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A NON-PARAMETRIC PLATEAU PROBLEM

WITH PARTIAL FREE BOUNDARY

by Giovanni Bellettini, Roberta Marziani
& Riccardo Scala

Abstract. — We consider a Plateau problem in codimension 1 in the non-parametric setting,
where a Dirichlet boundary datum is assigned only on part of the boundary ∂Ω of a bounded
convex domain Ω ⊂ R2. Where the Dirichlet datum is not prescribed, we allow a free con-
tact with the horizontal plane. We show existence of a solution, and prove regularity for the
corresponding area-minimizing surface. We compare these solutions with the classical minimal
surfaces of Meeks and Yau, and show that they are equivalent when the Dirichlet boundary
datum is assigned on at most 2 disjoint arcs of ∂Ω.

Résumé (Un problème de Plateau non paramétrique avec condition au bord partiellement libre)
Nous considérons un problème de Plateau en codimension 1 dans un cadre non paramétrique,

où une donnée de Dirichlet n’est assignée que sur une partie de la frontière ∂Ω d’un domaine
convexe borné Ω ⊂ R2. Là où la donnée de Dirichlet n’est pas prescrite, nous autorisons un
contact libre avec le plan horizontal. Nous montrons l’existence d’une solution, et prouvons
la régularité de la surface minimale correspondante. Nous comparons ces solutions avec les
surfaces minimales classiques de Meeks et Yau, et montrons qu’elles sont équivalentes lorsque
la donnée de Dirichlet est assignée sur au plus 2 arcs disjoints de ∂Ω.
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1. Introduction

The Plateau problem is a classical problem in the Calculus of Variations modeling
configurations of soap films obtained by immersing a wire frame into soapy water.
Roughly speaking, it consists in seeking for an area minimizing surface over all surfaces
with prescribed boundary a given closed Jordan curve in space. Over the years several
approaches and variants were proposed, each corresponding to a specific choice of the
class of admissible surfaces. In the following we list just few of them and we refer
for example to [30] and references therein for a list of the main approaches available
in the literature. One of the first result is due to Weierstrass and Riemann who
studied a non-parametric Plateau problem in R3 obtained by minimizing the area over
all Cartesian surfaces; this gave rise to the theory of minimal surfaces. Successively
Douglas and Radó developed independently [23, 36] the classical parametric approach
for disk type solutions. This method was later generalized by Jost [31] to study the
Plateau problem for surfaces with higher genus (see also the paper [34] by Meeks and
Yau). A more general approach which accounts for a large class of surfaces was instead
proposed by Federer and Fleming [25], based on integral currents. Another remarkable
work is due to Reifenberg [38] which adopts completely different techniques involving
the concept of Čech homology. Relevant is also Almgren’s contribution with three
different approaches, one of these using the notion of varifolds [2]. Among all possible
variants one might consider a partial free boundary version of the Plateau problem
where the boundary datum is partially fixed and partially free to move within a
given surface. This type of problem has been exhaustively studied (see for instance
[22]) in the parametric framework but never investigated, to our best knowledge,
with the non-parametric approach. To this aim, in the present paper we will analyze
existence and regularity of solutions of a non-parametric partial free boundary Plateau
problem. More precisely, we look for an area-minimizing surface which can be written
as a graph over a bounded open convex set Ω ⊂ R2, and spanning a Jordan curve
Γσ = γ ∪ σ ⊂ R2 × [0,+∞) that is partially fixed. Namely, γ is fixed (Dirichlet
condition) and is given by a family {γi}ni=1 ⊂ ∂Ω × [0,+∞) of n ∈ N curves each
joining distinct pairs of points {(pi, qi)}ni=1 of ∂Ω. Whereas σ, which represents the
free boundary, is an unknown and consists of (the image of) n curves σ1, . . . , σn sitting
in Ω, and joining the endpoints of γ in order that γ∪σ forms a Jordan curve Γσ in R3.
We assume that each γi is Cartesian, i.e., it can be expressed as the graph of a given
nonnegative function φ defined on a corresponding portion of ∂Ω. This allows to
restrict ourselves to the Cartesian setting, and to assume that the competitors for
the Plateau problem are expressed by graphs of functions ψ defined on a suitable
subdomain of Ω depending on σ; see Figure 1 when n = 3. A peculiarity of our
problem is the presence of a free boundary.

The purpose of this paper is twofold. We start addressing the question of existence
and regularity of solutions. Our first main result (Theorems 1.1, 3.1 and 5.1) asserts
that there are always solutions (which can be degenerate, in the sense that they
may consist of more than one connected component, see the example of the catenoid
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below) and that, under suitable hypotheses on the boundary datum, there is at least
one regular solution continuous up to the boundary. Next we compare our solutions
with solutions to a parametric Plateau problem when n = 1, 2. Roughly speaking, our
second main result (Theorems 1.2, 6.1 and 6.4) shows that any regular solution to our
minimization problem is a minimal embedding in the sense of Meeks and Yau [34],
and vice-versa.

Existence and regularity of solutions. — We describe here our main results with few
details, referring to Section 2 for the precise description of the mathematical frame-
work. We fix n ∈ N and 2n distinct points p1, q1, p2, q2, . . . , pn, qn ∈ ∂Ω in clockwise
order, and set qn+1 := p1. The relatively open arc of ∂Ω between the points pi and
qi is noted by ∂Di Ω, and the relatively open arc between qi and pi+1 by ∂0i Ω. We fix
a nonnegative continuous function φ : ∂Ω → [0,+∞) positive on ∂DΩ :=

⋃n
i=1 ∂

D
i Ω

and vanishing on {pi, qi}ni=1 ∪ ∂0Ω, where ∂0Ω :=
⋃n
i=1 ∂

0
i Ω. For every i = 1, . . . , n,

we denote by γi the graph of φ over ∂Di Ω and we consider curves σi : [0, 1] → Ω with
the following properties:

(i) σi is injective, σi(0) = qi and σi(1) = pi+1, for all i = 1, . . . , n;
(ii) int(E(σi)) ∩ int(E(σj)) = ∅ for i, j = 1, . . . , n, i ̸= j, where int denotes the

interior part.
Note carefully that σi and σj are allowed to partially overlap.

We suppose the graph of φ over ∂DΩ to be a Lipschitz curve in R3 (see Figure 1).
Finally we set

(1.1) E(σ) :=
n⋃
i=1

E(σi),

and define the two classes

Σ :=
{
σ = (σ1, . . . , σn) ∈ (Lip([0, 1]; Ω))n satisfies (i)–(ii)

}
,(1.2)

Xφ := {(σ, ψ) ∈ Σ×W 1,1(Ω) : ψ = 0 a.e. in E(σ) and ψ = φ on ∂DΩ}.(1.3)

If (σ, ψ) ∈ Xφ, then the graph of ψ over Ω∖E(σ) is a surface spanning the curve Γσ.
We look for a pair (σ, ψ) minimizing the area of such surfaces, that is, we want to
find a solution to the minimum problem

inf
(σ,ψ)∈Xφ

∫
Ω∖E(σ)

»
1 + |∇ψ|2 dx.(1.4)

We then prove the following result, accounting for existence and regularity of solu-
tions to (1.4).

Theorem 1.1. — Let Ω be strictly convex. Then there exists a solution (σ, ψ) ∈ Xφ

to (1.4) such that ψ is continuous on Ω, analytic in Ω∖E(σ), and Ω∩∂E(σ) consists
of a family of mutually disjoint analytic curves (joining pi and qj in some order).
Moreover, each connected component of E(σ) is convex.

We emphasize that convexity of Ω is necessary (even for the classical non-
parametric Plateau problem with no free boundary, existence of regular solutions is
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Figure 1. An example of the setting (in 3D), when n = 3. On the
boundary of the convex set Ω fix the points pi, qi; the arc of ∂Ω join-
ing pi to qi is ∂Di Ω, while the arc joining qi to pi+1 is ∂0i Ω (p4 := p1).
On ∂DΩ the Dirichlet boundary datum φ is imposed, whose graph
has been depicted. The dotted arcs are the free planar curves σi join-
ing qi and pi+1.

not guaranteed if Ω is not convex). The proof of existence relies on direct methods;
however, since the class Xφ is not closed under weak* convergence in BV , they
cannot be applied directly to (1.4) but rather to a suitable weak formulation. For
this reason we replace Xφ in (1.3) with a larger class W of admissible pairs, and relax
accordingly the functional in (1.4). We set

(1.5) W :=
{
(σ, ψ) ∈ Σ×BV (Ω) : ψ = 0 a.e. in E(σ)

}
.

The weak formulation consists in looking for solutions to the problem

(1.6) inf
(σ,ψ)∈W

F(σ, ψ),

where F is the functional defined by

F(σ, ψ) :=

∫
Ω

»
1 + |∇ψ|2 dx+ |Dsψ|(Ω)− |E(σ)|+

∫
∂Ω

|ψ − φ| dH1

=

∫
Ω∖E(σ)

»
1 + |∇ψ|2 dx+ |Dsψ|(Ω) +

∫
∂Ω

|ψ − φ| dH1,(1.7)

with Dsψ the singular part of the measure Dψ and |E(σ)| the Lebesgue measure
of E(σ). Observe that F(σ, ψ) equals the integral in (1.4) when ψ ∈ W 1,1(Ω) attains
the boundary value φ. The existence of solutions to (1.6) is shown in two steps.
In the first step we prove existence of minimizers of F in a smaller class Wconv ⊂ W

of admissible pairs (σ, ψ), where compactness is easier and allows to make use of
the direct method. The class Wconv accounts only for specific geometries of the free
boundary σ, namely, each set E(σi) is required to be convex (see (2.6) for its precise
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definition). In the second step we show, by means of a convexification procedure, that
every minimizer (σ, ψ) ∈ Wconv is actually a solution to (1.6). Eventually we prove
that there exists at least a minimizer (σ, ψ) ∈ Wconv which satisfies certain regularity
properties, and in particular is a solution to (1.4). The fact that, for minimizers, all
connected components of E(σ) are convex, is somehow a consequence of the maximum
principle, i.e., every minimal surface is contained in the convex hull of its boundary.
The existence and regularity of a solution to (1.6) are contained in Theorems 3.1
and 5.1 respectively, which in turn imply Theorem 1.1. We stress that Theorems 3.1
and 5.1 are actually stated in the more general case of a convex planar domain Ω.
However, if Ω is convex but not strictly convex it may happen that a solution to (1.6)
is “less regular”, in the sense that ψ may not achieve the boundary condition (as in
the next example), thus failing to be a solution to (1.4).

The example of the catenoid. — Our prototypical example is given by (half of) the
catenoid. Consider a cylinder in R3 with basis a circle of radius r and height ℓ. Choose
Cartesian coordinates for which the x1x2-plane contains the cylinder axis, and restrict
attention to the half-space {x3 ⩾ 0} as in Figure 2, where Ω = Rℓ := (0, ℓ)× (−r, r)
and n = 2. Write

∂Ω = ∂D1 Ω ∪ ∂01Ω ∪ ∂D2 Ω ∪ ∂02Ω,
where

∂D1 Ω = {0}× (−r, r), ∂01Ω = (0, ℓ)×{r}, ∂D2 Ω = {ℓ}× (−r, r), ∂02Ω = (0, ℓ)×{−r}.

On the Dirichlet boundary ∂DΩ = ∂D1 Ω∪∂D2 Ω we prescribe the continuous function φ
whose graph consists of the two half-circles γ1 and γ2. The endpoints of γ1 and γ2 live
on the free boundary plane (the horizontal plane) and are p1 = (0,−r), q1 = (0, r), and
p2 = (ℓ, r), q2 = (ℓ,−r), respectively. The free boundary σ consists of two curves σ1
and σ2 with endpoints q1, p2, and q2, p1, respectively, constrained to stay in Ω. The
concatenation of γ = γ1 ∪ γ2 and σ forms a Jordan curve

Γσ = γ1 ∪ σ1 ∪ γ2 ∪ σ2 ⊂ R3.(1.8)

Therefore we look for an area-minimizer among all Cartesian surfaces S with bound-
ary Γσ keeping σ free, i.e., we look for a solution to (1.4) for this specific geometry.
In this case a minimizing sequence (σk, ψk) ⊂ W of the weak formulation (1.7) tends
(in the sense of Definition 4.3) to a minimizer (σ, ψ) ∈ Wconv which allows for two
different possibilities. If ℓ is small, σ1 and σ2 remain disjoint and (σ, ψ) ∈ Xφ. In par-
ticular, the area-minimizing surface S (given by the graph of ψ over Ω ∖ E(σ)) is
the classical (half) catenoid (namely the intersection between the catenoid and the
half-space {x3 ⩾ 0}). If instead ℓ is large, the two curves σ1 and σ2 merge, the region
Ω ∖ E(σ) collapses (i.e., it reduces to the two segments ∂D1 Ω ∪ ∂D2 Ω) and ψ = 0

and therefore (σ, ψ) /∈ Xφ. In particular, the surface S is the union of two vertical
(half) disks. We emphasize that this example is classical and, due to the rotational
symmetry of the curve Γ, it can be reduced to a 1-dimensional problem (see [29, 16]).

Let us now quickly describe the second part of the paper.
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Figure 2. The setting for the catenoid: for ℓ large enough (the
basis of the rectangle) the dotted curves σ1 and σ2 merge and
the (generalized) graph of ψ reduces to two vertical half-circles on
∂DΩ = ∂D1 Ω ∪ ∂D2 Ω. In this case ∂DΩ ⊂ ∂E(σ1) ∪ ∂E(σ2).

Comparison with embedded minimal surfaces. — We recall that γi is the graph of the
map φ on ∂Di Ω. We consider sym(γi), namely the graph of −φ on ∂Di Ω, which is
symmetric to γi with respect to the plane containing Ω. Setting Γi := γi ∪ sym(γi),
this turns out to be a simple Jordan curve in R3, for all i = 1, . . . , n. Hence we can
consider the classical Plateau problem for the curve Γ :=

⋃n
i=1 Γi. In the case n = 1

a solution is an area minimizing disk-type surface S spanning Γ = Γ1. Whereas in
the case n = 2 a solution is either an annulus-type surface spanning Γ = Γ1 ∪ Γ2 or
the union of two disjoint disks spanning Γ1 and Γ2, respectively. Then the following
result holds true:

Theorem 1.2. — Let Ω be strictly convex. For n ∈ {1, 2} let (σ, ψ) ∈ Xφ be a mini-
mizer as in Theorem 1.1. Let S+ be the graph of ψ over Ω∖ E(σ) and let S− be the
symmetric of S+ with respect to the plane containing Ω. Then the set S = S+∪S− is
a solution to the classical Plateau problem associated to Γ =

⋃n
i=1 Γi. Vice-versa every

solution S to the classical Plateau problem associated to Γ =
⋃n
i=1 Γi is symmetric

with respect to the plane containing Ω. Moreover, S+ := S ∩ {x3 ⩾ 0} is the graph
of ψ over Ω∖ E(σ) for some (σ, ψ) ∈ Xφ, a minimizer as in Theorem 1.1.

The above theorem is rigorously stated in Theorems 6.1 (n = 1) and 6.4 (n = 2)
in the more general case of Ω convex. In particular, if Ω is convex, we prove that
there is a correspondence between a regular solution to the weak formulation (1.6)
and a solution to the classical Plateau problem (as in the example of the catenoid).
A relevant consequence of this equivalence is that when the boundary closed curve Γ

is symmetric with respect to the plane containing Ω, and its upper part is Cartesian,
then the same property holds for the corresponding Meeks and Yau solution.

The proof of Theorem 1.2 for n = 1 is not difficult, whereas for n = 2 it is
considerably more complicated, and requires several lemmas: we strongly use the
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Figure 3. A possible configuration of the sets E(σi) in the case
n = 3. On the (clockwise oriented) arcs p̄1q1 = ∂D1 Ω, p̄2q2 = ∂D2 Ω,
and p̄3q3 = ∂D3 Ω the function φ is prescribed and positive. On ∂0Ω =

q̄1p2∪ q̄2p3∪ q̄3p1 and on E(σ) = E(σ1)∪E(σ2)∪E(σ3) we prescribe
ψ = 0. The curves σi joining qi to pi+1 (with the corresponding
set E(σi)) are indicated. On the dotted segment σ1 and σ2 overlaps
with opposite orientations. On the dark region Ω ∖ E(σ), ψ is not
necessarily null.

convexity of the domain Ω, which implies that the cylinder Ω × R, whose boundary
contains Γ, is convex, and so the existence results of Meeks and Yau [34] (see also
Theorem 6.3) are applicable.

The main steps of the proof are the following: if S is a Meeks-Yau annulus-type
minimal surface, we perform a Steiner symmetrization of the 3-dimensional finite
perimeter set in Ω× R enclosed by S to obtain a set (symmetric with respect to the
plane containing Ω) whose boundary is an annulus-type minimal surface S̃ spanning Γ

which is symmetric and such that S̃+ := S̃ ∩ {x3 ⩾ 0} is Cartesian. In turn, using
standard results on the case of equality for the perimeter of a set and its symmetriza-
tion, we show that the original surface S was already symmetric with respect to the
plane containing Ω, so S+ was already Cartesian, and the conclusion of the proof for
n = 2 is achieved. Note that the aim of Theorem 1.2 is not to provide new examples
of minimal surfaces; rather, it enlightens (among other things) some interesting quali-
tative properties of the Meeks-Yau solutions. Due to the highly nontrivial arguments,
we have restricted our analysis to the cases n ∈ {1, 2}, since a generalization to the
case n > 2 probably requires heavy modifications. Indeed, some lemmas needed to
prove Theorem 6.4 employ crucially the fact that ∂0Ω consists of just two connected
components. For this reason we leave the case n > 2 for future investigations.

Some motivation. — The setting of our problem models a cluster of soap films which
are constrained to wet a given system of wires γ emanating from a given free boundary
plane (representing a table, or a water surface, on which the soap films can freely
move). Our results show that if the system of wires describes the graphs of functions
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on ∂Ω as above, then the (Meeks and Yau) solutions of the “parametric” Plateau
problem are in fact Cartesian, and coincide with the solutions obtained by the non-
parametric approach. This result can be viewed as a generalization of the well-known
theorem of Radó stating that any minimal disk spanning a Jordan curve in R3 whose
projection on a plane is a bijection with a convex Jordan curve is the graph of a
function defined on the plane [37].

However, the scope of this article goes beyond this generalization, and the solutions
we look for are strongly related with the vertical parts of Cartesian currents arising
in the analysis of the relaxation of the non parametric area functional in dimension 2

and codimension 2. We further comment on this in Section 7 where we go more into
details.

Structure of the paper. — The paper is organized as follows. In Section 2 we intro-
duce the setting of the problem in detail. In Section 3 we show how to reduce the
minimum problem from the wider class W to the class Wconv (Theorem 3.1). Next,
in Section 4 we prove the existence of minimizers in Wconv. As a consequence, we gain
the existence of minimizers in class W (Corollary 4.2). In Section 5 we study the reg-
ularity of minimizers. Specifically, we state and prove Theorem 5.1 which, together
with Theorem 3.1, generalize Theorem 1.1. Theorem 1.1 follows from Theorem 4.1,
Corollary 4.2, and Theorem 5.1. Eventually, in Section 6 we compare our solutions
with the classical minimal surfaces spanning Γ. Here, as anticipated, we restrict the
analysis to n = 1, 2, the case n = 2 essentially giving rise to either a catenoid-type
minimal surface, or two disk-type surfaces spanning Γ1 and Γ2. The main theorems
here are Theorems 6.1 and 6.4. In Section 7 we briefly point out our motivations for
the present study and some open problems. The paper concludes with an appendix
containing some rather classical results on convex sets and Hausdorff distance, needed
in Section 5.

Acknowledgements. — We thank the anonymous referees and the editors for sugges-
tions and hints which allowed us to substantially improve the paper.

2. Preliminaries

2.1. Area of the graph of a BV function. — Let U ⊂ R2 be a bounded open set.
For any ψ ∈ BV (U) we denote by Dψ its distributional gradient, so that

Dψ = ∇ψL2 +Dsψ,

where ∇ψ is the approximate gradient of ψ and Dsψ denotes the singular part of Dψ.
We recall that the L1-relaxed area functional reads as [28]

A(ψ;U) :=

∫
U

»
1 + |∇ψ|2 dx+ |Dsψ|(U).(2.1)

In what follows we denote by ∂∗A the reduced boundary of a set of finite perimeter
A ⊂ R3 (see [4]). For any ψ ∈ BV (U) we denote by Rψ ⊂ U the set of regular
points of ψ, namely the set of points x ∈ U which are Lebesgue points for ψ, ψ(x)

J.É.P. — M., 2024, tome 11
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coincides with the Lebesgue value of ψ at x, and ψ is approximately differentiable
at x. We define the subgraph SGψ of ψ as

SGψ := {(x, y) ∈ Rψ × R : y < ψ(x)},

which is a finite perimeter set in U×R. Its reduced boundary in U×R is the generalized
graph Gψ := {(x, ψ(x)) : x ∈ Rψ} of ψ, which turns out to be 2-rectifiable. If ⟦SGψ⟧ ∈
D3(R3) denotes the integral current given by integration over SGψ and ∂⟦SGψ⟧ ∈
D2(R3) is its boundary in the sense of currents, then

⟦Gψ⟧ = ∂⟦SGψ⟧ (U × R),

with ⟦Gψ⟧ the integer multiplicity 2-current given by integration over Gψ (suitably
oriented; see [26] for more details).

2.2. Setting of the problem. — We fix Ω ⊂ R2 to be an open bounded convex set
(strict convexity is not required) which will be our reference domain. Given two points
p, q ∈ ∂Ω in clockwise order, Ùpq stands for the relatively open arc on ∂Ω joining p

and q.
Let n ∈ N, n ⩾ 1, and let {pi}ni=1 be distinct points on ∂Ω chosen in clockwise

order; we set pn+1 := p1. For all i = 1, . . . , n let qi be a point in ṗipi+1 ⊂ ∂Ω. We set

∂Di Ω := p̃iqi, ∂0i Ω := q̇ipi+1 for i = 1, . . . , n,(2.2)

and

(2.3) ∂DΩ :=
n⋃
i=1

∂Di Ω, ∂0Ω :=
n⋃
i=1

∂0i Ω.

Since ∂Di Ω and ∂0i Ω are relatively open in ∂Ω, so are ∂DΩ and ∂0Ω. It follows that
∂Ω is the disjoint union

∂Ω =
n⋃
i=1

{pi, qi} ∪ ∂DΩ ∪ ∂0Ω.

We fix a continuous function φ : ∂Ω → [0,+∞) such that

(2.4) φ = 0 on ∂0Ω and φ > 0 on ∂DΩ,

see Figures 2, 1. We will make a further regularity assumption on φ: we require that
the graph Gφ ∂D

i Ω = {(x, φ(x)) : x ∈ ∂Di Ω} of φ on ∂Di Ω is a Lipschitz curve in R3,
for all i = 1, . . . , n.

Remark 2.1. — The hypothesis φ > 0 on ∂DΩ excludes from our analysis the example
in Figure 6. We will further comment on this later on (see Section 5.1); the presence
of pieces of ∂DΩ where φ = 0 brings to some additional technical difficulties that
we prefer to avoid here. However, the setting in Figure 6 can be achieved by an
approximation argument. Namely, one considers a suitable regularization φε of φ on
∂DΩ such that φε > 0, and then letting ε→ 0 one obtains a solution to the problem
with Dirichlet datum φ.
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Remark 2.2. — By definition (1.2) any σ ∈ Σ satisfies the injectivity property in (i)
which guarantees that the sets E(σi) are simply connected (but not necessarily con-
nected). Assumption (ii) means essentially that the curves σi cannot cross transver-
sally each other, but might overlap. Notice that int(E(σi)) might be empty, the case
∂0i Ω = σi([0, 1]) being not excluded.

