = (14 p) W)= ‘(AQ)/ / Fort=tdr — ¢/ / FAQri="dr

P
S [Wendr s (1492115 ],

0 0<p<p

and

(14 p) 2731028 ()] = (14 p) /2732

P p
(AQ)” /O Fort=tdr— g /0 fAQrd‘ldr—f‘

P
S [ Pisldr (L)Y S ],
0
Thus, [8(f)l %, < Ifly, - =

Lemwa 4.3 (Non-linear bounds). — For w € )?pl and A > 0, define

(4.10) F[Q, Nw = p(p — 1)\?w? /1(1 —8)(Q + N?sw)P"2ds —F(Q + Nw),
——"J0

=ANw —
:=B[Q,\]w
where
JF= de—Q +2(1+ a)pi +a(l+a)
dp? dp '

Then there exists C > 0 such that for all ptX < 1 and |wi] g , [lwillg <C,
Pl P1

IFIQ Nwilly, < ISl & )

(4.11) by
IFIQ Nwr — FIQ. Nws iz, < 0332 Juwn — w5, -
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Proof. — We first bound F(Q). In view of (4.1),
PPQPY = BT 4 O, oo (ph ).
Then in view of (4.3), since Q" + %Q’ + QP = 0, we infer
F(Q) = —p’Q" + (3= 25.)pQ" + a(l+)Q
= (05" = P*QMNQ + (3= 250)AQ = 0, s00(p' ™).
Note also that since s. > 1, we have that for all 0 < p < p1,
i)l S 1+ p1)* Pl g, S 1+ p0)*1Q(0)] [unllg,

so by our choice of A,
Nlwi(p)| < 1Q(p) [lwilg, -

With these estimates, for all p such that 0 < p < p,
20,12 2 P2 2
IFIQ Nwn| € X2 (1Q1+ X2Junl)” + F(@Q)] + AT (w)]

Nz,

5 )\2(1 + p)67d7a(p*2) (”wln}m + ”le%pl) + (1 + p)lid/2 + W

A\

[pzi,fsuxz(uwlnﬁzpl + ||w1||§~(p1) +1+ p?)\ﬂ (14 p)i=/2

A

1+ 2 (1 o )]+ )2,

where we have used that s, > 1 in the last inequality. Choose C' > 0 such that

Clon_ _
FlQ Al < 181505 o [1+ e (llollg,, + el )] +0) =2

Then for p1A < 1 and ||wl||)~(p1 < C,
HF[Qa/\]le?pl < CHSH;(l?pl’gply
Hence, the first bound in (4.11) holds. For the second bound, we have
[F(Q, AJwy — FQ, Ajws|
< |Awy — Aws||Bwr| + |Aws||Bwy — Bws| + A2|F(wy — ws)]
S Nwi + wa| fwr — wa| (|Q] + N[w])P ™% + Nwr — wa [ws]* T,
F A1+ p) P wr — w5

where

Ly wy =

1
/0 )‘_26103[@’ )‘]wlw2+a(w17w2) do

1 1
< ’ / s(1—s) / (Q + s)?wy + 05\ (w1 — wo))P~3 dods
0 0

p—3
S [1QI+ X2l + o] (14 )70,
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Thus,
[F1Q, Alwy — F[Q, AJw|

< [/\2(1 4 p)S—d=(=Da | N4 (14 )9-(3d/2)~(=3)a +)\2(1+p)37¢i/2} [wr—wall g,
1
< (@786%2 + )TN pW) (1+p)' 2wy —wallg,
< AN+ ) —wnll
where again, we have used that s, > 1. Hence the second bound in (4.11) holds. O

We prove the existence of a one-parameter family of smooth solutions to (1.4) in
the region p < py.

Prorosirion 4.4 (Interior solutions). For all po, A such that 0< pg<<1, 0< A< po,
there exists a solution to (1.4) on 0 < p < po of the form
A

~HQ + Nw)(p/N)
with ||wH);p1 < 1 where p1 = po/A = 1.

o
u

Proof. — u=X"%(Q + \w)(p/\) solves (1.4) if and only if

(4.12) Hoo(w) = A2 [(Q FA2w)P — QF — pQPINw| — F(Q + A2w) = F[Q, Nw.

Lemma 4.3 together with Proposition 4.2 states precisely that for p1 A = pg < 1,
SoF[Q.N: By (C):={we X, ||uvlg, <C}— Bg (O)

is a contraction map. Thus, Banach fixed point theorem applies and yields a unique
solution w to (4.12) with ||w||)?p < C. O
1

~
5. Tue MaTcHiNG

We are now in position to “glue” inner and outer solutions to produce exact solu-
tions to (1.1).

Prorosition 5.1 (Existence of countably many smooth self-similar profiles)
There exists N € N such that for all n > N, there exists a smooth solution u,

to (1.1) such that Au,, vanishes exactly n times.

Proof
Step 1 (Matching). Recall that
1 = c1p' " sin(wlog p+ 61) + 00 (p®~Y?),
(5.1) Ay = e1p 2| (1 — s.) sin(wlog p + 61) + w cos(wlog p + 51)}

+ op—>0 (pS—d/Q)’
for some ¢; € R which is non-zero by definition (3.4). Then, we can choose py with
0 < po < 1 such that

V1(po) = c1py 2+ 0,0 (P2,

1—d/2

(5.2) 52
Ai(po) = e1(L—sc)py '~ + Opsolp )s
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and Propositions 3.6 and 4.4 apply. In particular, let
Uext[€] = Uoo + €Y1 + EWext,
Uing[A] = A7(Q + XNwine) (p/N),
be solutions to (1.4) in the regions [po, o0) and [0, po] respectively. Define
Ilpo] (e, A) = text[e](po) — uint[A](po)-
Then
0:J[po] (e, A) = O=uext[€](po) = 11(po) + Wext (o) + €0-w(po).
In view of Proposition 3.6, since 1 (pg) # 0,
9:9[po)(0,0) = 1 (po) # 0.
From the asymptotic behaviour of @ as p — oo, as A — 0,
sy @ Num) o/ N SA7 [(o/X)'=2 4 X2(po/X)* /2]
SX Ty P+ pf) — 0.
Since Uext[0] = oo is self-similar, this implies
I[po] (0, 0) = uoc(po) — lim A™% oo (po/A) = 0.
Applying the implicit function theorem to
3(e, 1) == Ipo] (e, p*/ =7 ),

we have that if J is C' in the neighbourhood of (0,0), then there exist Ag > 0 and
£e ([0, A5 717%)) such that J(Z(u), u) = 0. Then, it suffices to check existence of
0,(e, 1) at = 0. Indeed, from (5.3), we have

3(e, 1) = texsle](po) = wine [ = D) (p0) = (etb1 + wext) (p0) + Opo(1?),

S0 6,5(5, 0) = 0 and we have the existence of &. Then, for (\) := (A ~1/2)  we have
I[pol(e(A), ) = 0 and £ € C*71([0, \g)). Hence,

text [E(M)] (po) = wine[A](p0)
on [0, Ag) i.e.,
(5.4) () (@1(po) + wexi (po)) = A™(Q — o + XNwine)(po/N).

By the definition of py and from the bounds on wey and wiye in Propositions 3.6
and 4.4, we infer for some ¢ € R,

Moy~ e+ 068 + =Nps )] = 2N)(W1(p0) + were (p0))
= A"YQ — Uoo + Nwing)(po/N)
SX oy L+ 0(pp)]

as pg — 0, so that, as A — 0,
e S A%
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It then follows from (5.4) and (3.15) that
(5:5) &) =¥1 (po)A ™M@ = uoe)(po/A) + O(NTH(pf + AT g ).
Consider now the spatial derivative

I[pol(e(N), A) = e(N) (1 (p0) + wexe (P0)) = AT Q" — b + N wine) (po/N).-

From the bound on £(\) above and the bound on w.,, and w{ , in Propositions 3.6
and 4.4, we infer

7 ool (e(V), V)
= c(N¥i(p0) = A7 7Q =l )(po/N) + O(X (g~ 4 X))

Se—1
= [M (00/N) @D (Q = use) (po/ N} (p0)
Y1(po)
0

— (po/N)Q" — ) (po/N) )

+ O()\sc—l(pgfd/Z + )\sc—lpéfdJra))’

where in the final inequality we inject (5.5) for €()). From the asymptotic behaviors
(5.1) for 11 and knowing that as p — oo:

(Q = uc)(p) = c2p'™"?sin(wlog p + &) + O(p* ),
(5.6)  (Q —ul )(p) = cap~¥? [(1—d/2)sin(wlog p + 02) + w cos(wlog p + )]
+ O(p17d+a),

for some ¢z € R which is non-zero (see [17]), it follows that

(d/2)—1
PP ) ), )

/2

=ciCo w,oad sin(wlog pg — wlog A + d2) cos(w log pg + d1)

— cos(wlog pg — wlog A + d2) sin(w log po + 61)] + O(pg—d/Z + >\5r1pé—d+a)

=ciC9 (,upad/2 sin(—wlog A+ 0o — 61) + O(pg_d/2 + )\Sflpé_dJrO‘).

Thus,

(5.7) Tpol(e(N), A)

oo wnSe—1 [sin(—wlog)\—i—ég — 1)
=cic2

Py 1 (po)

2-d/2 | \so—1 1—dta
+ 0(pp 21\ Lpg~ 4 )}
Let

(5.8)  An = exp [

Then, A, + — 0 as n — oo and

77’L’/T+52751+60:|

7717T+52751750i|
w .

An,— = €xp [
w

0< - <Ay <A <Apoi 4 < Apog = < oo
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Then,

5. C1Co W . _ S _
T ol (e )y An) = (1N g | g o sindo+ 0 (pg >+ Az} d*“)]
Po ¥1(po)

For pg < 1, and n > 1,

I[pol(e(An,+)s An,— )3 [P0} (€(An,£); An,1) < 0.
Since A — T'[pg](e(A), A) is continuous, it follows from intermediate value theorem
that for all n > N > 1, there exists A, + < pn < A, — such that J'[po](e(tn), tin) =0
ie.,
!/

Uext [£(11n)](P0) = Uint[tin](P0)s Ui [E(11n)](P0) = i [12n] (p0)-
Hence, the function

un(p) = {uint[/‘n](p) 0 < p < pos
" Uext [E(NTL)K/)) o < P,

is a smooth solution to (1.4) in [0, 00) for all n > N.

