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ON SELF-SIMILAR BLOW UP FOR

THE ENERGY SUPERCRITICAL SEMILINEAR

WAVE EQUATION

by Jihoi Kim

Abstract. — We analyse the energy supercritical semilinear wave equation
Φtt −∆Φ− |Φ|p−1Φ = 0

in Rd space. We first prove in a suitable regime of parameters the existence of a countable family
of self-similar profiles which bifurcate from the soliton solution. We then prove the non-radial
finite codimensional stability of these profiles by adapting the functional setting of [22].

Résumé (Sur l’explosion auto-similaire pour l’équation d’onde semi-linéaire supercritique en
énergie)

Nous analysons l’équation d’onde semi-linéaire supercritique en énergie
Φtt −∆Φ− |Φ|p−1Φ = 0

dans l’espace Rd. Nous prouvons d’abord, dans un régime approprié de paramètres, l’existence
d’une famille dénombrable de profils auto-similaires qui bifurquent à partir de la solution du
soliton. Nous prouvons ensuite la stabilité non radiale en codimension finie de ces profils en
adaptant le cadre fonctionnel de [22].
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1. Introduction

1.1. Setting of the problem. — We consider the semi-linear focusing wave equation

(1.1)
{
Φtt −∆Φ− |Φ|p−1Φ = 0,

Φ
∣∣
t=0

= Φ0, ∂tΦ
∣∣
t=0

= Φ1,
(t, x) ∈ R× Rd.

This model admits a scaling invariance: if Φ(t, x) is a solution, then so is

Φλ(t, x) = λαΦ(λt, λx), λ > 0, α :=
2

p− 1
.

This transformation is an isometry on the homogeneous Sobolev space with critical
exponent:

(1.2) ∥Φλ(t, ·)∥Ḣsc = ∥Φ(t, ·)∥Ḣsc , sc :=
d

2
− 2

p− 1
.

In this paper, we focus on the energy super-critical case where space dimension d ⩾ 3

and sc > 1. The question we address is the existence and stability of self-similar blow
up regimes.

The problem of singularity formation in semi-linear dispersive equations has at-
tracted a considerable attention in the last fifty years both in the physics and math-
ematics communities, with a substantial acceleration in the last twenty years. The
series of works by Merle and Zaag [26, 25, 24, 23] give a detailed description of sin-
gularity formation mechanism in energy sub-critical ranges sc < 1 where the leading
order expected behaviour is the self-similar ODE blow up. In the energy critical range,
the situation is very different and new so called type II blow up scenario was discov-
ered in the setting of the energy-critical wave and Schrödinger map [16, 29, 28, 20]
and semi-linear problems [15]. The soliton solution∣∣∣∣∆Q+Qp = 0

lim|x|→+∞Q(x) = 0

plays a distinguished role in the analysis as it serves as blow up profile for the main
part of the singular bubble. The stability analysis of the obtained type II blow up
bubbles then relies on delicate energy estimates built on repulsivity properties of the
linearized self-similar flow near the soliton.

In the energy super-critical range, and in analogy with the pioneering results for
the non-linear heat equation [14, 19, 18, 6], the situation is quite different. Solitonic
type II bubbles still exist but only for p > pJL large enough, [21, 5] where Joseph-
Lundgren exponent pJL is defined in (3.2), and a new type of self-similar blow up
arises, different from the ODE blow up, as governed by explicit stationary self-similar
solutions. More explicitly, the ansatz

(1.3) Φ(t, r) = (T − t)−αu(ρ), ρ := |y|, y :=
x

T − t

maps (1.1) onto the radially symmetric non-linear ODE

(1.4) (1− ρ2)u′′ +
[d− 1

ρ
− 2(1 + α)ρ

]
u′ − α(1 + α)u+ |u|p−1u = 0.

J.É.P. — M., 2024, tome 11
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The program of existence of self-similar dynamics then becomes a two-step analysis.
First construct solutions to the non-linear ODE (1.4) with regularity at the origin
and good boundary condition at +∞

u(ρ) ∼ c

ρ2/(p−1)
as ρ −→ +∞.

These solutions however never belong to the energy space in which (1.1) is naturally
well posed, hence a global in space stability analysis is required to ensure that a
suitable truncation of these profiles can be stabilized, at least for a finite dimensional
manifold of initial data. This second step relies on both a linear and non-linear analysis
of the linearized flow around self-similar profiles.

Let us stress that the program of constructing self-similar solutions and showing
their finite codimensional stability goes way beyond the scope of non-linear wave
equations, and is in particular a very active field of research in fluid related problems,
[22], hence the need for robust analytic methods.

1.2. Existence of self-similar profiles. — The existence of self-similar profiles with
suitable boundary conditions is in general a delicate problem, and here we take advan-
tage of symmetry reductions to transform the problem into the non-linear ODE prob-
lem (1.4) which is of shooting type. However the understanding of solutions is non
trivial, and relies on the derivation of explicit monotonicity formulas to follow the
non-linear flow. The existence of a countable family of solutions to (1.4) is obtained
in [3, 8] in the expected range

(1.5) 1 < sc <
3

2
⇐⇒ 1 +

4

d− 2
< p < 1 +

4

d− 3
.

Our first result in this paper describes the asymptotic behaviour of the branch of
solutions to (1.4) leading to an explicit sequence of solutions that concentrate at
the origin to a soliton profile. Our approach generalizes the analogous result for the
semi-linear heat equation implemented in [2, 7]. The advantage of this method is its
robustness as it can be applied to more complicated problems, see e.g. [1], and also
allows for a full description of the profile in space.

Theorem 1 (Existence and asymptotes of excited self-similar solutions)
Assume (1.5). There exists N ∈ N such that for all n ⩾ N , there exists a smooth

radially symmetric self-similar solution to equation (1.1) such that for

Λ = α+ y · ∇,

Λun vanishes exactly n times on (0,∞). Moreover:
(i) Behaviour at infinity: as n→ ∞ the solutions un converge to the explicit singular

solution
u∞(ρ) := b∞ρ

−α, b∞ := (α(d− 2− α))α/2

to (1.4) in the following sense: for all ρ0 > 0,

lim
n→∞

sup
ρ⩾ρ0

(1 + ρα)|un(ρ)− u∞(ρ)| = 0.

J.É.P. — M., 2024, tome 11
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(ii) Behaviour at the origin: There exist 0 < ρ0 ≪ 1 and µn → 0 such that

lim
n→∞

sup
ρ⩽ρ0

∣∣un(ρ)− µ−α
n Q(ρ/µn)

∣∣ = 0,

where the soliton Q is the unique non trivial radially symmetric solution to

∆Q+Qp = 0, Q(ρ) = b∞ρ
−α + Oρ→∞(ρ1−d/2).

1.3. non-linear stability. — The non-linear stability of self-similar blow up is a
classical problem. It has been addressed for the energy super-critical non-linear heat
equation in [7] and the stability proof relies on a two-step argument: linear exponential
decay in time for local in space norms around the singularity which in the parabolic
case rely on self-adjoint spectral methods, and then propagation of space time decay
using energy estimates which provide strong enough control to close the non-linear
terms.

In the setting of energy super-critical non-linear wave equations, a non-self adjoint
spectral method is developed in the pioneering works by Donninger and Schörkhuber
for wave maps [9], see also [13] and references therein, but decay is restricted to
the light cone only |x| < T − t and hence does not allow the full control of the
solution. In [22], a full linear and non-linear analysis is performed for the stability
study of quasilinear self-similar blow up. Our claim in this paper is that this robust
framework can be adapted to (1.1) to show the stability of any self-similar profile,
modulo a finite number of unstable modes. We moreover claim that full non-radial
perturbations can be considered as opposed to previous works which restrict to data
with radial symmetries.

Theorem 2 (Non-linear stability). — Let d = 3 and un be the self-similar profiles
constructed in Theorem 1 with corresponding initial data (Φ(0),Φt(0)) = Pn for

(1.6) Pn :=
( 1

Tα
un(r/T ),

1

Tα+1
Λun(r/T )

)
.

For T ≪ 1, there exists a finite codimensional Lipschitz manifold of smooth initial
data(1) (Φ(0),Φt(0)) ∈

⋂
m⩾0H

m(R3,R2) such that in the neighbourhood of Pn, the
corresponding solution (Φ,Φt) to (1.1) develops a Type I blow up at time T at the
origin i.e., as t→ T ,

∥Φ(t)∥L∞ ∼ (T − t)−α.

More precisely, there holds the decomposition:

(Φ,Φt) =
( 1

(T − t)α
(un +Ψ)

(
t, r/(T − t)

)
,

1

(T − t)α+1
(Λun +Ω)

(
t, r/(T − t)

))
with the asymptotic behaviour in the limit t→ T : there exist cn, dn > 0 with

(1) Subcritical norms:

(1.7) lim sup
t→T

∥Φ∥2
Ḣs + 1s⩾1∥Φt∥2Ḣs−1 <∞ for 0 ⩽ s < sc,

(1)See comments on the results below for the precise definition of the Lipschitz manifold.

J.É.P. — M., 2024, tome 11
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(2) Critical norm:

(1.8) (∥Φ∥2
Ḣsc

, ∥Φt∥2Ḣsc−1) = (cn, dn)(1 + ot→T (1))|log(T − t)|,

(3) Supercritical norms:

(1.9) lim
t→T

∥Ψ∥2
Ḣs + ∥Ω∥2

Ḣs−1 = 0 for sc < s ⩽ 2.

Comments on the results

(1) Stability of the self-similar blow up. As in [22], a key step in the analysis is to
realize the linearized operator close to a self-similar profile as a compact perturbation
of a maximally dissipative operator in a global in space weighted Sobolev space with su-
percritical regularity. Using sufficient regularity and propagating additional weighted
energy estimates then allows to close bound for the nonlinear terms. Hence counting
the exact number of instability is reduced to an explicit spectral problem.

(2) Restriction on the parameters. The second restriction sc < 3/2 in (1.5) is
essential in the proof of Theorem 1. In particular it is used to ensure that the second
integrand in the definition of the resolvent map (3.12) is integrable (see (3.9)). Note
also that in Theorem 2, there is a further restriction on the parameters:

d = 3 ⇐⇒ p > 5.

This is due to the poor regularity of the nonlinearity. In particular, the nonlinearity
Φ 7→ |Φ|p−1Φ has C⌊p⌋ regularity for p /∈ 2N + 1. The role of this constraint is to
allow us to take k ⩽ ⌊p⌋− 1 derivatives when closing the nonlinear estimates. We are
only able to take one less derivative than the regularity of |Φ|p−1Φ since the Lipschitz
dependence of the nonlinear term on Φ in the weighted Hk space means we lose one
more power in the nonlinear term (see Lemma D.1). Furthermore, we require k ⩾ d/2

by Sobolev embedding which is what we use to bound the nonlinear term. Since (1.5)
implies that p− 1 ≪ 1 for large values of d, the codimensional stability result cannot
be generalized into higher dimensions. Also, note that the constraint p+1 > sc which
is implied by (1.5) is essential in the development of the local theory (see [12] for the
related well-posedness result).

(3) Manifold structure of the initial data. Let

BH
ε = {X | ∥X∥H < ε}, BHδ = {X | ∥X∥H < δ}

with ε, δ ≪ 1, where
H = H4 ×H3,

where the spaces Hk are defined in Section 2 and H is the weighted W k,∞-space
defined in the proof of Proposition 8.1. Consider the self-similar profile and the damp-
ened profile in self-similar variables:

(1.10) Pn = (un(ρ),Λun(ρ)), PDn = (η(e−s0ρ)un(ρ), η(e
−s0ρ)Λun(ρ)),

where η is a smooth, rapidly decaying function defined in (8.1). Profiles are dampened
to achieve finite energy. We then, construct the finite codimensional manifold of initial

J.É.P. — M., 2024, tome 11



1488 J. Kim

data in Theorem 2 as follows: consider a direct sum decomposition

H = U ⊕ V

into subspaces U and V stable and unstable under the semigroup action of the lin-
earized operator with dimV <∞. Then consider the Lipschitz map

Φ : BH
ε ∩ (BHδ + PDn − Pn) ∩ U −→ V

obtained by solving a Brouwer type fixed point problem and a linear map Ξ : V → U

on the finite dimensional space V such that

Id+Ξ : V −→ (BHδ + PDn − Pn).

Then, the finite codimensional manifold can be realized as

M = Pn +
(
Id+(Id+Ξ) ◦ Φ

) (
BH
ε ∩ (BHδ + PDn − Pn) ∩ U

)
⊂ H + PDn .

Note that the modifier Ξ is there to ensure that our initial data does not leave the
neighbourhood H+PDn which is essential in obtaining finite energy initial data. Also,
in Lemma D.1, it is proved that Φ is a Lipschitz map with respect to the topology
of H. Similar properties of the stable manifold are proved in [13], [7], [5].

Aknowledgements. — The author is indebted to his PhD supervisor P. Raphaël for
stimulating discussions and guidance on this work.

2. Notations

Let us introduce some notations before we start. We write for the generator of
scaling operator Λ:

Λ = α+ y · ∇, α :=
2

p− 1
.

We will denote by (t, x) the original variables and (s, y) for the self-similar variables:

s = − log(T − t), y =
x

T − t

and denote their modulus:
r = |x|, ρ = |y|.

For real-valued functions f and g, we write

f ∝ g

if there exists λ ∈ R such that f = λg.
Define the Japanese bracket

⟨·⟩ = (1 + | · |2)1/2.

We also write

∇j =

{
∆i j = 2i,

∇∆i j = 2i+ 1,

and for scalar (or vector) valued functions f , g on Rd,

(f, g) =

∫
Rd

f · g dy.

J.É.P. — M., 2024, tome 11
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Now fix d = 3. Let χ ∈ C∞
c (R3, [0,∞)) be a radial smooth cut-off function with

χ(y) =

{
1 |y| ⩽ 1,

0 |y| ⩾ 2.

For k ∈ N, denote by Hk the completion of C∞
c (R3) with respect to the norm induced

by the inner product

(Ψ, Ψ̃)Hk
= (∇kΨ,∇kΨ̃) +

∫
R3

χΨΨ̃dy.

3. Construction of exterior solutions

Our aim in this section is to construct a family of outer solutions to the self-similar
equation (1.4). The key is that the outer spectral problem, including the singularity
through the renormalized light cone ρ = 1, is explicit.

We introduce relevant notations for this section.

Linearized operator. — Recall the generator of scaling operator Λ:

Λ = α+ y · ∇.

Introduce the linearized operator

(3.1) L∞ = (1− ρ2)
d2

dρ2
+
[d− 1

ρ
− 2(1 + α)ρ

] d
dρ

− α(1 + α) + pα(d− 2− α)ρ−2

for (1.4) near the singular solution u = u∞ where we recall

u∞(ρ) = b∞ρ
−α, b∞ = (α(d− 2− α))α/2.

Also, let

ω =

√
pbp−1

∞ − (d− 2)2

4
.

Note that ω ∈ R if

(3.2) 1 +
4

d− 2
< p < pJL :=

∞ for d ⩽ 10,

1 +
4

d− 4− 2
√
d− 1

for d ⩾ 11,

with sufficient condition being 1 < sc < 3/2. pJL is known as the Joseph-Lundgren
exponent.

Hypergeometric functions. — We denote by 2F1 the Gauss hypergeometric functions:

(3.3) 2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

where (a)n = a(a+ 1) · · · (a+ n− 1).

J.É.P. — M., 2024, tome 11
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3.1. Fundamental solutions and exterior resolvent. — Recall the definition of lin-
earized operator L∞ above. In this section, we compute the fundamental solutions of
the linearized operator L∞ and use calculus of variation to invert L∞ in a suitable
space of functions.

Lemma 3.1 (Fundamental solutions of L∞). — Recall the definition (1.2) of sc.
(i) Interior solution: In the region ρ ∈ (0, 1), the homogeneous equation L∞(ψ) = 0

has a basis of solutions

(3.4)
ψL1 = Re

[
ρ1−(d)/2+iω

2F1

(1− sc + iω

2
,
2− sc + iω

2
, 1 + iω, ρ2

)]
,

ψL2 = Im
[
ρ1−(d)/2+iω

2F1

(1− sc + iω

2
,
2− sc + iω

2
, 1 + iω, ρ2

)]
.

(ii) Exterior solution: In the region ρ∈(1,∞), the homogeneous equation L∞(ψ)=0

has a basis of solutions

(3.5)
ψR1 = ρ−α−1

2F1

(2− sc − iω

2
,
2− sc + iω

2
,
3

2
, ρ−2

)
,

ψR2 = ρ−α 2F1

(1− sc − iω

2
,
1− sc + iω

2
,
1

2
, ρ−2

)
.

Proof. — For ρ ∈ (0, 1), consider solutions of the form ψ = ργ
∑∞
n=0 anρ

n for (an)∞n=0

bounded sequence in R with a0 ̸= 0 so the sum is absolutely convergent in (0, 1). Then

L∞(ψ) = [γ(γ + d− 2) + pbp−1
∞ ]a0ρ

γ−2 + [(γ + 1)(γ + d− 1) + pbp−1
∞ ]a1ρ

γ−1

+

∞∑
n=0

ργ+n
{[

(γ + n+ 2)(γ + n+ d) + pbp−1
∞
]
an+2

−
[
(γ + n)(γ + n+ 1 + 2α) + α(1 + α)

]
an

}
.

Equating first two terms to 0, we infer γ = 1−(d/2)± iω and a1 = 0. Equating higher
order terms to 0,

an+2 =
(γ + n+ α)(γ + n+ 1 + α)

(γ + n+ (d/2) + 1 + iω)(γ + n+ (d/2) + 1− iω)
an.

The cases γ = 1− (d/2) + iω and 1− (d/2)− iω give rise to complex conjugate solu-
tions. Thus, real and imaginary parts of the complex solution satisfying the recursion
relation above:

ρ1−(d)/2+iω
2F1

(1− sc + iω

2
,
2− sc + iω

2
, 1 + iω, ρ2

)
yield two linearly independent real solutions. In the region (1,∞), consider solutions
of the form ψ = ρ−γ

∑∞
n=0 anρ

−n and proceed as in the region (0, 1). □

We now investigate the regularity of the fundamental solutions at the singular
point ρ = 1. First, we recall some results on the singular ODEs.

J.É.P. — M., 2024, tome 11
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Proposition 3.2 (Solutions to singular ODEs, [31]). — Let f ∈ Cm([0, T ],Rn),
A ∈ Cm([0, T ],Rn×n) for an m ⩾ 1, m > maxλk∈σ(A(0)) Re(λk), where σ(M) denotes
the spectrum of a matrix M . Suppose we have 1 ⩽ ℓ ⩽ m such that

σ(A(0)) ∩ {ℓ, ℓ+ 1, · · · } = ∅

and vectors u(0)0 , · · · , u(ℓ−1)
0 ∈ Rn such that

(3.6) (kI −A(0))u
(k)
0 = f (k)(0) +

k−1∑
j=0

(
k

j

)
A(k−j)(0)u

(j)
0 , k = 0, · · · , ℓ− 1

holds, then there exists a unique solution u ∈ Cm([0, T ],Rn) of the problem

tu′(t) = A(t)u(t) + f(t), 0 < t ⩽ T, u(j)(0) = u
(j)
0 , j = 0, · · · , ℓ− 1.

Corollary 3.3. — There exists a unique ψ1 ∈ C1((0,∞)) solution to L∞(ψ) = 0

with ψ(1) = 1. Moreover, ψ1 is smooth.

Proof. — We write L∞(ψ) = 0 in the form required by Proposition 3.2, so for
(Ψ1,Ψ2) = (ψ, ∂ρψ), (ρ− 1)∂ρΨ1 = (ρ− 1)Ψ2,

(ρ− 1)∂ρΨ2 =
1

1 + ρ

[pα(d−2−α)
ρ2

− α(1 + α)
]
Ψ1 +

1

1 + ρ

[d−1

ρ
− 2(1 + α)ρ

]
Ψ2.

