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ARITHMETIC THEORY OF E-OPERATORS

by Stéphane Fischler & Tanguy Rivoal

Abstract. — In [1], André has introduced E-operators, a class of differential operators inti-
mately related to E-functions, and constructed local bases of solutions for these operators. In
this paper we investigate the arithmetical nature of connection constants of E-operators at fi-
nite distance, and of Stokes constants at infinity. We prove that they involve values at algebraic
points of E-functions in the former case, and in the latter one, values of G-functions and of
derivatives of the Gamma function at rational points in a very precise way. As an application,
we define and study a class of numbers having certain algebraic approximations defined in
terms of E-functions. These types of approximations are motivated by the convergents to the
number e, as well as by recent constructions of approximations to Euler’s constant and values
of the Gamma function. Our results and methods are completely different from those in our
paper [11], where we have studied similar questions for G-functions.

Résumé (Théorie arithmétique des E-opérateurs). — Dans [1], André a introduit les E-opéra-
teurs, une classe d’opérateurs différentiels intimement liés aux E-fonctions, et il a construit des
bases locales de solutions pour ces opérateurs. Dans cet article on étudie la nature arithmétique
des constantes de connexion des E-opérateurs à distance finie, et des constantes de Stokes à
l’infini. On démontre qu’elles mettent en jeu des valeurs de E-fonctions en des points algébriques
dans le premier cas, et dans le second des valeurs de G-fonctions et des dérivées de la fonction
Gamma en des points rationnels. Comme application, on définit et on étudie une classe de
nombres qui possèdent certaines approximations algébriques définies en termes de E-fonctions.
Ces types d’approximations sont motivés par les réduites du nombre e, et par des constructions
récentes d’approximations de la constante d’Euler et de valeurs de la fonction Gamma. Nos
résultats et nos méthodes sont complètement différents de ceux de notre article [11], dans
lequel nous avons étudié des questions similaires pour les G-fonctions.
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32 S. Fischler & T. Rivoal

1. Introduction

In a seminal paper [1], André has introduced E-operators, a class of differential
operators intimately related to E-functions, and constructed local bases of solutions
for these operators. In this paper we investigate the arithmetical nature of connection
constants of E-operators, and prove that they involve values at algebraic points of
E-functions or G-functions, and values at rational points of derivatives of the Gamma
function. As an application, we will focus on algebraic approximations to such num-
bers, in connection with Aptekarev’s famous construction for Euler’s constant γ.

To begin with, let us recall the following definition.

Definition 1. — An E-function E is a power series E(z) =
∑∞
n=0

an
n! z

n such that
the coefficients an are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the Galois conjugates of an is 6 Cn+1 for any n.
(ii) there exists a sequence of non-zero rational integers dn, with |dn| 6 Cn+1, such

that dnam is an algebraic integer for all m 6 n.
(iii) E(z) satisfies a homogeneous linear differential equation with coefficients

in Q(z).

A G-function is defined similarly, as
∑∞
n=0 anz

n with the same assumptions (i),
(ii), (iii); throughout the paper we fix a complex embedding of Q.

We refer to [1] for an overview of the main properties of E and G-functions. For the
sake of precision, we mention that the class of E-functions was first defined by Siegel
in a more general way, with bounds of the shape n!ε for any ε > 0 and any n �ε 1,
instead of Cn+1 for all n ∈ N = {0, 1, 2, . . .}. The functions covered by Definition 1 are
called E∗-functions by Shidlovskii [23], and are the ones used in the recent literature
under the denomination E-functions (see [1, 6, 17]); it is believed that both classes
coincide.

Examples of E-functions include eαz with α ∈ Q, hypergeometric series pFp with
rational parameters, and Bessel functions Jα with α ∈ N. Very precise transcendence
(and even algebraic independence) results are known on values of E-functions, such
as the Siegel-Shidlovskii theorem [23]. Beukers’ refinement of this result enables one
to deduce the following statement (see §3.1), whose analogue is false for G-functions
(see [5] for interesting examples):

Theorem 1. — An E-function with coefficients in a number field K takes at an alge-
braic point α either a transcendental value or a value in K(α).

In this paper we consider the following set E, which is analogous to the ring G of
values at algebraic points of analytic continuations of G-functions studied in [11].

Definition 2. — The set E is defined as the set of all values taken by any E-function
at any algebraic point.

We recall that G might be equal to P[1/π], where P is the ring of periods (in the
sense of Kontsevich-Zagier [16]: see [11, §2.2]). On the other hand, it seems reasonable
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Arithmetic theory of E-operators 33

to imagine that E is contained in the ring generated by 1/π and exponential periods
(see [12]).

Since E-functions are entire and E(αz) is an E-function for any E-function E(z)

and any α ∈ Q, we may restrict in Definition 2 to values at z = 1. Moreover E-
functions form a ring, so that E is a subring of C. Its group of units contains Q∗

and exp(Q) because algebraic numbers, exp(z) and exp(−z) are E-functions. Other
elements of E include values at algebraic points of Bessel functions Jα with α ∈ N,
and also of any arithmetic Gevrey series of negative order (see [1, Cor. 1.3.2]). It seems
unlikely that E is a field and we don’t know if we have a full description of its units.

A large part of our results is devoted to the arithmetic description of connection
constants or Stokes constants. Any E-function E(z) satisfies a differential equation
Ly = 0, where L is an E-operator (see [1]); it is not necessarily minimal and its only
possible singularities are 0 and ∞, the former being regular and the latter irregular
(in general). André has proved [1] that a basis of solutions of L at z = 0 is of the form
(E1(z), . . . , Eµ(z)) ·zM where M is an upper triangular µ×µ matrix with coefficients
in Q and the Ej(z) are E-functions. This implies that any local solution F (z) of L at
z = 0 is of the form

(1.1) F (z) =

µ∑
j=1

( ∑
s∈Sj

∑
k∈Kj

φj,s,kz
s log(z)k

)
Ej(z),

where Sj ⊂ Q,Kj ⊂ N are finite sets and φj,s,k ∈ C. Our purpose is to study the
connection constants of F (z), assuming all coefficients φj,s,k to be algebraic (with a
special focus on the special case where F (z) itself is an E-function).

Any point α ∈ Q r {0} is a regular point of L and there exists a basis of locally
holomorphic solutions G1(z), . . . , Gµ(z) ∈ Q[[z − α]] such that, around z = α,

(1.2) F (z) = ω1G1(z) + · · ·+ ωµGµ(z)

for some complex numbers ω1, . . . , ωµ, called the connection constants (at finite dis-
tance).

Proposition 1. — If all coefficients φj,s,k in (1.1) are algebraic then the connec-
tion constants ω1, . . . , ωµ in (1.2) belong to E[logα], and even to E if F (z) is an
E-function.

The situation is much more complicated around∞, which is in general an irregular
singularity of L; this part is therefore much more involved than the corresponding one
for G-functions [11] (since ∞ is a regular singularity of G-operators, the connection
constants of G-functions at any ζ ∈ Q∪{∞} always belong to G). The local solutions
at ∞ involve divergent series, which give rise to Stokes phenomenon: the expression
of an E-function E(z) on a given basis is valid on certain angular sectors, and the
connection constants may change from one sector to another when crossing certain
rays called anti-Stokes directions. For this reason, we speak of Stokes constants rather
than connection constants. More precisely, let θ ∈ R and assume that θ is not an anti-
Stokes direction (which amounts to excluding finitely many values of θ mod 2π). Then
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34 S. Fischler & T. Rivoal

we compute explicitly the asymptotic expansion

(1.3) E(z) ≈
∑
ρ∈Σ

eρz
∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nz
−n−α log(1/z)i

as |z| → ∞ in a large sector θ − π/2 − ε 6 arg(z) 6 θ + π/2 + ε for some ε > 0; in
precise terms, E(z) can be obtained from this expansion by Borel-Laplace summation
(i.e., Ramis’ 1-summation; see §4.1). Here Σ ⊂ Q, S ⊂ Q and T ⊂ N are finite subsets,
and the coefficients cρ,α,i,n are complex numbers (that also depend on θ); all of them
are constructed explicitly in terms of the Laplace transform g(z) of E(z), which is
annihilated by a G-operator. In applying or studying (1.3) we shall always assume
that the sets Σ, S and T have the least possible cardinality (so that α − α′ 6∈ Z for
any distinct α, α′ ∈ S) and that for any α there exist ρ and i with cρ,α,i,0 6= 0. Then
the asymptotic expansion (1.3) is uniquely determined by E(z) and θ (see §4.1).

The existence of an asymptotic expansion of the form (1.3) is a priori ensured
by the theory of linear differential equations with meromorphic coefficients, see [13,
p. 582, Th.VIII.7], but its explicit determination is a difficult task in general. One of
our main contributions is the value of cρ,α,i,n, which is given in terms of derivatives
of 1/Γ at α ∈ Q and connection constants of g(z) at its finite singularities ρ. André
has constructed [1, Th. 4.3(v)] a basis H1(z), . . . ,Hµ(z) of formal solutions at infinity
of an E-operator that annihilates E(z); these solutions involve divergent Gevrey series
of order 1, and are of the same form as the right hand side of (1.3), with algebraic
coefficients cρ,α,i,n. The asymptotic expansion (1.3) of E(z) in a large sector bisected
by θ can be written on this basis as

(1.4) ω1,θH1(z) + · · ·+ ωµ,θHµ(z),

with Stokes constants ωi,θ. To identify these constants, we first introduce another
ring.

Definition 3. — We define S as the G-module generated by all the values of deriva-
tives of the Gamma function at rational points. It is also the G[γ]-module generated
by all the values of Γ at rational points, and it is a ring.

We show in §2 why the two modules coincide, and why S is a ring. The Rohrlich-
Lang conjecture (see [2] or [24]) implies that the values Γ(s), for s ∈ Q with 0 < s 6 1,
are Q-linearly independent. We conjecture that these numbers are in fact also G[γ]-
linearly independent, so that S is the free G[γ]-module they generate.

We then have the following result. We recall that the coefficients cρ,α,i,n depend
on θ.

Theorem 2. — Let E(z) be an E-function, and θ ∈ R be a direction which is not
anti-Stokes for E(z). Then:

(i) The Stokes constants ωi,θ belong to S.
(ii) All coefficients cρ,α,i,n in (1.3) belong to S.
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(iii) Let ρ ∈ Σ, α ∈ S, and n > 0; denote by k the largest i ∈ T such that
cρ,α,i,n 6= 0. If k exists then for any i ∈ T the coefficient cρ,α,i,n is a G-linear combi-
nation of Γ(α), Γ′(α), . . . , Γ(k−i)(α). In particular, cρ,α,k,n ∈ Γ(α) ·G. Here Γ(`)(α)

is understood as Γ(`)(1) if α ∈ Z60.
(iv) Let F (z) be a local solution at z = 0 of an E-operator, with coefficients

φj,s,k ∈ S in (1.1). Then Assertions (i) and (ii) hold with F (z) instead of E(z).

Assertion (iv) applies to many special functions, including Bessel’s functions Jα
with α ∈ Q and Ai(z2/3) where Ai(z) is Airy’s oscillating integral (see [1]).

