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FINITELY GENERATED SUBGROUPS OF

ALGEBRAIC ELEMENTS OF PLANE CREMONA GROUPS

ARE BOUNDED

by Anne Lonjou, Piotr Przytycki & Christian Urech

Abstract. — We prove that any finitely generated subgroup of the plane Cremona group con-
sisting only of algebraic elements is of bounded degree. This follows from a more general result
on ‘decent’ actions on infinite restricted products. We apply our results to describe the degree
growth of finitely generated subgroups of the plane Cremona group.

Résumé (Les sous-groupes de type fini d’éléments algébriques du groupe de Cremona planaire
sont bornés)

Nous montrons que tout sous-groupe de type fini du groupe de Cremona planaire contenant
seulement des éléments algébriques est de degré borné. Cela découle d’un résultat plus général
sur les actions « décentes » sur les produits infinis restreints. Nous appliquons nos résultats pour
décrire la croissance des degrés des sous-groupes de type fini du groupe de Cremona planaire.
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1. Introduction

The Cremona group Cr2(k) over a field k is the group of birational transformations
of the projective plane P2 over k. Cremona groups have been the delight of algebraic
geometers and group theorists in both, classical and modern times. As of today, many
aspects of Cr2(k) are well understood and there are many tools at hand to study those
groups. For instance, Cr2(k) acts by isometries on an infinite dimensional hyperbolic
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space H∞ [Can11] and on various CAT(0) cube complexes [LU21]. Nevertheless, some
questions have remained open. The goal of this article is to positively answer a ques-
tion asked more than a decade ago by Favre in [Fav10, Quest. 1].

Let us fix projective coordinates [x : y : z] of P2. An element f ∈ Cr2(k) is given by

[x : y : z] 7 [f0 : f1 : f2],

where the fi ∈ k[x, y, z] are homogeneous of the same degree and without non-constant
common factor. The degree deg(f) of f is defined as the degree of the polynomials fi.
An element f ∈ Cr2(k) is algebraic, if deg(fn) is uniformly bounded for all n ∈ Z.
A subgroup G < Cr2(k) is bounded if the degree of all elements in G is uniformly
bounded. Clearly, a bounded subgroup consists of algebraic elements. However, the
converse is not true. For instance, consider the subgroup defined in the affine coordi-
nates (x, y) of P2 by

G = {(x, y) 7 (x+R(y), y) | R ∈ k(y)}.

Every element in G is algebraic, but G is not bounded. In this paper, we show the
following theorem, which solves Favre’s question:

Theorem 1.1. — Let k be a field and let G < Cr2(k) be a finitely generated subgroup
such that every element of G is algebraic. Then G is bounded.

Remark 1.2. — Note that the properties of being algebraic and being bounded are
invariant under field extensions, so it is enough to show Theorem 1.1 for algebraically
closed fields.

Remark 1.3. — The first step towards the proof of Theorem 1.1 is due to Cantat,
who showed in [Can11] that a finitely generated subgroup G < Cr2(k) consisting
of algebraic elements is bounded or preserves a rational fibration (see [Lam24] for a
proof of this result for fields of arbitrary characteristic). It is therefore enough to show
Theorem 1.1 for finitely generated groups that preserve a rational fibration.

In order to show Theorem 1.1 for finitely generated groups that preserve a rational
fibration, we introduce the Jonquières complex — a CAT(0) cube complex with an
isometric action of the group of birational transformations preserving a rational fibra-
tion, whose vertex stabilizers are bounded subgroups. Using a suitable description of
this complex and the dynamics of PGL2(k) on P1, we show that the action of our
group on this complex is decent, as defined below.

Definition 1.4. — Let X0 be a set. We say that a group G0 acts on X0 purely
elliptically, if each element of G0 fixes a point of X0. We say that a group G0 acts
on X0 decently if

– each subgroup of G0 with a finite orbit fixes a point of X0, and
– each finitely generated subgroup of G0 acting purely elliptically fixes a point

of X0.

J.É.P. — M., 2024, tome 11
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It is an easy exercise that if G0 is the isometry group of a simplicial tree X0,
then G0 acts on X0 decently (see [Ser80, Cor. 3 in §6.5 & Ex. 6.3.4]). More generally,
if G0 is the isometry group of a CAT(0) cube complex X0 with no infinite cubes,
then G0 acts on X0 decently [GLU24]. Similarly, if G0 is the isometry group of a
CAT(0) 2-complex X0 with rational angles, then G0 acts on X0 decently [NOP22].
For further examples, see [HO21].

1.1. Applications. — The Cremona group Cr2(k) can be equipped with the Zariski
topology (see for instance [Ser10]). An algebraic subgroup of Cr2(k) is a Zariski closed
bounded subgroup. This explains the terminology: an element in Cr2(k) is algebraic if
and only if it is contained in an algebraic subgroup. Note that for any d ⩾ 1, the subset
of Cr2(k) consisting of elements of degree at most d is closed (see [BF13]), hence a
bounded subgroup is contained in an algebraic subgroup. An algebraic subgroup G is
always projectively regularizable, i.e., there exists a birational map φ : P2 S such
that φGφ−1 < Aut(S) for some regular projective surface S. This follows from the
theorems of Weil and Sumihiro or from the fact that the number of base-points of
elements in an algebraic subgroup is uniformly bounded (we refer to [Lam24] for
references and a proof of this fact, or to [LU21]). Theorem 1.1 has therefore the
following direct consequence:

Corollary 1.5. — Let k be a field and let G < Cr2(k) be a finitely generated subgroup
such that every element of G is algebraic. Then G is projectively regularizable.

From another point of view, algebraic elements correspond exactly to elements
in Cr2(k) inducing an elliptic isometry on the infinite dimensional hyperbolic
space H∞, on which Cr2(k) acts [Can11]. Theorem 1.1 therefore states that the
action of Cr2(k) on H∞ is decent.

