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THE MINIMAL EXPONENT AND k-RATIONALITY FOR

LOCAL COMPLETE INTERSECTIONS

by Qianyu Chen, Bradley Dirks & Mircea Mustaţă

Abstract. — We show that if Z is a local complete intersection subvariety of a smooth complex
variety X, of pure codimension r, then Z has k-rational singularities if and only if α̃(Z) > k+r,
where α̃(Z) is the minimal exponent of Z. We also characterize this condition in terms of the
Hodge filtration on the intersection complex Hodge module of Z. Furthermore, we show that if Z
has k-rational singularities, then the Hodge filtration on the local cohomology sheaf Hr

Z(OX) is
generated at level dim(X)−⌈α̃(Z)⌉−1 and, assuming that k ⩾ 1 and Z is singular, of dimension
d, that Hk(Ωd−k

Z ) ̸= 0. All these results have been known for hypersurfaces in smooth varieties.

Résumé (Exposant minimal et k-rationalité pour les sous-variétés localement intersections com-
plètes)

Nous montrons que si Z est une sous-variété localement intersection complète d’une variété
complexe lisse X, de codimension pure r, alors Z possède des singularités k-rationnelles si et
seulement si α̃(Z) > k+ r, où α̃(Z) est l’exposant minimal de Z. Nous caractérisons également
cette condition en termes de filtration de Hodge sur le module de Hodge associé au complexe
d’intersection de Z. De plus, nous montrons que si Z est à singularités k-rationnelles, alors
la filtration de Hodge sur le faisceau de cohomologie locale Hr

Z(OX) est engendré au niveau
dim(X)−⌈α̃(Z)⌉−1 et, si de plus k ⩾ 1 et Z est singulière, de dimension d, que Hk(Ωd−k

Z ) ̸= 0.
Tous ces résultats sont connus pour les hypersurfaces dans les variétés lisses.
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1. Introduction

It is well-known that rational and Du Bois singularities play an important role
in the hierarchy of singularities of higher-dimensional algebraic varieties. Recently,
definitions of “higher order” versions of these classes of singularities have been pro-
posed, as follows. Suppose that Z is a complex algebraic variety. If Ωp

Z is the p-th
graded piece of the Du Bois complex of Z (suitably shifted), then there is a canonical
morphism

Ωp
Z −→ Ωp

Z

that is an isomorphism over the smooth locus of Z. Following [JKSY22], we say that Z
has k-Du Bois singularities if this morphism is an isomorphism for 0 ⩽ p ⩽ k. For
k = 0, we recover the definition of Du Bois singularities.

On the other hand, if µ : Z̃ → Z is a resolution of singularities that is an iso-
morphism over Z ∖ Zsing and such that D = µ−1(Zsing) is a simple normal crossing
divisor on Z̃, then following the first version of [FL22a], we say that Z has k-rational
singularities if the canonical morphism

Ωp
Z −→ Rµ∗Ω

p

Z̃
(logD)

is an isomorphism for 0 ⩽ p ⩽ k. Again, for k = 0 this is the classical notion of
rational singularities. Our main goal in this note is to characterize numerically, in the
case when Z is locally a complete intersection, the condition for having k-rational
singularities. A similar characterization for k-Du Bois local complete intersections
has been obtained in [MP22a], extending work on hypersurfaces in [MOPW23] and
[JKSY22].

Suppose that X is a smooth, irreducible, n-dimensional complex algebraic variety
and Z is a local complete intersection closed subscheme of X, of pure codimension
r in X. In this setting the minimal exponent α̃(Z) was introduced and studied in
[CDMO24]. In the case r = 1, this is the invariant introduced by Saito in [Sai94]
as the negative of the largest root of the reduced Bernstein-Sato polynomial of Z.
In general, α̃(Z) can be described in terms of the Kashiwara-Malgrange V -filtration
associated to Z and it is also related to the Hodge filtration on the local cohomology
sheaf Hr

Z(OX). The minimal exponent can be considered as a refinement of the log
canonical threshold of (X,Z): we always have lct(X,Z) = min

{
α̃(Z), r}. Moreover,

it is shown in [CDMO24] that α̃(Z) > r if and only if Z has rational singularities,
extending a result due to Saito [Sai93] in the case of hypersurfaces.

An interesting example of minimal exponent that goes beyond the case of hypersur-
faces is the following one: suppose that f1, . . . , fr ∈ C[x1, . . . , xn] are homogeneous
polynomials defining the hypersurfaces H1, . . . ,Hr in An, and Z is the subscheme
defined by (f1, . . . , fr). Suppose that in An ∖ {0}, the Hi are smooth hypersurfaces
which intersect transversely. If deg(fi) = di for 1 ⩽ i ⩽ r and 2 ⩽ d1 ⩽ · · · ⩽ dr, then

α̃(Z) = min
{
i+ 1

di
(n− d1 − · · · − di) | 1 ⩽ i ⩽ r

}
= p+ 1

dp
(n− d1 − · · · − dp),
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The minimal exponent and k-rationality 851

where p is the smallest i ⩽ r that satisfies d1 + · · ·+ di > n (with the convention that
p = r if there is no such i). This formula is the main result of [CDM24].

The following is our main result:

Theorem 1.1. — If Z is a local complete intersection subvariety of the smooth, irre-
ducible variety X, of pure codimension r, then Z has k-rational singularities if and
only if α̃(Z) > k + r.

In the case of hypersurfaces, this result was proved independently in [FL22b, App.]
and [MP22b]. The proof we give follows the idea in [FL22b, App.], making also essen-
tial use of results from [CD23] on the Kashiwara-Malgrange V -filtration in the case
of higher codimension subvarieties. A key ingredient in the proof is Saito’s theory of
mixed Hodge modules [Sai90].

We note that the result in Theorem 1.1 could be formulated independently of the
ambient variety X. Indeed, it is shown in [CDMO24, Prop. 4.14] that the difference
α̃(Z)− r is independent of the embedding of Z in a smooth variety X. Since having
k-rational singularities is a local property in the Zariski topology, we see that in this
formulation we don’t need to assume that Z has a global embedding in a smooth
variety X.

The characterization of k-Du Bois singularities in [MP22a] for local complete inter-
sections can also be formulated in terms of the minimal exponent: it says that, with
the notation in Theorem 1.1, Z has k-Du Bois singularities if and only if α̃(Z) ⩾ k+r.
In particular, we obtain the following

Corollary 1.2. — If Z is a complex algebraic variety which is locally a complete
intersection and if Z has k-Du Bois singularities, for some k ⩾ 1, then Z has (k−1)-
rational singularities.

Another consequence of the numerical characterizations of k-rational and k-Du Bois
local complete intersections is that k-rational implies k-Du Bois. However, this result
has already been known (it was proved independently in [FL22b] and [MP22a]) and
we use it in our proof of Theorem 1.1.

As a consequence of the result in Theorem 1.1 and of general properties of the
minimal exponent, we obtain an upper bound for the dimension of the singular locus.
We note that if in the following corollary we replace “k-rational” by “k-Du Bois”,
then it follows from the results in [MP22a] that codimZ(Zsing) ⩾ 2k + 1.

Corollary 1.3. — If Z is a complex algebraic variety which is locally a complete
intersection and if Z has k-rational singularities, then

codimZ(Zsing) ⩾ 2k + 2.

Let us recall the condition for k-Du Bois singularities in terms of the Hodge fil-
tration on local cohomology. For every subvariety Z of a smooth complex algebraic
variety X and every i, the local cohomology sheaf Hi

Z(OX) underlies a mixed Hodge
module. As such, it carries a Hodge filtration F•H

i
Z(OX), an increasing filtration by

J.É.P. — M., 2024, tome 11



852 Q. Chen, B. Dirks & M. Mustaţă

coherent OX -submodules. If Z is a local complete intersection of pure codimension r,
then the only nonzero local cohomology sheaf is Hr

Z(OX). There is another filtration
E•H

r
Z(OX) on Hr

Z(OX), also by coherent OX -modules, given by

EpH
r
Z(OX) =

{
u ∈ Hr

Z(OX) | Ip+1
Z u = 0

}
for p ⩾ 0,

where IZ is the ideal defining Z. It is shown in [MP22a] that FpH
r
Z(OX) ⊆ EpH

r
Z(OX)

for all p ⩾ 0 and equality for p = k implies equality also for p < k. One defines the
cohomological level of the Hodge filtration on Hr

Z(OX) by

p(Z) = sup
{
k ⩾ 0 | FkH

r
Z(OX) = EkH

r
Z(OX)

}
,

with the convention that p(Z) = −1 if there are no such k. It is then shown in [MP22a]
that Z has k-Du Bois singularities if and only if p(Z) ⩾ k. The condition in terms of
the minimal exponent follows from this and the equality p(Z) = max

{
⌊α̃(Z)⌋−r,−1

}
,

proved in [CDMO24].
We characterize k-rationality in a similar fashion. Recall that if X is a smooth

irreducible n-dimensional variety and Z is a closed subvariety of X of pure codimen-
sion r, then Hr

Z(OX) also carries a weight filtration and the lowest weight piece is
Wn+rH

r
Z(OX), which underlies a pure Hodge module of weight n+ r (this DX -mod-

ule is the intersection cohomology DX -module of Brylinski and Kashiwara [BK81]).
We prove the following result, which in the case of hypersurfaces was proved in [Ola23].