Step 2 (Counting the zeros). — The remaining part of the proof is devoted to counting
the number of zeros of Au,. We first claim that for py < 1,

(5.9) Aucxt[e] has as many zeros as Ay on p = po.

Indeed, A1); + Aweyxy does not vanish on [Rg,00) for Ry large enough from (3.11)
and the uniform bound (3.15). Moreover, At (pg) # 0 from the normalization (5.2),
and the absolute value of the derivative of Ay at any of its zeros is uniformly lower
bounded using (3.10) and hence the uniform smallness (3.15) yields the claim.

We now claim that for py < 1,
(5.10) Auine[tn] has as many zeros as AQ on 0<r < Lo

Hn

Indeed, recall that
Ating 1) (p) = 11, * (AQ + 425, Awine) (p/ i)

‘We now claim

(5.11) (po/ 1) P~ AQ(po/ in)| Z 1.
Assume (5.11), then since the zeros of AQ are simple and since
Awinillg,, =  sup (14 p) Y273 Awi| S 1
wn 0<p<po/pin
so that

sup  (1+ p) D712 Awie| S 93,
0<p<po/ pin

and similarly for A%wj,, and since
2
AQ(0) = —— #0
Q=2 #0,

we conclude for pg < 1 that AQ+p2 Awiy, has as many zeros as AQ on 0 < p < po/ fin-
We deduce that on 0 < p < pg, Auint[in] has as many zeros as AQ on 0 < p < po/fin.
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Proofof (5.11). Recall that

tesct[E(1n))(P0) = tint[1n] (P0),  Uext[E(kn)]'(P0) = tint[1n]' (p0),
which implies
Attexe[e(pn)] (o) = Atting[1tn](p0)-
This yields, using (5.5):

E(Mn) 1 —1 se—1 2
T = —(Q — uco)(po/pn) + O (3~ 05" + p5)
et wl(Po)Mgd/z) !

and taking A of (5.4):
g(ﬂ’ﬂ) 1 5.—1 _Se—

= —AQ(po/pn) + O (e o5+ 3).
pae Ay (po) i ?
We infer
1 1
7 (Q—too) (p0/ i) = ————5 7 AQ(po/ ki) +O (e o5 +13).
Dr(po) P o/ A (po)u/? o/ ( ’ o)

In view of the asymptotics (5.2) of 11, we infer
(5:12)  [(po/1n)¥D1(Q = oo) (9o 1in)

6o/ A Q U )
On the other hand, from (5.6),

<

+O0 (™" + )

c .
AQ(p) = p(Tg)*l [(1 — $¢) sin(wlog p + d3) + w cos(wlog p + (52)}
(5.13) + 0psoo(PP71H)
c Se —1)2 +w? | —dta
= -2 <p(d/2))1 Sln(w log p + 62 + ) + Opaoo(,02 ar )7
where
1—s. . w
cos(ag) = ————=, sin(q) = ————=, o € (7/2,7).
(@) L (a0) O (m/2,m)

Thus, in view of (5.6) and (5.13), there exist pa > 0 sufficiently small and a constant
& > 0 sufficiently small only depending on w and s, — 1 such that for 0 < p < pa,
we have

dist(wlog p + 02 + g, 7Z) < &

4 .
— pD1IQ(p) = s (p)] = ip(d/ﬁ—lm@(ml + %(0‘0)

In view of (5.12), we infer for n > ng large enough

(5.14) dist (wlog(po/pn) + 62 + o, 7Z) = 0,

and (5.11) is proved.
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Combining the two claims proved above, we infer

#{p >0 ’ Aun(p) = 0} = #{0 <p< '5—: AQ(p) = 0} + #{p > po ‘ A1 (p) = 0}7

which implies

#{p 2 0| Aunt1(p) =0} = #{p > 0 | Aun(p) = 0} + #A,,

with
Ay = {&<p<ﬂ‘AQ(r):0}.
Hn Mn+1
We claim for n > n;y large enough:
(5.15) #A, =1

which by possibly shifting the numeration by a fixed amount ensures that Au,, vanishes
exactly k times.

Upper bound. We first claim
(5.16) #A, < 1
Recall (5.13) so that there exists R > 1 large enough such that

{p >R ’ AQ(p) = O} = {rq { q>= ql}, wlog(rq) + 02 + ap = gm + Orq_,oo(r;*&)

and hence, together with (5.14), we infer
]
. i — > —
(5.17) o, og(po/in) —log(rg)| = 5 -

This implies for n > n;

(5.18) A, C {g> a1 |log(po/ ) + 8/2w < log(rg) < log (po/pint1) — 6/2w}.

Since Ay 4+ < fin, < Ap,— with A, 1 given by (5.8), we have for k > k;

5 5 5
log (po/pin+1) — i (log(po/un) + @) = log(tn) — log(piny1) — "
) < T+ 250 )

<log(Ap,—) —log(Any1,4) — oS w

Also, we have for ¢ > ¢
™ -5
log(rg1) —108(rq) = — + Or, oo (rg~*)-

We now choose dg such that
0
(5.19) 0<dp < 1
Then, we infer for n > n; and q > q1,
0 ) T 0
log (po/pn+1) — % (log(po/un) + Z) < o W < log(rqs1) —log(rg),
which, in view of (5.18), implies (5.16).
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Lower bound. We now prove (5.15) and assume for a contradiction: #A4,, = 0.
Then, let g2 > g1 be such that

P0<Po

Mg Hngy+1

Ty < < Tgot1-

We infer from (5.17):

b 5
(5.20) log(rg,) <10g (po/tns) — 5~ <108 (po/pina+1) + 5~ < 10g(rg;+1).

However, we have for no > n; and ¢z > q1,

1) 1) 1)

log (po/piny+1) + " (log (Po/tny) — 5) = log(pn,) — log(pin,+1) + "
1) T — 200+ 0 s 1)

> log(An,,—) — log(Any41,4) + o7 — > ot log(rg,+1) —1og(rg,),

w 2w
which contradicts (5.20). This concludes the proof of Proposition 5.1. g
CoroLrrary 5.2. Let uy, be the solution to (1.4) constructed in Proposition 5.1. For
po < 1, the following holds.
(i) Convergence to s, as N — 00:
(5.21) lim sup (1 4 p®)[un(p) = oo (p)| = 0.
N0 p>pg

(ii) Convergence to @ at the origin: there exists p, — 0 such that

(5.22) lim sup |un(p) = i, *Q(p/pin)| = 0.

0 p<po

(iii) Last zeros: let

pon i=max {p | Aun(p) =0, p<po}, pagm:=max{p|AQ(p) =0, p < po/tin}.
Then
Pon = HnPAQn [1 + Opoao(Pg)}-
Furthermore, forn > N,
e 2%y < Po,n < po-

Proof. — Choose pg < 1 as in the proof of Proposition 5.1.
(i) In view of (5.1) and (3.15), we infer

sup (1 + pM)|un(p) — uss(p)| = Sup (1 + p™)[e(kn) (¥1(p) + wext (p))]

S &(pn) [p S&gl(lwl(p)l + [wexe (p)]) + sup PH([r(p)] + [wexs (p)1)

1—-d/2
< e(un)py .

Since () — 0 as n — oo, result follows.
(ii) In view of Proposition 4.4, we infer
sup |un(p) = py “Q(p/1in)| < 12 sup |wing(p/pn)| S prie ™"
P PO P PO
Since p, — 0 as n — oo, result follows.
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(iii) In view of (4.3),
AQ (673'"/2“;)0/#”)/\@(/)0/#”) <0,

so by intermediate value theorem, there exists a zero of AQ in the interval

[673”/2‘*’;)0/!%7 po/ttn)- In particular,
(5.23) e 32020 < prgu < 22
Hn Hn
Also, if
e 2% py < p < po,

then p/u, > 1 for n > N > 1. Thus, from (4.3) and Proposition 4.4 since
sup (14 p) V273 Awine| S 1,
0<p<po/bin
it follows that

Aun(p) = py, *(AQ + p2 Awing) (p/ f1n)

oc e ptm 2 [sin(w log p — w10g iy + 62) + Opqo(pﬁ)} :

Thus,

2
< Po-

‘w log po,n — wlog pn — wlog pag.n
Hence,
pon = Hnpr@ne® VS = fnprqun |1+ Opy0pB)] -
Furthermore, since (5.23) holds, we deduce

e 2/ py < pon < po- O

Remark 1. The statements of Proposition 5.1 and Corollary 5.2 yield Theorem 1.

6. DISSIPATIVITY OF LINEARIZED OPERATOR

We now start the study of the dynamical stability of self-similar profiles. Our
aim in this section is to realize the linearized operator as a compact perturbation
of a maximal accretive operator in a global in space Sobolev norm. From now on,
we assume d = 3.

Linearized wave equation. — Recall from Section 2 the definition of similarity trans-
formation variables:
(6.1) U(s,y) = (T = °B(t,a), s=—log(T—1), y=-—.

which maps the wave equation (1.1) onto
(6.2) 92U = —2y -V, U — (1 + 20)8,¥
+ > (655 — 4i95)0y,05, ¥ = 2(1+ a)y - VU — a1+ ) ¥ + TP~ .
4,3

We write the above as a system of linearized equations near u,,. For the perturbations:

U=U—uy, Q=-0,¥—AT,
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we have
6.3)  ox=Mx+G x=(Y), ¢= 0

: s = ’ —\q/)’ A\ =PI P 4 pul T
where

A 1

A4 M=- .
(64) (A-i—puﬁl A+1>
From now on, we write
(6.5) U, =V, Q; =V,
where

v = AV = 2i,
VA j=2i+1.

Levmma 6.1 (Commuting with derivatives). — For k € N, there holds
VEMX = M VEX + M X,

)

1509

where
A+E 1
(6.6) M’“__( A A+k+1>’
and ivak satisfies the pointwise bound
— 0
6.7 M X| <k o ; .
( ) | | <25_0<p> 247 k|vj\IJ|)
Proof. Direct computation yields the following formulas
VEVI= > VFIvY, [VE A = kVE
j<k—1
Hence, by Lemma A.1, since 95 (ub~') = O(p~27%) as p — oo for all k,
k
VE(A + pul™)T = ATy, + O(Z<p>2+jkvj\11|>
j=0
and
VEAQ = (A +K)Q%, VFA+1D)Q=(A+E+1)Q. 0
6.1. Suscoercivity. — Let us introduce some notations. First, recall the definition

of Hj, from Section 2.