Hence, we can write for some constant c(α),

(ρ− 1)∂ρ

(
Ψ1

Ψ2

)
= A(ρ)

(
Ψ1

Ψ2

)
, A(0) =

(
0 0

c(α) sc − 3/2

)
for A smooth in (0,∞). Then since σ(A(1)) = {sc − 3/2, 0}, by Proposition 3.2
with the values ℓ = 1, f ≡ 0 and n = 2, we infer for a ∈ R, there exists a unique
ψa ∈ C1((0,∞)) solving L∞(ψa) = 0 with

(ψa(1), ψ
′
a(1)) = a

(
1, c(α)/(sc − 3/2)

)
and in fact, ψa ∈ C∞((0,∞)) so done by setting a = 1. □

For 0 < ρ0 < 1, define the spaces of functions on which we invert our linearized
operator L∞:

(3.7)

Xρ0 =
{
w : (ρ0,∞) → R

∣∣∣ ∥w∥Xρ0
:= sup

ρ0⩽ρ⩽1
ρ(d/2)−1|w|+ sup

ρ⩾1
ρα+1|w| <∞

}
,

Yρ0 =

{
w : (ρ0,∞) → R

∣∣∣
∥w∥Yρ0

:=

∫ 1

ρ0

ρd/2

|1− ρ|sc−1/2
|w|+

∫ ∞

1

ρ(d−1)/2

|1− ρ|sc−1/2
|w| <∞

}
.
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Proposition 3.4 (Exterior resolvent)
(i) Basis of fundamental solutions: There exists ψ2 given by

(3.8) ψ2 :=

{
c1ψ

L
1 if ρ ∈ (0, 1),

c2ψ
R
1 if ρ ∈ (1,∞),

for some ci ∈ R which is linearly independent of the smooth homogeneous solution ψ1

found in Corollary 3.3 and with the Wronskian given by

(3.9) W := ψ′
1ψ2 − ψ′

2ψ1 = ρ1−d|1− ρ2|sc−3/2.

The fundamental solutions have asymptotic behaviors:

(3.10) ψi ∝ ρ1−d/2 sin(ω log ρ+ δi)
[
1 + Oρ→0(ρ

2)
]

and

(3.11) ρ−1ψ1, ψ2, Λψ1 ∝ ρ−α−1
[
1 + Oρ→∞(ρ−1)

]
for some δi ∈ R.

(ii) Continuity of the resolvent: There exists a bounded linear operator T:Yρ0 →Xρ0

such that L∞ ◦ T = idYρ0
given by

(3.12) T(f) = −ψ1

∫ ∞

ρ

fψ2

(1− r2)W
dr − ψ2

∫ ρ

1

fψ1

(1− r2)W
dr

with ∥T∥L(Yρ0
,Xρ0

) ≲ 1 for all ρ0 ∈ (0, 1).

Proof
(i) Since L∞(ψLi ) = 0 and L∞(ψRi ) = 0, we have from the definition of the Wron-

skian that

(1− ρ2)W ′ +
[d− 1

ρ
− 2(1 + α)ρ

]
W = 0, ρ ∈ (0,∞)∖ {1}.

Then W ∝ ρ1−d|1 − ρ2|sc−3/2 in (0, 1). Also, in view of the asymptotic behavior of
the hypergeometric functions at ρ = 1 (see [27, §15.4(ii)]), ∂ρψL1 is singular. Then, ψL1
and ψ1 are linearly independent, so there exists c1 ∈ R such that (3.9) holds. Similarly,
W ∝ ρ1−d|1− ρ2|sc−3/2 in (1,∞) and ψR1 and ψ1 are linearly independent, so we can
choose c2 with (3.9). The asymptotic behaviors then follow from the definitions (3.4).

(ii) Integrals in (3.12) are well-defined since

ψ1 =

{
Oρ→1(1),

Oρ→∞(ρ−α),
ψ2 =

{
Oρ→1(1),

Oρ→∞(ρ−α−1),

1

(1− ρ2)W
=

{
Oρ→1(|ρ− 1|(1/2)−sc),
Oρ→∞(ρ2α),

(see [27, §15.4(ii)]). Using variation of constants,

w = ψ1

(
a1 −

∫ ∞

ρ

fψ2

(1− r2)W
dr

)
− ψ2

(
a2 +

∫ ρ

1

fψ1

(1− r2)W
dr

)
solves

L∞(w) = f.
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Since we require T : Yρ0 → Xρ0 , we choose a1 = 0. Since ψ′
2 = O(|ρ − 1|sc−3/2) as

ρ → 1 (see [27, §15.4(ii)]), by requiring T(f) to be differentiable at ρ = 1 we take
a2 = 0. It suffices to prove that T is bounded. For all ρ ⩾ 1,

ρ1+α|T(f)(ρ)| ≲ ρ1+α
(
|ψ1|

∫ ∞

ρ

∣∣∣ fψ2

(1− r2)W

∣∣∣ dr + |ψ2|
∫ ρ

1

∣∣∣ fψ1

(1− r2)W

∣∣∣ dr)
≲ sup

ρ⩾1

(
ρ

∫ ∞

ρ

r(d−3)/2(r−1)(1/2)−sc |f | dr+
∫ ρ

1

r(d−1)/2(r−1)(1/2)−sc |f | dr
)

≲ ∥f∥Yρ0
.

For all ρ such that ρ0 ⩽ ρ ⩽ 1,

ρ(d/2)−1|T(f)(ρ)|

≲ ρ(d/2)−1

(
|T(f)(1)|+ |ψ1|

∫ 1

ρ

∣∣∣∣ fψ2

(1− r2)W

∣∣∣∣dr + |ψ2|
∫ 1

ρ

∣∣∣∣ fψ1

(1− r2)W

∣∣∣∣dr)
≲ ∥f∥Yρ0

+ sup
ρ0⩽r⩽1

∫ 1

r

sd/2(s− 1)(1/2)−sc |f | ds ≲ ∥f∥Yρ0
,

where in the final inequality, we used ψi = O(ρ1−d/2) and 1/(1− ρ2)W = O(ρd−1) as
ρ→ 0. Thus, ∥T(f)∥Xρ0

≲ ∥f∥Yρ0
. □

3.2. Exterior solutions. — We now solve (1.4) in the exterior region ρ > ρ0 as
a fixed point problem involving L∞. We first prove a Lipschitz type bound on the
nonlinear term.

Lemma 3.5 (Non-linear bounds). — For w ∈ Xρ0 and ε > 0, define

(3.13) G[ψ1, ε]w = (ψ1 + w)2︸ ︷︷ ︸
:=A[ψ1]w

∫ 1

0

(1− s)(u∞ + sε(ψ1 + w))p−2 ds︸ ︷︷ ︸
:=B[ψ1,ε]w

.

Then for all ε≪ ρsc−1
0 and w1, w2 ∈ BXρ0

= {w ∈ Xρ0 | ∥w∥Xρ0
< 1},

(3.14)
∥G[ψ1, ε]w1∥Yρ0

≲ ρ1−sc0 ,

∥G[ψ1, ε]w1 −G[ψ1, ε]w2∥Yρ0
≲ ρ1−sc0 ∥w1 − w2∥Xρ0

.

Proof. — Note that for all ρ ⩾ 1,

|ψ1(ρ)|+ |w1(ρ)| ≲ |u∞(ρ)|.

Since ψ1 = O(ρ−α) as ρ→ ∞ and ε ≲ 1,

|G[ψ1, ε]w1(ρ)| ≲ (|ψ1|+ |w1|)2
[
|u∞|+ ε(|ψ1|+ |w1|)

]p−2

≲ |u∞|p ≲ ρ−α−2,

so ∫ ∞

1

ρ(d−1)/2|1− ρ|(1/2)−sc |G[ψ1, ε]w1| dρ ≲
∫ ∞

1

ρsc−5/2|1− ρ|(1/2)−sc dρ ≲ 1.

Note that since ψ1 = O(ρ1−d/2) as ρ→ 0, for all ρ0 ⩽ ρ ⩽ 1,

|ψ1(ρ)|+ |w1(ρ)| ≲ ρ1−d/2 ≲ ρ1−sc |u∞(ρ)|.
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Then since ε≪ ρsc−1
0 ,

|G[ψ1, ε]w1| ≲ ρ2−d{(1 + ερ1−sc)|u∞(ρ)|}p−2 ≲ ρα−d.

Then∫ 1

ρ0

ρd/2(1− ρ)(1/2)−sc |G[ψ1, ε]w1| dρ ≲
∫ 1

ρ0

ρ−sc(1− ρ)(1/2)−sc dρ ≲ ρ1−sc0 .

Hence, the first bound in (3.14) holds. For the contraction estimate, recall the defini-
tion of nonlinear functionals A and B in (3.13) and observe that

|G[ψ1, ε]w1 −G[ψ1, ε]w2| ⩽ |Aw1 −Aw2| |Bw1|+ |Aw2| |Bw1 −Bw2|

≲ |2ψ1 + w1 + w2| |w1 − w2|
[
|u∞|+ ε(|ψ1|+ |w1|)

]p−2

+ ε|w1 − w2|(ψ1 + w2)
2Iw1,w2

,

where

Iw1,w2 : =

∣∣∣∣ ∫ 1

0

ε−1∂wB[ψ1, ε]w
∣∣∣
w2+σ(w1−w2)

dσ

∣∣∣∣
≲

∣∣∣∣ ∫ 1

0

s(1− s)

∫ 1

0

(u∞ + sε(ψ1 + w2) + σsε(w1 − w2))
p−3 dσds

∣∣∣∣
≲
[
|u∞|+ ε(|ψ1|+ |w1|+ |w2|)

]p−3

≲ up−3
∞ ,

where the final inequality follows since ε≪ ρsc−1
0 . Then

|G[ψ1, ε]w1 −G[ψ1, ε]w2|

≲
[
(|ψ1|+ |w1|+ |w2|)|u∞|p−2 + ε(|ψ1|+ |w2|)2|u∞|p−3

]
|w1 − w2|.

Since ψ1 = O(ρ−α) as ρ→ ∞,∫ ∞

1

ρ(d−1)/2|1− ρ|(1/2)−sc |G[ψ1, ε]w1 −G[ψ1, ε]w2| dρ

≲
∫ ∞

1

ρsc−7/2|1− ρ|(1/2)−sc dρ ∥w1 − w2∥Xρ0
.

Since ψ1 = O(ρ1−d/2) as ρ→ 0, for all ρ such that ρ0 ⩽ ρ ⩽ 1,
|G[ψ1, ε]w1 −G[ψ1, ε]w2|

≲
(
ρ2(1−d/2)−α(p−2) + ερ3(1−d/2)−α(p−3)

)
sup

ρ0⩽r⩽1
r(d/2)−1|w1 − w2|

≲ ρα−d∥w1 − w2∥Xρ0
,

where the final inequality holds because ε≪ ρsc−1
0 . Thus,∫ 1

ρ0

ρd/2|1− ρ|(1/2)−sc |G[ψ1, ε]w1 −G[ψ1, ε]w2| dρ ≲ ρ1−sc0 ∥w1 − w2∥Xρ0
.

Hence, the second bound in (3.14) holds. □
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We are now in position to solve (1.4). We in particular, prove the existence of a
one-parameter family of smooth solutions in the region ρ > ρ0.

Proposition 3.6 (Exterior solutions). — For all 0 < ε≪ ρsc−1
0 , there exists a smooth

solution to (1.4) of the form

u = u∞ + ε(ψ1 + w)

with

(3.15) ∥w∥Xρ0
≲ ερ1−sc0 , ∥Λw∥Xρ0

≲ ερ1−sc0 .

Furthermore,
w|ε=0 = 0, ∥∂εw|ε=0∥Xρ0

≲ ρ1−sc0 .

Proof. — The function u = u∞ + εv > 0 solves (1.4) if and only if
L∞(v) = ε−1[up∞ + pup−1

∞ εv − (u∞ + εv)p]

= −p(p− 1)εv2
∫ 1

0

(1− s)(u∞ + sεv)p−2 ds.

We further decompose v = ψ1 + w. Since L∞(ψ1) = 0, it suffices to construct w
satisfying

(3.16) w = −p(p− 1)εT ◦G[ψ1, ε]w.

Lemma 3.5 together with Proposition 3.4 states precisely that for ε≪ ρsc−1
0 ,

−p(p− 1)εT ◦G[ψ1, ε] : BXρ0
−→ BXρ0

is a contraction map. From the Banach fixed point theorem, there exists a unique
solution w to (3.16) with ∥w∥Xρ0

≲ ερ1−sc0 . Clearly, w is smooth in (0,∞) ∖ {1}.
In view of (3.16), w ∈ C1((0,∞)) so u ∈ C1((0,∞)). Writing (1.4) in the form
required by Proposition 3.2, for (Ψ1,Ψ2) = (u, u′),(ρ− 1)∂ρΨ1 = (ρ− 1)Ψ2,

(ρ− 1)∂ρΨ2 = −α(α+ 1)

1 + ρ
Ψ1 +

1

1 + ρ

[d− 1

ρ
− 2(α+ 1)ρ

]
Ψ2 +

up

1 + ρ
.

Hence,

(ρ− 1)∂ρ

(
Ψ1

Ψ2

)
= A(ρ)

(
Ψ1

Ψ2

)
+

1

ρ+ 1

(
1

up

)
,

where A is smooth in (0,∞) and

A(1) =
1

2

(
0 0

−α(α+ 1) 2sc − 3

)
,

with σ(A(1)) = {sc − 3/2, 0}. By Proposition 3.2, since u ∈ C1((0,∞)), (u, u′) ∈
C1((0,∞)) so u ∈ C2((0,∞)). Iterating this, we conclude that u is smooth.

Applying Λ to (3.16), we infer

Λw = −p(p− 1)ε

[
(Λψ1)

∫ ∞

ρ

G[ψ1, ε](w)ψ2

(1− r2)W
dr − (Λψ2)

∫ ρ

1

G[ψ1, ε](w)ψ1

(1− r2)W
dr

]
.
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Hence, by considering the asymptotes of Λψi and proceeding as in the proof of Propo-
sition 3.4, we infer

∥Λw∥Xρ0
≲ ε∥G[ψ1, ε]w∥Yρ0

≲ ερ1−sc0 .

In view of (3.16), w|ε=0 = 0. Differentiating (3.16) in ε,

∂εw|ε=0 = −p(p− 1)
(
T ◦G[ψ1, 0]w|ε=0 + εT(∂εG[ψ1, ε]w)|ε=0

)
= −p(p− 1)T ◦G[ψ1, 0]w|ε=0 = −p(p− 1)

2
T(up−2

∞ ψ2
1),

so by continuity of the resolvent and the asymptotic behaviour of ψ1 as ρ → 0 and
ρ→ ∞,

∥∂εw|ε=0∥Xρ0
≲ ∥up−2

∞ ψ2
1∥Yρ0

≲
∫ 1

ρ0

ρ−sc |1− ρ|(1/2)−sc dρ+
∫ ∞

1

ρsc−5/2|1− ρ|(1/2)−sc dρ ≲ ρ1−sc0 . □

4. Construction of interior solutions

In this section, we construct inner solutions to the self-similar equation (1.4) which
are perturbations of a rescaled soliton. The steps are similar to that of the previous
section.

Let us first introduce some notations for this section.

Linearized operator. — Recall the definition of soliton solution

(4.1) ∆Q+Qp = 0, Q(ρ) = b∞ρ
−α + Oρ→∞(ρ1−d/2).

We let the linearized operator H∞ near

Qλ(ρ) := λ−αQ(ρ/λ), λ > 0.

for the profile equation (1.4) be

(4.2) H∞ = −∆− pQp−1 = − d2

dρ2
− d− 1

ρ

d

dρ
− pQp−1.

Lemma 4.1 (Fundamental solutions of H∞). — Recall from above the definition of the
soliton Q. We then have a basis of fundamental solutions

H∞(ΛQ) = 0, H∞φ = 0

with the following asymptotic behavior as ρ→ ∞:

(4.3) ΛQ, φ ∝ ρ1−d/2 sin(ω log ρ+ δ•) + O(ρ2−d+α)

for some δΛQ, δφ ∈ R. By scaling φ if necessary, we assume that the Wronskian is
given by

W := (ΛQ)′φ− φ′ΛQ = −ρ1−d.
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Proof. — Recall the definition of Qλ above. Then, for all λ > 0,

∆Qλ +Qpλ = 0

and differentiating with respect to λ and evaluating at λ = 1 yields H∞(ΛQ) = 0.
Let φ be another solution to H∞(φ) = 0 which does not depend linearly on ΛQ,
we aim at deriving the asymptotic of both ΛQ and φ as ρ→ ∞. We first solve

(4.4) −φ̃′′ − d− 1

ρ
φ̃′ − pbp−1

∞
ρ2

φ̃ = f.

The homogeneous problem admits the explicit basis of solutions

(4.5) φ1 = ρ1−d/2 sin(ω log ρ), φ2 = ρ1−d/2 cos(ω log ρ),

and the corresponding Wronskian is given by

W = φ′
1φ2 − φ′

2φ1 = ωρ1−d.

Using the variation of constants, the solutions to (4.4) are given by

φ̃(ρ) = φ1

(
a1 +

∫ ∞

ρ

fφ2
rd−1

ω
dr

)
+ φ2

(
a2 −

∫ ∞

ρ

fφ1
rd−1

ω
dr

)
.

Then, we rewrite the equation H∞(φ) = 0:

−φ′′ − 2

ρ
φ′ − pbp−1

∞
ρ2

φ = p
(
Qp−1 − bp−1

∞
ρ2

)
φ,

and hence

(4.6) φ = a1φ1 + a2φ2 + ϕ̃, ϕ̃ = G(ϕ̃)

where

G(ϕ̃)(ρ) = φ1

∫ ∞

ρ

p
(
Qp−1 − bp−1

∞
r2

)(
a1φ1 + a2φ2 + ϕ̃

)
φ2
rd−1

ω
dr

− φ2

∫ ∞

ρ

p
(
Qp−1 − bp−1

∞
r2

)(
a1φ1 + a2φ2 + ϕ̃

)
φ1
rd−1

ω
dr.

In view of the asymptotic behaviour (4.1) for Q, we infer for all ρ ⩾ 1,∣∣∣p(Qp−1 − bp−1
∞
ρ2

)∣∣∣ ≲ ρ−1−sc .

We infer for ρ ⩾ 1

|G(ϕ̃)(ρ)| ≲ ρ1−d/2
∫ ∞

ρ

(
r−sc + rα−1|ϕ̃|

)
dr ≲ ρ2−d+α + ρ1−d/2

∫ ∞

ρ

rα−1|ϕ̃|dr

and similarly,

|G(ϕ̃1)(ρ)− G(ϕ̃2)(ρ)| ≲ ρ1−d/2
∫ ∞

ρ

rα−1|ϕ̃1 − ϕ̃2|dr.

Thus, for R ⩾ 1 large enough, the Banach fixed point theorem applies and yields a
unique solution ϕ̃ to (4.6) in the space corresponding to the norm

sup
ρ⩾R

ρd−α−2|ϕ̃|.
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In particular, in view of the explicit formula (4.5) for φ1 and φ2, and in view of the
fact that H∞(ΛQ) = 0 and H∞(φ) = 0, we infer (4.3) □

For ρ1 ⩾ 1, we define the space of functions on which we invert our linearized
operator H∞:

(4.7)

X̃ρ1 =
{
w : (0, ρ1) → R

∣∣∣
∥w∥X̃ρ1

:= sup
0⩽ρ⩽ρ1

(1 + ρ)(d/2)−3(|w|+ ρ|w′|+ ρ2|w′′|) <∞
}
,

Ỹρ1 =
{
w : (0, ρ1) → R

∣∣∣ ∥w∥Ỹρ1
:= sup

0⩽ρ⩽ρ1
(1 + ρ)(d/2)−1|w| <∞

}
.

Proposition 4.2 (Interior resolvent). — There exists a bounded linear operator S :

Ỹρ1 → X̃ρ1 such that H∞ ◦ S = idỸρ1
given by

(4.8) S(f) = ΛQ

∫ ρ

0

fφrd−1 dr − φ

∫ ρ

0

fΛQrd−1 dr

with ∥S∥
L(Ỹρ1

,X̃ρ1
) ≲ 1 for all ρ1 ⩾ 1.

Proof. — We recall from the previous lemma that W = −ρ1−d. Let R0 > 0 be
sufficiently small so that ΛQ > 0 in [0, R0]. Then solving the Wronskian equation,
we assume without loss of generality that for φ,

φ = −ΛQ

∫ R0

ρ

dr

(ΛQ)2rd−1

on (0, R0] which ensures that as ρ→ 0,

(4.9) |φ| ≲ ρ2−d, |φ′| ≲ ρ1−d, |φ′′| ≲ ρ−d,

where we have used that Q and hence, ΛQ is a smooth radial function. Using the
variation of constants

w = ΛQ

(
a1 +

∫ ρ

0

fφrd−1dr

)
+ φ

(
a2 −

∫ ρ

0

fΛQrd−1dr

)
solves

H∞(w) = f.