Theorem 1.4. — If Z is a local complete intersection subvariety of the smooth, irre-
ducible, n-dimensional variety X, of pure codimension r, then for every nonnegative
integer k, we have α̃(Z) > k + r if and only if FkWn+rH

r
Z(OX) = EkH

r
Z(OX).

We also show that for singular local complete intersections that have k-rational
singularities, with k ⩾ 1, some higher cohomology groups of the graded pieces of the
Du Bois complex do not vanish. This extends the result from [MOPW23, Th. 1.5] in
the case of hypersurfaces.

Theorem 1.5. — Let Z be a local complete intersection subvariety of the smooth,
irreducible, n-dimensional variety X. If Z has pure dimension d and k-rational sin-
gularities, for some k ⩾ 1, then

Hk
(
Ωd−k

Z

)
≃ ExtkOZ

(Ωk
Z , ωZ) ≃ ωZ ⊗OZ

Symk
OZ

Q,

where Q is the cokernel of the canonical map TX |Z → NZ/X . In particular, if Z is
singular at x, then Hk

(
Ωd−k

Z

)
x
̸= 0.

As observed in [MOPW23], such a result imposes restrictions on varieties with
quotient or toroidal singularities. Indeed, if Z is a variety with quotient or toroidal
singularities, then Hi

(
Ωp

Z) = 0 for all p and all i ⩾ 1; for quotient singularities, this
follows from [DB81, §5] and for toroidal singularities, it follows from [GNAPGP88,
Ch. V.4]. On the other hand, it is well-known that such singularities are rational.
By combining Theorems 1.1 and 1.5, we thus obtain
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The minimal exponent and k-rationality 853

Corollary 1.6. — Let Z be a local complete intersection subvariety, of pure codimen-
sion r, of the smooth, irreducible algebraic variety X. If Z is singular, with quotient
or toroidal singularities, then r < α̃(Z) ⩽ r + 1.

Our final result concerns the level of generation of the Hodge filtration on Hr
Z(OX).

Recall that if M is a DX -module endowed with a good filtration, where DX is the
sheaf of differential operators on X, then we have F1DX ·FpM ⊆ Fp+1M, with equality
for p ≫ 0 (here F•DX is the order filtration on DX). If equality holds for p ⩾ p0,
we say that the filtration on M is generated at level p0. This definition applies, in
particular, for the filtered DX -module underlying a mixed Hodge module on X.

Theorem 1.7. — If Z is a singular, pure codimension r, local complete intersection
subvariety of the smooth, irreducible, n-dimensional variety X, then the Hodge filtra-
tion on Hr

Z(OX) is generated at level n− ⌈α̃(Z)⌉ − 1.

When r = 1, this is [MP20a, Th. A]. We also note that it follows from [MP22a,
Th. 4.2] that the filtration on Hr

Z(OX) is always generated at level n − r, hence
the assertion in the above theorem is interesting when α̃(Z) > r − 1. Furthermore,
via the equivalence in loc. cit., the assertion in Theorem 1.7 admits the following
interpretation in terms of relative vanishing.

Theorem 1.8. — Let Z be a singular, pure codimension r, local complete intersec-
tion subvariety of the smooth, irreducible, n-dimensional variety X. If f : Y → X

is a proper morphism that is an isomorphism over X ∖ Z, with Y smooth and
E = f−1(Z)red a simple normal crossing divisor, then

Rr−1+if∗Ω
n−i
Y (logE) = 0 for i > n− ⌈α̃(Z)⌉ − 1.

Let us comment briefly on the role of the “local complete intersection” condition
in our results. First, this condition guarantees that if Z is a closed subscheme of
the smooth variety X and r = codimX(Z), then the only nonzero local cohomology
sheaf of OX along Z is Hr

Z(OX). It is clear that in order to go beyond the complete
intersection case, one needs to take into account also the Hodge filtration on the other
local cohomology sheaves and it is not clear what is the best way to study this (for
a related discussion, see [MP22a, §3]). Moreover, in the complete intersection case,
the algebraic structure of Hr

Z(OX) is easy to understand and, as a result, the same is
true for the filtration E•H

r
Z(OX).

Outline of the paper. — In the next section, we review some basic notions and results
that we will need for the proofs of our main results. Theorem 1.1 and its corollaries,
as well as Theorem 1.4 are proved in Section 3. Theorem 1.5 is proved in Section 4,
while Theorem 1.7 is proved in Section 5.

Acknowledgements. — We would like to thank Sebastián Olano and Mihnea Popa for
many helpful discussions. We are also indebted to Christian Schnell for some useful
suggestions, to Morihiko Saito for his comments on a previous version of this paper,
and to the anonymous referee for several comments that improved the readability of
the paper.
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2. Background overview

In this section we recall some definitions and results that we will need. We work
over the field C of complex numbers. By a variety we mean a reduced scheme of
finite type over C, not necessarily irreducible. For a variety Z, we denote by Zsing the
singular locus of Z.

2.1. Mixed Hodge modules. — We only give a brief introduction to mixed Hodge
modules and refer for proofs and details to [Sai90]. Let X be a smooth, irreducible,
n-dimensional variety and let Xan be the complex manifold corresponding to X.
We denote by DX the sheaf of differential operators on X. For basic facts about
DX -modules, we refer to [HTT08]. All the DX -modules we will consider will be
left DX -modules. Since some of the results in the literature are stated for right
DX -modules, we recall that there is an equivalence of categories between left and
right DX -modules such that if Mr is the right DX -module corresponding to the left
DX -module M, then we have an isomorphism of OX -modules

Mr ≃ M⊗OX
ωX .

When dealing with filtered DX -modules, the filtrations on M and Mr are indexed
such that the above isomorphism maps Fp−nM

r to FpM⊗OX
ωX for all p ∈ Z.

All filtrations on DX -modules that we will encounter are assumed to be bounded
below, good filtrations compatible with the filtration F•DX on DX by order of dif-
ferential operators. This means that they are increasing, exhaustive filtrations by
OX -submodules such that we have

FpDX · FqM ⊆ Fp+qM for all p, q ∈ Z,

and there is q0 such that this inclusion is an equality for all p ⩾ 0 and q ⩾ q0. In this
case we say that the filtration is generated at level q0.

A mixed Hodge module M = (M, F•M,P, α,W•M) on X consists of several pieces
of data: M is a DX -module on M (holonomic and with regular singularities), F•M is a
good filtration on M (the Hodge filtration), W•M is a finite increasing filtration on M

by DX -submodules (the weight filtration), and P is a perverse sheaf over Q on Xan

(sometimes written as rat(M)), whose complexification is isomorphic via α to the
perverse sheaf over C that corresponds to M via the Riemann-Hilbert correspondence.
These data are supposed to satisfy a complicated set of conditions that we do not
discuss. We refer to (M, F ) as the filtered DX -module underlying M (though, with
an abuse of notation, we sometimes write FkM and WkM instead of FkM and WkM,
respectively).

The Tate twist M(k) of a mixed Hodge module M as above has the same underlying
DX -module, but the two filtrations are shifted by

FiM(k) = Fi−kM and WiM(k) =Wi+2kM for all i ∈ Z.

We note that the mixed Hodge modules on X form an Abelian category and every
morphism of mixed Hodge modules is a morphism of DX -modules, which preserves

J.É.P. — M., 2024, tome 11



The minimal exponent and k-rationality 855

the Hodge and the weight filtration and is strict with respect to both filtrations. There
is a duality functor D on this category, lifting the usual duality functor on holonomic
DX -modules. All our Hodge modules are polarizable, so the choice of a polarization
implies that if M as above is pure of weight k (that is, GrWi (M) = 0 for i ̸= k), we
have an isomorphism D(M) ≃ M(k). For a general mixed Hodge module M and for
every k ∈ Z, the graded piece GrWk (M), with the induced Hodge filtration, is a pure
Hodge module of weight k.

An important example of a mixed Hodge module (in fact, the only one that is easy
to describe explicitly besides the ones with 0-dimensional support) is QH

X [n], which is
a pure Hodge module of weight n. The underlying DX -module is OX and the Hodge
filtration is such that GrFi (OX) = 0 for all i ̸= 0. The corresponding perverse sheaf
is QXan [n]. Note that since QH

X [n] has weight n, a choice of polarization gives an
isomorphism D(QH

X [n]
)
≃ QH

X(n)[n].
Given a mixed Hodge module M , with underlying filtered DX -module (M, F ), the

Hodge filtration makes the de Rham complex of M a filtered complex. The graded
pieces are, in fact, complexes of OX -modules. More precisely, GrFp DRX(M) is the
complex

0 −→ GrFp (M) −→ Ω1
X ⊗OX

GrFp+1(M) −→ · · · −→ Ωn
X ⊗OX

GrFp+n(M) −→ 0,

placed in cohomological degrees −n, . . . , 0. For example, we have

GrF−pDRX

(
QH

X [n]
)
= Ωp

X [n− p].

