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SMOOTH LIMITS OF PLANE CURVES OF

PRIME DEGREE AND MARKOV NUMBERS

by Kristin DeVleming & David Stapleton

To Bear, Junior, and Bird

Abstract. — In dimension at least 3, Mori asked if every smooth proper limit of a family of
prime degree hypersurfaces is still a hypersurface. In dimensions 1 and 2, this is not the case.
For example, it is well known that quintic plane curves can degenerate to hyperelliptic curves,
and Horikawa constructed smooth limits of quintic surfaces that do not embed in P3. In this
paper, we propose a conjecture explaining the one-dimensional examples using Hacking and
Prokhorov’s work on Q-Gorenstein limits of the projective plane and prove the conjecture for
degree 5. As a consequence of the first conjecture, we conjecture that, if p is a prime number
that is not a Markov number, any smooth projective limit of plane curves of degree p is a plane
curve. We prove this conjecture for degree 7 curves and provide evidence for the conjecture by
exhibiting non-planar smooth limits of families of degree d curves for any d that is a multiple
of a Markov number.
Résumé (Limites lisses de courbes planes de degré premier et nombres de Markov)

En dimension 3 au moins, Mori a demandé si toute limite lisse propre d’une famille d’hyper-
surfaces de degré premier est toujours une hypersurface. En dimensions 1 et 2, ce n’est pas le
cas. Par exemple, il est bien connu que les courbes planes quintiques peuvent dégénérer en des
courbes hyperelliptiques, et Horikawa a construit des limites lisses de surfaces quintiques qui ne
se plongent pas dans P3. Dans cet article, nous proposons une conjecture expliquant les exemples
unidimensionnels en utilisant les travaux de Hacking et Prokhorov sur les limites Q-Gorenstein
du plan projectif et nous prouvons la conjecture pour le degré 5. Comme conséquence de la
première conjecture, nous conjecturons que, si p est un nombre premier qui n’est pas un nombre
de Markov, toute limite projective lisse de courbes planes de degré p est une courbe plane. Nous
prouvons cette conjecture pour les courbes de degré 7 et justifions la conjecture en exhibant
des limites lisses non planes de familles de courbes de degré d pour tout entier d qui est un
multiple d’un nombre de Markov.

Contents

1. Markov numbers and degenerations of the projective plane. . . . . . . . . . . . . . . . . . . 688
2. Hacking’s Calabi-Yau limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694
3. General results on normal families of curves and normalizing S2 varieties. . . . . 697
4. Intersection graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
5. Background on curve singularities and Hacking’s Calabi-Yau limits. . . . . . . . . . . 708

Mathematical subject classification (2020). — 14H10, 14H50, 14J10.
Keywords. — Moduli of curves, hypersurfaces, moduli of stable pairs, Markov numbers.

The second author was partially supported by NSF grant DMS-1952399.

e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


684 K. DeVleming & D. Stapleton

6. Setup of casework in the proofs of Theorems D and E. . . . . . . . . . . . . . . . . . . . . . . . 712
7. The case of reduced limits of plane curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 712
8. The case of nonreduced limits of septic plane curves. . . . . . . . . . . . . . . . . . . . . . . . . . 722
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

In this paper, we consider a family D → T of smooth compact complex curves.
Assuming the general fiber Dt is a smooth plane curve of degree d > 1 we ask the
following:

Question. — For which degrees d can we guarantee that every fiber is a plane curve?

It is easy to see that d must be prime. Classically, a nonhyperelliptic genus 3 curve is a
canonically embedded degree 4 plane curve, but the canonical map for a hyperelliptic
genus 3 curve gives a double cover of a conic. Similarly, when d is composite it is
well understood how to degenerate a degree ab hypersurface in any dimension to a
degree a branched cover of a degree b hypersurface ([19, Ex. 1.59]) so it is necessary
to consider prime degrees.

In higher dimensions, Mori asked if being prime is also sufficient.

Question ([26, p. 642]). — If n ⩾ 3, is every smooth projective limit of prime degree
hypersurfaces of dimension n in Pn+1

C also a hypersurface in Pn+1
C ?

This has been proved for the primes 2 [5, 15, 17], 3 [9], and 5 [28] in all dimensions, and
for the prime 7 in dimension 3 [28]. Interestingly, the statement is false if the dimension
is 1 or 2 (see, e.g. [10] and [14] for smooth non-hypersurface limits of quintic curves
and surfaces). The purpose of this paper is to develop and provide evidence for an
analogous conjecture in the case of plane curves.

Griffin explicitly writes an example [10] of a family of smooth plane quintics whose
limit is hyperelliptic and consequently nonplanar. We generalize this fact by proving
that many prime degrees admit non-planar limits:

Theorem A. — For any Markov number d > 2, there is family of smooth plane curves
of degree d with a smooth projective non-planar limit. In particular, for any Markov
number p > 2 that is prime there is a smooth family of prime degree p plane curves
with a non-planar central fiber.

Recall that a Markov number is a natural number that appears as a solution to
the equation:

a2 + b2 + c2 = 3abc.

The first few Markov numbers are

1, 2, 5, 13, 29, 34, 89, . . .

and the following is a list of prime numbers less than 10,000 that are Markov num-
bers [29]:

2, 5, 13, 29, 89, 233, 433, 1597, 2897, 5741, 7561.
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Smooth limits of plane curves of prime degree and Markov numbers 685

There are infinitely many Markov numbers and the Markov triples are naturally
organized into a binary tree, where every Markov number is obtained from (1,1,1) by
repeating a standard “mutation” process. In this paper, the relation between Markov
numbers and plane curves is the following: the only mildly singular (log terminal
and Q-Gorenstein) degenerations of P2 are the Manetti surfaces — that is, either a
weighted projective space P(a2, b2, c2) where (a, b, c) is a Markov triple, or a partial
smoothing of one of these weighted projective spaces (see Section 1 for more details).

Motivated by this construction and general results from moduli of stable pairs
compactifying the space of pairs (P2, C), we conjecture the following:

Conjecture B. — Any smooth limit of a family of plane curves of prime degree is a
Cartier divisor in a Manetti surface.

Conjecture B implies the following.

Conjecture C. — Let p be a prime number that is not a Markov number. Any smooth
limit of plane curves of degree p is a plane curve.

As any smooth limit of a family of curves of degree 2 or 3 is clearly planar, the
first primes to verify the conjecture are p = 5 and p = 7. Our main result is to prove
the conjectures in these cases (see Section 1 for the notation M(5)).

Theorem D. — Every smooth projective limit of a family of degree 5 plane curves is
either planar or is a Cartier divisor in the Manetti surface M(5), and the smooth
limits in M(5) are all hyperelliptic.

Theorem E. — Every smooth projective limit of a family of degree 7 plane curves is
a plane curve.

Verifying Conjectures B and C has strong consequences for the intersection of
various loci in Mg, the moduli space of smooth genus g := g(d) curves, where g(d) is
the genus of a smooth degree d plane curve. In particular, Conjecture B places bounds
on the gonality of the curves that can be in the closure of the locus of planar curves,
and Conjecture C implies that for p prime but not a Markov number, the locus of
degree p plane curves

Pp ⊂Mg

is closed. In particular, this implies that the Brill-Noether locus of curves of gonality
less than p−1 does not meet Pp. The following Corollaries are immediate consequences
of Theorems D and E. The first uses that every hyperelliptic genus 6 curve can be
written as a limit of a family of plane quintics (Example 1.12).

Corollary. — The closure of P5 in M6 is P6 ∪ H6 (where H6 is the hyperelliptic
locus).

Corollary. — P7 is closed in M15. In particular, a plane septic cannot degenerate
to a curve with gonality less than 6.

J.É.P. — M., 2024, tome 11



686 K. DeVleming & D. Stapleton

By Remark 1.13, Conjecture C would imply that for almost any prime, the locus
of plane curves of that degree is closed in the moduli space of smooth curves.

In Section 1, we study the Class group, Picard group, and deformations of (divi-
sors on) Manetti surfaces and prove Theorem A by constructing smooth curves that
are Cartier divisors in such a Manetti surface (so are necessarily a smooth limit of
plane curves) such that the gonality of these curves is too small to be a plane curve.

In Section 2 we propose a general approach to the conjecture by using Hacking’s
work [11] on limits of pairs (P2, C). To a family of plane curves D → T as above (after
a possible base change of T ) there is an associated threefold pair (XCY, DCY) → T

that we call Hacking’s Calabi-Yau limit (see [11, Def. 2.4]) satisfying:
(1) for a general fiber t ∈ T we have XCY

t
∼= P2 and Dt

∼= DCY
t , and

(2) over the central fiber 0 ∈ T , the fiber XCY
0 is a log terminal limit of P2 such

that (XCY
0 , 3dD

CY
0 ) is log canonical.

In Section 2, we provide background on these limits and list all possible XCY
0 when

d = 5 or d = 7.
On the other hand, the pair (P2, Dt) has a limit as a KSBA stable pair, i.e., there

is a threefold (X,D) with a map to T such that the general fiber is (P2, Dt) and
the central fiber is an slc pair (X0, D0). Here D0 is (as the notation suggests) the
original smooth central fiber. There is a MMP that interpolates between (X,D) and
(XCY, DCY). Roughly speaking, to prove Conjecture B it would suffice to prove that
nothing happens in this MMP.

Our approach is to compare the birational surfaces D DCY. If DCY is not
normal, we may consider the birational map between D and the normalization Dnorm

of DCY; D Dnorm → DCY. There is a common resolution Dss of

D Dnorm −→ DCY

by taking a log resolution of DCY such that the central fiber Dss
0 is a semistable

curve, and D is obtained from Dss by contracting trees of rational curves in the
central fiber. By the assumption that D0 is smooth, it follows that the dual graph
of Dss

0 is a tree and Dss
0 has exactly one non-rational component. The majority of

the paper is dedicated to comparing the geometry of these surfaces, specifically for
degrees 5 and 7.

In Section 3, we collect general results on the map Dnorm → DCY to study how the
geometry of the central fiber DCY

0 is related to (Dnorm)0. Along the way we prove that
any S2 variety is obtained from its normalization by codimension 1 gluing conditions.
In Section 4 we define the intersection graph Γ(C) of an arbitrary curve C which is a
bipartite graph that generalizes the dual graph of a semistable curve. Our main result
in Section 4 is that in an S2 family, the intersection graph of the central fiber of the
normalization can be controlled by the intersection graph of the central fiber and its
multiplicities. This gives the following application of independent interest:

Theorem F. — Let Λ be a linear series on a smooth projective surface S with general
fiber connected and smooth. Let C = m1C1 + · · · + mℓCℓ be a possibly nonreduced

J.É.P. — M., 2024, tome 11
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curve in Λ with multiplicities m1, . . . ,mℓ. Then any semistable replacement D′ of C
satisfies: (# of loops in

dual graph of D′

)
⩾ (# of loops in Γ(C))−

∑
(mi − 1).

In the families we consider, the dual graph ofDss
0 is a tree and all but one component

of Dss
0 are rational. It follows that the intersection graph of (Dnorm)0 is a tree and the

normalization of all but one component is rational. This places strong constraints on
the possible intersection graphs for DCY

0 and singularities of the components of DCY
0 .

After collecting necessary background on curve singularities in Section 5, in Section 7
and Section 8, we reduce the proofs of Theorems D and E to casework. Using the
possible intersection graphs and classification of low degree rational cuspidal curves,
we prove that, for d = 5, 7, the the only possible curve configuration DCY

0 with log
canonical threshold ⩾ 3/d is DCY

0 = D0 is smooth.