Assertions (i) and (iv) of Theorem 2 are consistent with André’s remark in
[1, p. 722]: “Nous privilégierons une approche formelle, qui permettrait de travailler
sur Q(Γ(k)(a))k∈N,a∈Q plutôt que sur C si l’on voulait”.(1)

Many examples of E-functions for which values of (derivatives of) Γ appear in
Stokes constants are known (see for instance [25, §16.41] for confluent hypergeometric
equations of order 2, or [10]). The point in Theorem 2 is that, in some sense, no
other number can appear. Moreover, an important feature of Assertion (iii) is that
Γ(k)(α), for k > 1, never appears in the coefficient of a leading term of (1.3), but only
combined with higher powers of log(1/z). This motivates the logarithmic factor in
(1.8) below, and explains an observation we had made on Euler’s constant: it always
appears through γ − log(1/z) (see Eq. (4.7) in §4.2). Moreover, in (iii), it follows
from the remarks made in §2 that, alternatively, cρ,α,i,n = Γ(α) · Pρ,α,i,n(γ) for some
polynomial Pρ,α,i,n(X) ∈ G[X] of degree 6 k − i.

The proof of Theorem 2 is based on Laplace transform, the André-Chudnovski-Katz
Theorem on solutions of G-operators, and a specific complex integral (see [1, p. 735]).
At some point, we take advantage of the existence of André’s basis (H1, . . . ,Hµ) of the
E-operator at infinity, not to increase the length of the paper. However, our approach
also provides a new construction of this basis, from bases of microsolutions of the
underlying G-operator (see [12]).

As an application of Proposition 1 and Theorem 2, we study sequences of algebraic
(or rational) approximations of special interest related to E-functions. In [11] we
have proved that a complex number α belongs to the fraction field FracG of G if,
and only if, there exist sequences (Pn)n and (Qn)n of algebraic numbers such that
limn Pn/Qn = α and

∑
n>0 Pnz

n,
∑
n>0Qnz

n are G-functions. We have introduced
this notion in order to give a general framework for irrationality proofs of values of
G-functions such as zeta values. Such sequences are called G-approximations of α,
when Pn and Qn are rational numbers. We drop this last assumption in the context
of E-functions (see §3.1), and consider the following definition.

(1)“We adopt a formal approach, which would enable one to work over Q(Γ(k)(a))k∈N,a∈Q rather
than C if one would prefer”.
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36 S. Fischler & T. Rivoal

Definition 4. — Sequences (Pn)n>0 and (Qn)n>0 of algebraic numbers are said to
be E-approximations of α ∈ C if

lim
n→+∞

Pn
Qn

= α

and
∞∑
n=0

Pnz
n = A(z) · E

(
B(z)

)
,

∞∑
n=0

Qnz
n = C(z) · F

(
D(z)

)
,

where E and F are E-functions, A,B,C,D are algebraic functions in Q[[z]] with
B(0) = D(0) = 0.

This definition is motivated by the fact that many sequences of approximations
to classical numbers are E-approximations, for instance diagonal Padé approximants
to ez. Because of the asymptotic nature of the notion, a more flexible definition would
be that the generating series of (Pn+k)n>0 and (Qn+k)n>0 are of the desired form
for some given integer k; however by changing the name of the sequences one may
assume that k = 0. We also prove that the convergents of the respective continued
fraction expansions of e and (e− 1)/(e+ 1) define E-approximations (see §6.1). The
classical proof that

∑∞
n=1 1/(an)!bcn is irrational (for positive integers a, b, c) is

based on sequences of rational approximations that are E-approximations, as in the
special case of e. We hope that focusing on E-approximations may be helpful in
finding irrationality proofs for new interesting numbers. Elements in FracG also have
E-approximations, since G-approximations (Pn)n and (Qn)n of a complex number
always provide E-approximations Pn/n! and Qn/n! of the same number. In §6.1,
we construct E-approximations to Γ(α) for any α ∈ Q r Z60, α < 1, by letting
Eα(z) =

∑∞
n=0 z

n/n! (n+ α), Qn(α) = 1, and defining Pn(α) by the series expansion
(for |z| < 1)

1

(1− z)α+1
Eα

(
− z

1− z
)

=

∞∑
n=0

Pn(α)zn ∈ Q[[z]];

then limn Pn(α) = Γ(α). The number Γ(α) appears in this setting as a Stokes con-
stant. The condition α < 1 is harmless because we readily deduce E-approximations
to Γ(α) for any α ∈ Q, α > 1, by means of the functional equation Γ(s+ 1) = sΓ(s).
Moreover, since 1

(1−z)α+1Eα
(
− z

1−z
)
is holonomic, the sequence (Pn(α)) satisfies a lin-

ear recurrence, of order 3 with polynomial coefficients in Z[n, α] of total degree 2 in n
and α; see §6.1. This construction yields a new sequence of rational approximations
to Γ(α); it is simpler than that in [21] but the convergence to Γ(α) is slower.

Definition 4 enables us to consider an interesting class of numbers: those having
E-approximations. Of course this is a countable subset of C. We have seen that it
contains all values of the Gamma function at rational points s, which are conjectured
to be irrational if s 6∈ Z; very few results are known in this direction (see [24]), and
using suitable E-approximations may lead to prove new ones.

However we conjecture that Euler’s constant γ does not have E-approximations:
all approximations we have thought of seem to have generating functions not as in
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Definition 4. This is a reasonable conjecture in view of Theorem 3 we are going to
state now.

Given two subsets X and Y of C, we set

X · Y =
{
xy
∣∣x ∈ X, y ∈ Y }, X

Y
=
{x
y

∣∣∣x ∈ X, y ∈ Y r {0}
}
.

We also set Γ(Q) = {Γ(x) | x ∈ Q r Z60}. If X is a ring then we denote
by FracX = X/X its field of fractions. We define Euler’s Beta function by
B(x, y) = Γ(x)Γ(y)/Γ(x+ y). We recall [11] that B(x, y) belongs to the group of
units G∗ of G for any x, y ∈ Q, so that Γ induces a group homomorphism Q→ C∗/G∗

(by letting Γ(x) = 1 for x ∈ Z60). Therefore Γ(Q) ·G∗ is a subgroup of C∗, and so
is Γ(Q) · exp(Q) · FracG; for future reference we write

(1.5) Γ(Q) · Γ(Q) ⊂ Γ(Q) ·G and Γ(Q)

Γ(Q)
⊂ Γ(Q) ·G.

Theorem 3. — The set of numbers having E-approximations contains

(1.6) E ∪ Γ(Q)

E ∪ Γ(Q)
∪ FracG

and it is contained in

(1.7) E ∪ (Γ(Q) ·G)

E ∪ (Γ(Q) ·G)
∪
(
Γ(Q) · exp(Q) · FracG

)
.

The proof of (1.6) is constructive; the one of (1.7) is based on an explicit determi-
nation of the asymptotically dominating term of a sequence (Pn)n as in Definition 4.
This determination is based on analysis of singularities, the saddle point method,
asymptotic expansions (1.3) of E(z), Proposition 1, and Theorem 2; it is of inde-
pendent interest (see Theorem 6 in §5). The dominating term comes from the local
behaviour of E(z) at some z0 ∈ C (providing elements of E, in connection with
Proposition 1) or at infinity (providing elements of Γ(Q) ·G; Theorem 2 is used in
this case). This dichotomy leads to the unions in (1.6) and (1.7); it makes it unlikely
for the set of numbers having E-approximations to be a field, or even a ring. We could
have obtained a field by restricting Definition 4 to the case where B(z) = D(z) = z

and A(z), C(z) are not polynomials, since in this case the behavior of E(z) at ∞
would not come into the play; this field would be simply FracE.

It seems likely that there exist numbers having E-approximations but no G-approx-
imations, because conjecturally FracE∩FracG = Q and Γ(Q)∩FracG = Q. It is also
an open question to prove that the number Γ(n)(s) does not have E-approximations,
for n > 1 and s ∈ Q r Z60. To obtain approximations to these numbers, one can
consider the following generalization of Definition 4: we replace A(z) · E(B(z)) (and
also C(z) · F (D(z))) with a finite sum

(1.8)
∑
i,j,k,`

αi,j,k,` log(1−Ai(z))j ·Bk(z) · E`
(
C(z)

)
,
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38 S. Fischler & T. Rivoal

where αi,j,k,`∈Q, Ai(z), Bk(z), C(z) are algebraic functions in Q[[z]], Ai(0)=C(0)=0,
and E`(z) are E-functions. For instance, let us consider the E-function

E(z) =

∞∑
n=1

zn

n!n

and define Pn by the series expansion (for |z| < 1)

(1.9) log(1− z)
1− z − 1

1− zE
(
− z

1− z
)

=

∞∑
n=0

Pnz
n ∈ Q[[z]].

Then we prove in §6.4 that limn Pn = γ, so that letting Qn = 1 we obtain
E-approximations of Euler’s constant in this extended sense. Since

log(1− z)
1− z − 1

1− zE
(
− z

1− z
)

is holonomic, the sequence (Pn)n satisfies a linear recurrence, of order 3 with polyno-
mial coefficients in Z[n] of degree 2; see §6.4. Again, this construction is new and much
simpler than those in [4, 15, 20] but the convergence to γ is slower. A construction
similar to (1.9), based on an immediate generalization of the final equation for Γ(n)(1)

in [22], shows that the numbers Γ(n)(s) have E-approximations in the extended sense
of (1.8) for any integer n > 0 and any rational number s ∈ Qr Z60.

The set of numbers having such approximations is still countable, and we prove in
§6.4 that it is contained in

(E · log(Q∗)) ∪ S

(E · log(Q∗)) ∪ S
∪
(
exp(Q) · FracS

)
,

where log(Q∗) = exp−1(Q∗).
The generalization (1.8) does not cover all interesting constructions of approxima-

tions to derivatives of Gamma values in the literature. For instance, it does not seem
that Aptekarev’s or the second author’s approximations to γ (in [4] and [20] respec-
tively) can be described by (1.8). This is also not the case of Hessami-Pilehrood’s
approximations to Γ(n)(1) in [14, 15] but in certain cases their generating functions
involve sums of products of E-functions at various algebraic functions, rather linear
forms in E-functions at one algebraic function as in (1.8). Another possible gener-
alization of (1.8) is to let αi,j,k,` ∈ E; we describe such an example in §6.4, related
to the continued fraction [0; 1, 2, 3, 4, . . . ] whose partial quotients are the consecutive
positive integers.

The structure of this paper is as follows. In §2, we discuss the properties of S. In §3
we prove our results at finite distance, namely Theorem 1 and Proposition 1. Then
we discuss in §4.1 the definition and basic properties of asymptotic expansions. This
allows us to prove Theorem 2 in §4, and to determine in §5 the asymptotic behavior
of sequences (Pn) as in Definition 4. Finally, we gather in §6 all results related to
E-approximations.
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2. Structure of S

In this short section, we discuss the structural properties of the G-module S gen-
erated by the numbers Γ(n)(s), for n > 0, s ∈ Qr Z60. It is not used in the proof of
our theorems.

The Digamma function Ψ is defined as the logarithmic derivative of the Gamma
function. We have

Ψ(x) = −γ +

∞∑
k=0

( 1

k + 1
− 1

k + x

)
and Ψ(n)(x) =

∞∑
k=0

(−1)n+1n!

(k + x)n+1
(n > 1).

From the relation Γ′(x) = Ψ(x)Γ(x), we can prove by induction on the integer n > 0

that
Γ(n)(x) = Γ(x) · Pn

(
Ψ(x),Ψ(1)(x), . . . ,Ψ(n−1)(x)

)
,

where Pn(X1, X2, . . . , Xn) is a polynomial with integer coefficients. Moreover, the
term of maximal degree in X1 is Xn

1 .
It is well-known that Ψ(s) ∈ −γ+G (Gauss’ formula, [3, p. 13, Th. 1.2.7]) and that

Ψ(n)(s) ∈ G for any n > 1 and any s ∈ Qr Z60. It follows that

(2.1) Γ(n)(s) = Γ(s) · Pn
(
Ψ(s),Ψ(1)(s), . . . ,Ψ(n−1)(s)

)
= Γ(s) ·Qn,s(γ),

where Qn,s(X) is a polynomial with coefficients in G, of degree n and leading coeffi-
cient equal to (−1)n.