We always think of GrFp DRX(M) as an object in the derived category of coherent
sheaves on X. This construction is compatible with push-forward by proper mor-
phisms (see [Sai88, §2.3.7]) and satisfies the following compatibility property with
the duality functor by [Sai88, SS2.4.5 & 2.4.11]: for every p, we have a canonical
isomorphism

(2.1) GrFp DRX

(
D(M)

)
≃ RHomOX

(
GrF−pDRX(M), ωX [n]

)
.

For future reference, we include the following lemma, in which we consider arbi-
trary filtered DX -modules. This is a standard homological algebra fact about filtered
complexes, but we include an argument for the sake of completeness.

Lemma 2.1. — If f : (M, F ) → (N, F ) is a morphism of filtered DX-modules on X

and k ∈ Z, then the induced morphism

GrFp DRX(f) : GrFp DRX(M) −→ GrFp DRX(N)

is an isomorphism (in the derived category) for all p ⩽ k if and only if Fpf : FpM →
FpN is an isomorphism for all p ⩽ k + n.

Proof. — The “if” assertion follows directly from the definition of the graded de Rham
complex. For the converse, arguing by induction, it is enough to show that if Fpf is an
isomorphism for all p ⩽ k+n− 1 and GrFk DRX(f) is an isomorphism (in the derived
category), then Fk+nf is an isomorphism (recall that all our filtrations are assumed

J.É.P. — M., 2024, tome 11



856 Q. Chen, B. Dirks & M. Mustaţă

to be bounded below). By hypothesis, we have a morphism of complexes placed in
cohomological degrees −n, . . . , 0:

0 → GrFk (M) · · · Ωn−1
X ⊗OX

GrFk+n−1(M) Ωn
X ⊗OX

GrFk+n(M) → 0

0 → GrFk (N) · · · Ωn−1
X ⊗OX

GrFk+n−1(N) Ωn
X ⊗OX

GrFk+n(N) → 0

∼=

α β

∼=
γ δ

such that the vertical maps in degrees ̸= 0 are isomorphisms and such that all in-
duced maps in cohomology are isomorphisms. The first condition implies that the
map coker(α) → coker(γ) is an isomorphism and since the map induced for the
(−1)-cohomology is an isomorphism, it follows from the 5-Lemma that the map
Im(β) → Im(δ) is an isomorphism. Since the map induced for the 0-cohomology is an
isomorphism, it follows from the 5-Lemma that the map GrFk+n(f) is an isomorphism,
and one more application of the 5-Lemma implies that Fk+nf is an isomorphism. □

One can define mixed Hodge modules also on a singular variety Z. In our set-
ting, Z will be embedded in a fixed smooth variety X, and we will always view the
mixed Hodge modules on Z as mixed Hodge modules on X whose support is con-
tained in Z. One can consider the bounded derived category of mixed Hodge modules
on Z, denoted Db

(
MHM(Z)

)
. One can show that this is equivalent to the subcat-

egory of Db
(
MHM(X)

)
consisting of objects whose cohomology is supported on Z

(see [Sai90, Cor. 2.23]). We will denote by Hp the standard p-th cohomology functor
Db

(
MHM(Z)

)
→ MHM(Z). The derived category of mixed Hodge modules satis-

fies a 6-functor formalism. For example, if i : Z ↪→ X is the inclusion, where X is
smooth, then the underlying DX -module of the mixed Hodge module Hp

(
i!QH

X [n]
)

is the local cohomology sheaf Hp
Z(OX) of OX along Z. With a slight abuse of nota-

tion, from now one we will denote by H
p
Z(OX) also the corresponding mixed Hodge

module. For every variety Z, if aZ : Z → pt is the morphism to a point, then one
defines QH

Z := a∗Z(Q
H
pt) in Db

(
MHM(Z)

)
. If Z is smooth, then this coincides (up to

a cohomological shift) with the object that we have already discussed. In general,
however, it is a more complicated object. If X is a smooth, irreducible n-dimensional
variety and i : Z ↪→ X is a closed embedding, then by functoriality we have a canonical
isomorphism QH

Z ≃ i∗QH
X , so we have a canonical isomorphism

(2.2) D(QH
Z ) ≃ i!QH

X(n)[2n].

For every Z, it is shown in [Sai90, §4.5] that QH
Z is of weight ⩽ 0, that is, we have

GrWi
(
Hj(QH

Z )
)
=0 for i>j. Furthermore, if Z has pure dimension d, then Hi(QH

Z )=0

for i > d and the intersection complex Hodge module

(2.3) ICZQ
H := GrWd Hd(QH

Z )

can be characterized as the unique object of MHM(Z) whose restriction to U =

Z ∖ Zsing is QH
U [d] and which has no subobject or quotient supported on Zsing. The

corresponding perverse sheaf is the intersection complex of Z; if Z is irreducible,

J.É.P. — M., 2024, tome 11



The minimal exponent and k-rationality 857

then this is simple, hence so is ICZQ
H and we have Q = End

(
ICZQ

H
)
. In general,

if Z has N irreducible components, we have End
(
ICZQ

H
)
= QN and a morphism(

ICZQ
H
)
→

(
ICZQ

H
)

is uniquely determined by its restriction to the smooth locus
of Z.

Note that by definition of ICZQ
H , we have a canonical morphism

(2.4) γZ : QH
Z [d] −→ ICZQ

H .

Suppose now thatX is a smooth, irreducible n-dimensional variety and i : Z ↪→ X is
a closed embedding. Let r=n−d. Since ICZQ

H =GrWd Hd(QH
Z ) and GrWp Hd(QH

Z )=0

for p > d, it follows using (2.2) that

(2.5)
D(ICZQ

H) ≃ GrW−d

(
H−dD(QH

Z )
)

≃ GrW−dH
−d

(
i!QH

X(n)[2n]
)
= GrWn+rH

r
Z(OX)(n)

and GrWp Hr
Z(OX) = 0 for p < n+r. We note that this lowest weight piece of Hr

Z(OX)

is the intersection cohomology D-module introduced by Brylinski and Kashiwara in
[BK81]; if Z is irreducible, then it can be characterized as the unique simple DX -sub-
module of Hr

Z(OX).
We also consider the shifted dual γ∨Z = D(γ)(−d) of γZ , that can be identified

via (2.2) to

(2.6) γ∨Z : D(ICZQ
H)(−d) −→ i!QH

X [n+ r](n− d).

Note that since ICZQ
H is pure of weight d, the choice of a polarization gives an

isomorphism D(ICZQ
H)(−d) ≃ ICZQ

H .
We will be especially interested in the case when Z is a local complete intersection

subvariety of X, of pure codimension r. In this case Hi
Z(OX) = 0 for all i ̸= r, hence

i!QH
X [n+r] is a mixed Hodge module on Z. Duality implies that also QH

Z [d] is a mixed
Hodge module on Z, hence γZ and γ∨Z are morphisms of mixed Hodge modules.

2.2. V -filtrations. — Suppose that X is a smooth, irreducible, n-dimensional affine
variety and f1, . . . , fr ∈ OX(X) = R are nonzero regular functions such that the ideal
(f1, . . . , fr) defines the closed subscheme Z of X. We consider the graph embedding

ι : X ↪−→W = X ×Ar, ι(x) =
(
x, f1(x), . . . , fr(x)

)
and the D-module pushforward Bf = ι+OX (where f stands for (f1, . . . , fr)).
If t1, . . . , tr denote the standard coordinates on Ar, then we can write

Bf =
⊕

α∈Zr
⩾0

R∂αt δf ,

where for α = (α1, . . . , αr), we put ∂αt = ∂α1
t1 · · · ∂αr

tr . The action of R and of ∂ti are
the obvious ones, while the actions of D ∈ DerC(R) and of the ti are given by

D·h∂αt δf = D(h)∂αt δf−
r∑

i=1

D(fi)h∂
α+ei
t δf and ti·h∂αt δf = fih∂

α
t δf−αih∂

α−ei
t δf ,
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where e1, . . . , er is the standard basis of Zd. In fact, Bf underlies the pure Hodge
module ι∗QH

X [n], of weight n, with the Hodge filtration given by

Fp+rBf =
⊕

|α|⩽p

R∂αt δf ,

where for α = (α1, . . . , αr), we put |α| = α1 + · · ·+ αr.
The V -filtration on Bf has been constructed by Kashiwara [Kas83], extending

work of Malgrange [Mal83] in the case r = 1. (Actually, in both of these references,
the V -filtration is indexed by integers. The Q-indexed version that we discuss below
was introduced by Saito [Sai84].) It is a decreasing, exhaustive filtration indexed by
rational numbers (V λBf )λ∈Q. It is discrete and left-continuous and it is characterized
by several properties, the most important of these saying that for every λ ∈ Q

ti · V λBf ⊆ V λ+1Bf and ∂ti · V λBf ⊆ V λ−1Bf ,

and if s = −
∑r

i=1 ∂titi, then s+ λ is nilpotent on GrλV (Bf ) = V λBf/V
>λBf , where

V >λBf =
⋃

β>λ V
βBf . Note that the Hodge filtration on Bf induces a Hodge filtra-

tion on each GrλV (Bf ).
In fact, a V -filtration exists on ι+M, whenever M underlies a mixed Hodge module.