Remark. — While this paper focuses on the cases of curves, there is a generalization
of Hacking’s work to higher dimensional pairs (Pn, D) in [7]. The general approach
above applies in this situation, and Hacking’s Calabi-Yau limits are log terminal
degenerationsX0 of Pn containing ample divisorsD0. IfD0 is an ample smooth Cartier
divisor, X0 necessarily has isolated singularities. As in the proof of Theorem A where
log terminal degenerations of P2 with isolated singularities are used to construct non-
planar limits of prime degree p > 2 curves, it is of interest to construct log terminal
Q-Gorenstein degenerations X0 of Pn with isolated singularities. Certainly, a cone over
a Fano hypersurface of degree b in Pn is such an example, but for a Cartier divisor D0

on X0, projection away from the vertex realizes D0 as a degree a cover of a degree b
hypersurface. If a > 1, this is the limit of a family of degree ab hypersurfaces, which
is not prime, and if a = 1, D0 is isomorphic to a degree b hypersurface. In particular,
cones are not examples that can contain smooth non-hypersurface limits of prime
degree hypersurfaces. Therefore, we pose the following question, as any answers would
give potential candidates for constructing non-hypersurface limits of prime degree
hypersurfaces:

Question. — Aside from cones, what are the log terminal Q-Gorenstein degenerations
of Pn with isolated singularities?

At least one example is known and interesting in the prime degree case: by work
of Horikawa [14], there are smooth limits of quintic surfaces in P3 that do not embed
in P3, and by [7, Ex. 5.2], these limits embed in a log terminal degeneration of P3 with
isolated singularities.

Acknowledgements. — We would like to thank Nathan Chen, Lawrence Ein, Paul
Hacking, Elham Izadi, David Jensen, Robert Lazarsfeld, Yuchen Liu, Mirko Mauri,
James McKernan, Takumi Murayama, Alex Perry, Stefan Schreieder, Burt Totaro, and
Giancarlo Urzúa for their insights and helpful conversations. The paper has especially
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benefited from suggestions by János Kollár. We thank the referee for their input and
kind comments which improved the overall quality of the paper.

1. Markov numbers and degenerations of the projective plane

The goal of this section is to prove Theorem A, i.e., to show that for any Markov
number d there is a smooth limit of degree d curves that is not planar. These limits are
constructed as Cartier divisors in degenerations of the plane with isolated singularities.
In the process we study some of the basic properties of the log terminal Q-Gorenstein
degenerations of P2; e.g. we compute their Class groups and show that any ample line
bundle is globally generated. To show these divisors are not planar we give an upper
bound on their gonality that is less than d − 1, the gonality of a smooth degree d
plane curve.

We start by considering weighted projective planes that are limits of P2. To start
we show how the Markov equation arises when considering these weighted projective
spaces. Suppose there is a flat family

X −→ T

over a pointed curve 0 ∈ T such that X is Q-Gorenstein and for t ∈ T general Xt
∼= P2

and X0
∼= P(p, q, r) is a weighted projective plane (with p, q, and r coprime). Then in

fact, (p, q, r) = (a2, b2, c2) and (a, b, c) satisfy:

(the Markov equation) a2 + b2 + c2 = 3abc.

All solutions to the Markov equation are obtained by successively permuting or per-
forming the mutation (a, b, c) 7→ (a, b, 3ab − c) starting from the minimal solution
(1, 1, 1) [23, 16]. The first few triples in the Markov tree are

(1, 1, 1) (1, 1, 2) (1, 2, 5)

(1, 5, 13)

(1, 13, 34) · · ·

(5, 13, 194) · · ·

(2, 5, 29)

(5, 29, 433) · · ·

(2, 5, 29) · · ·

corresponding to the weighted projective spaces P2, P(1, 1, 4), P(1, 4, 25), . . . .
The fact that Markov numbers show up when considering Q-Gorenstein degener-

ations of P2 is a consequence of the constancy of the anticanonical volume (−KXt
)2

(Kollár addresses the top self-intersection of a Q-Cartier divisor D over T in much
more generality in [18, Th. 11]). Setting the anticanonical volume of P(p, q, r) equal
to (−KP2)2 = 9 gives

(p+ q + r)2/pqr = 9.

So (p + q + r) = 3
√
pqr. As p, q, and r are all coprime, the only possibility is they

are all perfect squares. In fact, one can show that for any Markov triple (a, b, c)

the singularities of the weighted projective space P(a2, b2, c2) can be independently
smoothed in a Q-Gorenstein family which implies that every such weighted projective

J.É.P. — M., 2024, tome 11



Smooth limits of plane curves of prime degree and Markov numbers 689

space is a limit of P2 [12, Cor. 1.2]. These surfaces were first studied by Manetti in [22]
and are called Manetti surfaces.

Definition 1.1 (Manetti surfaces). — Fix a Markov triple (a, b, c). Define

M(a, b, c) := P(a2, b2, c2).

Define M(b, c) to be the partial smoothing of the index a2 singularity in M(a, b, c)

— i.e., M(b, c) has 2 singularities of index b2 and c2. Likewise define M(c) to be the
smoothing of the index a2 and b2 singularities in M(a, b, c).

Remark 1.2. — The singularities appearing on Manetti surfaces are examples of T
singularities. In the notation of Hacking and Prokhorov, they are T1 singularities, and
the versal Q-Gorenstein deformation space of such a singularity is one-dimensional
(cf. [12, p. 4]), so any non-trivial deformation of such a singular point smooths it
completely. Throughout this section, we will therefore use the terminology partial
smoothing of a Manetti surface M0 to mean a one parameter flat family M over
a smooth pointed curve 0 ∈ T such that M has Q-Gorenstein singularities, M0 is
the fiber over 0 ∈ T , and for any singular point in M0 the local deformation of the
singularity is either a smoothing or a trivial deformation.

Example 1.3. — The mutation process in the Markov tree describes how to “con-
nect” two weighted projective degenerations of P2 in a family and how to obtain the
various partial smoothings. Let (a, b, c) be a Markov triple and let (a, b, c′ = 3ab− c)

be the Markov triple obtained by a mutation. Consider the degree c embedding of
the weighted projective space M(a, b, c) = P(a2, b2, c2) ↪→ P(a2, b2, c′, c) given by
[x0 : x1 : x2] 7→ [xc0, x

c
1, x0x1, x2]. Let [y0 : y1 : y2 : y3] be the weighted coordinates on

P(a2, b2, c′, c). The image of M(a, b, c) is given by y0y1 = yc2. Similarly, the degree c′
embedding of M(a, b, c′) can be given by y0y1 = yc

′

3 in the same weighted projective
space.

Consider the family

Mcs,t = (y0y1 = syc2 + tyc
′

3 ) ⊂ P(a2, b2, c′, c)× A2
s,t.

When s ̸= 0, Mcs,0 ∼=M(a, b, c), and when t ̸= 0, Mc0,t ∼=M(a, b, c′) by construction.
When st ̸= 0, Mcs,t ∼= M(a, b): as the partial derivatives of the defining equation
do not simultaneously vanish, Mcs,t is quasi-smooth and therefore can only acquire
singularities at the four isolated singular points of the ambient space P(a2, b2, c′, c).
The equation avoids the singularities of index c′ and c, so can have at most two
singularities at the points of index a2 and b2. In a neighborhood of [1 : 0 : 0 : 0],
the surface Mcs,t is defined by y1 = syc2 + tyc

′

3 , so has a singularity of the form
1
a2 (c

′, c) ∼= 1
a2 (b

2, c2). Similarly, at the point [0 : 1 : 0 : 0], the surface Mcs,t has a
singularity of the 1

b2 (a
2, c2). Therefore, for st ̸= 0, Mcs,t ∼=M(a, b) as claimed.

In fact, Hacking and Prokhorov prove that every log terminal Q-Gorenstein degen-
eration of P2 is a Manetti surface.

J.É.P. — M., 2024, tome 11
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Theorem 1.4 ([12, Cor. 1.2]). — The log-terminal Q-Gorenstein degenerations of P2

are precisely the Manetti surfaces.

Let M be a partial smoothing of a Manetti surface M0 over a smooth pointed
curve. If Mt is a general fiber of M , we say a divisorial sheaf OM0

(D0) on M0 extends
to Mt if there is a divisorial sheaf OM (D′) on M such that OM (D′)|M0

∼= OM0
(D0).

We call OM (D′)|Mt the extension of OM0(D0) to Mt. The next lemma shows that any
divisorial sheaf on M0 that is Cartier at the smoothed singularities extends to Mt.
A priori, such an extension is not unique, but once we prove that any Manetti sur-
face has class group Z and that the intersection numbers are preserved in partial
smoothings, it follows that the extensions are unique.

Lemma 1.5. — Let M0 be a del Pezzo surface (a normal, log terminal surface with am-
ple anticanonical divisor), and let M be a 1-parameter Q-Gorenstein partial smooth-
ing of M0. If O(D0) is a divisorial sheaf on M0 that is locally free at any partially
smoothed singularities then there is a base change T ′ → T such that O(D0) extends
to a divisorial sheaf on M ×T T

′.

Proof. — We show that the obstruction to extending OM0
(D0) vanishes. Assume

O(D0) extends to a divisorial sheaf O(D0,n) on an infinitesimal deformation Mn of
M0 over C[t]/tn. The obstruction to extending O(D0,n) to a divisorial sheaf on Mn+1

over C[t]/tn+1 is a class in

Ext2OMn
(OMn

(D0,n),OM0
(D0))

(see e.g. [30, Tag 0ECH]). The local-to-global spectral sequence shows that all the
obstructions are local and supported at the non-smoothed points:

H2(Mn,Hom(O(D0,n),O(D0))) = H2(M0,OM0) = 0

by Kodaira vanishing, and Ext1(O(D0,n),O(D0)) is supported on the non-smoothed
points). So the obstruction lives in

H0(Mn,Ext
2(O(D0,n),O(D0))).

This shows the obstructions are local and supported at the non-smoothed point. But
locally at this point, the deformation of M0 is trivial, thus there is no local obstruction
and O(D0,n) extends. Lastly, it may be necessary a priori to make a base change
T ′ → T to make the above deformation algebraic. □

Theorem 1.6. — Let M0 be a Q-Gorenstein degeneration of P2.
(1) Cl(M0) = Z and Pic(M0) = Z. We write OM0

(1) for the positive generator of
Cl(M0).

(2) If A is the direct sum of the local class groups at the singular points of M0,
then the sequence:

0 −→ Pic(M0) −→ Cl(M0) −→ A −→ 0

is exact. In particular, the map from Pic(M0) to Cl(M0) is multiplication by α2 = |A|.
(3) With the notation from (2), OM0

(1) has self intersection number 1/α2.
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Smooth limits of plane curves of prime degree and Markov numbers 691

(4) Let M → T be a 1-parameter Q-Gorenstein partial smoothing of M0. Let B be
the local class group of the smoothed singularities and let β =

√
|B| ∈ Z. A divisor

D0 ∈ Cl(M0) extends to a divisor D = DT ′ on M ×T T
′ for a base change T ′ → T

if and only if OM0
(D0) = OM0

(mβ) for some integer m. Furthermore, over a general
point, the extension D is in |OMt

(m)|.
(5) If D, D′ are two Q-Cartier Weil divisors on M then the intersection numbers

(D|Mt) · (D′|Mt) are independent of t ∈ T .