While all algebraic elements are projectively regularizable, there exist also non-
algebraic elements that are projectively regularizable. It is still unknown whether a
finitely generated subgroup of the Cremona group containing only projectively regu-
larizable elements is projectively regularizable or not. This question is equivalent to
the question whether Cr2(k) acts decently on the blow-up complex — a CAT(0) cube
complex constructed in [LU21]. In [GLU24], the first and third authors together with
Genevois positively answer this question when the base-field k is finite.

Since elements in Cr2(k) preserving a rational fibration are projectively regulariz-
able if and only if they are algebraic (see for instance [LU21, Table 1]), Corollary 1.5
directly implies the following. Let G < Cr2(k) be a finitely generated subgroup pre-
serving a rational fibration such that every element in G is projectively regularizable.
Then G is projectively regularizable.

The notions of algebraic elements and bounded subgroups generalize to birational
transformations of arbitrary regular projective surfaces and Theorem 1.1 generalizes
to this setting:

J.É.P. — M., 2024, tome 11
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Theorem 1.6. — Let S be a regular projective surface over a field k and let G < Bir(S)

be a finitely generated subgroup such that every element of G is algebraic. Then G is
bounded.

However, the most interesting and difficult case is the one of rational surfaces.
In order to keep the notation more accessible, we discuss and prove the general case
in the separate Section 5.1.

In Section 5.2 we apply Theorem 1.1 to give a first description of the asymptotic
degree growth of finitely generated subgroups of Cr2(k). This opens up new interesting
questions about the dynamical behaviour of finitely generated subgroups of Cr2(k).
Let G < Cr2(k) be a finitely generated subgroup with a finite generating set T . Denote
by BT (n) the set of all elements in G of word length ℓT at most n with respect to the
generating set T , and define

DT (n) := max
f∈BT (n)

{deg(f)}.

It has been shown in [Ure18] that there are only countably many integer sequences
that can appear in this way. However, still very little is known about them. In the
case where T consists of a single element, the growth of the function DT has been
extensively studied (see Theorem 5.1). Theorem 1.1 is the main ingredient for the
following result, which we prove in Section 5.2. For two functions, f and g on Z⩾0,
we write f ≍ g if f(x) ⩽ ag(bx) and g(x) ⩽ cf(dx) for some a, b, c, d > 0.

Corollary 1.7. — Let k be an algebraically closed field and let G < Cr2(k) be a
finitely generated subgroup with generating set T . Then one of the following is true:

(1) All elements in G are algebraic, G fixes a point in H∞, and DT (n) is bounded.
(2a) The group G contains an element that induces a parabolic isometry of H∞,

DT (n) ≍ n, and G preserves a rational fibration.
(2b) The group G contains an element that induces a parabolic isometry of H∞,

DT (n) ≍ n2, and G preserves an elliptic fibration.
(3) The group G contains an element that induces a loxodromic isometry of H∞

and DT (n) ≍ λn for λ > 0.

It would be interesting to study the dynamical behaviour of the degrees of finitely
generated subgroups in more detail. In Corollary 1.7, the asymptotic behaviour does
not depend on the choice of the finite generating set T , since for any other generating
set T ′ there is a constant d > 0 such that for all n we have BT ′(n) ⊆ BT (dn), and
so DT ′(n) ⩽ DT (dn). For instance, one could ask, after fixing T , what is the precise
asymptotic growth of DT (n), if the group G contains a loxodromic element:

Question 1.8. — Let G < Cr2(k) be a finitely generated subgroup containing an
element that induces a loxodromic isometry of H∞, with finite generating set T .
What is the asymptotic growth of DT (n)? Do we always have DT (n) ∼ cλn for
some constants c, λ > 0? Here, we write f ∼ g if f and g are functions such that
limn→∞ f(n)/g(n) = 1.

J.É.P. — M., 2024, tome 11
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In another direction, it has been shown that the dynamical degree of f ∈ Cr2(k), i.e.,
the number λ(f) := limn→∞ deg(f)1/n is always an algebraic integer (more precisely,
it is always a Pisot or Salem number, see [BC16]). This leads to the following natural
question, which is due to Cantat:

Question 1.9. — Let G < Cr2(k) be a finitely generated subgroup with finite gener-
ating set T . Which real numbers can be realized as limn→∞ DT (G)1/n?

For instance, it could be interesting to construct examples of such subgroups and
generating sets such that limn→∞ DT (G)1/n is transcendental. If S is a regular pro-
jective surface and f ∈ Aut(S), then λ(f) is the spectral radius of the induced
transformation f∗ of f on the Neron–Severi lattice of S. For this reason, the limit
limn→∞ DT (G)1/n should be seen as an analogue to the joint spectral radius, which
has been introduced in [RS60] and has been studied by many authors (see for instance
[Jun09] or [BF21]).

1.2. Decent actions. — In Section 3 we will show that Theorem 1.1 is a special case
of a following more general result on groups acting decently on an infinite restricted
product.

A pointed set (X0, x0) is a set X0 and a point x0 ∈ X0. The restricted product⊕
p∈P (Xp, xp) of a family {(Xp, xp)}p∈P of pointed sets is the set of sections {yp}p∈P

with yp ∈ Xp such that all but finitely many yp are equal to xp.
Note that for finite P we have

⊕
p∈P (Xp, xp) = Πp∈PXp. For infinite P , we have

that
⊕

p∈P (Xp, xp) is a proper subset of Πp∈PXp.
If each Xp is a simplicial tree and each xp is a vertex (which will be the case in

our application towards Theorem 1.1), then
⊕

p∈P (Xp, xp) has a structure of a cube
complex whose cubes have the form Πp∈P Ip, where all but finitely many Ip are equal
to xp and the remaining Ip are edges of Xp. This cube complex is CAT(0) though
this will not be exploited explicitly in the current article.

Let G0 be a group acting on X0 and let H be a group acting on P . The (unre-
stricted) wreath product G0 ≀P H of G0 and H over P is the semi-direct product of
Πp∈PGp, where Gp = G0, with the group H acting on Πp∈PGp by h · {gp}p∈P =

{gh−1(p)}p∈P .
Let x0 ∈ X0. We will be considering the subgroup G⊕ of G0 ≀P H preserving⊕
p∈P (Xp, xp), where Xp = X0 and xp = x0, and where the action is defined as

follows. For g = {gp}p∈P ∈ Πp∈PGp, we have g · {yp}p∈P = {gp(yp)}p∈P . For h ∈ H,
we have h · {yp}p∈P = {yh−1(p)}p∈P .