In the case r = 1, the interplay between the Hodge filtration on M and V -filtrations
plays an important role in the definition of mixed Hodge modules. For details about
the construction and properties of V -filtrations, see [BMS06].

Let i : Z ↪→ X be the inclusion. For r = 1, the V -filtration is the key ingredient for
the definition of i!(M) and i∗(M) when M is a mixed Hodge module on X. In the
case r > 1, the corresponding description does not follow from the definition of these
functors, but it has been recently proved in [CD23, Th. 1.2]. We only state this in the
case M = QH

X [n], as follows.

Theorem 2.2. — With the notation we have introduced, the following hold:
(i) The Koszul-type complex

0 −→ Gr0V (Bf )(−r)
(t1,t2,...,tr)−−−−−−−→

r⊕
i=1

Gr1V (Bf )(−r) −→ · · · −→ GrrV (Bf )(−r) −→ 0,

placed in cohomological degrees 0, . . . , r, represents i!QH
X [n] in the derived category of

filtered DX-modules.
(ii) The Koszul-type complex

0 −→ GrrV (Bf )
(∂t1

,...,∂tr )−−−−−−−→
r⊕

i=1

Grr−1
V (Bf )(−1) −→ · · · −→ Gr0V (Bf )(−r) −→ 0,

placed in cohomological degrees −r, . . . , 0, represents i∗QH
X [n] in the derived category

of filtered DX-modules.

2.3. The minimal exponent. — We next discuss the minimal exponent for local com-
plete intersection varieties, following [CDMO24]. Let X be a smooth, irreducible,
n-dimensional variety and Z a (nonempty) closed subscheme of X, which is locally a
complete intersection of pure codimension r. Suppose first that X = Spec(R) is affine
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and Z is defined by the ideal generated by f1, . . . , fr ∈ R. The minimal exponent
α̃(Z) is defined by(1)

(2.7) α̃(Z) =

{
sup{γ > 0 | δf ∈ V γBf}, if δf ̸∈ V rBf ;

sup{r − 1 + q + γ | Fq+rBf ⊆ V r−1+γBf}, if δf ∈ V rBf .

In general, we consider a cover X = U1 ∪ · · · ∪ UN , where each Ui is an affine open
subset as above, and put

α̃(Z) = min
i;Z∩Ui ̸=∅

α̃(Z ∩ Ui).

It follows from [BMS06, Th. 1] that we always have min
{
α̃(Z), r

}
= lct(X,Z),

the log canonical threshold of the pair (X,Z). Therefore the minimal exponent is
interesting precisely when lct(X,Z) = r, in which case Z is automatically reduced
(see [CDMO24, Rem. 4.2]). Moreover, it follows from [CDMO24, Cor. 1.7] that Z has
rational singularities if and only if α̃(Z) > r. One can also show (see [CDMO24,
Rem. 4.15]) that Z is smooth if and only if α̃(Z) = ∞; by definition of the minimal
exponent, this can be rephrased as

(2.8) Z is smooth if and only if V rBf = Bf .

In fact, if x ∈ Z is a singular point, then we have the following more precise bound
(see [CDMO24, Rem. 4.21]):

(2.9) α̃(Z) ⩽ n− 1
2 dimC TxZ.

The minimal exponent α̃(Z) depends on the ambient variety X, but in a predictable
way: the difference α̃(Z)− dim(X) only depends on Z (see [CDMO24, Prop. 4.14]).

When r = 1, the minimal exponent was defined by Saito [Sai94] as the negative
of the largest root of the reduced Bernstein-Sato polynomial b̃Z(s). For the fact that
this agrees with the above definition, see for example [MP20b, Lem. 5.3 and Cor. C].

Recall now that the DX -module Hr
Z(OX) underlies a mixed Hodge module on X,

namely Hr
(
i!QH

X [n]
)
, where i : Z ↪→ X is the inclusion. We thus have a canonical

filtration on Hr
Z(OX), the Hodge filtration

(
FpH

r
Z(OX)

)
p⩾0

. We have a second filtra-
tion, the order filtration

(
EpH

r
Z(OX)

)
p⩾0

, given by

EpH
r
Z(OX) =

{
u ∈ Hr

Z(OX) | Ip+1
Z u = 0

}
,

where IZ is the ideal defining Z in X (see [MP22a, Prop. 3.11]). It is a general fact
that FpH

r
Z(OX) ⊆ EpH

r
Z(OX) for all p ⩾ 0 (see [MP22a, Prop. 3.4]) and the following

result shows that the minimal exponent governs how far these two filtrations agree
(see [CDMO24, Th. 1.3]):

Theorem 2.3. — If X is a smooth, irreducible variety and Z is a local complete
intersection subvariety of pure codimension r in X, then for a nonnegative integer k,
we have FpH

r
Z(OX) = EpH

r
Z(OX) for 0 ⩽ p ⩽ k if and only if α̃(Z) ⩾ r + k.

(1)We note that what we denote by Fp+rBf here is denoted by FpBf in [CDMO24].

J.É.P. — M., 2024, tome 11



860 Q. Chen, B. Dirks & M. Mustaţă

2.4. k-Du Bois singularities. — To a variety Z, Du Bois associated in [DB81] a com-
plex Ω

•
Z , known now as the Du Bois complex of Z. This is a filtered complex that

agrees with the de Rham complex Ω•
Z , with the “stupid” filtration, when Z is smooth.

This allows extending to singular varieties some important cohomological properties
of the de Rham complex of smooth varieties, see [PS08, Ch. 7.3] for an introduction
to this topic.

We are interested in the shifted truncations Ωp
Z := GrpF (Ω

•
Z)[p], which are objects

in the bounded derived category Db
coh(Z) of coherent sheaves on Z. For every p, there

is a canonical morphism Ωp
Z → Ωp

Z that is an isomorphism over the smooth locus
of Z. Following [JKSY22], we make the following:

Definition 2.4. — For a nonnegative integer k, we say that the variety Z has
k-Du Bois singularities(2) if the canonical morphism Ωp

Z → Ωp
Z is an isomorphism for

0 ⩽ p ⩽ k.

Note that for k = 0, we recover the familiar notion of Du Bois singularities. As we
have mentioned in the Introduction, it was shown in [MP22a, Th. F] that if X is a
smooth, irreducible variety and Z is a local complete intersection subvariety of X, of
pure codimension r, then Z has k-Du Bois singularities if and only if FpH

r
Z(OX) =

EpH
r
Z(OX) for p ⩽ k. In terms of minimal exponents, this condition can be rephrased

as α̃(Z) ⩾ r + k. The proof of this result in loc. cit. extends the argument in the
case of hypersurfaces, for which the two implications had previously been proved in
[MOPW23] and [JKSY22].

Proposition 2.5. — If Z is a local complete intersection variety with k-Du Bois sin-
gularities, then codimZ(Zsing) ⩾ 2k + 1.

Proof. — This is a local statement, hence we may assume that Z has pure dimension
(we use the fact that Z is Cohen-Macaulay) and that it is a closed subvariety of the
smooth irreducible variety X. In this case the assertion follows by combining [MP22a,
Cor. 3.40 and Th. F]. □

The connection between the Du Bois complex and mixed Hodge modules is pro-
vided by the following result of Saito. If Z is a closed subvariety of the smooth,
irreducible, n-dimensional variety X and i : Z ↪→ X is the inclusion, then it is a
consequence of [Sai00, Th. 4.2] that for every p, we have an isomorphism

(2.10) Ωp
Z [−p] ≃ GrF−pDRX(QH

Z ) in Db
coh(X).

In light of (2.1) and (2.2), this is equivalent to

(2.11) Ωp
Z [−p] ≃ RHomOX

(
GrFp−nDRX i

!QH
X [n], ωX

)
.

For an easy proof of this isomorphism, see [MP22a, Prop. 5.5].