In what follows we will study existence and regularity of solutions to problem (1.6).
A first step in this direction is to show in Section 3 that

(2.5) inf
(s,ζ)∈W

F(s, ζ) = inf
(s,ζ)∈Wconv

F(s, ζ),

where F is the functional in (1.7) and

Wconv :=
{
(σ, ψ) ∈ Σconv ×BV (Ω) : ψ = 0 a.e. in E(σ)

}
,

Σconv :=
{
σ = (σ1, . . . , σn) ∈ Σ : E(σi) is convex for all i = 1, . . . , n

}
.

(2.6)

Notice that, by definition

(2.7) Σconv ⊂ Σ and Wconv ⊂ W.

Moreover, we already know that the sets int(E(σi)) might be empty, since from
assumption (i) in (1.2) we cannot exclude that σi overlaps ∂0i Ω: Recalling that Ω is
convex, by (ii) and the convexity of each E(σi), this can happen, only if q̇ipi+1 is a
straight segment.(1) Afterward, in Section 4, we prove the existence of (σ, ψ) ∈ Wconv

which is a solution to (1.6) by showing that there exists a minimizer to

(2.8) F(σ, ψ) = inf
(s,ζ)∈Wconv

F(s, ζ).

Eventually in Section 5 we prove existence of solutions to (2.8) which belong to Xφ.

Remark 2.3. — Exploiting the characterization of the boundaries of convex sets given
in Corollary A.3 in the appendix, we see that conditions (i), (ii) and the convexity of
E(σi) for the curves in Σconv imply the following:

(P) Let σ ∈ Σconv; then for all i = 1, . . . , n there are an injective (non-relabeled)
reparametrization of σi in [0, 1], and a nondecreasing function θi : [0, 1] → R with
θi(1) − θi(0) ⩽ 2π, such that, setting γi(t) := (cos(θi(t)), sin(θi(t))) for all t ∈ [0, 1],
we have

σi(t) = qi + ℓ(σi)

∫ t

0

γi(s) ds ∀t ∈ [0, 1],

where ℓ(σi) denotes the length of σi.

(1)We will show that for a minimizer, σi([0, 1]) cannot intersect ∂DΩ unless ∂DΩ is locally a
segment (Theorem 5.1).
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3. Reduction from W to Wconv

The main result of this section is contained in Theorem 3.1 where we prove the
equivalence given in (2.5). The reason being that in minimizing the functional F on W

one issue is that the class Σ in (1.2) is not closed under uniform convergence, since
a uniform limit of elements in Σ needs not be formed by injective curves. However,
we can always modify a minimizing sequence of curves to curves in Σconv, since the
modification can be done decreasing the energy.

The fact that the infimum of F over W coincides with that over Wconv is due to
the following geometric property: whenever a set E(σi) is not convex, we can always
convexify it reducing the energy. The procedure of convexification is described in
Lemmas 3.3, 3.4, and 3.5. Again, the convexification of E(σi) is still contained in Ω

thanks to the convexity of Ω.

Theorem 3.1 (Reduction from W to Wconv). — For every (s, ζ) ∈ W there exists
(σ, ψ) ∈ Wconv such that every connected component of E(σ) is convex, and

(3.1) F(σ, ψ) ⩽ F(s, ζ).

In particular, (2.5) holds true. Further, if the connected components of E(ζ) are not
convex, then the strict inequality holds in (3.1).

Remark 3.2. — Since the σi’s may overlap, the convexity of each E(σi) does not
imply in general that every connected component of E(σ) =

⋃n
i=1E(σi) is convex.

For the reader convenience we split the proof of Theorem 3.1 into a sequence
of intermediate results: Lemmas 3.3, 3.4, 3.5, and the conclusion. First we need to
introduce some notation.

Let (σ, ψ) ∈ W. We fix an extension φ̂ ∈ W 1,1(B) of φ on an open ball B ⊃ Ω,
where we recall that φ is the boundary datum in (2.4). Extending ψ in B ∖ Ω as φ̂,
and still denoting by ψ such an extension, we can rewrite F(σ, ψ) as

(3.2) F(σ, ψ) = A(ψ;B)− |E(σ)| −A(ψ;B ∖ Ω).

Lemma 3.3 (Trace estimate). — Let u ∈ BV (R× (0,+∞)) be a nonnegative function
with compact support in an open ball Br ⊂ R2. Then

(3.3)
∫
(R×{0})∩Br

u(s) dH1(s) ⩽ A(u;Br ∩ (R× (0,+∞)))− |EBr
|,

where
EBr

:= {x ∈ Br ∩ (R× (0,+∞)) : u(x) = 0}.

Moreover, inequality (3.3) is always strict, unless u = 0 a.e. on R× (0,+∞).

Notice that the function u is defined only on the half-plane R×(0,+∞), and in (3.3)
the symbol u(s) denotes its trace on the line R× {0} (which is integrable).
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Proof. — We denote by x = (x1, x2) ∈ R2 the coordinates in R2. Set

H+ := R× (0,+∞), Z := (Br ∩H+)× R ⊂ R3.

Let
Lu := {(x, y) ∈ Z : x ∈ Ru, y ∈ (−u(x), u(x))} ⊂ R3,

where Ru is the set of regular points of u. We have, recalling the notation in Sec-
tion 2.1,

2A(u;Br ∩H+) = A(u;Br ∩H+) +A(−u;Br ∩H+)

= H2(∂∗(Z ∩ SGu)) +H2(∂∗(Z ∩ SG−u))

= H2(Z ∩ ∂∗Lu) + 2|EBr
|.

(3.4)

Write Br∩(R×{0}) = (a, b)×{0}. Then a slicing argument of the current ⟦Gu⟧ yields

H2(Z ∩ ∂∗Lu) ⩾
∫ b

a

H1(Z ∩ {x1 = t} ∩ ∂∗Lu)dt

=

∫ b

a

H1
(
Z ∩ {x1 = t} ∩ (spt(⟦Gu⟧ − ⟦G−u⟧))

)
dt

⩾
∫ b

a

2u(t, 0)dt = 2

∫
(R×{0})∩Br

u(s) dH1(s),

(3.5)

where the last inequality follows from the following fact: If we denote by ⟦Gu⟧t the
slice of the current ⟦Gu⟧ on {x1 = t}, then

∂⟦Gu⟧t = δ(t,0,u(t,0)) − δ(t,st,0) for a.e. t ∈ (a, b),

where st ⩾ 0 is such that (t, st) = Br ∩ ({t} × R+), and in writing δ(t,st,0) we are
using that u has compact support in Br. This can be seen, for instance, by approxi-
mating(2) u with a sequence of smooth functions. Therefore

∂(⟦Gu⟧t − ⟦G−u⟧t) = δ(t,0,u(t,0)) − δ(t,0,−u(t,0)) for a.e. t ∈ (a, b).

This justifies the last inequality in (3.5) and, using (3.4), the proof is achieved. Notice
that, from the last formula, it follows that the last inequality in (3.5) is strict if
⟦Gu⟧t− ⟦G−u⟧t is not the straight segment connecting (t, 0, u(t, 0)) and (t, 0,−u(t, 0))
on a set of positive H1-measure. This implies that inequality in (3.3) is an equality if
and only if u = 0 a.e. on H+. □

We now turn to two technical lemmas needed to prove Theorem 3.1. We introduce
a class of sets whose boundaries are regular enough to support the trace of a BV

function. Precisely we say that an open subset of R2 is piecewise Lipschitz if it can
be written as the union of a finite family of (not necessarily disjoint) Lipschitz open
sets. Using that, for a Lipschitz set E ⊂ R2, the symmetric difference (∂∗E)∆∂E

(2)With respect to the strict convergence of BV (Br ∩ (R× {0})), which guarantees the approxi-
mation also of the trace of u on ∂

(
Br ∩ (R× {0})

)
.
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has null H1 measure, one can see(3) that the same property holds also for a piecewise
Lipschitz set. In particular, by (2.1) if ⋐ U is a piecewise Lipschitz subset of a bounded
open set U ⊂ R2, then

(3.6) A(ψ;V ) = A(ψ;V ) +

∫
∂V

|ψ+ − ψ−|dH1,

where ψ+ (respectively ψ−) denotes the trace of ψ V (respectively ψ (U ∖ V ))
on ∂V .

Lemma 3.4 (Reduction of energy, I). — For N ⩾ 1 let F1, . . . , FN be nonempty
connected subsets of Ω, each Fi being the closure of a piecewise Lipschitz set, with
Fi ∩ Fj = ∅ for i, j ∈ {1, . . . , N}, i ̸= j. Let ψ ∈ BV (B) satisfy

(3.7) ψ = 0 a.e. in G :=
N⋃
i=1

Fi and ψ = φ̂ a.e. in B ∖ Ω.

Then, for any i ∈ {1, . . . , N},

A(ψ⋆i ;B)− |G⋆i | −A(ψ⋆i ;B ∖ Ω) ⩽ A(ψ;B)− |G| −A(ψ;B ∖ Ω),(3.8)

where

(3.9) G⋆i :=
⋃
j ̸=i

Fj ∪ conv(Fi) and ψ⋆i :=

{
0 in conv(Fi),

ψ otherwise.

Further, inequality in (3.8) is strict unless ψ = ψ⋆i a.e.

Proof. — Fix i ∈ {1, . . . , N}. By the convexity of Ω, we have ψ = ψ⋆i in B∖Ω, hence
it suffices to show that

A(ψ⋆i ;B)− |G⋆i | ⩽ A(ψ;B)− |G|.

We start by observing that we may assume Fi to be simply connected. Indeed, if not,
we can replace it with the set obtained by filling the holes of Fi, and by setting ψ

equal to zero in the holes.(4) This procedure reduces the energy since Fi is piecewise
Lipschitz, and any hole H of it has the property that the external trace of ψ (B∖H)

on ∂H vanishes.
We have that (∂conv(Fi)) ∖ ∂Fi is a countable union of segments. We will next

modify ψ by iterating at most countably many operations, setting ψ = 0 in the region
between each of these segments and ∂Fi.

(3)The conclusion H1((∂∗V )∆∂V ) = 0 for a piecewise Lipschitz set V =
⋃m
i=1 Ai, with Ai

Lipschitz open sets, can be proved by induction on m, using also the following fact: If B1 and B2 are
open sets with H1((∂∗Bi)∆∂Bi) = 0 for i = 1, 2, then B = B1 ∪ B2 satisfies H1((∂∗B)∆∂B) = 0.
This follows by the identity ∂(B1∪B2) = ((∂B1)∖B2)∪ ((∂B2)∖B1)∪ ((∂B1)∩∂B2), which shows
that ∂(B1 ∪B2) is a H1-measurable subset of ∂B1 ∪ ∂B2.

(4)If H is a hole of Fi and it happens that Fj ⊂ H for some j ̸= i, we redefine Fi as the union of
it with H, and set Fj = ∅. This procedure does not invalidate the following argument.
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Step 1: Base case. — Let l be one of such segments, and U be the open region enclosed
between ∂Fi and l. We define ψ′ ∈ BV (Ω) as

ψ′ :=

{
0 in U,

ψ otherwise.

We claim that

(3.10) A(ψ′;B)− |G′| ⩽ A(ψ;B)− |G|,

with strict inequality unless ψ′ = ψ a.e., where G′ := G ∪ U . To prove the claim,
we introduce the sets

H := int(Fi ∪ U), V := U ∩ (
⋃
j ̸=i

Fj).

Note that H is a piecewise Lipschitz set. By construction

|G′| = |H|+ |
⋃
j ̸=i

Fj | − |V |,

and (3.10) will follow if we show that
A(ψ′;B)− |H| ⩽ A(ψ;B)− |

⋃
j

Fj |+ |
⋃
j ̸=i

Fj | − |V | = A(ψ;B)− |Fi ∪ V |,

with strict inequality unless ψ′ = ψ a.e. in Ω. Since |H| = |Fi ∪V |+ |U ∖V |, this can
also be written as

A(ψ′;B) ⩽ A(ψ;B) + |U ∖ V |.
In turn A(ψ′;B) = A(ψ′;U)+A(ψ′;B∖U) (and similarly for ψ), so we have reduced
ourselves with proving

(3.11) A(ψ′;U) ⩽ A(ψ;U) + |U ∖ V |.

In view of the definition of ψ′ which is zero in U , we have(5)

A(ψ′;U) =

∫
l

|ψ+|dH1 + |U |

(ψ+ denoting the trace of ψ (B ∖ U) on the segment l) implying that (3.11) is
equivalent to ∫

l

|ψ+|dH1 ⩽ A(ψ;U)− |V |.

Finally, if ψU denotes the trace of ψ U on l, we write A(ψ;U) = A(ψ;U ∖ l) +∫
l
|ψ+ − ψU |dH1, and the expression above is equivalent to

(3.12)
∫
l

|ψ+|dH1 ⩽
∫
l

|ψ+ − ψU |dH1 +A(ψ;U ∖ l)− |V |.

We now prove (3.12). Fix a Cartesian coordinate system (x1, x2) so that l belongs to
the x1-axis and U belongs to the half-plane {x2 > 0}. Let u be an extension of ψ

(5)We use the precise integral formula (3.6) thanks to the boundary regularity of U , where we
have ∂U ∖ l ⊂ ∂Fi.
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in R × (0,+∞) which vanishes outside U . Lemma 3.3, applied to u with the ball
Br = B, implies∫
l

|ψU |dH1 =

∫
{x2=0}∩B

u dH1 ⩽ A(u;B∩ (R× (0,+∞)))−|EB | ⩽ A(ψ;U ∖ l)−|V |.

Here the last inequality follows by recalling that ψ (and thus u) vanishes on V . From
this and the inequality

∫
l
|ψ+|dH1 ⩽

∫
l
|ψ+−ψU |dH1+

∫
l
|ψU |dH1 the proof of (3.12)

is achieved, so that (3.10) follows. Notice that in applying Lemma 3.3 the inequality
holds strict when ψ′ does not coincide with ψ a.e.

Step 2: Iterative case. — We set ∂(conv(Fi))∖∂Fi =
⋃∞
j=1 lj with lj mutually disjoint

segments. For every h ⩾ 1 we define the pair (ψh, Gh) as follows:
– if h = 1

ψ1 :=

{
0 in U1,

ψ otherwise,
and G1 := G ∪ U1,

where U1 is the open region enclosed between ∂Fi and l1. We also define H1 :=

int(Fi ∪ U1);
– if h ⩾ 2

ψh :=

{
0 in Uh

ψh−1 otherwise,
and Gh := Gh−1 ∪ Uh,

where Uh is the open region enclosed between ∂Hh−1 and lh and
Hh := int(Hh−1 ∪ Uh).

By construction each Hh is simply connected and piecewise Lipschitz, Hh ⊂ Hh+1,
Gh ⊂ Gh+1 ⊂ Ω for every h ⩾ 1, and moreover
(3.13) lim

h→+∞
|Hh| = |conv(Fi)|, lim

h→+∞
|Gh| = |G⋆i |,

where G⋆i :=
⋃∞
h=1Gh =

⋃
j ̸=i Fj ∪ conv(Fi). For any h ⩾ 2 we apply step 1, and

after h iterations we get

(3.14)
A(ψh;B)− |Gh| ⩽ A(ψh−1;B)− |Gh−1| ⩽ · · ·

⩽ A(ψ1;B)− |G1| ⩽ A(ψ;B)− |G|.
In particular,

|Dψh|(B) ⩽ A(ψh;B) ⩽ A(ψ;B) + |Gh ∖G| ⩽ A(ψ;B) + |Ω∖G|,

for all h ⩾ 1, and then we easily see that, up to a subsequence, ψh
∗
⇀ ψ⋆i in BV (B),

where ψ∗
i is defined as in (3.9). Now the lower semicontinuity of A(·;B) yields

(3.15) lim inf
h→+∞

A(ψh, B) ⩾ A(ψ⋆i ;B).

Finally, gathering together (3.13)–(3.15) we infer
A(ψ⋆i ;B)− |G⋆i | ⩽ lim inf

h→+∞
A(ψh;B)− lim

h→+∞
|Gh| ⩽ A(ψ;B)− |G|.

Again we have the strict inequality unless ψh = ψh−1 for all h a.e. in Ω. This concludes
the proof. □
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Lemma 3.5 (Reduction of energy, II). — Let N ⩾ 1, F1, . . . , FN , G and ψ be as in
Lemma 3.4. Then there exist ñ ∈ {1, . . . , N} and mutually disjoint closed convex sets‹F1, . . . , ‹Fñ ⊂ Ω with nonempty interior such that

(3.16) G ⊂
ñ⋃
i=1

‹Fi =: G⋆,

and

(3.17) A(ψ⋆;B)− |G⋆| −A(ψ⋆;B ∖ Ω) ⩽ A(ψ;B)− |G| −A(ψ;B ∖ Ω),

where

(3.18) ψ⋆ :=

{
0 in G⋆,

ψ otherwise.

Finally, inequality in (3.17) is strict unless ψ = ψ⋆ a.e.

Proof
Base case. — If N = 1 we set ‹F1 := conv(F1) = G⋆ and the thesis follows by
Lemma 3.4. Suppose N > 1. We take the sets

(3.19) conv(F1), F2, . . . , FN and G⋆1 :=
N⋃
i=2

Fi ∪ conv(F1),

and let

ψ⋆1 :=

{
0 in G⋆1,

ψ otherwise.
Then by Lemma 3.4,

A(ψ⋆1 ;B)− |G⋆1| −A(ψ⋆1 ;B ∖ Ω) ⩽ A(ψ;B)− |G| −A(ψ;B ∖ Ω),(3.20)

with strict inequality unless ψ⋆1 = ψ a.e.

Iterative case. — Let m, k, h be natural numbers such that 1 ⩽ k ⩽ m ⩽ N and
1 < h ⩽ 2N − 1, and let F1,h, . . . , Fm,h be closed subsets of Ω with nonempty interior
that satisfy the following property:

(1) F1,h, . . . , Fk,h are convex;
(2) Fi,h ∩ Fj,h = ∅ for all i, j ̸= k, i ̸= j, i, j = 1, . . . ,m.

Notice that for h = 2 and m = N the sets

F1,2 := conv(F1), F2,2 := F2, . . . , FN,2 := FN ,

satisfy (1), (2) with k = 1 by the base case (so the iterative step can be applied to
these sets).

We then set Ik,h := {1 ⩽ i ⩽ m, i ̸= k : Fi,h ∩ Fk,h ̸= ∅}. If Ik,h = ∅ and k = m,
we are done, otherwise we construct a new family of sets using the following algorithm,
distinguishing the two cases (a) and (b):

J.É.P. — M., 2024, tome 11



A non-parametric Plateau problem with partial free boundary 1051

(a) if Ik,h = ∅ and k < m we define the sets

Fi,h+1 :=

{
Fi,h for i ̸= k + 1,

conv(Fk+1,h) for i = k + 1,
for i = 1, . . . ,m,

and G⋆h+1 :=
⋃m
i=1 Fi,h+1;

(b) if Ik,h ̸= ∅, up to relabeling the indices, we may assume that
Ik,h = {kh,1 ⩽ i ⩽ kh,2}∖ {k},

for some kh,1 ̸= kh,2 with 1 ⩽ kh,1 ⩽ k ⩽ kh,2 ⩽ m, so that
{1, . . . ,m}∖ {k}∖ Ik,h = {1 ⩽ i ⩽ kh,1 − 1} ∪ {kh,2 + 1 ⩽ i ⩽ m}.

Note that if kh,1 = 1 then {1 ⩽ i ⩽ kh,1 − 1} = ∅, and similarly if kh,2 = m then
{kh,2 + 1 ⩽ i ⩽ m} = ∅. Then we set

Fi,h+1 :=


Fi,h for i = 1, . . . , kh,1 − 1,

conv(Fk,h ∪ (
⋃
j∈Ik,h

Fj,h)) for i = kh,1,

Fi+kh,2−kh,1,h for i = kh,1 + 1, . . . ,m− kh,2 + kh,1,

and G⋆h+1 :=
⋃m−kh,2+kh,1

i=1 Fi,h+1.
In both cases (a) and (b) a direct check shows that the produced sets satisfy proper-
ties (1) and (2) with m, k + 1, h+ 1 and m− kh,2 + kh,1, kh,1, h+ 1 respectively.

In both cases we also define the function

ψ⋆h+1 :=

{
0 in G⋆h+1,

ψ⋆h otherwise.
Then, by induction, for all 1 < h ⩽ 2N − 1 we use Lemma 3.4, and in view of (3.20)
we infer

A(ψ⋆h+1;B)− |G⋆h+1| −A(ψ⋆h+1;B ∖ Ω) ⩽ A(ψ⋆h;B)− |G⋆h| −A(ψ⋆h;B ∖ Ω)

⩽ A(ψ;B)− |G| −A(ψ;B ∖ Ω),

with strict inequality unless ψ⋆h+1 = ψ⋆h for all h a.e. in Ω.

Conclusion. — If N = 1 it is sufficient to apply the base case. If instead N > 1 after
a finite number h⋆ ⩽ 2N − 1 of iterations we obtain a collection of mutually disjoint
and closed convex sets with nonempty interiors F1 := F1,h⋆ , . . . , Fñ := Fñ,h⋆ with
1 ⩽ ñ ⩽ N such that

G ⊂
ñ⋃
i=1

Fi =: G⋆,

and
A(ψ⋆;B)− |G⋆| −A(ψ⋆;B ∖ Ω) ⩽ A(ψ;B)− |G| −A(ψ;B ∖ Ω),

with

ψ⋆ := ψ⋆h⋆ =

{
0 in G⋆,

ψ otherwise,
with strict inequality unless ψ⋆ = ψ a.e. □
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Proof of Theorem 3.1. — We start by observing that (2.5) readily follows from (3.1).
Indeed, this implies

inf
(σ,ψ)∈Wconv

F(σ, ψ) ⩽ inf
(σ,ψ)∈W

F(σ, ψ).

Whereas from (2.7) it follows

inf
(σ,ψ)∈W

F(σ, ψ) ⩽ inf
(σ,ψ)∈Wconv

F(σ, ψ).

Thus, we only need to show (3.1). Take a pair (σ, ψ) ∈ W; we suitably modify (σ, ψ)

into a new pair (σ, ψ) ∈ Wconv such that every connected component of E(σ) is convex
and

F(σ, ψ) ⩽ F(σ, ψ),

and this will conclude the proof. Once again we notice the that strict inequality holds
unless ψ = ψ a.e.

Let E(σ1), . . . , E(σn) be the closed sets with mutually disjoint interiors corre-
sponding to σ (as in (ii) before (1.2)) and let G :=

⋃n
i=1E(σi). Let F1, . . . , FN be the

(closure of the) connected components of G, N ⩽ n, which are piecewise Lipschitz.
By Lemma 3.5 there exist 1 ⩽ ñ ⩽ N and ‹F1, . . . , ‹Fñ ⊂ Ω mutually disjoint closed
and convex sets with nonempty interior satisfying (3.16), (3.17) and (3.18). There-
fore, by construction, for every i = 1, . . . , n, qi and pi+1 belong to ‹Fj for a unique
j ∈ {1, . . . , ñ}. For every j = 1, . . . , ñ we denote by

qj1 , pj1+1, . . . , qjnj
, pjnj

+1,

the ones that belong to ‹Fj . Then we conclude by taking (σ, ψ) ∈ Wconv with σ :=

(σ1, . . . , σn) and

σjk([0, 1]) =

qjkpjk+1 for k = 1, . . . , nj − 1,

∂‹Fj ∖ (⋃nj

h=1 ∂
0
jh
Ω
)
∪
(⋃nj−1

h=1 qjhpjh+1

)
for k = nj ,

for every j = 1, . . . , ñ and ψ := ψ⋆. □

4. Existence of minimizers of F in Wconv

The main result of this section reads as follows.