In particular, S(f) corresponds to the choice a1 = a2 = 0. Finally, using the estimates
(4.3), (4.9), we estimate for 0 ⩽ ρ ⩽ 1:

|S(f)| =
∣∣∣∣ΛQ∫ ρ

0

fφrd−1dr − φ

∫ ρ

0

fΛQrd−1dr

∣∣∣∣
≲

(∫ ρ

0

rdr + ρ2−d
∫ ρ

0

rd−1dr

)
sup

0⩽ρ⩽1
|f | ≲ ∥f∥Ỹρ1

.
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Similarly, taking derivatives,

|ρS(f)′| = ρ

∣∣∣∣(ΛQ)′
∫ ρ

0

fφrd−1dr − φ′
∫ ρ

0

fΛQrd−1dr

∣∣∣∣
≲

(
ρ2
∫ ρ

0

rdr + ρ2−d
∫ ρ

0

rd−1dr

)
sup

0⩽r⩽1
|f | ≲ ∥f∥Ỹρ1

,

and

|ρ2S(f)′′| = ρ2
∣∣∣∣(ΛQ)′′

∫ ρ

0

fφrd−1 dr − φ′′
∫ ρ

0

fΛQrd−1 dr − f

∣∣∣∣
≲

(
ρ2
∫ ρ

0

r dr + ρ2−d
∫ ρ

0

rd−1 dr + ρ2
)

sup
0⩽ρ⩽1

|f | ≲ ∥f∥Ỹρ1
.

For 1 ⩽ ρ ⩽ ρ1,

(1 + ρ)(d/2)−3|S(f)| = (1 + ρ)(d/2)−3

∣∣∣∣ΛQ∫ ρ

0

fφrd−1dr − φ

∫ ρ

0

fΛQrd−1dr

∣∣∣∣
≲ (1 + ρ)−2

∫ ρ

0

(1 + r)d/2|f |dr

≲ (1 + ρ)−2

∫ ρ

0

(1 + r) dr sup
0⩽ρ⩽ρ1

(1 + ρ)(d/2)−1|f | ≲ ∥f∥Ỹρ1
.

Similarly, taking derivatives,

(1 + ρ)(d/2)−3|ρS(f)′| = (1 + ρ)(d/2)−3ρ

∣∣∣∣(ΛQ)′
∫ ρ

0

fφrd−1dr − φ′
∫ ρ

0

fΛQrd−1dr

∣∣∣∣
≲ (1 + ρ)−2

∫ ρ

0

(1 + r) dr sup
0⩽ρ⩽ρ1

(1 + ρ)(d/2)−1|f | ≲ ∥f∥Ỹρ1

and

(1 + ρ)(d/2)−3|ρ2S(f)′′| = (1 + ρ)(d/2)−3ρ2
∣∣∣∣(ΛQ)′′

∫ ρ

0

fφrd−1dr−φ′′
∫ ρ

0

fΛQrd−1dr−f
∣∣∣∣

≲ (1 + ρ)−2

∫ ρ

0

(1 + r)d/2|f | dr + (1 + ρ)(d/2)−1|f | ≲ ∥f∥Ỹρ1
.

Thus, ∥S(f)∥X̃ρ1
≲ ∥f∥Ỹρ1

. □

Lemma 4.3 (Non-linear bounds). — For w ∈ X̃ρ1 and λ > 0, define

(4.10) F [Q,λ]w = p(p− 1)λ2w2︸ ︷︷ ︸
:=Ã[λ]w

∫ 1

0

(1− s)(Q+ λ2sw)p−2 ds︸ ︷︷ ︸
:=B̃[Q,λ]w

−F(Q+ λ2w),

where
F = ρ2

d2

dρ2
+ 2(1 + α)ρ

d

dρ
+ α(1 + α).

Then there exists C > 0 such that for all ρ1λ≪ 1 and ∥w1∥X̃ρ1
, ∥w1∥X̃ρ1

⩽ C,

(4.11)
∥F [Q,λ]w1∥Ỹρ1

⩽ C∥S∥−1

L(Ỹρ1
,X̃ρ1

)
,

∥F [Q,λ]w1 − F [Q,λ]w2∥Ỹρ1
≲ ρ21λ

2∥w1 − w2∥X̃ρ1
.
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Proof. — We first bound F(Q). In view of (4.1),

ρ2Qp−1 = bp−1
∞ + Oρ→∞(ρ1−sc).

Then in view of (4.3), since Q′′ + d−1
ρ Q′ +Qp = 0, we infer

F(Q) = −ρ2Qp + (3− 2sc)ρQ
′ + α(1 + α)Q

= (bp−1
∞ − ρ2Qp−1)Q+ (3− 2sc)ΛQ = Oρ→∞(ρ1−d/2).

Note also that since sc > 1, we have that for all 0 ⩽ ρ ⩽ ρ1,

|w1(ρ)| ≲ (1 + ρ1)
3−d/2∥w1∥X̃ρ1

≲ (1 + ρ1)
2|Q(ρ)| ∥w1∥X̃ρ1

,

so by our choice of λ,
λ2|w1(ρ)| ≲ |Q(ρ)| ∥w1∥X̃ρ1

.

With these estimates, for all ρ such that 0 ⩽ ρ ⩽ ρ1,

|F [Q,λ]w1| ≲ λ2|w1|2
(
|Q|+ λ2|w1|

)p−2

+ |F(Q)|+ λ2|F(w1)|

≲ λ2(1 + ρ)6−d−α(p−2)
(
∥w1∥2X̃ρ1

+ ∥w1∥pX̃ρ1

)
+ (1 + ρ)1−d/2 +

λ2∥w1∥X̃ρ1

(1 + ρ)(d/2)−3

≲
[
ρ3−sc1 λ2

(
∥w1∥2X̃ρ1

+ ∥w1∥pX̃ρ1

)
+ 1 + ρ21λ

2
]
(1 + ρ)1−d/2

≲
[
1 + ρ21λ

2
(
1 + ∥w1∥pX̃ρ1

)]
(1 + ρ)1−d/2,

where we have used that sc > 1 in the last inequality. Choose C > 0 such that

|F [Q,λ]w1| ⩽
C

2
∥S∥−1

L(Ỹρ1
,X̃ρ1

)

[
1 + ρ21λ

2
(
∥w1∥X̃ρ1

+ ∥w1∥pX̃ρ1

)]
(1 + ρ)1−d/2.

Then for ρ1λ≪ 1 and ∥w1∥X̃ρ1
⩽ C,

∥F [Q,λ]w1∥Ỹρ1
⩽ C∥S∥−1

L(Ỹρ1 ,X̃ρ1 )
.

Hence, the first bound in (4.11) holds. For the second bound, we have

|F [Q,λ]w1 − F [Q,λ]w2|

⩽ |Ãw1 − Ãw2| |B̃w1|+ |Ãw2| |B̃w1 − B̃w2|+ λ2|F(w1 − w2)|

≲ λ2|w1 + w2| |w1 − w2|(|Q|+ λ2|w|)p−2 + λ4|w1 − w2| |w2|2Ĩw1,w2

+ λ2(1 + ρ)3−d/2∥w1 − w2∥X̃ρ1
,

where

Ĩw1,w2 :=

∣∣∣∣ ∫ 1

0

λ−2∂wB̃[Q,λ]w|w2+σ(w1−w2) dσ

∣∣∣∣
≲

∣∣∣∣ ∫ 1

0

s(1− s)

∫ 1

0

(Q+ sλ2w2 + σsλ2(w1 − w2))
p−3 dσds

∣∣∣∣
≲
[
|Q|+ λ2(|w1|+ |w2|)

]p−3

≲ (1 + ρ)−α(p−3).
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Thus,
|F [Q,λ]w1 − F [Q,λ]w2|

≲
[
λ2(1 + ρ)6−d−(p−2)α + λ4(1+ρ)9−(3d/2)−(p−3)α + λ2(1+ρ)3−d/2

]
∥w1−w2∥X̃ρ1

≲
(
ρ3−sc1 λ2 + ρ6−2sc

1 λ4 + ρ21λ
2
)
(1 + ρ)1−d/2∥w1 − w2∥X̃ρ1

≲ ρ21λ
2(1 + ρ)1−d/2∥w1 − w2∥X̃ρ1

,

where again, we have used that sc > 1. Hence the second bound in (4.11) holds. □

We prove the existence of a one-parameter family of smooth solutions to (1.4) in
the region ρ < ρ0.

Proposition 4.4 (Interior solutions). — For all ρ0, λ such that 0⩽ρ0≪1, 0<λ⩽ρ0,
there exists a solution to (1.4) on 0 ⩽ ρ ⩽ ρ0 of the form

u = λ−α(Q+ λ2w)(ρ/λ)

with ∥w∥X̃ρ1
≲ 1 where ρ1 = ρ0/λ ⩾ 1.

Proof. — u = λ−α(Q+ λ2w)(ρ/λ) solves (1.4) if and only if
(4.12) H∞(w) = λ−2

[
(Q+ λ2w)p −Qp − pQp−1λ2w

]
− F(Q+ λ2w) = F [Q,λ]w.

Lemma 4.3 together with Proposition 4.2 states precisely that for ρ1λ = ρ0 ≪ 1,
S ◦ F [Q,λ] : BX̃ρ1

(C) := {w ∈ X̃ρ1 | ∥w∥X̃ρ1
⩽ C} −→ BX̃ρ1

(C)

is a contraction map. Thus, Banach fixed point theorem applies and yields a unique
solution w to (4.12) with ∥w∥X̃ρ1

⩽ C. □

5. The matching

We are now in position to “glue” inner and outer solutions to produce exact solu-
tions to (1.1).

Proposition 5.1 (Existence of countably many smooth self-similar profiles)
There exists N ∈ N such that for all n ⩾ N , there exists a smooth solution un

to (1.1) such that Λun vanishes exactly n times.

Proof
Step 1 (Matching). — Recall that

(5.1)

ψ1 = c1ρ
1−d/2 sin(ω log ρ+ δ1) + Oρ→0(ρ

3−d/2),

Λψ1 = c1ρ
1−d/2

[
(1− sc) sin(ω log ρ+ δ1) + ω cos(ω log ρ+ δ1)

]
+ Oρ→0(ρ

3−d/2),

for some c1 ∈ R which is non-zero by definition (3.4). Then, we can choose ρ0 with
0 < ρ0 ≪ 1 such that

(5.2)
ψ1(ρ0) = c1ρ

1−d/2
0 + Oρ→0(ρ

3−d/2),

Λψ1(ρ0) = c1(1− sc)ρ
1−d/2
0 + Oρ→0(ρ

3−d/2),
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and Propositions 3.6 and 4.4 apply. In particular, let
uext[ε] = u∞ + εψ1 + εwext,

uint[λ] = λ−α(Q+ λ2wint)(ρ/λ),

be solutions to (1.4) in the regions [ρ0,∞) and [0, ρ0] respectively. Define

I[ρ0](ε, λ) = uext[ε](ρ0)− uint[λ](ρ0).

Then
∂εI[ρ0](ε, λ) = ∂εuext[ε](ρ0) = ψ1(ρ0) + wext(ρ0) + ε∂εw(ρ0).

In view of Proposition 3.6, since ψ1(ρ0) ̸= 0,

∂εI[ρ0](0, 0) = ψ1(ρ0) ̸= 0.

From the asymptotic behaviour of Q as ρ→ ∞, as λ→ 0,

(5.3)

∣∣λ−α(Q− u∞ + λ2wint)(ρ0/λ)
∣∣ ≲ λ−α

[
(ρ0/λ)

1−d/2 + λ2(ρ0/λ)
3−d/2]

≲ λsc−1ρ
1−d/2
0 (1 + ρ20) −→ 0.

Since uext[0] = u∞ is self-similar, this implies

I[ρ0](0, 0) = u∞(ρ0)− lim
λ→0

λ−αu∞(ρ0/λ) = 0.

Applying the implicit function theorem to

Ĩ(ε, µ) := I[ρ0](ε, µ
2/(sc−1)),

we have that if Ĩ is C1 in the neighbourhood of (0, 0), then there exist λ0 > 0 and
ε̃ ∈ C1([0, λ

(sc−1)/2
0 )) such that Ĩ(ε̃(µ), µ) = 0. Then, it suffices to check existence of

∂µĨ(ε, µ) at µ = 0. Indeed, from (5.3), we have

Ĩ(ε, µ) = uext[ε](ρ0)− uint[µ
2/(sc−1)](ρ0) = (εψ1 + εwext)(ρ0) + Oµ→0(µ

2),

so ∂µĨ(ε, 0) = 0 and we have the existence of ε̃. Then, for ε(λ) := ε̃(λ(sc−1)/2), we have
I[ρ0](ε(λ), λ) = 0 and ε ∈ Csc−1([0, λ0)). Hence,

uext[ε(λ)](ρ0) = uint[λ](ρ0)

on [0, λ0) i.e.,

(5.4) ε(λ)(ψ1(ρ0) + wext(ρ0)) = λ−α(Q− u∞ + λ2wint)(ρ0/λ).

By the definition of ρ0 and from the bounds on wext and wint in Propositions 3.6
and 4.4, we infer for some c ∈ R,

ε(λ)ρ
1−d/2
0

[
c+ O(ρ20 + ε(λ)ρsc−1

0 )
]
= ε(λ)(ψ1(ρ0) + wext(ρ0))

= λ−α(Q− u∞ + λ2wint)(ρ0/λ)

≲ λsc−1ρ
1−d/2
0

[
1 + O(ρ20)

]
as ρ0 → 0, so that, as λ→ 0,

|ε(λ)| ≲ λsc−1.
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It then follows from (5.4) and (3.15) that

(5.5) ε(λ) = ψ−1
1 (ρ0)λ

−α(Q− u∞)(ρ0/λ) + O
(
λsc−1(ρ20 + λsc−1ρ1−sc0 )

)
.

Consider now the spatial derivative

I′[ρ0](ε(λ), λ) = ε(λ)(ψ′
1(ρ0) + w′

ext(ρ0))− λ−1−α(Q′ − u′∞ + λ2w′
int)(ρ0/λ).

From the bound on ε(λ) above and the bound on w′
ext and w′

int in Propositions 3.6
and 4.4, we infer

I′[ρ0](ε(λ), λ)

= ε(λ)ψ′
1(ρ0)− λ−1−α(Q′ − u′∞)(ρ0/λ) + O

(
λsc−1(ρ

2−d/2
0 + λsc−1ρ1−d+α0 )

)
=

λsc−1

ρ
(d/2)−1
0 ψ1(ρ0)

[
(ρ0/λ)

(d/2)−1(Q− u∞)(ρ0/λ)ψ
′
1(ρ0)

− (ρ0/λ)
d/2(Q′ − u′∞)(ρ0/λ)

ψ1(ρ0)

ρ0

]
+ O

(
λsc−1(ρ

2−d/2
0 + λsc−1ρ1−d+α0 )

)
,

where in the final inequality we inject (5.5) for ε(λ). From the asymptotic behaviors
(5.1) for ψ1 and knowing that as ρ→ ∞:

(5.6)

(Q− u∞)(ρ) = c2ρ
1−d/2 sin(ω log ρ+ δ2) + O(ρ2−d+α),

(Q′ − u′∞)(ρ) = c2ρ
−d/2[(1− d/2) sin(ω log ρ+ δ2) + ω cos(ω log ρ+ δ2)

]
+ O(ρ1−d+α),

for some c2 ∈ R which is non-zero (see [17]), it follows that

ρ
(d/2)−1
0 ψ1(ρ0)

λsc−1
I′[ρ0](ε(λ), λ)

= c1c2 ωρ
−d/2
0

[
sin(ω log ρ0 − ω log λ+ δ2) cos(ω log ρ0 + δ1)

− cos(ω log ρ0 − ω log λ+ δ2) sin(ω log ρ0 + δ1)
]
+ O

(
ρ
2−d/2
0 + λsc−1ρ1−d+α0

)
= c1c2 ωρ

−d/2
0 sin(−ω log λ+ δ2 − δ1) + O

(
ρ
2−d/2
0 + λsc−1ρ1−d+α0

)
.

Thus,

(5.7) I′[ρ0](ε(λ), λ)

= c1c2 ωλ
sc−1

[ sin(−ω log λ+ δ2 − δ1)

ρd−1
0 ψ1(ρ0)

+ O
(
ρ
2−d/2
0 + λsc−1ρ1−d+α0

)]
.

Let

(5.8) λn,+ = exp
[−nπ + δ2 − δ1 + δ0

ω

]
, λn,− = exp

[−nπ + δ2 − δ1 − δ0
ω

]
.

Then, λn,± → 0 as n→ ∞ and

0 < · · · < λn,+ < λn,− < λn−1,+ < λn−1,− < · · · .
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Then,

I′[ρ0](ε(λn,±), λn,±) = ±(−1)nλsc−1
n,±

[
c1c2 ω

ρd−1
0 ψ1(ρ0)

sin δ0+O
(
ρ
2−d/2
0 +λsc−1

n,± ρ1−d+α0

)]
.

For ρ0 ≪ 1, and n≫ 1,

I′[ρ0](ε(λn,±), λn,−)I
′[ρ0](ε(λn,±), λn,+) < 0.

Since λ 7→ I′[ρ0](ε(λ), λ) is continuous, it follows from intermediate value theorem
that for all n ⩾ N ≫ 1, there exists λn,+ < µn < λn,− such that I′[ρ0](ε(µn), µn) = 0

i.e.,
uext[ε(µn)](ρ0) = uint[µn](ρ0), u′ext[ε(µn)](ρ0) = u′int[µn](ρ0).

Hence, the function

un(ρ) :=

{
uint[µn](ρ) 0 ⩽ ρ ⩽ ρ0,

uext[ε(µn)](ρ) ρ0 ⩽ ρ,

is a smooth solution to (1.4) in [0,∞) for all n ⩾ N .

Step 2 (Counting the zeros). — The remaining part of the proof is devoted to counting
the number of zeros of Λun. We first claim that for ρ0 ≪ 1,

(5.9) Λuext[ε] has as many zeros as Λψ1 on ρ ⩾ ρ0.

Indeed, Λψ1 + Λwext does not vanish on [R0,∞) for R0 large enough from (3.11)
and the uniform bound (3.15). Moreover, Λψ1(ρ0) ̸= 0 from the normalization (5.2),
and the absolute value of the derivative of Λψ1 at any of its zeros is uniformly lower
bounded using (3.10) and hence the uniform smallness (3.15) yields the claim.

We now claim that for ρ0 ≪ 1,

(5.10) Λuint[µn] has as many zeros as ΛQ on 0 ⩽ r ⩽
ρ0
µn
.

Indeed, recall that

Λuint[µn](ρ) = µ−α
n (ΛQ+ µ2

nΛwint)(ρ/µn).

We now claim

(5.11) (ρ0/µn)
(d/2)−1 |ΛQ(ρ0/µn)| ≳ 1.

Assume (5.11), then since the zeros of ΛQ are simple and since

∥Λwint∥X̃ ρ0
µn

= sup
0⩽ρ⩽ρ0/µn

(1 + ρ)(d/2)−3|Λwint| ≲ 1

so that
sup

0⩽ρ⩽ρ0/µn

(1 + ρ)(d/2)−1|µ2
nΛwint| ≲ ρ20,

and similarly for Λ2wint, and since

ΛQ(0) =
2

p− 1
̸= 0,

we conclude for ρ0 ≪ 1 that ΛQ+µ2
nΛwint has as many zeros as ΛQ on 0 ⩽ ρ ⩽ ρ0/µn.

We deduce that on 0 ⩽ ρ ⩽ ρ0, Λuint[µn] has as many zeros as ΛQ on 0 ⩽ ρ ⩽ ρ0/µn.
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Proof of (5.11). — Recall that

uext[ε(µn)](ρ0) = uint[µn](ρ0), uext[ε(µn)]
′(ρ0) = uint[µn]

′(ρ0),

which implies
Λuext[ε(µn)](ρ0) = Λuint[µn](ρ0).