(2)Strictly speaking, one should say “has at most k-Du Bois singularities”, since we do not re-
quire Z to be singular. However, we trust that the simplified formulation will not lead to confusion.
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2.5. k-rational singularities. — Given a variety Z, by a strong log resolution of Z
we mean a proper morphism µ : Z̃ → Z that is an isomorphism over Z ∖ Zsing, such
that Z̃ is smooth and E = µ−1(Zsing) is a simple normal crossing divisor. Following
[FL22b], we make the following:

Definition 2.6. — For a nonnegative integer k, we say that the variety Z has k-ra-
tional singularities if for a strong log resolution µ : Z̃ → Z as above, the canonical
morphism
(2.12) Ωp

Z −→ Rµ∗Ω
p

Z̃
(logE)

is an isomorphism for 0 ⩽ p ⩽ k.

It is easily seen that the condition in the above definition is independent of the
choice of strong log resolution (see for example [MP22b, Lem. 1.6]). Note that for k = 0

we recover the classical notion of rational singularities. This condition implies that Z is
normal, hence in particular, every connected component of Z is irreducible. The notion
of k-rational singularities has been extensively studied in [FL22b], [FL24], [MP22b].
We note that the definition of “k-rational singularities” in [FL22b] is different than the
one we gave. However, the two definitions are equivalent when Z is a local complete
intersection, see Remark 2.10 below.

For our purpose it will be convenient to consider a different description of k-rational
singularities. Recall from [MP22b, §6] that for every variety Z of pure dimension d

and every nonnegative integer k, we have a canonical morphism
(2.13) ψk : Ω

k
Z −→ RHomOZ

(
Ωd−k

Z , ω
•
Z [−d]

)
,

where ω•
Z is the dualizing complex of Z. This is defined as follows: suppose that

µ : Y → Z is an arbitrary resolution of singularities (we only require that Y is smooth
and µ is proper and an isomorphism over a dense open subset of Z). By functoriality of
the Du Bois complex, for every nonnegative integer k, we have a canonical morphism
αk : Ω

k
Z → Rµ∗Ω

k
Y . On the other hand, on Y we have a canonical isomorphism

Ωk
Y

≃−→ RHomOY

(
Ωd−k

Y , ω
•
Y [−d]

)
.

By pushing this forward and using Grothendieck duality for µ, we obtain an isomor-
phism βk as the composition

Rµ∗Ω
k
Y

≃−→ Rµ∗RHomOY

(
Ωd−k

Y , ω
•
Y [−d]

) ≃−→ RHomOZ

(
Rµ∗Ω

d−k
Y , ω

•
Z [−d]

)
.

The morphism ψk is obtained as the composition α∨
d−k ◦βk ◦αk, where we put α∨

d−k =

RHomOZ

(
αd−k, ω

•
Z [−d]

)
. It is shown in [MP22b, Prop. 6.1] that this definition does

not depend on the choice of resolution of singularities.
With this notation, we have the following characterization of k-rational singularities

in the local complete intersection case from [MP22b] (in loc. cit. one assumes that Z
is irreducible, but the argument works in general):

Theorem 2.7. — If Z is a local complete intersection variety of pure dimension d

and k is a nonnegative integer, then Z has k-rational singularities if and only if Z
has k-Du Bois singularities and the morphism ψk : Ω

k
Z → RHomOZ

(
Ωd−k

Z , ωZ

)
is an

isomorphism.
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It will be important for us to use an interpretation of the morphism ψk from [FL22b,
App.], as the graded de Rham of a morphism of mixed Hodge modules. Let Z be a
variety of pure dimension d and µ : Y → Z any resolution of singularities, with µ

a projective morphism. Note that by functoriality we have a canonical morphism of
mixed Hodge modules α : QH

Z [d] → µ∗Q
H
Y [d]. On the other hand, since QH

Y [d] is pure
of weight d, on Y we have a canonical isomorphism QH

Y [d] → D
(
QH

Y [d]
)
(−d), which

after pushing forward to Z and using the compatibility of pushforward with duality,
gives an isomorphism

β : µ∗Q
H
Y [d]

≃−→ µ∗D
(
QH

Y [d]
)
(−d) ≃−→ D

(
µ∗Q

H
Y [d]

)
(−d).

We then obtain a morphism ψZ in the derived category of mixed Hodge modules on Z
as the following composition

(2.14) QH
Z [d]

α−−→ µ∗Q
H
Y [d]

β−−→ D
(
µ∗Q

H
Y [d]

)
(−d) α∨

−−−→ D
(
QH

Z [d]
)
(−d),

where α∨ = D(α)(−d).
If Z is a closed subvariety of the smooth, irreducible variety X and i : Z ↪→ X

is the inclusion, then using the compatibility of the graded de Rham complex with
direct image and duality, we see that for every k ∈ Z we have

αk = GrF−kDRX(α)[k− d], βk = GrF−kDRX(β)[k− d], α∨
d−k = GrF−kDRX(α∨)[k− d],

hence ψk = GrF−kDRX(ψZ)[k − d].

Remark 2.8. — It follows from the definition of ψZ that ψ∨
Z := D(ψZ)(−d) can be

identified with ψZ .

Remark 2.9. — Suppose now that X is a smooth, irreducible, n-dimensional variety
and i : Z ↪→ X is a closed embedding, where Z is a local complete intersection sub-
variety of X, of pure codimension r. Let d = n − r. As we have already mentioned,
in this case, the morphisms

QH
Z [d]

γZ−−−→ ICZQ
H and D

(
ICZQ

H
)
(−d)

γ∨Z−−−→ D
(
QH

Z [d]
)
(−d)

are morphisms of mixed Hodge modules, with γZ surjective and γ∨Z injective.
Since ψZ is a morphism between two mixed Hodge modules on Z, we obtain the

same morphism if we take H0(−); in other words, ψZ agrees with the composition

(2.15) QH
Z [d] −→ H0

(
µ∗Q

H
Y [d]

)
−→ D

(
H0(µ∗Q

H
Y [d])

)
(−d) −→ D

(
QH

Z [d]
)
(−d).

On the other hand, since QH
Y [d] is pure of weight d, so is H0

(
µ∗Q

H
Y [d]

)
, see [Sai90,

(4.5.2)]. Since GriW
(
QH

Z [d]
)
= 0 for i > d, it follows that the composition in (2.15)

further factors as

(2.16) QH
Z [d]

γZ−−−→ ICZQ
H −→ H0

(
µ∗Q

H
Y [d]

)
−→ D

(
H0(µ∗Q

H
Y [d])

)
(−d)

−→ D
(
ICZQ

H)(−d)
γ∨Z−−−→ D

(
QH

Z [d]
)
(−d).
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We also note that the intermediate composition

ICZQ
H −→ H0

(
µ∗Q

H
Y [d]

)
−→ D

(
H0(µ∗Q

H
Y [d])

)
(−d) −→ D

(
ICZQ

H)(−d)

is always an isomorphism. Indeed, a morphism ICZQ
H → D

(
ICZQ

H)(−d) is uniquely
determined by its restriction to a dense open subset of the smooth locus of Z, and on
a suitable such subset over which µ is an isomorphism this composition is the identity.

For every k, it follows from Lemma 2.1 that GrFp DRX(ψZ) is an isomorphism for
all p ⩽ k if and only if FpψZ is an isomorphism for every p ⩽ k + n. Since γZ is
surjective and γ∨Z is injective, it follows from the above discussion that GrFp DRX(ψZ)

is an isomorphism for all p ⩽ k if and only if

FpγZ : FpQ
H
Z [d] −→ FpICZQ

H and

Fp+dγ
∨
Z : Fp+dD(ICZQ

H) = Fp−rWn+rH
r
Z(OX) −→ Fp+dD

(
QH

Z [d]
)
= Fp−rH

r
Z(OX)

are isomorphisms for all p ⩽ k + n (recall that every morphism of mixed Hodge
modules preserves the Hodge filtration and it is strict).

Remark 2.10. — We note that in [FL22b] one says that a variety Z of pure dimension
d has k-rational singularities if the composition

Ωp
Z −→ Ωp

Z

ψk−−−→ RHomOZ

(
Ωd−p

Z , ω
•
Z [−d]

)
is an isomorphism for all p ⩽ k. It is shown in [FL22b, Cor. 3.17] that this definition
is equivalent to the definition we use in this paper if codimZ(Zsing) ⩾ 2k+1. Further-
more, it is shown in [FL22b, Th. 3.20] that with their definition as well, if Z is a local
complete intersection and has k-rational singularities, then Z has Du Bois singular-
ities, and thus codimZ(Zsing) ⩾ 2k + 1 by Proposition 2.5. We thus conclude that
for local complete intersection varieties, the two definitions of k-rational singularities
agree.

3. Characterizations of k-rationality for local complete intersections

Let X be a smooth, irreducible variety of dimension n and Z be a local complete
intersection subvariety of pure codimension r in X. Let d = n − r be the dimension
of Z and i : Z ↪→ X the inclusion. We will freely use the notation introduced in the
previous section. The following is the main result of this section, which implies several
of the statements in the introduction.