Theorem 4.1 (Existence of a minimizer of F in Wconv). — Let F and Wconv be as in
(1.7) and (2.6) respectively. Then there is (σ, ψ) ∈ Wconv such that

(4.1) F(σ, ψ) = min
(s,ζ)∈Wconv

F(s, ζ).

Moreover, every minimizer (σ, ψ) of F in Wconv is such that every connected compo-
nent of E(σ) is convex.

As a direct consequence of Theorem 3.1 and Theorem (4.1), we have:
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Corollary 4.2. — Let (σ, ψ) ∈ Wconv be a minimizer as in Theorem 4.1. Then (σ, ψ)

is also a minimizer of F in the class W. Moreover, every minimizer (σ, ψ) of F in W

is such that every connected component of E(σ) is convex.

We prove Theorem 4.1 using the direct method. To this aim we need to introduce
a notion of convergence in Wconv.

Definition 4.3 (Convergence in Wconv). — We say that the sequence ((σ)k, ψk)k ⊂
Wconv, with (σ)k = ((σ1)k, . . . , (σn)k), converges to (σ, ψ) ∈ Wconv if:

(a) ((σi)k)♯⟦[0, 1]⟧ converges to (σi)♯⟦[0, 1]⟧ in the sense of currents in D1(R2),
for all i = 1, . . . , n;

(b) (ψk)k converges to ψ weakly* in BV (Ω), i.e., ψk → ψ in L1(Ω) and Dψk ⇀ Dψ

weakly* in Ω as measures as k → +∞.

In Definition 4.3 (σi)♯⟦[0, 1]⟧ denotes the push-forward by σi of the 1-current given
by integration on the segment [0, 1], oriented in a standard way (see [32] for details).

In the next lemma we show a compactness property of Wconv. In particular, given
(σ)k ⊂ Σconv with equibounded energies, for all i = 1, . . . , n, up to subsequences, a
(not-relabeled) reparametrization of (σi)k converges uniformly to some σ̂i, and there is
a parametrization σi of the support of (σ̂i)♯⟦[0, 1]⟧ such that σ = (σ1, . . . , σn) ∈ Σconv.
This, together with a uniform bound on the lengths of (σi)k, implies the convergence
of the push-forwards as currents. Notice that (σi)♯⟦[0, 1]⟧ is invariant under repara-
metrization of σi.

Lemma 4.4 (Compactness of Wconv). — Let
(
(σ)k, ψk

)
k
⊂ Wconv be a sequence with

supk F((σ)k, ψk) < +∞. Then
(
(σ)k, ψk

)
k

admits a subsequence converging to an
element of Wconv.

Proof. — We divide the proof in two steps.
Step 1: Compactness of (σ)k. — For simplicity we use the notation σik = (σi)k for
every k ∈ N and i ∈ {1, . . . , n}. By condition (P) in Remark 2.3, for every k ∈ N and
i ∈ {1, . . . , n} there exists a non-decreasing function

θik : [0, 1] −→ R, θik(1)− θik(0) ⩽ 2π,

such that, for a reparametrization σ̂ik of σik,

σ̂ik(t) = qi + ℓ(σik)

∫ t

0

γik(s)ds, γik(t) := (cos θik(t), sin θik(t)) ∀t ∈ [0, 1],

and with σ̂ik(1) = pi+1. We observe that

(4.2) ℓ(σik) =

∫ 1

0

|σ′
ik(t)|dt ⩽ H1(∂Ω),

since the orthogonal projection

Πki : ∂Ω∖ ∂0i Ω −→ E(σik)
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is a contraction and H1(∂Ω ∖ ∂0i Ω) ⩽ H1(∂Ω). Hence, up to a (not relabeled) sub-
sequence, ℓ(σik) → mi ∈ R+ as k → +∞. The number mi is positive since, for all k
and i, we have ℓ(σik) ⩾ |qi − pi+1| > 0. Moreover,∫ 1

0

|θ′ik(t)|dt =
∫ 1

0

θ′ik(t)dt ⩽ 2π;

hence, up to a not relabeled subsequence, θki
∗
⇀ θi in BV (0, 1) and θi is non-

decreasing with θi(1) − θi(0) ⩽ 2π. Furthermore γik
∗
⇀ γi in BV ((0, 1);R2) with

γi(t) = (cos(θi(t)), sin(θi(t))). Thus, arguing as in (A.2) and using (4.2), we get
σ̂ik → σ̂i in W 1,1([0, 1];R2), where

(4.3) σ̂i(t) := qi +mi

∫ t

0

γi(s)ds = qi + ℓ(σi)

∫ t

0

γi(s)ds.

Thus limk→+∞ σ̂ik = σ̂i uniformly, hence we also conclude that σ̂i takes values in Ω.
Since by (H3)

dH(E(σik), E(σih)) = dH(∂E(σik), ∂E(σih)) ⩽ ∥σik − σih∥L∞

for all h, k > 0, the uniform convergence of (σ̂ik) implies that (E(σik))k is a Cauchy
sequence with respect to the Hausdorff distance. Hence, by (H2) there is Ki ∈ K such
that dH(E(σik),Ki) → 0, and Ki is also convex by (H5).

We now show that σ̂i is injective, unless a pathological case that might happen
only if ∂0i Ω is a straight segment.(6) Notice that, if ∂0i Ω is not straight, Ki must have
nonempty interior, since it contains the region enclosed between qipi+1 and ∂0i Ω.

First observe that σ̂i([0, 1]) ⊆ ∂Ki. Assume by contradiction that σ̂i(t1) = σ̂i(t2)

for some t1, t2 ∈ [0, 1], t1 < t2. Since Ki is convex, the curve σ̂i [t1, t2] is closed and
its image is contained in ∂Ki. If σ̂i [t1, t2] is constant and equals to σ̂i(t1) we get a
contradiction with (4.3) and the fact that |γi| = 1 a.e. in [t1, t2]. Hence there is a point
t3 ∈ (t1, t2) such that σ̂i(t3) ̸= σ̂i(t1). Let ℓk13 and ℓk23 denote the half-lines in R2 with
endpoint σ̂ik(t3) and passing through σ̂ik(t1) and σ̂ik(t2), respectively. Since E(σik) is
convex, we infer that σ̂ik([0, t1])∪ σ̂ik([t2, 1]) is contained in the closed angular sector
of R2 enclosed between ℓk13 and ℓk23. Since (σ̂ik) converges uniformly to σ̂i, we have
σ̂ik(tj) → σ̂i(tj) for j = 1, 2, 3, and σ̂i(t3) ̸= σ̂i(t1) = σ̂i(t2), so we easily conclude that
σ̂ik([0, t1]) ∪ σ̂ik([t2, 1]) must be contained in the line passing through σ̂i(t1) = σ̂i(t2)

and σ̂i(t3). As a consequence also Ki, being convex, is a segment contained in such
a line, and has empty interior. Hence this leads to a contradiction if ∂0i Ω is not a
straight segment. In this case we set σi := σ̂i.

If instead ∂0i Ω is a straight segment, it might happen that the image of σ̂i is
contained in a line, which must be the one passing through qi and pi+1. Since uniform
convergence of (σ̂ik) and the fact that ℓ(σik) → ℓ(σ̂i) imply that (σ̂ik)♯⟦[0, 1]⟧ =

(σik)♯⟦[0, 1]⟧ → (σ̂i)♯⟦[0, 1]⟧ as currents, and since ∂(σik)♯⟦[0, 1]⟧ = δpi+1
−δqi for all k,

(6)This case corresponds to E(σik) a possibly curvilinear triangle with vertices pi, qi+1 and a
third point rk ∈ Ω converging to a point r ∈ ∂Ω which is on the same line as pi, qi+1, but outside
the segment piqi+1.
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also ∂(σ̂i)♯⟦[0, 1]⟧ = δpi+1
−δqi . We conclude that (σ̂i)♯⟦[0, 1]⟧ is the integration over the

segment qipi+1, and hence there is a Lipschitz injective curve σi which parametrizes
qipi+1 such that

(σi)♯⟦[0, 1]⟧ = (σ̂i)♯⟦[0, 1]⟧, and (σik)♯⟦[0, 1]⟧ −→ (σi)♯⟦[0, 1]⟧.

We next show that E(σi) is convex for any i ∈ {1, . . . , n}. If σi parametrizes the
segment qipi+1 then E(σi) is that segment, and there is nothing to prove. Assume
then that σi([0, 1]) ̸= qipi+1. As shown above, the uniform limit σi of (σ̂ik) is injective.
We will show that Ki = E(σi). Indeed, the uniform convergence of (σ̂ik) yields

lim
k→+∞

dH(∂E(σik), ∂E(σi)) = 0.

From (H3) we get

dH(∂Ki, ∂E(σi)) ⩽ dH(∂E(σik), ∂Ki) + dH(∂E(σik), ∂E(σi))

= dH(E(σik),Ki) + dH(∂E(σik), ∂E(σi)) −→ 0 as k −→ +∞.

Thus ∂Ki=∂E(σi), so Ki=E(σi) and the convexity is shown. This implies σ∈Σconv,
and since (σik)♯⟦[0, 1]⟧ → (σi)♯⟦[0, 1]⟧ as currents, the compactness of (σ)k is achieved.

Step 2: Compactness of (ψk). — Setting Fk =
⋃n
i=1E(σik) we have

|Dψk|(Ω) ⩽ A(ψk; Ω) ⩽ F((σ)k, ψk) + |Fk| ⩽ C < +∞ ∀k > 0,

where we used that |Fk| ⩽ |Ω|. Therefore, up to a subsequence, ψk
∗
⇀ ψ in BV (Ω)

and almost everywhere in Ω as k → +∞. To conclude it remains to show that ψ = 0

in E(σ) =
⋃
iE(σi). If for some i ∈ {1, . . . , n} it happens that ∂0i Ω is straight and σi

is the straight segment qipi+1, then E(σi) has empty interior, and so there is noth-
ing to prove. Otherwise, for the other indices, by limk→+∞ dH(E(σik), E(σi)) = 0,
property (H6) yields

if x ∈ int(E(σi)) then x ∈ E(σik) for k sufficiently large,

and hence, since limk→+∞ ψk = ψ a.e. in Ω, we infer ψ = 0 a.e. in E(σ). □

Remark 4.5. — The previous proof shows a slightly stronger result: under the assump-
tion of Lemma 4.4, for every i = 1, . . . , n, we can find σi with σ = (σ1, . . . , σn) ∈ Σconv,
σ̂i ∈ Lip([0, 1]; Ω), and reparametrizations σ̂ik of σik such that

(σ̂i)♯⟦[0, 1]⟧ = (σi)♯⟦[0, 1]⟧,

σ̂ik −→ σ̂i uniformly on [0, 1].

Moreover, (σik)♯⟦[0, 1]⟧ converges to (σi)♯⟦[0, 1]⟧ in the sense of currents in D1(R2).
Finally E(σik) = E(σ̂ik) converges to E(σ̂i) = E(σi) in (K, dH), and σ̂i = σi unless
∂0i Ω is a straight segment. In the latter case it might happen that σ̂i is not injective,
but this happens only if σ̂i([0, 1]) is a segment, σi is a parametrization of qipi+1, and
E(σi) = qipi+1.
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Remark 4.6. — We have also shown that if (σ̂ik) converges uniformly to σi ∈ Σconv

for some i = 1, . . . , n then

lim
k→+∞

dH(E(σik), E(σi)) = 0.

Lemma 4.7 (Lower semicontinuity of F in Wconv). — Let
(
(σ)k, ψk

)
k
⊂ Wconv be a

sequence converging to (σ, ψ) ∈ Wconv. Then

F(σ, ψ) ⩽ lim inf
k→+∞

F((σ)k, ψk).

Proof. — By a standard argument [28], the functional

ψ ∈ BV (Ω) 7−→ A(ψ; Ω) +

∫
∂Ω

|ψ − φ|dH1

is L1(Ω)-lower semicontinuous. We now show that the map σ ∈ Σconv 7→ |E(σ)| is
continuous. Let (σ)k ⊂ Σconv, σ ∈ Σconv, and suppose that ((σi)k)♯⟦[0, 1]⟧ converges
to (σi)♯⟦[0, 1]⟧ in D1(R2) for all i = 1, . . . , n as k → +∞. Set Fk :=

⋃n
i=1E((σi)k) and

recall that E(σ) =
⋃n
i=1E(σi). Thanks to Remark 4.5, we can always assume that

there are reparametrizations σ̂ik of σik such that σ̂ik converges uniformly to σ̂i with
(σ̂i)♯⟦[0, 1]⟧ = (σi)♯⟦[0, 1]⟧. Let us suppose first that σ̂i is injective for all i = 1, . . . , n,
and so σ̂i = σi. By Remark 4.6 limh→+∞ dH(E((σi)k), E(σi)) = 0 for all i = 1, . . . , n

and therefore dH(Fk, E(σ)) =: εk → 0+.
By invoking (H7) we have E(σ) ⊂ (Fk)

+
εk

. Moreover, since dH((Fk)
+
εk
, E(σ)) ⩽ 2εk,

we get (Fk)
+
εk

⊆ (E(σ))+2εk , and so

|E(σ)| ⩽ |(Fk)+εk | ⩽ |(E(σ))+2εk |.

This implies
lim sup
k→+∞

|Fk| ⩽ lim sup
k→+∞

|(Fk)+εk | ⩽ |E(σ)|.

The converse inequality is a consequence of Fatou’s lemma and (H6), indeed

|E(σ)| ⩽
∫
Ω

lim inf
k→+∞

χFk
(x) dx ⩽ lim inf

k→+∞

∫
Ω

χFk
(x) dx = lim inf

k→+∞
|Fk|.

If instead σ̂i is not injective for some i, we have σ̂i ∈ Lip([0, 1]; Ω) with (σ̂i)♯⟦[0, 1]⟧ =
(σi)♯⟦[0, 1]⟧, and we are in the case that E(σ̂i) has empty interior (see Remark 4.5).
Thus E(σik) = E(σ̂ik) converges to a segment Ki ⊋ E(σi) in the Hausdorff distance.
Since |Ki| = 0, the thesis of the lemma follows along the same argument above
replacing the symbol E(σi) by Ki. □

Proof of Theorem 4.1. — By Lemma 4.4 and Lemma 4.7 we can apply the direct
method and conclude that there exists (σ, ψ) ∈ Wconv such that (4.1) holds. Moreover,
since Wconv ⊂ W by Theorem (3.1) we can choose (σ, ψ) such that every connected
component of E(σ) is convex. □
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5. Regularity of minimizers

In this section we investigate regularity properties of minimizers of F. We recall
that our boundary datum φ satisfies the conditions in (2.4), and φ̂ ∈W 1,1(B) denotes
a fixed extension of φ in the open ball B ⊃ Ω. The main result here reads as follows.

Theorem 5.1 (Structure of minimizers). — Every minimizer (σ, ψ) ∈ Wconv of F

in W, namely
F(σ, ψ) = min

(s,ζ)∈W
F(s, ζ),

satisfies the following properties:
(1) Each connected component of E(σ) is convex;
(2) ψ is positive and real analytic in Ω∖ E(σ);
(3) If ∂Di Ω is not a segment for some i = 1, . . . , n, then ∂E(σ) ∩ ∂Di Ω = ∅, ψ is

continuous up to ∂Di Ω, and ψ = φ on ∂Di Ω;
(4) If ∂Di Ω is a segment for some i = 1, . . . , n, then either ∂E(σ) ∩ ∂Di Ω = ∅ or

∂E(σ)∩∂Di Ω = ∂Di Ω. In the first case ψ is continuous up to ∂Di Ω and ψ = φ on ∂Di Ω.
Moreover, there is a minimizer (σ, ψ) ∈ Wconv such that

(5) Ω ∩ ∂E(σ) consists of a finite number of disjoint analytic curves, and ψ is
continuous and null on ∂E(σ)∖ ∂DΩ.

Remark 5.2. — If ∂Di Ω is a straight segment for some i = 1, . . . , n, nothing ensures
that ∂E(σ) ∩ ∂Di Ω = ∅. However, if this intersection is nonempty, then necessar-
ily ∂Di Ω ⊂ ∂E(σ). The prototypical example is given by the classical catenoid, as
explained in the introduction (see Figure 2) where, if the basis of the rectangle Ω = Rℓ
is large enough, a solution ψ is identically zero, and ∂DΩ ⊂ ∂E(σ). This also explains
why in point (5) of Theorem 5.1 we write ∂E(σ)∖ ∂DΩ.

A consequence of Theorem 5.1 is that a regular solution ψ belongs to W 1,1(Ω) and,
if Ω is strictly convex, it also attains the boundary values. In particular, Theorem 5.1
implies Theorem 1.1.

For the reader convenience we divide the proof in a number of steps.

Lemma 5.3. — Every minimizer (σ, ψ) ∈ Wconv of F in W satisfies (1), (2) and ψ = φ

on ∂DΩ∖ ∂E(σ).

Proof. — Item (1) follows by Theorem 3.1. By [28, Th. 14.13] we also have that ψ is
real analytic in Ω∖E(σ). Together with the strong maximum principle [28, Th. C.4],
this implies that, in Ω∖ E(σ), either ψ > 0 or ψ ≡ 0. On the other hand, since Ω is
convex we can apply [28, Th. 15.9] and get that ψ is continuous up to ∂DΩ∖ ∂E(σ);
in particular

(5.1) ψ = φ > 0 on ∂DΩ∖ ∂E(σ),

which in turn implies ψ > 0 in Ω∖ E(σ) . □
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Lemma 5.4. — Let Γ ⊂ R3 be a rectifiable, simple, closed and non-planar curve sat-
isfying the following properties:

(1) Γ ⊂ ∂(F × R) for some closed bounded convex set F ⊂ R2 with nonempty
interior;

(2) Γ is symmetric with respect to the horizontal plane R2 × {0};
(3) There are a nonempty relatively open arc Ùpq ⊂ ∂F with endpoints p and q, and

f ∈ C0(Ùpq ∪ {p, q}; [0,+∞)) such that f is positive in Ùpq and

(5.2) Γ ∩ {x3 ⩾ 0} = Gf ∪ ({p} × [0, f(p)]) ∪ ({q} × [0, f(q)]).

Let S be a solution to the classical Plateau problem for Γ, i.e., a disk-type surface
minimizing area among all disk-type surfaces spanning Γ. Then:

(1′) βp,q := S ∩ (R2 × {0}) ⊂ F is a simple analytic curve joining p and q with
βp,q ∩ ∂F = {p, q};

(2′) S is symmetric with respect to R2 × {0};
(3′) The surface S+ := S ∩ {x3 ⩾ 0} is the graph of a function ψ̃ ∈ W 1,1(Up,q) ∩

C0(Up,q ∖ {p, q}), where Up,q ⊂ int(F ) is the open region enclosed between Ùpq and
βp,q. Moreover, ψ̃ is analytic in Up,q, and if f(p) = 0 (resp. f(q) = 0) then ψ is also
continuous at p (resp. at q);

(4′) The curve βp,q is contained in the closed convex hull of Γ, and F ∖ Up,q is
convex.

Remark 5.5. — If the function f in (3) is such that f(p) = f(q) = 0 then (5.2)
becomes Γ ∩ {x3 ⩾ 0} = Gf . For later convenience we prove Lemma 5.4 under the
more general assumption (3).

Proof of Lemma 5.4. — Even though several arguments are standard, we give the
proof for completeness.

Step 1: βp,q is a simple analytic curve joining p and q. — Let B1 ⊂ R2 be the open unit
disk centered at the origin. Let Φ = (Φ1,Φ2,Φ3) : B1 → S ⊂ R3 be a parametrization
of S with Φ(∂B1) = Γ, that is harmonic, conformal, and therefore analytic in B1,
continuous up to ∂B1. Further, by (1), Φ is an embedding (see [34] and also [22,
p. 343]).

By assumption (5.2) we have {w ∈ ∂B1 : Φ3(w) = 0} = {Φ−1(p, 0),Φ−1(q, 0)},
so that Φ3 changes sign only twice on ∂B1. By applying Rado’s lemma (see, e.g.,
[22, Lem. 2, p. 295]) to the harmonic function Φ3 we deduce that ∇Φ3 ̸= 0 in B1 and
in particular {w ∈ B1 : Φ3(w) > 0} and {w ∈ B1 : Φ3(w) < 0} are connected, and
{w ∈ B1 : Φ3(w) = 0} is a simple smooth curve in B1 joining Φ−1(p, 0) and Φ−1(q, 0).
By the injectivity of Φ we have that S ∩ (R2 × {0}) = Φ({w ∈ B1 : Φ3(w) = 0}) is a
simple analytic curve joining p and q.

Step 2: S is symmetric with respect to the horizontal plane R2 × {0}. — By step 1 the
sets {w ∈ B1 : Φ3(w) ⩾ 0} and {w ∈ B1 : Φ3(w) ⩽ 0} are simply connected and the
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two surfaces

S+ := Φ({w ∈ B1 : Φ3(w) ⩾ 0}), S− := Φ({w ∈ B1 : Φ3(w) ⩽ 0})

have the topology of the disk. We assume without loss of generality that H2(S+) ⩽
H2(S−). Let

Sym(S+) := {(x′, x3) : (x′,−x3) ∈ S+}, S̃ := S+ ∪ Sym(S+).

Then S̃ is a symmetric surface of disk-type with ∂S̃ = Γ and

H2(S̃) = 2H2(S+) ⩽ H2(S+) +H2(S−) = H2(S).

In particular, S̃ is a symmetric solution to the Plateau problem for Γ. Further S = S̃

on a relatively open subset of S; hence, since they are real analytic surfaces, they
must coincide, S = S̃.

Step 3: S+ is the graph of a function ψ̃ ∈ W 1,1(Up,q) ∩ C0(Up,q ∖ {p, q}). — To show
this it is enough to check the validity of the following

Claim. — Every vertical plane Π is tangent to int(S) at most at one point.

We prove the claim arguing by contradiction as in [8, p. 97], that is we assume
there is a vertical plane Π tangent to int(S) at x′ and x′′ with x′ ̸= x′′. We define
the linear map dν(x) := (x − x′) · ν with ν a unit normal to Π, so that clearly
Π = {x ∈ R3 : dν(x) = 0}. Since F is convex, Π ∩ (∂F × {0}) contains at most
two points. By properties (1)–(3) each of these points is either the projection on the
horizontal plane of one or two points of Π ∩ Γ, or the projection on the horizontal
plane of one of the vertical segments {p} × [0, f(p)] and {q} × [0, f(q)]. Hence Π ∩ Γ

contains either: (a) at most two points and a segment, (b) two segments, (c) four
points. Without loss of generality we restrict our analysis to the last case (the others
are simpler to treat), namely we assume that there are four (clockwise ordered) points
w1, . . . , w4 ∈ ∂B1 such that Π ∩ Γ = {Φ(w1), . . . ,Φ(w4)}, that is dν ◦ Φ(wi) = 0 for
i = 1, . . . , 4. We may also assume dν ◦ Φ > 0 on w̆1w2 ∪ w̆3w4 and dν ◦ Φ < 0 on
w̆2w3 ∪ w̆4w1. Here w̆iwj denotes the relatively open arc in ∂B1 joining wi and wj
for i, j ∈ {1, . . . , 4}. Notice that the function dν ◦ Φ: B1 → R is harmonic in B1,
continuous up to ∂B1 and vanishes at w1, . . . , w4; hence, by classical arguments [35,
§437] we see that the set {w ∈ B1 : dν ◦Φ = 0}, in a neighbourhood of w′ := Φ−1(x′)

(respectively w′′ := Φ−1(x′′)), is the union of a number m ⩾ 2 of analytic curves
crossing at w′ (respectively w′′). Thus near w′ and w′′ the set {w ∈ B1 : dν ◦Φ(w) > 0}
is the union of at least two disjoint open regions A1,1, A1,2 and A2,1, A2,2 respectively
such that A1,1 ∩A1,2 = {w′}, A2,1 ∩A2,2 = {w′′}. Moreover, each Ai,j belongs either
to the connected component of {w ∈ B1 : dν ◦ Φ(w) > 0} containing w̆1w2, or to the
one containing w̆3w4. Up to relabeling the indices we have two possibilities.
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Case 1:A1,1 andA1,2 belong to the same connected component containing w̆1w2. — Then
we can find two simple curves α1, α2 contained in A1,1 and A1,2 respectively, that
connect w′ to a point in w̆1w2 and such that the region enclosed by the curve α1 ∪α2

intersects {w ∈ B1 : dν ◦ Φ(w) < 0}. Since dν ◦ Φ > 0 on α1 ∪ α2 by the maximum
principle we have a contradiction.