Proposition 2. — The set S coincides with the G[γ]-module Ŝ generated by the num-
bers Γ(s), for s ∈ Qr Z60. It is a ring.

Proof. — Eq. (2.1) shows immediately that S ⊂ Ŝ. For the converse inclusion Ŝ ⊂ S,
it is enough to show that Γ(s)γn ∈ S for any n > 0, s ∈ QrZ60. This can be proved
by induction on n from (2.1) because we can rewrite it as

Γ(s)γn = (−1)nΓ(n)(s) + Γ(s) · Q̂n,s(γ)

for some polynomial Q̂n,s(X) with coefficients in G and degree 6 n− 1.
Let us now prove that Ŝ is a ring. For any x, y ∈ QrZ60 such that x+y 6∈ Z60, we

have Γ(x)Γ(y) = Γ(x + y)B(x, y) ∈ Ŝ because B(x, y) ∈ G in this case (see [11]). If
x, y ∈ QrZ60 but x+y ∈ Z60, then by the reflection formula Γ(x)Γ(y) ∈ πQ ⊂ Ŝ. �

Remark. — The fact that S is a ring can also be proved directly from the definition
of S. For any x, y ∈ Qr Z60 such that x+ y 6∈ Z60, we have

Γ(m)(x)Γ(n)(y) =
∂m+n

∂xm∂yn
Γ(x+ y)B(x, y)

=

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
Γ(i+j)(x+ y)

∂m+n−i−j

∂xm−i∂yn−j
B(x, y) ∈ S
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because
∂m+n−i−j

∂xm−i∂yn−j
B(x, y) ∈ G,

arguing as in [11] for the special case m − i = n − j = 0. If x, y ∈ Q r Z60 and
x+ y ∈ Z60, we argue as above using the reflection formula.

3. First results on values of E-functions

3.1. Around Siegel-Shidlovskii and Beukers’ theorems. — To begin with, let us
mention the following result. It is proved in [11] (and due to the referee of that paper)
in the case K = Q(i); actually the same proof, which relies on Beukers’ version [6] of
the Siegel-Shidlovskii theorem, works for any number field K.

Theorem 4. — Let E(z) be an E-function with coefficients in some number field K,
and α, β ∈ Q be such that E(α) = β or E(α) = eβ. Then β ∈ K(α).

This result implies Theorem 1 stated in the introduction; without further hypothe-
ses E(α) may really belong to K(α), because if E(z) is an E-function then so is
(z − α)E(z).

Theorem 4 shows that if we restrict the coefficients of E-functions to a given
number field then the set of values we obtain is a proper subset ofE. In this respect the
situation is completely different from the one with G-functions, since any element ofG
can be written [11] as f(1) for some G-function f with Taylor coefficients in Q(i). This
is also the reason why we did not restrict to rational numbers Pn, Qn in Definition 4.

3.2. Connection constants at finite distance. — Let us prove Proposition 1 stated
in the introduction, which we state again here in a slightly more general version; the
strategy is analogous to the corresponding one with G-functions [11], and even easier
because E-functions are entire.

Proposition 3. — Let

(3.1) F (z) =

µ∑
j=1

( ∑
s∈Sj

∑
k∈Kj

φj,s,kz
s log(z)k

)
Ej(z),

where Sj ⊂ Q,Kj ⊂ N are finite sets, φj,s,k ∈ Q and E1, . . . , Eµ are E-functions.
Let α ∈ Qr {0}, and G1(z), . . . , Gµ(z) ∈ Q[[z − α]] be a local basis of solutions of an
E-operator L such that LF = 0. Let ω1, . . . , ωµ ∈ C be such that around z = α,

(3.2) F (z) = ω1G1(z) + · · ·+ ωµGµ(z).

Then ω1, . . . , ωµ ∈ E[logα]; moreover if F (z) is an E-function then ω1, . . . , ωµ ∈ E.

Proof. — We denote byWG(z) the wronskian built on the functionsG1(z), . . . , Gµ(z):

WG(z) =

∣∣∣∣∣∣∣∣∣∣
G1(z) · · · Gµ(z)

G
(1)
1 (z) · · · G

(1)
µ (z)

... · · ·
...

G
(µ−1)
1 (z) · · · G(µ−1)

µ (z)

∣∣∣∣∣∣∣∣∣∣
.
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All functions G(k)
j (z) are holomorphic at z = α with Taylor coefficients in Q, so that

WG(α) ∈ Q. On the other hand, let us write

L =
dµ

dzµ
+ aµ−1(z)

dµ−1

dzµ−1
+ · · ·+ a1(z)

d

dz
+ a0(z),

where aj ∈ Q(z). Then z = 0 is the only singularity at finite distance of L, and it is
a regular singularity with rational exponents (see [1]): we have ziaµ−i(z) ∈ Q[z] for
any i. Since WG(z) is a solution of the differential equation y′(z) + aµ−1(z)y(z) = 0,
it is of the form W (z) = czρeq(z) with c ∈ C, ρ ∈ Q and q(z) ∈ Q[z] (in fact, q has
degree 6 1 here). Moreover the Gj ’s form a basis of solutions of L, so that c 6= 0 and
WG(α) ∈ Qr {0}.

We now differentiate (3.2) to obtain the relations

F (k)(z) =

µ∑
j=1

ωjG
(k)
j (z), k = 0, . . . , µ− 1

for any z in some open disk D centered at z = α. We interpret these equations (with
z = α) as a linear system with unknowns ωj , and solve it using Cramer’s rule. We
obtain in this way that

(3.3) ωj =
1

WG(α)

∣∣∣∣∣∣∣∣∣∣
G1(α) · · · Gj−1(α) F (α) Gj+1(α) · · · Gµ(α)

G
(1)
1 (α) · · · G

(1)
j−1(α) F (1)(α) G

(1)
j+1(α) · · · G

(1)
µ (α)

... · · ·
...

...
... · · ·

...
G

(µ−1)
1 (α) · · · G(µ−1)

j−1 (α) F (µ−1)(α) G
(µ−1)
j+1 (α) · · · G(µ−1)

µ (α)

∣∣∣∣∣∣∣∣∣∣
since WG(α) 6= 0.

Now recall that 1/WG(α) and G(k)
j (α) belong to Q ⊂ E. If we assume that F (z)

is an E-function, this is also the case of its derivatives, so that F (k)(α) ∈ E for all
k > 0 and (3.3) implies that ωj ∈ E. To prove the general case, we simply observe
that if F (z) is given by (3.1) with algebraic coefficients φj,s,k then all values at z = α

of derivatives of F (z) belong to E[log(α)]. �

4. Stokes constants of E-functions

In this section we construct explicitly the asymptotic expansion of an E-function:
our main result is Theorem 5, stated in §4.2 and proved in §4.3. Before that we discuss
in §4.1 the asymptotic expansions used in this paper. Finally we show in §4.4 that
Theorem 5 implies Theorem 2.

Throughout this section, we let Γ̂ := 1/Γ for simplicity.

4.1. Asymptotic expansions. — The asymptotic expansions used throughout this pa-
per are defined as follows.
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Definition 5. — Let θ ∈ R, and Σ ⊂ C, S ⊂ Q, T ⊂ N be finite subsets. Given
complex numbers cρ,α,i,n, we write

(4.1) f(x) ≈
∑
ρ∈Σ

eρx
∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nx
−n−α(log(1/x))i

and say that the right hand side is the asymptotic expansion of f(x) in a large
sector bisected by the direction θ, if there exist ε,R,B,C > 0 and, for any ρ ∈ Σ,
a function fρ(x) holomorphic on

U =
{
x ∈ C

∣∣ |x| > R, θ − π

2
− ε 6 arg(x) 6 θ +

π

2
+ ε
}
,

such that
f(x) =

∑
ρ∈Σ

eρxfρ(x)

and ∣∣∣fρ(x)−
∑
α∈S

∑
i∈T

N−1∑
n=0

cρ,α,i,nx
−n−α(log(1/x))i

∣∣∣ 6 CNN ! |x|B−N

for any x ∈ U and any N > 1.

This means exactly (see [19, §§2.1&2.3]) that for any ρ ∈ Σ,

(4.2)
∑
α∈S

∑
i∈T

N−1∑
n=0

cρ,α,i,nx
−n−α(log(1/x))i

is 1-summable in the direction θ and its sum is fρ(x). In particular, using a result of
Watson (see [19, §2.3]), the sum fρ(x) is determined by its expansion (4.2). Therefore
the asymptotic expansion on the right hand side of (4.1) determines the function f(x)

(up to analytic continuation). The converse is also true, as the following lemma shows.

Lemma 1. — A given function f(x) can have at most one asymptotic expansion in
the sense of Definition 5.

Of course we assume implicitly in Lemma 1 (and very often in this paper) that
Σ, S and T in (4.1) cannot trivially be made smaller, and that for any α there exist ρ
and i with cρ,α,i,0 6= 0.

Proof. — We proceed by induction on the cardinality of Σ. If the result holds for
proper subsets of Σ, we choose θ′ very close to θ such that the complex numbers
ρeiθ

′ , ρ ∈ Σ, have pairwise distinct real parts and we denote by ρ0 the element of Σ

for which Re(ρ0e
iθ′) is maximal. Then the asymptotic expansion (4.2) of fρ0(x) is

also an asymptotic expansion of e−ρ0xf(x) as |x| → ∞ with arg(x) = θ′, in the usual
sense (see for instance [9, p. 182]); accordingly it is uniquely determined by f , so that
its 1-sum fρ0(x) is also uniquely determined by f . Applying the induction procedure
to f(x)− eρ0xfρ0(x) with Σ r {ρ0} concludes the proof of Lemma 1. �

J.É.P. — M., 2016, tome 3



Arithmetic theory of E-operators 43

4.2. Notation and statement of Theorem 5. — We consider a non-polynomial E-
function E(x) such that E(0) = 0, and write

E(x) =

∞∑
n=1

an
n!
xn.

Its associated G-function is

G(z) =

∞∑
n=1

anz
n.

We denote by D a G-operator such that FDE = 0, where F : C[z, d
dz ] → C[x, d

dx ]

is the Fourier transform of differential operators, i.e., the morphism of C-algebras
defined by F (z) = d

dx and F ( d
dz ) = −x. Recall that such a D exists because E is

annihilated by an E-operator, and any E-operator can be written as FD for some
G-operator D .

We let g(z) = 1
zG( 1

z ), so that ( d
dz )δDg = 0 where δ is the degree of D (i.e., the

order of FD ; see [1, p. 716]). This function is the Laplace transform of E(x): for
Re(z) > C, where C > 0 is such that |an| � Cn, we have

g(z) =

∫ ∞
0

E(x)e−xzdx.

From the definition of g(z) and the assumption E(0) = 0 we deduce that g(z) =

O(1/|z|2) as z →∞.
We denote by Σ the set of all finite singularities ρ of D =

∑d
j=0 uj(z)(

d
dz )j , i.e., the

zeros of the leading polynomial ud(z). Observe that ( d
dz )δD has the same singularities

as D . We also let

(4.3) S = Rr {arg(ρ− ρ′) | ρ, ρ′ ∈ Σ, ρ 6= ρ′}

where all the values modulo 2π of the argument of ρ − ρ′ are considered, so that
S + π = S .