Weighted L?-space. We also define for v > 0, the weighted L*-space L? as the
completion of C2°(R?) with respect to the norm induced by the inner product

(U, W) 2 :/ DU (p) =27 dy
Y R3

where (-) denotes the Japanese bracket. We write ||\l'||2L3/ = (¥, ¥)rz2.

Levva 6.2. — Recall the notations for the spaces Hy, and L7, above. Then for all

k € N, the embedding ¢ : Hix41 — Li“ is compact.

LEP
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Proof. — An improved Hardy’s inequality (see [4]) states that for all @ € 2Z and

f € C(R® . By (0)), 2 2
7] / v
dy < d

/ WP Y fe

Also an improved Hardy-Rellich inequality (see [4]) states that for all 8 € 2Z and

fe C’g’O(IR3 ~ B1(0)) , ,
/] / Af]

dy < d

/Rs WitE Y fe TP Y

By repeatedly applying these inequalities, starting with f = (1 — x)¥ for the cut-off
function y defined in Section 2, we infer for all ¥ € C°(R3),

[(1=x)¥ [A((1 = x)¥)?
104 ||L§+1 (R3~.B1(0)) S /R3 Wdy N s Wdy

VE(1-x
soox [0 gy ¢ [ 98- 0Py < 19,

By density, above inequality holds also for all ¥ € Hjyi;. On the other hand, by
Rellich-Kondrachov theorem, the embedding

L Hypq — L3 (R3) := {U]| x¥ € L*(R?) for all x € C°(R?)}

is compact. Combining the two and using smallness of (p)~2 for large p, the result
follows. O

Levva 6.3 (Subcoercivity estimate). — For all k > 0, there exists p, > 0 with
limy, 00 ptr, = 00 and (IL;)"_; € Hgt1, cn > 0 such that for all U € Hyq,

n

k
(6.8) [ —— “”Z/RS IVIW[2(p)~2E+29) gy — an(\P I1,)2, 12,
=0

i=1

Proof. — Given T € L} ,, the antilinear map h — (T, h)12 is continuous on Hy
since

(h7 h)Li+2 S (ha h)

by Lemma 6.2. By Riesz, there exists a unique L(T) € Hyy such that

(6.9) Vh € Hyy1, (L(T),h) (T,h) 2

k+2

Hyq1

Hyy1 —

and by setting h = L(T'), we infer that L : Lk+2 — Hj41 is a bounded linear map.
By Lemma 6.2, the map to L : LkJr2 — L,€+2 is compact. If ¥; = L(T;), i = 1,2, then

(L(Tl)aT2)Li+2 = (\IjlvTQ)Li+2 = (\IjlaL(TQ))HkJA - (\Illa \112)Hk+1'

Similarly,
(T, L(T2) 2, = (Y1, ¥o) = (L(T1), T2) 12,
i.e., L is self-adjoint on Lk+2 Since (6.9) implies that L is a positive operator, there

eletb an L? 4o-orthonormal eigenbasis (Il,,;)1<i<r(n) of L with positive eigenvalues
An — 0. The eigenvalue equation implies II,, ; € Hyy1. Let

A, = {\11 € Hin ’ (W 0)ps, =1, (0T, =0, 1<i <I(j), 1<) < n}
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and consider the minimization problem

I, = inf (U, 0)

H
TEA, krL?

whose infimum is attained at some ¥ € A, since the embedding ¢ : Hy1q < L7, is
compact. Also, by a standard Lagrange multiplier argument,
n I(j)
Vhe Hipr, (W R, =) ) Biga ke + B, h) s .
j=1i=1
Set h = II; ; and since II; ; is an eigenvector of L, we infer ; ; = 0 and in view of (6.9),
L(¥) = B~1W. Together with the orthogonality conditions, 37 < A,,.1. Hence

(6.10) In= (¥, Vg, , =B(Y, W)z >

k+2

)\n+1 '
For all € > 0, k > 1, from Gagliardo-Nirenberg interpolation inequality with weight
(see [10]) together with Young’s inequality, we infer

k
Z/ |Vj\If|2<p>_2(k+2)(k+1_j)/(k+l) dy
j=0"/R?
<o [Py e [ (UP) 2 dy
R3 R3
Together with (6.10), we have that for all ¥ satisfying orthogonality condition of A,,,

k
S [ IV dy < e+ i) 9
j=0

Since A, — 0, there exists a choice of €, — 0 such that ¢, + cc, kAp+1 — 0 and this
yields (6.8). O

6.2. Dissrearivity. — We now turn to the fundamental dissipativity property. Let us
introduce some notations.

Sobolev space. — Recall (6.5) and the definition of Hy from Section 2. Let

(611) Hk = Hk+1 X Hk
with the inner product:
(6.12) (X, X) = (Wpp1, Upp) + (Qk,ﬁk)+/ X(T0 +Q0) dy
R3
=(X,X)1 —
:<X)X>2
for

Further, we define the domain of M
D(M) = {X S Hk |MX S Hk}7
which is a Banach space equipped with the graph norm

X pvey = [1X ey + VX e, -
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Spherical harmonics. Denote by Aga—1 the Laplace-Beltrami operator defined on
the unit sphere S%~!. Then we can write

2 d-10 1 _
87)2+Tafp+?ASLH =1L+ p *Aga-1.

Denote by Y (™) the orthonormal Aga—1-eigenbasis (e.g. spherical harmonics if d = 3)
of L2(S4~1) with discrete eigenvalues

(6.14) —Am =—m(m+d—2)

(6.13) A=

for m > 0. We fix d = 3 and define the space of test functions
D={X =3, Xem(p)Y "™ € C(R?,R?) is a finite sum }.
Note then, that D is dense in Hy.

Prorosirion 6.4 (Maximal dissipativity). — For all k > 3, there exist ¢, > 0 and
(Xi)1<ign € Hy such that for the finite rank projection operator

the modified operator

M=M-7P
1s dissipative:
(6.15) VX € DIM), (—MX, X) > cp(X, X)
and is maximal:
(6.16) VR>0, FeH,, 3XeDM) suchthat (-M+R)X =F.

Proof
Step 1 (Dissipativity on dense subset). We claim that the bound (6.15) for func-
tions in
(6.17) Dp={X € C=(R*R?) |
Zf:_:lo SUpRs pa+R+m (|vm\p| 4 ]lm>1|vm_1QD < 00}7

where R > 0 is chosen sufficiently large so integrating by parts is justified. Integrate
by parts the principal part of the inner product defined in (6.12):

(-MX, X)1 = (VFF2(MX)w, U)) — (VF(MX )0, Q)

:/ [V + BT+ Q) - V4 (AT (L R+ A — (VX)) - ] dy
R3
= / {V((A + k)WL) - VU4 (1+k+ A - Q — (M X)g - Qk:| dy

R3

= (et b+ D[V, V) + (0. 90)] = [ (X0~ 0,
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where in the last equality, we have used the Pohozaev identity. In view of (6.7) and
by Young’s inequality, we infer

k
‘/ (MiX)a - dy‘ < 5/ Qu? dy + C Z/ |VIT[2(p)~ 422k gy
R3 R3 o /R
Taking € > 0 small, it follows that
k
(=MX, X)1 > 2c; [(‘I’Hh Wpp1) + (Qk,Qk)] - Cy 2/3 |VIW|2(p)~4+20 =2k gy,
j=0"R

We also lower bound the non-principal part:

(- MX, X), = —/

[ x [(MX)\I,\I! + (MX)g Q} dy

:/ X [(A0 4+ )0 4+ (A -+ put )+ (14 4)92) 2] dy
]R3
>0 [ U+ AP+ (02 + VO] dy

ly|<2

where the last inequality follows since x = 0 for |y| > 2. Thus, by adding the principal
and non-principal parts, we infer

k
(—-MX, X) > 20, (X, X) = Cr > /R VIR ()T dy — O X gy )
7=0

We conclude using (6.8) and an analogous result for ) that

N N
<_MXvX> 2 Ck<X7 X> - C[Z(\P’Hl)%i.;.z + Z;(Qaal)if_H]

i=1

for (II;) as in Lemma 6.3 and for some Z; € L7 ;. Since the linear form

X = (9,9) — VC(U,11,)

2
Lk+2

is continuous on Hy, by Riesz theorem, there exists X; € Hj such that
VX e Hyg, <X, X1> = (\I/,HZ')L2

k+2

and similarly for (Z;). Hence, the claim (6.15) follows for all X € Dg.

Step 2 (ODE formulation of maximality). — Next, we claim that for all R sufficiently
large,

(6.18) VF eD, 3X eH;, suchthat (-M+ R)X =F.

Furthermore, we claim that X € Dg. Note that this is equivalent to

' (A4 pul )T+ (A+ R+ 1)Q = Fo.
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Let I € D. Then, solving for ¥, we have
(6.20) A-A+R+1D)A+R) +pul W =Fy— (A+R+1)Fy.

=H

Since A commutes with Ags—1, we can write
F=> Fn,Y%, H=> H,Y®"m
l,m 4,m
as a finite sum where Hy,,(p)Y (“™) € C°(R?). Then, recalling the definitions (6.13)
and (6.14) of £ and \,,, the solution is of the form

v=>"vEmy,,,
(6.21) tm
£ =72 = (At R+ 1)(A+ R) + puly ™ [Wen(p) = Hen(p):

By Lemma B.2, it follows that for all R sufficiently large and Fy,,, Y (¢™) € C2°(R3, R?),
there exists unique solution Wy ,(p)Y ™ € HFFY(R3) to (6.21). Hence, there
exists a unique g, (p)Y 4™ € H*(R?) given by first equation of (6.19) so that
Xg7m(p)Y(€7m): (lll&m,Qg,m)Y(&m) € Hj, smooth. Thus, we have (6.18). Also, from
the decay properties of each Xj ,, proved in Lemma B.2, we infer X € Dp.
Step 3 (Density of Dgr). — Now, we extend these results from Dg to D(M). We claim
that for R large, D C D(M) is dense. For X € D(M), we have X, MX € Hj, so
there exists a sequence (Y,,) € D such that
Y, — (-M+R)X in Hj.