Proof. — We know that M0 is a partial smoothing of a weighted projective space
P := P(a2, b2, c2). For weighted projective spaces the map from the class group to the
local class groups is surjective. Thus it follows from Lemma 1.5 that the map

Cl(M0) −→ A

is surjective, which shows the sequence in (2) is exact.
The divisor O(−KP) = OP(3abc) extends to the divisor KM0 on M0. Let B

(resp. A) be the local class group of the smoothed (resp. unsmoothed) singularities.
By Lemma 1.5, OP(|B|) extends to M0. Set β =

√
|B|, so β = gcd(|B|, 3abc), and

set α =
√
|A|. Then OP(β) extends to a divisorial sheaf OM0

(1) on M0, and OM0
(1)

generates the local class group of the unsmoothed singularities. Now we wish to prove
that OM0(1) generates Cl(M0).

It is known that Pic(M0) = Z ([11, Lem. 2.1, Prop. 6.3]). Let OM0(1) ∈ Cl(M0) be
the divisor on M0 from the previous paragraph (i.e., OP(β) extends to OM0

(1) on M0).
We will show that OM0

(1) generates Cl(M0). Consider the following diagram:
0 Z · OM0

(α2) Z · OM0
(1) Z/α2Z 0

0 Pic(M0) Cl(M0) A 0.

It suffices to show that the map Z · O(α2) to Pic(M0) is surjective.
As K2

Mt
is constant in the family M → T and the restriction of every divisor

D|Mt
is numerically a rational multiple of KMt

, the intersection numbers of divisors
are constant in the family (proving (5)). On the central fiber, if D0 ∈ |OP(β)|, then
D2

0 = β2/α2β2 = 1/α2. Therefore, OM0(1)
2 = 1/α2 (proving (3)).

Now, let L be the ample generator of Pic(M0). Then L ≡num OM0
(µ) so OM0

(µ) ·
OM0

(1) is an integer. Let D0 ∈ |OM0
(1)|. As α2D0 is Cartier, µ ⩽ α2. Therefore,

because OM0
(µ) · OM0

(1) = µ · 1/α2, we must have µ = α2. This implies that L =

O(α2D0) and O(α2D0) generates Pic(M0). This completes the proof of (1).
To prove (4), assume that (after possibly base changing) that OM0(µ) ex-

tends to an ample generator OMt
(1) of Cl(Mt) for a general fiber Mt of M .

As H1(M0,OM0
(D0)) = 0, the divisor D0 then extends to a divisor D on M . By (5)

we have OM0(µ)
2 = OMt(1)

2. By (3) the left hand side is µ2/α2 (where α2 = |A|,
where A is the local class group of the singularities of M0). And by (3) the right
hand side is β2/α2 which proves that OM0

(µ) extends to a divisorial sheaf on M if
and only if µ = β. □
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We thank János Kollár for suggesting improvements to the following results in this
section.

Theorem 1.7. — Let XT → T be a flat projective family over a smooth pointed curve
0 ∈ T . Assume the fibers are del Pezzo surfaces (i.e., the fibers have log terminal
singularities and ample anticanonical divisor) and have Picard rank 1. Let L be a
divisorial sheaf on XT flat over T and assume that the restriction of L to a general
fiber is a Cartier divisor.

(1) The dimensions of the cohomology groups hi(Xt,L|Xt
) are constant in the fam-

ily.
(2) Assume there is a section s ∈ H0(X0,L|X0) such that all the singularities of X0

meeting s = 0 are smoothed in the generic fiber of the family, and s lifts to a section
in H0(Xt,L|Xt

) that is reduced and irreducible. If Xt is a general fiber, then the linear
system |LXt

| has at most one simple base point and a general section of H0(Xt,L|Xt
)

defines a smooth curve.
(3) Let C ∈ |LXt

| be the smooth curve from (2). If the linear system |LXt
| has a

base point, then −KXt
· C = 1.

Proof. — The first item follows from [19, Prop. 2.79] and flatness. The second item
follows because the lift of (s = 0) is reduced and irreducible and contained in the
smooth locus of Xt. Call this curve C ⊂ Xt and note that C is Gorenstein. Because
−KXt is ample and the Picard rank is 1, we may write C = KX +C +A where A is
an anticanonical divisor. By the exact sequence

0 −→ OXt −→ OXt(C) −→ OC(KC +A|C) −→ 0,

the linear system has base points only along C. To prove it is has at most
one base point, as Xt is del Pezzo, H1(Xt,OXt

) = 0 so the map OXt
(C) →

OC(KC + A|C) is surjective on global sections, so it suffices to study the base
locus of OC(KC + A|C). If there is a base point p ∈ C, there must be an isomor-
phism H0(C,OC(KC + A|C)(−p)) ∼= H0(C,OC(KC + A|C)), which implies that
H1(C,OC(KC + A|C)(−p)) ̸= 0. Because C is Gorenstein, O(KC) is dualizing, so by
Serre duality we have H1(C,OC(KC +A|C)(−p)) ∼= H0(C,O(−A|C)(p))∨. Because A
is an ample Cartier divisor on C, this is nonzero if and only if p = A|C , i.e., there
is at most one simple base point. This implies that |LXt | has a smooth member.
Finally, because A = −KXt

, p = A|C if and only if deg−KXt
|C = A|C = 1, which

occurs only if −KXt
· C = 1. □

Corollary 1.8. — Let M0 be the central fiber of a Q-Gorenstein degeneration of P2.
(1) If M is a 1-parameter partial smoothing of M0 and D ⊂ M is a divisor flat

over T , then the dimension of the the cohomology hi(Mt,OMt
(Dt)) is constant in the

family.
(2) If D0 ⊂M0 is an ample Cartier divisor, then OM0(D0) is globally generated.
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Proof. — By Theorem 1.7(1), the cohomology is constant. To prove (2), note that
it suffices to prove that OM0(D0) is globally generated for the ample generator D0

of the Picard group of M0. To do this, it suffices to exhibit a section on P(a2, b2, c2)
that lifts to a section of D0 contained in the smooth locus of M0 by Theorem 1.7(3)
Such a section is necessarily reduced and irreducible as it is the generator of Pic(M0)

and is contained in the smooth locus of M0, and for any Cartier divisor D0 on any
Q-Gorenstein degeneration M0 of P2, −KM0 · D0 ⩾ 3 so Theorem 1.7(3) will imply
the linear system O(D0) is basepoint free. To exhibit the desired sections, if M0 =

P(a2, b2, c2), the ample generator of Pic(M0) is O(a2b2c2) and a general member is
reduced, irreducible, and avoids the singularities of M0. If M0 is a partial smoothing of
one of the singular points (say, the one of index a2) then the divisor (zab2 + yac

2

= 0)

avoids the unsmoothed singularities on P(a2, b2, c2) and lifts to the ample generator
of M0 by Theorem 1.6(2). Finally, if M0 is obtained by smoothing two of the singular
points (say the ones of index a2 and b2), then (zab = 0) avoids the unsmoothed
singularities on P(a2, b2, c2) and lifts to the ample generator of M0 by Theorem 1.6(2).

□

Now we have developed the machinery needed to prove Theorem A.

Definition 1.9. — We say a prime number p is a Markov prime if it appears in a
Markov triple.

Theorem 1.10. — Let (a, b, c) ̸= (1, 1, 1) be a Markov triple in non-decreasing order.
If d > 2 is a multiple of c then there is a smooth limit of degree d plane curves that
is not planar. In particular, if p > 2 is a Markov number that is prime, there is a
nonplanar degeneration of degree p plane curves.

Remark 1.11. — This proves Theorem A.

Proof. — First, we construct a smooth Cartier divisor on M(c) of the appropriate
degree, and show that it extends to a smooth divisor in the degeneration of P2 to
M(c). In the special case c = 2 (so d is even, and at least 4) we can degenerate a
family of even degree curves to a smooth double of a degree d/2 curve. Projecting
from a point on the curve shows the gonality of such a curve is at most d − 2. But
the gonality of a degree d plane curve is d− 1, so we see that this double cover is not
planar. So we proceed by assuming c > 2, and we similarly show the gonality is too
small.

By Theorem 1.6(3), in the specialization of P2 to M(c) the line bundle OP2(nc)

specializes to the line bundle OM(c)(nc
2). By Corollary 1.8(2), OM(c)(nc

2) is globally
generated, so there is a smooth divisor C ∈ |OM(c)(nc

2)|. By Corollary 1.8(1), this is
a specialization of a family of curves of degree nc.

Now we want to show that C is not a plane curve. If it were planar, it would have
to have degree nc and gonality nc − 1. The idea is to show that C admits a low
degree pencil and therefore smaller gonality. Consider the divisorial sheaf OM(c)(ab)

on M(c). Specializing M(c) to M(a, b, c) gives a specialization of OM(c)(ab) to the
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divisorial sheaf OM(a,b,c)(a
2b2) on M(a, b, c) = P(a2, b2, c2). This has two natural

sections xb2 and ya
2 , so by Corollary 1.8(1) we see that h0(OM(c)(ab)) ⩾ 2. This is

the desired pencil on M(c). Restricting to C shows that the gonality of C is at most
nab. Now we claim that ab < c − 1 and thus the gonality of C is too small to be
planar. Indeed, because c′ = 3ab − c ⩽ max a, b, we have c ⩾ 2ab. By assumption,
c > 2 so one of a, b > 1. Therefore, c > ab− 1. □

Example 1.12. — The first non-trivial example is the case p = 5. In this case, Grif-
fin proved ([10, Th. 1.A]) that any smooth hyperelliptic genus 6 curve embeds in
P(1, 2, 13) as

z2 = g26(x, y)

in the weighted coordinates [x : y : z] on P(1, 2, 13), where g26(x, y) is a degree 26
polynomial such that g26(0, y) ̸= 0 and the polynomial h13(u, y) has 13 distinct roots,
where h13 is obtained from g26 by u = x2. The polynomial g26 is determined by choice
of Weierstrass point on the curve.

These curves further admit an embedding as Cartier divisors on M(5). The sur-
face M(5) can be explicitly realized as a hypersurface of degree 26 in P(1, 2, 13, 25)
(cf. Example 1.3): in terms of weighted coordinates [x:y:z:w], M(5) can be given by

(xw = z2 − g26(x, y)) ⊂ P(1, 2, 13, 25),

where g26 is any degree 26 polynomial such that g26(0, y) ̸= 0. To compare with the
notation of Example 1.3, make the change of coordinates w 7→ w − 1

x (g26(x, y) −
g26(0, y)) and scaling of y so this can be expressed as xw = z2 + y13.

Therefore, if M(5) = (xw = z2 − g26(x, y)) in P(1, 2, 13, 25), any hyperelliptic
curve can be written as the Cartier divisor (w = 0) on M(5). By Theorem 1.6 this
Cartier divisor extends to a Cartier divisor on a smoothing of M(5) to P2, so every
hyperelliptic curve of genus 6 can be realized as a limit of quintic plane curves in this
way.

Remark 1.13. — In [31], Zagier proved that the Markov counting function grows
asymptotically like log(n)2. As the prime counting function grows like n/ log(n) the
density of primes that are Markov numbers is 0. Therefore, Conjecture C implies that
for almost all prime numbers p, every smooth limit of a degree p plane curve is a
plane curve.

2. Hacking’s Calabi-Yau limits

Given a family of plane curves Ct ⊂ P2 over a punctured base A1∖{0}, one may ask
how to complete the family, or if there is a unique way to do so. A useful framework
for this problem is to study not only degenerations of the curve Ct, but rather the pair
(P2, Ct). For curves of degree d ⩾ 4, to study the limits of these pairs, we introduce
the moduli space of stable pairs. Although we will rely mostly on Hacking’s work in
[11], we include several relevant definitions and results here, and direct the interested
reader to [19].
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Definition 2.1 (KSBA stability; see [19, Def. 8.6, 8.7]). — The moduli space of stable
pairs parametrizes semi-log canonical pairs (X,D), with X projective, of fixed volume
and dimension, such that KX +D is ample.