The directions θ ∈ R r (−S ) (i.e., such that (ρ − ρ′)eiθ is real for some ρ 6= ρ′

in Σ) may be anti-Stokes (or singular, see for instance [18, p. 79]): when crossing such
a direction, the renormalized sum of a formal solution at infinity of D may change.
In the statement and proof of Theorem 5 we fix a direction θ ∈ −S .

For any ρ ∈ Σ we denote by ∆ρ = ρ− e−iθR+ the half-line of angle −θ+π mod 2π

starting at ρ. Since −θ ∈ S , no singularity ρ′ 6= ρ of D lies on ∆ρ: these half-lines are
pairwise disjoint. We shall work in the simply connected cut plane obtained from C
by removing the union of these closed half-lines. We agree that for ρ ∈ Σ and z in
the cut plane, arg(z − ρ) will be chosen in the open interval (−θ − π,−θ + π). This
enables one to define log(z − ρ) and (z − ρ)α for any α ∈ Q.

Now let us fix ρ ∈ Σ. Combining theorems of André, Chudnovski and Katz (see
[1, p. 719]), there exist (non necessarily distinct) rational numbers tρ1, . . . , t

ρ
J(ρ), with

J(ρ) > 1, and G-functions gρj,k, for 1 6 j 6 J(ρ) and 0 6 k 6 K(ρ, j), such that
a basis of local solutions of ( d

dz )δD around ρ (in the above-mentioned cut plane) is
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given by the functions

(4.4) fρj,k(z − ρ) = (z − ρ)t
ρ
j

k∑
k′=0

gρj,k−k′(z − ρ)
(log(z − ρ))k

′

k′!

for 1 6 j 6 J(ρ) and 0 6 k 6 K(ρ, j). Since ( d
dz )δDg = 0 we can expand g in this

basis:

(4.5) g(z) =

J(ρ)∑
j=1

K(ρ,j)∑
k=0

$ρ
j,kf

ρ
j,k(z − ρ)

with connection constants $ρ
j,k; Theorem 2 of [11] yields $ρ

j,k ∈ G.
We denote by {u} ∈ [0, 1) the fractional part of a real number u, and agree that

all derivatives of this or related functions taken at integers will be right-derivatives.
We also denote by ? the Hadamard (coefficient-wise) product of formal power series
in z, and we let

yα,i(z) =

∞∑
n=0

1

i!

di

dyi
(Γ(1− {y})

Γ(−y − n)

)
|y=α

zn ∈ Q[[z]]

for α ∈ Q and i ∈ N. To compute the coefficients of yα,i(z), we may restrict to values
of y with the same integer part as α, denoted by bαc. Then

(4.6) Γ(1− {y})
Γ(−y − n)

=
Γ(−y + bαc+ 1)

Γ(−y − n)
=


(−y − n)n+bαc+1 if n > −bαc

1

(−y + bαc+ 1)−n−bαc−1
if n 6 −1− bαc

is a rational function of y with rational coefficients, so that yα,i(z) ∈ Q[[z]]; here
(x)k = x(x + 1) · · · (x + k − 1) is Pochhammer’s symbol. Even though this won’t be
used in the present paper, we mention that yα,i(z) is an arithmetic Gevrey series of
order 1 (see [1]); in particular it is divergent for any z 6= 0 (unless it is a polynomial,
namely if i = 0 and α ∈ Z).

Finally, we define

ηρj,k(1/x) =

k∑
m=0

(ytρj ,m ? gρj,k−m)(1/x) ∈ Q[[1/x]]

for any 1 6 j 6 J(ρ) and 0 6 k 6 K(j, ρ); this is also an arithmetic Gevrey series of
order 1. It is not difficult to see that ηρj,k(1/x) = 0 if fρj,k(z − ρ) is holomorphic at ρ.
Indeed in this case k = 0 and tρj ∈ Z; if tρj > 0 then ytρj ,0 is identically zero, and if
tρj 6 −1 then ytρj ,0 is a polynomial in z of degree −1 − tρj whereas gρj,0 has valuation
at least −tρj .

The main result of this section is the following asymptotic expansion, valid in the
setting of Definition 5 for θ ∈ −S . It is at the heart of Theorem 2; recall that we
assume here E(0) = 0, and that we let Γ̂ = 1/Γ.
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Theorem 5. — We have

E(x) ≈
∑
ρ∈Σ

eρx
J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,kx

−tρj−1

k∑
i=0

( k−i∑
`=0

(−1)`

`!
Γ̂(`)(1− {tρj})ηρj,k−`−i(1/x)

) (log(1/x))i

i!
.

We observe that the coefficients are naturally expressed in terms of Γ̂(`). Let us
write Theorem 5 in a slightly different way. For t ∈ Q and s ∈ N, let

λt,s(1/x) =

s∑
ν=0

(−1)s−ν

(s− ν)!
Γ̂(s−ν)(1− {t}) (log(1/x))ν

ν!
.

In particular, λt,0(1/x) = Γ̂(1−{t}) and λt,1(1/x) = Γ̂(1−{t}) log(1/x)−Γ̂(1)(1−{t});
for t ∈ Z we have λt,1(1/x) = log(1/x)− γ.

Then Theorem 5 reads (by letting s = i+ `):

(4.7) E(x) ≈
∑
ρ∈Σ

eρx
J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,kx

−tρj−1
k∑
s=0

λtρj ,s(1/x)ηρj,k−s(1/x).

Here we see that the derivatives of 1/Γ do not appear in an arbitrary way, but
always through these sums λt,s(1/x). In particular γ appears through λt,1(1/x) =

log(1/x)− γ, as mentioned in the introduction.
In the asymptotic expansion of Theorem 5, and in (4.7), the singularities ρ ∈ Σ

at which g(z) is holomorphic have a zero contribution because for any (j, k), either
$ρ
j,k = 0 or fρj,k(z − ρ) is holomorphic at ρ (and in the latter case, k = 0 and

ηρj,0(1/x) = 0, as mentioned before the statement of Theorem 5). Moreover, as the
proof shows (see §4.3), it is not really necessary to assume that the functions fρj,k(z−ρ)

form a basis of local solutions of ( d
dz )δD around ρ. Instead, it is enough to consider

rational numbers tρj and G-functions gρj,k such that all singularities of gρj,k(z − ρ) be-
long to Σ and, upon defining fρj,k by Eq. (4.4), Eq. (4.5) holds with some complex
numbers $ρ

j,k. In this way, to compute the asymptotic expansion of E(x) it is not
necessary to determine D explicitly. The finite set Σ is used simply to control the sin-
gularities of the functions which appear, and prevent θ from being a possibly singular
direction. This remark makes it easier to apply Theorem 5 to specific E-functions, for
instance to obtain the expansions (6.2) and (6.5) used in §6.

4.3. Proof of Theorem 5. — We fix an oriented line d such that the angle be-
tween R+ and d is equal to −θ + π/2 mod 2π, and all singularities of D lie on the
left of d. Let R > 0 be sufficiently large (in terms of d and Σ). Then the circle
C (0, R) centered at 0 of radius R intersects d at two distinct points a and b, with
arg(b− a) = −θ + π/2 mod 2π, and

(4.8) E(x) = lim
R→∞

1

2iπ

∫ b

a

g(z)ezxdz,

where the integral is taken along the line segment ab contained in d.

J.É.P. — M., 2016, tome 3



46 S. Fischler & T. Rivoal

�

�

�

��

�

a

bρ

−θ

0

Figure 4.1. The contour ΓR

For any ρ ∈ Σ the circle C (0, R) intersects ∆ρ at one point zρ = ρ − Aρe
−iθ,

with Aρ > 0, which corresponds to two points at the border of the cut plane,
namely ρ + Aρe

i(−θ±π) with values −θ ± π of the argument. We consider the fol-
lowing path Γρ,R: a straight line from ρ + Aρe

i(−θ−π) to ρ (on one bank of the cut
plane), then a circle around ρ with essentially zero radius and arg(z − ρ) going up
from −θ−π to −θ+π, and finally a straight line from ρ to ρ+Aρe

i(−θ+π) on the other
bank of the cut plane. We denote by ΓR the closed loop obtained by concatenation of
the line segment ba, the arc azρ1 of the circle C (0, R), the path Γρ1,R, the arc zρ1zρ2 ,
the path Γρ2,R, . . . , and the arc zρpb (where ρ1, . . . , ρp are the distinct elements of Σ,
ordered so that zρ1 , zρ2 , . . . , zρp are met successively when going along C (0, R) from a

to b in the negative direction); see Figure 4.1. We refer to [9, pp. 183–192] for a similar
computation.

We observe that
1

2iπ

∫
ΓR

g(z)ezxdz = 0

for any x ∈ C, because ΓR is a closed simple curve inside which the integrand has no
singularity.

Now assume that θ − π/2 < arg(x) < θ + π/2. As R → ∞, the integral of
g(z)ezx over the line segment ba tends to −E(x), using Eq. (4.8). Moreover, as z
describes Γρ,R (except maybe in a bounded neighborhood of ρ) we have Re(zx) < 0

and g(z) = O(1/|z2|), so that letting R→∞ one obtains (as in [9])

(4.9) E(x) =
∑
ρ∈Σ

1

2iπ

∫
Γρ

g(z)ezxdz,

where Γρ is the extension of Γρ,R as R→∞.
Plugging Eq. (4.5) into Eq. (4.9) yields

(4.10) E(x) =
∑
ρ∈Σ

J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,k

1

2iπ

∫
Γρ

fρj,k(z − ρ)ezxdz.
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To study the integrals on the right hand side we shall prove the following general claim
(see [12, §2.5]). Let ρ ∈ Σ, and ϕ be a G-function such that ϕ(z − ρ) is holomorphic
on the cut plane. For any α ∈ Q and any k ∈ N, let

ϕα,k(z − ρ) = ϕ(z − ρ)(z − ρ)α
(log(z − ρ))k

k!
.

Then
1

2iπ

∫
Γρ

ϕα,k(z − ρ)ezxdz

admits the following asymptotic expansion in a large sector bisected by θ (with
Γ̂ := 1/Γ):

eρxx−α−1
k∑
`=0

(−1)`

`!
Γ̂(`)(1− {α})

k−∑̀
i=0

(
yα,k−`−i ? ϕ

)
(1/x)

(log(1/x))i

i!
.

To prove this claim, we first observe that∫
Γρ

ϕα,k(z − ρ)ezxdz =
1

k!

∂k

∂αk

[∫
Γρ

ϕα,0(z − ρ)ezxdz
]

where the k-th derivative is taken at α; this relation enables us to deduce the general
case from the special case k = 0 considered in [9]. We write also

ϕ(z − ρ) =

∞∑
n=0

cn(z − ρ)n.

Following [9, pp. 185–191], given ε > 0 we obtain R,C, κ > 0 such that, for any n > 1

and any x with |x| > R and θ − π/2 + ε < arg(x) < θ + π/2− ε, we have∣∣∣∣ x−α−n−1

Γ(−α− n)
− 1

2iπ
e−ρx

∫
Γρ

(z − ρ)α+nezxdz
∣∣∣∣ 6 Cnn! |x|−α−n−1e−κ|x| sin(ε).

Then following the proof of [9, pp. 191–192] and using the fact that lim sup |cn|1/n<∞,
for any ε > 0 we obtain R,B,C > 0 such that, for any N > 1 and any x with |x| > R
and θ − π/2 + ε < arg(x) < θ + π/2− ε, we have

(4.11)
∣∣∣∣e−ρx 1

2iπ

∫
Γρ

ϕα,k(z − ρ)ezxdz −
N−1∑
n=0

cn
k!