Case 2: A1,1 and A2,1 belong to the connected component containing w̆1w2 while A1,2 and
A2,2 belong to the connected component containing w̆3w4. — Then we can find four
simple curves αi,j (with i, j = 1, 2) contained respectively in Ai,j , such that α1,1

(respectively α2,1) connects w′ (respectively w′′) to a point in w̆1w2 and α1,2 (respec-
tively α2,2) connects w′ (respectively w′′) to w̆3w4. Then the region enclosed by the
curve

⋃
i,j αi,j intersects {w ∈ B1 : dν ◦ Φ(w) < 0}, while dν ◦ Φ > 0 on

⋃
i,j αi,j ,

which again by the maximum principle gives a contradiction.
Thus the claim follows. Now, by step 2, the claim readily implies that int(S+) has

no points with vertical tangent plane and hence int(S+) is the graph of a function ψ̃

defined on Up,q. Since ψ̃ must minimize (locally) the area functional, it is also real
analytic in Up,q. Moreover, the claim also implies that ψ̃ must vanish on βp,q and
that it must attain the boundary values on Ùpq. If f vanishes on p or q, then also the
continuity of ψ̃ at these points is achieved.

Step 4: The curve βp,q is contained in the closed convex hull of Γ, and the set F ∖ Up,q is
convex

Let π(Γ) ⊂ ∂F be the projection of Γ onto the plane R2 × {0}. By [22, Th. 3,
p. 343] the relative interior of S is strictly contained in the convex hull of Γ, thus in
particular the curve βp,q (respectively βp,q ∖ {p, q}) is contained (respectively strictly
contained) in the same half-plane (with respect to the line pq) that contains π(Γ).

Now, assume by contradiction that F ∖ Up,q is not convex. Then there are p′, q′ ∈
βp,q with the following properties:

– The open region U ′ enclosed by βp,q and the segment p′q′ is nonempty and con-
tained in Up,q;

– the points p and q and the set U ′ lie on the same side with respect to the line
containing p′q′.
Let then dW : R3 → R be an affine function that vanishes on the vertical plane
containing p′q′ and is positive in the half-space W+ containing p, q and U ′. We now
observe that Γ∩W+ is the union of two connected subcurves Γ̂1 and Γ̂2, containing p
and q respectively. As a consequence Φ−1(Γ̂1) = w̆1w2 and Φ−1(Γ̂2) = w̆3w4 for some
w1, w2, w3, w4 ∈ ∂B1 (clockwise oriented).

On the other hand since dW > 0 on U ′ we can find t′ ∈ ∂U ′ ∖ p′q′ such that

dW ◦ Φ(Φ−1(t′)) = dW (t′) > 0

with Φ−1(t′) ∈ B1. Once again by the harmonicity of dW ◦ Φ: B1 → R we deduce
the existence of a curve α ⊂ {w ∈ B1 : dW ◦ Φ(w) > 0} joining Φ−1(t′) either to
w̆1w2 or w̆3w4. Hence Φ(α) ⊂ Φ(B1) is a curve joining t′ either to Γ̂1 or Γ̂2, say Γ̂1.
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This implies that the projection π(Φ(α)) of Φ(α) onto the horizontal plane R2 × {0}
is a curve contained in Up,q that connects t′ to π(Γ̂1). So in particular, the curve
π(Φ(α)) cannot be included in the half-space W+. But this contradicts the fact that
α ⊂ {w ∈ B1 : dW ◦Φ(w) > 0} (this is because the values of dW at a point x and π(x)
are the same). □

We need also the following technical results on the distance function dF from a
convex set F . Recall the definition of E+

ε given in (H7) in the appendix, for ε > 0

and E ⊂ R2.

Lemma 5.6. — Let F ⊂ R2 be bounded, closed and convex. Then

∆dF ∈ L∞
loc(R2 ∖ F ) ∩ L1(B ∖ F )

for every ball B with F ⊂⊂ B.

Proof. — By [18, Th. 3.6.7, p. 75] it follows that dF ∈ C1,1
loc (R2 ∖ F ), hence ∇2 dF ∈

L∞
loc(R2 ∖ F ;R2×2). Therefore we only have to check that ∆dF ∈ L1(B ∖ F ). Let

η > 0 be fixed sufficiently small. Select (fk)k∈N ⊂ C1
c (R2;R2) such that fk → ∇ dF

in W 1,1(B ∖ F+
η/2) as k → +∞. By the divergence theorem we have

(5.3)
∫
B∖F+

η

divfk dx =

∫
∂B∪∂(F+

η )

fk · νη dH1,

with νη the outer unit normal to ∂B ∪ ∂(F+
η ). By taking the limit as k → ∞ we get

(5.4) lim
k→+∞

∫
B∖F+

η

divfk dx =

∫
B∖F+

η

∆dF dx,

and

(5.5) lim
k→+∞

∫
∂B∪∂(F+

η )

fk · νη dH1 =

∫
∂B∪∂(F+

η )

∇dF · νη dH1,

where (5.5) follows by using that ∂(F+
η ) is of class C1,1 and hence fk (∂B∪∂(F+

η )) →
∇dF (∂B ∪ ∂(F+

η )) in L1(∂B ∪ ∂(F+
η )). Since dF is convex we have ∆dF ⩾ 0 a.e.

in R2 ∖ F , moreover |∇dF | = 1 in R2 ∖ F ; then gathering together (5.3), (5.4), (5.5)
we have∫
B∖F+

η

|∆dF | dx =

∫
B∖F+

η

∆dF dx =

∫
∂B∪∂(F+

η )

∇dF ·νη dH1 ⩽ H1(∂B∪∂(F+
η )) ⩽ C,

with C > 0 independent of η. By the arbitrariness of η > 0, the thesis follows. □

Corollary 5.7. — Let U ⊂ R2 be a bounded open set with Lipschitz boundary. Let
F ⊂ R2 be closed and convex such that U ∩ F = ∅ and let ψ ∈ W 1,1(U) ∩ L∞(U) ∩
C0(U). Then the following formula holds:

−
∫
U

ψ∆dF dx =

∫
U

∇ψ · ∇ dF dx−
∫
∂U

ψ γ dH1,

where γ denotes the normal trace of ∇ dF on ∂U .
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Proof. — We have |∇dF | = 1 in R2 ∖ F , moreover since U ∩ F = ∅, by Lemma
5.6 we deduce also ∆dF ∈ L1(U). Therefore the thesis readily follows by applying
[5, Th. 1.9]. □

Remark 5.8. — The normal trace γ of ∇dF on ∂F equals 1 H1-a.e. on ∂F . Indeed,
from Corollary 5.7 we have that for all φ ∈ C1

c (R2;R2) it holds

−
∫
R2∖F+

η

φ∆dF dx =

∫
R2∖F+

η

∇φ · ∇ dF dx−
∫
∂(F+

η )

φγ dH1

=

∫
R2∖F+

η

∇φ · ∇ dF dx−
∫
∂(F+

η )

φdH1,

where we have used that ∂(F+
η ) being a level set of dF , it results ∇ dF = νη on it.

Letting η → 0 and using that ∆dF ∈ L1(B ∖ F ) for all balls B, we infer

−
∫
R2∖F

φ∆dF dx =

∫
R2∖F

∇φ · ∇ dF dx−
∫
∂F

φdH1.

By the arbitrariness of φ and again by Corollary 5.7, the claim follows.

Lemma 5.9. — Let F ⊂ Ω be closed and convex with nonempty interior, and let δ > 0.
Let ψ ∈W 1,1((F+

δ ∖ F ) ∩ Ω) ∩ L∞((F+
δ ∖ F ) ∩ Ω) ∩ C0((F+

δ ∖ F ) ∩ Ω). Then

(5.6) lim
ε→0+

∫
Ω∩∂(F+

ε )

ψ dH1 =

∫
Ω∩∂F

ψ dH1.

Proof. — Let ε ∈ (0, δ) and Tε := (F+
ε ∖ F ) ∩Ω. Since Tε ∩ F = ∅, by Corollary 5.7

we get

−
∫
Tε

ψ∆dF dx =

∫
Tε

∇ψ · ∇ dF dx−
∫
∂Tε

ψ γ dH1,(5.7)

which, by Remark 5.8, becomes

(5.8) −
∫
Tε

ψ∆dF dx =

∫
Tε

∇ψ · ∇ dF dx

+

∫
Ω∩∂F

ψ dH1 −
∫
Ω∩∂(F+

ε )

ψ dH1 −
∫
((F+

ε )∖F )∩∂Ω
ψ γ dH1.

Now

(5.9) lim
ε→0+

∣∣∣ ∫
Tε

∇ψ · ∇ dF dx
∣∣∣ ⩽ lim

ε→0+

∫
Tε

|∇ψ| dx = 0,

and

(5.10) lim
ε→0+

∣∣∣ ∫
(F+

ε ∖F )∩∂Ω
ψ γ dH1

∣∣∣ ⩽ lim
ε→0+

∫
(F+

ε ∖F )∩∂Ω
ψ dH1 = 0.

Moreover, since ∆dF ∈ L1(Tε) by Lemma 5.6, we deduce also

(5.11) lim
ε→0+

∣∣∣ ∫
Tε

−ψ∆dF dx
∣∣∣ ⩽ ∥ψ∥L∞ lim

ε→0+

∫
Tε

|∆dF | dx = 0.

Finally, gathering together (5.8)–(5.11), we infer (5.6). □
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Remark 5.10. — Let F , δ and ψ be as in Lemma 5.9. Let α be any connected com-
ponent of Ω ∩ ∂F , and for every 0 < ε < δ let αε be the corresponding component of
Ω ∩ ∂(F+

ε ); namely, if πF is the orthogonal projection onto the convex closed set F ,
setting

α̂ε := {x ∈ ∂(F+
ε ) : πF (x) ∈ α},

then one has αε := α̂ε ∩ Ω. Arguing as in Lemma 5.9, we can show that

lim
ε→0+

∫
αε

ψ dH1 =

∫
α

ψ dH1.

Lemma 5.11. — Let (σ, ψ) ∈ Wconv be a minimizer of F in W as in Theorem 3.1.
Then there is a minimizer (σ̂, ψ̂) ∈ Wconv of F in W with the following properties:

(1) (∂E(σ̂)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω;
(2) ψ̂ is continuous and null on Ω ∩ ∂E(σ̂).

The second condition means essentially that ψ̂ vanishes on Ω ∩ ∂E(σ̂) when con-
sidering its trace from the side of Ω∖ E(σ̂).

Proof. — We know by Lemma 5.3 that (σ, ψ), σ = (σ1, . . . , σn), satisfies the following
properties:

– Each connected component of E(σ) is convex;
– ψ is positive and real analytic in Ω∖ E(σ);
– ψ = φ on ∂DΩ∖ ∂E(σ).
In what follows we are going to modify (σ, ψ) near each arc of ∂E(σ) using an

iterative argument in order to get a new minimizer (σ̂, ψ̂) ∈ Wconv that satisfies
conditions (1) and (2). To this aim we denote by F1, . . . , Fk with 1 ⩽ k ⩽ n the closure
of the connected components of E(σ) and set δ0 := mini̸=j dist(Fi, Fj) > 0. Moreover,
by the first property we deduce that Ω ∩ ∂E(σ) is the union of an at most countable
family of pairwise disjoint arcs with endpoints in ∂Ω, i.e., Ω∩∂E(σ) =

⋃k
i=1

⋃∞
j=1 αi,j ,

where αi,j is a connected component of Ω ∩ ∂Fi for i ∈ {1, . . . , k}, j ⩾ 1.(7)

Step 1: Base case. — Let α be one of the connected components of Ω∩∂F , with F := Fi
for some i ∈ {1, . . . , k}. In this step we construct a new minimizer (σα, ψα) ∈ Wconv

such that (∂E(σα))∩ ∂Ω = (∂E(σ))∩ ∂Ω and ψα is continuous and null on α′, where
α′ ⊂ Ω∩∂E(σα) is a suitable curve that replaces α and has the same endpoints as α.
For ε ∈ (0, δ0/2) we define the stripe

T̂ε(α) := {x ∈ Ω∖ F : dist(x, α) < ε} ⊂ F+
ε ∖ F,

and consider the planar curve αε in Ω defined as in Remark 5.10. Let Tε(α) be the
connected component of T̂ε(α) whose boundary contains αε. Let Lε be defined as

Lε := (∂Tε(α)) ∩ ∂Ω,

(7)Notice that at this stage we do not have any information about the geometry of the set
(∂E(σ)) ∩ ∂Ω, and Ω ∩ ∂Fi could a priori be the union of countably many connected components.

J.É.P. — M., 2024, tome 11



1064 G. Bellettini, R. Marziani & R. Scala

so that in particular ∂Tε(α) = α ∪ αε ∪ Lε. Let p, q ∈ ∂Ω be the endpoints of α (and
then also the endpoints of αε ∪Lε, which are independent of ε). We define the curves

Γε := Γ+
ε ∪ Γ−

ε , Γ+
ε := Gψ αε ∪ Gφ Lε ∪ l+, Γ−

ε := G−ψ αε ∪ G−φ Lε ∪ l−,

where

l+ := ({p}× [0, φ(p)])∪({q}× [0, φ(q)]), l− := ({p}× [−φ(p), 0])∪({q}× [−φ(q), 0]).

Observing that Lε ⊂ ∂DΩ ∖ ∂E(σ) and recalling that ψ = φ on ∂DΩ ∖ ∂E(σ),
we deduce that Γε is a closed non-planar curve in R3 that satisfies assumptions (1)–(3)
of Lemma 5.4. Therefore, a solution Sε to the classical Plateau problem corresponding
to Γε is a disk-type surface such that:

(1) βεp,q := Sε ∩ (R2 × {0}) is a simple analytic curve joining p and q;
(2) Sε is symmetric with respect to the horizontal plane;
(3) the surface S+

ε := Sε ∩ {x3 ⩾ 0} is the graph of a function ψεp,q ∈W 1,1(Uεp,q)∩
C0(U

ε

p,q∖{p, q}), where Uεp,q ⊂ F ∪Tε(α) is the open region enclosed between αε∪Lε
and βεp,q;

(4) the curve βεp,q is contained in the closed convex hull of Γε and (F ∪Tε(α))∖Uεp,q
is convex.
We would like to compare the area of S+

ε with the area of the generalized graph of ψ
on Tε(α). This is not immediate since, due to the fact that ψ is just BV , we cannot,
a priori, conclude that its generalized graph is of disk-type.(8) Hence we proceed as
follows. We fix ε ∈ (0, δ0/2); we claim that

(5.12) A(ψεp,q;U
ε
p,q) ⩽ A(ψ;Tε(α)) +

∫
α

ψ Tε(α) dH
1.

Since ψ is analytic in Tε(α) ⊂ Ω ∖ E(σ), by Lemma 5.9 and Remark 5.10 it follows
that

(5.13) lim
ε→0+

∫
αε

ψ Tε(α) dH
1 =

∫
α

ψ Tε(α) dH
1.

We take

T εε (α) := Tε(α)∖ Tε(α) and Yε := Sε ∪ Gψ T ε
ε (α)

∪ G−ψ T ε
ε (α)

.

Since Sε is a disk-type surface and ψ is analytic in T εε (α) it turns out that Yε is also
a disk-type surface satisfying ∂Yε = Γε. Therefore using that Sε and Sε are solutions
to the Plateau problems corresponding to Γε and Γε respectively, we have
H2(Sε) ⩽ H2(Yε) = 2H2(Gψ T ε

ε (α)
) +H2(Sε)

⩽ 2H2(Gψ Tε(α)) + 2

∫
αε∪Lε

ψ Tε(α) dH
1

= 2H2(Gψ Tε(α)) + 2

∫
αε

ψ Tε(α) dH
1 + 2

∫
Lε

ψ Tε(α) dH
1.

(8)This is due to the jump of ψ on ∂F which is, in general, not regular enough.
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Passing to the limit as ε→ 0+, by (5.13) and the fact that H1(Lε) → 0, we obtain

H2(Sε) ⩽ 2H2(Gψ Tε(α)) + 2

∫
α

ψ Tε(α) dH
1,

which yields

A(ψεp,q;U
ε
p,q) = H2(S+

ε ) ⩽ H2(Gψ Tε(α)) +

∫
α

ψ Tε(α) dH
1

= A(ψ;Tε(α)) +

∫
α

ψ Tε(α) dH
1,

and (5.12) is proved.
We now define Eα := (E(σ) ∪ Tε(α))∖ Uεp,q and

ψα :=


0 in Eα,

ψεp,q in Uεp,q,

ψ otherwise.

By (5.12) and using that Uεp,q ∪ Eα = E(σ) ∪ Tε(α) we derive

A(ψα; Ω)− |Eα| = A(ψεp,q;U
ε
p,q) +A(ψ; Ω∖ (Uεp,q ∪ Eα))

= A(ψεp,q;U
ε
p,q) +A(ψ; Ω∖ (Tε(α) ∪ E(σ)))

(5.14)
⩽ A(ψ;Tε(α)) +

∫
α

ψ Tε(α) dH
1 +A(ψ; Ω∖ Tε(α))− |E(σ)|

= A(ψ; Ω)− |E(σ)|.

It remains to construct σα ∈ Σconv. Without loss of generality we may assume

σ1([0, 1]), . . . , σh([0, 1]) ⊂ F and σh+1([0, 1]), . . . , σn([0, 1]) ̸⊂ F

for some h ⩽ n; notice that if h = n the second family of curves is empty. Then we
define σα := (σα1 , . . . , σ

α
h , σh+1, . . . , σn) ∈ Lip([0, 1]; Ω)n as follows: if h > 1

σαi ([0, 1]) =

qipi+1 for i ⩽ h− 1,

∂(F ∪ Tε(α)∖ Uεp,q)∖
(
(
⋃h
i=1 ∂

0
i Ω) ∪ (

⋃h−1
i=1 qipi+1)

)
for i = h,

where qipi+1 is the segment joining qi to pi+1; if instead h = 1 we simply set

σα1 ([0, 1]) = ∂(F ∪ Tε(α)∖ Uεp,q)∖ ∂01Ω.

Clearly the pair (σα, ψα) belongs to Wconv, and by (5.14) it satisfies

F(σα, ψα) = F(σ, ψ).

Moreover, (∂E(σα))∩∂Ω = (∂E(σ))∩∂Ω and ψα is continuous and null on α′, where

(5.15) α′ := βεp,q ⊂ Ω ∩ ∂E(σα).

Summarizing, we have replaced the curve α with α′, ensuring that the new function ψα
is now continuous and null on α′.
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Step 2: Iterative case. — In this step we construct a minimizer (σ̂, ψ̂) ∈ Wconv of F

in W that satisfies the thesis by iterating step one at most a countable number of times.
We first consider F = F1 and apply step 1 for each α1,j with j ⩾ 1. More precisely
we define the pair (σ1,j , ψ1,j) ∈ Wconv as follows:

– if j = 1 we set
(σ1,1, ψ1,1) := (σα1,1 , ψα1,1),

where (σα1,1 , ψα1,1) ∈ Wconv is a minimizer constructed as in step 1 with α = α1,1;
– if j > 1 we set

(σ1,j , ψ1,j) := (σ
α1,j

1,j−1, ψ
α1,j

1,j−1),

where (σ
α1,j

1,j−1, ψ
α1,j

1,j−1) ∈ Wconv is a minimizer constructed as in step 1 with (σ, ψ) =

(σ1,j−1, ψ1,j−1) and α = α1,j .
Since F(σ1,j , ψ1,j) = F(σ, ψ) for all j ⩾ 1, by Lemma 4.4 it follows that (σ1,j , ψ1,j)

converges to (σ1, ψ1) ∈ Wconv in the sense of Definition 4.3. Moreover, by construction
we have that for every j ⩾ 1 the pair (σ1,j , ψ1,j) satisfies

(∂E(σ1,j)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω,

and ψ1,j is continuous and null on
⋃j
h=1 α

′
1,h ⊂ Ω ∩ (∂E(σ1,j)) ∩ ∂F1, where α′

1,h are
defined as in (5.15). As a consequence (σ1, ψ1) satisfies

(∂E(σ1)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω,

and ψ1 is continuous and null on
⋃∞
j=1 α

′
1,j ⊂ Ω ∩ (∂E(σ1)) ∩ ∂F1. Moreover,

Ω ∩ ∂E(σ1) =

Å ∞⋃
j=1

α′
1,j)

⋃
(
k⋃
i=2

∞⋃
j=1

αi,j

ã
.

Now repeating the argument above for the pair (σ1, ψ1) and i = 2 we obtain a new
minimizer (σ2, ψ2) ∈ Wconv of F in W satisfying

(∂E(σ2)) ∩ ∂Ω = (∂E(σ)) ∩ ∂Ω,

with ψ2 continuous and null on
⋃∞
j=1(α

′
1,j ∪α′

2,j) ⊂ Ω∩ (∂E(σ1))∩ ((∂F1)∪∂F2) and

Ω ∩ (∂E(σ2)) =

Å
2⋃
i=1

∞⋃
j=1

α′
i,j) ∪ (

k⋃
i=3

∞⋃
j=1

αi,j

ã
.

Iterating this process a finite number of times we finally get a minimizer (σ̂, ψ̂) ∈
Wconv of F in W with the required properties. □

We are finally in the position to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. — Let (σ, ψ) ∈ Wconv be any minimizer of F in W as in The-
orem 3.1. By Lemma 5.3 we know that (σ, ψ) satisfies properties (1), (2) and the
boundary datum is attained, namely

ψ = φ on ∂DΩ∖ ∂E(σ).

Moreover, by Lemma 5.11 there is a minimizer (σ̂, ψ̂) ∈ Wconv such that
(5.16) ∂E(σ̂) ∩ ∂Ω = ∂E(σ) ∩ ∂Ω,

and ψ̂ is continuous and null on Ω ∩ ∂E(σ̂).
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Case A Case B

a

Γ+ Γ+

b a b
a′ b′
c

Figure 4. Case A. ∂Di Ω ∩ ∂E(σ̂) = Ùab. The dotted curve upon Ω

represents Γ+ in (5.17). Case B. ∂Di Ω ∩ ∂E(σ̂) = {c}. The dotted
curve upon Ω represents the curve Γ+ in (5.20).

It remains to show that if ∂Di Ω is not straight for some i = 1, . . . , n, then

∂E(σ) ∩ ∂Di Ω = ∂E(σ̂) ∩ ∂Di Ω = ∅,

and if instead ∂Di Ω is straight for some i = 1, . . . , n, then property (4) holds. Eventu-
ally we show that there is a minimizer that satisfies property (5). This will be achieved
in a number of steps.

Step 1. — Assuming that there is i ∈ {1, . . . , n} such that ∂Di Ω is not straight,
we show that E(σ̂) ∩ ∂Di Ω = ∅. To prove this we proceed by analyzing three dif-
ferent cases.