Defining a family of such pairs requires great care and subtlety, see [19, Ch. 7, 8].

Theorem 2.2 ([19, Th. 8.9(2)]). — Up to base change, any family of stable pairs

(X, cD) −→ T×

over a punctured one-dimensional base T× can be extended uniquely to a stable family
(X, cD) → T , such that KX/T + cD is relatively ample and each fiber (Xt, cDt) has
slc singularities.

In particular, given any family of degree d ⩾ 4 plane curves C over a punctured
one-dimensional base T×, for c > 3/d, by regarding the family as a family of pairs
(P2×T×, cC), we obtain a unique stable limit (X0, cD0) of the family. The surface X0

is a slc degeneration of P2 and D0 is a limit of the family of plane curves.

Example 2.3. — Although the previous theorem guarantees a unique limit for every c,
these vary with c in a precise way, and as c varies, there is a wall-crossing phenom-
enon [1]. For example, take a family of smooth quartic curves Ct ⊂ P2 degenerating
to a curve C0 ⊂ P2 with a single cusp, a singularity of the form x2 + y3 = 0. This
pair (P2, C0) is the stable limit of the family of smooth curves for 3/4 < c < 5/6.
However, for c > 5/6, the stable limit is a pair (X,C ′

0), where X is a non-normal
surface X1 ∪ X2, where each X1 has cyclic quotient singularities along the double
locus, and C ′

0 is a reducible curve C ′
0 = C1 ∪ E (one component in each component

of X), where E is an elliptic tail meeting C1 at a single point on the double locus
of X. This example (and related wall crossings) were studied in [13].

Definition 2.4. — Let D be a smooth family of curves over a base T with special
fiber 0 ∈ T such that Dt is a plane curve of degree d > 3 for t ̸= 0. Let T× = T ∖ {0}
and D× = D ×T T

×. Consider the family (P2 × T×, D×). By Theorem 2.2, there is
a unique limit of the family such that the central fiber (X0, D

′
0) is slc and KX0 +D′

0

is ample. By adjunction, this implies that D′
0 is nodal and KD′

0
is ample, hence by

applying Theorem 2.2 to the family of curves D×, D′
0 is the unique stable limit of

this family. Therefore, D′
0 = D0, and we will call (X0, D0) the coefficient 1 limit of

(P2 × T×, D×) and we will call the family (X,D) the coefficient 1 family.

In general, determining the possible degenerations of P2 that appear in these limits
is quite difficult. As a first indication, it is not even clear how many components these
degenerations should have. However, in [11], the author studies stable pairs (X, cD)

where c = 3/d+ ε is as small as possible. In fact, Hacking is able to obtain a moduli
space of semistable pairs [11, Def. 2.4] (X, (3/d)D) satisfying:

– the surface X is normal and log terminal,
– the pair (X, (3/d)D) is log canonical, and dKX + 3D ∼ 0,
– X admits a Q-Gorenstein smoothing to P2.
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Furthermore, Hacking proves that any family of pairs (P2, Ct) can be completed
to a family of semistable pairs. This completion is not necessarily unique, but its
existence is sufficient for this paper.

Definition 2.5. — Given a family (P2 × T×, D×) of smooth degree d plane curves
over T×, we will call any such family of semistable pairs Hacking’s Calabi-Yau family,
denoted by (XCY, DCY).

A main benefit to considering these semistable pairs is that there exists an explicit
(infinite) list of log terminal Q-Gorenstein degenerations of P2, enumerated by the
Markov numbers. However, the curves appearing on these surfaces may be quite sin-
gular. In particular, the log canonical threshold can be as small as 3/d. The trade-off
between simplifying the surface and complicating the curve will be explored in the
following sections.

Remark 2.6. — An alternative perspective to constructing Hacking’s Calabi-Yau lim-
its comes from K-moduli. For ε ∈ (0, 3/d), there is a K-moduli space parameterizing
pairs (X, (3/d − ε)D) arising as degenerations of plane curves of degree d (cf. [2]).
These depend on ε, but for for 0 < ε ≪ 1, the K-moduli spaces are isomorphic
([2, Th. 1.2]), i.e., for any pair (X, (3/d − ε)D) appearing in the K-moduli space is
K-semistable for all 0 < ε≪ 1. Because any K-semistable pair is klt, this implies that
the pair (X, (3)/dD) is a semistable limit. So at least one of Hacking’s Calabi-Yau
limits of a family of plane curves is reproduced from K-moduli.

For any fixed degree d that is not a multiple of 3, it is straightforward to write down
the possible surfaces XCY

0 that may appear using the classification from Theorem 1.4,
the index bound from [11, Th. 4.5], and a log canonical threshold computation. In par-
ticular, the following propositions give all possible surfaces XCY

0 containing limits of
degree 5 or degree 7 curves.

Proposition 2.7. — Let D be a projective family of curves over a smooth pointed
curve 0 ∈ T such that the general fiber is a smooth plane curve of degree 5.
If (XCY

0 , DCY
0 ) is Hacking’s Calabi-Yau limit over 0 then XCY

0 is either P2, P(1, 1, 4),
M(5), or P(1, 4, 25).

Proof. — By [11, Th. 4.5], the index of the canonical divisor of XCY
0 is at most 5 at

each point, and the index of KM of any surface M = M(a, b, c), M(a, b), or M(a)

is given by a, b, or c, so we may assume that a, b, c ⩽ 5. The only surfaces with this
property are P2, M(2) = P(1, 1, 4), M(5), or M(2, 5) = P(1, 4, 25). □

Proposition 2.8. — Let D be a projective family of curves over a smooth pointed curve
0 ∈ T such that the general fiber is a smooth plane curve of degree 7. If (XCY

0 , DCY
0 )

is Hacking’s Calabi-Yau limit over 0 then XCY
0 is either P2 or P(1, 1, 4).

Proof. — XCY
0 is a surface M that is M(a, b, c), M(a, b), or M(a) for some unordered

Markov triple (a, b, c). By [11, Th. 4.5], the index of the canonical divisor of M is at
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most 7 at each point, and the index of KM at each singular point is given by a, b,
or c, so we can assume a, b, c ⩽ 7. So the only Markov triples to consider are (1, 1, 1),
(1, 1, 2), and (1, 2, 5). So we only need to consider the triple (1, 2, 5) and rule out the
surfacesM(2, 5) andM(5). However, limits of degree 7 curves onM(5) orM(2, 5) have
log canonical threshold at most 1/4 (see e.g. [2, Prop. 9.13]), which is less than 3/7,
so cannot appear as Hacking’s Calabi-Yau limits. □

3. General results on normal families of curves and
normalizing S2 varieties

In Section 2 we started with a smooth projective family of curves

D −→ T

over a 1-dimensional base T . Assuming that a general member is a plane curve,
we showed there is a natural, one-parameter family DCY such that every fiber is planar
or lives in a degeneration of P2. One difficulty that arises is that the surface DCY

need not be normal. On the other hand, D is a smooth family (and therefore normal).
The purpose of this section is to understand the basic relationship between DCY, its
normalization Dnorm, and D. These results are used extensively in the next section to
study the combinatorics of the central fiber of Hacking’s Calabi-Yau family, especially
when DCY is not a normal surface.

3.1. Contracting to a normal surface. — Consider a commutative diagram of vari-
eties:

S′ S

T

µ

such that µ is a birational map of normal surfaces, T is a curve, the maps to T

are projective and flat with general fiber a smooth and irreducible curve of genus g.
Assume there is a marked point 0 ∈ T and that the fiber S′

0 is a reduced and normal
crossing curve.

Definition 3.1. — Recall that for C a reduced curve with normalization f : C̃ → C

and p ∈ C is a point, the δ-invariant of C at p is the number:

δp = lengthp(f∗(OC̃)/OC).

The sum of the δ-invariants controls the difference between the arithmetic and
geometric genuses of C:

χ(OC̃)− χ(OC) =
∑
p∈C

δp.

Let E = µ−1(p) ⊂ S′
0 be an exceptional divisor with reduced scheme structure

(which is necessarily reduced, but possibly reducible). The δ-invariant of the point
p ∈ S0 can be computed as follows.
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Lemma 3.2. — With the assumptions above:
(1) The δ-invariant at p ∈ S0 can be computed by the following formula:

δp = (# of branches at p ∈ S0)− χ(OE).

(2) If there is a component C ⊂ S′
0 such that pg(C) = pa(S

′
0) = g then either C

maps isomorphically onto its image in S0 or C is contracted to a point q ∈ S0 and
for all p ∈ S0 :

δp(S0) =

{
(# of branches at p ∈ S0)− 1 if p ̸= q

(# of branches at p ∈ S0)− 1 + g if p = q.

Proof. — For (1), by contracting all exceptional divisors of µ that don’t map to p we
can assume that µ : S′ → S is an isomorphism away from p. So µ is an isomorphism
away from p. Let C ′ = µ−1(S0) be the strict transform of S0 in S′. Thus S′

0 = C ′∪E,
and locally at p, C ′ normalizes S0.

Consider the exact sequence of sheaves on S′:

0 −→ I −→ OS′
0
−→ OC′ −→ 0.

As S′ → T is flat, χ(OS′
0
) = 1− g = χ(OS0

). Thus δp = −χ(I).
The ideal I is supported on the exceptional divisor E and S′

0 is nodal in a neigh-
borhood of E; thus I ∼= OE(−E ∩C ′) (where the intersection E ∩C ′ is considered as
a reduced divisor on E). As C ′ is nodal near E, OE(−E ∩ C ′) is a line bundle with
degree:

deg(OE(−E ∩ C ′)) = −(# of branches at p ∈ S0).

So by Riemann-Roch:

δp = −χ(I) = −χ(OE(−E ∩ C ′)) = (# of branches at p ∈ S0)− χ(OE).

For (2), note that the dual graph of S′
0 is necessarily a tree, and the dual graph

of any connected curve E ⊂ S′
0 is either (a) a tree of rational curves, in which case

χ(OE) = 1, or (b) a tree that contains C, in which case χ(OE) = 1 − g. The result
then follows from (1). □

3.2. Normalizing S2 varieties. — The point of this subsection is to prove a general
result about S2 varieties, which we believe is well known to experts. We show that
all complex S2 varieties can be constructed by codimension on gluing conditions on
their normalization. This section has benefited significantly from correspondence with
János Kollár.

Remark 3.3. — The main application of this section will be to studying birational
models of DCY. As XCY is log terminal and Q-factorial ([11, Lem. 2.11]), Corol-
lary 5.25 in [20] implies ODCY is Cohen-Macaulay and hence DCY is S2.

Let X be a complex S2 variety and let

ν : Xν −→ X
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be the normalization map. Recall that the conductor ideal is

condX := HomOX
(ν∗OXν ,OX).

This is the largest ideal sheaf of OX that is also an ideal of ν∗OXν .

Lemma 3.4. — Let X be an S2 variety with normalization Xν as above. Let I ⊂
ν∗(OXν ) be an ideal sheaf such that

I ⊂ condX ⊂ ν∗OXν .

Let Dν ⊂ Xν and D ⊂ X denote the subschemes corresponding to I. Then the pushout
Xν ⊔Dν D exists and the natural map Xν ⊔Dν D → X is an isomorphism.