Theorem 3.1. — With the above notation, for every nonnegative integer k, the fol-
lowing conditions are equivalent:

(a) α̃(Z) > k + r;
(b) FkWn+rH

r
Z(OX) = EkH

r
Z(OX);

(c) the morphism

(3.1) Fp+rQ
H
Z [d] −→−→ Fp+rICZQ

H ,
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induced by γZ and the composition

(3.2) FpWn+rH
r
Z(OX) ↪−→ FpH

r
Z(OX) ↪−→ EpH

r
Z(OX),

induced by γ∨Z , are isomorphisms for p ⩽ k.
(d) Z has k-Du Bois singularities and the morphism

ψk : Ω
k
Z −→ RHomOZ

(
Ωd−k

Z , ωZ

)
is an isomorphism;

(e) the canonical morphism

Ωp
Z −→ GrF−pDRX(ICZQ

H)[p− d]

is an isomorphism (in the derived category) for p ⩽ k.

Remark 3.2. — We note that the morphism in (e) is the composition

Ωp
Z −→ Ωp

Z ≃ GrF−pDRX(QH
Z )[p] −→ GrF−pDRX(ICZQ

H)[p− d],

where the second map is induced by γZ : QH
Z [d] → ICZQ

H .

Remark 3.3. — Note that condition (d) in the theorem is equivalent to Z having
k-rational singularities by Theorem 2.7. Therefore the equivalence (a) ⇔ (d) is the
content of Theorem 1.1, while the equivalence (a) ⇔ (b) is the content of Theorem 1.4.

We proceed with the proof of Theorem 3.1 in several steps, by showing the following
implications:

(a) ⇒ (b) ⇒ (c) ⇒ (d) + (e), (d) ⇒ (c), and (e) ⇒ (b) ⇒ (a).

Proof of Theorem 3.1. — Since all assertions are local, we may and will assume that X
is affine and Z is defined in X by f1, . . . , fr ∈ OX(X). In particular, we will be able
to consider the V -filtration corresponding to these functions. We denote by IZ the
ideal defining Z in X.

Step 1. Proof of (a) ⇒ (b). — Let W• be the monodromy filtration on Gr
•
VBf , shifted

by n, uniquely characterized by:
– (s+ α) ·W•GrαVBf ⊆W•−2GrαVBf and
– (s+ α)j : GrWn+jGrαVBf

∼= GrWn−jGrαVBf is an isomorphism for all j ⩾ 1.
Explicitly, this is given by

(3.3) Wn+iGrαVBf =
∑
j

ker
(
(s+ α)i+j+1

)
∩ Im

(
(s+ α)j

)
.

Consider the map σ :
(
Grr−1

V Bf

)⊕r (t1,t2,...,tr)−−−−−−−→ GrrVBf . By [CD23, Th. 1.2], for ev-
ery i, we have an isomorphism of filtered DX -modules

(3.4) GrWi+rH
r
Z(OX) ≃

(
GrWi cokerσ, F [−r]

)
for all i ∈ Z.

Recall that we know that Wi+rH
r
Z(OX) = 0 for i < n, hence

(3.5) Wn+rH
r
Z(OX) = GrWn+rH

r
Z(OX) ≃

(
GrWn cokerσ, F [−r]

)
.
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Since α̃(Z) > k + r, it follows from the definition of the minimal exponent that
Fk+r+1Bf ⊆ V >r−1Bf , hence

(s+ r) · Fk+rBf ⊆
r∑

i=1

ti · Fk+r+1Bf ⊆ V >rBf .

We thus have

(3.6) Fk+rGrrVBf ⊆WnGrrVBf

because ker(s+r) ⊆WnGrrVBf by (3.3). This implies that Fk+r cokerσ ⊆Wn cokerσ,
and using (3.5) we conclude that

FkWn+rH
r
Z(OX) = FkH

r
Z(OX) = EkH

r
Z(OX),

where the last equality follows from Theorem 2.3.

Step 2. Proof of (b) ⇒ (c). — We first prove the following

Lemma 3.4. — The equality FkWn+rH
r
Z(OX) = EkH

r
Z(OX) implies

FpWn+rH
r
Z(OX) = EpH

r
Z(OX) for all p ⩽ k.

Proof. — Recall first that FpH
r
Z(OX) ⊆ EpH

r
Z(OX) for all p by [MP22a, Prop. 3.4],

hence FpWn+rH
r
Z(OX) = EpH

r
Z(OX) if and only if the inclusion “⊇” holds. Since

Wn+rH
r
Z(OX) is a Hodge module supported on Z, we have

IZ · FpWn+rH
r
Z(OX) ⊆ Fp−1Wn+rH

r
Z(OX) for all p ∈ Z

(see [Sai88, Lem. 3.2.6]). On the other hand, it follows easily from the definition of
the filtration E•H

r
Z(OX) that we have

IZ · EpH
r
Z(OX) = Ep−1H

r
Z(OX) for all p ⩾ 1.

The assertion in the lemma now follows by decreasing induction on p. □

We next use duality to prove the following

Lemma 3.5. — If FpWn+rH
r
Z(OX) = FpH

r
Z(OX) for some p ∈ Z, then the surjective

map
Fp+r+1Q

H
Z [d] −→ Fp+r+1ICZQ

H

induced by γZ is an isomorphism.

Proof. — The equality FpWn+rH
r
Z(OX) = FpH

r
Z(OX) is equivalent to the vanishing

of FpGrWn+r+jH
r
Z(OX) for all j ⩾ 1. Since GrWn+r+jH

r
Z(OX) underlies a polarizable

pure Hodge module of weight n+ r + j, the choice of a polarization gives an isomor-
phism of filtered DX -modules:

(3.7) D
(
GrWn+r+jH

r
Z(OX)

) ≃−→
(
GrWn+r+jH

r
Z(OX)

)
(n+ r + j).

On the other hand,

(3.8)
D
(
GrWn+r+jH

r
Z(OX)

) ∼= GrW−n−r−jD
(
Hr

Z(OX)
)

∼= GrW−n−r−j

(
QH

Z [d](n)
) ∼= (

GrWd−jQ
H
Z [d]

)
(n).
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Combining the two equations (3.7) and (3.8) yields(
GrWn+r+jH

r
Z(OX)

)
(r + j) ∼= GrWd−jQ

H
Z [d],

as filtered DX -modules, which implies
Fp+1−jGrWn+r+jH

r
Z(OX) ∼= Fp+r+1GrWd−jQ

H
Z [d].

We have seen that our hypothesis gives Fp+1−jGrWn+r+jH
r
Z(OX) = 0 for j ⩾ 1, hence

Fp+r+1GrWd−jQ
H
Z [d] = 0 for j ⩾ 1 and thus Fp+r+1Wd−1Q

H
Z [d] = 0. This implies the

conclusion of the lemma by definition of γZ . □

Returning to the proof of the implication (b) ⇒ (c), note that the assertion in
Lemma 3.4 gives the fact that the morphism (3.2) is an isomorphism for p ⩽ k.
Similarly, by combining Lemmas 3.4 and 3.5 we conclude that the morphism (3.1) is
an isomorphism for p ⩽ k (in fact, for p ⩽ k + 1). We thus have the assertion in (c).

Step 3. Proof of (c) ⇒ (d)+ (e). — The surjectivity of the morphism in (3.2) implies,
in particular, that Z is k-Du Bois by [MP22a, Th. F]. Recall that we have defined
ψk = GrF−kDRX(ψZ)[k − d], so we see that ψk is an isomorphism if and only if
GrF−kDRX(ψZ) is an isomorphism, which by (2.1) holds if and only if GrFk−dDRX(ψZ)

is an isomorphism (recall that D(ψZ) = ψZ(d), see Remark 2.8). We thus conclude
that the condition in (d) holds.

Similarly, once we know that Z is k-Du Bois, the condition in (e) is equivalent with
GrF−pDRX(γZ) being an isomorphism for p ⩽ k, which is equivalent by (2.1) with
GrFp−dDRX(γ∨Z) being an isomorphism for all p ⩽ k. This is implied by Fp+rγ

∨
Z being

an isomorphism for all p ⩽ k, but this is precisely the morphism FpWn+rH
r
Z(OX) →

FpH
r
Z(OX). Therefore the condition in (e) holds as well.

Step 4. Proof of (d) ⇒ (c). — It follows from Theorem 2.7 that the conditions in (d)
are equivalent to Z having k-rational singularities. In particular, since we have these
conditions for k, we also have them for k − 1. In particular, we know that ψk =

GrFp−dDRX(ψZ)[p− d] is an isomorphism for all p ⩽ k. Using (2.1) and the fact that
D(ψZ) = ψZ(d), we conclude that GrFp−dDRX(ψZ) is an isomorphism for all p ⩽ k.
Lemma 2.1 thus implies that Fp+rψZ is an isomorphism for all p ⩽ k. As we have seen
in Remark 2.9, this implies that the morphisms (3.1) and (3.2) are isomorphisms for all
p ⩽ k (for the latter morphism, we also use the fact that FpH

r
Z(OX) = EpH

r
Z(OX)

for p ⩽ k, due to the fact that Z has k-Du Bois singularities). We thus have the
condition in (c).