This yields, using (5.5):
ε(µn)

µsc−1
n

=
1

ψ1(ρ0)µ
(d/2)−1
n

(Q− u∞)(ρ0/µn) +O
(
µsc−1
n ρsc−1

0 + ρ20
)

and taking Λ of (5.4):
ε(µn)

µsc−1
n

=
1

Λψ1(ρ0)µ
(d/2)−1
n

ΛQ(ρ0/µn) +O
(
µsc−1
n ρsc−1

0 + ρ20
)
.

We infer
1

ψ1(ρ0)µ
(d/2)−1
n

(Q−u∞)(ρ0/µn) =
1

Λψ1(ρ0)µ
(d/2)−1
n

ΛQ(ρ0/µn)+O
(
µsc−1
n ρsc−1

0 +ρ20
)
.

In view of the asymptotics (5.2) of ψ1, we infer

(5.12)
∣∣∣(ρ0/µn)(d/2)−1(Q− u∞)(ρ0/µn)

∣∣∣
⩽

2

sc − 1

∣∣∣(ρ0/µn)(d/2)−1ΛQ(ρ0/µn)
∣∣∣+O

(
µsc−1
n + ρ20

)
.

On the other hand, from (5.6),

(5.13)

ΛQ(ρ) =
c2

ρ(d/2)−1

[
(1− sc) sin(ω log ρ+ δ2) + ω cos(ω log ρ+ δ2)

]
+ Oρ→∞(ρ2−d+α)

=
c2
√
(sc − 1)2 + ω2

ρ(d/2)−1
sin(ω log ρ+ δ2 + α0) + Oρ→∞(ρ2−d+α),

where

cos(α0) =
1− sc√

(sc − 1)2 + ω2
, sin(α0) =

ω√
(sc − 1)2 + ω2

, α0 ∈ (π/2, π).

Thus, in view of (5.6) and (5.13), there exist ρ2 > 0 sufficiently small and a constant
δ > 0 sufficiently small only depending on ω and sc − 1 such that for 0 < ρ < ρ2,
we have

dist
(
ω log ρ+ δ2 + α0, πZ

)
< δ

=⇒ ρ(d/2)−1|Q(ρ)− u∞(ρ)| ⩾ 4

sc − 1
ρ(d/2)−1|ΛQ(ρ)|+ c1 sin(α0)

2
.

In view of (5.12), we infer for n ⩾ n0 large enough

(5.14) dist (ω log(ρ0/µn) + δ2 + α0, πZ) ⩾ δ,

and (5.11) is proved.
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Combining the two claims proved above, we infer

#
{
ρ ⩾ 0

∣∣∣ Λun(ρ) = 0
}
= #

{
0 ⩽ ρ ⩽

ρ0
µn

∣∣∣ ΛQ(ρ) = 0
}
+#

{
ρ > ρ0

∣∣∣ Λψ1(ρ) = 0
}
,

which implies

#{ρ ⩾ 0 | Λun+1(ρ) = 0} = #{ρ ⩾ 0 | Λun(ρ) = 0}+#An,

with
An :=

{ ρ0
µn

< ρ ⩽
ρ0
µn+1

∣∣∣ ΛQ(r) = 0
}
.

We claim for n ⩾ n1 large enough:

(5.15) #An = 1

which by possibly shifting the numeration by a fixed amount ensures that Λun vanishes
exactly k times.

Upper bound. — We first claim

(5.16) #An ⩽ 1

Recall (5.13) so that there exists R ⩾ 1 large enough such that{
ρ ⩾ R

∣∣∣ ΛQ(ρ) = 0
}
=
{
rq
∣∣ q ⩾ q1

}
, ω log(rq) + δ2 + α0 = qπ + Orq→∞(r1−scq )

and hence, together with (5.14), we infer

(5.17) inf
q⩾q1,n⩾n1

|log(ρ0/µn)− log(rq)| ⩾
δ

2ω
.

This implies for n ⩾ n1

(5.18) An ⊂
{
q ⩾ q1

∣∣ log(ρ0/µn) + δ/2ω ⩽ log(rq) ⩽ log (ρ0/µn+1)− δ/2ω
}
.

Since λn,+ < µn < λn,− with λn,± given by (5.8), we have for k ⩾ k1

log (ρ0/µn+1)−
δ

2ω
−
(
log(ρ0/µn) +

δ

2ω

)
= log(µn)− log(µn+1)−

δ

ω

⩽ log(λn,−)− log(λn+1,+)−
δ

ω
⩽
π + 2δ0 − δ

ω
.

Also, we have for q ⩾ q1

log(rq+1)− log(rq) =
π

ω
+ Orq→∞(r1−scq ).

We now choose δ0 such that

(5.19) 0 < δ0 <
δ

4
.

Then, we infer for n ⩾ n1 and q ⩾ q1,

log (ρ0/µn+1)−
δ

2ω
−
(
log(ρ0/µn) +

δ

2ω

)
⩽
π

ω
− δ

2ω
< log(rq+1)− log(rq),

which, in view of (5.18), implies (5.16).

J.É.P. — M., 2024, tome 11



On self-similar blow up for the energy supercritical semilinear wave equation 1507

Lower bound. — We now prove (5.15) and assume for a contradiction: #An2
= 0.

Then, let q2 ⩾ q1 be such that

rq2 <
ρ0
µn2

<
ρ0

µn2+1
< rq2+1.

We infer from (5.17):

(5.20) log(rq2) ⩽ log (ρ0/µn2
)− δ

2ω
< log (ρ0/µn2+1) +

δ

2ω
⩽ log(rq2+1).

However, we have for n2 ⩾ n1 and q2 ⩾ q1,

log (ρ0/µn2+1) +
δ

2ω
−
(
log (ρ0/µn2)−

δ

2ω

)
= log(µn2)− log(µn2+1) +

δ

ω

⩾ log(λn2,−)− log(λn2+1,+) +
δ

ω
⩾
π − 2δ0 + δ

ω
⩾
π

ω
+

δ

2ω
> log(rq2+1)− log(rq2),

which contradicts (5.20). This concludes the proof of Proposition 5.1. □

Corollary 5.2. — Let un be the solution to (1.4) constructed in Proposition 5.1. For
ρ0 ≪ 1, the following holds.

(i) Convergence to u∞ as n→ ∞:

(5.21) lim
n→∞

sup
ρ⩾ρ0

(1 + ρα)|un(ρ)− u∞(ρ)| = 0.

(ii) Convergence to Q at the origin: there exists µn → 0 such that

(5.22) lim
n→∞

sup
ρ⩽ρ0

∣∣un(ρ)− µ−α
n Q(ρ/µn)

∣∣ = 0.

(iii) Last zeros: let

ρ0,n := max
{
ρ
∣∣ Λun(ρ) = 0, ρ < ρ0

}
, ρΛQ,n := max

{
ρ
∣∣ ΛQ(ρ) = 0, ρ < ρ0/µn

}
.

Then
ρ0,n = µnρΛQ,n

[
1 + Oρ0→0(ρ

2
0)
]
.

Furthermore, for n ⩾ N ,
e−2π/ωρ0 < ρ0,n < ρ0.

Proof. — Choose ρ0 ≪ 1 as in the proof of Proposition 5.1.
(i) In view of (5.1) and (3.15), we infer
sup
ρ⩾ρ0

(1 + ρα)|un(ρ)− u∞(ρ)| = sup
ρ⩾ρ0

(1 + ρα)|ε(µn)(ψ1(ρ) + wext(ρ))|

≲ ε(µn)
[

sup
ρ0⩽ρ⩽1

(|ψ1(ρ)|+ |wext(ρ)|) + sup
ρ⩾1

ρα(|ψ1(ρ)|+ |wext(ρ)|)
]

≲ ε(µn)ρ
1−d/2
0 .

Since ε(µn) → 0 as n→ ∞, result follows.
(ii) In view of Proposition 4.4, we infer

sup
ρ⩽ρ0

∣∣un(ρ)− µ−α
n Q(ρ/µn)

∣∣ ⩽ µ2−α
n sup

ρ⩽ρ0

∣∣wint(ρ/µn)
∣∣ ≲ µsc−1

n .

Since µn → 0 as n→ ∞, result follows.
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(iii) In view of (4.3),

ΛQ
(
e−3π/2ωρ0/µn

)
ΛQ(ρ0/µn) < 0,

so by intermediate value theorem, there exists a zero of ΛQ in the interval
[e−3π/2ωρ0/µn, ρ0/µn). In particular,

(5.23) e−3π/2ω ρ0
µn

⩽ ρΛQ,n ⩽
ρ0
µn
.

Also, if
e−2π/ωρ0 ⩽ ρ ⩽ ρ0,

then ρ/µn ≫ 1 for n ⩾ N ≫ 1. Thus, from (4.3) and Proposition 4.4 since

sup
0⩽ρ⩽ρ0/µn

(1 + ρ)(d/2)−3|Λwint| ≲ 1,

it follows that
Λun(ρ) = µ−α

n (ΛQ+ µ2
nΛwint)(ρ/µn)

∝ µsc−1
n ρ1−d/2

[
sin(ω log ρ− ω logµn + δ2) + Oρ→0(ρ

2
0)
]
.

Thus, ∣∣∣ω log ρ0,n − ω logµn − ω log ρΛQ,n

∣∣∣ ≲ ρ20.

Hence,
ρ0,n = µnρΛQ,ne

O(ρ20) = µnρΛQ,n

[
1 + Oρ0→0(ρ

2
0)
]
.

Furthermore, since (5.23) holds, we deduce

e−2π/ωρ0 < ρ0,n < ρ0. □

Remark 1. — The statements of Proposition 5.1 and Corollary 5.2 yield Theorem 1.

6. Dissipativity of linearized operator

We now start the study of the dynamical stability of self-similar profiles. Our
aim in this section is to realize the linearized operator as a compact perturbation
of a maximal accretive operator in a global in space Sobolev norm. From now on,
we assume d = 3.

Linearized wave equation. — Recall from Section 2 the definition of similarity trans-
formation variables:

(6.1) Ψ̃(s, y) = (T − t)αΦ(t, x), s = − log(T − t), y =
x

T − t
.

which maps the wave equation (1.1) onto

(6.2) ∂2s Ψ̃ = −2y · ∇∂sΨ̃− (1 + 2α)∂sΨ̃

+
∑
i,j

(δij − yiyj)∂yi∂yj Ψ̃− 2(1 + α)y · ∇Ψ̃− α(1 + α)Ψ̃ + |Ψ̃|p−1Ψ̃.

We write the above as a system of linearized equations near un. For the perturbations:

Ψ = Ψ̃− un, Ω = −∂sΨ− ΛΨ,
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we have

(6.3) ∂sX = MX +G, X =

(
Ψ

Ω

)
, G =

(
0

−|Ψ̃|p−1Ψ̃ + upn + pup−1
n Ψ

)
,

where

(6.4) M = −
(

Λ 1

∆+ pup−1
n Λ + 1

)
.

From now on, we write
(6.5) Ψj = ∇jΨ, Ωj = ∇jΩ,

where
∇j =

{
∆i j = 2i,

∇∆i j = 2i+ 1.

Lemma 6.1 (Commuting with derivatives). — For k ∈ N, there holds
∇kMX = Mk∇kX + M̃kX,

where

(6.6) Mk = −
(
Λ + k 1

∆ Λ + k + 1

)
,

and M̃k satisfies the pointwise bound

(6.7) |M̃kX| ≲k

(
0∑k

j=0⟨ρ⟩−2+j−k|∇jΨ|

)
.

Proof. — Direct computation yields the following formulas

[∇k, V ] =
∑
j⩽k−1

cj∇k−jV∇j , [∇k,Λ] = k∇k.

Hence, by Lemma A.1, since ∂kρ (up−1
n ) = O(ρ−2−k) as ρ→ ∞ for all k,

∇k(∆ + pup−1
n )Ψ = ∆Ψk + O

( k∑
j=0

⟨ρ⟩−2+j−k|∇jΨ|
)

and
∇kΛΩ = (Λ + k)Ωk, ∇k(Λ + 1)Ω = (Λ + k + 1)Ωk. □

6.1. Subcoercivity. — Let us introduce some notations. First, recall the definition
of Hk from Section 2.

Weighted L2-space. — We also define for γ > 0, the weighted L2-space L2
γ as the

completion of C∞
c (R3) with respect to the norm induced by the inner product

(Ψ, Ψ̃)L2
γ
=

∫
R3

ΨΨ̃⟨ρ⟩−2γ dy

where ⟨·⟩ denotes the Japanese bracket. We write ∥Ψ∥2L2
γ
= (Ψ,Ψ)L2

γ
.

Lemma 6.2. — Recall the notations for the spaces Hk and L2
k+2 above. Then for all

k ∈ N, the embedding ι : Hk+1 ↪→ L2
k+2 is compact.
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Proof. — An improved Hardy’s inequality (see [4]) states that for all α ∈ 2Z and
f ∈ C∞

c (R3 ∖B1(0)), ∫
R3

|f |2

|y|2+α
dy ≲

∫
R3

|∇f |2

|y|α
dy.

Also an improved Hardy-Rellich inequality (see [4]) states that for all β ∈ 2Z and
f ∈ C∞

c (R3 ∖B1(0)) ∫
R3

|f |2

|y|4+β
dy ≲

∫
R3

|∆f |2

|y|β
dy.

By repeatedly applying these inequalities, starting with f = (1− χ)Ψ for the cut-off
function χ defined in Section 2, we infer for all Ψ ∈ C∞

c (R3),

∥Ψ∥L2
k+1(R3∖B1(0)) ≲

∫
R3

|(1− χ)Ψ|2

|y|2(k+1)
dy ≲

∫
R3

|∆((1− χ)Ψ)|2

|y|2(k−1)
dy

≲ · · · ≲
∫
R3

|∇k((1− χ)Ψ)|2

|y|2
dy ≲

∫
R3

|∇k+1((1− χ)Ψ)|2 dy ≲ ∥Ψ∥2Hk+1
.

By density, above inequality holds also for all Ψ ∈ Hk+1. On the other hand, by
Rellich-Kondrachov theorem, the embedding

ι : Hk+1 ↪−→ L2
loc(R3) := {Ψ|χΨ ∈ L2(R3) for all χ ∈ C∞

c (R3)}

is compact. Combining the two and using smallness of ⟨ρ⟩−2 for large ρ, the result
follows. □

Lemma 6.3 (Subcoercivity estimate). — For all k ⩾ 0, there exists µn > 0 with
limn→∞ µn = ∞ and (Πi)

n
i=1 ∈ Hk+1, cn > 0 such that for all Ψ ∈ Hk+1,

(6.8) ∥Ψ∥2Hk+1
⩾ µn

k∑
j=0

∫
R3

|∇jΨ|2⟨ρ⟩−2(k+2−j) dy − cn

n∑
i=1

(Ψ,Πi)
2
L2

k+2
.

Proof. — Given T ∈ L2
k+2, the antilinear map h 7→ (T, h)k+2 is continuous on Hk+1

since
(h, h)L2

k+2
≲ (h, h)Hk+1

by Lemma 6.2. By Riesz, there exists a unique L(T ) ∈ Hk+1 such that

(6.9) ∀h ∈ Hk+1, (L(T ), h)Hk+1
= (T, h)L2

k+2

and by setting h = L(T ), we infer that L : L2
k+2 → Hk+1 is a bounded linear map.

By Lemma 6.2, the map ι ◦L : L2
k+2 → L2

k+2 is compact. If Ψi = L(Ti), i = 1, 2, then

(L(T1), T2)L2
k+2

= (Ψ1, T2)L2
k+2

= (Ψ1, L(T2))Hk+1
= (Ψ1,Ψ2)Hk+1

.

Similarly,
(T1, L(T2))L2

k+2
= (Ψ1,Ψ2)Hk+1

= (L(T1), T2)L2
k+2

,

i.e., L is self-adjoint on L2
k+2. Since (6.9) implies that L is a positive operator, there

exists an L2
k+2-orthonormal eigenbasis (Πn,i)1⩽i⩽I(n) of L with positive eigenvalues

λn → 0. The eigenvalue equation implies Πn,i ∈ Hk+1. Let

An =
{
Ψ ∈ Hk+1

∣∣∣ (Ψ,Ψ)L2
k+2

= 1, (Ψ,Πj,i)L2
k+2

= 0, 1 ⩽ i ⩽ I(j), 1 ⩽ j ⩽ n
}
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and consider the minimization problem
In = inf

Ψ∈An

(Ψ,Ψ)Hk+1
,

whose infimum is attained at some Ψ ∈ An since the embedding ι : Hk+1 ↪→ L2
k+2 is

compact. Also, by a standard Lagrange multiplier argument,

∀h ∈ Hk+1, (Ψ, h)Hk+1
=

n∑
j=1

I(j)∑
i=1

βi,j(Πj,i, h)L2
k+2

+ β(Ψ, h)L2
k+2

.

Set h = Πj,i and since Πj,i is an eigenvector of L, we infer βi,j = 0 and in view of (6.9),
L(Ψ) = β−1Ψ. Together with the orthogonality conditions, β−1 ⩽ λn+1. Hence

(6.10) In = (Ψ,Ψ)Hk+1
= β(Ψ,Ψ)L2

k+2
⩾

1

λn+1
.

For all ε > 0, k ⩾ 1, from Gagliardo-Nirenberg interpolation inequality with weight
(see [10]) together with Young’s inequality, we infer
k∑
j=0

∫
R3

|∇jΨ|2⟨ρ⟩−2(k+2)(k+1−j)/(k+1) dy

⩽ ε

∫
R3

|∇k+1Ψ|2 dy + cε,k

∫
R3

|Ψ|2⟨ρ⟩−2(k+2) dy.

Together with (6.10), we have that for all Ψ satisfying orthogonality condition of An,
k∑
j=0

∫
R3

|∇jΨ|2⟨ρ⟩−2(k+2−j) dy ⩽ (ε+ cε,kλn+1)∥Ψ∥2Hk+1
.

Since λn → 0, there exists a choice of εn → 0 such that εn + cεn,kλn+1 → 0 and this
yields (6.8). □

6.2. Dissipativity. — We now turn to the fundamental dissipativity property. Let us
introduce some notations.

Sobolev space. — Recall (6.5) and the definition of Hk from Section 2. Let
(6.11) Hk := Hk+1 ×Hk

with the inner product:

(6.12) ⟨X, X̃⟩ = (Ψk+1, Ψ̃k+1) + (Ωk, Ω̃k)︸ ︷︷ ︸
:=⟨X,X̃⟩1

+

∫
R3

χ(ΨΨ̃ + ΩΩ̃) dy︸ ︷︷ ︸
:=⟨X,X̃⟩2

for
X =

(
Ψ

Ω

)
, X̃ =

(
Ψ̃

Ω̃

)
.

Further, we define the domain of M

D(M) = {X ∈ Hk |MX ∈ Hk},

which is a Banach space equipped with the graph norm

∥X∥D(M) = ∥X∥Hk
+ ∥MX∥Hk

.
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Spherical harmonics. — Denote by ∆Sd−1 the Laplace-Beltrami operator defined on
the unit sphere Sd−1. Then we can write

(6.13) ∆ =
∂2

∂ρ2
+
d− 1

ρ

∂

∂ρ
+

1

ρ2
∆Sd−1 =: L+ ρ−2∆Sd−1 .

Denote by Y (ℓ,m) the orthonormal ∆Sd−1-eigenbasis (e.g. spherical harmonics if d = 3)
of L2(Sd−1) with discrete eigenvalues

(6.14) −λm = −m(m+ d− 2)

for m ⩾ 0. We fix d = 3 and define the space of test functions

D =
{
X =

∑
ℓ,mXℓ,m(ρ)Y (ℓ,m) ∈ C∞

c (R3,R2) is a finite sum
}
.

Note then, that D is dense in Hk.

Proposition 6.4 (Maximal dissipativity). — For all k ⩾ 3, there exist ck > 0 and
(Xi)1⩽i⩽N ∈ Hk such that for the finite rank projection operator

P =

N∑
i=1

⟨·, Xi⟩Xi,

the modified operator
M̃ = M− P

is dissipative:

(6.15) ∀X ∈ D(M), ⟨−M̃X,X⟩ ⩾ ck⟨X,X⟩

and is maximal:

(6.16) ∀R > 0, F ∈ Hk, ∃X ∈ D(M) such that (−M̃+R)X = F.