Case A. — Suppose, to the contrary, that there is a non-straight(9) arc Ùab (with
endpoints a ̸= b) in ∂Di Ω ∩ ∂E(σ̂) (Case A in Figure 4). Thus in particular Ùab ⊂⋃n
j=1 σ̂j([0, 1]). We may assume without loss of generality that Ùab ⊂ σ̂1([0, 1]). Then

we consider the curves

(5.17) Γ := Γ+ ∪ Γ−, Γ+ := G
φ ıab ∪ l+, Γ− := G−φ ıab ∪ l−,

where

l+ := ({a}× [0, φ(a)])∪({b}× [0, φ(b)]), l− := ({a}× [−φ(a), 0])∪({b}× [−φ(b), 0]).

In this way Γ satisfies the assumptions of Lemma 5.4 and hence a solution S to the
Plateau problem spanning Γ is a disk-type surface such that:

(i) βa,b := S ∩ (R2 × {0}) is a simple analytic curve joining a and b;
(ii) S is symmetric with respect to R2 × {0};
(iii) the surface S+ := S ∩ {x3 ⩾ 0} is the graph of a function ψa,b ∈W 1,1(Ua,b)∩

C0(Ua,b ∖ {a, b}), where Ua,b ⊂ E(σ̂1) is the open region enclosed between Ùab and
βa,b;

(iv) the curve βa,b is contained in the closed convex hull of Γ and E(σ̂1)∖ Ua,b is
convex.

(9)Namely, ıab is not contained in a line.
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The inclusion Ua,b ⊂ E(σ̂1) follows since Ùab ⊂ σ̂1([0, 1]), E(σ̂1) is convex, and S is
contained in the convex envelope of Γ. Furthermore by the minimality of S one has

(5.18) A(ψa,b;Ua,b) = H2(S+) <

∫ıab φdH1 =

∫ıab |ψ̂ − φ| dH1.

Here the strict inequality follows since the vertical wall spanning Γ given by

{(x′, x3) : x′ ∈ Ùab, x3 ∈ [−φ(x′), φ(x′)]}

is a disk-type surface but, since Ùab is not a segment, it cannot be a solution to the
Plateau problem. We now consider the pair (σ̃, ψ̃) ∈ Wconv given by

(5.19) σ̃ := (σ̃1, σ̂2, . . . , σ̂n), ψ̃ :=


0 in ‹E,
ψa,b in Ua,b,

ψ̂ otherwise,

where σ̃1 is such that σ̃1([0, 1]) = (σ̂1([0, 1])∖Ùab)∪βa,b and ‹E := E(σ̂)∖Ua,b = E(σ̃).
Then noticing that ψ̂ = 0 in Ua,b, E(σ̂) = E(σ̃) ∪ Ua,b, and recalling (5.18), we get

F(σ̃, ψ̃) = A(ψ̃; Ω)− |E(σ̃)|+
∫
∂Ω

|ψ̃ − φ| dH1

= A(ψ̂; Ω∖ Ua,b) +A(ψa,b;Ua,b)− |E(σ̃)|+
∫
∂Ω

|ψ̃ − φ| dH1

= A(ψ̂; Ω) +A(ψa,b;Ua,b)− |E(σ̂)|+
∫
∂Ω

|ψ̂ − φ| dH1

< A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω

|ψ̃ − φ| dH1 +

∫ıab |ψ̂ − φ| dH1

= A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω

|ψ̂ − φ| dH1 = F(σ̂, ψ̂),

where the penultimate equality follows from the fact that ψ̃ is continuous and equal
to φ on Ùab while the traces of ψ̃ and ψ̂ coincide on ∂Ω ∖ Ùab. This contradicts the
minimality of (σ̂, ψ̂).

Case B. — Suppose by contradiction that the set ∂Di Ω ∩ ∂E(σ̂) contains an isolated
point c or has a straight segment cc′ as isolated connected component (Case B in
Figure 4). Then there are two arcs Ùab ⊂ ∂Di Ω and ã′b′ ⊂ ∂E(σ̂) with either a ̸= a′ or
b ̸= b′ (and with endpoints a ̸= b and a′ ̸= b′) such that aa′∩bb′ = ∅ and Ùab∩ã′b′ = {c}
(respectively Ùab∩ ã′b′ = cc′). Notice also that, since ∂Di Ω is not straight, the segment
cc′ does not coincide with ∂Di Ω and hence the arc Ùab can be chosen so that it properly
contains the segment cc′. We consider the curves Γ := Γ+ ∪ Γ− with

(5.20) Γ+ := G
φ ıab ∪ G“ψ aa′

∪ G“ψ bb′
, Γ− := G−φ ıab ∪ G−“ψ aa′

∪ G−“ψ bb′
.

Notice that Γ± connect a′ to b′. By applying again Lemma 5.4 to the nonplanar
curve Γ and arguing as in case A we obtain the contradiction also in this case.
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Case C. — More generally, assume by contradiction that both the sets ∂Di Ω∩ ∂E(σ̂)

and ∂Di Ω∖ ∂E(σ̂) are nonempty. Then we can find a not flat arc Ùab ⊂ ∂Di Ω such that
the following holds:(10) there are pairs of points {cj , dj}j∈N ⊂ ∂Di Ω∩∂E(σ̂) such that
the arcs ãd0, ĉ0b, and {c̄jdj}∞j=1 are mutually disjoint andÙab∖ ∂E(σ̂) = ãd0 ∪

( ∞⋃
j=1

c̄jdj

)
∪ ĉ0b.

Without loss of generality, we might assume that all the points cj , dj ∈ σ̂1([0, 1]). For
all j ⩾ 1 we denote by Vj the region enclosed by c̄jdj and ∂E(σ̂).(11) We now argue
as in case B and choose a′, b′ ∈ σ̂1([0, 1]). Additionally, let V0 = V a0 ∪ V b0 , with V a0
(respectively V b0 ) be the region enclosed between ∂E(σ̂) and aa′ ∪ ãd0 (∂E(σ̂) and
bb′ ∪ ĉ0b, respectively). We finally define Γ correspondingly, as in (5.20). Again by
Lemma 5.4 the solution S to the Plateau problem corresponding to Γ satisfies the
properties (i)–(iv) considered in case A, with a′ and b′ in place of a and b respectively.
Moreover, by the minimality of S for every N ⩾ 1 there holds(12)

(5.21) A(ψa′,b′ ;Ua′,b′) = H2(S+)

⩽
∫ıab φdH1 −

∫
ād0∪c̃0b

φdH1 −
N∑
j=1

∫
c̆jdj

φdH1 +

N∑
j=0

A(ψ;Vj).

In particular, by taking the limit as N → +∞ in (5.21) we get

(5.22) A(ψa′,b′ ;Ua′,b′) = H2(S+) ⩽
∫ıab∖∂E(σ̂)

φdH1 +A(ψ̂;
⋃∞
j=0 Vj).

Let (σ̃, ψ̃) ∈ Wconv be defined as in (5.19), then observing that ψ̂ = 0 in Ua′,b′ ∖
(
⋃∞
j=0 Vj), E(σ̂) = E(σ̃) ∪ (Ua′,b′ ∖

⋃∞
j=0 Vj) and using (5.22) we deduce

F(σ̃, ψ̃) = A(ψ̂; Ω∖ Ua′,b′) +A(ψa′,b′ ;Ua′,b′)− |E(σ̃)|+
∫
∂Ω

|ψ̃ − φ| dH1

= A(ψ̂; Ω∖ (
⋃∞
j=0 Vj)) +A(ψa′,b′ ;Ua′,b′)− |E(σ̂)|+

∫
∂Ω

|ψ̃ − φ| dH1

⩽ A(ψ̂; Ω∖ (
⋃∞
j=0 Vj))− |E(σ̂)|

+

∫
∂Ω

|ψ̃ − φ| dH1 +

∫ıab∩∂E(σ̂)

φdH1 +A(ψ̂;
⋃∞
j=0 Vj)

= A(ψ̂; Ω)− |E(σ̂)|+
∫
∂Ω

|ψ̂ − φ| dH1 = F(σ̂, ψ̂),

(10)This is a consequence of the fact that ıab∖ ∂E(σ̂) is relatively open in ıab, so it is an at most
countable union of disjoint relatively open arcs.

(11)These regions are simply connected since cj , dj ∈ σ̂1([0, 1]).
(12)The right-hand side is the area of the surface given by the (positive) subgraph of φ onıab ∖⋃N

j=1 c̄jdj and the graph of ψ̂ on the region
⋃N
j=0 Vj , which is of disc-type. To see this we use

that the trace of ψ̂ on the subarcs of ∂E(σ̂) between the points cj and dj is zero (and between a′

and d0, and d0 and b′).
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which in turn implies
(5.23) F(σ̃, ψ̃) ⩽ F(σ̂, ψ̂).

To conclude we need to show that the inequality in (5.23) is strict. To this aim,
we choose c ∈ {cj}∞j=1. Consider the curves Γ1 and Γ2 defined as follows

Γ1 := Γ+
1 ∪ Γ−

1 , Γ+
1 := Gφ ıac ∪ G“ψ aa′

∪ l+, Γ−
1 := G−φ ıac ∪ G−“ψ aa′

∪ l−,

Γ2 := Γ+
2 ∪ Γ−

2 , Γ+
2 := G

φ ıcb ∪ G“ψ bb′
∪ l+, Γ−

2 := G−φ ıcb ∪ G−“ψ bb′
∪ l−,

where
l+ := ({c} × [0, φ(c)]), l− := ({c} × [−φ(c), 0]).

Let S1 and S2 be the solutions to the Plateau problem corresponding to Γ1 and Γ2

respectively, so that properties (i)–(iv) are satisfied with c in place of b′ and a′ respec-
tively. By the minimality of S we have
(5.24) A(ψa′,b′ ;Ua′,b′) < A(ψa′,c;Ua′,c) +A(ψc,b′ ;Uc,b′).

On the other hand by arguing as above,(13) we conclude

(5.25) A(ψa′,c;Ua′,c) ⩽
∫ıac∪∂E(σ̂)

φdH1 +A(ψ̂;
⋃
j∈I1

Vj ∪ V a0 ),

and
(5.26) A(ψc,b′ ;Uc,b′) ⩽

∫ıcb∪∂E(σ̂)

φdH1 +A(ψ̂;
⋃
j∈I2

Vi ∪ V b0 ),

where I1 := {j : c̄jdj ⊂ Ùac} and I2 := {j : c̄jdj ⊂ Ùcb}. Gathering together (5.24)–(5.26)
we derive

A(ψa′,b′ ;Ua′,b′) <

∫ıab∪∂E(σ̂)

φdH1 +A(ψ̂;
∞⋃
j=0

Vj),

which in turn implies
F(σ̃, ψ̃) < F(σ̂, ψ̂),

and thus the contradiction.

Step 2. — Assuming there is i ∈ {1, . . . , n} such that ∂Di Ω is a straight segment,
we show that either (∂E(σ̂)) ∩ ∂Di Ω = ∅ or (∂E(σ̂)) ∩ ∂Di Ω = ∂Di Ω. Suppose by
contradiction that (∂E(σ̂)) ∩ ∂Di Ω ̸= ∅ and also ∂Di Ω ∖ ∂E(σ̂) ̸= ∅. Without loss
of generality we can restrict to the case (∂E(σ̂)) ∩ ∂Di Ω = (∂F ) ∩ ∂Di Ω with F any
connected component of E(σ̂). Since F is convex and ∂Di Ω is a segment (∂F )∩∂Di Ω has
to be connected, i.e., it is either a single point a or a segment aa′ ̸= ∂Di Ω. In both cases
we then consider a (small enough) ball B centered at a such that B ∩E(σ̂) = B ∩ F
(in the second case we also require that the radius of B is smaller than aa′).

If (∂F ) ∩ ∂Di Ω = {a} we let {p, q} := (∂B) ∩ ∂F and {b, c} := (∂B) ∩ ∂Di Ω (with
b, p and c, q lying on the same side with respect to a). Then we define the curves
Γ := Γ+ ∪ Γ−, Γ+ := Gφ bc ∪ G

ψ ıbp ∪ Gψ ıcq, Γ− := G−φ bc ∪ G−ψ ıbp ∪ G−ψ ıcq,
where Ùbp, Ùcq denote the arcs in ∂B joining b to p and c to q respectively.

(13)With the arc ıac (Ùcb, respectively) in place of ıab.
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If (∂F ) ∩ ∂Di Ω = aa′ we let {p, q} := (∂B) ∩ ∂F and {b, c} := (∂B) ∩ ∂Di Ω, where
we identify q and c. Then we consider the curves Γ := Γ+ ∪ Γ− with

Γ+ := Gφ bc ∪G
ψ ıbp ∪ ({c}× [0, φ(c)]), Γ− := G−φ bc ∪G−ψ ıbp ∪ ({c}× [−φ(c), 0]).

By applying again Lemma 5.4 to Γ and arguing as above we get the contradiction.

Step 3. — We show that there is a minimizer (σ̃, ψ̃) that satisfies property (5). We first
notice that ψ̂ is continuous and null on ∂E(σ̂)∖ ∂DΩ. Moreover, by steps 1 and 2 it
follows that Ω ∩ ∂E(σ̂) is the union of a finite number of pairwise disjoint Lipschitz
curves each of them joining each pi for i = 1, . . . , n to each of the qj for some j =

1, . . . , n. To conclude it is enough to replace each curve, without increasing the energy,
with an analytic one having the same endpoints. More precisely, let γ be any of such
curves. Reasoning as in the proof of Lemma 5.11 step 1, we can replace (σ̂, ψ̂) with a
new minimizer (σγ , ψγ) ∈ Wconv such that (∂E(σγ))∩∂Ω = (∂E(σ))∩∂Ω and ψγ = 0

on γ′, where γ′ ⊂ (∂E(σγ)) ∩ Ω is a suitable analytic curve that replaces γ and has
the same endpoints of γ. In particular, ψγ is continuous and null on ∂E(σγ)∖∂DR2ℓ.
Eventually iterating this procedure for each curve in ∂E(σ̂)∖ ∂Ω we can construct a
new minimizer (σ̃, ψ̃) with the required properties. □

5.1. The example of the catenoid containing a segment. — Consider the setting of
Figure 6. Recall that Ω = R2ℓ = (0, 2ℓ)× (−1, 1), n = 1, ∂DΩ = ({0, 2ℓ} × (−1, 1)) ∪
((0, 2ℓ) × {−1}) and ∂0Ω = (0, 2ℓ) × {1}, p = (0, 1), q = (2ℓ, 1). The map φ given
in (7.3) is φ(z1, z2) =

√
1− z22 on ∂DΩ, and thus vanishes on [0, 2ℓ] × {−1}; for

this reason this case is not covered by our analysis. However we can find a solution
as in Theorem 1.1 also in this case, by an approximation procedure. Precisely, for
ε > 0 consider an approximating sequence (φε) of continuous Dirichlet data, with Gφε

Lipschitz, which tends to φ uniformly and satisfies φε = 0 on ∂0Ω, φε > 0 on ∂DΩ.
Let (σε, ψε) be a solution as in Theorem 4.1 corresponding to the boundary datum φε;
since F(σε, ψε) is equibounded,(14) arguing as in the proof of Lemma 4.4, we can see
that, up to a subsequence, ((σε, ψε)) tends to some (σ, ψ) ∈ Wconv, which minimizes
the functional F with Dirichlet condition φ. In this case however we cannot guarantee
that σ does not touch ∂DΩ, even if this is not a straight segment. This is essentially
due to the presence of the portion [0, 2ℓ] × {−1} of ∂Ω where φ is zero, which does
not allow to apply the arguments used in the proof of Theorem 5.1.

In particular, it can be seen that if ℓ is large enough, the solution (σ, ψ) splits and
becomes degenerate, being ψ ≡ 0 and the value of F is just the area of two vertical
half-disks of radius 1. For ℓ under a certain threshold, instead, the solution satisfies
the regularity properties stated in Theorem 5.1, and in particular ψ = φ on ∂DΩ,
and σ is the graph of a smooth convex function passing through p and q. We refer
to [10] for details and comprehensive proofs of these facts; we also notice that in this
special case further regularity of solutions can be obtained.

(14)We can bound it from above by |Ω|+
∫
∂DΩ |φε|dH1.
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6. Comparison with the parametric Plateau problem: the case n = 1, 2

In this section we compare the solutions of Theorems 3.1 and 5.1 with the solutions
to the classical Plateau problem in parametric form. Specifically, motivated by the
example of the catenoid, we restrict our analysis to the classical disk-type and annulus-
type Plateau problem. These configurations correspond to the cases n = 1 and n = 2

respectively, i.e., the Dirichlet boundary ∂DΩ is either an open arc or the union of two
open arcs of ∂Ω with disjoint closure. Due to the highly involved geometric arguments,
we do not discuss the case n > 2, which requires further investigation. Thus, in this
section we assume n = 1, 2. We first discuss the case n = 1, which is a consequence
of Lemma 5.4, and next the case n = 2.

6.1. The case n = 1. — Let n = 1. Let p1, q1 ∈ ∂Ω, ∂DΩ = ∂D1 Ω, φ be as in
Section 2.2 and consider the space curve γ1 := Gφ ∂D

1 Ω joining p1 to q1. We define
the curve

Γ := γ1 ∪ Sym(γ1),

where Sym(γ1) := G−φ ∂D
1 Ω, and consider the classical Plateau problem in parametric

form spanning Γ. More precisely we look for a solution to

(6.1) m1(Γ) := inf
Φ∈P1(Γ)

∫
B1

|∂w1
Φ ∧ ∂w2

Φ|dw,

where

(6.2) P1(Γ) :=
{
Φ ∈ H1(B1;R3) ∩ C0(B1;R3) such that
Φ ∂B1 : ∂B1 −→ Γ is a weakly monotonic parametrization of Γ

}
.

By classical arguments, it is well-known that every solution to (6.1) is a harmonic and
conformal parametrization of an area-minimizing surface spanning Γ.

Theorem 6.1 (The disk-type Plateau problem (n = 1)). — Assume Γ is not planar,
let Φ ∈ P1(Γ) be a solution to (6.1) and let

S+ := Φ(B1) ∩ {x3 ⩾ 0}, S− := Φ(B1) ∩ {x3 ⩽ 0}.

Then there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties (1)–(5)
of Theorem 5.1 and such that

(6.3) S± = G±ψ (Ω∖E(σ))
.

Conversely let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties (1)–(5)
of Theorem 5.1. Then the disk-type surface

S := G
ψ (Ω∖E(σ))

∪ G−ψ (Ω∖E(σ))

is a solution to the classical Plateau problem associated to Γ, i.e., there is a harmonic
and conformal map Φ ∈ P1(Γ) solving (6.1) and such that Φ(B1) = S.

We have assumed Γ is not planar, otherwise the classical solution is flat, and any
solution to Theorem 5.1 satisfies (∂E(σ)) ∩ ∂DΩ = ∂DΩ.
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6.2. The case n = 2. — Let n = 2. Let Ω, p1, q1, p2, q2 ∈ ∂Ω, ∂DΩ, ∂D1 Ω, ∂D2 Ω, φ
be as in Section 2.2 and consider the space curve γi := Gφ ∂D

i Ω joining pi to qi for
i = 1, 2. We define the curves

Γ1 := γ1 ∪ Sym(γ1), Γ2 := γ2 ∪ Sym(γ2),

where Sym(γi) := G−φ ∂D
i Ω for i = 1, 2. We consider the classical Plateau problem in

parametric form spanning the curve
Γ := Γ1 ∪ Γ2.

Precisely we set Σann ⊂ R2 to be an open annulus enclosed between two concentric
circles C1 := ∂B1(0) and C2 := ∂B2(0), and we look for a solution to

(6.4) m2(Γ) := inf
Φ∈P2(Γ)

∫
Σann

|∂w1
Φ ∧ ∂w2

Φ|dw,

where

P2(Γ) :=
{
Φ ∈ H1(Σann;R3) ∩ C0(Σann;R3) such that Φ(∂Σann) = Γ and
Φ Cj : Cj −→ Γj is a weakly monotonic parametrization of Γj , j = 1, 2

}
.

Here the crucial assumption that we require is that the curves Γj have the orien-
tation inherited by the orientation(15) of the graph of φ on ∂Dj Ω.

Due to the specific geometry of Γ we can appeal to Theorem 6.3 below (which is
a consequence of [34, Th. 1 & Th. 5]) to deduce the existence of a minimizer. This
might not be true for a more general Γ. To this purpose for j = 1, 2 we consider the
minimization problem defined in (6.1) for the curve Γj , namely

m1(Γj) = inf
Φ∈P1(Γj)

∫
B1

|∂w1
Φ ∧ ∂w2

Φ|dw,(6.5)

with P1(Γj) defined as in (6.2).
By standard arguments one sees that m2(Γ) ⩽ m1(Γ1)+m1(Γ2). Indeed, two disk-

type surfaces can be joined by a thin tube (with arbitrarily small area) in order to
change the topology of the two disks into an annulus-type surface.

Definition 6.2 (MY solution). — Let Φ ∈ P2(Γ) be a solution to (6.4). We say that Φ
is a MY solution to (6.4) if Φ is harmonic, conformal, and it is an embedding. In par-
ticular, in such a case, m2(Γ) = H2(Φ(Σann)).

Theorem 6.3 (Meeks and Yau). — Suppose m2(Γ) < m1(Γ1) +m1(Γ2). Then there
exists a MY solution Φ ∈ P2(Γ) to (6.4). Furthermore, every minimizer of (6.4) is a
MY solution.

Proof. — See [34]. □

This result allows us to prove the following:

(15)Once we fix an orientation of ∂Ω, the orientation of the graph Gφ of φ is inherited, since Gφ

is defined in a standard way as the push-forward of the current of integration on ∂DΩ by the map
x 7→ (x, φ(x)).
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Theorem 6.4 (The annulus-type Plateau problem (n = 2)). — The following holds:
(i) Suppose m2(Γ) < m1(Γ1) +m1(Γ2). Let Φ ∈ P2(Γ) be a MY solution to (6.4)

and let

S := Φ(Σann), S+ := S ∩ {x3 ⩾ 0}, S− := S ∩ {x3 ⩽ 0}.

Then there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying properties (1)–(5)
of Theorem 5.1 and such that

(6.6) S± = G±ψ (Ω∖E(σ))
.

(ii) Suppose m2(Γ) = m1(Γ1) +m1(Γ2), and assume that both Γ1 and Γ2 are not
planar. For j = 1, 2 let Φj ∈ P1(Γj) be a solution to (6.5) and let Sj := Φj(B1). Let
also

S+ := (S1 ∪ S2) ∩ {x3 ⩾ 0} and S− := (S1 ∪ S2) ∩ {x3 ⩽ 0}.

Then S1 ∩ S2 = ∅ and there exists a minimizer (σ, ψ) ∈ Wconv of F in W satisfying
properties (1)–(5) of Theorem 5.1 and such that (6.6) holds.

(iii) Conversely, let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties
(1)–(5) of Theorem 5.1. Then the surface

S := G
ψ (Ω∖E(σ))

∪ G−ψ (Ω∖E(σ))

is either an annulus-type surface or the union of two disjoint disk-type surfaces, and
is a solution to the classical Plateau problem associated to Γ. More precisely, either
there is a MY solution Φ ∈ P2(Γ) to (6.4) with S = Φ(Σann), or there are Φj ∈ P1(Γj)

solutions to (6.5) for j = 1, 2, such that

S = Φ1(B1) ∪ Φ2(B1) and Φ1(B1) ∩ Φ2(B1) = ∅.

6.3. Toward the proof of Theorems 6.1 and 6.4: preliminary lemmas. — In order
to prove Theorems 6.1 and 6.4, we collect some technical lemmas.