Proof. — The existence of the pushout is guaranteed by Ferrand’s work [8, Th. 7.1]
(alternatively, see [30, Tag 0ECH]). Given that the pushout exists we may check
locally that it gives an isomorphism. Assume then that X = Spec(A), Xν = Spec(B),
and I ⊂ B is an ideal contained in the conductor (so I ⊂ A as well). Then the pushout
is given by Spec(B×(B/I) (A/I)). It is straightforward to check that the natural map
A→ B ×(B/I) (A/I) is an isomorphism. □

Definition 3.5. — Let Y ⊂ Z be a subscheme of a normal pure-dimensional
scheme Z. Define the codimension one part of Y , denoted Ydiv ⊂ Y to be the
maximal subscheme of Y which has pure codimension 1 in Z.

Corollary 3.6. — Let X be an S2 variety with normalization Xν as above. Suppose
that

F = F1 ∪ F2 ⊂ X

is a divisor which – at least set-theoretically – contains the non-normal locus of X.
Assume there is a point x ∈ F1 ∩ F2. Then the divisors D1 = (ν−1F1)div and D2 =

(ν−1F2)div meet in Xν over x ∈ X.

Proof. — Assume for contradiction that D1 and D2 do not meet over X. By working
locally on X we may assume they do not intersect. Let D = D1 ⊔ D2 and consider
the divisorial ideal sheaf O(−kD). The conductor subschemes of X and Xν have pure
codimension 1 as X is S2. It follows that for k large enough we have ν∗O(−kD) ⊂
condX ⊂ ν∗OXν . Now by the assumption that D1 and D2 do not intersect, using
Ferrand’s work ([8, Th. 7.1]) we make the pushout:

X ′ := Xν ⊔k(D1⊔D2) (F1 ⊔ F2).

It is straightforward to show that this pushout is a variety that admits a finite map
to X which is an isomorphism outside codimension 2. By Lemma 3.7 (below), the
natural map X ′ → X is an isomorphism. However, at the level of C-points we see
there are two points in X ′ over x, a contradiction. □

Lemma 3.7. — Let X and Y be complex varieties and assume X is S2. If

f : Y −→ X
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is a finite, proper, birational map that is an isomorphism away from codimension 2,
then f is an isomorphism.

Proof. — Consider the exact sequence:

0 −→ OX −→ f∗(OY ) −→ Q −→ 0.

By [19, Lem. 10.6] such a sequence is split. However, Q is torsion and f∗OY is torsion-
free. Therefore Q = 0 and thus f is an isomorphism. □

Corollary 3.8. — Let X be an S2 variety with normalization Xν as above. Let F ⊂ X

be a divisor that set-theoretically contains the nonnormal locus of X. Suppose that
x ∈ F ⊂ X and I = {F1, . . . , Fℓ} is the set of analytic branches of F at x. There is
no partition:

I = I1 ⊔ I2
(with I1 and I2 nonempty) such that the codimension one preimages of the branches
in I1 do not meet the codimension 1 preimages of the branches in I2 in the normal-
ization Xν .

Proof. — There is an étale neighborhood ψ : U → X of x ∈ X and a point y ∈ U

such that the analytic branches of F correspond to irreducible components of ψ−1F

going through y. Then apply Corollary 3.6. □

4. Intersection graphs

The purpose of this section is to define for any 1-dimensional scheme C a bipartite
graph Γ(C). This is a generalization of the dual graph of a semistable curve that
behaves reasonably well for S2 families of curves.

Definition 4.1. — Let C be a purely one-dimensional scheme. The intersection graph,
Γ = Γ(C) of C is a bipartite graph (with green and yellow vertices):

– the set of green vertices G = G(C) correspond to one dimensional components
of C,

– the set of yellow vertices Y = Y (C) correspond to points on C where C has
multiple analytic branches, and

– the set of edges E = E(C) connecting a yellow vertex y to a green vertex g are
in correspondence with the analytic branches of g that go through y.

Remark 4.2
(1) The graph Γ is bipartite as edges necessarily connect yellow vertices to green

vertices.
(2) If C is a curve with only nodal singularities, then Γ(C) is the barycentric

subdivision of the dual graph of C.
(3) Every yellow vertex has at least 2 adjacent edges.
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C1 Γ(C1) C2 Γ(C2)

Figure 1. Examples of curves and their intersection graphs.

Definition 4.3. — Taking the endpoints gives two natural maps E → G and E → Y .
For g ∈ G (resp. y ∈ Y ) we use Eg (resp. Ey ∈ Y ) to denote the edges adjacent to
g ∈ G (resp. the edges adjacent to y ∈ Y ): these are the fibers of these maps. Likewise,
for any g ∈ G, we define the set of adjacent vertices to be:

Yg = {y ∈ Y | g and y are adjacent ⊂ Γ} ⊂ Y.

Similarly for any y ∈ Y we define Gy ⊂ G.

Definition 4.4. — Given a finite map of curves f : C1 → C2, the induced map of
graphs(1)

Γf : Γ(C1) −→ Γ(C2),

is defined as follows:
(1) For g ∈ G(C1), the corresponding component maps to a unique component in

G(C2),
(2) For y ∈ Y (C1) there are two cases:

(a) If all of the branches of C1 at y map to the same branch in C2 then that
branch determines a unique irreducible component g′ ∈ G(C2). Set Γf (y) = g′.

(b) If the branches of C1 at y map to more than one branch of C2, then
y′ = f(y) ∈ C2 is a point with multiple analytic branches. Set y′ = Γf (y).

(3) For e ∈ E(C1) that connects the vertex g ∈ G(C1) to y ∈ Y (C1):
(a) If Γf (y) = Γf (g) = g′ then Γf (e) := g′.
(b) Otherwise e determines a unique branch of f(g) at f(y) = y′ and Γf (e)

is defined to be that branch.

Definition 4.5. — Let f : C1 → C2 be a finite map of curves.
(1) For any yellow vertex y ∈ Γ(C1) such that Γf (y) is yellow, we define the branch

injectivity failure of Γf at y be
ζf (y) := #(Ey)−#(Γf (Ey)).

(If y maps to a green vertex, set ζf (y) = 0.)
(2) For g ∈ G(Cg) with associated component C ′ ⊂ C1 we define the component

injectivity failure of Γf at g to be the number
ζf (g) := deg

(
f |(Cg)red

)
− 1.

Thus ζf (g) = 0 ⇐⇒ f maps (Cg)
red birationally onto its image.

(1)This is an abuse of terminology and is really a map of the underlying topological spaces.
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(3) We say Γf is locally injective at y if ζf (y) = 0 and ζf (g) = 0 for all g ∈ Ey.
(4) For any curve C, we define the multiplicity m(g) of g ∈ G(C) to be the length

of the local ring of C at the generic point of the associated curve Cg.

Lemma 4.6. — Let C1 be a reduced curve and let f : C1 → C2 be a finite proper map
of curves. If there is a yellow vertex y ∈ Y (C1) such that Γf is locally injective at y
then there are analytic neighborhoods y ∈ ∆1 ⊂ C1 and f(y) ∈ ∆2 ⊂ f(C1)

red such
that the map

∆1 −→ ∆2

is a partial normalization. As a consequence we have an inequality of δ-invariants:

δy(C1) ⩽ δf(y)(∆2).

Proof. — Any proper birational map is a partial normalization. As the branches at y
map injectively to the branches at f(y) and each curve adjacent to y maps birationally
onto its image we can take a small enough neighborhood where the map is birational
and proper. □

Definition 4.7. — Let Γ(C) be the intersection graph of a curve. Let y ∈ Γ(C) be a
yellow vertex. We define the local Euler characteristic at y to be:

χloc(y) = 1−#(Ey).

Note that, for any yellow vertex y ∈ Γ(C) we have χloc(y) ⩽ −1. The following is
a straightforward application of bipartiteness:

(4.1) χ(Γ(C)) = #(G(C)) +
∑

y∈Γ(C)

χloc(y).

Now we consider the case of interest to us. Let

X −→ T ∋ 0

be a flat map from an irreducible S2 surface X to a smooth pointed curve 0 ∈ T such
that the non-normal locus of X is contained in the central fiber X0. Let

ν : Xν −→ X

denote the normalization map.

Theorem 4.8. — Let X be an S2 surface as above. Assume that the curve Xν
0 is

reduced.
(1) The induced map Γν : Γ(X

ν
0 ) → Γ(X0) is surjective.

(2) There is an inequality:

χ(Γ(Xν
0 )) ⩽ χ(Γ(X0)) +

∑
g∈G(X0)

(m(g)− 1)−
∑

g∈G(Xν
0 )

ζν(g)−
∑

y∈Y (Xν
0 )

ζν(y).
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(3) Define
M :=

∑
g∈G(X0)

(m(g)− 1).

If χ(Γ(Xν
0 )) = χ(Γ(X0)) +M then ζν(y) = ζν(g) = 0 for all y ∈ Y (Xν

0 ) and g ∈
G(Xν

0 ).

Roughly speaking this says that the difference in the Euler characteristics of the
intersection graphs of Xν

0 and X0 are controlled by the multiplicities of X0.

Proof. — To prove part (1), note that it is clear for green vertices in Γ(X0). For any
yellow vertex y ∈ Γ(X0) and any edge e ∈ Ey, partition the branches at y as follows:

Ey = {e} ⊔ (Ey ∖ {e}).

Then the one dimensional pre-images of the branches {e} and Ey∖{e} must intersect
by Corollary 3.8. This shows e ∈ Γf (E(Xν

0 )) and it follows that y ∈ Γf (Y (Xν
0 )).

For (2), we would like to use Equation 4.1. As the pushforward of the cycle [Xν
0 ]

is [X0] we have: ∑
g∈G(X0)

m(g) =
∑

g∈G(Xν
0 )

(ζν(g) + 1).

Which gives

#G(X0) +
∑

g∈G(X0)

(m(g)− 1) =

( ∑
g∈G(Xν

0 )

ζν(g)

)
+#G(Xν

0 ).

This shows:
#G(Xν

0 ) = #G(X0) +
∑

g∈G(X0)

(m(g)− 1)−
∑

g∈G(Xν
0 )

ζν(g).

To complete the proof of (2) we need to prove the inequality:∑
y∈Y (Xν

0 )

(χloc(y) + ζν(y)) ⩽
∑

y∈Y (X0)

χloc(y).

For any yellow vertex y ∈ Γ(Xν
0 ), we have χloc(y) ⩽ −1. Thus if Ỹ (Xν

0 ) ⊂ Y (Xν
0 )

represents the yellow vertices that map to yellow vertices:∑
y∈Y (Xν

0 )

(χloc(y) + ζν(y)) ⩽
∑

y∈Ỹ (Xν
0 )

(
χloc(y) + ζν(y)

)
.

So for each y′ ∈ Y (X0) it suffices to check that the inequality∑
y∈Γ−1

ν (y)

(χloc(y) + ζν(y)) ⩽ χloc(y
′).

First we show that we can order the vertices
Γ−1
ν (y′) = {y1 < y2 < · · · < yℓ}

such that for each yi (with i > 1) the intersection

∅ ̸= Γν(Eyi
)
⋂( ⋃

yj<yi

Γν(Eyj
)

)
⊂ Ey′ ,

i.e., there is an overlap in the images of the edges adjacent to yi and the previous yjs.
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We proceed by induction. Suppose, we know it up to step (i− 1). Define:
Yi−1 := {y1, . . . , yi−1} and Ei−1 :=

⋃
y∈Yi−1

Eyi
.

Suppose for contradiction that for all yj ∈ Γ−1
ν (y′)∖ Yi−1 the intersection:

Γν(Ei−1) ∩ Γν(Eyj
) = ∅.