Proof
Step 1 (Dissipativity on dense subset). — We claim that the bound (6.15) for func-
tions in

(6.17) DR =
{
X ∈ C∞(R3,R2)

∣∣∑k+1
m=0 supR3 ρα+R+m

(
|∇mΨ|+ 1m⩾1|∇m−1Ω|

)
<∞

}
,

where R > 0 is chosen sufficiently large so integrating by parts is justified. Integrate
by parts the principal part of the inner product defined in (6.12):

⟨−MX,X⟩1 = (∇k+2(MX)Ψ,Ψk)− (∇k(MX)Ω,Ωk)

=

∫
R3

[
∇((Λ + k)Ψk +Ωk) · ∇Ψk + (∆Ψk + (1 + k + Λ)Ωk − (M̃kX)Ω) · Ωk

]
dy

=

∫
R3

[
∇((Λ + k)Ψk) · ∇Ψk + (1 + k + Λ)Ωk · Ωk − (M̃kX)Ω · Ωk

]
dy

= (−sc + k + 1)
[
(∇Ψk,∇Ψk) + (Ωk,Ωk)

]
−
∫
R3

(M̃kX)Ω · Ωk dy,
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where in the last equality, we have used the Pohozaev identity. In view of (6.7) and
by Young’s inequality, we infer∣∣∣∣ ∫

R3

(M̃kX)Ω · Ωk dy
∣∣∣∣ ⩽ ε

∫
R3

|Ωk|2 dy + Cε,k

k∑
j=0

∫
R3

|∇jΨ|2⟨ρ⟩−4+2j−2k dy.

Taking ε > 0 small, it follows that

⟨−MX,X⟩1 ⩾ 2ck

[
(Ψk+1,Ψk+1) + (Ωk,Ωk)

]
− Ck

k∑
j=0

∫
R3

|∇jΨ|2⟨ρ⟩−4+2j−2k dy.

We also lower bound the non-principal part:

⟨−MX,X⟩2 = −
∫
R3

χ
[
(MX)ΨΨ+ (MX)Ω Ω

]
dy

=

∫
R3

χ
[
(ΛΨ + Ω)Ψ + ((∆ + pup−1

n )Ψ + (1 + Λ)Ω)Ω
]
dy

⩾ −C
∫
|y|⩽2

[
|Ψ|2 + |∆Ψ|2 + |Ω|2 + |∇Ω|2

]
dy

where the last inequality follows since χ = 0 for |y| ⩾ 2. Thus, by adding the principal
and non-principal parts, we infer

⟨−MX,X⟩ ⩾ 2ck⟨X,X⟩ − Ck

k∑
j=0

∫
R3

|∇jΨ|2⟨ρ⟩−4+2j−2k dy − C∥X∥2H2(|y|⩽2).

We conclude using (6.8) and an analogous result for Ω that

⟨−MX,X⟩ ⩾ ck⟨X,X⟩ − C

[ N∑
i=1

(Ψ,Πi)
2
L2

k+2
+

N∑
i=1

(Ω,Ξi)
2
L2

k+1

]
for (Πi) as in Lemma 6.3 and for some Ξi ∈ L2

k+1. Since the linear form

X = (Ψ,Ω) 7−→
√
C(Ψ,Πi)L2

k+2

is continuous on Hk, by Riesz theorem, there exists Xi ∈ Hk such that

∀X ∈ Hk, ⟨X,Xi⟩ = (Ψ,Πi)L2
k+2

and similarly for (Ξi). Hence, the claim (6.15) follows for all X ∈ DR.

Step 2 (ODE formulation of maximality). — Next, we claim that for all R sufficiently
large,

(6.18) ∀F ∈ D, ∃!X ∈ Hk such that (−M+R)X = F.

Furthermore, we claim that X ∈ DR. Note that this is equivalent to

(6.19)
{
(Λ +R)Ψ + Ω = FΨ,

(∆ + pup−1
n )Ψ + (Λ +R+ 1)Ω = FΩ.
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Let F ∈ D. Then, solving for Ψ, we have

(6.20) [∆− (Λ +R+ 1)(Λ +R) + pup−1
n ]Ψ = FΩ − (Λ +R+ 1)FΨ︸ ︷︷ ︸

:=H

.

Since Λ commutes with ∆Sd−1 , we can write

F =
∑
ℓ,m

Fℓ,mY
(ℓ,m), H =

∑
ℓ,m

Hℓ,mY
(ℓ,m)

as a finite sum where Hℓ,m(ρ)Y (ℓ,m) ∈ C∞
c (R3). Then, recalling the definitions (6.13)

and (6.14) of L and λm, the solution is of the form

(6.21)
Ψ =

∑
ℓ,m

Y (ℓ,m)Ψℓ,m,[
L− ρ−2λm − (Λ +R+ 1)(Λ +R) + pup−1

n

]
Ψℓ,m(ρ) = Hℓ,m(ρ).

By Lemma B.2, it follows that for all R sufficiently large and Fℓ,mY (ℓ,m)∈C∞
c (R3,R2),

there exists unique solution Ψℓ,m(ρ)Y (ℓ,m) ∈ Hk+1(R3) to (6.21). Hence, there
exists a unique Ωℓ,m(ρ)Y (ℓ,m) ∈ Hk(R3) given by first equation of (6.19) so that
Xℓ,m(ρ)Y (ℓ,m)= (Ψℓ,m,Ωℓ,m)Y (ℓ,m)∈ Hk smooth. Thus, we have (6.18). Also, from
the decay properties of each Xℓ,m proved in Lemma B.2, we infer X ∈ DR.

Step 3 (Density of DR). — Now, we extend these results from DR to D(M). We claim
that for R large, DR ⊂ D(M) is dense. For X ∈ D(M), we have X, MX ∈ Hk so
there exists a sequence (Yn) ∈ D such that

Yn −→ (−M+R)X in Hk.

By (6.18) and Lemma B.2, there exists unique Xn ∈ Hk smooth solution to

(−M+R)Xn = Yn −→ (−M+R)X, Xn ∈ Hk.

It suffices to prove the Xn → X in Hk. Recall that for R sufficiently large all integra-
tion by parts used to prove (6.15) is justified. Then since Xn ∈ DR, (6.15) holds for
Xn −Xm i.e.,
⟨Yn − Ym, Xn −Xm⟩ = ⟨(−M+R)(Xn −Xm), Xn −Xm⟩

= ⟨(−M+ P)(Xn −Xm), Xn −Xm⟩ − ⟨P(Xn −Xm), Xn −Xm⟩+R∥Xn −Xm∥2Hk

⩾ R∥Xn −Xm∥2Hk
− ⟨P(Xn −Xm), Xn −Xm⟩.

Since P is a bounded operator, we infer for R large,
R

2
∥Xn −Xm∥Hk

⩽ ∥Yn − Ym∥Hk
.

In view of the convergence of (Yn) in Hk, we deduce that (Xn) is a Cauchy sequence
hence, convergent in Hk to say, X̃. Then X̃ −X ∈ Hk and

(−M+R)(X̃ −X) = 0

as distributions. By the uniqueness statement in (6.18), it follows that X̃ = X i.e.,

Xn −→ X, MXn −→ MX in Hk ⇐⇒ Xn −→ X in D(M).

Hence, DR is dense in D(M) as claimed.
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Step 4 (Conclusion). — Since (6.15) holds for all X ∈ DR, by density of DR, we have
dissipativity i.e., (6.15) holds for all X ∈ D(M). It remains to prove (6.16). Let
F ∈ Hk. There exists (Fn) ∈ D such that

Fn −→ F in Hk.

By (6.18), there exists Xn ∈ Hk solution to

(−M+R)Xn = Fn.

Using (6.15) and arguing as in the proof of density, we infer for R large,
R

2
∥Xn −Xm∥Hk

⩽ ∥Fn − Fm∥Hk
,

so Xn has a limit say, X ∈ Hk. Since Fn converges to F in Hk and D(M) is a Banach
space, we infer

(−M+R)X = F, X ∈ D(M).

Thus we have shown that for R large,

(6.22) ∀F ∈ Hk, ∃X ∈ D(M) such that (−M+R)X = F.

Now we prove this for M̃. Let F ∈ Hk. Since P is bounded, for R large, by (6.15),
for X as in (6.22),

⟨F,X⟩ = ⟨(−M+R)X,X⟩ = ⟨(−M̃− P+R)X,X⟩ ⩾ R

2
∥X∥2Hk

.

Thus, for all F ∈ Hk, solution X to (6.22) is unique i.e., (−M+R)−1 is well-defined
on Hk with

∥(−M+R)−1∥ ≲
1

R
.

Hence,
−M̃+R = −M+ P+R = (−M+R)[id+(−M+R)−1P]

is invertible on Hk for R large which yields (6.16). An elementary induction argument
ensures that (6.16) holds for all R > 0 (see Proposition 3.14 from [11]). □

7. Growth bounds for dissipative operators

In this section, we recall some classical facts on growth bounds for compact pertur-
bations of maximal accretive operators. We realize the linearized operator defined on
the real vector space from previous sections as a real operator on the corresponding
complex space. This is essential in the spectral theory of the linearized operator.

In this section, (H, ⟨·, ·⟩) is a Hilbert space and A is a closed operator defined on a
dense domain D(A). Define the adjoint operator A∗ on the domain

D(A∗) = {X ∈ H |Y ∈ D(A) 7→ ⟨X,AY ⟩ extends to an element of H∗}

to be X 7→ A∗X the unique element of H given by Riesz theorem such that

∀Y ∈ D(A), ⟨A∗X,Y ⟩ = ⟨X,AY ⟩.
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For ν ∈ R, we denote by

Λν(A) = {λ ∈ σ(A) | Re(λ) ⩾ ν}, Vν(A) =
⊕

λ∈Λν(A)

ker(A− λ).

Lemma 7.1 (Perturbative exponential decay). — Let T0 and T be the strongly contin-
uous semigroups generated by maximally dissipative operators A0 and A = A0 + K

where K is a compact operator on H. Then for all ν > 0, the following holds:
(i) The set Λν(A) is finite and each eigenvalue λ ∈ Λν(A) has finite algebraic

multiplicity kλ.
We have Λν(A) = Λν(A∗) and dimVν(A

∗) = dimVν(A). The direct sum decompo-
sition

H = Vν(A)
⊕
V ⊥
ν (A∗)

is preserved by T (s) and there holds

∀X ∈ V ⊥
ν (A∗), ∥T (s)X∥ ⩽Mνe

νs∥X∥.

(ii) The restriction of A to Vν(A) is given by a direct sum of Jordan blocks. Each
block corresponds to an invariant subspace Jλ and the semigroup T restricted to Jλ is
given by

T (s)|Jλ =


eλs seλs · · · smλ−1eλs

(mλ−1)!

0 eλs · · · smλ−2eλs

(mλ−2)!

...
...

. . .
...

0 0 · · · eλs

 .

Proof. — See Lemma 3.3 of [22]. □

Corollary 7.2 (Exponential decay modulo finitely many instabilities)
Let ν > 0, T0, T be the strongly continuous semigroups generated by maximally

dissipative operators A0 and A = A0 − ν + K respectively where K is a compact
operator on Hilbert space H. Then Λ0(A) is finite and let

H = U
⊕
V,

where V = Vν(A) and U = V ⊥
ν (A∗) so that U and V are invariant subspaces for A.

Then there exists C, δ > 0 such that

∀X ∈ U, ∥T (s)X∥ ⩽ Ce−(δ/2)s∥X∥.

Proof. — We apply Lemma 7.1 to Ã = A0 + K which generates the semigroup T̃ .
Note that Λν/4(Ã) is finite and Λ0(A) ⊂ Λν/4(Ã). Let

H = Uν
⊕
Vν

be the invariant decomposition of Ã associated to the set Λν/4 with Vν being the
image of the spectral projection of the set Λν/4. Then Uν ⊂ U and

U = Uν
⊕
Oν ,
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where Oν is the image of the spectral projection of A associated with the set
Λν/4(Ã)∖ Λ0(A). Then by Lemma 7.1,

∀X ∈ Uν , ∥T (s)X∥ = e−νs∥T̃ (s)X∥ ⩽Mνe
−(3ν/4)s∥X∥.

Now for X ∈ U , since Uν is invariant under T and we have exponential decay on Uν ,
so without loss of generality, assume X ∈ Oν . Oν is an invariant subspace of A
generated by the eigenvalues λ such that −3ν/4 ⩽ Re(λ) < 0. Then for

δ = inf
{
Re(λ) | 0 < −Re(λ) ⩽ 3ν/4, λ is an eigenvalue of A

}
,

Lemma 7.1 implies that

∥T (s)X∥Oν
≲ sup

Re(λ)<0

eλssmλ−1∥X∥ ≲ e−(δ/2)s∥X∥. □

Corollary 7.3. — Let A, δ, U and V as in Corollary 7.2. For c > 0, let G(s) ∈ V

be such that
∥G(s)∥ ⩽ e−(δ/2)(1+c)s, ∀s ⩾ 0.

Then, for s0 sufficiently large, there exists x ∈ V with ∥x∥ ⩽ e−(δ/2)(1+c/2)s0 such
that the solution X(s) to

dX(s)

ds
= AX(s) +G(s), X(s0) = x ∈ V,

satisfies the bound
∥X(s)∥ ⩽ e−(δ/2)(1+c/2)s, ∀s ⩾ s0.

Proof. — By Lemma 7.1, the subspace V can be further decomposed into invariant
subspaces on which A is represented by Jordan blocks. Therefore, without loss of
generality, assume that V is irreducible and for Re(λ) ⩾ 0,

(7.1) A = λ+N, esN =


1 s · · · smλ−1

(mλ−1)!

0 1 · · · smλ−2

(mλ−2)!

...
...

. . .
...

0 0 · · · 1

 .

Now consider

Y (s) = e−sNe(δ/2)(1+3c/4)sX(s), G̃(s) = e−sNe(δ/2)(1+3c/4)sG(s).

Then since N and A commute,
dY (s)

ds
=
[
λ+

δ

2

(
1 +

3c

4

)]
Y (s) + G̃(s), Y (s0) = y.

For s0 sufficiently large, for all s ⩾ s0,

∥G̃(s)∥ ⩽ e−(c δ/16)s.

We now run a standard Brouwer type argument for Y . For ∥y∥ ⩽ 1, define the exit
time

s∗ = inf{s ⩾ s0 | ∥Y (s)∥ ⩾ 1}.
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If s∗ = ∞ for some ∥y∥ ⩽ 1, then we are done. Otherwise, the map

Φ : B = {∥y∥ ⩽ 1} −→ S = {∥y∥ = 1}

given by Φ(y) = Y (s∗) is well-defined. Note that Φ|S = idS and Φ is continuous since

d∥Y ∥2

ds
(s∗) = 2Re(λ) + δ

(
1 +

3c

4

)
+ 2Re⟨G̃(s∗), Y (s∗)⟩ ⩾ δ

2

(
1 +

3c

4

)
> 0

i.e., the outgoing condition is met. This is a contradiction by Brouwer fixed point
theorem. Thus, there exists x such that for all s ⩾ s0,

∥e−sNX(s)∥ ⩽ e−(δ/2)(1+3c/4)s.

Since e−sN is invertible with inverse esN bounded by smλ−1, result follows immedi-
ately. □

8. Finite codimensional stability

We are now in position to prove non linear finite codimensional stability of the
self-similar profiles for the full problem.

Choice of parameters. — In this section, we set d = 3 and k = 3 so that Hk+1(R3)

is an algebra which we shall later use in the proof of Theorem 2. For convenience,
we write

H = H3 := H4 ×H3.

where we recall from Section 2 the definition of Hk.

Stable and unstable subspaces. — Recall from Proposition 6.4 that M − P + ck/2 is
maximally dissipative so Corollary 7.2 applies:

Λ0(M) = {λ ∈ σ(M) | Re(λ) ⩾ 0}

is a finite set with an associated finite dimensional invariant subspace V . Consider
the invariant decomposition

H = U
⊕
V

and let P be the associated projection on V . We denote by N the nilpotent part of
the matrix representing M on V . Let δ > 0 such that the conclusions of Corollary 7.2
and 7.3 hold.

Dampened profile. — We produce a finite energy initial value by dampening the tail
of the self-similar profiles on |x| ⩾ 1: for some constant np > sc, let η : R+ → R be a
smooth function

(8.1) η(r) =

{
1 r ⩽ 1,

r−np r ⩾ 2,

and for smooth self-similar profiles un solving (1.4), we define the dampened profile

uDn (s, ρ) = η(e−sρ)un(ρ).
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Note that the requirement np > sc is precisely the condition for uDn to achieve finite
energy. Recall the self-similar transformation (6.1). We introduce the perturbation
variables (ΨD,ΩD):

(8.2) Ψ̃ = Ψ + un = ΨD + η(e−sρ)un︸ ︷︷ ︸
=uD

n

, Ω− Λun = ΩD − η(e−sρ)Λun.

Then the wave equation (6.2) yields

(8.3)
{
∂sΨ

D = −ΛΨD − ΩD,

∂sΩ
D = −∆ΨD − (Λ + 1)ΩD − |Ψ̃|p−1Ψ̃ + E(s, ρ),

where

(8.4) E(s, ρ) = η(e−sρ)upn − (∆η(e−sρ))un − 2∇η(e−sρ) · ∇un.

8.1. Bootstrap bound and proof of Theorem 2. — The heart of the proof of Theo-
rem 2 is the following bootstrap proposition.

Proposition 8.1 (Bootstrap). — Recall the definition of Hk from Section 2. Assume
d = 3, k = 3 and write

H = H3 = H4 ×H3.

Given c≪ 1 and s0 ≫ 1 to be chosen in the proof, consider X(s0) ∈ H such that

(8.5) ∥(I − P )X(s0)∥H ⩽ e−(δ/2)s0 , ∥PX(s0)∥H ⩽ e−(δ/2)(1+c/2)s0

and for (ΨD,ΩD) as in (8.2) and for 0 ⩽ j ⩽ 4,

(8.6)
∥∥∥ ⟨ρ⟩j+1∇jΨD(s0)

uDn

∥∥∥
L∞(R3)

+
∥∥∥ ⟨ρ⟩j+1

1j⩾1∇j−1ΩD(s0)

uDn

∥∥∥
L∞(R3)

⩽ e−(δ/2)s0 .

Define the exit time s∗ to be the maximal time such that the following bootstrap bounds
hold on s ∈ [s0, s

∗]:

(8.7) ∥esNPX(s)∥H ⩽ e−(δ/2)(1+3c/4)s,

for j = 0, 1 and 0 < κ < 1/4(p+ 1),

(8.8)
∥∥∥ρj−κ∇jΨD(s)

uDn

∥∥∥
L∞(|y|⩾1)

⩽ 1,

for all j such that 0 ⩽ j ⩽ 4,

(8.9) Ij(s) :=

∫
Dj

ρ2j−2scξ(e−sρ)2np+1
(
|∇jΨD(s)|2 + 1j⩾1|∇j−1ΩD(s)|2

)
dy ⩽ 1,

where

ξ(r) = η(r)−1/np =

{
1 r ⩽ 1,

r r ⩾ 2,
Dj =

{
{y ∈ R3 | |y| ⩾ 1} 0 ⩽ j ⩽ 2,

R3 3 ⩽ j ⩽ 4,

and for δ/(1 + c) < δ0 < δ,

(8.10) ∥X(s)∥H ⩽ e−(δ0/2)s.
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Then the bootstrap bounds (8.8), (8.9) and (8.10) can be strictly improved in s ∈
[s0, s

∗]. Equivalently, if s∗ <∞, then equality holds for (8.7) at s = s∗. Furthermore,
the following non-linear bound holds:

(8.11) ∀s ∈ [s0, s
∗], ∥G(s)∥H ⩽ e−(δ/2)(1+c)s.

Let us assume Proposition 8.1 and conclude the proof of Theorem 2.

Proof of (Proposition 8.1 ⇒ Theorem 2). — Assume Proposition 8.1 holds. Let s0 be as
in Proposition 8.1. Note that the bootstrap bounds (8.9) and (8.10) imply∫

R3

|ΨD|2 dy ⩽
∫
|y|⩽1

|Ψ|2 dy +
∫
|y|⩾1

ρ−2sc+2np+1|ΨD|2 dy <∞

and ∫
R3

|∆2Ψ|2 dy <∞.

Then

∥Ψ̃∥2H4(R3) ⩽ ∥uDn ∥2L2(R3) + ∥ΨD∥2L2(R3) + ∥un∥2Ḣ4(R3)
+ ∥Ψ∥2

Ḣ4(R3)
<∞.