Lemma 6.5 (Graphicality of minimizers for n = 2). — Let n = 2, and (σ, ψ) ∈ Wconv

be a minimizer of F in W satisfying properties (1)–(5) of Theorem 5.1.
(a) Suppose that Ω∖ E(σ) is connected. Then there exists an injective map Φ ∈

W 1,1(Σann;R3) ∩ C0(Σann;R3) such that

Φ(Σann) = G
ψ (Ω∖E(σ))

∪ G−ψ (Ω∖E(σ))
,

and Φ Cj : Cj → Γj is a weakly monotonic parametrization of Γj for j = 1, 2.
(b) Suppose that Ω∖E(σ) consists of two connected components, whose closures F1

and F2 are disjoint, with Fj ⊇ ∂Dj Ω for j = 1, 2. Then there exist two injective maps
Φ1,Φ2 ∈W 1,1(B1;R3) ∩ C0(B1;R3) such that

Φj(B1) = Gψ Fj
∪ G−ψ Fj

, j = 1, 2,

and Φj ∂B1 : ∂B1 → Γj is a weakly monotonic parametrization of Γj for j = 1, 2.
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Supposing that Ω∖E(σ) has two connected components as in (b), it readily follows
that Γ1 and Γ2 cannot be planar (otherwise the solution will be flat on ∂Dj Ω and
Fj = ∅ for j = 1, 2).

Proof
(a) Since Ω∖ E(σ) is simply connected,(16) the maps

(6.7) ‹Ψ± ∈W 1,1(Ω∖ E(σ);R3) ∩ C0(Ω∖ E(σ);R3), ‹Ψ±(p) := (p,±ψ(p)),

are disk-type parametrizations of G±ψ (Ω∖E(σ))
, thanks to properties (1)–(5) of The-

orem 5.1.
Now, by using a homeomorphism of class H1 between Ω∖ E(σ) and a disk, we can

parametrize(17) Ω∖ E(σ) with a half-annulus, obtained as the region enclosed between
two concentric half-circles with endpoints A1, A2, A3, A4 (in the order) on the same
diameter, and the two segments A1A2 and A3A4. Then we construct a parametriza-
tion Ψ+ of G

ψ (Ω∖E(σ))
as in (6.7) from the half-annulus, such that Ψ+(A1) = (q1, 0),

Ψ+(A2) = (p2, 0), Ψ+(A3) = (q2, 0), Ψ+(A4) = (p1, 0), and mapping weakly mono-
tonically the two half-circles into γ1 and γ2, and the two segments into σ1([0, 1]) and
σ2([0, 1]), respectively. Similarly, we construct a parametrization Ψ− of G−ψ (Ω∖E(σ))

from another copy of a half-annulus, just setting Ψ− := Sym(Ψ+), the symmetric
of Ψ+ with respect to the plane containing Ω.

Eventually, gluing the two half-annuli along the two segments, we get a parametri-
zation Φ of G

ψ (Ω∖E(σ))
∪ G−ψ (Ω∖E(σ))

defined on Σann. By the continuity of ψ on
∂DΩ we have that Φ parametrizes Γi on Ci, i = 1, 2.

(b) It is sufficient to argue as in case (a), by replacing Ω ∖ E(σ) in turn with F1

and F2 and Σann with B1 to find Φ1 and Φ2, respectively. □

Lemma 6.6. — Let n = 2, and (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying
properties (1)–(5) of Theorem 5.1.

(a) Suppose that Ω∖ E(σ) is connected and

(6.8) H2(G
ψ (Ω∖E(σ))

∪ G−ψ (Ω∖E(σ))
) ⩽ m2(Γ).

Let Φ be the parametrization given by Lemma 6.5(a). Then there exists a reparametri-
zation of the annulus Σann such that, using it to reparametrize Φ, the corresponding
map (still denoted by Φ) belongs to P2(Γ) and solves (6.4).

(b) Suppose that Ω∖E(σ) consists of two connected components whose closures F1

and F2 are disjoint, Fj ⊇ ∂Dj Ω for j = 1, 2, and

H2(Gψ Fj ∪ G−ψ Fj ) ⩽ m1(Γj), j = 1, 2.

Let Φ1,Φ2 be the maps given by Lemma 6.5(b). Then, for j = 1, 2, there is a repara-
metrization of Φj belonging to P1(Γj) and solving (6.5).

(16)This is the region enclosed by ∂DΩ ∪ σ1([0, 1]) ∪ σ2([0, 1]).
(17)For instance, we can consider a (flat) disk-type Plateau solution spanning ∂(Ω∖E(σ)). Then

we can employ a Lipschitz homeomorphism between the disk and the half-annulus.
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Proof
(a) Fix a point p̃ ∈ Ω∖ E(σ) and set ‹Ψ+

k := ‹Ψ+ Hk, where ‹Ψ is defined in (6.7)
and, for k ∈ N sufficiently large, Hk is the connected component of‹Hk := {p ∈ Ω∖ E(σ) : dist(p, ∂(Ω∖ E(σ))) ⩾ 1/k}

containing p̃. For k ∈ N large enoughHk is simply connected with rectifiable boundary,
thanks to the simply-connectedness of Ω ∖ E(σ). In particular, ‹Ψ+

k parametrizes a
disk-type surface, and using the regularity of ψ in Ω∖ E(σ), it follows that ‹Ψ+

k is
Lipschitz continuous. Furthermore, ‹Ψ+

k ∂Hk parametrizes a Jordan curve, and these
curves, suitably parametrized, converge in the sense of Fréchet (see [22, Th. 4, §4.3])
as k → +∞, to the curve having image ‹Ψ+(∂(Ω∖ E(σ)))) =: λ. Notice that

λ = σ1([0, 1]) ∪ σ2([0, 1]) ∪ γ1 ∪ γ2.(6.9)

Call λk the image of the curve given by ‹Ψ+
k ∂Hk. Let P1(λk), P1(λ), m1(λk), m1(λ)

be defined as in (6.2) and (6.1) with λk and λ in place of Γ respectively. Up to
reparametrizing B1 (see footnote 15), ‹Ψ+

k belongs to P1(λk), therefore

H2(Gψ Hk
) =

∫
Hk

|∂w1
‹Ψ+
k ∧ ∂w2

‹Ψ+
k |dw ⩾ m1(λk) ∀k ⩾ 1.

We claim that equality holds in the previous expression, namely
H2(Gψ Hk

) = m1(λk) ∀k ⩾ 1.(6.10)

Indeed, assume by contradiction that H2(Gψ Hk0
) > m1(λk0) for some k0 ⩾ 1, and

pick δ > 0 with
(6.11) H2(Gψ Hk0

) ⩾ δ +m1(λk0).

Take Φk0 ∈ P1(λk0) a solution to m1(λk0). For k > k0, as Hk0 ⊂ Hk, by a gluing
argument,(18) we can find Φk ∈ P1(λk) such that Φk(B1) = Φk0(B1) ∪ Gψ (Hk∖Hk0

).
Thus by (6.11) we have

H2(Gψ Hk
) ⩾ δ +m1(λk0) +H2(Gψ (Hk∖Hk0

))

= δ +H2(Φk0(B1)) +H2(Gψ (Hk∖Hk0
)) ⩾ δ +m1(λk) ∀k > k0.

Letting k → +∞, since λk → λ in the sense of Fréchet, we have m1(λk) → m1(λ) [22,
Th. 4, §4.3]. In particular, from the previous inequality we infer

F(σ, ψ) = H2(G
ψ (Ω∖E(σ))

) ⩾ δ +m1(λ).

Hence we conclude
H2(G

ψ (Ω∖E(σ))
∪ G−ψ (Ω∖E(σ))

) ⩾ 2δ + 2m1(λ) ⩾ 2δ +m2(Γ),

which contradicts (6.8). In the last inequality we have used that 2m1(λ) ⩾ m2(Γ);
this follows from the fact that a disk-type parametrization of a minimizer for m1(λ)

can be reparametrized on a half-annulus (as in the proof of Lemma 6.5), and glued

(18)This is done, for instance, by gluing an external annulus to a disk, and using Φk0 from the
disk, and a reparametrization of Gψ (Hk∖Hk0

) from the annulus.
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with another reparametrization of it on the other half-annulus, so to obtain a parame-
trization of an annulus-type surface spanning Γ which is admissible for (6.4). Hence
claim (6.10) follows.

Now, since ψ is Lipschitz continuous on Hk, for all k ∈ N sufficiently large there
exists a map Ψk ∈ H1(B1;R3)∩C0(B1;R3) with Ψk(∂B1) = λk monotonically which
solves the classical disk-type Plateau problem spanning λk and such that

Ψk(B1) = Gψ Hk
.

Letting k → +∞ and using that the Dirichlet energy of Ψk equals the area of Gψ Hk
,

we conclude that (Ψk) tends to a map Ψ ∈ H1(B1;R3)∩C0(B1;R3) with Ψ(∂B1) = λ

weakly monotonically, and that is a solution of the classical disk-type Plateau problem
with

Ψ(B1) = G
ψ (Ω∖E(σ))

.

Arguing as in the proof of Lemma 6.5 we finally get a map Φ : Σann → R3 which
belongs to P2(Γ) and parametrizes G

ψ (Ω∖E(σ))
∪ G−ψ (Ω∖E(σ))

. This concludes the
proof of (a).

(b) It is sufficient to argue as in case (a), by replacing Ω ∖ E(σ) in turn with F1

and F2 and Σann with B1 to find Φ1 and Φ2, respectively. □

Using the arguments above to show conditions (b) of Lemma 6.5 and (b) of Lem-
ma 6.6, we deduce the following:

Corollary 6.7. — Let n = 1, assume that Γ is not planar, and let (σ, ψ) ∈ Wconv

be a minimizer of F in W satisfying properties (1)–(5) of Theorem 5.1. Then there
exists an injective map Φ ∈W 1,1(B1;R3) ∩ C0(B1;R3) such that

Φ(B1) = G
ψ (Ω∖E(σ))

∪ G−ψ (Ω∖E(σ))
,

and Φ ∂B1 : ∂B1 → Γ is a weakly monotonic parametrization of Γ. Moreover, if
H2(G

ψ (Ω∖E(σ))
∪ G−ψ (Ω∖E(σ))

) ⩽ m1(Γ) then there is a reparametrization of Φ

belonging to P1(Γ) and solving (6.5).

Now we can start the proof of Theorems 6.1 and 6.4.

6.4. Proof of Theorem 6.1

Proof of Theorem 6.1. — Let Φ ∈ P1(Γ) be a solution to (6.1). The curve Γ satisfies
the assumptions of Lemma 5.4 (notice that in this case we have f(p1) = f(q1) = 0),
hence the minimal disk-type surface S := Φ(B1) satisfies the following properties:

– βp1,q1 := S ∩ (R2×{0}) ⊂ Ω is a simple analytic curve joining p1 and q1 and such
that βp1,q1 ∩ ∂Ω = {p1, q1};

– S is symmetric with respect to R2 × {0};
– the surface S+ = S ∩ {x3 ⩾ 0} is the graph of a function ψ̃ ∈ W 1,1(Up1,q1) ∩

C0(Up1,q1), where Up1,q1 ⊂ Ω is the open region enclosed between ∂D1 Ω and βp1,q1 .
Moreover, ψ̃ is analytic in Up1,q1 ;
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– the curve βp1,q1 is contained in the closed convex hull of Γ, and Ω ∖ Up1,q1 is
convex.

Let (σ, ψ) ∈ Wconv be given by

σ := σ1 and ψ :=

{
0 in Ω∖ Up1,q1 ,

ψ̃ in Up1,q1 ,

where σ1([0, 1]) = βp1,q1 . Clearly (6.3) holds, and H2(S) = 2F(σ, ψ) = m1(Γ). It re-
mains to show that (σ, ψ) is a minimizer of F. Let (σ′, ψ′) ∈ Wconv be a minimizer
of F that satisfies properties (1)–(5) of Theorem 5.1 and consider the disk-type sur-
face with boundary Γ given by S′ := G

ψ′ (Ω∖E(σ′))
∪ G−ψ′ (Ω∖E(σ′))

. Since (σ, ψ) is
admissible for F, we deduce

H2(S′) = 2F(σ′, ψ′) ⩽ m1(Γ).

Thus we are in the hypotheses of Corollary 6.7 and so there is a map Φ′ ∈ P1(Γ) with
Φ′(B1) = S′. By minimality of (σ′, ψ′) and of S we have
(6.12) H2(S) ⩽ H2(S′) = 2F(σ′, ψ′) ⩽ 2F(σ, ψ) = H2(S).

Hence (σ, ψ) is a minimizer of F in W and Φ′ is a solution to (6.1).
Conversely, let (σ, ψ) ∈ Wconv be a solution that satisfies properties (1)–(5) of

Theorem 5.1 and let S := G
ψ (Ω∖E(σ))

∪ G−ψ (Ω∖E(σ))
. Let Φ̃ be a solution to (6.1);

then we can find (σ̃, ψ̃) ∈ W whose doubled graph S̃ = G‹ψ (Ω∖E(σ̃))
∪ G−‹ψ (Ω∖E(σ̃))

satisfies
H2(S) = 2F(σ, ψ) ⩽ 2F(σ̃, ψ̃) = H2(S̃) = m1(Γ).

Arguing as before we find a map Φ ∈ P1(Γ) parametrizing S. We conclude that Φ is
a solution to (6.1), and the theorem is proved. □

6.5. Proof of Theorem 6.4. — The proof of Theorem 6.4 is much more involved,
so we divide it in a number of steps. We start with a result (which can be seen as
the counterpart of Lemma 5.4 for the Plateau problem defined in (6.4)) that will be
crucial to prove (i). In what follows we denote by π : R3 → R2 × {0} the orthogonal
projection.

Theorem 6.8. — Suppose m2(Γ) < m1(Γ1) + m1(Γ2) and let Φ ∈ P2(Γ) be a MY

solution to (6.4). Then the minimal surface Φ(Σann) satisfies the following properties:
(1) The set π(Φ(Σann)) is simply connected in Ω; Ω∩ ∂π(Φ(Σann)) consists of two

disjoint embedded analytic curves β1 and β2 joining q1 to p2, and q2 to p1, respectively.
Moreover, for i = 1, 2, the closed region Ei enclosed between ∂0i Ω and βi is convex;

(2) Φ(Σann) is symmetric with respect to the plane R2 × {0};
(3) Φ(Σann) ∩ (R2 × {0}) = β1 ∪ β2;
(4) S+ := Φ(Σann)∩ {x3 ⩾ 0} is Cartesian. Precisely, it is the graph of a function

ψ̃ ∈W 1,1(int(π(Φ(Σann)))) ∩ C0(π(Φ(Σann))).

The proof of Theorem 6.8 is a consequence of Lemmas 6.9, 6.10, 6.11, 6.13 , 6.14,
and 6.15 below.
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p

p1

q1
∂01Ω

p2

∂02Ω
q2

Πθ1

Πθ2
Πθ1+π

Πθ2+π

∂D1 Ω ∂D2 Ω

Figure 5. The horizontal section of two half-planes Πθ1 and Πθ2 in-
tersecting ∂01Ω and ∂02Ω, respectively.

Lemma 6.9 (Simply connectedness). — Suppose m2(Γ) < m1(Γ1) + m1(Γ2) and let
Φ ∈ P2(Γ) be a MY solution to (6.4). Then π(Φ(Σann)) is a simply connected region
in Ω and π(Φ(Σann)) ∩ ∂Ω = ∂D1 Ω ∪ ∂D2 Ω.

Proof. — We recall that Φ : Σann → R3 is an embedding. The fact that π(Φ(Σann))

is a subset of Ω and π(Φ(Σann)) ∩ ∂Ω = ∂D1 Ω ∪ ∂D2 Ω follows from the fact that the
interior of Φ(Σann) is contained in the convex hull of Γ. So it remains to show that
π(Φ(Σann)) is simply connected.

Suppose by contradiction that π(Φ(Σann)) is not simply connected. Let H be a hole
of it, namely a region in Ω surrounded by a loop contained in π(Φ(Σann)) and such
that H ∩ π(Φ(Σann)) = ∅; choose a point P ∈ H. We will look for a contradiction by
exploiting that Σann is an annulus and using that the map Φ is analytic and harmonic.

Let θ be the angular coordinate of a cylindrical coordinate system (ρ, θ, z) in R3

centered at P and with z-axis the vertical line π−1(P ). For θ ∈ [0, 2π) we consider
the half-plane orthogonal to R2 × {0} defined by

Πθ := {(ρ, θ, z) : ρ > 0, z ∈ R}.

Now we fix two values θ1 and θ2 so that Πθ1 and Πθ2 intersect (the interior of) ∂01Ω
and ∂02Ω respectively. The half-planes(19) Πθ1+π and Πθ2+π might intersect ∂DΩ (see
Figure 5). However, since the points p1, q1, p2, q2, are in clockwise order on ∂Ω, and Ω

is convex, it is not difficult to conclude the following assertion:
The half-planes Πθ1+π and Πθ2+π cannot intersect the two components ∂D1 Ω and

∂D2 Ω of ∂DΩ at the same time.
In other words: if, for instance, Πθ1+π intersects ∂D1 Ω, then Πθ2+π does not intersect

∂D2 Ω. Let us prove the assertion in the form of the last statement, being the other cases
similar. This is trivial since, if Πθ1 intersects ∂01Ω and Πθ1+π intersects ∂D1 Ω (as in
Figure 5), we have that Πθ intersects ∂D1 Ω ∪ ∂01Ω for all θ ∈ [θ1, θ1 + π]. As either θ2

(19)The angles are considered (mod 2π).
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or θ2+π belongs to [θ1, θ1+π], we have that Πθ2 ∪Πθ2+π intersects ∂D1 Ω∪∂01Ω. Since
by hypothesis Πθ2 intersects ∂02Ω, it follows that Πθ2+π does not intersect ∂D2 Ω, and
the statement follows.

Moreover, since Πθ1 intersects ∂01Ω and Πθ2 intersects ∂02Ω, it is straightforward
that, if Πθ1+π intersects ∂01Ω then also Πθ2+π intersects ∂01Ω.

We are now ready to conclude the proof of the lemma. We have to discuss the
following cases:

(1) Πθ1+π intersects ∂0Ω;
(2) Πθ1+π intersects ∂D1 Ω;
(3) Πθ1+π intersects ∂D2 Ω.

By hypothesis on P , for all θ ∈ [0, 2π) the intersection between Φ(Σann) and Πθ
consists of a family of smooth simple curves, either closed or with endpoints on Γ.
Correspondingly, Φ−1(Φ(Σann)∩Πθ) is a family of closed curves in Σann, possibly with
endpoints on C1∪C2. In particular, since Πθ1∩∂01Ω ̸= ∅, the set(20) Φ−1(Φ(Σann)∩Πθ1)
is a family of closed curves in Σann.

In case (1) also, Φ−1(Φ(Σann)∩Πθ1+π) consists of closed curves in Σann. Take two
loops α and α′ in Φ−1(Φ(Σann) ∩ Πθ1) and in Φ−1(Φ(Σann) ∩ Πθ1+π) respectively.
Let d1 be the signed distance function from the plane Πθ1 ∪Πθ1+π, positive on ∂D2 Ω.
Since d1◦Φ changes its sign when one crosses transversally α and α′, we easily see that
both α and α′ cannot be homotopically trivial in Σann (by harmonicity of d1 ◦Φ, if for
instance α is homotopically trivial in Σann, by the maximum principle d1◦Φ = 0 in the
region enclosed by α, i.e., the image of Φ is locally flat, contradicting the analyticity
of Φ). Hence, since Φ is an embedding, they run exactly one time around C1; as a
consequence, they must be homotopically equivalent to each other in Σann. On the
other hand, they do not intersect each other (Φ is an embedding), so they bound
an annulus-type region in Σann, and by harmonicity d1 ◦ Φ is constantly null in this
region. This would imply again that the image by Φ of this annulus is contained in
Πθ1 ∪Πθ1+π, a contradiction.

In case (2), from our assertion, we deduce that Πθ2+π might intersect either ∂0Ω
or ∂D1 Ω. Further we can exclude that Πθ2+π intersects ∂0Ω (otherwise, we repeat the
argument for case (1) switching the role of θ1 and θ2). Therefore the only remaining
possibility is that Πθ2+π intersects ∂D1 Ω (see Figure 5). Let d2 be the signed distance
function from the plane Πθ2 ∪ Πθ2+π positive on ∂D2 Ω. In particular, di ◦ Φ, i = 1, 2,
is positive on the circle C2 of Σann. By hypothesis on di, i = 1, 2, we see that d1 is
positive on Πθ2 , and d2 is positive on Πθ1 .

As in case (1), let α ⊆ Φ−1(Φ(Σann) ∩ Πθ1) and β ⊆ Φ−1(Φ(Σann) ∩ Πθ2) be two
loops. We know that α and β are closed in Σann. Again, we conclude that α and β

are homotopically equivalent in Σann, and both run one time around C1. Assume
without loss of generality that β encloses α, which in turn encloses C1. Since d2 ◦ Φ

(20)Since Πθ1 ∩ ∂DΩ = ∅ these curves must be closed in Σann.
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is positive on both α and C2, d2 ◦ Φ must be positive in the region enclosed between
them, contradicting the fact that it vanishes on β.

If instead we are in case (3) we can argue as in case (2) and get a contradiction.
In all cases (1), (2), and (3), we reach a contradiction which derives by assuming that
π(Φ(Σann)) is not simply connected. The proof is achieved. □

We next proceed to characterize the geometry of Ω ∩ ∂π(Φ(Σann)).

Lemma 6.10 (Trace on the horizontal plane). — Suppose m2(Γ) < m1(Γ1) +m1(Γ2)

and let Φ ∈ P2(Γ) be a MY solution to (6.4). Then Ω ∩ ∂π(Φ(Σann)) consists of
two disjoint Lipschitz embedded curves β1 and β2 joining q1 to p2, and q2 to p1,
respectively. Moreover, the closed regions Ei enclosed between ∂01Ω and βi are convex
for i = 1, 2.

Proof. — By Lemma 6.9, π(Φ(Σann)) is simply connected in Ω, and π(Φ(Σann))∩∂Ω =

∂DΩ. Therefore Ω ∖ π(Φ(Σann)) consists of two simply connected components, one
containing ∂01Ω and the other containing ∂02Ω. Let E1 and E2 be the closures of these
two components,(21) so that in particular the boundary of Ei is a simple Jordan curve
of the form βi ∪ ∂0i Ω for some embedded curve βi ⊂ Ω joining the endpoints of ∂0i Ω.
We will prove that Ei is convex for i = 1, 2. This will also imply that βi are Lipschitz.

Take i = 1, and assume by contradiction that E1 is not convex. Thus we can find
a line l in R2 and three different points A1, A2, A3 on l, with A2 ∈ A1A3, so that A2

is contained in Ω∖ E1, and A1 and A3 belong to the interior of E1.
Consider the region π(Φ(Σann)) ∖ l, which consists in several (open) connected

components. There is one of these connected components, say U , which does not
intersect ∂DΩ and whose boundary contains A2. In addition, U ∩ ∂DΩ = ∅. Indeed,
∂U is the union of a segment L (containing A2) and a curve γ (contained in β1 ⊆
∂(π(Φ(Σann))) joining its endpoints. Hence, U ∖ U = γ ∪ L, and L cannot intersect
∂DΩ by the hypothesis on A1, A2, and A3.

Let Πl ⊂ R3 be the plane containing l and orthogonal to the plane containing Ω.
As usual, Πl∩Φ(Σann) is a family of closed curves, possibly with endpoints on Γ∩Πl.
Now, pick a point P on ∂U ∖ L, and let Q be a point on Φ(Σann) so that π(Q) = P .
Let dl : R3 → R be the signed distance from Πl, with dl(Q) = dl(P ) > 0. We claim
that, if D is the connected component of {w ∈ Σann : dl ◦ Φ(w) > 0} containing
the point Φ−1(Q), then D ∩ ∂Σann = ∅. This would contradict the harmonicity of
dl ◦Φ, since dl ◦Φ would be zero on D, but dl(Q) > 0, in contrast with the maximum
principle.