It is not hard to verify that if X0 is a simplicial tree, and f is a combinatorial
isometry of the cube complex

⊕
p∈P (Xp, xp), then f induces a bijection of P . Fur-

thermore, if G0 is the group of all simplicial isometries of X0, then we have f ∈ G⊕

if and only if H contains that bijection. For example, if P = {p, q} with X0 the real
line tiled by unit intervals, then

⊕
p∈P (Xp, xp) is the square tiling of the Euclidean

plane, and a 90◦ rotation of the plane induces the bijection interchanging p and q.

J.É.P. — M., 2024, tome 11
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Theorem 1.10. — Let G0 be a group acting decently on X0. Let P be the set of
the points of the projective line P1(k) over an algebraically closed field k, and let
H = Aut(P1). Then G⊕ acts decently on

⊕
p∈P (Xp, xp).

We will prove Theorem 1.10 in Section 4. We will deduce Theorem 1.1 from Theo-
rem 1.10 at the end of Section 3. Note that in Theorem 1.10, we have to make some
assumptions on P and H. For example, assume that the set X0 is a finite simplicial
tree and G0 is a nontrivial subgroup of the group of the simplicial isometries of X0.
Suppose that H is a finitely generated infinite torsion group acting by left multiplica-
tion on P = H. Then the entire G⊕ is finitely generated and acts purely elliptically
on

⊕
p∈P (Xp, xp), but does not have a fixed-point.

Acknowledgements. — We thank Serge Cantat for his valuable comments that helped
to improve the exposition of this article. We also thank Chris Karpinski and the
anonymous referees for their helpful suggestions. The first author would like to thank
the CRM (Centre de Recherche Mathématiques in Montreal), the Simons foundation
and the organizers of the thematic semester “Théorie géométrique des groupes” for
her stay at the CRM where a part of this project was realized.

2. Preliminaries

In this section, we briefly recall some well-known facts about blow-ups and conic
bundles. By Remark 1.2, it is enough to work over an algebraically closed field for
our problem, hence we assume our base-field k to be algebraically closed. Unless
mentioned otherwise, surfaces are assumed to be projective and smooth.

2.1. Subgroups of algebraic elements of automorphism groups. — Let S be a sur-
face over k. An ample divisor H on S defines a degree function degH on Bir(S) by
degH(f) = f∗H ·H. An element g ∈ Bir(S) is then algebraic if the degree sequence
{degH(fn)}n is bounded. A subgroup G < Bir(S) is bounded if {degH(f) | f ∈ G} is
bounded. The properties of being algebraic and being bounded do not depend on the
choice of an ample divisor (see for example [Dan20]).

Let us observe that Theorem 1.1 holds if we work with finitely generated groups
of automorphism groups:

Lemma 2.1. — Let S be a surface and let G < Aut(S) be a finitely generated subgroup
such that every element in G is algebraic. Then G is bounded.

Proof. — The linear action of Aut(S) on the Néron–Severi lattice N1(S) of S yields a
homomorphism Aut(S) → GL(N1(S)) ≃ GLn(Z), whose kernel is an algebraic group
and therefore bounded. The image of an element g ∈ G in GL(N1(S)) is of finite
order, since g is algebraic (see for example [Can18, Th. 4.6]). Using that G is finitely
generated, we obtain that the image of G in GL(N1(S)) is finite. Therefore, G is a
finite extension of a bounded group and therefore bounded itself. □

J.É.P. — M., 2024, tome 11
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2.2. Bubble space, strong factorization, and base-points. — Let S be a surface and
let s ∈ S. Then there exists a surface S̃ and a morphism π : S̃ → S such that the
fiber E over s is isomorphic to P1 and π induces an isomorphism between S̃ ∖E and
S ∖ {s}. The morphism π : S̃ → S is called the blow-up of S in s, and it is unique up
to isomorphism. Consider two distinct points s, s′ on a surface S and their respective
blow-ups πs and πs′ . Blowing-up first s and then s′ gives the same transformation up
to isomorphism as blowing-up first s′ and then s. By abuse of language, we will say
that πs and πs′ commute and we denote the successive blow-up of s and then s′ by
πs′πs = πsπs′ .

The bubble space of S is the set B(S) of triples (t, T, π), where π : T → S is a
birational morphism from a surface T and t is a point on T ; two triples (t, T, π) and
(t′, T ′, π′) are identified if π−1π′ is a local isomorphism around t′ mapping t′ to t. The
bubble space can be thought of as the set of all points on S and on surfaces obtained
from S by successively blowing up points. The points in B(S) contained in S are
called proper points.

Zariski’s strong factorization theorem states that every birational transformation
f : S T between surfaces can be factored into blow-ups of points. More precisely,
there exists a surface Z and a factorization

Z

S T

π ρ

f

where π and ρ are compositions of blow-ups of points. Note that the points blown up
by π and ρ can be seen as elements of the bubble space B(S) and B(T ) respectively.
Moreover, Z can be chosen in such a way, and will be denoted by Zf , that for any
other such factorization

Z ′

S T

π′ ρ′

f

there exists a surjective morphism η : Z ′ → Zf such that π′ = πη and ρ′ = ρη. If
we require Zf to be minimal in this sense, this factorization is unique up to isomor-
phism and up to possibly changing the order of blowing up the points. The morphism
π : Zf → S is called the minimal resolution of f , and the points (in B(S)) blown up
by π are called the base-points of f .

A base-point s of f is called persistent if there exists ℓ ⩾ 1 such that, for all n ⩾ ℓ,
the point s is a base-point of fn but s is not a base-point of f−n.