∂k

∂αk

[ x−α−n−1

Γ(−α− n)

]∣∣∣∣ 6 CNN ! |x|B−N .

Now observe that S is a union of open intervals, so that θ can be made slightly
larger or slightly smaller while remaining in the same open interval. In this process,
the cut plane changes but the left hand side of (4.11) remains the same (by the residue
theorem, since ϕ(z − ρ) is holomorphic on the cut plane). The asymptotic expansion
(4.11) remains valid as |x| → ∞ in the new sector θ−π/2 + ε < arg(x) < θ+π/2− ε,
so that finally it is valid in a large sector θ− π/2− ε 6 arg(x) 6 θ+ π/2 + ε for some
ε > 0.

J.É.P. — M., 2016, tome 3



48 S. Fischler & T. Rivoal

Now Leibniz’ formula yields the following equality between functions of α:( x−α−n−1

Γ(−α− n)

)(k)

=

k∑
`=0

k−∑̀
i=0

k!

`! i! (k − `− i)!
(
Γ̂(1− {α})

)(`)(Γ(1− {α})
Γ(−α− n)

)(k−`−i)

× (log(1/x))ix−α−n−1

=

k∑
`=0

k!

`!

(
Γ̂(1− {α}

)(`) k−∑̀
i=0

(
yα,k−`−i ? z

n
)
(1/x)x−α−1 (log(1/x))i

i!

so that
∞∑
n=0

cn
k!

( x−α−n−1

Γ(−α− n)

)(k)

=

k∑
`=0

1

`!

(
Γ̂(1− {α})

)(`) k−∑̀
i=0

(
yα,k−`−i ? ϕ

)
(1/x)x−α−1 (log(1/x))i

i!
.

Using (4.11) this concludes the proof of the claim.
Now we apply the claim to the G-functions gρj,k, since all singularities of g

ρ
j,k(z−ρ)

are singularities of ( d
dz )δD and therefore belong to Σ. Combining this result with

Eqns. (4.4) and (4.10) yields:

E(x) =
∑

ρ,j,k,k′

$ρ
j,k

1

2iπ

∫
Γρ

gρj,k−k′(z − ρ)(z − ρ)t
ρ
j

(log(z − ρ))k
′

k′!
ezxdz

≈
∑

ρ,j,k,k′

$ρ
j,ke

ρxx−t
ρ
j−1

k′∑
`=0

(−1)`

`!
Γ̂(`)(1− {tρj})

k′−∑̀
i=0

(
ytρj ,k′−`−i ? g

ρ
j,k−k′

)
(1/x)

(log(1/x))i

i!

=
∑
ρ,j,k

$ρ
j,ke

ρxx−t
ρ
j−1

k∑
`=0

(−1)`

`!
Γ̂(`)(1− {tρj})

k−∑̀
i=0

ηj,k−`−i(1/x)
(log(1/x))i

i!
.

This concludes the proof of Theorem 5. �

4.4. Proof of Theorem 2. — To begin with, let us prove Assertions (ii) and (iii).
Changing θ slightly if necessary, we may assume θ ∈ −S . Adding the constant term
E(0) ∈ Q ⊂ G to (1.3) if necessary, we may assume that E(0) = 0. Then Theorem 5
applies; moreover, in the setting of §4.2 we may assume that the rational numbers tρj
have different integer parts as soon as they are distinct. Then letting S denote the set
of all tρj + 1, for ρ ∈ Σ and 1 6 j 6 J(ρ), and denoting by T the set of non-negative
integers less than or equal to maxj,ρK(j, ρ), the asymptotic expansion of Theorem 5
is exactly (1.3) with coefficients

cρ,α,i,n =
∑

16j6J(ρ)
with α=tρj+1

K(j,ρ)∑
k=i

$ρ
j,k

k−i∑
`=0

(−1)`

`!
Γ̂(`)(1− {α})

k−`−i∑
m=0

1

m!

dm

dym
(Γ(1− {y})

Γ(−y − n)

)
|y=α−1

gρj,k−`−i−m,n,
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where

gρj,k−`−i−m(z − ρ) =

∞∑
n=0

gρj,k−`−i−m,n(z − ρ)n.

Assertion (ii) of Theorem 2 is cρ,α,i,n ∈ S; let us prove this now. The coefficients
gρj,k−`−i−m,n are algebraic because gρj,k−`−i−m is a G-function, and

dm

dym
(Γ(1− {y})

Γ(−y − n)

)
|y=α−1

is a rational number. Since $ρ
j,k ∈ G and Q ⊂ G, the coefficient cρ,α,i,n is a G-linear

combination of derivatives of Γ̂ = 1/Γ taken at the rational point 1 − {α}. By the
reflection formula, Γ̂(z) = sin(πz)

π Γ(1 − z): applying Leibniz’ formula we see that
Γ̂(k)(z) is a G-linear combination of derivatives of Γ at 1− z up to order k, provided
z ∈ Q r Z (using the fact [11] that G contains π, 1/π, and the algebraic numbers
sin(πz) and cos(πz)). When z = 1, we use (at x = 0) the identity

Γ(x+ 1) = exp
(
− γx+

∞∑
k=2

(−1)kζ(k)

k
xk
)

(see [3, p. 3, Th. 1.1.2]) and the properties of Bell polynomials (see for instance
[8, Chap. III, §3]). Since ζ(k) ∈ G for any k > 2 (because polylogarithms are
G-functions), it follows that both Γ(k)(1) and Γ̂(k)(1) are polynomials of degree k in
Euler’s constant γ, with coefficients in G; moreover the leading coefficients of these
polynomials are rational numbers. This implies that Γ̂(k)(1) is a G-linear combination
of derivatives of Γ at 1 up to order k, and concludes the proof that all coefficients
cρ,α,i,n in the expansion (1.3) provided by Theorem 5 belong to S.

To prove (iii), we fix ρ and α and denote by K the maximal value of K(j, ρ) among
integers j such that α = tρj + 1. Then

cρ,α,i,n =

K−i∑
`=0

(−1)`

`!
Γ̂(`)(1− {α})g′`+i,n,

where

g′λ,n =
∑
j

K(j,ρ)∑
k=λ

$ρ
j,k

k−λ∑
m=0

1

m!

dm

dym
(Γ(1− {y})

Γ(−y − n)

)
|y=α−1

gρj,k−λ−m,n ∈ G;

here 0 6 λ 6 K and the first sum is on j ∈ {1, . . . , J(ρ)} such that α = tρj + 1 and
K(j, ρ) > λ. If n is fixed and g′λ,n 6= 0 for some λ, then denoting by λ0 the largest such
integer λ we have cρ,α,λ0,n ∈ Γ̂(1−{α}) ·Gr {0} = Γ(α) ·Gr {0} and Assertion (iii)
follows since λ0 is the integer denoted by k in (iii).

To prove (i) and (iv), we first observe that if F (z) is given by (1.1) with coefficients
φj,s,k ∈ S, the asymptotic expansions of Fj(z) we have just obtained can be multiplied
by φj,s,kzs log(z)k and summed up, thereby proving (ii) for F (z) since S is a ring.
To deduce (i) from (ii) for any solution F (z) of an E-operator L, we recall that
any formal solution f of L at ∞ can be written as (1.3) with complex coefficients
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cρ,α,i,n(f), and denote by Φ(f) the family of all these coefficients. The linear map Φ

is injective, so that there exists a finite subset X of the set of indices (ρ, α, i, n) such
that Ψ : f 7→ (cρ,α,i,n(f))(ρ,α,i,n)∈X is a bijective linear map. Denoting by Fθ the
asymptotic expansion of F (z) in a large sector bisected by θ, we have

Ψ(Fθ) = ω1,θΨ(H1) + · · ·+ ωµ,θΨ(Hµ),

with the notation of (1.4). Now Ψ(H1), . . . , Ψ(Hµ) are linearly independent elements
of QX and ω1,θ, . . . , ωµ,θ can be obtained by Cramer’s rule (this is the same kind of
argument as in Section 3.2), so that they are linear combinations of the components
of Ψ(Fθ) with coefficients in Q ⊂ G: using (ii) this concludes the proof of (i).

5. Asymptotics of the coefficients of A(z) · E
(
B(z)

)
In this section we deduce from Theorem 2 the following result, of independent

interest, which is the main step in the proof of Theorem 3 (see §6.3). Its proof decom-
poses in many cases, some of which involve the saddle point method. In these cases,
we do not write down all the details of the derivation which is classical and because
this involves lengthy technicalities. Instead, we refer the reader to [26, 27] for detailed
asymptotic computations, which we slightly generalize here to get only the leading
terms, and to [13, Chap.VIII] for a general overview of this method. The existence
of such asymptotics is ensured a priori by the Birkhoff-Trjitzinsky theory because all
functions A(z) · E

(
B(z)

)
considered in this section are holonomic.

Theorem 6. — Let E(z) be an E-function, and A(z), B(z) ∈ Q[[z]] be algebraic func-
tions; assume that P (z) = A(z) · E

(
B(z)

)
=
∑∞
n=0 Pnz

n is not a polynomial. Then
either

(5.1) Pn =
(2π)(1−d)/(2d)

n!1/d
qnn−u−1(log n)v

(∑
θ

Γ(−uθ)gθeinθ + o(1)
)

or

(5.2) Pn = qne
∑d−1
`=1 κ`n

`/d

n−u−1(log n)v
( ∑
θ1,...,θd

ωθ1,...,θde
∑d
`=1 iθ`n

`/d

+ o(1)
)
,

where

q ∈ Q, u ∈ Q, uθ ∈ QrN, d, v ∈ N, d > 1, q > 0,

gθ ∈ Gr {0}, κ1, . . . , κd−1 ∈ R, θ, θ1, . . . , θd ∈ [−π, π),

the sums on θ and θ1, . . . , θd are finite and non-empty, and

(5.3)


ωθ1,...,θd = ξ/Γ(−u) with ξ ∈ (E ∪ (Γ(Q) ·G)) r {0}

if v = κ1 = · · · = κd−1 = θ1 = · · · = θd−1 = 0,

ωθ1,...,θd ∈ Γ(Q) · exp(Q) ·Gr {0} otherwise.
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As in the introduction, in (5.3) we let Γ(−u) = 1 if u ∈ N. In the special case where

P (z) = (1− z)α exp
( k∑
i=1

bi
(1− z)αi

)
,

with α, α1, . . . , αk ∈ Q, b1, . . . , bk ∈ Q, α1 > 0 and b1 6= 0, Theorem 6 is consistent
with Wright’s asymptotic formulas [27] for Pn.

We shall now prove Theorem 6; we distinguish between two cases (see §5.1 and 5.2),
which lead to Eqns. (5.1) and (5.2) respectively. This distinction, based on the growth
of Pn, is different from the one mentioned in the introduction (namely whether E(z)

plays a role as z → z0 ∈ C or as z → ∞, providing elements of E or Γ(Q) · G
respectively). We start with the following consequence of Theorem 2, which is useful
to study E(z) as z →∞, in both §5.1 and §5.2.3.

Lemma 2. — For any E-function E(z) there exist

K > 1, u1, . . . , uK ∈ Q, v1, . . . , vK ∈ N,

and pairwise distinct α1, . . . , αK ∈ Q such that

(5.4) E(z) =

K∑
k=1

ωke
αkzzuk log(z)vk(1 + o(1))

as |z| → ∞, uniformly with respect to arg(z), where ωk ∈ Γ(−uk) · G r {0} with
Γ(−uk) = 1 if uk ∈ N.