Assume by contradiction that the converse holds. Then there is an arc α : [0, 1] →
D ∪ ∂Σann joining Φ−1(Q) to ∂Σann . The image of the map π ◦ Φ ◦ α is an arc in Ω

joining P to ∂DΩ and such that dl ⩾ 0 on it. Clearly this arc is a subset of π(Φ(Σann)).
Since π ◦ Φ ◦ α(0) = P , it follows that the image of π ◦ Φ ◦ α is contained in U .

(21)The sets E1 and E2 have nonempty interior, since Φ(Σann) is contained in the interior of the
convex hull of Φ(∂Σann), hence contained in the cylinder Ω× R.
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Now, U does not intersect ∂DΩ, contradicting that π◦Φ◦α(1) ∈ ∂DΩ. This concludes
the proof. □

In the next step we show that there exists a set E ⊂ R3 of finite perimeter such
that

∂E = ∂∗E = Φ(Σann) ∪∆1 ∪∆2,

where ∂∗ denotes the reduced boundary, and

(6.13) ∆i := {P = (P ′, P3) ∈ R3 : P ′ = (P1, P2) ∈ ∂Di Ω, P3 ∈ (−φ(P ′), φ(P ′))},
i = 1, 2.

In particular, ∆1 ∪∆2 ⊂ (∂Ω)× R and (Ω× R) ∩ ∂E = Φ(Σann).
We first fix some notation. We let ⟦E⟧ ∈ D3(R3) be the 3-current given by integra-

tion over E with E ⊂ R3 a set of finite perimeter. To every MY solution Φ ∈ P2(Γ)

to (6.4) we associate the push-forward 2-current Φ♯⟦Σann⟧ ∈ D2(R3) given by integra-
tion over the (suitably oriented) surface Φ(Σann) [32, §7.4.2]. Finally, if T ∈ Dk(U)

with U ⊂ R3 open and k = 2, 3, we denote by |T| the mass of T in U [24, p. 358].

Lemma 6.11 (Region enclosed by Φ(Σann)). — Suppose m2(Γ) < m1(Γ1) + m1(Γ2)

and let Φ ∈ P2(Γ) be a MY solution to (6.4). Then there is a closed finite perimeter
set E ⊂ Ω× R such that (Ω× R) ∩ ∂E = Φ(Σann).

Proof. — As Φ♯⟦Σann⟧ is a boundaryless integral 2-current in Ω×R, there exists (see,
e.g., [32, Th. 7.9.1]) an integral 3-current E ∈ D3(Ω×R) with ∂E = Φ♯⟦Σann⟧, and we
might also assume that the support of E is compact in Ω × R. We claim that, up to
switching the orientation of Φ♯⟦Σann⟧, E has multiplicity in {0, 1}, and hence is the
integration ⟦E⟧ over a bounded measurable set E. Since ∂E = Φ♯⟦Σann⟧, this will be
a finite perimeter set, and ⟦(Ω× R) ∩ ∂∗E⟧ = Φ♯⟦Σann⟧.

By Federer decomposition theorem [24, §4.2.25, p. 420] (see also [24, §4.5.9] and
[32, Th. 7.5.5]) there is a sequence (Ek)k∈N of finite perimeter subsets of Ω× R such
that

(6.14) E =

+∞∑
k=1

σk⟦Ek⟧, σk ∈ {−1, 1},

and

|E| =
+∞∑
k=1

|Ek| and |∂E| = H2(Φ(Σann)) =

+∞∑
k=1

H2(∂∗Ek).(6.15)

We start by observing that

(6.16) ∂∗Ek ⊆ Φ(Σann) ∀k ∈ N.

Indeed, fixing k ∈ N, by the second equation in (6.15), we have that ∂∗Ek is contained
in the support of ∂E, which in turn is Φ(Σann). As a consequence, if P = (P1, P2, P3) ∈
(Ω×R)∩ ∂∗Ek, then P ∈ Φ(Σann). Around P we can find suitable coordinates and a
cube U = (P1−ε, P1+ε)×(P2−ε, P2+ε)×(P3−ε, P3+ε) such that Φ(Σann)∩U is the
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graph Gh of a smooth function h : (P1−ε, P1+ε)× (P2−ε, P2+ε) → (P3−ε, P3+ε).
Moreover, Φ♯⟦Σann⟧ = ⟦Gh⟧ in U .

We claim that

∀k either Ek ∩ U = U ∩ SGh or Ek ∩ U = U ∖ SGh.

Indeed, assume for instance that |Ek ∩ U ∩ SGh| > 0 and |(SGh ∖ Ek) ∩ U | > 0; by
the constancy lemma [32] it follows that ∂⟦Ek⟧ is nonzero in the simply connected
open set SGh, contradicting (6.16). As a consequence of the preceding claim, we have
U ∩ ∂∗Ek = U ∩Φ(Σann). Since this argument holds for any choice of P ∈ (Ω×R) ∩
∂∗Ek, we have proved that (Ω×R)∩ ∂∗Ek is relatively open (and relatively closed at
the same time) in Φ(Σann), which in turn being a connected open set, implies

Φ(Σann) = ∂∗Ek ∀k ∈ N.

Denote by I± := {k ∈ N : σk = ±1}, with σk as in (6.14). Going back to the local
behaviour around P ∈ Φ(Σann), if U is a neighbourhood as above, we see that for all
k ∈ I+ either Ek ∩ U = SGh or Ek = U ∖ SGh (namely, all the Ek’s coincide in U),
since otherwise, there will be cancellations in the series

∑
k∈I+ ∂⟦Ek⟧, in contradiction

with the second formula in (6.15). Assume without loss of generality that for all
k ∈ I+ we have Ek ∩ U = SGh; thus, arguing as before, for all k ∈ I− we must have
Ek ∩ U = U ∖ SGh.

We obtain that E U = m⟦SGh⟧ − n⟦U ∖ SGh⟧ for some nonnegative integers
n,m. Since (∂E) U = (m + n)⟦Gh⟧ and also (∂E) U = Φ♯⟦Σann⟧ = ⟦Gh⟧ in U ,
we conclude m+ n = 1. Hence either m = 1 and n = 0, or m = 0 and n = 1. On the
other hand, we know that E U =

∑
k∈I+ ⟦Ek ∩ U⟧−

∑
k∈I− ⟦Ek ∩ U⟧, from which it

follows that I+ has cardinality m and I− has cardinality n. Namely, one of the sets I±
is empty, and the other contains one index only.

We conclude that the sum in (6.14) involves one index only, that is, there is only
one compact set E in Ω× R such that (up to switching the orientation)

E = ⟦E⟧.

This concludes the proof. □

For later convenience, from now on we denote by E the closure of a precise repre-
sentative of the set found in Lemma 6.11.

Remark 6.12. — From the fact that (Ω × R) ∩ ∂E = Φ(Σann) ∪∆1 ∪∆2, we easily
see that π(E) = π(Φ(Σann)) which, by Lemma 6.9, is simply connected.

We denote by symst(E) the set (symmetric with respect to the horizontal plane
R2×{0}) obtained applying to E the Steiner symmetrization with respect to R2×{0}.
Clearly symst(E) ∩ (∂Di Ω× R) = ∆i with ∆i defined as in (6.13). We define

(6.17) S := ∂(symst(E))∖ (∆1 ∪∆2), S+ := S ∩ {x3 ⩾ 0}, S− := S ∩ {x3 ⩽ 0}.

Since P (symst(E)) ⩽ P (E) (here P (·) is the perimeter in R3 [4]) we have H2(S) ⩽
H2(Φ(Σann)).
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Lemma 6.13 (Graphicality of ∂(symst(E)) and continuity up to the boundary)
Suppose that m2(Γ) < m1(Γ1) + m1(Γ2) and let Φ ∈ P2(Γ) be a MY solution

to (6.4). Let E be the finite perimeter set given by Lemma 6.11 and S± be as in (6.17).
Then there is ψ̃ ∈ BV (int(π(E))) ∩ C0(π(E)) such that S± = G±‹ψ. In particular,
S± ∩ (R2 × {0}) = Ω ∩ ∂(π(E)).

Proof. — Since E has finite perimeter, there exists a function ψ̃ ∈ BV (int(π(E)))

such that S± = G±‹ψ [20]. So, we only need to show that ψ̃ is continuous (note that
π(E) is a closed set). Take a point P ′ in the interior of π(E); if P ′ = π(Φ(w)) for
some w, then w ∈ Σann, since π(Φ(Ci)) ⊂ ∂Ω for i = 1, 2 (recall that C1 and C2 form
the boundary of Σann). If at none of the points of π−1(P ′) ∩ Φ(Σann) the tangent
plane to Φ(Σann) is vertical, then ψ̃ is C∞ in a neighbourhood of P ′, since it is the
linear combination of smooth functions (see the discussion after formula (6.21) below,
where details are given). Therefore we only have to check continuity of ψ̃ at those
points P ′ for which there is P ∈ π−1(P ′) ∩ Φ(Σann) such that Φ(Σann) has a vertical
tangent plane Π at P .

Consider a system of Cartesian coordinates centered at P , with the (x, y)-plane
coinciding with Π, the x-axis coinciding with the line π−1(P ′), and let z = z(x, y)

(defined at least in a neighbourhood of 0) be the analytic function whose graph
coincides with Φ(Σann). This map, restricted to the x-axis, is analytic and vanishes
at x = 0; hence it is either identically zero or it has a discrete set of zeroes (in the
neighbourhood where it exists). We now exclude the former case: If z(·, 0) is identically
zero, it means that around P there is a vertical open segment included in π−1(P ′),
which is contained in Φ(Σann). Let Q be an extremal point of this segment, and let ΠQ
be the tangent plane to Φ(Σann) at Q. This plane must contain as tangent vector the
above segment, hence ΠQ is vertical and contains π−1(P ′). Choosing again a suitable
Cartesian coordinate system centered at Q we can express locally the surface Φ(Σann)

as the graph of an analytic function defined in a neighbourhood of Q in ΠQ, and so
the restriction of this map to π−1(P ′) is analytic in a neighbourhood of Q, hence it
must be identically zero since it is zero in a left (or right) neighbourhood of Q. What
we found is that we can properly extend the segment PQ on the Q side to a segment
PR contained in Φ(Σann). This proves that Φ(Σann) ∩ π−1(P ′) is relatively open in
π−1(P ′). Since it is also relatively closed, it coincides with the whole line π−1(P ′),
which is impossible since Φ(Σann) is bounded.

Hence the zeroes of the function z(·, 0) are isolated, so we have shown:

Assertion A. — Let P ∈ π−1(P ′)∩Φ(Σann). Then in a neighbourhood of P the only
intersection between Φ(Σann) and π−1(P ′) is P itself.

Now, we can conclude the proof of the continuity of the function ψ̃. Write

π−1(P ′) ∩ Φ(Σann) = {Q1, Q2, . . . , Qm} ⊂ Ω× R.
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It follows that

2ψ̃(P ′) = H1(π−1(P ′) ∩ E) =

m∑
j=1

σj(Qj)3,(6.18)

where (Qj)3 is the vertical coordinate of Qj and

σj =


−1 if Qj−1Qj ⊂ R3 ∖ E and QjQj+1 ⊂ E,

1 if Qj−1Qj ⊂ E and QjQj+1 ⊂ R3 ∖ E,

0 otherwise,
j = 1, . . . ,m.(6.19)

Let (P ′
k) ⊂ int(π(E)) be a sequence converging to P ′, and write π−1(P ′

k)∩Φ(Σann) =

{Qk1 , Qk2 , . . . , Qkmk
} ⊂ Ω× R. With a similar notation as above, we have

(6.20) 2ψ̃(P ′
k) = H1(π−1(P ′

k) ∩ E) =

mk∑
j=1

σkj (Q
k
j )3.

Now, if at every point Qj the tangent plane to Φ(Σann) is not vertical, then Φ(Σann)

is a smooth Cartesian surface in a neighbourhood of Qj , and so it is clear that, for k
large enough,

m = mk, Qkj −→ Qj , σkj −→ σj for all j = 1, . . . ,m,(6.21)

and the continuity of ψ̃ at P ′ follows. Therefore it remains to check continuity in the
case that the tangent plane to some Qj is vertical.

Let ‹Q be one of these points, with associated sign σ̃ ∈ {0, 1}. By assertion A there
is δ > 0 so that ‹Q is the unique intersection between π−1(P ′) and Φ(Σann) with
vertical coordinate in [‹Q3 − δ, ‹Q3 + δ]. This means that the segments

π−1(P ′) ∩ {‹Q3 − δ < x3 < ‹Q3} and π−1(P ′) ∩ {‹Q3 < x3 < ‹Q3 + δ}

are contained in either int(E) or R3 ∖ E. In particular, there is a neighbourhood
U ⊂ Ω of P ′ such that U × {x3 = ‹Q3 − δ} and U × {x3 = ‹Q3 + δ} are subsets of
int(E) or of R3 ∖ E. Suppose without loss of generality that both are inside R3 ∖ E

(the other cases being similar), so that σ̃ = 0. We infer that, for k large enough so
that P ′

k ∈ U , there is a finite subfamily {Qkj : j ∈ J} of {Qk1 , Qk2 , . . . , Qkmk
} contained

in {‹Q3 < x3 < ‹Q3+ δ} and which satisfies the following: The sum in (6.20) restricted
to such subfamily reads as:∑

j∈J
σkj (Q

k
j )3 = (Qkjl)3 − (Qkjl−1

)3 + · · ·+ (Qkj2)3 − (Qkj1)3,

where J = {j1, j2, . . . , jl : j1 < j2 < · · · < jl} and (Qkjl)3 > (Qkjl−1
)3 > · · · > (Qkj2)3 >

(Qkj1)3 (if jl = 1 necessarily σkj1 = 0 and the sum is zero). We have to show that
this sum tends to σ̃‹Q3 = 0 as k → +∞, which is true, since each Qkj tends to ‹Q.
Repeating this argument for each point ‹Q with a vertical tangent plane to Φ(Σann),
the proof of continuity of ψ̃ in the interior of π(E) follows.

Now, let P ′ ∈ ∂(π(E)). If P ′ ∈ Ω∩ ∂(π(E)) then every point in π−1(P ′)∩Φ(Σann)

has vertical tangent plane and we can argue as in the previous case. It remains to
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show continuity of ψ̃ on ∂π(E)∩ ∂Ω. In this case we exploit the fact that the interior
of Φ(Σann) is contained in Ω×R. We sketch the proof without details since it is very
similar to the previous argument. Let P ′ ∈ ∂D1 Ω, thus π−1(P ′) ∩ Γ1 consists of two
distinct points Q1 and Q2. Let (P ′

k) be a sequence of points in π(E) converging to P .
For P ′

k ∈ ∂D1 Ω it follows π−1(P ′
k) ∩ Γ1 = {Qk1 , Qk2} and the continuity of ψ̃ follows

from the continuity of φ on ∂D1 Ω, whereas if P ′
k is in the interior of π(E) there holds

π−1(P ′
k) ∩ Γ1 = {Qk1 , Qk2 , . . . , Qkmk

}. Using the continuity of Φ up to C1, it is easily
seen that all such points must converge, as k → +∞, either to Q1 or to Q2. Hence
we can repeat an argument similar to the one used before. □

Lemma 6.14. — Suppose m2(Γ) < m1(Γ1)+m1(Γ2) and let Φ ∈ P2(Γ) be a MY solu-
tion to (6.4). Let E be the finite perimeter set given in Lemma 6.11 and let S be defined
as in (6.17). Then there is an injective map Φ̃ ∈ H1(Σann;R3) ∩ C0(Σann;R3) which
maps ∂Σann weakly monotonically to Γ and such that Φ̃(Σann) = S, and furthermore

H2(S) =

∫
Σann

|∂w1
Φ̃ ∧ ∂w2

Φ̃|dw =

∫
Σann

|∂w1
Φ ∧ ∂w2

Φ|dw = m2(Γ).(6.22)

In particular, Φ̃ is a solution of (6.4).

Proof. — By Lemma 6.13 there is ψ̃ ∈ BV (int(π(E))) ∩ C0(π(E)) such that S± =

G±‹ψ. As a consequence, for p ∈ ∂DΩ we have ψ̃(p) = φ(p) and for p ∈ Ω ∩ ∂(π(E))

we have ψ̃(p) = 0.
By Lemma 6.9 π(E) is simply connected, and so the maps ‹Ψ± : π(E) → R3 given

by ‹Ψ±(p) := (p,±ψ̃(p)) are disk-type parametrizations of S±. Moreover, S+ and S−

glue to each other along (R2×{0})∩ ∂(symst(E)) = β1 ∪β2, where β1 and β2 are the
curves given by Lemma 6.10 .

Let (σ, ψ) ∈ Wconv be a minimizer of F which satisfies properties (1)–(5) of The-
orem 5.1. Setting σ̃ := (β1, β2) and extending ψ̃ to zero in Ω ∖ π(E) (still calling ψ̃
such an extension), by minimality we get

2F(σ, ψ) ⩽ 2F(σ̃, ψ̃) = H2(S),

whence

2F(σ, ψ) ⩽ H2(S) ⩽ H2(Φ(Σann)) =

∫
Σann

|∂w1
Φ ∧ ∂w2

Φ|dw = m2(Γ).(6.23)

We are in the hypotheses of Lemma 6.6(a), therefore there exists a map Φ̂ ∈ P2(Γ)

parametrizing G
ψ (Ω∖E(σ))

∪G−ψ (Ω∖E(σ))
which is a minimizer of (6.4). In particular,

2F(σ, ψ) = m2(Γ), and all inequalities in (6.23) are equalities. We deduce also that
(σ̃, ψ̃) is a minimizer of F in Wconv, so that by Theorem 5.1 ψ̃ is analytic in int(π(E)).
As a consequence it belongs to W 1,1(int(π(E));R3). Applying Lemma 6.5(a) and
Lemma 6.6(a), we get the existence of Φ̃ ∈ P2(Γ) as in the statement, and we have
concluded. □
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Lemma 6.15. — Suppose m2(Γ) < m1(Γ1) + m1(Γ2) and let Φ ∈ P2(Γ) be a MY

solution to (6.4). Let E be the finite perimeter set given in Lemma 6.11 and let S be
defined as in (6.17). Then Φ(Σann) = S and in particular

E = symst(E).

Proof. — By Lemma 6.14 we have H2(S) = m2(Γ), from which it follows that
P (symst(E)) = P (E). Then we can apply [20, Th. 1.1] to deduce the existence of
two functions f, g : π(E) → R of bounded variation, such that ∂∗E = Gf ∪ Gg (up to
H2-negligible sets). We will show that f = ψ̃ and g = −ψ̃. To this aim, thanks again
to [20, Th. 1.1], we know that for a.e. p ∈ π(E), the two unit (external to E) normal
vectors νf = (νf1 , ν

f
2 , ν

f
3 ) and νg = (νg1 , ν

g
2 , ν

g
3 ) to Gf and Gg at the points (p, f(p))

and (p, g(p)), respectively, satisfy
(νf1 , ν

f
2 , ν

f
3 ) = (νg1 , ν

g
2 ,−ν

g
3 ).(6.24)

To conclude the proof it is then sufficient to show that f = −g a.e. on π(E): indeed
this would readily imply E = symst(E) and hence f = ψ̃. Let p ∈ int(π(E)); if
(6.25) π−1(p) ∩ S = {P1, P2, . . . , Pk},

then for a.e. p ∈ int(π(E)) it is k ⩽ 2. Now we show that, for all p ∈ int(π(E)),
if k > 1, none of the points {P1, P2, . . . , Pk} has vertical tangent plane. Assume by
contradiction that P1 has vertical tangent plane Π1. In this case Π1 ∩ S consists, in
a neighbourhood U of P1, of at least 2 curves crossing transversally (see [35, §373])
at P1. These curves, by assertion A in the proof of Lemma 6.13 , intersect π−1(p)

only at P1. Moreover, in a neighbourhood V of P2, with U ∩ V = ∅, Π1 ∩ S consists
of (at least) one curve passing through P2. This curve is locally Cartesian if π−1(p)

crosses S transversally in P2, otherwise it is locally the union of two curves ending
at P2, with vertical tangent plane, which lie on the same side of Π1 with respect to
π−1(p). In both cases, we deduce that there is a point q ∈ Π1 ∩ (Ω × {0}) for which
π−1(q) intersects transversally S in at least three points. As a consequence, for all q′
in a neighbourhood of q in Ω, the line π−1(q′) intersects S at more than two points,
which is a contradiction. We have proved the following:

Assertion. — For all p ∈ int(π(E)) the line π−1(p) intersects S either transversally
at two points P1, P2, or at only one point P1.

Now we see that the latter case cannot happen. Indeed, first one checks that in this
case the intersection cannot be transversal,(22) and that π−1(p) must be tangent to S
at P1. Let Π1 be the vertical tangent plane to S at P1. Let Π⊥

1 be the vertical plane
orthogonal to Π1 passing through P1. In a neighbourhood of P1, the unique curve in
S∩Π⊥

1 must be the union of two curves joining at P1, and these curves must belong to
the same half-plane of Π⊥

1 with boundary π−1(p). As a consequence, if p′ ∈ Ω∩Π⊥
1 is

(22)This is a consequence of the fact that the line π−1(p) must lie outside the set E, with the
only exception of the point P1. Indeed, otherwise, there must be some other point in π−1(p) ∩ S,
E being compact in R3.
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in that half-plane, then π−1(p′) consists of at least two points; if p′ lies in the opposite
half-plane, then π−1(p′) is empty. This means that necessarily p ∈ ∂π(E). Namely,
the previous assertion can be strengthened to:

For all p ∈ int(E) the line π−1(p) intersects S transversally at exactly two points
P1, P2.

The consequence of this is that f and g belong to W 1,1(int(π(E))) and are also
smooth in int(π(E)). Indeed, let p ∈ int(π(E)), so f(p) ̸= g(p), and

(6.26) π−1(p) ∩ S = {(p, f(p)), (p, g(p))}.

Since S is locally the graph of smooth functions around (p, f(p)) and (p, g(p)), these
functions coincide with f and g, respectively. We can now conclude the proof of the
lemma: let us choose a simple curve α : [0, 1] → π(E) with α(0) ∈ ∂DΩ and α(1) = p

such that (6.24) holds for H1 a.e. p ∈ α([0, 1]). Since f ◦α and g ◦α are differentiable
in [0, 1], condition (6.24) uniquely determines the tangent planes to Gf and Gg, and
hence it implies that the derivatives of f ◦ α and g ◦ α satisfy

(f ◦ α)′(t) + (g ◦ α)′(t) = 0, for a.e. t ∈ [0, 1].(6.27)

By continuity of f and g one infers f ◦α+ g ◦α = c a.e. on [0, 1] (actually everywhere
since f + g is continuous), for some constant c ∈ R. To show that c = 0 it is sufficient
to observe that f ◦ α(0) = φ(α(0)) and g ◦ α(0) = −φ(α(0)). Hence f(p) = −g(p),
and the thesis of Lemma 6.15 is achieved. □

We are now in a position to conclude the proof of Theorem 6.8.

Proof of Theorem 6.8. — Property (1) follows by Lemma 6.9 and Lemma 6.10. Prop-
erties (2)–(4) follow by Lemma 6.13 and Lemma 6.15. To see that βi are C∞ it is
sufficient to observe that, since S+ and S− are Cartesian surfaces, their intersection
coincides with the set S ∩ {x3 = 0} which, by standard arguments, is the image of
the zero-set of Φ3, which is smooth. □

Theorem 6.16. — Assume n = 2 and Γj not planar for j = 1, 2. Then

2 min
(s,ζ)∈Wconv

F(s, ζ) = m2(Γ).(6.28)

Proof

Step 1: 2min(s,ζ)∈Wconv
F(s, ζ) ⩽ m2(Γ). — Suppose first m2(Γ) < m1(Γ1) +m1(Γ2).