2.3. Conic bundles. — A rational fibration on a surface S is a morphism π : S → C,
where C is a curve, such that all the fibers are isomorphic to P1. Note that this is a
more restrictive definition than the more usual one, which only asks that the fibers
are rational curves.

J.É.P. — M., 2024, tome 11
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Let π : S → C and π′ : S′ → C be rational fibrations. We say that a birational
transformation f : S S′ preserves the fibrations if there exists an automorphism
ℏ(f) : C → C such that the following diagram commutes

S S′

C C.

π

f

π′

ℏ(f)

Let π : S → C be a rational fibration. An elementary transformation f : S → S′

is the composition of blowing up a point s ∈ S followed by blowing down the strict
transform of the fiber containing s. The surface S′ comes equipped with the rational
fibration π′ : S′ → C defined by π′ = πf−1. Note that f preserves these fibrations for
ℏ(f) = id.

The following fact is well-known (see for instance [Sch22, Cor. 3.2]):

Proposition 2.2. — Let π : S → C and π′ : S′ → C be rational fibrations. Every
birational transformation f : S S′ preserving the fibrations can be factored into a
sequence of elementary transformations and a (fibration preserving) isomorphism.

A conic bundle is a composition with a rational fibration π : S → C of a sequence
of blow-ups S̃ → S, such that we blow up in total at most one point s ∈ S in each
fiber. In other words, S̃ → C has only finitely many singular fibers, each of them
consisting of two rational curves of self-intersection −1, called also −1-curves (the
preimage of s under the blow-up and the strict transform of the fiber of s).

3. The Jonquières complex

In this section we reduce Theorem 1.1 to Theorem 1.10. We always assume our base-
field k to be algebraically closed, which is justified by Remark 1.2, and we assume the
surfaces to be projective and smooth.

3.1. The blow-up complex. — Let T be a surface. In [LU21], the authors constructed
the blow-up complex C(T ) — a CAT(0) cube complex with an isometric action of
Bir(T ). Let us briefly recall the construction of C(T ). The vertices of C(T ) are equiva-
lence classes of marked surfaces, i.e., pairs (S, φ), where S is a surface and φ : S T

a birational transformation. Marked surfaces (S, φ) and (S′, φ′) are equivalent if
φ−1φ′ : S′ → S is an isomorphism. Vertices (represented by) (S, φ) and (S̃, φ̃), are
connected by an edge if φ−1φ̃ : S̃ → S is the blow-up of a point (or its inverse). More
generally, 2n different vertices form an n-cube if there is a marked surface (S, φ) and
distinct points s1, . . . , sn ∈ S such that these vertices are obtained by blowing up
subsets of {si}{1⩽i⩽n}.

3.2. The Jonquières complex. — Let F0 = P1 ×P1 with the rational fibration onto
the first factor π0 : F0 → P1. We define the Jonquières complex J as the subcomplex
of the blow-up complex C(F0) induced on the set of vertices represented by marked
surfaces (S, φ) such that, for π = π0φ, the rational map π : S P1 is a conic bundle.

J.É.P. — M., 2024, tome 11



Finitely generated subgroups of algebraic elements 1019

Remark 3.1. — Consider 2n vertices of J spanning a cube. This means that there
exists a surface (S, φ) and distinct points s1, . . . , sn ∈ S such that these vertices are
obtained by blowing up subsets of {si}{1⩽i⩽n}. Since these vertices belong to the
Jonquières complex, we have that the points si belong to distinct fibers of π. In other
words, we have π(si) ̸= π(sj) for all i ̸= j.

Remark 3.2. — Note that the Jonquières complex J is not a convex subcom-
plex of the blow-up complex C(F0). Indeed, consider the birational transformation
φ : (x, y) 7→ (x, x2 + y). It has three base-points, but only one of them is proper. Let
ρ : S → F0 be the minimal resolution of φ. Then the vertex represented by (S, ρ)

is not a vertex of the Jonquières complex because more than one point has been
blown-up in the same fiber. However, the vertex represented by (S, ρ) lies on a
geodesic edge-path between the vertices (F0, id) and (F0, φ

−1).
Nevertheless, by Proposition 2.2, the 1-skeleton of J it is isometrically embedded

in the 1-skeleton of C(F0).

For any p ∈ P1, consider the subcomplex Xp of J induced on the vertices rep-
resented by the marked surfaces (S, φ), where φ : S F0 induces an isomorphism
between S ∖ π−1(p) and F0 ∖π−1

0 (p).

Lemma 3.3. — For any p ∈ P1, the subcomplex Xp is a tree.

Proof. — First note that Xp is connected as a consequence of Proposition 2.2 and
the fact that two elementary transformations performed in distinct fibers commute.

Second, consider the vertex v0 = (F0, id) in Xp, and let P1
p ⊂ F0 be the fiber over p.

Let v0, v1, v2, v3, . . . be the consecutive vertices on an edge-path without backtracks
in Xp. The surface v1 is obtained from v0 by blowing up a point s in P1

p to a −1-curve.
The surface v2 = (S2, φ2) is obtained from v1 by blowing down the other −1-curve in
the fiber over p to a point s2. In particular, the birational transformation φ−1

2 sends
the entire P1

p ∖{s} to s2.
Continuing, for i ⩾ 2 the surface v2i−1 is obtained from v2i−2 by blowing up a point

in the fiber over p distinct from s2i−2 to a −1-curve, and the surface v2i is obtained
from v2i−1 by blowing down the other −1-curve in the fiber over p to a point s2i.
Thus the birational transformation φ−1

2i sends the entire P1
p ∖{s} to s2i. In particular,

φ2i is not an isomorphism, and so v2i ̸= v0. This proves that there is no cycle in Xp,
and so Xp is a tree. □

We choose a preferred vertex xp = (F0, id) in each Xp, and we consider the family
of pointed sets {(Xp, xp)}p∈P1 .

Lemma 3.4. — The cube complex J is isomorphic to
⊕

p∈P1(Xp, xp).