By (6.18) and Lemma B.2, there exists unique X,, € Hj, smooth solution to
It suffices to prove the X,, — X in Hj. Recall that for R sufficiently large all integra-
tion by parts used to prove (6.15) is justified. Then since X,, € Dg, (6.15) holds for
X, — X, ie.,
<Yn - Yma X — Xm> = <(_M + R)(Xn - Xm)v Xn — Xm>

= <(_M + ?)(Xn - Xm)a Xn - Xm> - <CP(Xn - Xm)v Xn - Xm> + RHXn - Xm”]%lk

2 RHXTL - Xm||]12-]1k - <?(Xn - Xm)axn - Xm>-

Since P is a bounded operator, we infer for R large,

R
5 ”Xn - Xm”Hk < ”Yn - Ym”Hk~

In view of the convergence of (Y,,) in Hy, we deduce that (X,,) is a Cauchy sequence

hence, convergent in Hy, to say, X. Then X — X € Hy and
(-M+R)(X—-X)=0
as distributions. By the uniqueness statement in (6.18), it follows that X=X ie.,
X, — X, MX, —MX inH, <+ X,— X in DM).

Hence, Dg is dense in D(M) as claimed.
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Step 4 (Conclusion). Since (6.15) holds for all X € Dg, by density of Dy, we have
dissipativity i.e., (6.15) holds for all X € D(M). It remains to prove (6.16). Let
F € Hy. There exists (F,) € D such that

F, — F in H,.
By (6.18), there exists X,, € Hj, solution to
(-M+ R)X,, = F,.

Using (6.15) and arguing as in the proof of density, we infer for R large,
R
5 ||Xn - XmHHk < HFn - FmHHk’

so X, has a limit say, X € Hy. Since F), converges to F' in Hy and D(M) is a Banach
space, we infer

(-M+R)X =F, X eDM).
Thus we have shown that for R large,
(6.22) VF € H, 3X € D(M) such that (-M+ R)X = F.
Now we prove this for M. Let F € Hy,. Since P is bounded, for R large, by (6.15),
for X as in (6.22),
(F,X) = (M4 BX,X) = (-3~ 9+ BX.X) > 5 [ X3,

Thus, for all F' € Hy, solution X to (6.22) is unique i.e., (=M + R)~! is well-defined
on H, with

I(=M+R)7" <

o

Hence,
~M+R=-M+2P+R=(-M+ R)[id+(—M + R)~'P)

is invertible on Hj, for R large which yields (6.16). An elementary induction argument
ensures that (6.16) holds for all R > 0 (see Proposition 3.14 from [11]). O

7. GROWTH BOUNDS FOR DISSIPATIVE OPERATORS

In this section, we recall some classical facts on growth bounds for compact pertur-
bations of maximal accretive operators. We realize the linearized operator defined on
the real vector space from previous sections as a real operator on the corresponding
complex space. This is essential in the spectral theory of the linearized operator.

In this section, (H, (-,-)) is a Hilbert space and A is a closed operator defined on a
dense domain D(A). Define the adjoint operator A* on the domain

D(A")={X € H|Y € D(A) — (X, AY) extends to an element of H*}
to be X — A*X the unique element of H given by Riesz theorem such that
VY € D(4), (A*X,Y)= (X, AY).
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For v € R, we denote by

A(A)={ e€o(A)|Re(N) 2v}, V,(A)= @ ker(A-N\).
AEA, (A)

Lemma 7.1 (Perturbative exponential decay). — Let Ty and T be the strongly contin-
uwous semigroups generated by mazimally dissipative operators Ag and A = Ay + K
where K is a compact operator on H. Then for all v > 0, the following holds:

(i) The set A, (A) is finite and each eigenvalue X € A,(A) has finite algebraic
multiplicity k.

We have A, (A) = Ay (A*) and dim V,(A*) = dim V,,(A). The direct sum decompo-
sition

H=V,(A)@V;(4")
is preserved by T(s) and there holds
VX € VH(AY),  T(s)X|| < Mye” | X].

(ii) The restriction of A to V,(A) is given by a direct sum of Jordan blocks. Fach
block corresponds to an invariant subspace Jy and the semigroup T restricted to Jy is
given by

my—1_As
eks Se)\s L. S(nri;f‘le)!
0 e>‘s o Safn/\72e>\s
mx—2)!
T(s)|s, = ' (=)
0 O ers
Proof. — See Lemma 3.3 of [22]. O

Cororrary 7.2 (Exponential decay modulo finitely many instabilities)

Let v > 0, Ty, T be the strongly continuous semigroups generated by mazimally
dissipative operators Ay and A = Ay — v + K respectively where K is a compact
operator on Hilbert space H. Then Ay(A) is finite and let

H=U®YV,

where V = V,(A) and U = V;-(A*) so that U and V are invariant subspaces for A.
Then there exists C,0 > 0 such that

VX e U, |T(s)X| <Ce /2% X]|.

Proof. — We apply Lemma 7.1 to A= Ag + K which generates the semigroup T.

Note that A, /4(A) is finite and Ag(A) C A, 4(A). Let
H=U, 8V,

be the invariant decomposition of A associated to the set Ay /4 with V), being the
image of the spectral projection of the set A, /4. Then U, C U and

uv=U0,660,,
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where O, is the image of the spectral projection of A associated with the set

Ay /s(A) N Ag(A). Then by Lemma 7.1,
VX €Uy, ||T(s)X|| = e || T(s)X|| < Mye™ /02| x].

Now for X € U, since U, is invariant under T" and we have exponential decay on U,
so without loss of generality, assume X € O,. O, is an invariant subspace of A
generated by the eigenvalues A such that —3v/4 < Re(\) < 0. Then for

§ = inf { Re(A) |0 < —Re(\) < 3v/4, \is an eigenvalue of A},
Lemma 7.1 implies that

IT(5)X]lo, S sup e *s™ X[ S e 2 x|. O
Re(A)<0
CororLrary 7.3. — Let A, 6, U and V as in Corollary 7.2. For ¢ > 0, let G(s) € V
be such that
|G (s)|| < e~ 0/D0Fs g >,
Then, for so sufficiently large, there exists x € V with ||| < e~ (8/20+e/2)s0 gych
that the solution X(s) to
dX(s)
ds

=AX(s)+ G(s), X(so)=z€V,
satisfies the bound
| X (s)]] < e”O/DAF+e/Ds - yg > g0

Proof. — By Lemma 7.1, the subspace V can be further decomposed into invariant
subspaces on which A is represented by Jordan blocks. Therefore, without loss of
generality, assume that V is irreducible and for Re(\) > 0,

smAa!

Ls - 2y

01 s"AT2

(7.1) A=X+N, V= (ma=2)!
00 - 1

Now consider
Y(S) _ e_SNe(é/Z)(1+3C/4)SX(S)7 G(S) — 6_3N6(5/2)(1+3C/4)SG(S).

Then since N and A commute,
dY(s) [ ) ( 3c

S+ 1+Z)}Y(s)+é(5)v Y (s0) =y.

For sq sufficiently large, for all s > s,
|G (s)]| < em(e0/10)s,

We now run a standard Brouwer type argument for Y. For ||y|| < 1, define the exit
time
s*=inf{s = so ||| Y (s)|| = 1}.
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If s* = oo for some ||y|| < 1, then we are done. Otherwise, the map
:B={llyll <1} — S ={llyl =1}

given by ®(y) = Y (s*) is well-defined. Note that ®|s = idg and P is continuous since

d”;s” (") = 2Re() +3(1 + %) +2Re(G(s7), Y (s)) > g<1 + %) >0

i.e., the outgoing condition is met. This is a contradiction by Brouwer fixed point

theorem. Thus, there exists x such that for all s > s,
‘|€7$NX(S)|| < 67(5/2)(1+36/4)5.

sN

Since e~*V is invertible with inverse e*" bounded by s™*~!, result follows immedi-
ately. O

8. FiNniTE CODIMENSIONAL STABILITY

We are now in position to prove non linear finite codimensional stability of the
self-similar profiles for the full problem.

Choice of parameters. — In this section, we set d = 3 and k = 3 so that H*1(R3)
is an algebra which we shall later use in the proof of Theorem 2. For convenience,
we write

H:Hg Z:H4XH3.

where we recall from Section 2 the definition of Hy.

Stable and unstable subspaces. Recall from Proposition 6.4 that M — P + ¢;/2 is
maximally dissipative so Corollary 7.2 applies:

Ao(M) = {A € o(M) | Re(A) > 0}

is a finite set with an associated finite dimensional invariant subspace V. Consider
the invariant decomposition

H=UV
and let P be the associated projection on V. We denote by N the nilpotent part of

the matrix representing M on V. Let § > 0 such that the conclusions of Corollary 7.2
and 7.3 hold.

Dampened profile. — We produce a finite energy initial value by dampening the tail
of the self-similar profiles on |z| > 1: for some constant n, > s., let n: R — R be a
smooth function

1 r<1,
(8.1) n(r)—{r_np —

R\ /A

and for smooth self-similar profiles u,, solving (1.4), we define the dampened profile

ul (s, p) = n(e™*p)un(p).
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Note that the requirement n, > s. is precisely the condition for u? to achieve finite

energy. Recall the self-similar transformation (6.1). We introduce the perturbation

variables (U9 QP):

(8.2) U=0+u, =V 4 *pu,, Q—Au, =9 —n(e *p)Au,.
————

—uD
=uy

Then the wave equation (6.2) yields

©3) {asqu = —AUP - QP
8,0P = —AUDP — (A +1)QP — [T~ 1T + &(s, p),
where
(8.4) &(s,p) = nlep)uy, — (An(e™*p))un — 2Vn(e™*p) - V.
8.1. BoorsTraP BOUND AND PROOF OF THEOREM 2. The heart of the proof of Theo-

rem 2 is the following bootstrap proposition.

Prorosirion 8.1 (Bootstrap). — Recall the definition of Hy from Section 2. Assume
d=3, k=3 and write
H = Hg = H4 X H3
Given ¢ < 1 and sg > 1 to be chosen in the proof, consider X (so) € H such that
(8.5) I(Z = P)X (s0) [l < e /20, [[PX (s0) [lsr < e~ O/2/ e/
and for (U2, QP) as in (8.2) and for 0 < j < 4
[

?