Let Φ ∈ P2(Γ) be a MY solution to (6.4) and let S := Φ(Σann). By Theorem 6.8 the
following properties hold:

– S∩ (R2×{0}) = β1∪β2 with β1 and β2 disjoint embedded analytic curves joining
q1 to p2 and q2 to p1, respectively;

– S is symmetric with respect to R2 × {0};
– for i = 1, 2 the closed region Ei enclosed between ∂0i Ω and βi is convex;
– S+ = S∩{x3 ⩾ 0} is the graph of ψ̃ ∈W 1,1(U)∩C0(U), where U = Ω∖(E1∪E2)

is the open region enclosed between ∂DΩ and β1 ∪ β2.
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Let (σ, ψ) ∈ Wconv be given by

σ := (σ1, σ2) and ψ :=

{
0 in Ω∖ U,

ψ̃ in U,

where σi([0, 1]) = βi for i = 1, 2. Then clearly S+ = G
ψ (Ω∖E(σ))

and

min
(s,ζ)∈Wconv

F(s, ζ) ⩽ F(σ, ψ) = H2(S+) =
1

2
m2(Γ).

Now, suppose m2(Γ) = m1(Γ1) + m1(Γ2). For j = 1, 2, let Φj ∈ P1(Γj) be a
solution to (6.1) and Sj := Φj(B1). Let Dj be the closed convex hull of Γj : clearly
D1 ∩D2 = ∅. By Lemma 5.4 (with F = Ω) each Sj satisfies the following properties:

– Sj ∩ (R2 × {0}) = βj ⊂ Dj is a simple analytic curve joining pj to qj ;
– Sj is symmetric with respect to R2 × {0};
– S+

j := S ∩ {x3 ⩾ 0} is the graph of a function ψ̃j ∈ W 1,1(Uj) ∩ C0(U j), where
Uj ⊂ Dj is the open region enclosed between ∂Dj Ω and βj ;

– Ω∖ Uj is convex.
Let (σ, ψ) ∈ Wconv be given by

σ := (σ1, σ2) and ψ :=

{
0 in Ω∖ (U1 ∪ U2),

ψ̃j in Uj for j = 1, 2,

where σ1([0, 1]) := p1q2 and σ2([0, 1]) := β2 ∪ q2p1 ∪ β1. Then S+ := S+
1 ∪ S+

2 =

G
ψ (Ω∖E(σ))

and

min
(s,ζ)∈Wconv

F(s, ζ) ⩽ F(σ, ψ) = H2(S+) =
1

2
(m1(Γ1) +m1(Γ2)) =

1

2
m2(Γ),

and the proof of step 1 is concluded.

Step 2: 2min(s,ζ)∈Wconv
F(s, ζ) ⩾ m2(Γ). — Let (σ, ψ) ∈ Wconv be a minimizer satis-

fying properties (1)–(5) of Theorem 5.1. If E(σ1)∪E(σ2) = ∅, by step 1 we can apply
Lemma 6.6 and find an injective parametrization Φ ∈ P2(Γ) such that Φi(∂Σann) = Γ

weakly monotonically, Φ(Σann) = Gψ ∪ G−ψ, and

2F(σ, ψ) =

∫
Σann

|∂w1
Φ ∧ ∂w2

Φ|dw ⩾ m2(Γ).

If instead E(σ1) ∪ E(σ2) ̸= ∅, similarly we find injective parametrizations Φ1 ∈
P1(Γ1) and Φ2 ∈ P1(Γ2) such that Φj(∂B1) = Γj weakly monotonically for j = 1, 2,
Φ1(B1) ∪ Φ2(B1) = Gψ ∪ G−ψ, and

2F(σ, ψ) =

∫
B1

|∂w1Φ1 ∧ ∂w2Φ1|dw +

∫
B1

|∂w1Φ2 ∧ ∂w2Φ2|dw

⩾ m1(Γ1) +m1(Γ2) ⩾ m2(Γ).

This concludes the proof. □

Now the proof of Theorem 6.4 is easily achieved.
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Proof of Theorem 6.4
(i) Let Φ ∈ P2(Γ), S, S+, S− be as in the statement. By arguing as in the proof

of Theorem 6.16 we can find (σ, ψ) ∈ Wconv such that S± = G±ψ (Ω∖E(σ))
. Then by

Theorem 6.16 we have

(6.29) F(σ, ψ) =
1

2
m2(Γ) = min

(s,ζ)∈Wconv

F(s, ζ).

Hence (σ, ψ) is a minimizer for F in W; moreover by the properties of S it also satisfies
properties (1)–(5) of Theorem 5.1.

(ii) Let Φj ∈ P1(Γj), Sj for j = 1, 2, S+, S− be as in the statement. Again
arguing as in the proof of Theorem 6.16, we can find (σ, ψ) ∈ Wconv such that S± =

G±ψ (Ω∖E(σ))
and (6.29) holds, so that (σ, ψ) is a minimizer of F in W satisfying

properties (1)–(5) of Theorem 5.1.
(iii) Let (σ, ψ) ∈ Wconv be a minimizer of F in W satisfying properties (1)–(5) of

Theorem 5.1. Let also

S := G
ψ (Ω∖E(σ))

∪ G−ψ (Ω∖E(σ))
.

Suppose first E(σ1)∩E(σ2) = ∅. Then there is Φ ∈ P2(Γ) which is a MY solution to
(6.4) such that Φ(Σann) = S: indeed, to see this, it is sufficient to apply Lemma 6.6,
since by Theorem 6.16 we have

(6.30) 2F(σ, ψ) = m2(Γ).

Now, suppose E(σ1) ∩ E(σ2) ̸= ∅; then with a similar argument we can construct
Φj ∈ P1(Γj) for j = 1, 2 solutions to (6.1) such that Φ1(B1)∪Φ2(B1) = S. The proof
is achieved. □

7. Final remarks and open problems

In this section we describe some motivations of the present study, possible appli-
cations and related problems. Furthermore, we briefly comment on the hypotheses of
our setting and on possible extensions and generalizations of our results.

Connection with the Plateau problem in high codimension. — The main motivation of
our study is related to the classical non-parametric Plateau problem in codimension
greater than 1. Specifically, our setting is suited for the description of the singular
part of the L1-relaxation A(·, U) of the Cartesian 2-codimensional area functional

(7.1)
∫
U

»
1 + |∇u1|2 + |∇u2|2 + (det∇u)2 dx, u = (u1, u2) ∈ C1(U ;R2),

computed on nonsmooth maps. The functional A(·, U) computed out of C1(U,R2) is
mostly unknown [1, 27], up to a few exceptions, see [12, 7, 39, 8]. One of the remarkable
exceptions is given by the vortex map uV : Bℓ(0)∖ {0} ⊂ R2 → R2, uV (x) := x/|x|:
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Figure 6. The domain R2ℓ (example of the vortex map uV ). The
graph of φ on ∂DR2ℓ is emphasized (in particular φ = 0 on the
lower horizontal side), together with an admissible curve σ, which
in this specific case partially overlaps the Dirichlet boundary. In this
example n = 1.

in this case it can be proved [9, 10, 11] that

A(uV ;Bℓ(0)) =

∫
Bℓ(0)

»
1 + |∇uV |2 dx+ inf F(σ, ψ),(7.2)

where F(σ, ψ) is as in (1.7) with Ω = R2ℓ = (0, 2ℓ)× (−1, 1) and the Dirichlet datum
φ : ∂R2ℓ → [0,+∞) is given by

(7.3) φ(z1, z2) :=

{√
1− z22 on ∂DR2ℓ,

0 on ∂0R2ℓ,

with ∂DR2ℓ = ({0} × (−1, 1)) ∪ ([0, 2ℓ] × {−1}) ∪ ({2ℓ} × (−1, 1)) and ∂0R2ℓ =

(0, 2ℓ) × {1}. Here the infimum is taken over all pairs (σ, ψ) ∈ Σ × BV (R2ℓ) with σ

a unique curve in R2ℓ joining (0, 1) to (2ℓ, 1) and ψ = 0 a.e. in E(σ). This setting is
similar to the catenoid case, with the notable difference that the Dirichlet boundary
is here extended to include the basis (0, 2ℓ) × {−1} and the free curve is just one
simple curve σ (see Figure 6).

To construct a recovery sequence for (7.2), it is crucial to analyze the existence
and regularity of minimizers of F. In particular, it is necessary to show that there is
at least one sufficiently regular minimizer (σ, ψ). The shape of the curve σ and the
graph of ψ are related to the vertical part of a Cartesian 2-current in Bℓ(0)×R2 ⊂ R4

which arises as a limit of (the graphs of) a recovery sequence (vk) ⊂ C1(Bℓ(0);R2)

for A(uV ;Bℓ(0)).
According to what happens for the catenoid, also in this case we have a dichotomy

for the behaviour of minimizers (σ, ψ). When ℓ > 0 is small, the solution (σ, ψ)

consists of a curve σ joining p and q having relative interior contained in R2ℓ, and
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so that E(σ) is convex; at the same time the graph of ψ on R2ℓ ∖ E(σ) is a sort of
half-catenoid, so that if we double it considering also its symmetric with respect to
the plane containing R2ℓ, it becomes a sort of catenoid spanning two unit circles and
constrained to contain the segment (0, 2ℓ) × {−1}. When instead ℓ is larger than a
certain threshold, the solution reduces to two circles spanning the two unit parallel
circles. Notice however that in the setting of (7.3) on a part of the Dirichlet boundary
we have φ = 0. This leads to a number of additional difficulties which must be treated
separately with approximation techniques (we refer to [10] for the details).

Another relevant case in which the relaxation is known, is for the so-called triple
junction function uT : Bℓ(0) ⊂ R2 → R2, a map taking only three values, vertices
of an equilateral triangle of unit side-length (see [12, 39]). Also in this case, in order
to compute the singular contribution of A(uT ;Bℓ(0)), a Cartesian Plateau problem
with a partial free boundary must be solved. Following our approach, it is possible to
reduce this problem to our setting. In general,(23) given Ω ⊂ R2 and u ∈ BV (Ω;R2),
the singular contribution of the relaxed area functional A(u; Ω) coincides with the
mass of vertical parts in the optimal Cartesian current Tu with underlying map u

that arises as limit of the graphs Gvk of a recovery sequence vk : Ω → R2. Generally,
a few can be said on the structure and properties of these vertical parts. However,
for optimal Cartesian currents Tu as above, they enjoy minimality properties under
suitable constraints. In the aforementioned known cases (a suitable projection(24) of)
these vertical parts is exactly the area minimizing solution of the Cartesian Plateau
type problem with partial free boundary.

We emphasize that understanding the features of vertical parts of optimal Cartesian
currents for the relaxed graph area is crucial in order to detect the behaviour of the
area functional. In more general settings and for general maps u : Ω ⊂ R2 → R2 only
partial results are currently available, and specifically, without a finer analysis of the
singularities of these Cartesian currents only upper and lower bounds can be obtained
(see, e.g., [15, 40], where some estimates are given for nonsmooth S1-valued maps).

Hypotheses. — We assume that Ω is convex. Convexity is crucial to ensure existence
of solutions even in the classical non-parametric setting with no free boundary. Indeed,
there are examples in which Ω is not convex, and a minimizer of the area functional
does not attain the Dirichlet boundary datum.

We also point out that we assume injectivity of the free-boundary curves σi (see
hypothesis (i) in the introduction). This assumption is crucial in order to define the
sets E(σi) and then to solve the problem in a non-parametric form. However, if one
allows σi to have self-intersections, one can look for a disk spanning the curve Γσ

(23)We restrict the discussion to the 2-dimensional case (and to codimension 2), although this is
valid for any dimension and codimension.

(24)These currents live in Ω × R2, but stands above 1-dimensional subsets of Ω, so that, with
suitable techniques, they can be identified with integral currents of codimension 1 (we refer to
[9, 10, 11, 12, 39] for more detail).
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in (1.8) which is not a Jordan curve anymore. In this case we have to face a singular
Plateau problem such as the one recently studied in [21] using results of [33]. Notice
that in this case the curves σi will be also planar and some additional hint to face
this problem can be found in [19].

Further developments. — In the present analysis we have assumed that the free bound-
ary curves are included in a plane. Of course, one may ask for domains Ω which are
subset of a manifold (not necessarily a plane), leading to additional difficulties, since
the symmetrization with respect to the plane is strongly used in our arguments.

Furthermore, the correspondence between the Meeks and Yau solutions is obtained
in the special cases n = 1, 2, although we believe that it holds also for n ⩾ 3. However,
due to technical difficulties which renders the setting much more involved, we leave
this generalization to future developments.

A further interesting question is the following. Suppose that ∂Ω is smooth; then
one may ask whether each free boundary ∂E(σj) is smooth up to ∂Ω, and moreover
if there is some special kind of contact angle condition at ∂Ω, due to minimality. This
question should need further investigation in the future.

The problem considered in this paper seems not directly related to the partial
wetting phenomenon, an interesting behaviour of soap films pointed out in [3], see also
[17] and [13], [14], where the soap film (typically in a non Cartesian context) does not
attain the boundary condition, leaving unwetted a part of the wire Γ. However, when
the boundary datum φ is allowed to vanish (a case not covered by the results of the
present paper), as in the case of the “catenoid” constrained to contain the segment
[0, 2ℓ] × {−1} mentioned above, it may happen that the singular solution consisting
of the two half-disks does not wet that segment.

We conclude this section with a couple of additional examples which are open prob-
lems and we consider to be interesting, relating the problem (and suitable variants)
studied in this paper with the relaxation of the area functional (7.1) in dimension 2

and codimension 2.
Let û : Bℓ(0)∖ {0} ⊂ R2 → S1 be the map defined in polar coordinates

û(ρ, θ) = e2iθ,

i.e., the vortex map of degree 2. Our conjecture is that the relaxed area functional
A(û;Bℓ(0)) is given by∫

Bℓ(0)

»
1 + |∇û|2 dx+ inf{F1(σ, ψ1) + F2(σ̂, ψ2)},(7.4)

where both Fi, i = 1, 2, are as the functional in (1.7), but applied to different domains
and variables. Specifically, F1 is applied to Ω = R2ℓ, and φ, σ = (σ1) and ψ1 = ψ

are exactly as in the case of uV (see (7.2) and (7.3)). Instead, for F2, Ω = R2ℓ

while σ̂ = (σ̂1, σ̂2) = (σ1, σ̂2), and φ are as in the example of the catenoid in the
introduction. Notice that minimizations of F1 and F2 are not independent each other,
since σ1 = σ̂1.
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Another nontrivial example is given by a map u ∈ BV (Bℓ(0);R2) which we assume
to jump on three radii of Bℓ(0) (not necessarily at 120o-degrees angles). Depending on
the trace values of u on these radii, we consider the Plateau problem with partial free
boundary as described below: we take as domain Ω a triangle and σ = (σ1, σ2, σ3)

are three curves in Ω connecting the three pairs of vertices. Let φ be a boundary
datum on ∂Ω that is null on the three vertices of Ω, and denote by H(σi) the region
enclosed between σi and the side li of Ω with the same vertices. We conjecture that
the singular contribution in A(u;Bℓ(0)) is related to the infimum of the quantity

|Ω∖ (
⋃3
i=1H(σi))|

+

3∑
i=1

Å∫
Ω

»
1 + |∇ψi|2 dx+ |Dsψi|(Ω)− |Ω∖H(σi)|+

∫
li

|ψi − φ| dH1

ã
.

Appendix

We recall here some classical facts about convex sets and Hausdorff distance.
If A,B ⊂ R2 are nonempty, the symbol dH(A,B) stands for the Hausdorff distance
between A and B, that is

dH(A,B) := max{supa∈A dB(a), supb∈B dA(b)},

where dF (·) is the distance from the nonempty set F ⊆ R2. If we restrict dH to the
class of closed sets, then dH defines a metric. Moreover:

(H1) dA(x) ⩽ dB(x) + dH(A,B) for every x ∈ R2;
(H2) If K := {K ⊂ R2 nonempty and compact} then (K, dH) is a complete metric

space;
(H3) If A,B ∈ K are convex then dH(A,B) = dH(∂A, ∂B);
(H4) If A ∈ K is convex, then there exists a sequence (An)n ⊂ K of convex sets

with boundary of class C∞ such that dH(An, A) → 0 as n→ +∞;
(H5) Let (An)n be a sequence of nonempty closed convex sets in R2, A ⊂ R2 is

nonempty and dH(An, A) → 0 as n→ +∞. Then A is convex as well;
(H6) Let An, A ∈ K be convex such that dH(An, A) → 0 and let x ∈ int(A); then

x ∈ An for all n ∈ N sufficiently large;
(H7) Let A and B be nonempty closed subsets of R2 with dH(A,B) = ε. Then

A ⊂ B+
ε and B ⊂ A+

ε where, for all nonempty E ⊂ R2, we have set

E+
ε := {x ∈ R2 : dE(x) ⩽ ε}.

Remark A.1. — Property (H1) is straightforward, while (H2) is well-known. Also
property (H3) is easily obtained (see, e.g., [41]). Concerning property (H4) we refer
to, e.g., [6, Cor. 2]. To see (H5), from (H1) we have that dAn → dA pointwise, and
therefore since dAn

is convex, also dA is convex, which implies A convex.(25) Let us
now prove (H6) by contradiction; assume that there exists a subsequence (nk) such

(25)Since A is closed, it coincides with the sublevel {x : d(x,A) ⩽ 0}, which is convex.
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that dAnk
(x) > 0 for all k ∈ N; then x ∈ R2 ∖ Ank

, dAnk
(x) = d∂Ank

(x), and
using (H1) twice,

d∂A(x) ⩽ d∂Ank
(x) + dH(∂Ank

, ∂A) = dAnk
(x) + dH(Ank

, A)

⩽ dA(x) + 2dH(A,Ank
) = 2dH(A,Ank

) −→ 0,

the first equality following from (H3). This implies x ∈ ∂A, a contradiction. Finally
property (H7) is immediate. Indeed if a ∈ A then

dB(a) ⩽ sup
x∈A

dB(x) ⩽ dH(A,B) = ε,

hence a ∈ B+
ε and so A ⊂ B+

ε . In a similar way we get B ⊂ A+
ε .

We also recall the following standard result.

Lemma A.2. — Let K ∈ K be convex with nonempty interior. Then there exists a
1-periodic map σ̂ ∈ Lip(R;R2), injective on [0, 1), such that σ̂([0, 1]) = ∂K and

σ̂(t) = σ̂(0) + ℓ(σ̂)

∫ t

0

γ̂(s) ds, γ̂(t) = (cos(θ̂(t)), sin(θ̂(t))) for all t ∈ [0, 1],

with θ̂ : R → R a non-decreasing function satisfying θ̂(t+1)− θ̂(t) = 2π for all t ∈ R,
and ℓ(σ̂) :=

∫ 1

0
|σ̂′(s)|ds the length of the curve.

Notice that σ̂ is differentiable a.e. in R and σ̂′(t) = ℓ(σ̂)γ̂(t), so that the speed
modulus of the curve |σ̂′(t)| = ℓ(σ̂) is constant.

Proof. — We start by approximating K by convex sets with C∞ boundary. By (H4)
for all n ∈ N there is a convex compact set Kn ⊂ R2 with boundary of class C∞ and
such that dH(Kn,K) → 0 as n → +∞. For any n ∈ N we let σ̂n ∈ C∞(R;R2) be a
1-periodic function injectively parametrizing ∂Kn on [0, 1); therefore σ̂n([0, 1]) = ∂Kn,
and

σ̂n(t) = σ̂n(0) + ℓ(σ̂n)

∫ t

0

γ̂n(s) ds, γ̂n(t) = (cos(θ̂n(t)), sin(θ̂n(t))) ∀t ∈ [0, 1],

where θ̂n∈C∞(R) is a non-decreasing function with θ̂n(t+1)− θ̂n(t)=2π, for all t∈R.
In view of (H2), by construction we can find x0 ∈ K, R > r > 0 such that Br(x0) ⊂
Kn ⊂ BR(x0) for all n ∈ N, and therefore H1(∂Br(x0)) ⩽ ℓ(σ̂n) = H1(∂Kn) ⩽
H1(∂BR(x0)); where the last inequality follows since ∂Kn = πKn

(∂BR(x0)) and from
the fact that, since Kn is convex, the projection πKn

on Kn does not increase the
lengths, thus, up to subsequence, ℓ(σ̂n) → “m ∈ (0,+∞) as n→ +∞. Moreover, up to
subsequence, we might assume σ̂n(0) → p ∈ ∂K. On the other hand, observing that∫ t+1

t

|θ̂′n(s)|ds =
∫ t+1

t

θ̂′n(s)ds = 2π, for all t ∈ R,

we have that, again up to subsequence, θ̂n
∗
⇀ θ̂ ∈ BVloc(R) and pointwise (by the

Helly selection principle), with θ̂ a non-decreasing function with θ̂(t+ 1)− θ̂(t) = 2π
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for all t ∈ R. We also have γ̂n
∗
⇀ γ̂ in BVloc(R;R2) where γ̂(t) = (cos(θ̂(t)), sin(θ̂(t))).

We let σ̂ ∈ Lip(R;R2) be the 1-periodic curve, injective on [0, 1), defined as

(A.1) σ̂(t) := p+ “m∫ t

0

γ̂(s) ds ∀t ∈ R.

Note that “m = ℓ(σ̂). Then clearly σ̂n → σ̂ in W 1,1([0, 1];R2), since

∥σ̂′
n − σ̂′∥L1([0,1];R2) =

∫ 1

0

|ℓ(σ̂n)γ̂n(t)− ℓ(σ̂)γ̂(t)|dt

⩽ |ℓ(σ̂n)− ℓ(σ̂)|+ ℓ(σ̂)

∫ 1

0

|γ̂n(t)− γ̂(t)|dt −→ 0.

(A.2)

By the continuous embedding W 1,1([0, 1];R2) ⊂ C0([0, 1];R2) (and by 1-periodicity,
on R) we also get σ̂n → σ̂ uniformly on [0, 1]. This, together with property (H3) gives

dH(∂K, σ̂([0, 1])) ⩽ dH(∂K, ∂Kn) + dH(σ̂n([0, 1]), σ̂([0, 1])) −→ 0,

which in turn implies σ̂([0, 1]) = ∂K. The injectivity of σ̂ on [0, 1) follows from
expression (A.1), the fact that “m > 0 and that K is convex with nonempty interior.

□

Corollary A.3. — Let K ∈ K be convex with nonempty interior. Let q, p be two
distinct points on ∂K, and let Ùpq ⊂ ∂K be the relatively open arc with endpoints q
and p clockwise oriented. Then there exists an injective curve σ ∈ Lip([0, 1];R2) such
that σ((0, 1)) = Ùpq, σ(0) = q, σ(1) = p, and

σ(t) = q + ℓ(σ)

∫ t

0

γ(s) ds, γ(t) = (cos(θ(t)), sin(θ(t))) for all t ∈ [0, 1],

with θ a non-decreasing function satisfying θ(1)− θ(0) ⩽ 2π.

Proof. — Lemma A.2 provides σ̂ ∈ Lip([0, 1];R2) parametrizing ∂K. Then there are
two values t1, t2 ∈ [0, 1], t1 < t2, with q = σ̂(t1) and p = σ̂(t2) so that the existence
of σ follows by reparametrizing the interval [t1, t2], and all the properties follow from
the corresponding properties of σ̂. □
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