Then we can partition the branches g ∈ Ey′ into two sets:
Ey′ = Γν(Ei) ⊔ (Ey′ ∖ Γν(Ei))

Therefore the one-dimensional preimages of the branches in Γν(Ei) and Ey′ ∖Γν(Ei)

do not intersect, which contradicts Corollary 3.6.
Thus we can order the yellow vertices as desired. Now we can count:

χloc(y1) ⩽ 1−#(Γν(E1))− ζ(y1),

χloc(y1) + χloc(y2) ⩽ 1−#(Γν(E2))− ζ(y1)− ζ(y2),

. . .

χloc(y1) + · · ·+ χloc(yℓ) ⩽ χloc(y
′)− ζ(y1)− · · · − ζ(yℓ).

These inequalities can be proved in order, using the property of the ordering. This
completes the proof of (2). And the proof of (3) follows easily. □

Now we would like to classify the possible intersection graphs that appear in Hack-
ing’s Calabi-Yau limits of smooth families of degree 7 curves and degree 5 curves. Let
DCY be an S2 surface with a projective map to a curve T such that the nonnormal
locus is contained in DCY

0 . Let Dnorm be the normalization of DCY and assume that
(Dnorm)0 is reduced. If DCY is the divisor in Hacking’s Calabi-Yau limit of a smooth
family of degree 7 curves (or degree 5 curves) then certain combinatorial hypotheses
are satisfied by the components of DCY

0 , which can be used to classify the intersection
graph of DCY

0 . Specifically, if DCY
0 is a limit of degree 7 curves then the hypothe-

ses (H1)–(H6) below are satisfied, and if DCY
0 is a limit of degree 5 curves then the

hypotheses (H1⋆)–(H6⋆) below are satisfied (see Lemma 4.9).
(H1) = (H1⋆) The intersection graph, Γ((Dnorm)0) is a tree.
(H2) = (H2⋆) If DCY

0 is nonreduced then there is some vertex v ∈ G((Dnorm)0) or
v ∈ Y ((Dnorm)0) such that ζν(v) > 0.

(H3) The multiplicity of any curve in DCY
0 is at most 2.

(H3⋆) The curve DCY
0 is reduced.

(H4) At any point in DCY
0 , the multiplicity is at most 4.

(H4⋆) At any point in DCY
0 , the multiplicity is at most 3.

(H5) = (H5⋆) Any two green vertices g1, g2 ∈ Γ(DCY
0 ) have graph distance 2.

(H6) = (H6⋆) At least one component of DCY
0 is reduced.

Lemma 4.9. — Let D be a family of smooth projective curves over a smooth curve T .
If the general fiber is a degree 7 plane curve then after possibly making a change of base
(Dnorm)0 is reduced and hypotheses (H1)–(H6) are satisfied by DCY and its normal-
ization Dnorm. Similarly, if D is a family of degree 5 curves then after possibly making
a change of base, (Dnorm)0 is reduced and hypotheses (H1⋆)–(H6⋆) are satisfied.
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Proof. — After possible making a change of base, we can assume that there is a
resolution of singularities Dss of DCY with reduced, nodal central fiber. The family D
is the relative minimal model of the family, so there is a map Dss → D that contracts
trees of rational curves. It follows that the intersection graph of Dss

0 is a tree and the
same is true for (Dnorm)0 as Dnorm is a contraction of Dss. Thus (H1) is satisfied.

Now suppose DCY
0 is nonreduced. If (H2) does not hold, then either D0 is birational

to a component of DCY
0 orD0 is contracted inDnorm (in which case, by Lemma 3.2 and

Lemma 4.6 there is a point p ∈ (DCY
0 )red such that δp((DCY

0 )red) ⩾ (# of branches)+
g − 1). Either of these cannot happen as the arithmetic genus of (DCY

0 )red is strictly
smaller than the arithmetic genus of DCY

0 .
(H3) and (H4) are both consequences of the log canonical threshold bound:

lct(X0, D
CY
0 ) ⩾ 3/7.

(The log canonical threshold of a multiplicity a point is bounded from above by 2/a.
The log canonical threshold of a multiplicity b curve is bounded above by 1/b.)

Now, recall by Proposition 2.8, that DCY
0 is contained in either P2 or P(1, 1, 4).

(H5) uses that P2 and P(1, 1, 4) both have Picard rank 1.
For (H6), it is clear in the case DCY

0 ⊂ P2 (as 7 is not a multiple of 2). In the case
DCY

0 ⊂ P(1, 1, 4), we apply Lemma 4.10 below.
For degree 5 curves, the hypotheses can be checked similarly using Proposition 2.7

in place of Proposition 2.8. □

Lemma 4.10. — Let C =
∑
miCi ⊂ P(1, 1, 4) be a divisor where Ci is a curve of degree

di. If ri is the remainder of di modulo 4 then the multiplicity of C at the vertex in
P(1, 1, 4) is at least

∑
miri. In particular, if C ∈ |O(14)| and lct(P(1, 1, 4), C) ⩾ 3/7

then at least one component of C is reduced.

Proof. — Denote the coordinates on P(1, 1, 4) by x, y, z. For each Ci, we can write the
equation of Ci as a polynomial of the form

∑⌊di/4⌋
j=0 zjfdi−4j(x, y). In the local chart

where z ̸= 0, the curve is defined by a polynomial in x, y whose minimal degree is ri,
so must pass through the vertex with multiplicity as least ri. Therefore, the curve C
must pass through the vertex with multiplicity

∑
miri.

If C ∈ |O(14)| and every component of C is non-reduced, then C = 2C ′, where C ′ is
a degree 7 curve that is possibly reducible. By the previous paragraph, such a doubled
curve has multiplicity at least 6 at the vertex, which implies that the log canonical
threshold is less that 3/7. □

Now we classify the intersection graphs of the curves DCY
0 that appear as limits of

degree 5 or 7 plane curves.

Theorem 4.11. — With the hypotheses (H1)–(H6) above, DCY
0 has between 1 and 4

components and has one of the following intersection graphs Γ (the green vertices
marked with 2s are doubled curves):
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One component Two components Three components Four components

(⋆)

(⋆)

2

(⋆)

2

2

2

With the hypotheses (H1⋆)–(H6⋆), DCY
0 has between 1 and 3 components and its

intersection graph is one of the graphs marked with a star.

Proof. — Throughout let |G| denote the number of green vertices. We will use the
following fact:

Fact. — If Γ is a connected graph and Γ′ ⊂ Γ is any subgraph, then χ(Γ) ⩽ χ(Γ′).

To start assume DCY
0 is reduced; so DCY = Dnorm. By (H1), Γ is a tree. Assume

that there are at least 2 green vertices. Consider the graph Γ′ obtained by deleting
one of the green vertices g ∈ Γ (and all the adjacent edges Eg). By (H5) this graph is
still connected, so has χ(Γ′) = 1. Thus 1 = χ(Γ) = χ(Γ′) + 1 − (#(Eg)). Thus there
must be one edge adjacent to any g ∈ Γ, and therefore Γ is a star graph with a single
yellow vertex (these are the top graphs in the table). Notice, that by (H4) there can
be at most 4 green vertices in Γ.

Now assume that DCY
0 is nonreduced. We organize our proof by the number of

doubled curves M ⩾ 1 in DCY
0 . By Theorem 4.8 and assumptions (H1) and (H2),

we have:
(4.2) χ(Γ) +M ⩾ 2.

To start, consider the case M = 1. Thus:
χ(Γ) ⩾ 1,

so Γ(DCY
0 ) is a tree. The argument from the reduced case implies it is a star with

center a yellow vertex. By (H4) there are at most three components (using that now
there is a doubled curve). This gives two possible graphs in the table.

Now assume M = 2. By (H6) we have |G| ⩾ 3. If |G| = 3 then by (H4) and (H5),
Γ contains the following subgraph.

2

2

This has Euler characteristic 0, so there cannot be any additional yellow vertices or
edges. If |G| ⩾ 4 then Γ contains one of the following subgraphs:

2

2

2

2

2

2

These all have Euler characteristic at most −1 which is a contradiction.
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If M ⩾ 3 then by (H6) |G| ⩾ M + 1. By (H4) any yellow vertex that meets
two doubled vertices cannot meet any other vertex. By (H5) there are at least

(
M
2

)
yellow vertices connecting pairs of doubled components and at least M yellow vertices
connecting the doubled components to some reduced component. For example when
M = 3, Γ contains the subgraph: Such a graph (assuming M ⩾ 3) has

2

2

2

χ(Γ) ⩽M + 1−
(
M

2

)
−M = 1−

(
M

2

)
⩽ 1−M.

This is too negative.
Replacing (H3) by (H3⋆) and (H4) by (H4⋆) selects the starred graphs in the

table. □

Finally we give a quick corollary of Theorem 4.8 regarding the possible dual graphs
of stable replacements of curves in a linear series on a surface. Let S be a smooth
projective complex surface. Let Λ be a linear series on S such that the general member
of Λ is smooth with genus g ⩾ 2.

Definition 4.12. — As in the previous paragraph, let C = m1C1 + · · ·+mℓCℓ be a
curve with [C] ∈ Λ. We say that a stable curve D′ is a stable replacement of C if there
is a smooth one dimensional pointed curve 0 ∈ T , a map f : T → Λ, and a family of
curves D over T such that

(1) D0 = D′,
(2) if t ̸= 0 the curve Dt is smooth and isomorphic to the curve defined by f(t) ∈ Λ,

and
(3) f(0) = [C] ∈ Λ.

Theorem F is immediate from the following corollary.

Corollary 4.13. — With C such that [C] ∈ Λ as above, if D′ is a stable replacement
of C, then

χ(Γ(D′)) ⩽ χ(Γ(C)) +
∑

(mi − 1).

Remark 4.14. — In particular, this shows that the number of loops in the dual graph
of D (which is homotopic to Γ(D)) can be bounded from below by the number of
loops in the dual graph of C and the multiplicities of C. This is most interesting
when C is nonreduced.

Proof. — Let T → Λ as above. Let CT denote the pullback of the universal curve
over Λ to T . Note, that making a base change of T does not change the stable limit
at 0, so after a base change we may assume that there is a resolution of singularities
C′
T → CT such that the central fiber C′

0 is reduced. Then C′
0 is a semistable model
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of D, so they have homotopic dual graphs. The surface CT ⊂ T × S is S2 as it is a
Cartier divisor in a smooth variety. The result then follows from Theorem 4.8(3). □

5. Background on curve singularities and Hacking’s Calabi-Yau limits

The goal of this section is to recall the background on singularities of curves in
surfaces that is needed to prove Theorems D and E (i.e., to show that every smooth
projective limit of a degree 5 curve is planar or hyperelliptic in M(5), and show that
every smooth projective limit of a degree 7 curve is planar). For more background
references see [6, Ch. 8], [21, Ch. 2], and [25, Ch. 2].

Throughout, we say a singular point of a curve p ∈ C is a cusp if C is unibranch
at p. Let p ∈ C ⊂ X be a cuspidal point p on the curve C on a smooth surface X.
In an analytic neighborhood of p, the curve C can be written parametrically as

(x, y) = (ta, c1t
b1 + c2t

b2 + . . . )

with 1 < a < b1 < b2 < · · · ∈ Z such that a does not divide b1, gcd(a, b1, b2, . . . ) = 1,
and ci ̸= 0 for all i. From the parametrization of a cuspidal singularity it is possible
to read off many invariants of the singularity. For example, the multiplicity of the
cusp C is a and the log canonical threshold of the pair (X,C) near p is (1/a)+(1/b1).