H p>j+1]lj>1vjleD(so) H < o~ (6/2)s0
ub Lo (R3)

Lo (R3)
Define the exit time s* to be the maximal time such that the following bootstrap bounds
hold on s € [sg, s*]:

(8.7) ||esNPX(s)||H < e~/ (+3e/9)s
forj=0,1and 0 < r < 1/4(p+1),

Hpj*”vj‘IfD(S)

(8.8) D <1

HLO@(|y|>1> =

for all j such that 0 < j < 4,

(8.9) Ij(s) = / P2 ()P [V ()2 + 1 [VI10P(5) ) dy < 1,
D;

where

€(r) = ()~ = {

and for §/(1+¢) < 6y < 6,
(8.10) X (s) ||l < e=0o/2)s,
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Then the bootstrap bounds (8.8), (8.9) and (8.10) can be strictly improved in s €
[s0,s*]. Equivalently, if s* < oo, then equality holds for (8.7) at s = s*. Furthermore,
the following non-linear bound holds:

(8.11) Vs € [s0,5*], ||G(s)||m < e~ /DAFe)s,
Let us assume Proposition 8.1 and conclude the proof of Theorem 2.

Proof'of (Proposition 8.1 = Theorem 2). — Assume Proposition 8.1 holds. Let sy be as
in Proposition 8.1. Note that the bootstrap bounds (8.9) and (8.10) imply

[wrRay< [ qupaye [ ey <o
RS lyl<1 lyl>1
and
/\A2W|2dy<oo.
R3
Then

1237 oy < Ml 1oy + 192 2oy + llunl s gy + 1237 oy < 00

Similarly for Q. Thus, we infer
||’U,n + \IJHH“(R?’) =+ ||Aun — QHHS(RS) < C(S)
for s € [sg, s*] so it follows that
19| s Ry + 106l frec—1m3y < C(2),

so the exit time s* defined in the statement of Proposition 8.1 is strictly smaller than
the life time provided by the standard Cauchy theory (see [12]).

We now conclude from the Brouwer fixed point argument. Note that for all initial
data satisfying (8.5) and (8.6) in the space

H = {(¥°,9P) € (H* x H)(®) |

4
S [ty ([P 4 1,505 00

Jj=0

1 < 00}7
the non-linear bound (8.11) and (8.7) have been shown to hold on [sg, s*]. More-
over, as explained in the proof of Corollary 7.3, given (I — P)X(sg), after a choice
of projection of initial data on the subspace of unstable nodes PX (sg), the solution
can be immediately propagated to any time ¢ < T'. This choice is dictated by Corol-
lary 7.3. Furthermore, this choice of PX(sg) is unique and is Lipschitz dependent on
(I — P)X(sg) from Lemma D.1. O

The rest of this section is devoted to the proof of the bootstrap Proposition 8.1.
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8.2. WEIGHTED SOBOLEV BOUNDS. Recall that we have set d = 3, £ = 3. Then,
we write H = Hs.

Lemmva 8.2 (Sobolev embedding). — Let (WP, QP) be such that the right hand side of
the bound (8.12) is finite. Then, for j =0,1,

_ 4 1/2
SIVIOP | Lo y1=2) + <Zfe(5)) :

=0

(8.12) ’ PV

D
Up,

‘L”(|y|>1)

Proof

Step 1 (General bound). — We recall the notations for the spherical harmonics from
Section 6.2. In particular, we write the spherical harmonic functions as Y (4™ with
eigenvalues —\,, = —m(m + 1). We claim that given i € N and 8 € R and for all
f € CRaa(R2 N A{0}),

(8.13) /R Y6, ) da

= (1 omoe(1)) (

j=

Z> Ni~d /OO P26 | )2 g
J 0

::Si,m[f]

We proceed by induction on i. The claim for i = 1, 2 is proved in Lemma 2.1 from [4].
If the claim holds for i = 2k — 1, 2k, then by replacing f in (8.13) by (£ —r~2\,,)f,
where we recall that £ is the radial part of the Laplacian, we infer

/ PG ()Y ) (9, o) di
Rf}

i . o
= (Lt omose(1) Y <JZ> A / r2E2G0100 (02 4 2710, — 2N I dr
=0 0

=2 (J) ! / PEHIFRGD| (912 — A, 200) fI2 dr + 0o (Si2m[f))
7=0 0

_ Z <;) )\:;J/O r2+ﬂ+2(j7i)(|f(j+2)|2 + 2)\mr*2|f(j+1)|2 + )\1271T74|f(])‘2) d'f
7=0
+ om_>oo(5i+2,m[f])a

where in the last equality we have used integration by parts:
oo
_)\fn—j-&-l/ PBH2=0) 3+2) £0) gy
0
_ it / PG| fGTV2 g 4 ﬁ)\:';jJrl/ p=2HB420-1)| £0)|2 gy
0 0

= N[ OO i 0y (S )
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Then, we infer

./7mV”7ﬁﬂ“”N&@de=UﬂﬂmﬁmOD
]R3

1+2 . . . oo
> [(l> +2 (_Zl> + ('22” A:;H/ p2HB420-i=2)| () 2 gy,
=L\ j j 0

Hence, the result follows for ¢ + 2. This concludes the proof of our claim (8.13).

Step 2 (Interior Bound). — From the claim, we have that for M large, for all f €
C2, 4[R2~ {0}) and m > M,

c,rad
> / PRt f D dp < / PRV F(p)Y P d.
=0 0 R3
Also, by induction on i, we have that for all m < M,
®14) Y / PR D P dp S5 C Y / PRSI f(p)Y P da,
j=0"0 j=0"%

Thus, (8.14) holds for all m € N with some universal constant independent of m.
We now apply this to a function vanishing at 0 and oo. Let y, € C%(R3) and

rad
© € C*(R) be such that
: e(lyl) [yl
Xs(y) = { |

L—wely) |y
Write
VP (y) =D 0P (Y™ (0, ¢),
lm

and apply (8.14) to f(p) = XS\IJEm(p), we infer,
4 et
Z)‘f};]/ T2J+2a71‘ag)\ljl{)m|2 dp
=0 2
M [, e
p
R3

4
<2
=0
4
S [ AT ()Y 6, 0)) Py
=0
4
SY [ e P S W ()Y 6, 0)

=0 lyl=1
where in the last inequality we have used that for all e® < p < €24,

109X ()| Sj e S p.
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Since the universal constant here does not depend on m, we sum over £ and m to infer

e’ 4

33 | Ao, e s 1

£m j=0 §=0
Note the universal L°°-bound for spherical harmonics which one can find in [30] states
that
1Y (0, )| e (s2) < A

Thus, we infer for 2 < |y| < e®,

=

s

| 19 i 2+ LIl | oo wblde

dp 1/2 1/2
s||\IJD||Lw<y|_2>+ZA;{4(/M1+M) (/ 219D P4 210,90, 1) d )

l,m

1/2
<||@D||Lw<y|_z>+(zxm3/2) (ZA?/ P2 P4 0?10, ) d )
lm
4 1/2
< U ey + (ZMs)) .

£=0

Next, we bound the derivatives of UL . Explicit calculation of the derivatives of Y (6:m)

yields

196 ™| Lo (g2) + 10,Y C™ | oo s2) S A
Thena for 2 < |y| < 687 by Writing (yla y27y3) = (pa 03 QD) and (nla na, 77,3) = (07 713 71)7
we infer

p' T VIP(y)
up

3 et
SIVEP || poo (=) + 2/2 Sup |0, (p™ TR0, (WP (p)Y ™)) | dp

SAIVIP Lo (ry)= 2)*2/ lA”‘*la (P O, + A 0,0 ”‘Pem)|1dp
=0, term =089, 0, terms

Then, as before,

e’ 1/2
@ rem) £ SN [oan) ([
T 2 2

1/2
<(za) (ZV/ (0,8 + 02U ) dp
lm
4 1/2
< ()
=0

e

1/2
P (0,0, 12 + 212U ) d )
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and similarly,

1/2
(@0, , terms) (ZA 5/2) (Zxﬂ/ P + 210,90 )
1/2
5(214(3)) :
£=0

Thus, we infer for all 2 < |y| < e® that
1— &V\I/D 1/2
‘p7‘<||vq/D||Lm (ul= 2>+(Zlf ) .

Step 3 (Fxterior Bound). — We now propagate the L>°-bound to the region outside of
the self-similar scale. From the claim in Step 1, we infer the bound

7

> oA / P20ty | £0) Z / PR 2 | £ (p)y () 2 gy
0

j=0
with some universal constant independent of m. Using the same 1 and decomposition
of P as in Step 2 and apply the above bound with f(p) = X.¥7,.(p) for a cut-off
Xs(y) = ¢(2¢7"[yl), we infer

4 oo
S [t s g, dp
=0 es
4

<> / . P72 (e p) 2 T VI (WP ()Y ™ (0, ¢))]? dy.
j=0"1Y1Z

Thus, as in Step 2, we infer
4
Sy [t g o P dp £ Y160
m =0 7=0

Thus, we infer for |y| > e®,
s |

FN [ o) d
lm

es

Le<(lyl=e®)

Since

STt [ oy g, dp
Lm e’
oo 1/2 ) 1/2
S [eorman) ([ e 0,08 ) do)
£ o -
1/2
< (ZA;?)/Q) (Z)\Q / 20— 1 ( _SP)an+1(|"IJ£m2+P28pwgm|2)dp>
l,m
4 1/2
< (Zfee)) 7
=0
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combining with the interior bound, we infer (8.12) for ¥”. As in Step 2, we can bound
the derivatives of U2 in the region |y| > e°. This concludes the proof of (8.12). O

8.3. Proor or Prorosition 8.1. We are in position to prove Proposition 8.1.
Step 1 (Energy estimates). We claim the energy estimate
dl;
8.15 —L <emEs

holds for some ¢ > 0 for all 0 < j < 4 so in particular, by the choice of initial value
(8.6),

I;(s) < Ij(so) + Ce™=

is arbitrarily small for sg sufficiently large.