Proof of Lemma 3.4. — Let (S, φ) be a vertex of J . The birational transformation
φ : S F0 is decomposed as φ = σn · · ·σ1, where each σi is the blow-up of a point or
the blow-down of a −1-curve in the fiber over a point pi ∈ P1. For pi ̸= pj , we have
that σi and σj commute. Thus there is a finite subset Q ⊂ P1 such that φ = Πp∈Qφp,
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where each (of the commuting) φp is a composition of σi with pi = p. Consider the
marked surfaces φp : Sp F0 for p ∈ Q, and φp = id, Sp = F0 for p ∈ P1 ∖Q. They
represent vertices of Xp. Then {(Sp, φp)}p∈P1 defines a vertex of

⊕
p∈P1(Xp, xp).

This is a bijective correspondence between the vertices of J and
⊕

p∈P1(Xp, xp),
and it extends to an isomorphism on the entire complexes. □

The coordinate yp of a point y ∈
⊕

p∈P1(Xp, xp) = J should be thought of as the
“marked fiber” in the surface corresponding to y over the point p. Thus modifying the
coordinate yp of y corresponds to performing an alternating sequence of blow-ups of
points and blow-downs of −1 curves in the fiber over p of the surface corresponding
to y.

The Jonquières group is the subgroup of Bir(F0) consisting of the Jonquières trans-
formations f that preserve the rational fibration π0 : F0 → P1. The Jonquières group
acts on the vertex set of J by f · (S, φ) = (S, fφ), and this action extends to an
action by isometries on the entire J .

Remark 3.5. — A subgroup G of the Jonquières group is a subgroup of Aut(S) for
some conic bundle π : S → P1 if and only if G fixes a point in J . This is because
if G fixes an interior point of a cube in J described via a surface S in Remark 3.1,
then G fixes this cube and in particular G fixes the vertex corresponding to S. By the
definition of a marked surface this is equivalent to G < Aut(S).

We conclude with the following.

Proof of Theorem 1.1. — By Remark 1.2, we can assume the base-field k to be alge-
braically closed. By Remark 1.3, we can assume G to be a subgroup of the Jonquières
group.

As a consequence of Lemma 3.4, the complex
⊕

p∈P1(Xp, xp) inherits the action of
the Jonquières group from J . Because Xp are trees (see Lemma 3.3), their isometry
groups are decent. All the elements of the Jonquières group induce elements of Aut(P1)

on P1. Moreover, by Remark 3.5 and by Lemma 2.1, to prove Theorem 1.1 for a
subgroup G of the Jonquières group, we need to find a fixed-point for G in J , which
is guaranteed by Theorem 1.10. □

4. Proof of the main theorem

In this section we prove Theorem 1.10. We keep the notation J for the general⊕
p∈P1(Xp, xp) (and not just for the Jonquières complex). We denote by ℏ the quotient

map G0 ≀P H → H. Abusing the notation, for f ∈ G0 ≀P H and p ∈ P , we denote by
f(p) ∈ P the point ℏ(f)(p).

Convention 4.1. — Note that for f = hg ∈ G⊕, with h ∈ H and g ∈ Πp∈PGp, and for
y ∈ J , the value f(y)p equals gh−1(p)

(
yh−1(p)

)
and so it depends only on h, gh−1(p) and

yh−1(p). Henceforth, slightly abusing the notation, we will refer to f(y)p as f(yf−1(p)).
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This conveys the fact that for a Jonquières transformation f , the “marked fiber”
in f(S) over p depends only on f and the “marked fiber” in S over f−1(p).

Lemma 4.2. — Let G0 be a group acting on X0 so that each subgroup of G0 with a
finite orbit fixes a point of X0 (which is the first item of Definition 1.4 for G0). Then
each subgroup of G < G⊕ with a finite orbit Y in J fixes a point of J (which is the
first item of Definition 1.4 for G).

Proof. — For p ∈ P , let Yp = {yp : y ∈ Y } denote the finite set of the coordinates
of Y in the factor Xp.

First, we consider each finite orbit O ⊂ P of ℏ(G) < H. If for all p ∈ O we have
Yp = {xp}, then we define zp = xp for all p ∈ O. Since Y ⊂ J , there are only finitely
many finite orbits O of ℏ(G) < H with Yp ̸= {xp} for some p ∈ O. For each such O,
we choose o ∈ O. Let G′

o be the projection to Go of the stabilizer of o in G, that is,
the group of all go over g ∈ G fixing o. Note that Yo contains an orbit of G′

o. Thus G′
o

has a finite orbit and hence a fixed-point zo ∈ Xo by the hypothesis of the lemma. We
set zp = f(zo) (see Convention 4.1) for any f ∈ G with f(o) = p, which only depends
on p and not on f since zo was fixed by G′

o.
Now, let O ⊂ P be an infinite orbit of ℏ(G) < H. Since Y ⊂ J , there is o ∈ O

with Yo = {xo}. Consequently, for any p ∈ O, we have that Yp consists only of a single
element, which we call zp. Since Y ⊂ J , this zp equals xp for all but finitely many p.

Consequently, we have z = {zp}p ∈ J . By construction, z is a fixed-point of G. □

4.1. Biregularity. — The following encapsulates the idea of a Jonquières transfor-
mation f having a persistent base-point in the fiber over a point p ∈ P .

Definition 4.3. — Let z = {zr}r ∈ J be a distinguished vertex. Let p ∈ P and
f ∈ G⊕. We say that f is biregular over p (with respect to z) if f(z)f(p) = zf(p) (or,
in our notation from Convention 4.1, f(zp) = zf(p)). Equivalently, for f = hg with
h ∈ H, g ∈ ΠpG0, we have gp(zp) = zf(p) (which equals zh(p)). Otherwise, we say
that f is singular (with respect to z) over p.

An element f ∈ G⊕ has persistent fiber over p ∈ P if there exists ℓ ⩾ 1 such that,
for all n ⩾ ℓ, we have that fn is singular over p and f−n is biregular over p.

Remark 4.4. — Note that f is biregular over p if and only if f−1 is biregular over f(p).
Furthermore, if f is biregular over p and f ′ is biregular over f(p), then f ′f is biregular
over p.