Step 5. Proof of (e) ⇒ (b). — If k = 0, applying RHomOX

(
−, ωX [r]

)
to the isomor-

phism in (e) gives via (2.1) an isomorphism
GrF−nDRXWn+rH

r
Z(OX) −→ GrF−nDRXHr

Z(OX) −→ ExtrOX
(OZ , ωX)

(note that ExtiOX
(OZ , ωX) = 0 for i ̸= r since Z is a local complete intersection of

pure codimension r). We have

GrF−nDRXHr
Z(OX) = ωX ⊗OX

F0H
r
Z(OX) and

GrF−nDRXWn+rH
r
Z(OX) = ωX ⊗OX

F0Wn+rH
r
Z(OX),
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while the image of the inclusion

ExtrOX
(OZ , ωX) ↪−→ ωX ⊗OX

Hr
Z(OX)

is ωX ⊗OX
E0H

r
Z(OX). We thus obtain the condition in (b) in this case.

From now on we assume k ⩾ 1. Arguing by induction on k, we may and will assume
that FpWn+rH

r
Z(OX) = EpH

r
Z(OX) for p ⩽ k − 1. In particular, we know that Z

has (k − 1)-Du Bois singularities, and thus codimZ(Zsing) ⩾ 2k − 1 ⩾ k by [MP22a,
Cor. 3.40]. We only need to prove that the injection FkWn+rH

r
Z(OX) ↪→ EkH

r
Z(OX)

is indeed an isomorphism. Moreover, because we know the corresponding assertions
for the lower pieces of the filtrations, it follows from Lemma 2.1 that it is enough to
show that the induced morphism

(3.9) GrFk−nDRXWn+rH
r
Z(OX) −→ GrEk−nDRXHr

Z(OX)

is an isomorphism (in the derived category).
Applying RHomOX

(
−, ωX [r+ k]

)
to the isomorphism in (e) implies via (2.1) that

the composition

(3.10) GrFk−nDRXWn+rH
r
Z(OX) −→ GrFk−nDRXHr

Z(OX)

−→ RHomOX
(Ωk

Z , ωX [r + k]
)

is an isomorphism. On the other hand, since codimZ(Zsing) ⩾ k, it follows from
[MP22a, §5.2] that the second map in (3.10) gets identified with the canonical mor-
phism

GrFk−nDRXHr
Z(OX) −→ GrEk−nDRXHr

Z(OX).

We thus conclude that indeed (3.9) is an isomorphism.

Step 6. Proof of (b) ⇒ (a). — In addition to the map

σ :
(
Grr−1

V Bf

)⊕r (t1, t2, . . . , tr)−−−−−−−−−−−−→ GrrVBf

that we used in Step 1, we also consider the map

δ : GrrVBf

(∂t1 , ∂t2 , . . . , ∂tr )−−−−−−−−−−−−−−→
(
Grr−1

V Bf (−1)
)⊕r

.

The key point is to show the following

Claim. — The condition in (b) implies that the composition of the canonical mor-
phisms

(3.11) GrFk+r ker δ ↪−→ GrFk+rGrrVBf −→−→ GrFk+r cokerσ

is an isomorphism.

By [CD23, Th. 1.2], we have an isomorphism of filtered DX -modules

(3.12) GrWd+iQ
H
Z [d] ∼= GrWn+i ker δ for all i ∈ Z.
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In particular, we have Wn ker δ = ker δ (recall that, similarly, the isomorphism (3.4)
implies Wn−1 cokerσ = 0). Note that the inclusion Wn ker δ ↪→ WnGrrVBf induces a
canonical filtered morphism

(3.13) GrWn ker δ −→Wn cokerσ =
WnGrrVBf

WnGrrVBf ∩ imσ
.

Indeed, the morphism is well-defined because

Wn−1 ker δ ⊆Wn−1GrrVBf = (s+ r) ·Wn+1GrrVBf =

r∑
i=1

ti∂tiWn+1GrrVBf ⊆ imσ.

We deduce that the canonical map ker δ → cokerσ factors as

ker δ −→ GrWn ker δ −→Wn cokerσ −→ cokerσ.

Furthermore, the canonical maps

GrFk+r ker δ −→ GrFk+rGrWn ker δ

and
GrFk+rWn cokerσ −→ GrFk+r cokerσ

are isomorphisms because of (3.4) and (3.12), together with the fact that the canonical
map

GrFp+rQ
H
Z [d] −→ GrFp+rGrWd QH

Z [d]

is an isomorphism for p ⩽ k + 1 by Lemma 3.5. Therefore the claim is now reduced
to the assertion that (3.13) is a filtered isomorphism. Clearly, (3.13) is a filtered
isomorphism over the complement V = X ∖ Zsing of the singular locus of Z, due to

ker δ|V = GrrVBf |V = cokerσ|V

preserving the Hodge filtration (this follows from the fact that if Z is smooth, then
V rBf = Bf by (2.8), hence Grr−1

V Bf = 0). Therefore (3.13) is an isomorphism of
DX -modules because its source and target decompose by (3.12) and (3.4) as direct
sums of simple D-modules, corresponding to the irreducible components of Z. More-
over, it is even a filtered isomorphism thanks to the fact that the Hodge filtration is
uniquely determined by the regular locus [Sai88, (3.2.2.2)]. This completes the proof
of the claim.

To conclude the proof, note that the condition in (b) implies that α̃(Z) ⩾ k+ r by
Theorem 2.3. Therefore we have

GrFk+rGrrVBf = GrFk+rBf/IZ ·GrFk+rBf = GrFk+r cokerσ,

where the first equality follows from the fact that

Fk+rV
>rBf =

r∑
i=1

ti · Fk+rV
>r−1Bf

by [CD23, Th. 1.1]. The claim implies that the composition

GrFk+r ker δ ↪−→ GrFk+rGrrVBf
=−−−→ GrFk+r cokerσ,
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is an isomorphism, hence δ is zero on GrFk+rGrrVBf = GrFk+rBf/IZ ·GrFk+rBf . There-
fore

∂ti ·Fk+rBf ⊆ Fk+rBf+V
>r−1Bf ⊆ V rBf+V

>r−1Bf ⊆ V >r−1Bf for 1 ⩽ i ⩽ r,

where the second inclusion comes from the fact that α̃(Z) ⩾ k + r. This implies
Fk+r+1Bf ⊆ V >r−1Bf , which is equivalent to α̃(Z) > k + r. This completes the
proof of this step and thus the proof of the theorem. □

We next prove the two corollaries stated in the introduction:

Proof of Corollary 1.2. — The assertion follows from the fact that Z has k-Du Bois
singularities if and only if α̃(Z) ⩾ k+ r, while by Theorem 1.1, Z has (k− 1)-rational
singularities if and only if α̃(Z) > k + r − 1. □

Proof of Corollary 1.3. — We may assume that Z is irreducible and affine and let
Z ↪→ X be a closed embedding, of codimension r, with X a smooth, irreducible
variety. The assertion to prove is trivial if Z is smooth (with the convention that the
empty set has infinite codimension), hence we may and will assume that Z is singular.
If s = dim(Zsing) and H is the intersection of general hyperplanes sections in X, then
Z ′ := Z ∩ H is a local complete intersection variety with nonempty, 0-dimensional
singular locus, and α̃(Z ′) = α̃(Z) by [CDMO24, Th. 1.2]. In particular, it follows
from Theorem 1.1 that α̃(Z ′) > k+r. Since codimZ(Zsing) = codimZ′(Z ′

sing), we may
replace Z by Z ′ to assume that Zsing is nonempty and zero-dimensional. We then
need to show that d := dim(Z) ⩾ 2k + 2.

Let x ∈ Zsing. By (2.9), we have

α̃(Z) ⩽ dim(X)− 1

2
dimC Tx(Z) = (d+ r)− 1

2
dimC Tx(Z).

Since x ∈ Zsing, we have dimC Tx(Z) ⩾ dim(Z) + 1 = d+ 1, hence

α̃(Z) ⩽ (d+ r)− 1

2
(d+ 1) =

d− 1

2
+ r.

Since α̃(Z) > k + r, we conclude that k + r < d−1
2 + r, hence d > 2k + 1. We thus

conclude that d ⩾ 2k + 2. □

4. Non-vanishing result for the Du Bois complex

In this section we show that for singular, d-dimensional, local complete intersection
varieties Z with k-rational singularities, where k ⩾ 1, the cohomology sheaf Hk(Ωd−k

Z )

does not vanish.

Proof of Theorem 1.5. — Note first that Theorem 2.7 gives an isomorphism

Ωk
Z ≃ RHomOZ

(Ωd−k
Z , ωZ),

and since RHomOZ
(−, ωZ) is a duality, we get an isomorphism

Ωd−k
Z ≃ RHomOZ

(Ωk
Z , ωZ).