If K = 1, the proof below shows that v1 = 0 and u1 ∈ Z: log(z) does not appear in
Eq. (5.4). Otherwise for any k ∈ {1, . . . ,K} there exist k′ 6= k and θ ∈ R such that eαkz
is much smaller than eαk′z as |z| → ∞ with arg(z) = θ; we choose a determination of
log(z) with a cut at arg(z) = θ mod 2π, and use it in the term corresponding to k in
Eq. (5.4). In this way, the cut of log(z) in Eq. (5.4) never occurs in a leading term.

Proof. — For any α ∈ C, let Iα denote the set of all directions θ ∈ R/2πZ such
that E(z) has an asymptotic expansion (1.3) in a large sector bisected by θ, with Σ

having the least possible cardinality, α ∈ Σ, and Re(α′eiθ) 6 Re(αeiθ) for any α′ ∈ Σ.
This implies that in the direction θ, the growth of E(z) is comparable to that of eαz.
Then the closure Jα of Iα is the union of Iα and a set of anti-Stokes directions; it is
either empty or of the form [Rα, Sα] mod 2π with Rα 6 Sα. We denote by Σ0 the set
of all α ∈ C such that Jα 6= ∅; then Σ0 is a subset of the finite set Σ ⊂ Q constructed
in §4.2, so that Σ0 is finite: we denote by α1, . . . , αK its elements, with K > 1.

If K = 1 then Jα1
= R/2πZ and the asymptotic expansion (1.3) is the same in any

direction: e−α1zE(z) has (at most) a pole at ∞, and Lemma 2 holds with u1 ∈ Z,
v1 = 0, and ω1 ∈ G (using Theorem 2).

Let us assume now that K > 2. Then Sαk − Rαk 6 π for any k, so that E(z)

admits an asymptotic expansion (1.3) in a large sector that contains all directions
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θ ∈ Jαk . Among all terms corresponding to eαkz in this expansion, we denote the
leading one by

(5.5) ωke
αkzzuk(log z)vk ,

with uk ∈ Q, vk ∈ N, and ωk ∈ Γ(−uk) ·Gr {0} (using Assertion (iii) of Theorem 2),
where Γ(−uk) is understood as 1 if uk is a non-negative integer. These parameters
are the ones in (5.4). To conclude the proof of Lemma 2, we may assume that arg(z)

remains in a small segment I, and consider the asymptotic expansion (1.3) in a large
sector containing I. Keeping only the dominant term corresponding to each α ∈ Σ in
this expansion, we obtain

(5.6) E(z) =
∑
α∈Σ

ω′αe
αzzu

′
α(log z)v

′
α(1 + o(1)).

To prove that (5.6) is equivalent to (5.4) as |z| → ∞ with arg(z) ∈ I, we may
remove from both equations all terms corresponding to values αk (resp. α ∈ Σ) such
that Iαk ∩ I = ∅ (resp. Iα ∩ I = ∅), since they fall into error terms. Now for any
α = αk such that Iα ∩ I 6= ∅, E(z) admits an asymptotic expansion in a large sector
containing Iα ∪ I (since Iα has length at most π, and the length of I can be assumed
to be sufficiently small in terms of E). Comparing the dominating exponential term
of this expansion in a direction θ ∈ Iα ∩ I with the ones of (5.5) and (5.6), we obtain
ω′α = ωk, u′α = uk, and v′α = vk. This concludes the proof of Lemma 2. �

5.1. P (z) is an entire function. — If P (z) is an entire function then A(z) and B(z)

are polynomials; we denote by δ > 0 and d > 1 their degrees, and by Aδ and Bd their
leading coefficients. We shall estimate the growth of the Taylor coefficients of P (z) by
the saddle point method. For any circle CR of center 0 and radius R, Lemma 2 yields

Pn =
1

2iπ

∫
CR

A(z) · E(B(z))

zn+1
dz

=
1

2iπ

K∑
k=1

ωkAδB
uk
d dvk

∫
CR

eαkB(z) · zδ+duk−n−1(log z)vk · (1 + o(1))dz,

where the o(1) is with respect to R → +∞ and is uniform in n; here log(z) is a
fixed determination which depends on k (see the remark after Lemma 2). We have to
distinguish between the cases αk = 0 and αk 6= 0. In the former case, the integral

ωk
2iπ

∫
CR

zδ+duk−n−1(log z)vk · (1 + o(1))dz

tends to 0 as R→ +∞ (provided n is sufficiently large) and there is no contribution
coming from this case.

Now E(z) is not a polynomial (otherwise P (z) would be a polynomial too), so that
if αk = 0 for some k then K > 2: there is always at least one integer k such that
αk 6= 0. For any such k, the function

eαkB(z)zδ+duk−n−1(log z)vk
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is smooth on CR (except on the cut of log z) and the integral can be estimated
as n → ∞ by finding the critical points of αkB(z) − n log(z), i.e., the solutions
z1,k(n), . . . , zd,k(n) of zB′(z) = n/αk. As n→∞, we have

zj,k(n) ∼ (dBdαk)−1/de2iπj/dn1/d −→∞,

so that αkB(zj,k(n)) ∼ n/d.
Moreover, denoting by ∆j,k(n) the second derivative of αkB(z) − n log(z) at z =

zj,k(n), we see that asymptotically

∆j,k(n) = αkB
′′(zj,k(n)) +

n

zj,k(n)2
∼ d(dBdαk)2/de−4iπj/dn1−2/d.

Then the saddle point method yields:

Pn =
∑
αk 6=0

ω′k

d−1∑
j=0

1√
2π∆j,k(n)

eαkB(zj,k(n))zj,k(n)δ+duk−n−1(log zj,k(n))vk(1 + o(1))

with ω′k = ωkAδB
uk
d dvk ∈ Q∗ωk. This relation yields

Pn =
∑
αk 6=0

ω′′k√
2π

n−n/d(edBdαk)n/dn
δ
d+uk− 1

2 (log n)vk
( d−1∑
j=0

e2iπjn/d + o(1)
)

with ω′′k ∈ Q∗ωk. Now let α̃ = max(|α1|, . . . , |αK |) and consider the set K of all k
such that |αk| = α̃. For each k ∈ K we write α1/d

k = α̃1/deiθk ; then Stirling’s formula
yields

Pn = (2π)(1−d)/(2d)n!−1/d(dBdα̃)n/d
∑
k∈K

ω′′kn
δ
d+uk− 1

2 + 1
2d (log n)vk

d−1∑
j=0

ei(θk+ 2πj
d )n(1 + o(1)).

Keeping only the dominant terms provides Eq. (5.1).

5.2. P (z) is not an entire function. — Let us move now to the case where P (z) is not
entire, and prove Eq. (5.2). Let q > 0 and Θ ⊂ [0, 2π] be such that the singularities
of P (z) of minimal modulus are the q−1e−iθd with θd ∈ Θ; then Θ is finite and
non-empty. As usual the contributions of these singularities add up to determine
the asymptotic behavior of Pn; this corresponds to the sum over θd in Eq. (5.2). For
simplicity we shall restrict in the proof to the case of a unique singularity ρ = q−1e−iθd

of minimal modulus q−1. We consider first two special cases, and then the most
difficult one.

5.2.1. B(z) has a finite limit at ρ. — Let us assume that B(z) admits a finite limit as
z → ρ, denoted by B(ρ); ρ can be a singularity of B or not. In both cases, as z → ρ

we have
B(z) = B(ρ) + B(z − ρ)t(1 + o(1)),
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with t ∈ Q, t > 0, and B ∈ Q∗ (unless B is a constant; in this case the proof is even
easier). Now all Taylor coefficients of E(z) at B(ρ) belong to E, so that

E(B(z)) ∼ η(z − ρ)t
′

as z → ρ, with t′ ∈ Q, t′ > 0, and η ∈ Er{0}. On the other hand, if ρ is a singularity
of the algebraic function A(z) then its Puiseux expansion yields s ∈ Q r N, A ∈ Q∗

and a polynomial Ã such that

A(z) = Ã(z − ρ) + A(z − ρ)s(1 + o(1))

as z → ρ; if ρ is not a singularity of A we have the same expression with s ∈ N and
Ã = 0. In both cases we obtain finally p ∈ Qr N, P ∈ E r {0} and a polynomial P̃
such that

P (z) = P̃ (z − ρ) + P(z − ρ)p(1 + o(1)).

Using standard transfer results (see [13, p. 393]) this implies

Pn ∼
(−ρ)−pP

Γ(−p) ρ−nn−p−1.

Therefore the singularity contributes to (5.2) through a term in which v = κ1 = · · · =
κd−1 = θ1 = · · · = θd−1 = 0 and ρ−1 = qeiθd .

5.2.2. E is a polynomial. — In this case, P (z) is an algebraic function (and not a
polynomial) so that

Pn ∼
ω

Γ(−s) · n
−s−1ρ−n,

with ω ∈ Q∗ ⊂ E r {0} and s ∈ Q r N determined by the Puiseux expansion
of P (z) around ρ (using the same transfer result as above). Therefore each singularity
ρ = q−1e−iθd contributes to a term in (5.2) with v = κ1 = · · · = κd−1 = θ1 = · · · =

θd−1 = 0.

5.2.3. The main part of the proof. — Let us come now to the most difficult part of the
proof, namely the contribution of a singularity ρ at which B(z) does not have a finite
limit (in the case where E(z) is not a polynomial). As above we assume (for simplicity)
that ρ is the unique singularity of P (z) of minimal modulus q−1. As z → ρ, we have

(5.7) A(z) ∼ A(z − ρ)t/s and B(z) ∼ B(z − ρ)−τ/σ,

with A,B ∈ Q∗, s, t, σ, τ ∈ Z, s, σ, τ > 0, and gcd(s, t) = gcd(σ, τ) = 1. For any
circle CR of center 0 and radius R < |ρ|, we have (using Lemma 2 as in §5.1)

(5.8) Pn =
1

2iπ

K∑
k=1

ωk

∫
CR

eαkB(z)

zn+1
·A(z)B(z)uk log(B(z))vk · (1 + o(1))dz,

where o(1) is with respect to R→ |ρ| and is uniform in n.
If αk = 0 for some k, then the corresponding term in (5.8) has to be treated in

a specific way, since the main contribution may come from the error term o(1). For

J.É.P. — M., 2016, tome 3



Arithmetic theory of E-operators 55

this reason we observe that in Lemma 2, the term corresponding to αk = 0 can be
replaced with any truncation of the asymptotic expansion of E(z), namely with

U1∑
u=−U0

V∑
v=0

ωu,vz
u/d(log z)v + o(z−U0/d),

where d > 1 and U0 can be chosen arbitrarily large. Now the corresponding term in
(5.8) becomes

(5.9) 1

2iπ

∫
CR

1

zn+1

( U1∑
u=−U0

V∑
v=0

ωu,vA(z)B(z)u/d(logB(z))v+o(A(z)B(z)−U0/d)
)
dz.

The point is that the function ωu,vA(z)B(z)u/d(logB(z))v may be holomorphic
at z = ρ, because ωu,v = 0 or because the singularities at ρ of A(z) and
B(z)u/d(logB(z))v cancel out; in this case the corresponding integral over CR
is o(q′n) for some q′ < q = |ρ|−1 so that it falls into error terms. If this happens for
any U0, any u and any v, then the term corresponding to αk = 0 in (5.8) is o(qnn−U )

for any U > 0, so that it falls into the error term of the expression (5.2) we are going
to obtain for Pn. Otherwise we may consider the maximal pair (u, v) (with respect to
lexicographic order) for which this function is not holomorphic; then (5.9) is equal to

ω′u,v
2iπ

∫
CR

(ρ− z)T log(ρ− z)v
zn+1

· (1 + o(1))dz

for some T ∈ Q and ω′u,v ∈ Q∗ωu,v ⊂ Γ(Q) ·G (using Assertion (iii) of Theorem 2).
We obtain finally the following formula for (5.9) (see [13, p. 387]):

ω′u,v
Γ(−T )

ρT−nn−T−1 log(n)v(1 + o(1)) if T 6∈ N,

ω′u,vρ
T−nn−T−1 log(n)v−1(1 + o(1)) if T ∈ N (so that v > 1).