Remark 4.5. — The point z is a fixed-point for f if and only if f is biregular over all
p ∈ P .

Remark 4.6. — If f has persistent fiber over p, then it does not have a fixed-point
y ∈ J . Indeed, the orbit of p under ⟨f⟩ is infinite, since fm(p) = p with m > 0

would imply, by Remark 4.4, that f ℓm is simultaneously biregular and singular over p.
Furthermore, for all n ⩾ ℓ, we have zfn(p) ̸= fn(zp) = fn

(
fn(zf−n(p))

)
. For large n,

we have yf±n(p) = zf±n(p), contradicting yfn(p) = f2n(yf−n(p)).
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4.2. Abelian case. — The following proves Theorem 1.10 in the case where ℏ(G) is
abelian. Note that here, as well as in Lemma 4.9, we do not need to assume that P

is the projective line P1.

Lemma 4.7. — Let G0 be a group acting decently on X0. Let H be a group acting
on P , and let G < G⊕ be such that either ℏ(G) < H is trivial or it contains an
element that has only finitely many finite orbits on P .(1) If G is finitely generated,
acts purely elliptically on J , and ℏ(G) is abelian, then G fixes a point of J .

Proof. — If ℏ(G) is trivial, then G < Πp∈PGp. Let Q ⊂ P be a finite set such that
each generator {gp}p∈P of G satisfies gp(xp) = xp for p /∈ Q. For each q ∈ Q, the
projection of G to Gq is a purely elliptic subgroup, so it fixes a point yq ∈ Xq. Setting
yp = xp for p /∈ Q, we obtain a fixed-point {yp}p for G in J .

Thus from now on we can assume that there is t ∈ G with ℏ(t) having only finitely
many finite orbits on P . Let z ∈ J be a fixed-point of t. Then t is biregular with
respect to z over each p ∈ P by Remark 4.5. Let Q ⊂ P be the union of the finite
orbits of ⟨t⟩. Note that Q is preserved by ℏ(G), since ℏ(G) is abelian.

Let p ∈ P ∖ Q. We claim that any f ∈ G is biregular with respect to z over p.
To justify the claim, let B be the finite set of b ∈ P ∖ Q over which f or f−1 is
singular. We will show that for some n > 0, setting fn = tnf , we have f i

n(p) /∈ B, for
all i ∈ Z∖{0}. To find such n, suppose first that f ℓ(p) = tk(p) for some k, ℓ ∈ Z with
ℓ > 0. Then choose m0 > 0 such that, for all m ⩾ m0, and all 0 ⩽ j < ℓ, we have
t±mf j(p) /∈ B. It suffices then to take n = m0 + |k|, since for any i ̸= 0 we have
f i
n(p) = tnif i(p) = t±mf j(p) for some 0 ⩽ j < ℓ and m ⩾ m0. Otherwise, if there is

no ℓ ̸= 0 with f ℓ(p) ∈ ⟨t⟩(p), then there are finitely many k ∈ Z with tk(p) ∈ ⟨f⟩B,
since B is finite. It suffices then to take n larger than the maximum of their |k|.

Thus we have f i
n(p) /∈ B, for all i ∈ Z∖{0}. If f was singular with respect to z

over p, then by Remark 4.4 fn ∈ G would have persistent fiber over p (with ℓ = 1),
contradicting Remark 4.6 and justifying the claim.

For each orbit O of ℏ(G) in Q, choose o ∈ O and yo ∈ Xo that is fixed by the
projection to Go of the stabilizer of o in G, which is of finite index in G, hence finitely
generated. For each f ∈ G, choose yf(o) = f(yo) (notation from Convention 4.1),
which only depends on f(o) and not on f , since yo was fixed by the projection to Go

of the stabilizer of o in G. Setting yp = zp for p /∈ Q gives us a fixed-point y for G. □

4.3. Semisimple case. — In order to treat the case of non-abelian ℏ(G), we use the
dynamics of elements in Aut(P1) = PGL2(k). An element a ∈ PGL2(k) is semisimple,
if it is conjugate to a diagonal element. With respect to suitable local coordinates,
the automorphism of P1 induced by a is given by z 7→ λz for some λ ∈ k∗. Let us
observe that a is of infinite order if and only if λ is not a root of unity. In this case,
a fixes exactly two points of P1 and it does not have any other finite orbit. If k admits

(1)Chris Karpinski proved that this assumption can be removed [Kar24].
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a norm | · | with |λ| ̸= 1, then a has north-south dynamics, defined below, in the
topology of P1 induced by | · |.

Definition 4.8. — Let a be a homeomorphism of a Hausdorff topological space P ,
fixing p, q ∈ P , and having the following property. For any disjoint open sets U ∋ p,
V ∋ q, there is n such that an(P ∖V ) ⊂ U and a−n(P ∖U) ⊂ V . We then say that a

has north-south dynamics.

Lemma 4.9. — Let G0 be a group acting decently on X0. Let H be a group acting
on P . Let a ∈ H have north-south dynamics with p, q as in Definition 4.8 for some
Hausdorff topology on P in which H acts by homeomorphisms. Suppose also that
Stab(p) ∩ Stab(q) < H is abelian. If G < G⊕ is finitely generated, acts purely ellipti-
cally on J , and ℏ(G) contains a, then G has a fixed-point in J .

Proof. — Choose t ∈ G with ℏ(t) = a. Let z ∈ J be a fixed-point of t. We claim that
for any f ∈ G and any r ∈ P ∖ {p, q} with f(r) ̸= p, q, we have that f is biregular
with respect to z over r.

To justify the claim, first consider the case where ℏ(f) interchanges p and q. Then
the group ⟨a, ℏ(f)⟩ is virtually abelian, since it has an index 2 subgroup contained in
Stab(p) ∩ Stab(q). By Lemma 4.7, the group ⟨t, f⟩ has a finite orbit, hence a fixed-
point y in J by Lemma 4.2. Since both y and z belong to J , all but finitely many
coordinates of y have to be that of z. Thus t(y) = y implies yr = zr for all r in all
infinite orbits of ⟨t⟩, so for all r ̸= p, q. Since f fixes y, we have that f is biregular
with respect to z over r, as desired.