Case 1 (1 < j < 4). — Suppose claim holds for < j cases. Denote by I}I’, IjQ the
weighted L?-norm of WP and QP in I;. For the UP component, we infer

4
ary
ds
_ / p2j72su [ _ pgpf(efsp)2np+l|vj\1}D|2 4 2£(efsp)2np+lvj\IJD . 85Vj\I/D dy
D

J

< 2/@ p2j*28cg(e*8p)2np+1[(j+A+as)vh1/D} VIO dy

+ 13@/ IVIUPPdo(y),
{lyl=1}

where we integrate by parts for the last inequality and note that the boundary term at
infinity is non-positive. Here, o is the standard measure on the unit sphere. We bound
the boundary term using the Sobolev embedding H?(|y| < 1) < L>(Jy| < 1):

(8.16) /{ U doty) S IV e S W sy S IX < e
Je

for j < 2, where in the final inequality, we have used (8.10). By the commutation
relations

V¥, A] = kVF
and (8.3), we infer for some £ > 0,
dryf 2j—2 —s \2n, 41w D wigD -
LSz [ e I (A4 080 P dy e
D

J

_ _2/ p2j—2scg(e—sp)2np+lvaD . VJ\IID dy 4 e~ s,
D

J
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Similarly, for QP component, it follows from the above commutation relation and
(8.3) that

2« 2/ pHi=2seg (o8 p)2nat] (j+A+63)vj—1QD} VITIQP dy
(8.17) Di
_ 2‘/D p2j—2SC§(6_Sp)2np+1vj_1(—A\I/D _ Ejp + (c:) A vj—lQD dy,

i
where we recall the definition (8.4) of . Integrate by parts the first term we infer
2/ A= 2seg (o5 p) 2ot (LitigD) L wi-lQD gy
D;
(8.18) < 2/@ pPImeg(e7% )P IVIWD . VIOP dy
J
+ 2/9) v[p%—?%g(e—sp)?”v“} VUL vITIOP dy.
J

From the bootstrap bound (8.10) and (8.9), we infer for 2¢ < §o/(2k +1 — 2s.) =
00/(7 — 2s.), the bound for the last term above

A p2j72sc71£(67sp)2n”+1|vj\I/D| ‘Vj*lQDI dy

< e—ss/ p2j—25“§(8_sp)2n7’+1|Vj\I/D| |Vj_1QD|dy
ly|>ecs

+ ee(2k+1—2$c)s/ <p>—2(k+1—j)|vj\p| |Vj_1Q|dy

ly|<ess

< e (I )2 +e(5°/2)3/ (IVV®? + [VI1QP?) (p) 249 dy

ly|<ess
< e—sst _1_6(60/2)5”)(”]%1 < e—sst _|_e—(50/2)s <e

for some € > 0. Note that we have used Hardy’s inequality from Lemma 6.2:
(319) [ IR dy S i, < X
yl<ess
and similarly for Q. Thus, we infer the bound for (8.18):
2/D p2j72scg(efsp)2np+1(7vj+1\i}) 'v]élQD dy

< 2/ p2jf2scg(efsp)2np+1vj\1/D . vaD dy + Cecs,

D
Next, we prove the bound for the term with P = (up, +P)? and €. By the bootstrap
bound (8.8) together with the asymptotic behaviour of u?, it holds for £ = 0,1 that

H <p>HVD’£\TI(s)
un

e S
Loo(R3) ™
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where we have used the Sobolev bound (8.16) in the region |y| < 1. Thus, we infer
for j < 4,

j—1
VR ST Y VR

i=1 |Bl=3—1,8>0
Jj—1 Jj—1
SOV [P Y (v v
=1 i=1 18|=j——1,
1Bllee <1
Jj—1 Jj—1
5 <p>—j+€+1+(—a+n)(p—1)|v€{f,| < Z<p>—j+l—3/4‘veifl|’
£=0 =0

where we have used that x < 1/4(p — 1) and that p > 5 to bound |¥[P~¢.
Next, we bound & where we recall the definition (8.4) of €. Observe that

din(e=p) = e 7*nD(e™*p) < (p) In(e p).

In view of the asymptotic behaviors of u2 and its derivatives, we have that for j < 4,

97 1e] < VI (e pu — (An(e™ p))un — 27/ (e~ p)u )| S ()71l
Adding the two bounds obtained above, we infer
7j—1
(820) [V ([PE - )| S D00 (19N 4 [V ) ).

We improve the above bound in the region p < e®. Here, (e %p) =1 so € =« and
we infer for j < 4,

1
‘vj*1(|\1/\1’*1\11 - s)‘ < ‘vjl (q// |y, +T\1:|P1d7>‘
0

j—1 3
< sup |up +T\I/|p_4Z|Vi\IJ| Z H sup | V7 (u, +70)|.
o<r<1 i—0 |18l=j—1—i, g=1 o<1

B12P22P3

Since i + 81 + B2 + B3 = j — 1 < 3 in the sum above, B2, 83 < 1 so the L*°-bound
(8.8) applies. Then, we have for all p < e® that

]vjfl(mpﬂif - e)(

j—1
(p) =D N | (1997 | [V )
=0

A

(8.21)

J

I
-
—_

J
<N (py it (et =) | gig D | <\ V() IS/ gig P
i=0

=

Il
=]

%
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Thus, using the bounds (8.20) and (8.21) above, we infer for the W? and & terms
in (8.17) that

[ oo v @ - o) (910 dy
D

J

j—1
S [ oy g (9] 4 Ly 9 ) 99100 dy
t=077P;
j—1
< / pj+€—2sc—1/2§(e—sp)2np+1|V2u5||vj—1QD| dy
=0 7 lyl=e®

j—1
+ e—(s/2)s Z/ pj+£—2566(e—sp)2np+l|v£\I/D| |Vj_1QD| dy
1—0 / lyl=e=s

j—1
# [ gt 9 o) dy.

1—0 7 lyl<ess
Thus, from the bootstrap bound (8.10) and Hardy’s inequality (8.19), we infer for
2e < 8o/(2k + (3/2) — 2s.) = 09/((15/2) — 2s,), the bound

/ p2j72scg(efsp)2np+1|vj*1(CI}P _ 8)| ‘V];lQD| dy
D
J—1

0o 1/2
S| ([ e nan) a2

=

1/2 _ , 1/2
vt ([ e eta) ([ enteE e )
y\eES y\eES

J
< e 37 /D, 4 B0/ D3| X2 § o=/ 4 o=(e/23 4 o= (o/2s.
£=0

Take smaller ¢ if necessary, we infer

dre ) ) )
TJ < 2/ pQJ_Qscf(e_sp)27lp+1VJ\IfD . v]QD dy =+ Ce¢s.
S 'Dj

Hence, by adding the bounds for I J‘I' and I 397 we obtain the overall bound

d‘[j < p—ts

22 —
(8 ) dS ~ ?

i.e., the claim (8.15) holds.

Case2 (j =0). — Note that Iy = Iy. As in Case 1, we have for some € > 0 that

dl
&0 - _2/ p_QSCf(e_Sp)an+IQD\I/D dy + e,
ly[>1

ds =
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From the bootstrap bound (8.10) and (8.9), we infer for 2e < do/(2k +1 — 2s.) =
d0/(7 — 2s.), the bound:

/ p~2et (e p)* WP QP dy
ly|>1
< 6755/ p1+25C€(675p)2nP+1‘\PDQD‘dy
ly|>ees

+es(2k+l—25c)s/ =50 dy

1< y|<ess

< e (I IT)Y2 o 0/ / (1912(0) 72040 4 012(p) =) dy
lyl<ess

<e© +67(50/2)s <e c

for some ¢ > 0. Hence, the claim follows.

Step 2 (Improvement of (8.8) and (8.9)). — Given dy < 1, we claim that these quan-
tities can be bounded by dp in s € [sg, s*].

Improved bound for the weighted Soboley norm. — 1t follows from the energy esti-
mate (8.15) and the choice of initial value (8.6) that given dy < 1, we have that for
all s € [sg, s*] and j such that 0 < j < 4,

(8.23) Ii(s) < Ij(so) + Ce =% < dy
for sg sufficiently large.

Improved pointwise bound. — Let j be such that 0 < j < 1. By Sobolev embedding
and (8.10), we infer for large so that

V7P| oo 1y1<2) < do-
Then, by Lemma 8.2, we have that for 0 < j < 1,

T 4 1/2
PGP oD

8.24 |=——| < [ VIEP | e 1y NI < do.

( ) U/r? Loo(lyl=1) ™ | I o= =0 ) ’

where the last inequality follows from (8.23).

Step 3 (Improved || - ||m bound and non-linear bound). — Recall that

Ga = —|V +u, [PV + uy,) +ub 4+ pul~ '

8.25 1
(8.25) =—plp— 1)\112/ (1 — 7)|up + 7CP3(u, +7F) dr.
0

We claim that by choosing s¢ sufficiently large and ¢ > 0 small,
(8.26) Vs € [s0,5%], [IG(s)]lm < X ()l

For p > 0, we have

1
(8.27) |V*Gq| < Z viqf||vj\1:|‘/ (1 =7V (Jun + 7EP3(uy,, + 70)) dr|.
i+j+e=k 0
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For m < 3 and p > 5, we have the bound:

(8.28) < sup Jup + O

0o<r<1

1
/ (1 =7)|u, + T\I/|p_m_3(un +70)dr
0

This, together with the L>-bound (8.8) which implies |¥| < (p)~>"* and the asymp-
totic behaviour of u,,, we infer

’ /1(1 — )WV (Jun + 7YP3 (uy, +77)) dr

£ 1 m
(8.29) S Z:O/o (1= 7)|un + 7Y™ 3(u, + 7V) d H (IVPau,| + VP 0|
m= =/¢ g=1

L m
< plmatrp=m=2) Z H(Wﬂq“n‘ + |VAaw)).
m=0 |ﬁ|:£ qg=1

Note that (8.28) applies since m < ¢ < k = 3. Also, at most one of 3y, 4, j is > 1 i.e.,
we can apply the L>-bound (8.8) for at least two of VAW, VW, VIV factors. Thus,

we infer

m

VGal S Y VUV Zp< wHnem=d) S (90| + [VO0w])

i+j+Ll=k |B|=¢ ¢=1
Z pfa j+n|vz\Ij| Zp —a+k)(p—m—2) m( a+kr)—L
7,+J+€ k
< Zp(_a+m)(p_1)+i_k‘vi\1’| < Zpi_k_3/2|vi\ll|.
=0 1=0

where the final inequality follows from k < 1/2(p + 1). Then for R > 1, by setting
k = 3, we infer

(8.30) / |v3GQ|2dy<Z / PSP dy < RS, < RYXE,
\y|>R |>R

where we have used the Hardy’s inequality (8.19). Now we consider the region
0 < p < R. Denote

H}, == H?(Bg(0)).
Then, there exists M7 > 0 such that
oG < RM 0l Z 015 Vo, ¥ € Hp,

since 3 = k > d/2 = 3/2 so that H?(R3) is an algebra. From (8.28) and the assumption
3 =k < p— 2 we infer that,

3
1—7' Mty + 783wy, + 7V dr <1

Lo (R3)

m=
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Note also that the L>-bound (8.8) implies |[V/¥| < (p) 7= for 0 < j < 2 and for
all s € [sg, s*]. Then it follows from (8.25) that

[ I Galdy < ol
y\

2

A

1
R | [0 )+ 7P+ 70 s
0

3
HR

(8.31)

A

B2 Wt 3 || [TV ual + 970w
IBI<3 g
3
< Ry S (lunliZy + 1013 )™ S B IX4
m=0

for some M > 0. Set R = ||XHﬁ2/(1+M) and add (8.30) with (8.31) so the claim (8.26)
follows by choosing ¢ < 1/(1 + M).