Similarly for ΩD. Thus, we infer

∥un +Ψ∥H4(R3) + ∥Λun − Ω∥H3(R3) ⩽ C(s)

for s ∈ [s0, s
∗] so it follows that

∥Φ∥Ḣsc (R3) + ∥∂tΦ∥Ḣsc−1(R3) ⩽ C(t),

so the exit time s∗ defined in the statement of Proposition 8.1 is strictly smaller than
the life time provided by the standard Cauchy theory (see [12]).

We now conclude from the Brouwer fixed point argument. Note that for all initial
data satisfying (8.5) and (8.6) in the space

H =
{
(ΨD,ΩD) ∈ (H4 ×H3)(R3)

∣∣∣
4∑
j=0

∥∥⟨ρ⟩j+α+np+1
( ∣∣∇jΨD

∣∣+ ∣∣1j⩾1∇j−1ΩD
∣∣ )∥∥

L∞ <∞
}
,

the non-linear bound (8.11) and (8.7) have been shown to hold on [s0, s
∗]. More-

over, as explained in the proof of Corollary 7.3, given (I − P )X(s0), after a choice
of projection of initial data on the subspace of unstable nodes PX(s0), the solution
can be immediately propagated to any time t < T . This choice is dictated by Corol-
lary 7.3. Furthermore, this choice of PX(s0) is unique and is Lipschitz dependent on
(I − P )X(s0) from Lemma D.1. □

The rest of this section is devoted to the proof of the bootstrap Proposition 8.1.

J.É.P. — M., 2024, tome 11



On self-similar blow up for the energy supercritical semilinear wave equation 1521

8.2. Weighted Sobolev bounds. — Recall that we have set d = 3, k = 3. Then,
we write H = H3.

Lemma 8.2 (Sobolev embedding). — Let (ΨD,ΩD) be such that the right hand side of
the bound (8.12) is finite. Then, for j = 0, 1,

(8.12)
∥∥∥ρj−κ∇jΨD(s)

uDn

∥∥∥
L∞(|y|⩾1)

≲ ∥∇jΨD∥L∞(|y|=2) +

( 4∑
ℓ=0

Iℓ(s)

)1/2

.

Proof

Step 1 (General bound). — We recall the notations for the spherical harmonics from
Section 6.2. In particular, we write the spherical harmonic functions as Y (ℓ,m) with
eigenvalues −λm = −m(m + 1). We claim that given i ∈ N and β ∈ R and for all
f ∈ C∞

c,rad(R3 ∖ {0}),

(8.13)
∫
R3

rβ |∇if(r)Y (ℓ,m)(θ, φ)|2 dx

= (1 + om→∞(1))

i∑
j=0

(
i

j

)
λi−jm

∫ ∞

0

r2+β+2(j−i)|f (j)|2 dr︸ ︷︷ ︸
:=Si,m[f ]

.

We proceed by induction on i. The claim for i = 1, 2 is proved in Lemma 2.1 from [4].
If the claim holds for i = 2k − 1, 2k, then by replacing f in (8.13) by (L− r−2λm)f ,
where we recall that L is the radial part of the Laplacian, we infer∫

R3

rβ |∇i+2f(r)Y (ℓ,m)(θ, φ)|2 dx

= (1 + om→∞(1))

i∑
j=0

(
i

j

)
λi−jm

∫ ∞

0

r2+β+2(j−i)|∂jr(∂2r + 2r−1∂r − r−2λm)f |2 dr

=

i∑
j=0

(
i

j

)
λi−jm

∫ ∞

0

r2+β+2(j−i)|(∂j+2
r − λmr

−2∂jr)f |2 dr + om→∞(Si+2,m[f ])

=

i∑
j=0

(
i

j

)
λi−jm

∫ ∞

0

r2+β+2(j−i)(|f (j+2)|2 + 2λmr
−2|f (j+1)|2 + λ2mr

−4|f (j)|2) dr

+ om→∞(Si+2,m[f ]),

where in the last equality we have used integration by parts:

−λi−j+1
m

∫ ∞

0

rβ+2(j−i)f (j+2)f (j) dr

= λi−j+1
m

∫ ∞

0

rβ+2(j−i)|f (j+1)|2 dr + Ci,j,βλ
i−j+1
m

∫ ∞

0

r−2+β+2(j−i)|f (j)|2 dr

= λi−j+1
m

∫ ∞

0

rβ+2(j−i)|f (j+1)|2 dr + om→∞(Si+2,m[f ]).
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Then, we infer∫
R3

rβ |∇i+2f(r)Y (ℓ,m)(θ, φ)|2 dx = (1 + om→∞(1))

×
i+2∑
j=0

[(
i

j

)
+ 2

(
i

j − 1

)
+

(
i

j − 2

)]
λi+2−j
m

∫ ∞

0

r2+β+2(j−i−2)|f (j)|2 dr.

Hence, the result follows for i+ 2. This concludes the proof of our claim (8.13).

Step 2 (Interior Bound). — From the claim, we have that for M large, for all f ∈
C∞
c,rad(R3 ∖ {0}) and m ⩾M ,

i∑
j=0

λi−jm

∫ ∞

0

ρ2j+2α−1|f (j)|2 dρ ≲i

∫
R3

ρ2i+2α−3|∇if(ρ)Y (ℓ,m)|2 dx.

Also, by induction on i, we have that for all m < M ,

(8.14)
i∑

j=0

∫ ∞

0

ρ2j+2α−1|f (j)|2 dρ ≲i Cm

i∑
j=0

∫
R3

ρ2j+2α−3|∇jf(ρ)Y (ℓ,m)|2 dx.

Thus, (8.14) holds for all m ∈ N with some universal constant independent of m.
We now apply this to a function vanishing at 0 and ∞. Let χs ∈ C∞

rad(R3) and
φ ∈ C∞(R) be such that

φ(ρ) =

{
0 ρ ⩽ 1,

1 ρ ⩾ 2,
χs(y) =

{
φ(|y|) |y| ⩽ es,

1− φ(e−s|y|) |y| ⩾ es.

Write
ΨD(y) =

∑
ℓ,m

ΨDℓ,m(ρ)Y (ℓ,m)(θ, φ),

and apply (8.14) to f(ρ) = χsΨ
D
ℓ,m(ρ), we infer,

4∑
j=0

λ4−jm

∫ es

2

r2j+2α−1|∂jρΨDℓ,m|2 dρ

⩽
4∑
j=0

λ4−jm

∫ ∞

0

r2j+2α−1|∂jρ(χsΨDℓ,m)|2 dρ

≲
4∑
j=0

∫
R3

ρ2j−2sc |∇j(χsΨ
D
ℓ,m(ρ)Y (ℓ,m)(θ, φ))|2dy

≲
4∑
j=0

∫
|y|⩾1

ρ2j−2scξ(e−sρ)2np+1|∇j(ΨDℓ,m(ρ)Y (ℓ,m)(θ, φ))|2 dy,

where in the last inequality we have used that for all es ⩽ ρ ⩽ e2s,

|∂jρχs(ρ)| ≲j e−js ≲ ρ−j .
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Since the universal constant here does not depend on m, we sum over ℓ and m to infer∑
ℓ,m

4∑
j=0

λ4−jm

∫ es

2

ρ2j+2α−1|∂jρΨDℓ,m|2 dρ ≲
4∑
j=0

Ij(s).

Note the universal L∞-bound for spherical harmonics which one can find in [30] states
that

∥Y (ℓ,m)(θ, φ)∥L∞(S2) ≲ λ1/4m .

Thus, we infer for 2 ⩽ |y| ⩽ es,∣∣∣ρ−κΨD(y)
uDn

∣∣∣ ≲ ∥ΨD∥L∞(|y|=2) +
∑
ℓ,m

∥Y (ℓ,m)∥L∞(S2)

∫ es

2

|∂ρ(ρα−κΨDℓ,m)| dρ

≲ ∥ΨD∥L∞(|y|=2) +
∑
ℓ,m

λ1/4m

(∫ es

2

dρ

ρ1+2κ

)1/2(∫ es

2

ρ2α−1(|ΨDℓ,m|2+ρ2|∂ρΨDℓ,m|2) dρ
)1/2

⩽ ∥ΨD∥L∞(|y|=2) +

(∑
ℓ,m

λ−3/2
m

)1/2(∑
ℓ,m

λ2m

∫ es

2

ρ2α−1(|ΨDℓ,m|2+ρ2|∂ρΨDℓ,m|2) dρ
)1/2

≲ ∥ΨD∥L∞(|y|=2) +

( 4∑
ℓ=0

Iℓ(s)

)1/2

.

Next, we bound the derivatives of ΨD. Explicit calculation of the derivatives of Y (ℓ,m)

yields
∥∂θY (ℓ,m)∥L∞(S2) + ∥∂φY (ℓ,m)∥L∞(S2) ≲ λ3/4m .

Then, for 2 ⩽ |y| ⩽ es, by writing (ỹ1, ỹ2, ỹ3) = (ρ, θ, φ) and (n1, n2, n3) = (0,−1,−1),
we infer∣∣∣ρ1−κ∇ΨD(y)

uDn

∣∣∣
≲ ∥∇ΨD∥L∞(|y|=2) +

3∑
i=1

∫ es

2

sup
S2

|∂ρ(ρα+1+ni−κ∂ỹi(Ψ
D
ℓ,m(ρ)Y (ℓ,m)))| dρ

≲ ∥∇ΨD∥L∞(|y|=2) +
∑
ℓ,m

∫ es

2

[
λ1/4m |∂ρ(ρα+1−κ∂ρΨ

D
ℓ,m)|︸ ︷︷ ︸

=∂ρ term

+λ3/4m |∂ρ(ρα−κΨDℓ,m)|︸ ︷︷ ︸
=∂θ, ∂φ terms

]
dρ.

Then, as before,

(∂ρ term) ≲
∑
ℓ,m

λ1/4m

(∫ es

2

ρ−1−2κ dρ

)1/2(∫ es

2

ρ2α+1(|∂ρΨDℓ,m|2 + ρ2|∂2ρΨDℓ,m|2) dρ
)1/2

⩽

(∑
ℓ,m

λ−3/2
m

)1/2(∑
ℓ,m

λ2m

∫ es

2

ρ2α+1(|∂ρΨDℓ,m|2 + ρ2|∂2ρΨDℓ,m|2) dρ
)1/2

≲

( 4∑
ℓ=0

Iℓ(s)

)1/2
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and similarly,

(∂θ, ∂φ terms) ≲
(∑
ℓ,m

λ−3/2
m

)1/2(∑
ℓ,m

λ3m

∫ es

2

ρ2α−1(|ΨDℓ,m|2 + ρ2|∂ρΨDℓ,m|2) dρ
)1/2

≲

( 4∑
ℓ=0

Iℓ(s)

)1/2

.

Thus, we infer for all 2 ⩽ |y| ⩽ es that∣∣∣ρ1−κ∇ΨD(y)

uDn

∣∣∣ ≲ ∥∇ΨD∥L∞(|y|=2) +

( 4∑
ℓ=0

Iℓ(s)

)1/2

.

Step 3 (Exterior Bound). — We now propagate the L∞-bound to the region outside of
the self-similar scale. From the claim in Step 1, we infer the bound

i∑
j=0

λi−jm

∫ ∞

0

ρ2j+2α+2np |f (j)|2 dρ ≲i

i∑
j=0

∫
R3

ρ2j+2α+2np−2|∇if(ρ)Y (ℓ,m)|2 dy

with some universal constant independent of m. Using the same η and decomposition
of ΨD as in Step 2 and apply the above bound with f(ρ) = χ̃sΨ

D
ℓ,m(ρ) for a cut-off

χ̃s(y) = φ(2e−s|y|), we infer
4∑
j=0

λ4−jm

∫ ∞

es
r2j+2α−1ξ(e−sρ)2np+1|∂jρΨDℓ,m|2 dρ

≲
4∑
j=0

∫
|y|⩾1

ρ2j−2scξ(e−sρ)2np+1|∇j(ΨDℓ,m(ρ)Y (ℓ,m)(θ, φ))|2 dy.

Thus, as in Step 2, we infer∑
ℓ,m

4∑
j=0

λ4−jm

∫ ∞

es
r2j+2α−1ξ(e−sρ)2np+1|∂jρΨDℓ,m|2 dρ ≲

4∑
j=0

Ij(s).

Thus, we infer for |y| ⩾ es,∣∣∣ρ−κΨD(y)
uDn

∣∣∣ ≲ ∥∥∥ρ−κΨD
uDn

∥∥∥
L∞(|y|=es)

+
∑
ℓ,m

λ1/4m

∫ ∞

es
e−nps|∂ρ(ρα−κΨDℓ,m)| dρ.

Since∑
ℓ,m

λ1/4m

∫ ∞

es
e−nps|∂ρ(ρα−κΨDℓ,m)| dρ

≲
∑
ℓ,m

λ1/4m

(∫ ∞

es
esρ−2−2κ dρ

)1/2(∫ ∞

es
ρ2α−1ξ(e−sρ)2np+1(|ΨDℓ,m|2+ρ2|∂ρΨDℓ,m|2) dρ

)1/2

⩽

(∑
ℓ,m

λ−3/2
m

)1/2(∑
ℓ,m

λ2m

∫ ∞

es
ρ2α−1ξ(e−sρ)2np+1(|ΨDℓ,m|2 + ρ2|∂ρΨDℓ,m|2) dρ

)1/2

≲

( 4∑
ℓ=0

Iℓ(s)

)1/2

,
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combining with the interior bound, we infer (8.12) for ΨD. As in Step 2, we can bound
the derivatives of ΨD in the region |y| ⩾ es. This concludes the proof of (8.12). □

8.3. Proof of Proposition 8.1. — We are in position to prove Proposition 8.1.

Step 1 (Energy estimates). — We claim the energy estimate

(8.15) dIj
ds

≲ e−εs

holds for some ε > 0 for all 0 ⩽ j ⩽ 4 so in particular, by the choice of initial value
(8.6),

Ij(s) ⩽ Ij(s0) + Ce−εs0

is arbitrarily small for s0 sufficiently large.

Case 1 (1 ⩽ j ⩽ 4). — Suppose claim holds for < j cases. Denote by IΨj , IΩj the
weighted L2-norm of ΨD and ΩD in Ij . For the ΨD component, we infer

dIΨj
ds

=

∫
Dj

ρ2j−2sc

[
− ρ

∂

∂ρ
ξ(e−sρ)2np+1|∇jΨD|2 + 2ξ(e−sρ)2np+1∇jΨD · ∂s∇jΨD

]
dy

⩽ 2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1
[
(j + Λ+ ∂s)∇jΨD

]
· ∇jΨD dy

+ 1j⩽2

∫
{|y|=1}

|∇jΨD|2dσ(y),

where we integrate by parts for the last inequality and note that the boundary term at
infinity is non-positive. Here, σ is the standard measure on the unit sphere. We bound
the boundary term using the Sobolev embedding H2(|y| ⩽ 1) ↪→ L∞(|y| ⩽ 1):

(8.16)
∫
{|y|=1}

|∇jΨD|2dσ(y) ≲ ∥∇jΨD∥2L∞(|y|=1) ≲ ∥Ψ∥2H4(|y|⩽1) ≲ ∥X∥2H ⩽ e−(δ0/2)s

for j ⩽ 2, where in the final inequality, we have used (8.10). By the commutation
relations

[∇k,Λ] = k∇k

and (8.3), we infer for some ε > 0,

dIΨj
ds

⩽ 2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1∇j(Λ + ∂s)Ψ
D · ∇jΨD dy + e−εs

= −2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1∇jΩD · ∇jΨD dy + e−εs.
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Similarly, for ΩD component, it follows from the above commutation relation and
(8.3) that

(8.17)

dIΩj
ds

⩽ 2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1
[
(j + Λ+ ∂s)∇j−1ΩD

]
· ∇j−1ΩD dy

= 2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1∇j−1(−∆ΨD − Ψ̃p + E) · ∇j−1ΩD dy,

where we recall the definition (8.4) of E. Integrate by parts the first term we infer

(8.18)

2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1(−∇j+1ΨD) · ∇j−1ΩD dy

⩽ 2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1∇jΨD · ∇jΩD dy

+ 2

∫
Dj

∇
[
ρ2j−2scξ(e−sρ)2np+1

]
· ∇jΨD∇j−1ΩD dy.

From the bootstrap bound (8.10) and (8.9), we infer for 2ε < δ0/(2k + 1− 2sc) =

δ0/(7− 2sc), the bound for the last term above∫
Dj

ρ2j−2sc−1ξ(e−sρ)2np+1|∇jΨD| |∇j−1ΩD| dy

⩽ e−εs
∫
|y|⩾eεs

ρ2j−2scξ(e−sρ)2np+1|∇jΨD| |∇j−1ΩD| dy

+ eε(2k+1−2sc)s

∫
|y|⩽eεs

⟨ρ⟩−2(k+1−j)|∇jΨ| |∇j−1Ω| dy

⩽ e−εs(IΨj I
Ω
j )

1/2 + e(δ0/2)s
∫
|y|⩽eεs

(
|∇jΨ|2 + |∇j−1Ω|2

)
⟨ρ⟩−2(4−j) dy

⩽ e−εsIj + e(δ0/2)s∥X∥2H ⩽ e−εsIj + e−(δ0/2)s ⩽ e−εs

for some ε > 0. Note that we have used Hardy’s inequality from Lemma 6.2:

(8.19)
∫
|y|⩽eεs

|∇jΨ|2⟨ρ⟩−2(4−j) dy ≲ ∥Ψ∥2H4
⩽ ∥X∥2H

and similarly for Ω. Thus, we infer the bound for (8.18):

2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1(−∇j+1Ψ̃) · ∇j−1ΩD dy

⩽ 2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1∇jΨD · ∇jΩD dy + Ce−εs.

Next, we prove the bound for the term with Ψ̃p = (un+Ψ)p and E. By the bootstrap
bound (8.8) together with the asymptotic behaviour of uDn , it holds for ℓ = 0, 1 that∥∥∥ ⟨ρ⟩ℓ−κ∇ℓΨ̃(s)

uDn

∥∥∥
L∞(R3)

≲ 1,
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where we have used the Sobolev bound (8.16) in the region |y| ⩽ 1. Thus, we infer
for j ⩽ 4,

∣∣∣∇j−1
(
|Ψ̃|p−1Ψ̃

)∣∣∣ ≲ j−1∑
i=1

|Ψ̃|p−i
∑

|β|=j−1,β>0

|∇β1Ψ̃| · · · |∇βiΨ̃|

≲
j−1∑
ℓ=1

|∇ℓΨ̃|
j−1∑
i=1

|Ψ̃|p−i
∑

|β|=j−ℓ−1,
∥β∥∞⩽1

|∇β1Ψ̃| · · · |∇βi−1Ψ̃|

≲
j−1∑
ℓ=0

⟨ρ⟩−j+ℓ+1+(−α+κ)(p−1)|∇ℓΨ̃| ⩽
j−1∑
ℓ=0

⟨ρ⟩−j+ℓ−3/4|∇ℓΨ̃|,

where we have used that κ < 1/4(p− 1) and that p > 5 to bound |Ψ̃|p−i.
Next, we bound E where we recall the definition (8.4) of E. Observe that

∂jρη(e
−sρ) = e−jsη(j)(e−sρ) ≲ ⟨ρ⟩−jη(e−sρ).

In view of the asymptotic behaviors of uDn and its derivatives, we have that for j ⩽ 4,

|∇j−1E| ≲
∣∣∣∇j−1

(
η(e−sρ)upn − (∆η(e−sρ))un − 2e−sη′(e−sρ)u′n

)∣∣∣ ≲ ⟨ρ⟩−j−1uDn .

Adding the two bounds obtained above, we infer

(8.20)
∣∣∣∇j−1

(
|Ψ̃|p−1Ψ̃− E

)∣∣∣ ≲ j−1∑
ℓ=0

⟨ρ⟩−j+ℓ−3/4
(
|∇ℓΨD|+ |∇ℓuDn |

)
.

We improve the above bound in the region ρ ⩽ es. Here, η(e−sρ) ≡ 1 so E = upn and
we infer for j ⩽ 4,∣∣∣∇j−1

(
|Ψ̃|p−1Ψ̃− E

)∣∣∣ ≲ ∣∣∣∣∇j−1

(
Ψ

∫ 1

0

|un + τΨ|p−1dτ

)∣∣∣∣
≲ sup

0⩽τ⩽1
|un + τΨ|p−4

j−1∑
i=0

|∇iΨ|
∑

|β|=j−1−i,
β1⩾β2⩾β3

3∏
q=1

sup
0⩽τ⩽1

∣∣∇βq (un + τΨ)
∣∣.