Definition 5.1. — One invariant of the cusp is the multiplicity sequence; the sequence
encoding the multiplicity of the exceptional divisors in the minimal resolution of the
cusp. Let (X0, C0) := (X,C) and let

πi : (Xi, Ci) −→ (Xi−1, Ci−1)

be the blow up of the singular point of Ci−1 with exceptional divisor Ei. Set
Ci = (πi)

−1
∗ Ci−1. Let π = πn ◦ πn−1 ◦ · · · ◦ π1 be the minimal embedded resolu-

tion of the cusp p. The multiplicity sequence of the cusp p ∈ C is the sequence
mp := (m1,m2, . . . ,mn), where mi is the multiplicity of the exceptional divisor Ei

in π∗
i (Ci−1). This satisfies the inequalities m1 ⩾ m2 ⩾ · · · ⩾ mn = 1. For simplicity,

if Ci−1 is smooth then mi = 1 (and hence Cj is smooth for all i, j such that i ⩽ j ⩽ n),
we omit all the multiplicities mj = 1 for j ⩾ i.

The δ-invariant (Definition 3.1) of a cusp singularity can be read off from its mul-
tiplicity sequence:

(5.1) δp =

n∑
i=0

mi(mi − 1)

2
.

Definition 5.2. — Another invariant of the cusp is the collection of Newton pairs
that parameterize the cusp. Define gi := gcd(a, b1, b2, . . . , bi). Then, there is a finite
sequence i1 < i2 < · · · < ik at which gi decreases, i.e., i1 = 1,

gi1 = · · · = gi2−1 > gi2 = · · · = gi3−1 > gi3 = · · · > gik = 1.
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Define i0 = 0, b0 = 0, and gi0 = a. For 1 ⩽ j ⩽ k+1, let Mj = gij−1
and for 1 ⩽ j ⩽ k,

let Nj = bij − bij−1 . The k Newton pairs of the cusp are the k pairs

(mj , nj) =
( Mj

Mj+1
,
Nj

Mj+1

)
for 1 ⩽ j ⩽ k.

We can write Mj = mjmj+1 . . .mk and Nj = njmj+1 . . .mk. The δ-invariant of a
cusp singularity can also be expressed in terms of the Mi [21, 2.1.1]:

(5.2) δp =
1

2

(
(M1 − 1)(N1 − 1) +

k∑
j=2

(Mj − 1)Nj

)
.

Remark 5.3. — By construction, Mj ⩾ 2Mj+1, so Mj ⩾ 2k−jMk, and similarly,
Nj ⩾ 2k−jNk. Because Mk ⩾ 2 and Nk ⩾ 1, Mj ⩾ 2k−j+1 and Nj ⩾ 2k−j . These
inequalities relate the number of Newton pairs k to the δ-invariant.

Further observe that N1 = b > a =M1 by construction, so we have the bound

2δp = (M1 − 1)(N1 − 1) +
∑

2⩽j⩽k

(Mj − 1)Nj

⩾ (M1 − 1)(N1 − 1)

⩾ (M1 − 1)M1

⩾ (2k − 1)2k.

In particular, if k ⩾ 2, the first inequality is strict, so for k = 2 we have 2δp > 12,
so δp ⩾ 7. If k = 3, we obtain 2δp > 56 so δp ⩾ 29. These bounds will be used to rule
out certain cuspidal curves below.

From the Newton pairs and multiplicity sequences, it is possible to list all uni-
cuspidal rational curves of low degree, i.e., curves C of degree d with one isolated
unibranch singularity at p ∈ C such that δp = g(d), the genus of a degree d plane
curve (and no other singularities). Note that not all numerical solutions to equations
such (5.1) or (5.2) can actually occur as multiplicities or Newton pairs of plane curves.
The following table lists the rational cuspidal curves of degrees 3 through 6 with a
single cusp. These results are for d = 3, 4, 5 are derived in [25, Tables 3.1, 3.2, 6.1].
Alternatively, because δp < 7 for d ⩽ 5, by Remark 5.3, the cusp is parameterized by
a single Newton pair, so the classification also appears in [3, Th. 1.1]. For d = 6, there
are at most two Newton pairs parameterizing the cusp, so one can obtain explicit
equations from [3, Th. 1.1] and [21, Th. 1.1]. The only case with two Newton pairs is
given in line 7 in the table below and corresponds to [21, Th. 1.1(4)] and the local
equation and log canonical threshold can be worked out by hand. The classification
of rational unicuspidal plane curves of degree ⩽ 6 is listed in Table 1.

For higher degree curves, it is necessary to appeal to stronger invariants to under-
stand the possible singularities:
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Table 1. Rational unicuspidal plane curves of degree ⩽ 6.

Degree Parameterization Local equation
of cusp

Multiplicity
sequence

Newton
pairs

Log canonical
threshold

3 (x, y) = (t2, t3) y2 = x3 (2) (2, 3) 5/6

4 (x, y) = (t2, t7) y2 = x7 (2, 2, 2) (2, 7) 9/14

4 (x, y) = (t3, t4) y3 = x4 (3) (3, 4) 7/12

5 (x, y) = (t2, t13) y2 = x13 (2, 2, 2, 2, 2, 2) (2, 13) 15/26

5 (x, y) = (t4, t5) y4 = x5 (4) (4, 5) 9/20

6 (x, y) = (t3, t11) y3 = x11 (3, 3, 3, 2) (3, 11) 14/33

6 (x, y) = (t4, t6 + t11)
y4 = 2x3y2 − x6

+4x7y + x11
(4, 2, 2, 2, 2) (2, 3), (2, 5) 5/12

6 (x, y) = (t5, t6) y5 = x6 (5) (5, 6) 11/30

Definition 5.4. — The semigroup of a cuspidal singularity p ∈ C, denoted Wp ⊂ N,
is the set of local intersection multiplicities of C with other curves at p, i.e.,

Wp := {dimC OC,p/(f) | f ∈ OC,p, f ̸= 0} ⊂ N.

Wp has a set of minimal generators {0, w1, w2, . . . , wk+1}. The wi can be expressed
in terms of the Newton pairs of the cusp:

w1 =M1, w2 = N1, wj = mj−2wj−1 +Nj−1 3 ⩽ j ⩽ k + 1.

Example 5.5. — In the case of a cusp p ∈ C with one Newton pair (a, b), the curve
can be analytically locally parametrized by (x, y) = (ta, tb) with gcd(a, b) = 1. C has
analytic local equation: xb = ya, log canonical threshold: (1/a) + (1/b), δ-invariant:
(a− 1)(b− 1)/2, and semigroup Wp = ⟨0, a, b⟩.

If p ∈ C is a cusp with semigroup Wp, define

Rp(k) := #{Wp ∩ [0, k)}

to be the counting function of elements in Wp between 0 and k − 1. The counting
function satisfies interesting properties. In particular, if a curve C is a cuspidal d
plane curve, these counting functions must satisfy particular constraints related to the
degree d of the curve. The multiplicity, Newton pairs, and intervals in the semigroup
have been widely used to study plane curves, e.g. [24, 27, 3, 4].

In [4, Th. 6.5, Rem. 6.6], Borodzik and Livingston prove the following strong result
on existence of such curves: for a rational cuspidal curve of degree d with n cusps
p1, . . . , pn and counting functions Rp1

, . . . , Rpn
, then for any j ∈ {−1, . . . , d− 2},

(5.3) min
k1,...,kn∈Z;

k1+···+kn=jd+1

(Rp1
(k1) + · · ·+Rpn

(kn)) =
(j + 1)(j + 2)

2
.

We conclude with a useful computation of log canonical thresholds.
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Lemma 5.6. — Let R1, . . . , Rk ⊂ S be curves in a smooth surface S such that P ∈ S

is the unique point in R1 ∩Ri (or work with the local intersection numbers). Assume

lengthP (R1 ∩Ri) = ℓi.

Assume R1 has a singularity at P with analytic local equation xa = yb with a and b

coprime. Assume that analytically locally at P , the curve Ri is unibranch. If we set
the weight of x equal to b and the weight of y equal to a, then the weight wi of the
local analytic equation of Ri satisfies:

ℓi ⩾ wi, and if ℓi > wi, then wi ⩾ ab.

It follows that

lct(S, c1R1 + · · ·+ ckRk) ⩽
a+ b

c1ab+ c2 min{ab, ℓ1}+ · · ·+ ck min{ab, ℓk}
.

A useful special case is the case of two curves R1 and R2 where R1 is smooth at P ,
R2 is unibranch at P and they meet to length ℓ. In this case, analytic locally we can
write R1 as x = yℓ, and we have

lct(S, c1R1 + c2R2) ⩽
1 + ℓ

ℓ(c1 + c2)
.

Proof. — Let µ : S̃ → S be the (b, a) weighted blow-up of (x, y) with exceptional
divisor E. Let R̃1 and R̃i be the strict transforms of R1 and Ri. Then

ℓi = R̃1 · π∗Ri = R̃1 · (R̃i + wiE) = R̃1 · R̃i + wi,

ℓi = R̃i · π∗R1 = R̃i · (R̃1 + (ab)E) = R̃1 · R̃i + ab(R̃2 · E).and

From the first equation, because R̃1 · R̃i ⩾ 0, it is clear that ℓi ⩾ wi. Combining the
equations, we see that R̃i · E = wi/ab. Furthermore, if ℓi > wi, then R̃1 · R̃i > 0.
However, the (b, a) weighted blow-up of xa = yb has the property that it is a resolution
of R1 and R̃1 meets E at exactly one point that is smooth. This implies that R̃1

and R̃i meet in a smooth point of the ambient surface along E, so R̃i · E ⩾ 1, and
hence wi/ab ⩾ 1 so wi ⩾ ab. This shows that either wi ⩾ ab or wi = ℓi, and hence
w ⩾ min{ab, ℓ}. To finish, note that

KS̃ = µ∗KS+(b+a−1)E, and µ∗(∑ ciRi

)
=
(∑

ciR̃i

)
+(c1ab+c2wi+ · · ·+ckwk)E.

Therefore, the log canonical threshold of the pair satisfies

lct(S,
∑
ciRi) ⩽

a+ b

c1ab+ c2w2 + · · ·+ ciwi

⩽
a+ b

c1ab+ c2 min{ab, ℓ1}+ · · ·+ ck min{ab, ℓk}
. □
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6. Setup of casework in the proofs of Theorems D and E

The proofs of Theorems D and E are casework: ruling out all possible singular
limits. All but three cases can be ruled out by straightforward calculations of the
log-canonical threshold.

Let D be a smooth projective family of curves such that the general fiber is a
plane curve and consider the associated family of pairs (XT , D) as in Section 2. Let
(XCY

0 , DCY
0 ) be Hacking’s Calabi-Yau limit. By Remark 3.3, we know that the family

DCY is S2. If the general fiber is a quintic curve, by Proposition 2.7, XCY
0 = P2,

P(1, 1, 4), M(5), or P(1, 4, 25), and by Theorem 4.11 and Lemma 2.8 there are only
three possibilities for the intersection graph of DCY

0 . Likewise, if the general fiber is a
septic curve, by Theorem 4.11 and Lemma 2.8 there are only 7 possible intersection
graphs. We subsequently rule out each singular limit. The three possible cases for
DCY

0 that cause the most difficulty all occur for degree 7 limits:
(1) a reduced irreducible rational degree 7 plane curve with a single unibranch

singularity,
(2) a reduced irreducible rational degree 14 curve with a single unibranch singu-

larity in P(1, 1, 4), and
(3) the union of a doubled plane cubic and an inflection line.

We carry out the casework for reduced limits in Section 7 and we carry out the
casework for non-reduced limits in Section 8.