Second, consider the case where ℏ(f) does not interchange p and q. Then after
possibly replacing t with t−1 and interchanging p with q, we can assume f(p) ̸= q. Let
B ⊂ P be the finite set of points over which f or f−1 is singular with respect to z. Let
U ∋ p (respectively, V ∋ q) be an open neighbourhood intersecting B∪{f−1(p), f(q)}
only possibly at p (respectively, q), and such that f(U) is disjoint from V , which is
possible since f(p) ̸= q. Assume also that U is disjoint from V . Let n > 0 be as in
Definition 4.8.

If f is singular over r, then we have r, f(r) ∈ P ∖ V . Thus tnf(r) ⊂ U , but
tnf(r) ̸= p since f(r) ̸= p. Since f(U) is disjoint from V , and U does not contain
f−1(p), unless f(p) = p, we obtain inductively, for all m > 0, that (tnf)m(r) ∈ U ∖ p.
We also have t−n(r) ∈ V ∖ q and analogously we obtain t−n(tnf)m(r) ∈ V ∖ q for all
m < 0. Consequently, tnf has persistent fiber over r (with ℓ = 1), which contradicts
Remark 4.6 and finishes the proof of the claim.

Note that if the entire ℏ(G) stabilizes {p, q}, then we are done by Lemma 4.7.
Suppose also for the moment that ℏ(G) does not fix p or q. Then there is f ∈ G

and r ̸= p, q with f(r) = p. Consider another f ′ ∈ G with r′ ̸= p, q and f ′(r′) = p.
Then f−1f ′(r′) = r. Applying the claim above to f−1f ′, we have f−1f ′(z)r′ = zr.
Consequently, f ′(z)p = f(z)p. We now replace the coordinate zp of z by f(z)p, which,
as we have seen, does not depend on f . Note that the new z is still fixed by t, which
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can be verified by substituting above f ′ = tf . Furthermore, now f is biregular over r

and f−1 is biregular over p. We analogously change the zq coordinate of z.
We will verify that the new z is a fixed-point for G. It remains to verify the

biregularity of f ∈ G over u ∈ {p, q} in the case where f(u) ∈ {p, q}. Choose any
r ̸= p, q and f ′ ∈ G with f ′(r) = u. Introduce f ′′ = ff ′, which satisfies f ′′(r) = f(u).
From the previous paragraph it follows that both f ′, f ′′ are biregular over r. This
implies that f is biregular over u, as desired.

In the case where ℏ(G) fixes, say, p, we redefine zp to be the fixed-point of the
projection of G to Gp. □

4.4. Conclusion. — Recall that an element h ∈ PGL2(k) is unipotent, if it is con-
jugate to an element of the form

(
1 c
0 1

)
for some c ∈ k. By considering the Jordan

decomposition, we observe that, for k algebraically closed, every element of PGL2(k)

is either unipotent or semisimple.

Proof of Theorem 1.10. — Suppose first that ℏ(G) contains a semisimple element a of
infinite order with eigenvalues λ, λ−1 and fixed-points p, q ∈ P1. Since a is of infinite
order, λ is not a root of unity. Let z ∈ J . Let k̃ ⊂ k be the smallest field such that
the points p and q, the scalar λ, the elements of ℏ(G), and all the points over which
the elements of G are singular with respect to z, are defined over k̃. Since G is finitely
generated, the field k̃ is a finitely generated field extension over the prime field of k.

Let Jk̃ =
⊕

p∈P1(k̃)(Xp, xp), where P1(k̃) is the set of the k̃-rational points of P1.
Note that the action of G on J projects to an action on Jk̃.

By [DK18, Th. 2.65], we can embed k̃ as a subfield into some local field K with
norm | · | such that |λ| ̸= 1. Then a has north-south dynamics on P1(k̃) with respect
to the Hausdorff topology on P1(k̃) induced by the topology of P1(K). By Lemma 4.9
applied with P = P1(k̃), we have that G fixes a point {yp}p∈P1(k̃) ∈ Jk̃. Since all
the elements of G are biregular with respect to z over all the points outside P1(k̃),
we obtain that G fixes the point {yp}p∈P1 ∈ J , where yp = zp for p /∈ P1(k̃).

Otherwise, if ℏ(G) does not contain a semisimple element of infinite order, then all
the elements of ℏ(G) are unipotent or of finite order. By [DK18, Prop. 14.46], there
is a finite index subgroup G′ < G with ℏ(G′) conjugate into the abelian subgroup
of the elements of the form

(
1 c
0 1

)
. Lemma 4.7 implies that also in this case G′ (and

hence G) fixes a point of J . □

5. Proofs of Theorem 1.6 and Corollary 1.7

5.1. Non-rational surfaces. — Here, we give a proof of Theorem 1.6.

Proof of Theorem 1.6. — Again, by Remark 1.2, we can assume that k is algebraically
closed. If S is rational, then the result follows from Theorem 1.1.

If the Kodaira dimension of S is non-negative, then there exists a smooth projective
surface T birationally equivalent to S such that Bir(T ) = Aut(T ) and the result
follows from Lemma 2.1.
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Finally, if the Kodaira dimension of S is −∞, but S is not rational, then S is
birationally equivalent to P1 ×C for some non-rational smooth curve C. In this case,
all the elements f ∈ Bir(S) preserve the rational fibration given by the projection
to C. Indeed, if F is a general fiber of the second projection π2 : S → C, then the
restriction of π2 ◦f to F induces a rational map to C. Since F ∼= P1, this rational map
cannot be dominant, hence its image is a point, which implies that f(F ) is another
fiber. If the genus of C is > 1, then Bir(C) = Aut(C) is finite. If the genus of C is 1,
then C is an elliptic curve and Bir(C) = Aut(C) is virtually abelian and virtually
consists of translations given by the points C(k). We can thus apply Lemma 4.7. □

5.2. Degree growth of finitely generated groups. — There is a well-known and
important correspondence between the dynamical behaviour of birational transfor-
mations in Cr2(k) and the type of isometry they induce on the infinite dimensional
hyperbolic space H∞. The following theorem gives in particular a precise description
of the degree growth. It is due to several people. We refer to [Can18] for details and
references.