By the decay estimate in Corollary 7.2,
(8.32)

I = P)X(s)[lzx S e @/DE720) | X (50) |z +/ e”OPEDNG(7) | dr

S0
< o (8/2)s {ewm)so 1l + / © 6/ =Go/D (1) 4| < o=/

S0

2
L*(Br(0))

since §/(1 4 ¢) < d¢. This, together with (8.7), we infer
1X (5) [l S e 7).
This proves an improved bound for (8.10). Then, by (8.26), the non-linear bound
(8.11) follows. O
AprpENDIX A. BOUND ON SELF-SIMILAR PROFILES

In this section, we derive some asymptotic properties for p — oo of the smooth
profiles u,, constructed in Theorem 1.

Lemva A 1. — Let u, be the self-similar profiles constructed in Proposition 5.1. For
all k€N, as p — oo,
(A1) P = 0(p~F),  OE(ui) = 0(p~2 7).

Proof. — In view of (3.15), taking e < 1 we infer
un = 0(p™%), up, =0(p™"7)
and u, > 0 for all p sufficiently large. It follows immediately that
uh Tt =007, (T = (p - Dub g, = 0(70).

In view of (1.4), we infer

o1
W) Sp 972 [ 25 o+ 8) |
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for all p > pp and k > 2. Suppose lemma holds for some k > 2. Then by hypothesis,
for all p > po,

k k—1 k—j—1
k —j—2, (k—j— —j— j —1y(k—j—i— —a—k—
]S S0 1 3 g 3 )b g et
j=0 j=0 i=0
Furthermore, by hypothesis and bound on uﬁ{“ H), we infer
k+1
)] S St 3D ) < g
j=0 |B|=k+1
B8>0
and this concludes the proof by induction. O

AppreEnDIX B. Maxivarity or M

In this section, we consider the problem (6.21). Given H such that H(p)Y “™) ¢
C*(R?), we seek solution to

(B.1) [L—p A — (A+R+1)(A+R) +pul ™|V = H.

Lemma B.1. Let H € C*([0,00)). Then for R sufficiently large, there exists a
unique solution U € C'([0,00)) to (B.1). Furthermore, if H(p)Y 6™ € C2(R3),
then ¥(p)Y &™) s smooth on R3.

Proof

Step 1 (Solutions at p = 0). — Set (1, V) = (p™ W, 9,(p™ 1)), Writing (B.1) in
the form required in Proposition 3.2,

(B2) pO,V1 = pWs,
B2 2 m+2
_ P 1 P {m } 14
Uy = —puP~ | U — v -——H
p 0,V 1—p2[§ pub ] 1+1—p2 P +np 2+1_p2 )
where
E=(m—-—a—R+1)(m—a—R), n=-2(m—a—R).
Hence,

\Ifl - \Ill pm+2 0
00, (5) =40 (3!) + 2 (1)
where A is smooth in [0, 1),
00
A =
©) (O 2m>

with o(A4(0)) = {0,2m}. Thus, by Proposition 3.2 with £ = 2m + 1, we infer for all
a, b € R, there exists a unique smooth solution to the homogeneous problem for (B.2)
such that

(U, T T2 Ty 0) = (a,0,---,0,b).
Since H(p)Y“™ is smooth radial, H = O,_,¢(p™) so from Proposition 3.2 we can
write the solution ¥, 4 to (B.2) with the boundary condition

(Wa,b, \Ij:z}b7 T \Ij(zm) \111(127;71+1))(0) = (a,0,---,0,0)

s Fa,b
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as
Y1(p) < 1+ 0,50(p*™+2),

wz(p) x p2m+1 + OpaO(P2m+2)7

where 11, 15 are the linearly independent solutions to the homogeneous problem for
(B.2) in [0,1) with appropriate initial values.

\Ila,b = \IJO + (M/Jl + b"/)% {

Step 2 (Solutions at p=1). — For (U, Uy) = (¥, 0,¥), we write (B.1) as

(p— 1)8/)@1 =(p- 1)‘52,
U - 1 p—1 _ 2
(p—1)9,0y = (a+R)(a+R;r+)p+ Pt = Anf? G

1+p T 14y

(- 1), (?;) = B(y) <§,) v (5).

where B is smooth in (0, c0),

(2/p) —2(a+ R+ 1p g H

Hence,

B(1) =1+ 0 0
C2\—(a+R)(a+R+1)— N\, +pu~t(1) 2s,—2R—3
with o(B(1)) = {s. — R—3/2,0}. Thus, by Proposition 3.2, for all b € R, there exists
a unique smooth solution ¥;, € C*°((0,00)) to (B.1) with

(@), F.0) = (20~ o+ R 1+ A= 0oy T,

We can write
pU’ifl(l) - )‘m)

Vo =Wo+ed, @),0M) = (2-(a+ R+1) - T g

where ¢ is the unique solution to the homogeneous problem for (B.1) in (0, 00) with
the given initial values.

Step 3 (Matching). — Next, we claim that for R sufficiently large and for all m > 0, the
homogeneous problem for (B.1) with H = 0 has a unique C" solution ¥ = 0 on [0, 1].
Suppose otherwise i.e., there is R arbitrarily large and m > 0 such that there exists
WUy.m # 0 smooth in [0,1] such that (B.1) holds with H = 0 and ¥ = ¥, ,,,(p)Y (¢
is smooth at the origin. Extend uniquely the homogeneous solution ¥y, to [1,00).
Then, using the fixed point argument as in the proof of Lemma B.2 we infer

k+3

E sup po‘+R+j\8Z‘Ifg7m| < 00
j=0 pz1

and therefore, (¥, —(A + R)¥) € Dg where we recall the definition (6.17) of Dg and
(MX, X) = R(X, X).
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By dissipativity of Mfor X € D r proved in Step 1 of the proof of Proposition 6.4,
we infer for all X € Dy

(MX, X) < C(X,X)

for some C independent of R and this is a contradiction, so we have our claim. This
yields the uniqueness result.

Choose R sufficiently large so the claim holds. Since {p=™ 11, p ™ 1eho} is a
basis of solutions to the homogeneous problem in (0, 1), there exist A, B € R such
that

1;: p_"l_l(Awl + ng)

n (0,1). If A = 0, then ¢ € C>([0,1]), contradicting the claim above. Since
{p=™ 1apy, p~™ hahy} is a basis of solutions to the homogeneous problem in (0, 1),
there exist a, b € R such that

pimil\I/ayb = Elo.
Then,
~ a ~ aB
=T, 29 = —m—l(\ya a2 )
0 A¢ p b — a1 1 o
is smooth at p = 0 by the first equality and is smooth at p = 1 by the second equality.
Thus, we have the existence and uniqueness of a C1([0,00)) solution. Furthermore,

if H(p)Y ™) is smooth i.e., H = O,0(p™) and H™*+2k+1(0) = 0 for k € N5, then
it follows that W(m+2k+1)(0) = 0 for k € Nxq. Thus, ¥(p)Y “™ is smooth. O

Levma B.2. — For H such that H(p)Y (4™ € C2°(R3), let ¥ be the unique C* solution
to (B.1) found in Lemma B.1. Then for R sufficiently large, ¥(p)Y (&™) ¢ HF+1(R3).

Proof. — Using the fixed point argument, we prove the existence of C**! solution ¥
to (B.1) in {p = po} for po sufficiently large with sufficiently rapid decay as p — oo
so that W € H" '({p > po}). Then by uniqueness of solution, we argue that this
solution is indeed what we found in Lemma B.1.

Consider the homogeneous problem for (B.1) without the puP~! potential term:

(B.3) {(17p2)3§+[2p7172(04+R+1)p}8pf/\mp72f(oHrR)(oHrRJrl)} o =0

2:LR

in [1,00). A computation similar to Lemma 3.1 yields a pair of linearly independent
solutions

—a—R—1
= F ( ) [P
=r 2 2 2 27

a+R+m a+R-m—-11 _2)

a+R+m+1 a+R—-—m 3 72)
(B.4)

y 50 P

—a—R
2 =0 2h 2 2 2

with the Wronskian

W= </7/1<P2 - <,0/2<,01 x p*2|1 — p2|sch—3/2.
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Define the spaces

: k+1 197
Xpo = {w € ¥ ((po,00)) | Iullx,, i= Ti2 sup,,, 07400},
%2 k+1 < ;
Vo, = {w e O (p0,00)) | lwlly,, = 2575 sup,p, 0042050 .

We claim that for pg > 1, the resolvent map Tr : Y ,, — X, given by

P fer P fer
T = —T=——dr — ———d
R(f) @1/[)0 (1—r2)W T 802/po (1—r2)W T
is well-defined and bounded with Lr o T = id7p0. Note that
: h [T fe o [T fer
Tr(f :go(j)/ — LT dr — g / —T———dr
L ) ! 0 (1—-r)W 2 0 (1—-r2)W
j—2 j—i— i—i—
+]§:ai R )
2% - )W |

In view of (B.4) and the asymptotic expansion of the fundamental solutions, we infer

j—i—1 j—i—1
a[ @gj )802 — <ng )@1 o i—j—t

Then for all p > pg and 0 < j < k+ 1,

. . 14 P
PN TR()] S (p‘l / p? dp) sup r T2 f| 4+ ( / p‘?’dp) sup r* 2| f|
PO PO

2P0 2P0
j—2
+y o <p“2 sup 7’0‘+R+”2|3;f|> < oo llfll,, -
i=0 TZpo

Thus, Tg is a bounded map with operator norm || Tx|| < py? as claimed. Now, we solve
the fixed point problem:

(B.5) U = 101 + cop + Tr[H — ub ' V]

:GR(‘I’)

for ¢1, ¢o such that the U(pg), U'(pg) agree with the corresponding values of the unique
solution in Lemma B.1. Note that ¢1, p2 € X,,, H € C2°([0,00)). By Lemma A.1,
J(ub~1) = O(p~™?) as p — o0, so we infer

ey, <19,

and hence, H — w20 € Y,
Gr is a contraction map since for all ¥;, Uy € X

so indeed Gg : X,, — X ,,. For py sufficiently large,
pPo>
IGR(P1) = GR(¥2)lx, S ITrlluh™ (U1 = Wa)lly, < pg2l01 — P2, -

Thus, it follows from the Banach fixed point theorem that there exists a unique
U € X,, such that (B.5) holds. Taking R > s., X,, continuously embeds in
HM Y ({p = po}), so ¥ € H*({p > po}). Also, by uniqueness of solution to an ODE
at ordinary point, this is indeed the solution we found in Lemma B.1. O

JEP — M., 2024, lome 11



1536 J. Kiv

ApPENDIX C. BEHAVIOUR OF THE SOBOLEV NORM

In this section, we prove the asymptotic behaviors (1.7), (1.8) and (1.9) of the
Sobolev norms of the blow up solutions. In this section we denote by 7 the self-similar
time in order to distinguish from the Sobolev exponent s.