Since i + β1 + β2 + β3 = j − 1 ⩽ 3 in the sum above, β2, β3 ⩽ 1 so the L∞-bound
(8.8) applies. Then, we have for all ρ ⩽ es that

(8.21)

∣∣∣∇j−1
(
|Ψ̃|p−1Ψ̃− E

)∣∣∣
≲ ⟨ρ⟩(−α+κ)(p−2)

j−1∑
i=0

|∇iΨ|
(
|∇j−1−iun|+ |∇j−1−iΨ|

)
≲

j−1∑
i=0

⟨ρ⟩−j+i+1+(−α+κ)(p−1)|∇iΨD| ≲
j−1∑
i=0

⟨ρ⟩−j+i−3/4|∇iΨD|.
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Thus, using the bounds (8.20) and (8.21) above, we infer for the Ψ̃p and E terms
in (8.17) that∫

Dj

ρ2j−2scξ(e−sρ)2np+1|∇j−1(Ψ̃p − E)| |∇j−1ΩD| dy

≲
j−1∑
ℓ=0

∫
Dj

⟨ρ⟩j+ℓ−2sc−1/2ξ(e−sρ)2np+1
(
|∇ℓΨD|+ 1|y|⩾es |∇ℓuDn |

)
|∇j−1ΩD| dy

⩽
j−1∑
ℓ=0

∫
|y|⩾es

ρj+ℓ−2sc−1/2ξ(e−sρ)2np+1|∇ℓuDn ||∇j−1ΩD| dy

+ e−(ε/2)s

j−1∑
ℓ=0

∫
|y|⩾eεs

ρj+ℓ−2scξ(e−sρ)2np+1|∇ℓΨD| |∇j−1ΩD| dy

+

j−1∑
ℓ=0

∫
|y|⩽eεs

⟨ρ⟩j+ℓ−2sc−1/2|∇ℓΨ| |∇j−1Ω| dy.

Thus, from the bootstrap bound (8.10) and Hardy’s inequality (8.19), we infer for
2ε < δ0/(2k + (3/2)− 2sc) = δ0/((15/2)− 2sc), the bound∫

Dj

ρ2j−2scξ(e−sρ)2np+1|∇j−1(Ψ̃p − E)| |∇j−1ΩD| dy

⩽
j−1∑
ℓ=0

[(∫ ∞

es
ρ−5/2ξ(e−sρ) dρ

)1/2

(IΩj )
1/2 + e−(ε/2)s(IΨℓ I

Ω
j )

1/2

+ e(δ0/2)s
(∫

|y|⩽eεs
|∇ℓΨ|2⟨ρ⟩−2(4−ℓ) dy

)1/2(∫
|y|⩽eεs

|∇j−1Ω|2⟨ρ⟩−2(4−j) dy

)1/2]

⩽ e−(3/4)sIj +

j∑
ℓ=0

e−(ε/2)sIℓ + e(δ0/2)s∥X∥2H ≲ e−(3/4)s + e−(ε/2)s + e−(δ0/2)s.

Take smaller ε if necessary, we infer

dIΩj
ds

⩽ 2

∫
Dj

ρ2j−2scξ(e−sρ)2np+1∇jΨD · ∇jΩD dy + Ce−εs.

Hence, by adding the bounds for IΨj and IΩj , we obtain the overall bound

(8.22) dIj
ds

≲ e−εs,

i.e., the claim (8.15) holds.

Case 2 (j = 0). — Note that I0 = IΨ0 . As in Case 1, we have for some ε > 0 that

dI0
ds

⩽ −2

∫
|y|⩾1

ρ−2scξ(e−sρ)2np+1ΩDΨD dy + e−εs.
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From the bootstrap bound (8.10) and (8.9), we infer for 2ε < δ0/(2k + 1− 2sc) =

δ0/(7− 2sc), the bound:∫
|y|⩾1

ρ−2scξ(e−sρ)2np+1|ΨDΩD| dy

⩽ e−εs
∫
|y|⩾eεs

ρ1+2scξ(e−sρ)2np+1|ΨDΩD| dy

+ eε(2k+1−2sc)s

∫
1⩽|y|⩽eεs

ρ−(2k+1)|ΨΩ| dy

⩽ e−εs(IΨ0 I
Ω
1 )

1/2 + e(δ0/2)s
∫
|y|⩽eεs

(
|Ψ|2⟨ρ⟩−2(k+1) + |Ω|2⟨ρ⟩−2k

)
dy

⩽ e−εs + e−(δ0/2)s ⩽ e−εs

for some ε > 0. Hence, the claim follows.

Step 2 (Improvement of (8.8) and (8.9)). — Given d0 ≪ 1, we claim that these quan-
tities can be bounded by d0 in s ∈ [s0, s

∗].

Improved bound for the weighted Sobolev norm. — It follows from the energy esti-
mate (8.15) and the choice of initial value (8.6) that given d0 ≪ 1, we have that for
all s ∈ [s0, s

∗] and j such that 0 ⩽ j ⩽ 4,

(8.23) Ij(s) ⩽ Ij(s0) + Ce−εs0 ⩽ d0

for s0 sufficiently large.

Improved pointwise bound. — Let j be such that 0 ⩽ j ⩽ 1. By Sobolev embedding
and (8.10), we infer for large s0 that

∥∇jΨD∥L∞(|y|⩽2) ≪ d0.

Then, by Lemma 8.2, we have that for 0 ⩽ j ⩽ 1,

(8.24)
∥∥∥ρj−κ∇jΨD

uDn

∥∥∥
L∞(|y|⩾1)

≲ ∥∇jΨD∥L∞(|y|=2) +

( 4∑
ℓ=0

Iℓ(s)

)1/2

⩽ d0.

where the last inequality follows from (8.23).

Step 3 (Improved ∥ · ∥H bound and non-linear bound). — Recall that

(8.25)
GΩ = −|Ψ+ un|p−1(Ψ + un) + upn + pup−1

n Ψ

= −p(p− 1)Ψ2

∫ 1

0

(1− τ)|un + τΨ|p−3(un + τΨ) dτ.

We claim that by choosing s0 sufficiently large and c > 0 small,

(8.26) ∀s ∈ [s0, s
∗], ∥G(s)∥H ⩽ ∥X(s)∥1+cH .

For ρ > 0, we have

(8.27) |∇kGΩ| ≲
∑

i+j+ℓ=k

|∇iΨ||∇jΨ|
∣∣∣∣ ∫ 1

0

(1− τ)∇ℓ
(
|un + τΨ|p−3(un + τΨ)

)
dτ

∣∣∣∣.
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For m ⩽ 3 and p > 5, we have the bound:

(8.28)
∣∣∣∣∫ 1

0

(1− τ)|un + τΨ|p−m−3(un + τΨ) dτ

∣∣∣∣ ≲ sup
0⩽τ⩽1

|un + τΨ|p−m−2.

This, together with the L∞-bound (8.8) which implies |Ψ| ≲ ⟨ρ⟩−α+κ and the asymp-
totic behaviour of un, we infer

(8.29)

∣∣∣∣ ∫ 1

0

(1− τ)∇ℓ
(
|un + τΨ|p−3(un + τΨ)

)
dτ

∣∣∣∣
≲

ℓ∑
m=0

∫ 1

0

(1− τ)|un + τΨ|p−m−3(un + τΨ) dτ
∑
|β|=ℓ

m∏
q=1

(|∇βqun|+ |∇βqΨ|)

≲
ℓ∑

m=0

ρ(−α+κ)(p−m−2)
∑
|β|=ℓ

m∏
q=1

(|∇βqun|+ |∇βqΨ|).

Note that (8.28) applies since m ⩽ ℓ ⩽ k = 3. Also, at most one of β1, i, j is > 1 i.e.,
we can apply the L∞-bound (8.8) for at least two of ∇β1Ψ, ∇iΨ, ∇jΨ factors. Thus,
we infer

|∇kGΩ| ≲
∑

i+j+ℓ=k

|∇iΨ||∇jΨ|
ℓ∑

m=0

ρ(−α+κ)(p−m−2)
∑
|β|=ℓ

m∏
q=1

(|∇βqun|+ |∇βqΨ|)

≲
∑

i+j+ℓ=k

ρ−α−j+κ|∇iΨ|
ℓ∑

m=0

ρ(−α+κ)(p−m−2)ρm(−α+κ)−ℓ

≲
k∑
i=0

ρ(−α+κ)(p−1)+i−k|∇iΨ| ≲
k∑
i=0

ρi−k−3/2|∇iΨ|.

where the final inequality follows from κ < 1/2(p+ 1). Then for R ⩾ 1, by setting
k = 3, we infer

(8.30)
∫
|y|⩾R

|∇3GΩ|2 dy ≲
3∑
i=0

∫
|y|⩾R

ρ−2i−3|∇3−iΨ|2 dy ≲ R−1∥Ψ∥2H3
⩽ R−1∥X∥2H,

where we have used the Hardy’s inequality (8.19). Now we consider the region
0 ⩽ ρ ⩽ R. Denote

H3
R := H3(BR(0)).

Then, there exists M1 > 0 such that

∥ϕψ∥2H3
R
⩽ RM1∥ϕ∥2H3

R
∥ψ∥2H3

R
∀ϕ, ψ ∈ H3

R,

since 3 = k > d/2 = 3/2 so thatH3(R3) is an algebra. From (8.28) and the assumption
3 = k < p− 2 we infer that,

3∑
m=0

∥∥∥∥∫ 1

0

(1− τ)|un + τΨ|p−m−3(un + τΨ) dτ

∥∥∥∥
L∞(R3)

≲ 1.
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Note also that the L∞-bound (8.8) implies |∇jΨ| ≲ ⟨ρ⟩−j−α+κ for 0 ⩽ j ⩽ 2 and for
all s ∈ [s0, s

∗]. Then it follows from (8.25) that

(8.31)

∫
|y|⩽R

|∇3GΩ|2 dy ⩽ ∥GΩ∥2H3
R

≲ R2M1∥Ψ∥4H3
R

∥∥∥∥∫ 1

0

(1− τ)|un + τΨ|p−3(un + τΨ) dτ

∥∥∥∥2
H3

R

≲ R2M1∥Ψ∥4H3
R

∑
|β|⩽3

∥∥∥∏
q

(|∇βqun|+ |∇βqΨ|)
∥∥∥2
L2(BR(0))

≲ R2M1∥Ψ∥4H3
R

3∑
m=0

(∥un∥2H3
R
+ ∥Ψ∥2H3

R
)m ≲ RM∥X∥4H

for some M > 0. Set R = ∥X∥−2/(1+M)
H and add (8.30) with (8.31) so the claim (8.26)

follows by choosing c < 1/(1 +M).
By the decay estimate in Corollary 7.2,

(8.32)

∥(I − P )X(s)∥H ≲ e−(δ/2)(s−s0)∥X(s0)∥H +

∫ s

s0

e−(δ/2)(s−τ)∥G(τ)∥H dτ

≲ e−(δ/2)s

[
e(δ/2)s0∥X∥H +

∫ s

s0

e((δ/2)−(δ0/2)(1+c))τ dτ

]
≲ e−(δ/2)s

since δ/(1 + c) < δ0. This, together with (8.7), we infer

∥X(s)∥H ≲ e−(δ/2)s.

This proves an improved bound for (8.10). Then, by (8.26), the non-linear bound
(8.11) follows. □

Appendix A. Bound on self-similar profiles

In this section, we derive some asymptotic properties for ρ → ∞ of the smooth
profiles un constructed in Theorem 1.

Lemma A.1. — Let un be the self-similar profiles constructed in Proposition 5.1. For
all k ∈ N, as ρ→ ∞,

(A.1) ∂kρun = O(ρ−α−k), ∂kρ (u
p−1
n ) = O(ρ−2−k).

Proof. — In view of (3.15), taking ε≪ 1 we infer

un = O(ρ−α), u′n = O(ρ−α−1)

and un ⩾ 0 for all ρ sufficiently large. It follows immediately that

up−1
n = O(ρ−2), (up−1

n )′ = (p− 1)up−1
n u′n = O(ρ−3).

In view of (1.4), we infer

|u(k)n | ≲k,ρ ∂k−2
[ 1

ρ2
(
ρu′n + un + upn)

)]
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for all ρ > ρ0 and k ⩾ 2. Suppose lemma holds for some k ⩾ 2. Then by hypothesis,
for all ρ > ρ0,

|u(k+1)
n | ≲

k∑
j=0

ρ−j−2u(k−j−1)
n +

k−1∑
j=0

ρ−j−2

k−j−1∑
i=0

u(i)n (up−1
n )(k−j−i−1) ≲ ρ−α−k−1.

Furthermore, by hypothesis and bound on u
(k+1)
n , we infer

|(up−1
n )(k+1)| ≲

k+1∑
j=0

up−k+j−2
n

∑
|β|=k+1
β>0

u(β1)
n · · ·u(βj)

n ≲ ρ−3−k,

and this concludes the proof by induction. □

Appendix B. Maximality of M̃

In this section, we consider the problem (6.21). Given H such that H(ρ)Y (ℓ,m) ∈
C∞
c (R3), we seek solution to

(B.1) [L− ρ−2λm − (Λ +R+ 1)(Λ +R) + pup−1
n ]Ψ = H.

Lemma B.1. — Let H ∈ C∞([0,∞)). Then for R sufficiently large, there exists a
unique solution Ψ ∈ C1([0,∞)) to (B.1). Furthermore, if H(ρ)Y (ℓ,m) ∈ C∞

c (R3),
then Ψ(ρ)Y (ℓ,m) is smooth on R3.

Proof
Step 1 (Solutions at ρ = 0). — Set (Ψ1,Ψ2) = (ρm+1Ψ, ∂ρ(ρ

m+1Ψ)). Writing (B.1) in
the form required in Proposition 3.2,

(B.2)

ρ ∂ρΨ1 = ρΨ2,

ρ ∂ρΨ2 =
ρ

1− ρ2
[
ξ − pup−1

n

]
Ψ1 +

ρ

1− ρ2

[2m
ρ

+ ηρ
]
Ψ2 +

ρm+2

1− ρ2
H,

where
ξ = (m− α−R+ 1)(m− α−R), η = −2(m− α−R).

Hence,

ρ ∂ρ

(
Ψ1

Ψ2

)
= A(ρ)

(
Ψ1

Ψ2

)
+

ρm+2

1− ρ2

(
0

H

)
,

where A is smooth in [0, 1),

A(0) =

(
0 0

0 2m

)
with σ(A(0)) = {0, 2m}. Thus, by Proposition 3.2 with ℓ = 2m + 1, we infer for all
a, b ∈ R, there exists a unique smooth solution to the homogeneous problem for (B.2)
such that

(Ψ1,Ψ
′
1, · · · ,Ψ

(2m)
1 ,Ψ

(2m+1)
1 )(0) = (a, 0, · · · , 0, b).

Since H(ρ)Y (ℓ,m) is smooth radial, H = Oρ→0(ρ
m) so from Proposition 3.2 we can

write the solution Ψa,b to (B.2) with the boundary condition

(Ψa,b,Ψ
′
a,b, · · · ,Ψ

(2m)
a,b ,Ψ

(2m+1)
a,b )(0) = (a, 0, · · · , 0, b)
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as

Ψa,b = Ψ0 + aψ1 + bψ2,

{
ψ1(ρ) ∝ 1 + Oρ→0(ρ

2m+2),

ψ2(ρ) ∝ ρ2m+1 + Oρ→0(ρ
2m+2),

where ψ1, ψ2 are the linearly independent solutions to the homogeneous problem for
(B.2) in [0, 1) with appropriate initial values.

Step 2 (Solutions at ρ = 1). — For (Ψ̃1, Ψ̃2) = (Ψ, ∂ρΨ), we write (B.1) as
(ρ− 1)∂ρΨ̃1 = (ρ− 1)Ψ̃2,

(ρ− 1)∂ρΨ̃2 =
−(α+R)(α+R+ 1) + pup−1

n − λm/ρ
2

1 + ρ
Ψ̃1

+
(2/ρ)− 2(α+R+ 1)ρ

1 + ρ
Ψ̃2 −

H

1 + ρ
.

Hence,

(ρ− 1) ∂ρ

(
Ψ̃1

Ψ̃2

)
= B(ρ)

(
Ψ̃1

Ψ̃2

)
+

1

ρ+ 1

(
0

H

)
,

where B is smooth in (0,∞),

B(1) =
1

2

(
0 0

−(α+R)(α+R+ 1)− λm + pup−1
n (1) 2sc − 2R− 3

)
with σ(B(1)) = {sc−R− 3/2, 0}. Thus, by Proposition 3.2, for all b ∈ R, there exists
a unique smooth solution Ψ̃b ∈ C∞((0,∞)) to (B.1) with

(Ψ̃c(1), Ψ̃
′
c(1)) =

(
2c,−

[
α+R+ 1 +

pup−1
n (1)− λm

−sc +R+ 3/2

]
c+

H(1)

−sc +R+ 3/2

)
.

We can write

Ψ̃c = Ψ̃0 + c ψ̃, (ψ̃(1), ψ̃′(1)) =
(
2,−(α+R+ 1)− pup−1

n (1)− λm
−sc +R+ 3/2

)
,

where ψ̃ is the unique solution to the homogeneous problem for (B.1) in (0,∞) with
the given initial values.

Step 3 (Matching). — Next, we claim that for R sufficiently large and for all m ⩾ 0, the
homogeneous problem for (B.1) with H = 0 has a unique C1 solution Ψ ≡ 0 on [0, 1].
Suppose otherwise i.e., there is R arbitrarily large and m ⩾ 0 such that there exists
Ψℓ,m ̸≡ 0 smooth in [0, 1] such that (B.1) holds with H = 0 and Ψ = Ψℓ,m(ρ)Y (ℓ,m)

is smooth at the origin. Extend uniquely the homogeneous solution Ψℓ,m to [1,∞).
Then, using the fixed point argument as in the proof of Lemma B.2 we infer

k+3∑
j=0

sup
ρ⩾1

ρα+R+j |∂jρΨℓ,m| <∞

and therefore, (Ψ,−(Λ +R)Ψ) ∈ DR where we recall the definition (6.17) of DR and

⟨MX,X⟩ = R⟨X,X⟩.
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By dissipativity of M̃ for X ∈ DR proved in Step 1 of the proof of Proposition 6.4,
we infer for all X ∈ DR

⟨MX,X⟩ ⩽ C⟨X,X⟩

for some C independent of R and this is a contradiction, so we have our claim. This
yields the uniqueness result.

Choose R sufficiently large so the claim holds. Since {ρ−m−1ψ1, ρ
−m−1ψ2} is a

basis of solutions to the homogeneous problem in (0, 1), there exist A, B ∈ R such
that

ψ̃ = ρ−m−1(Aψ1 +Bψ2)

in (0, 1). If A = 0, then ψ̃ ∈ C∞([0, 1]), contradicting the claim above. Since
{ρ−m−1ψ1, ρ

−m−1ψ2} is a basis of solutions to the homogeneous problem in (0, 1),
there exist a, b ∈ R such that

ρ−m−1Ψa,b = Ψ̃0.

Then,

Ψ = Ψ̃0 −
a

A
ψ̃ = ρ−m−1

(
Ψa,b − aψ1 −

aB

A
ψ2

)
is smooth at ρ = 0 by the first equality and is smooth at ρ = 1 by the second equality.
Thus, we have the existence and uniqueness of a C1([0,∞)) solution. Furthermore,
if H(ρ)Y (ℓ,m) is smooth i.e., H = Oρ→0(ρ

m) and H(m+2k+1)(0) = 0 for k ∈ N⩾0, then
it follows that Ψ(m+2k+1)(0) = 0 for k ∈ N⩾0. Thus, Ψ(ρ)Y (ℓ,m) is smooth. □

Lemma B.2. — For H such that H(ρ)Y (ℓ,m)∈C∞
c (R3), let Ψ be the unique C1 solution

to (B.1) found in Lemma B.1. Then for R sufficiently large, Ψ(ρ)Y (ℓ,m)∈Hk+1(R3).