The first isomorphism in the theorem follows by taking that k-th cohomology sheaf.
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It is shown in [MP22a, §5.2] that since Z has k-Du Bois singularities (more pre-
cisely, since codimZ(Zsing) ⩾ k), the sheaf Ωk

Z is the 0-th cohomology of the complex
Ω•

X ⊗OX
Symk−•(NZ/X)∨ placed in cohomological degrees −k, . . . , 0. Since this is a

resolution of Ωk
Z by locally free OZ-modules, it follows that

ExtkOZ
(Ωk

Z , ωZ) ≃ ωZ ⊗OZ
ExtkOZ

(Ωk
Z ,OZ)

≃ ωZ ⊗OZ
coker

(
TX ⊗OX

Symk−1
OZ

(NZ/X) −→ Symk
OZ

(NZ/X)
)

≃ ωZ ⊗OZ
Symk

OZ
(Q),

where the last isomorphism follows from [Eis95, Prop. A2.2(d)].
In order to see that Hk(Ωd−k

Z )x ̸= 0 if x ∈ Z is a singular point, it is enough to
consider, in a neighborhood of x, a closed immersion Z ↪→ X such that TxZ = TxX.
In this case the morphism of locally free OZ-modules

TX ⊗OX
Symk−1

OZ
(NZ/X) −→ Symk

OZ
(NZ/X)

is given by a matrix whose entries all vanish at x. We thus conclude that the minimal
number of generators of Hk(Ωd−k

Z )x is equal to rank
(
Symk

OZ
(NZ/X)

)
=

(
e−d+k−1

k

)
,

where e = dimC TxZ, hence it is nonzero since e ⩾ d+1. This concludes the proof. □

5. Generation level of the Hodge filtration in terms of
the minimal exponent

In this section we prove the bound on the level of generation in terms of the minimal
exponent.

Proof of Theorem 1.7. — Let d = dim(Z) = n− r. The starting point is the observa-
tion that for every mixed Hodge module M on X, the Hodge filtration is generated
at level q if H0GrFp−nDRX(M) = 0 for all p > q. Recall that by (2.1), we have

GrFp−nDRX(M) ≃ RHomOX

(
GrFn−pDRX(D(M)), ωX [n]

)
.

If we apply this with M = Hri!QH
X [n] = Hr

Z(OX), where i : Z ↪→ X is the inclusion,
since D(M) ≃ QH

Z [d](n), we conclude that

GrFp−nDRXHr
Z(OX) ≃ RHomOX

(
GrF−pDRXQH

Z [d], ωX [n]
)
.

If we apply H0(−) on both sides, we conclude that the Hodge filtration on Hr
Z(OX)

is generated at level q if

(5.1) ExtnOX

(
GrF−pDRXQH

Z [d],OX

)
= 0

for all p > q.
Recall now that for a bounded complex of OX -modules K• and an OX -module F,

there is a spectral sequence

Ei,j
1 = ExtjOX

(K−i,F) =⇒ Exti+j
OX

(K
•
,F).

We take K• to be the complex GrF−pDRXQH
Z [d], so that

K−ℓ = Ωn−ℓ
X ⊗OX

GrFn−ℓ−pQ
H
Z [d].
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Therefore the vanishing in (5.1) holds if for all j ∈ {0, . . . , n}, we have
ExtjOX

(
Ω

n−(n−j)
X ⊗OX

GrFn−(n−j)−pQ
H
Z [d], ωX

)
= 0,

or equivalently,
ExtjOX

(
GrFj−pQ

H
Z [d],OX

)
= 0.

We conclude that in order to complete the proof of the theorem, it is enough to show
the following claim:

Claim 5.1. — For all p ⩾ n− ⌈α̃(Z)⌉ and all j ∈ {0, 1, . . . , n}, we have
(5.2) ExtjOX

(
GrFj−pQ

H
Z [d],OX

)
= 0.

In order to prove the claim, we may and will assume that X is affine and Z is
defined by f1, . . . , fr ∈ OX(X), so we can make use of the corresponding V -filtration.
By Theorem 2.2(ii), for every ℓ ∈ Z, we have an isomorphism

FℓQ
H
Z [d] ≃ ker

(
FℓGrrV (Bf )

∂t1 , . . . , ∂tr−−−−−−−−−−→
r⊕

i=1

FℓGrr−1
V (Bf )(−1)

)
.

Suppose now that α̃(Z) > ℓ. In this case, by definition of the minimal exponent we
have Fℓ+1Bf ⊆ V >r−1Bf and FℓBf ⊆ V rBf . We thus conclude that
(5.3) FℓQ

H
Z [d] ≃ FℓGrrV (Bf ) ≃ FℓBf/FℓV

>rBf .

On the other hand, it follows from [CD23, Th. 1.1] that we have

FℓV
>rBf =

r∑
i=1

ti · FℓV
>r−1Bf =

r∑
i=1

ti · FℓBf ,

so that (5.3) gives
FℓQ

H
Z [d] ≃ FℓBf/(t1, . . . , tr)FℓBf ,

and thus
GrFℓ Q

H
Z [d] ≃ GrFℓ Bf/(t1, . . . , tr)GrFℓ Bf .

Recall now that by definition we have FℓBf = GrFℓ Bf = 0 if ℓ < r and grFℓ Bf =⊕
|β|=ℓ−r OX∂

β
t if ℓ ⩾ r, with each ti acting as multiplication by fi. We thus conclude

that if ℓ ⩾ r, then
(5.4) GrFℓ Q

H
Z [d] ≃

⊕
|β|=ℓ−r

OZ∂
β
t .

We now proceed to prove the claim. Note that since Z is singular, it follows
from (2.9) that α̃(Z) ⩽ n− 1

2 (d+ 1), hence n− ⌈α̃(Z)⌉ ⩾ ⌊(d+ 1)/2)⌋ ⩾ 1.
We first consider the case when p > n − ⌈α̃(Z)⌉, so that p > 0 and ⌈α̃(Z)⌉ >

n− p ⩾ j − p for all j ∈ {0, 1, . . . , n}. By taking ℓ = j − p, it follows from (5.4) that
we have

GrFj−pQ
H
Z [d] ≃

{
0 if j − p < r,⊕

|β|=j−p−r OZ∂
β
t if j − p ⩾ r.

Clearly, the vanishing in (5.2) holds if j − p < r. If j ⩾ r + p > r, we use the fact
that Z is a complete intersection, so locally we have the Koszul resolution of OZ ,
of length r, by free OX -modules. In particular, we have ExtjOX

(OZ ,OX) = 0 for all
j > r, proving the claim in this case.
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We next consider the case when p = n − ⌈α̃(Z)⌉. If j ∈ {0, 1, . . . , n − 1}, then
⌈α̃(Z)⌉ > j − p and we get the vanishing in (5.2) as above. In order to complete the
proof of the claim, it is thus enough to consider j = n and show that
(5.5) ExtnOX

(
GrF⌈α̃(Z)⌉Q

H
Z [d],OX

)
= 0.

It follows from Theorem 2.2(ii) that we have an inclusion
GrF⌈α̃(Z)⌉Q

H
Z [d] ⊆ GrF⌈α̃(Z)⌉GrrVBf .

Since Extn+1
OX

(−,OX) = 0, we deduce using the long exact sequence of Ext sheaves
that we have a surjection

ExtnOX

(
GrF⌈α̃(Z)⌉GrrVBf ,OX

)
−→ ExtnOX

(
GrF⌈α̃(Z)⌉Q

H
Z [d],OX

)
.

Therefore it is enough to show that the left term is 0.
Note now that it follows from [CD23, Th. 1.1] that

F⌈α̃(Z)⌉V
>rBf = (t1, . . . , tr)F⌈α̃(Z)⌉V

>r−1Bf = (t1, . . . , tr)F⌈α̃(Z)⌉Bf ,

where the second equality follows from the definition of the minimal exponent. There-
fore we have

GrF⌈α̃(Z)⌉GrrVBf = GrF⌈α̃(Z)⌉V
rBf/(t1, . . . , tr)GrF⌈α̃(Z)⌉Bf

⊆ GrF⌈α̃(Z)⌉Bf/(t1, . . . , tr)GrF⌈α̃(Z)⌉Bf .

Using again the fact that Extn+1
OX

(−,OX) = 0, we see that it is enough to show that
ExtnOX

(GrF⌈α̃(Z)⌉Bf/(t1, . . . , tr)GrF⌈α̃(Z)⌉Bf ,OX) = 0.

This follows from the fact that GrF⌈α̃(Z)⌉Bf/(t1, . . . , tr)GrF⌈α̃(Z)⌉Bf is isomorphic to
a direct sum of copies of OZ and ExtnOX

(OZ ,OX) = 0, as follows using the Koszul
resolution of OZ (note that r < n, since we assume that Z is reduced and singular).
This completes the proof of the claim and thus the proof of the theorem. □
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