Proofof (1.7), (1.8), (1.9). Suppose that (®,®P;) is a blow up solution as in the
statement of Theorem 2. Then, the bootstrap bounds in Proposition 8.1 are satisfied
in the region 7 € [sg,00) in the self-similar time. In particular, from (8.23), we have
that

©0 [ (PR 0P dy <o, 0 <,
<eT
and from (8.10),
(02) / (|V4‘~II|2 + |V3Q|2) dy < 6_(60/2)7—,
RS

Recall the definition of dampened profile u2 and perturbation ¥ from Section 8.
From (8.23) with j = 0, we infer

1 ~ r
3|2 = H ‘I’( )‘
IRIZ2 (o)1) (T —t) \T —t)llL2(a/>1)
< / pReE(eTp)P WP dy < do,
ly|Ze™

where we have used that £(r) 2 r for r > 1 and that s. < n,. Similarly, setting j = 2
n (8.23),

2

2
1] H"‘ (Jz[>1) H ( —t)HH2(\w\>1)

: /| | P_Q(“‘Q)&(e”p)z"p“IA@IQ dy < do.
>eT

We interpolate the above two bounds and infer

(C.3) <dy, 0<s<2.

2

Step 1 (H®e Bound). — In view of the Gagliardo-Nirenberg inequality (see [10]), we in-
fer the H*¢ bound on ¥P:

1 r 2
7VSC‘IJD< )’ :/ VSC\IJD 2d
H(T—t)o‘ " T —t/llL2®s) R3| "dy
—0

4 1
< ([wromomepay) ([ preavria)
R3 R3

se=0+2(1-6), 6¢€(0,1).
Thus, from (8.23), we infer

[ v (7=l
(T —t)> " T—t)lle@s) ~ Jos

where

(C.4) |VEwP 2dy < dy.
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Also, note that for s < s,
2

1 r
(0.5) Haviu” - = e*?(scfs)ﬂ'/ |Vsun‘2 dy
(T —1) <T—’5) L2(Ja|<1) lyl<er

e’ 1
~ Cn,se_Q(Sc_S)T/ p2(sc—s)—ldp ~ Cns
1 T

From the above inequalities, together with (C.3) with s = s. we infer
[®]1%.. = en(l + 0rr(1))[log(T — t)].

Similarly for ®;. Hence, we infer (1.8).

Step 2 (Suberitical Bound). — Set j =0 in (C.1), we have the L? bound on :

2
< / 6250T<6TT>7230
L2(|z|<1) lz|<1
—[ R <d
ly|<eT
From this, together with (C.3), we infer

[ (7)

Interpolating with the critical norm (C.4) above, we have for 0 < s < s,

|77 )

Adding with the norm of the dampened profile (C.5), we infer

(=)

[ (7)

2

< do.
L2(R3)

2

< do.
L2(R%)

lim sup ||<I>Hi1 < 0.
—T
Similarly for ®,. Hence, we infer (1.7).

Step 3 (Supercritical Bound). — Since
/ V(= ) )Py S e 2075,
ly|>e™
it follows from (C.2) that
/ |V4\I/D|2dy < 67(60/2)7 + 672(4750)7'
R3 ~
We interpolate this with (C.4) and infer, for s, < s < 2,
MW < [ 19— )Py [ 90wP Py
ly|>e™ R3

58 6_2(S_SC)T Le T 5 (.

Similarly for 2. Hence, we infer (1.9).

s < S,

S = Sc.

2
dx

O
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AppeEnDIX D. LiPSCHITZ DEPENDENCE OF INITIAL DATA

Recall from Section 8 the definition of the projection operator P onto V the sub-
space of unstable directions under semigroup action of the maximally dissipative
operator M — P. In the proof of Proposition 8.1 and Corollary 7.3, it is proved that
for any small initial perturbation in the stable direction:

(I = P)X (s0) i < ™ /%)%,
there exists a choice of PX (sp) so that the solution is global in self-similar time with
[PX(s)|l < e”O/DOF/2s g > g,

In this section, we prove that the choice of PX(sg) is unique and is Lipschitz depen-
dent on (I — P)X(sg). In particular, we show that for any two global solutions X
and X, if the initial difference in the unstable direction is too big compared with the
initial differences in the stable direction, the unstable linear dynamics wins and expels
the differences of unstable parameters away from 0. Hence one of the two solutions
cannot blow up according to our scenario, yielding a contradiction. In particular,
we claim the following:

Leviva D.1. — Let us assume X and X are two global solutions as in Proposition 8.1
i.e., there hold the initial condition (8.5) and the bootstrap bounds (8.8), (8.10) for
s = sg. Denote by

X,=(I-P)X, X,=PX,

the stable and unstable part of the perturbation and similarly X,., Xs. Then, for
so > 1 sufficiently large,

(D.1) 1AXu(50)lls < €sol|AXs (50) 1

where AX, = Xy — Xu, NX, =X, — X,.

Proof

Step 1 (Difference of nonlinear term). — Recall (6.3) and define AG = G — G. Then,
AGg = —|U + up PN + ) + U+ un [P + uy) + pub P AY

1
= pAV (u],’l_1 — / Uy, + U + TAYPE dT).
0
We claim the following nonlinear bound: there exists ¢ > 0 such that
IAG ()l S e /2 AX (s) m

This is an analogue of (8.26) for the difference AX.
Let p > 1. Note that for m < k=3 <p—1,

1
(D2) / |Un+@+TA\I/|p_m_l dr 5 sup |un _i_ﬁ_;'_TA\I,‘p—m—l.
0 7€[0,1]
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Thus, using (8.8) and following the similar steps as in (8.29) we infer

L m
IVEAGa| S Y VAT Y pmm= et N TT(1V (u, + )| + [V AT))

J+e=k m=0 |8]=t ¢=1
L k
5 Z ‘VJA\M Z p(p—m—1)(—a+n)pm(—o<+fs)—£ 5 sz—lc—3/2|va\I,|7
j+e=k m=0 i=0

where in the last inequality, we have used that k < 1/2(p+1). Then for R > 1,
we infer

3
VEAGal?dy S / AV d
(D-3) /|y>R| °! ng wzr’ | S

S R AY|E, < RTHAXE,
where we have used the Hardy’s inequality. We now bound AGq in the region p < R.
We rewrite

1,1
NGgq = fp(pfl)A\I/// (U7 A |t +7" (TA+T AV P73 (wy +7 (VT AT)) drdr’.
0Jo
Note that for m < 3 <p—2,

1
/ [ty + 7' (U + 7AWV P2 47" < sup |uy, + 7(U + 7AW P72,
0

0<7<1

Thus, we infer from the assumption £ = 3 < p — 1 that

3
m=0
Then following the similar steps as in (8.31) by exploiting the algebra structure of the
Sobolev space H f’;“ we bound the nonlinear difference in the region 0 < p < R:

/ TGl dy < 18Galy,
Yl

<1

1
/ |, + T’(@JrTA\II)P”*m*Q dr’
0 Lo (R?)

3
< R (1912 + [T1) S (lunlZ + 121 + 130"

m=0

S RMIAXENXE + IX (R < RM e | AX I

for some M >0. Note that the final inequality follows from (8.10). Set R=¢?s/(1+M)
and add (8.30) with (8.31) so the claim (8.26) follows by choosing ¢ < 1/(1 + M).

Step 2 (Bound on initial perturbation). — Recall that in the decomposition
H=UaYV,

we have for all A € o(M — P)|y, that Re(A) > 0. Then, without loss of generality,
restrict to an irreducible subspace so that for Re(A) > 0, we write A := M — P as
in (7.1). Then, from Duhamel’s formula, (6.3) implies

e(sofs)AAXu(s) = AXu(s0) + / e(SofT)AAGu(T) dr — / e(sofT)AAGu(T) dr,

S0 S
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where G, = PG(s) and AG,, = G, — G,,. Also, from (D.3), we bound

e(SO*S)AAXu(S)—l—/ eCOTDANG, (7) dr

S

H

s — 89)™* . > —1_—Re T—S8
< O X + / (7 = 50)™ e RN | AG, | dT — 0,

since we have exponential decay of X, X from (8.10) and of G, G from (8.11). Thus,
for all s > sq,

JAX.(5)] = ]

/ eCTIANG, (1) dT

S

(D.4) a

g/ ||AGH(T)||HdT</ e~ AX (1) ||m dr-.

So S0
Now, consider the evolution in the stable subspace U where A is dissipative, so Corol-
lary 7.2 applies. Again, from Duhamel’s formula,

BX,(5) = VALK (s0) + [ VARG () dr

S0

so we bound for all s > sg:

IAXs(s)llm < [[AXs(s0)l|m +/ [AG ()l dr
S0

< AKX (s0) i + / e~/ AX (1) .

S0

Taking supremum over s,

o0
[AXs[lm e < [[AXs(s0)|lm + (IAXs][mze + ||AXu||H,Lg°)/ e (D qr

S0

S 18X (so)lla + 1AXu .z

where in the last inequality, we absorb the AX, on the right-hand side by taking a
large sg. Thus, from (D.4),

| AX |1, L </ e OIT(AX e + | AX L) dT

S0

S e R (|AX(so)llr + 1A Xl L) S 1AX(50) 5
Again absorb the A X, term by taking a large so. Thus, we infer (D.1). O
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