Proof. — Using the fixed point argument, we prove the existence of Ck+1 solution Ψ

to (B.1) in {ρ ⩾ ρ0} for ρ0 sufficiently large with sufficiently rapid decay as ρ → ∞
so that Ψ ∈ Hk+1

rad ({ρ ⩾ ρ0}). Then by uniqueness of solution, we argue that this
solution is indeed what we found in Lemma B.1.

Consider the homogeneous problem for (B.1) without the pup−1
n potential term:

(B.3)
{
(1−ρ2)∂2ρ+[2ρ−1−2(α+R+1)ρ]∂ρ−λmρ−2−(α+R)(α+R+1)

}
︸ ︷︷ ︸

:=LR

φ = 0

in [1,∞). A computation similar to Lemma 3.1 yields a pair of linearly independent
solutions

(B.4)
φ1 = ρ−α−R−1

2F1

(α+R+m+ 1

2
,
α+R−m

2
,
3

2
, ρ−2

)
,

φ2 = ρ−α−R 2F1

(α+R+m

2
,
α+R−m− 1

2
,
1

2
, ρ−2

)
,

with the Wronskian

W := φ′
1φ2 − φ′

2φ1 ∝ ρ−2|1− ρ2|sc−R−3/2.
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Define the spaces

Xρ0 =
{
w ∈ Ck+1((ρ0,∞))

∣∣∣ ∥w∥Xρ0
:=
∑k+1
j=0 supρ⩾ρ0 ρ

α+R+j |∂jρw|
}
,

Y ρ0 =
{
w ∈ Ck+1((ρ0,∞))

∣∣∣ ∥w∥Y ρ0
:=
∑k+1
j=0 supρ⩾ρ0 ρ

α+R+j+2|∂jρw|
}
.

We claim that for ρ0 > 1, the resolvent map TR : Y ρ0 → Xρ0 given by

TR(f) = φ1

∫ ρ

ρ0

fφ2

(1− r2)W
dr − φ2

∫ ρ

ρ0

fφ1

(1− r2)W
dr

is well-defined and bounded with LR ◦ TR = idY ρ0
. Note that

∂jρTR(f) = φ
(j)
1

∫ ρ

ρ0

fφ2

(1− r2)W
dr − φ

(j)
2

∫ ρ

ρ0

fφ1

(1− r2)W
dr

+

j−2∑
i=0

∂iρ

[
f(φ

(j−i−1)
1 φ2 − φ

(j−i−1)
2 φ1)

(1− ρ2)W

]
.

In view of (B.4) and the asymptotic expansion of the fundamental solutions, we infer

∂ℓρ

[
φ
(j−i−1)
1 φ2 − φ

(j−i−1)
2 φ1

(1− ρ2)W

]
= Oρ→∞(ρi−j−ℓ).

Then for all ρ ⩾ ρ0 and 0 ⩽ j ⩽ k + 1,

ρα+R+j |∂jρTR(f)| ≲
(
ρ−1

∫ ρ

ρ0

ρ−2 dρ

)
sup
r⩾ρ0

rα+R+2|f |+
(∫ ρ

ρ0

ρ−3 dρ

)
sup
r⩾ρ0

rα+R+2|f |

+

j−2∑
i=0

ρi−j
(
ρj−i−2 sup

r⩾ρ0
rα+R+i+2|∂iρf |

)
≲ ρ−2

0 ∥f∥Y ρ0
.

Thus, TR is a bounded map with operator norm ∥TR∥ ≲ ρ−2
0 as claimed. Now, we solve

the fixed point problem:

(B.5) Ψ = c1φ1 + c2φ2 + TR[H − up−1
n Ψ]︸ ︷︷ ︸

:=GR(Ψ)

for c1, c2 such that the Ψ(ρ0), Ψ′(ρ0) agree with the corresponding values of the unique
solution in Lemma B.1. Note that φ1, φ2 ∈ Xρ0 , H ∈ C∞

c ([0,∞)). By Lemma A.1,
∂jρ(u

p−1
n ) = O(ρ−m−2) as ρ→ ∞, so we infer

∥up−1
n Ψ∥Y ρ0

≲ ∥Ψ∥Xρ0

and hence, H − up−1
n Ψ ∈ Y ρ0 , so indeed GR : Xρ0 → Xρ0 . For ρ0 sufficiently large,

GR is a contraction map since for all Ψ1,Ψ2 ∈ Xρ0 ,

∥GR(Ψ1)−GR(Ψ2)∥Xρ0
≲ ∥TR∥ ∥up−1

n (Ψ1 −Ψ2)∥Y ρ0
≲ ρ−2

0 ∥Ψ1 −Ψ2∥Xρ0
.

Thus, it follows from the Banach fixed point theorem that there exists a unique
Ψ ∈ Xρ0 such that (B.5) holds. Taking R > sc, Xρ0 continuously embeds in
Hk+1

rad ({ρ ⩾ ρ0}), so Ψ ∈ Hk+1
rad ({ρ ⩾ ρ0}). Also, by uniqueness of solution to an ODE

at ordinary point, this is indeed the solution we found in Lemma B.1. □
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Appendix C. Behaviour of the Sobolev norm

In this section, we prove the asymptotic behaviors (1.7), (1.8) and (1.9) of the
Sobolev norms of the blow up solutions. In this section we denote by τ the self-similar
time in order to distinguish from the Sobolev exponent s.

Proof of (1.7), (1.8), (1.9). — Suppose that (Φ,Φt) is a blow up solution as in the
statement of Theorem 2. Then, the bootstrap bounds in Proposition 8.1 are satisfied
in the region τ ∈ [s0,∞) in the self-similar time. In particular, from (8.23), we have
that

(C.1)
∫
|y|<eτ

⟨ρ⟩2j−2sc
(
|∇jΨ|2 + 1j⩾1|∇j−1Ω|2

)
dy < d0, 0 ⩽ j ⩽ 4,

and from (8.10),

(C.2)
∫
R3

(
|∇4Ψ|2 + |∇3Ω|2

)
dy < e−(δ0/2)τ .

Recall the definition of dampened profile uDn and perturbation ΨD from Section 8.
From (8.23) with j = 0, we infer

∥Φ∥2L2(|x|>1) =
∥∥∥ 1

(T − t)α
Ψ̃
( r

T − t

)∥∥∥2
L2(|x|>1)

≲
∫
|y|⩾eτ

ρ−2scξ(e−τρ)2np+1|Ψ̃|2 dy < d0,

where we have used that ξ(r) ≳ r for r ⩾ 1 and that sc < np. Similarly, setting j = 2

in (8.23),

∥Φ∥2
Ḣ2(|x|>1)

=
∥∥∥ 1

(T − t)α
Ψ̃
( r

T − t

)∥∥∥2
Ḣ2(|x|>1)

≲
∫
|y|⩾eτ

ρ−2(sc−2)ξ(e−τρ)2np+1|∆Ψ̃|2 dy < d0.

We interpolate the above two bounds and infer

(C.3) ∥Φ∥2
Ḣs(|x|>1)

≲ d0, 0 ⩽ s ⩽ 2.

Step 1 (Hsc Bound). — In view of the Gagliardo-Nirenberg inequality (see [10]), we in-
fer the Hsc bound on ΨD:∥∥∥ 1

(T − t)α
∇sc
r ΨD

( r

T − t

)∥∥∥2
L2(R3)

=

∫
R3

|∇scΨD|2dy

≲

(∫
R3

⟨ρ⟩2(1−sc)|∇ΨD|2 dy
)θ (∫

R3

⟨ρ⟩2(2−sc)|∆ΨD|2 dy
)1−θ

,

where
sc = θ + 2(1− θ), θ ∈ (0, 1).

Thus, from (8.23), we infer

(C.4)
∥∥∥ 1

(T − t)α
∇sc
r ΨD

( r

T − t

)∥∥∥2
L2(R3)

=

∫
R3

|∇scΨD|2dy ≲ d0.
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Also, note that for s ⩽ sc,

(C.5)
∥∥∥∥ 1

(T − t)α
∇s
run

( r

T − t

)∥∥∥∥2
L2(|x|<1)

= e−2(sc−s)τ
∫
|y|⩽eτ

|∇sun|2 dy

∼ cn,se
−2(sc−s)τ

∫ eτ

1

ρ2(sc−s)−1dρ ∼ cn,s

{
1 s < sc,

τ s = sc.

From the above inequalities, together with (C.3) with s = sc we infer

∥Φ∥2
Ḣsc

= cn(1 + ot→T (1))| log(T − t)|.

Similarly for Φt. Hence, we infer (1.8).

Step 2 (Subcritical Bound). — Set j = 0 in (C.1), we have the L2 bound on Ψ:∥∥∥∥ 1

(T − t)α
Ψ
( r

T − t

)∥∥∥∥2
L2(|x|<1)

⩽
∫
|x|<1

e2scτ ⟨eτr⟩−2sc

∣∣∣∣ 1

(T − t)α
Ψ
( r

T − t

)∣∣∣∣2 dx
=

∫
|y|<eτ

⟨ρ⟩−2sc |Ψ|2 dy < d0.

From this, together with (C.3), we infer∥∥∥∥ 1

(T − t)α
ΨD
( r

T − t

)∥∥∥∥2
L2(R3)

≲ d0.

Interpolating with the critical norm (C.4) above, we have for 0 ⩽ s < sc,∥∥∥∥ 1

(T − t)α
∇s
rΨ

D
( r

T − t

)∥∥∥∥2
L2(R3)

≲ d0.

Adding with the norm of the dampened profile (C.5), we infer

lim sup
t→T

∥Φ∥2
Ḣs <∞.

Similarly for Φt. Hence, we infer (1.7).

Step 3 (Supercritical Bound). — Since∫
|y|⩾eτ

|∇4(un − uDn )|2dy ≲ e−2(4−sc)τ ,

it follows from (C.2) that∫
R3

|∇4ΨD|2dy ≲ e−(δ0/2)τ + e−2(4−sc)τ .

We interpolate this with (C.4) and infer, for sc < s ⩽ 2,

∥Ψ∥2
Ḣs ⩽

∫
|y|⩾eτ

|∇s(un − uDn )|2dy +
∫
R3

|∇sΨD|2dy

≲s e
−2(s−sc)τ + e−csτ −→ 0.

Similarly for Ω. Hence, we infer (1.9). □
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Appendix D. Lipschitz dependence of initial data

Recall from Section 8 the definition of the projection operator P onto V the sub-
space of unstable directions under semigroup action of the maximally dissipative
operator M − P. In the proof of Proposition 8.1 and Corollary 7.3, it is proved that
for any small initial perturbation in the stable direction:

∥(I − P )X(s0)∥H ⩽ e−(δ/2)s0 ,

there exists a choice of PX(s0) so that the solution is global in self-similar time with

∥PX(s)∥H ⩽ e−(δ/2)(1+c/2)s s ⩾ s0.

In this section, we prove that the choice of PX(s0) is unique and is Lipschitz depen-
dent on (I − P )X(s0). In particular, we show that for any two global solutions X
and X, if the initial difference in the unstable direction is too big compared with the
initial differences in the stable direction, the unstable linear dynamics wins and expels
the differences of unstable parameters away from 0. Hence one of the two solutions
cannot blow up according to our scenario, yielding a contradiction. In particular,
we claim the following:

Lemma D.1. — Let us assume X and X are two global solutions as in Proposition 8.1
i.e., there hold the initial condition (8.5) and the bootstrap bounds (8.8), (8.10) for
s ⩾ s0. Denote by

Xs = (I − P )X, Xu = PX,

the stable and unstable part of the perturbation and similarly Xu, Xs. Then, for
s0 ≫ 1 sufficiently large,

(D.1) ∥△Xu(s0)∥H ⩽ cs0∥△Xs(s0)∥H,

where △Xu = Xu −Xu, △Xs = Xs −Xs.

Proof

Step 1 (Difference of nonlinear term). — Recall (6.3) and define △G = G−G. Then,

△GΩ = −|Ψ+ un|p−1(Ψ + un) + |Ψ+ un|p−1(Ψ + un) + pup−1
n △Ψ

= p△Ψ

(
up−1
n −

∫ 1

0

|un +Ψ+ τ△Ψ|p−1 dτ

)
.

We claim the following nonlinear bound: there exists c > 0 such that

∥△G(s)∥H ≲ e−(cδ/2)s∥△X(s)∥H.

This is an analogue of (8.26) for the difference △X.
Let ρ ⩾ 1. Note that for m ⩽ k = 3 < p− 1,

(D.2)
∫ 1

0

|un +Ψ+ τ△Ψ|p−m−1 dτ ≲ sup
τ∈[0,1]

|un +Ψ+ τ△Ψ|p−m−1.
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Thus, using (8.8) and following the similar steps as in (8.29) we infer

|∇k△GΩ| ≲
∑
j+ℓ=k

|∇j△Ψ|
ℓ∑

m=0

ρ(p−m−1)(−α+κ)
∑
|β|=ℓ

m∏
q=1

(|∇βq (un +Ψ)|+ |∇βq△Ψ|)

≲
∑
j+ℓ=k

|∇j△Ψ|
ℓ∑

m=0

ρ(p−m−1)(−α+κ)ρm(−α+κ)−ℓ ≲
k∑
i=0

ρi−k−3/2|∇i△Ψ|,

where in the last inequality, we have used that κ < 1/2(p+ 1). Then for R ⩾ 1,
we infer

(D.3)

∫
|y|⩾R

|∇3△GΩ|2 dy ≲
3∑
i=0

∫
|y|⩾R

ρ−2i−3|△∇3−iΨ|2 dy

≲ R−1∥△Ψ∥2H4
⩽ R−1∥△X∥2H,

where we have used the Hardy’s inequality. We now bound △GΩ in the region ρ ⩽ R.
We rewrite

△GΩ = −p(p−1)△Ψ

∫ 1

0

∫ 1

0

(Ψ+τ△Ψ)|un+τ ′(Ψ+τ△Ψ)|p−3(un+τ
′(Ψ+τ△Ψ)) dτdτ ′.

Note that for m ⩽ 3 < p− 2,∫ 1

0

|un + τ ′(Ψ + τ△Ψ)|p−m−2 dτ ′ ≲ sup
0⩽τ⩽1

|un + τ(Ψ + τ△Ψ)|p−m−2.

Thus, we infer from the assumption k = 3 < p− 1 that
3∑

m=0

∥∥∥∥∫ 1

0

|un + τ ′(Ψ + τ△Ψ)|p−m−2 dτ ′
∥∥∥∥
L∞(R3)

≲ 1.

Then following the similar steps as in (8.31) by exploiting the algebra structure of the
Sobolev space H3

R, we bound the nonlinear difference in the region 0 ⩽ ρ ⩽ R:∫
|y|⩽R

|∇3△GΩ|2 dy ⩽ ∥△GΩ∥2H3
R

≲ R2M1∥△Ψ∥2H3
R
(∥Ψ∥2H3

R
+ ∥Ψ∥2H3

R
)

3∑
m=0

(∥un∥2H3
R
+ ∥Ψ∥2H3

R
+ ∥Ψ∥2H3

R
)m

≲ RM∥△X∥2H(∥X∥2H + ∥X∥2H) ≲ RMe−δs∥△X∥2H
for some M>0. Note that the final inequality follows from (8.10). Set R=eδs/(1+M)

and add (8.30) with (8.31) so the claim (8.26) follows by choosing c < 1/(1 +M).

Step 2 (Bound on initial perturbation). — Recall that in the decomposition

H = U ⊕ V,

we have for all λ ∈ σ(M − P)|V , that Re(λ) ⩾ 0. Then, without loss of generality,
restrict to an irreducible subspace so that for Re(λ) ⩾ 0, we write A := M − P as
in (7.1). Then, from Duhamel’s formula, (6.3) implies

e(s0−s)A△Xu(s) = △Xu(s0) +

∫ ∞

s0

e(s0−τ)A△Gu(τ) dτ −
∫ ∞

s

e(s0−τ)A△Gu(τ) dτ,
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where Gu = PG(s) and △Gu = Gu −Gu. Also, from (D.3), we bound∥∥∥∥e(s0−s)A△Xu(s) +

∫ ∞

s

e(s0−τ)A△Gu(τ) dτ
∥∥∥∥
H

≲
(s− s0)

mλ−1

eRe(λ)(s−s0)
∥△Xu(s)∥H +

∫ ∞

s

(τ − s0)
mλ−1e−Re(λ)(τ−s0)∥△Gu∥H dτ −→ 0,

since we have exponential decay of X, X from (8.10) and of G, G from (8.11). Thus,
for all s ⩾ s0,

(D.4)
∥△Xu(s)∥H =

∥∥∥∥∫ ∞

s

e(s−τ)A△Gu(τ) dτ
∥∥∥∥
H

⩽
∫ ∞

s0

∥△Gu(τ)∥H dτ ⩽
∫ ∞

s0

e−(cδ/2)τ∥△X(τ)∥H dτ.

Now, consider the evolution in the stable subspace U where A is dissipative, so Corol-
lary 7.2 applies. Again, from Duhamel’s formula,

△Xs(s) = e(s−s0)A△Xs(s0) +

∫ s

s0

e(s−τ)A△Gs(τ) dτ,

so we bound for all s ⩾ s0:

∥△Xs(s)∥H ⩽ ∥△Xs(s0)∥H +

∫ s

s0

∥△Gu(τ)∥H dτ

⩽ ∥△Xs(s0)∥H +

∫ s

s0

e−(cδ/2)τ∥△X(τ)∥H dτ.

Taking supremum over s,

∥△Xs∥H,L∞
s

⩽ ∥△Xs(s0)∥H + (∥△Xs∥H,L∞
s

+ ∥△Xu∥H,L∞
s
)

∫ ∞

s0

e−(cδ/2)τdτ

≲ ∥△Xs(s0)∥H + ∥△Xu∥H,L∞
s
,

where in the last inequality, we absorb the △Xs on the right-hand side by taking a
large s0. Thus, from (D.4),

∥△Xu∥H,L∞
s

⩽
∫ ∞

s0

e−(cδ/2)τ (∥△Xs∥H,L∞
s

+ ∥△Xu∥H,L∞
s
) dτ

≲ e−(cδ/2)s0(∥△Xs(s0)∥H + ∥△Xu∥H,L∞
s
) ≲ ∥△Xs(s0)∥H.

Again absorb the △Xu term by taking a large s0. Thus, we infer (D.1). □
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[3] P. Bizoń, D. Maison & A. Wasserman – “Self-similar solutions of semilinear wave equations with
a focusing nonlinearity”, Nonlinearity 20 (2007), no. 9, p. 2061–2074.

[4] B. Cassano, L. Cossetti & L. Fanelli – “Improved Hardy-Rellich inequalities”, Comm. Pure Appl.
Math. 21 (2022), no. 3, p. 867–889.

J.É.P. — M., 2024, tome 11



On self-similar blow up for the energy supercritical semilinear wave equation 1541

[5] C. Collot – Type II blow up manifolds for the energy supercritical semilinear wave equation,
Mem. Amer. Math. Soc., vol. 252, no. 1205, American Mathematical Society, Providence, RI,
2018.

[6] C. Collot, F. Merle & P. Raphaël – “Strongly anisotropic type II blow up at an isolated point”,
J. Amer. Math. Soc. 33 (2020), no. 2, p. 527–607.

[7] C. Collot, P. Raphaël & J. Szeftel – On the stability of type I blow up for the energy super
critical heat equation, Mem. Amer. Math. Soc., vol. 260, no. 1255, American Mathematical
Society, Providence, RI, 2019.

[8] W. Dai & T. Duyckaerts – “Self-similar solutions of focusing semi-linear wave equations in RN”,
J. Evol. Equ. 21 (2021), p. 4703–4750.

[9] R. Donninger & B. Schörkhuber – “On blowup in supercritical wave equations”, Comm. Math.
Phys. 346 (2016), p. 907–943.

[10] R. Duarte & J. D. Silva – “Weighted Gagliardo-Nirenberg interpolation inequalities”, J. Funct.
Anal. 285 (2023), no. 5, article no. 110009 (49 pages).

[11] K.-J. Engel, R. Nagel & S. Brendle – One-parameter semigroups for linear evolution equations,
Graduate Texts in Math., vol. 194, Springer, New York, 2000.

[12] Y. Gao & J. Xue – “Local well-posedness and small data scattering for energy super-critical
nonlinear wave equations”, Appl. Anal. 100 (2021), no. 3, p. 663–674.
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