Theorem 5.1 (Gizatullin; Diller and Favre; Cantat). — Let k be an algebraically closed
field and f ∈ Cr2(k). Then one of the following is true:

(1) The transformation f is algebraic, the isometry of H∞ induced by f is elliptic,
and the degree sequence {deg(fn)} is bounded.

(2a) The isometry of H∞ induced by f is parabolic, deg(fn) ∼ cn for some c > 0,
and f preserves a rational fibration.

(2b) The isometry of H∞ induced by f is parabolic, deg(fn) ∼ cn2 for some c > 0,
and f preserves a fibration of genus 1 curves.

(3) The isometry of H∞ induced by f is loxodromic, deg(fn) = cλn + O(1) for
some c > 0 and λ > 1.

We prove now Corollary 1.7:

Proof of Corollary 1.7. — If all elements in G induce elliptic isometries on H∞, i.e.,
they are algebraic, then G and hence DT (n) are bounded by Theorem 1.1. This implies
that the orbit of G on H∞ is bounded and hence that G fixes a point in H∞.

Next, consider the case, where no element in G induces a loxodromic isometry
of H∞, but there is an element f ∈ G inducing a parabolic isometry.

First, assume that f preserves a rational fibration. Then all elements in G preserve
this same rational fibration (see for instance [Ure17, Lem. 5.3.4]) and after conjuga-
tion we may assume that G is a subgroup of the Jonquières group (note that the
asymptotic growth of DT (n) is invariant under conjugation). For an element g in
the Jonquières group we have deg(g) = (#b(g) + 1)/2 (see for instance [Lam24]),
where #b(g) denotes the number of base-points of g. Since #b(gh) ⩽ #b(g) +#b(h)

we obtain that that DT (n) ⩽ Kn, where K = maxg∈T {#b(g)}. At the same time,
since by assumption G contains an element whose degree growth is linear, we have
kn ⩽ DT (n), for some k > 0. Hence, DT (n) ≍ n.

J.É.P. — M., 2024, tome 11



1026 A. Lonjou, P. Przytycki & C. Urech

Now, assume that f preserves a fibration of curves of genus 1. Again, this implies
that all of G preserves the same fibration of curves of genus 1 and after conjugation
we may assume that G is a subgroup of Aut(S), where S is a Halphen surface [Ure17,
Lem. 5.3.4]. In this case, the statement follows from Lemma 5.2 below.

Finally, we consider the case, where G contains an element f inducing a loxodromic
isometry on H∞. By Theorem 5.1, there exist c and λ such that deg(fn) = cλn+O(1).
On the other hand, for λ2 = maxg∈T {deg(g)} we have DT (n) ⩽ λn

2 . This shows that
f ≍ λn. □

A Halphen surface is a rational smooth projective surface S such that |−mKS | is
a pencil of genus 1 curves with empty base locus for some m > 0. The ideas used
in the following lemma have been described in [Giz80] (see also [Gri16] and [CD12]).
We follow the account described in [Lam24].

Lemma 5.2. — Let S be a Halphen surface and let G < Aut(S) be a finitely generated
subgroup containing a non-algebraic element f . Then DT (n) ≍ cn2 for some c > 0.

Proof. — Let us first recall that after possibly passing to a finite index subgroup
(which does not change the asymptotic growth of DT (n)), we may assume that G

is abelian. Moreover, all algebraic elements in Aut(S) are of finite order and Aut(S)

does not contain any element inducing a loxodromic isometry on H∞ (see for instance
[Can18] for these facts). Hence, again up to passing to a finite index subgroup, we
may assume that all elements in G induce a parabolic isometry on H∞.

Let NR(S) be the Néron–Severi space of S. Recall that NR(S) comes with an
intersection form of signature (1,dim(NR(S)) − 1), which is preserved by the action
of Aut(S) by push-forwards. There exists a nef divisor class D0 ∈ NR(S) such that
D0 ·D0 = 0 and such that g∗D0 = D0 for all g ∈ G (in fact, we can take D0 = mKS).
The assumption that all elements in G induce parabolic isometries on H∞ implies
that for all f ∈ G, the only eigenvectors of f are multiples of D0. For all g ∈ G, the
restriction of g∗ to D⊥

0 /D0 has finite order, since g∗ preserves an integral lattice and
the induced intersection form on D⊥

0 /D0 is negative definite. Hence, up to passing to
a finite index subgroup of G, we may assume that the restriction of G to D⊥

0 /D0 is
the identity. Let f1, . . . , fk be generators of G.

Let A ∈ NR(S) be an ample divisor. Note that we have f∗A ̸= A for all f ∈ G and
A /∈ D⊥

0 . Write (fi)∗A = A + Ri, where Ri ∈ D⊥
0 . Since the restriction of (fi)∗ to

D⊥
0 /D0 is the identity, we can write (fi)∗Rj = Rj + tijD0 for some tij ∈ R. Let us

observe that (fi)∗(fj)∗A = (fj)∗(fi)∗A for all i and j implies that tij = tji for all i
and j.

By induction, we obtain

(fi)
n
∗A = A+ nRi +

n(n− 1)tii
2

D0,

and, as a consequence,

(f1)
n1
∗ · · · (fk)nk

∗ A = A+
∑
i

niRi +

(∑
i

ni(ni − 1)

2
tii +

∑
i<j

ninjtij

)
D0.
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Since, by assumption, all the fi are non-algebraic and preserving a fibration of
genus 1 curves, the sequence deg(fn) grows quadratically in n, by Theorem 5.1, and
hence the tii are positive. We have that

degA(f
n1
1 · · · fnk

k ) = ((f1)
n1
∗ · · · (fk)nk

∗ A) ·A.

Since A is ample, we have that A ·D0 > 0. Hence, DT (n) has quadratic growth. □
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