This contribution can either fall into the error term of (5.2), or give a term with
κ1 = · · · = κd−1 = θ1 = · · · = θd−1 = 0.

Let us study now the terms in (5.8) for which αk 6= 0; since E(z) is not a polynomial
there is at least one such term. The function

eαkB(z)

zn+1
·A(z)B(z)uk log(B(z))vk

is smooth on CR (except on the cuts of log(B(z))) and the integral can be estimated
as n → ∞ by finding the critical points of αkB(z) − n log(z), i.e., the solutions of
zB′(z) = n/αk. For large n, any critical point z must be close to ρ (since zB′(z) is
bounded away from ρ for |z| 6 |ρ|). Now in a neighborhood of z = ρ we have

zB′(z) ∼ −ρτB
σ
· 1

(z − ρ)1+τ/σ
,

so that we have τ + σ critical points zj,k(n), for j = 0, . . . , σ + τ − 1, with

zj,k(n)− ρ ∼ e2iπjσ/(σ+τ) ·
(
− σn

ρBταk

)−σ/(σ+τ)

.
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Using (5.7) and letting κ = t/s ∈ Q we deduce that

A(zj,k(n)) ∼ Ae2iπjσκ/(σ+τ) ·
(
− σn

ρBταk

)−σκ/(σ+τ)

6= 0.

Moreover we have

αkB(zj,k(n)) ∼ −σ
τ

(zj,k(n)− ρ)αkB
′(zj,k(n)) ∼ −σn

ρτ
(zj,k(n)− ρ) ∼ Dj,kn

τ/(σ+τ)

with
(5.10) Dj,k =

(
αkBe

2iπj
)σ/(σ+τ)(−σ

ρτ

)τ/(σ+τ)

6= 0.

To apply the saddle point method, we need to estimate the second derivative ∆j,k(n)

of αkB(z)− n log(z) at z = zj,k(n). We obtain

∆j,k(n) = αkB
′′(zj,k(n)) +

n

zj,k(n)2

∼ τ(σ + τ)

σ2
(αkB)−σ/(σ+τ)e−2iπj 2σ+τ

σ+τ

(
− σ

ρτ

) 2σ+τ
σ+τ

n
2σ+τ
σ+τ .

Finally,
B(zj,k(n))uk ∼ (Dj,k/αk)uknτuk/(σ+τ).

This enables us to apply the saddle point method. This yields a non-empty subset Jk
of {0, . . . , σ + τ − 1} such that the term corresponding to αk in (5.8) is equal to∑
j∈Jk

ωk√
2π∆j,k(n)

eαkB(zj,k(n))

zj,k(n)n+1
A(zj,k(n))B(zj,k(n))uk log(B(zj,k(n)))vk(1 + o(1)).

Now for any pair (j, k), αkB(zj,k(n)) is an algebraic function of n so that it can be
expanded as follows as n→∞:

(5.11) αkB(zj,k(n)) =

d′∑
`=0

κj,k,`n
`/d + o(1),

with κj,k,` ∈ Q, 0 < d′ < d and d′/d = τ/(σ + τ), κj,k,d′ = Dj,k 6= 0. Increasing d
and d′ if necessary, we may assume that they are independent from (j, k). We denote
by (κd′ , . . . , κ1) the family (Reκj,k,d′ , . . . ,Reκj,k,1) which is maximal with respect to
lexicographic order (as j and k vary with αk 6= 0 and j ∈ Jk), i.e., for which the
real part of (5.11) has maximal growth as n → ∞. Among the set of pairs (j, k) for
which Reκj,k,1 = κ1, . . . , Reκj,k,d′ = κd′ , we define K to be the subset of those for
which (uk, vk) is maximal (with respect to lexicographic order), and let (u, v) denote
this maximal value. Then the total contribution to (5.8) of all terms with αk 6= 0 is
equal to
n−(τ+2(1+κ)σ)/(2τ+2σ)

√
2π

ρ−nnτu/(σ+τ) log(n)ve
∑d′
`=1 κ`n

`/d

·
( ∑

(j,k)∈K

ω̂j,ke
κj,k,0e

∑d′
`=1 i Imκj,k,`n

`/d

+ o(1)

)
,

with ω̂j,k ∈ Q∗ωk. Since κd′ + i Imκj,k,d′ = Dj,k 6= 0, this concludes the proof of
Theorem 6. �
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6. Application to E-approximations

In this section we prove the results on E-approximations stated in the introduction.
As a warm-up, we start in §6.1 with numbers related to the exponential function. Then
we prove Theorem 3 in §§6.2 and 6.3. At last, we discuss in §6.4 the generalization
involving (1.8).

6.1. E-approximations of exponential values. — From the Taylor series exp(z) =∑∞
n=0 z

n/n!, we can construct E-approximations of eα for any algebraic number α.
Indeed, let An(α) =

∑n
k=0 α

n/n! and Bn(α) = 1. Then,
∞∑
n=0

An(α)xn =
exp(αx)

1− x and
∞∑
n=0

Bn(α)xn =
1

1− x,

so that An(α)/Bn(α) are E-approximations of eα. This readily generalizes to any
element of E, see §6.2 below.

This is not the only way to produce E-approximations of the number e; in particu-
lar, we shall now prove that the convergents of its continued fraction expansion are E-
approximations. In fact, this very property led us to the notion of E-approximations.

Proposition 4. — The sequence of convergents of the continued fraction expansion
of e (resp. of (e− 1)/(e+ 1)) defines E-approximations.

Proof. — We first provide an explicit expression for certain Padé approximants to
exp(z). For any integer n > 0, the diagonal Padé approximant [n/n] is given by

Qn(z)ez − Pn(z) = (−1)n
z2n+1

n!

∫ 1

0

tn(1− t)neztdt = O(z2n+1) as z −→ 0,

with

Qn(z) =

n∑
k=0

(−1)k
(

2n− k
n

)
zk

k!
and Pn(z) = Qn(−z).

The Padé approximant [n− 1/n] is given by

Q̃n(z)ez − P̃n(z) = (−1)n
z2n

n!

∫ 1

0

tn+1(1− t)neztdt = O(z2n),

with

Q̃n(z) =

n∑
k=0

(−1)k
(

2n− k − 1

n− 1

)
zk

k!
and P̃n(z) =

n−1∑
k=0

(
2n− k − 1

n

)
zk

k!
.

Finally, the Padé approximant [n/n− 1] is given by

Q̂n(z)ez − P̂n(z) = (−1)n
z2n

n!

∫ 1

0

tn(1− t)n+1eztdt = O(z2n),

with
Q̂n(z) = P̃n(−z) and P̂n(z) = Q̃n(−z).

We refer to [7] for a proof of these classical facts.
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By changing the order of summations, we obtain that, for any z ∈ C and any x
such that |x| < 1/4,

∞∑
n=0

Qn(z)xn =
1√

1− 4x
e(
√

1−4x−1)z/2,
∞∑
n=0

Pn(z)xn =
1√

1− 4x
e(1−

√
1−4x)z/2,

∞∑
n=0

Q̃n(z)xn =
1 +
√

1− 4x

2
√

1− 4x
e(
√

1−4x−1)z/2,
∞∑
n=0

P̃n(z)xn =
1−
√

1− 4x

2
√

1− 4x
e(1−

√
1−4x)z/2,

∞∑
n=0

Q̂n(z)xn =
1−
√

1− 4x

2
√

1− 4x
e(
√

1−4x−1)z/2,
∞∑
n=0

P̂n(z)xn =
1 +
√

1− 4x

2
√

1− 4x
e(1−

√
1−4x)z/2.

(6.1)

These identities will be used below.
We can now prove Proposition 4. We consider the numerator un and denomina-

tor vn of the n-th convergent of the continued fraction [0; 2, 6, 10, 14, 18, . . . ] of the
number (e− 1)/(e+ 1), i.e., un/vn = [0; a1, . . . , an] with ak = 4k − 2. It turns out
that un = n! (Pn(1)−Qn(1))/2 and vn = n! (Pn(1)+Qn(1))/2. This can be proved by
computing the linear recurrence satisfied by n!Pn(1) and n!Qn(1), using Zeilberger’s
algorithm for instance: it is Un+1 = (4n + 2)Un + Un−1 for both sequences, which is
exactly that satisfied by un and vn (by definition), and the initial values coincide. It
follows that

∞∑
n=0

un
n!

=
sinh

(
(1−

√
1− 4x)/2

)
√

1− 4x
and

∞∑
n=0

vn
n!

=
cosh

(
(1−

√
1− 4x)/2

)
√

1− 4x
.

These generating functions satisfy Definition 4, which proves that the sequence of the
convergents (un/vn)n>0 of (e− 1)/(e+ 1) defines E-approximations.

Finally, let us consider the case of e. Its continued fraction is

[2; 1, 2, 1, 1, 4, 1, 1, 6, . . . ],

with a regular pattern after the second 2. As in [7], one may define the convergents
of this continued fraction by pn/qn = [2; b1, . . . , bn−2] for n > 3, with p0 = q0 = 1,
p1 = 1, q1 = 0 and p2 = 2, q2 = 1. Then for any n > 0 we have (see [7]):

p3n = n!Pn(1), p3n+1 = n! P̃n(1), p3n+2 = n! P̂n(1),

q3n = n!Qn(1), q3n+1 = n! Q̃n(1), q3n+2 = n! Q̂n(1).
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It follows that
∞∑
n=0

pn
bn/3c! x

n =

∞∑
n=0

Pn(1)x3n +

∞∑
n=0

P̃n(1)x3n+1 +

∞∑
n=0

P̂n(1)x3n+2

=
2 + x+ x2 + x(x− 1)

√
1− 4x3

2
√

1− 4x3
e

1
2 (1−

√
1−4x3)

and
∞∑
n=0

qn
bn/3c! x

n =

∞∑
n=0

Qn(1)x3n +

∞∑
n=0

Q̃n(1)x3n+1 +

∞∑
n=0

Q̂n(1)x3n+2

=
2 + x+ x2 + x(1− x)

√
1− 4x3

2
√

1− 4x3
e

1
2 (
√

1−4x3−1).

Again, the generating functions of (pn/bn/3c!)n>0 and (qn/bn/3c!)n>0 satisfy Defi-
nition 4, so that the sequence of the convergents (pn/qn)n>0 of e defines E-approx-
imations. �

From (6.1), we also deduce that the Padé approximants [n/n] of exp(z) define
E-approximations of eα for any α ∈ Q, because it is known that limn Pn(z)/Qn(z) =

exp(z) for any z ∈ C. We now give a proof of this fact which is an instance of the
general asymptotic arguments presented in §5. The generating function for Qn(z) can
be written as

e−z/2√
1− 4x

f(z, x) + g(z, x),

where f(z, x) and g(z, x) are entire functions of x, and f(z, 1/4) = f(−z, 1/4) 6= 0.
Hence, by a standard transfer principle, the asymptotic behaviors as n → +∞ of
Qn(z) and Pn(z) are deduced from the behavior of their generating functions as
x→ 1/4: we get

Qn(z) ∼ e−z/2f
(
z, 1/4

)
4n
(−1/2

n

)
and Pn(z) ∼ ez/2f

(
z, 1/4

)
4n
(−1/2

n

)
.

It follows that limn Pn(z)/Qn(z) = ez.

6.2. Construction of numbers with E-approximations. — In this section, we prove
the first part of Theorem 3, namely that any element of

E ∪ Γ(Q)

E ∪ Γ(Q)
∪ FracG

has E-approximations. As mentioned in the introduction, this is true for any element
of FracG. To complete the proof, let us construct for any ξ ∈ E ∪ Γ(Q) a sequence
(Pn)n as in Definition 4 with limn→∞ Pn = ξ.

If ξ = F (α) where α ∈ Q and F (z) =
∑
n>0

an
n! z

n is an E-function, we define
Pn ∈ Q by

∞∑
n=0

Pnz
n =

1

1− zF (αz).
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Then, trivially,

Pn =

n∑
k=0

ak
k!
αk −→ F (α) = ξ.

If ξ = Γ(α) with α ∈ Qr Z60, we consider the E-function

Eα(z) =

∞∑
n=0

zn

n! (n+ α)

and define Pn(α) as announced in the introduction, by the series expansion (for |z|<1)
1

(1− z)α+1
Eα

(
− z

1− z
)

=
∑
n>0

Pn(α)zn ∈ Q[[z]].

Then

Pn(α) =

n∑
k=0

(
n+ α

k + α

)
(−1)k

k! (k + α)

(by direct manipulations) and, provided that α < 1,

lim
n→+∞

Pn(α) = Γ(α) = ξ.

To see this, we start from the asymptotic expansion

(6.2) Eα(−z) ≈ Γ(α)

zα
− e−z

∞∑
n=0

(−1)n
(1− α)n
zn+1

in a large sector bisected by any θ ∈ (−π/2, π/2), which is a special case of Theorem 5
(proved directly in [22, Prop. 1]). Since exp

(
− z

1−z
)

= O(1) as z → 1, |z| < 1, it follows
that

1

(1− z)α+1
Eα

(
− z

1− z
)

=
Γ(α)

1− z + O
( 1

|1− z|α
)

+ O(1)

as z → 1, |z| < 1. The result follows by a standard transfer result since α < 1; this
example is of the type covered by §5.2.3 with α1 = 0.

From the differential equation zy′′(z) + (α + 1 − z)y′(z) − αy(z) = 0 satisfied
by Eα(z), we easily get the differential equation satisfied by 1

(1−z)α+1Eα
(
− z

1−z
)
:

(6.3)
(
3z3 − z4 − 3z2 + z

)
y′′(z)

+
(
5z2α− 4z3 − 2z3α+ 8z2 + 1 + α− 5z − 4zα

)
y′(z)

+
(
− 1− 2z2 − 3z2α+ 2z − α+ 4zα− α2 + 2zα2 − z2α2

)
y(z) = 0.

This immediately translates into a linear recurrence satisfied by the sequence (Pn(α)):

(6.4) (n+ 3)(n+ 3 + α)Pn+3(α)− (3n2 + 4nα+ 14n+ α2 + 9α+ 17)Pn+2(α)

+ (3n+ 5 + 2α)(n+ 2 + α)Pn+1(α)− (n+ 2 + α)(n+ 1 + α)Pn(α) = 0,

with

P0(α) =
1

α
, P1(α) =

1 + α+ α2

α(α+ 1)
and P2(α) =

4 + 5α+ 6α2 + 4α3 + α4

2α(α+ 1)(α+ 2)
.
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6.3. Properties of numbers with E-approximations. — Let us prove now the second
part of Theorem 3, namely that any number ξ ∈ C∗ with E-approximations belongs to

E ∪ (Γ(Q) ·G)

E ∪ (Γ(Q) ·G)
∪
(

Γ(Q) · exp(Q) · FracG
)
.

The proof is very similar to that of [11, §6.2] so we skip the details. Let (Pn, Qn)

be E-approximations of ξ ∈ C∗. If (Pn) has the first asymptotic behavior (5.1) of
Theorem 6, then so does (Qn) with the same parameters d, q, u, v, and the sum is
over the same non-empty finite set of θ. Therefore

ξ =
gθΓ(−uθ)
g′θΓ(−u′θ)

∈ Γ(Q) · FracG,

using Eq. (1.5).
Now if (Pn) satisfies (5.2) then so does (Qn) with the same parameters q, u, v, κ1,

. . . , κd−1 (since we may assume that d is the same), and the same set of (θ1, . . . , θd)

in the sum. If v = κ1 = · · · = κd−1 = 0 and a term in the sum corresponds to
θ1 = · · · = θd−1 = 0, then

ξ =
ω0,...,0,θd

ω′0,...,0,θd
∈ E ∪ (Γ(Q) ·G)

E ∪ (Γ(Q) ·G)
,

else ξ ∈ Γ(Q) · exp(Q) · FracG (using Eq. (1.5)).

6.4. Extended E-approximations. — Let us consider the E-function

E(z) =

∞∑
n=1

zn

n!n
.

We shall prove that the sequence (Pn) defined in the introduction by

log(1− z)
1− z − 1

1− zE
(
− z

1− z
)

=

∞∑
n=0

Pnz
n ∈ Q[[z]]

provides, together with Qn = 1, a sequence of E-approximations of Euler’s constant
in the extended sense of (1.8). It is easy to see that

Pn =

n∑
k=1

(−1)k−1

(
n

k

)
1

k! k
−

n∑
k=1

1

k
=

n∑
k=1

(−1)k
(
n

k

)
1

k

(
1− 1

k!

)
,

where the second equality is a consequence of the identity
n∑
k=1

1

k
=

n∑
k=1

(−1)k−1

(
n

k

)
1

k
.

We now observe that E(z) has the asymptotic expansion

(6.5) E(−z) ≈ −γ − log(z)− e−z
∞∑
n=0

(−1)n
n!

zn+1

J.É.P. — M., 2016, tome 3



62 S. Fischler & T. Rivoal

in a large sector bisected by any θ ∈ (−π, π) (see [22, Prop. 1]; this is also a special
case of Theorem 5). Therefore, as z → 1, |z| < 1,

− 1

1− zE
(
− z

1− z
)

+
log(1− z)

1− z =
γ

1− z + O(1).

As in §6.1 in the case of Γ(α), a transfer principle readily shows that

lim
n→+∞

Pn = γ.

Since E(z) is holonomic, this is also the case of
log(1− z)

1− z − 1

1− zE
(
− z

1− z
)
.

The latter function satisfies the differential equation

(6.6)
(
3z3 − z4 − 3z2 + z

)
y′′(z) +

(
1− 5z + 8z2 − 4z3

)
y′(z)

+
(
− 2z2 + 2z − 1

)
y(z) = 0.

This immediately translates into a linear recurrence satisfied by the sequence (Pn):

(6.7) (n+3)2Pn+3−(3n2+14n+17)Pn+2+(n+2)(3n+5)Pn+1−(n+1)(n+2)Pn = 0

with P0 = 0, P1 = 0, P2 = 1/4. The differential equation (6.6) and the recurrence
relation (6.7) are the case α = 0 of (6.3) and (6.4) respectively.

Let us now prove that any number with extended E-approximations belongs to

(E · log(Q∗)) ∪ S

(E · log(Q∗)) ∪ S
∪
(

exp(Q) · FracS
)
,

as stated in the introduction. Let P (z) =
∑∞
n=0 Pnz

n be given by a finite sum

(6.8) P (z) =
∑
i,j,k,`

αi,j,k,` log(1−Ai(z))j ·Bk(z) · E`
(
C(z)

)
,

where αi,j,k,` ∈ Q, Ai(z), Bk(z), C(z) are algebraic functions in Q[[z]], Ai(0)=C(0)=0,
and E`(z) are E-functions. If there is only one term in the sum, the conclusions of
Theorems 3 and 6 hold and their proofs extend immediately, except that E has to be
replaced with E · log(Q∗) in §5.2.1 and 5.2.2, and therefore in (1.7) and (5.3). Other-
wise, we apply a variant of Lemma 2 to each E-function E`(z), obtaining exponential
terms eαk,`z: for each k we write sufficiently many terms in the asymptotic expansion
before the error term o(1) (and not only the dominant one as in §5). Theorem 2 as-
serts that all these terms are of the same form, but now the constants ω belong to S.
Combining these expressions yields

P (z) =

K∑
k=1

ωke
αkC(z)Uk(z)(log Vk(z))vk(1 + o(1))

as z tends to some point (possibly∞) at which C is infinite; here Uk, Vk are algebraic
functions, vk ∈ N, and ωk ∈ S. However there is no reason why ωk would belong to
Γ(Q) ·G in general, since it may come from non-dominant terms in the expansions
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of E`(z), due to compensations. Upon replacing Γ(Q) · G with S (and E with E ·
log(Q∗) as above), the proof of Theorems 3 and 6 extends immediately.

To conclude this section, we discuss another interesting example, which was also
mentioned in the introduction. It corresponds to the more general notion of extended
E-approximations where the coefficients of the linear form (6.8) are in E and not just
in Q. Let us consider the E-function F (z2), where F (z) =

∑∞
n=0 z

n/n!2. It is solution
of an E-operator L of order 2 with another solution of the form G(z2) + log(z2)F (z2)

where

G(z2) = −2

∞∑
n=0

1 + 1/2 + · · ·+ 1/n

n!2
z2n

is an E-function (in accordance with André’s theory). Then,

F (1− z) =
∞∑
n=0

(1− z)n
n!2

=
∞∑
k=0

(−1)kAk
k!

zk,

with

Ak = (−1)k
∞∑
n=0

1

n! (n+ k)!
.

It is a remarkable (and known) fact that the sequence (Ak) satisfies the recurrence
relation Ak+1 = kAk + Ak−1, A0 = F (1), A1 = −F ′(1). This can be readily checked.
It follows that Ak = VkF (1) − UkF ′(1) where the sequences of integers Uk, Vk are
solutions of the same recurrence.

Hence, the sequence Uk/Vk is the sequence of convergents to F (1)/F ′(1) whose
continued fraction expansion is [0; 1, 2, 3, 4, . . . ]. Moreover, we have

∞∑
n=0

(−1)kUk
k!

zk = aF (1− z) + bG(1− z) + b log(1− z)F (1− z)

∞∑
n=0

(−1)kVk
k!

zk = cF (1− z) + dG(1− z) + d log(1− z)F (1− z)

for some constants a, b, c, d, because both generating functions are solutions of an
operator of order 2 obtained from L by changing z to

√
1− z. The conditions V0 = 1,

U0 = 0, V1 = 0, U1 = 1 and Ak = VkF (1)− UkF ′(1) translate into a linear system in
a, b, c, d with solutions given by

a =
g

gf ′ − f2 − fg′ ∈ E, b = − f

gf ′ − f2 − fg′ ∈ E,

c = − f + g′

gf ′ − f2 − fg′ ∈ E, d =
f ′

gf ′ − f2 − fg′ ∈ E,

where f = F (1), f ′ = F ′(1), g = G(1), g′ = G(1). We observe that gf ′−f2−fg′ ∈ Q∗

because it is twice the value at z = 1 of the wronskian built on the linearly independent
solutions F (z2) and G(z2) + log(z2)F (z2). It follows that Uk/Vk are extended E-
approximations to the number F (1)/F ′(1) with “coefficients” in E, but not in Q
(because the number f was proved to be transcendental by Siegel).
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