Remark 6.1 (General setup). — Without loss of generality we make make several
assumptions:

(1) there is a birational map DCY D (as the general fibers are isomorphic),
(2) by semistable reduction we may assume there is a resolution of singularities

Dss of DCY such that Dss
0 is reduced and nodal,

(3) the map Dss → Dnorm is an isomorphism away from Dss
0 and the δ-invariants

of (Dnorm)0 are determined by Lemma 3.2,
(4) the intersection graph Γ((Dnorm)0) is a tree, and
(5) the map Dss → D is regular and only contracts trees of rational curves (as D

is the relative minimal model).

7. The case of reduced limits of plane curves

In this section we work in the setting of Section 6 and study the possible reduced
curves that can appear as DCY

0 . For degrees 5 and 7 we prove that if DCY
0 is reduced

and singular, then it is fact irreducible, rational, and has a unique singular point which
is unibranch; i.e., DCY

0 is unicuspidal. By proving that the log canonical threshold of
rational unicuspidal plane curves of degree d = 5 or d = 7 is strictly smaller that 3/d,
we prove that these cannot appear as DCY

0 . Therefore, if DCY
0 is reduced, it must

be smooth. This proves Theorem D because DCY
0 is always reduced when d = 5 (see

Theorem 4.11), and reduces Theorem E to the case DCY
0 is nonreduced.
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7.1. Reduced limits have a single singularity. — The following lemma implies that
if DCY

0 is reduced, then there is a unique singularity.

Lemma 7.1. — If DCY
0 is reduced and singular at some point P ∈ DCY

0 , then P is the
unique singular point of DCY

0 and all components of DCY
0 are rational.

Proof. — Let d be the degree of the general fiber of DCY. By Theorem 4.11 and
Lemma 4.9, all components (DCY

0 )i of DCY
0 must intersect at a unique point Q and the

singularities of the (DCY
0 )i are all unibranch. So by Remark 6.1(3) and Lemma 3.2(2)

the δ-invariant of any point P ∈ DCY
0 ∖ Q is either 0 or g (the arithmetic genus

of DCY
0 ). If there are multiple components, then for any point P ∈ (DCY

0 )i ∖ Q,
δP ((D

CY
0 )i) is bounded by the arithmetic genus of (DCY

0 )i which is less than g, so
δP ((D

CY
0 )i) = 0 and DCY

0 is smooth at P .
Similarly, if DCY

0 consists only of one component, then as every point is unibranch
(by Theorem 4.11) by Remark 6.1(3) and Lemma 3.2(2) there is a unique point where
the δ-invariant is not 0, so there is a unique singularity.

If DCY
0 is reduced and singular, then no component can have geometric genus g,

so the strict transform of each component must be contracted in the map Dss → D

(in Remark 6.1(5)). Thus every component is rational. □

7.2. Reduced limits of quintics. — In this subsection we prove Theorem D. All
components of DCY

0 are reduced, so we show that the only reduced limits of families
of quintic curves are smooth curves DCY

0 ⊂ P2 or DCY
0 ⊂ M(5). For limits in M(5),

the proof of Theorem 1.10 shows that the curves DCY
0 are all hyperelliptic.

First we show:

Proposition 7.2. — If D is a smooth family of curves such that the general fiber is a
plane quintic then Hacking’s Calabi-Yau limit DCY

0 is smooth.

Proof. — Suppose for contradiction that D0 is a smooth limit of a family of plane
quintics, and DCY

0 is singular. By Lemma 7.1, DCY
0 has a unique singularity at P ,

all components are rational, and by Theorem 4.11 and Lemma 4.9 there are at most 3
components with specified intersection graph and all components are reduced.

In Lemma 7.3 we show there are no possible singular limits DCY
0 in P2.

In Lemma 7.4 we show there are no possible singular limits DCY
0 in P(1, 1, 4).

In Lemma 7.5 we show there are no possible singular limits DCY
0 in P(1, 4, 25).

In Lemma 7.6 we show there are no possible singular limits DCY
0 in M(5). Therefore

by Theorem 2.7, the result follows. □

Theorem D follows easily from the proposition.

Proof of Theorem D. — By Proposition 7.2, we know Hacking’s Calabi-Yau limit
DCY

0 ⊂ XCY
0 is smooth. By Proposition 2.7, XCY

0 is either P2, P(1, 1, 4), P(1, 4, 25),
or M(5). By Theorem 1.6, limits of quintic curves on P(1, 1, 4) and P(1, 4, 25) are
not Cartier and by degree considerations cannot be smooth. Therefore, XCY

0 = P2
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or M(5), and DCY
0 is a Cartier divisor on XCY

0 . If XCY
0 = M(5), then by the

computation in the proof of Theorem 1.10 DCY
0 is hyperelliptic. □

For the following lemmas, we assume the following about DCY
0 as in the proof of

Proposition 7.2.
(∗) DCY

0 has at most three components, all of which are rational and unibranch,
there is a unique singular point P ∈ DCY

0 of multiplicity at most 3, and lct(P2, DCY
0 ) ⩾

3/5.

Lemma 7.3. — There is no singular limit DCY
0 satisfying (∗) in P2.

Proof. — From (∗), there are five cases to rule out:

Case 1 Case 2 Case 3 Case 4 Case 5
Components 3 3 2 2 1

Degrees 3 + 1 + 1 2 + 2 + 1 4 + 1 3 + 2 5

(Case 1) The cubic is cuspidal at P , so the multiplicity is 4, a contradiction to (∗).
(Case 2) Two conics and a line meeting at one point has lct(P2, DCY

0 ) = 1/2 by
Lemma 5.6, a contradiction to (∗).

(Case 3) There are two rational unicuspidal quartics (see Table 1: one has multi-
plicity 3 at the singular point, so the union with the line has multiplicity 4, contra-
dicting (∗). The other has local equation x2+ y7 and meets the line to length 4, so by
Lemma 5.6, lct(P2, DCY

0 ) ⩽ 1/2 < 3/5, a contradiction to (∗).
(Case 4) The cubic is cuspidal at P and meets the conic to order 6, so by Lem-

ma 5.6, lct(P2, DCY
0 ) ⩽ 5/12 < 3/5, a contradiction to (∗).

(Case 5) There are two rational unicuspidal quintics (Table 1): one has a multi-
plicity 4 point, a contradiction. The other has a singularity with analytic equation
y2 = x13, which has log canonical threshold 15/26 < 3/5, a contradiction to (∗). □

Lemma 7.4. — There is no singular limit DCY
0 satisfying (∗) in P(1, 1, 4).

Proof. — Assuming that such a limit DCY
0 ⊂ P(1, 1, 4) existed, it must give rise to a

section of the divisorial sheaf OP(1,1,4)(10). By Lemma 4.10, DCY
0 is singular at the

vertex, so by (∗) every component of DCY
0 passes through this point.

IfDCY
0 has three components, then by the multiplicity bound in (∗) each component

passes through the vertex with multiplicity 1, but 10 = 2 ̸= 3 (mod 4), so this
impossible.

If DCY
0 has two components, then by the multiplicity bound in (∗), Lemma 4.10,

and because 10 = 2 (mod 4), both components must pass through the vertex with
multiplicity 1. Therefore, by (⋆) both components are smooth and rational. The pos-
sible degrees of such a configuration are 9 + 1 or 5 + 5. Degrees 9 + 1 is impossible
as a smooth degree 9 curve in P(1, 1, 4) is not rational. The second case is impossible
as the vertex can be the only point of intersection of the two curves (which are each
smooth at the vertex); blowing up this point yields two smooth curves on F4 meeting
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to order 6, which by Lemma 5.6 has log canonical threshold at most 7/12, which is
too small.

Finally, suppose the curve DCY
0 is irreducible with a unicuspidal singularity at the

vertex. By blowing up the vertex π : F4 → P(1, 1, 4), we produce a unicuspidal curve
on F4. By (∗), we know lct(P(1, 1, 4), DCY

0 ) ⩾ 3/5. Let E be the exceptional divisor
of π and consider the pair of equations

π∗(KP(1,1,4)) = KF4
+

1

2
E and π∗(DCY

0 ) = D̃CY
0 +

a

4
E,

where a ∈ Z+ and D̃CY
0 is the strict transform of DCY

0 .
We analyze the rational unicuspidal curve D̃CY

0 . By the log canonical threshold
assumption,

1

2
+

3a

20
⩽ 1,

so a ⩽ 3. Intersecting the second equation with a fiber ℓ of the ruled surface F4 (whose
image is a section of O(1) on P(1, 1, 4)) gives

10

4
= D̃CY

0 · ℓ+ a

4

and as D̃CY
0 ·ℓ∈Z, this proves that a=2. The arithmetic genus of D̃CY

0 is computed by:

2ga(D̃CY
0 )−2 = (KF4

+D̃CY
0 ) ·D̃CY

0 = (KP(1,1,4)+D
CY
0 ) ·DCY

0 −E ·D̃CY
0 = 10−2 = 8,

so the arithmetic genus is 5, which is the same as the δ-invariant of the cusp in D̃CY
0 .

By Remark 5.3, the cusp must be parameterized by a single Newton pair (M1, N1) =

(a, b) with
10 = (M1 − 1)(N1 − 1) = (a− 1)(b− 1).

The possible values of (a, b) are (a, b) = (2, 11) or (3, 6). In the first case, the log
canonical threshold is less than 3

5 , which is too small, and in the second case, the
curve is not unibranch, so both give a contraction to (∗). Therefore, no such curve
exists on P(1, 1, 4). □

Lemma 7.5. — There is no singular limit DCY
0 satisfying (∗) in P(1, 4, 25).

Proof. — This follows from the previous lemma: in this case all of the computations
in Lemma 7.4 can be done locally around the 1

4 (1, 1) singularity and yield the same
contradictions. □

Lemma 7.6. — There is no singular limit DCY
0 satisfying (∗) in M(5).

Proof. — The surface M(5) is the partial smoothing of the 1
4 (1, 1) singularity on

P(1, 4, 25), and can be realized as a degree 26 surface in the weighted projective space
P(1, 2, 13, 25). The curve DCY

0 is a complete intersection of the degree 26 surface
and a degree 25 surface. Denote by [x : y : z : w] the weighted coordinates on
P(1, 2, 13, 25). Up to change of coordinates, we can realize this pair (M(5), DCY

0 ) as
((xw = f26(x, y, z)), (w = 0)) in P(1, 2, 13, 25), where f26 is a generic polynomial of

J.É.P. — M., 2024, tome 11



716 K. DeVleming & D. Stapleton

degree 26 in x, y, z. Therefore, the curve DCY
0 can be expressed as (f26(x, y, z) = 0) ⊂

P(1, 2, 13). (See also Example 1.3 and Example 1.12.)
If the curve has three components of degrees d1, d2, and d3 with d1 + d2 + d3 = 26

then by (∗), they must all be smooth and intersect at a unique point. Because at most
one di can be a multiple of 13, the remaining two curves must go through the 1

13 (1, 2)

singular point. Because they are smooth at this point, we claim that each di must be
congruent to 1 (mod 13). Indeed, writing the coordinates on P(1, 2, 13) as [x : y : z],
a curve of degree di has the form

(⌊di/13⌋∑
i=0

zifdi−13i(x, y) = 0

)
,

where fdi−13i(x, y) is a polynomial of degree di − 13i. If di ̸= 1 (mod 13), then in a
neighborhood of the point [0 : 0 : 1], this vanishes to order at least two, hence is not
smooth. But, it is impossible that d1 + d2 + d3 = 26 and each di ≡ 1 (mod 13).

If the curve has two components of degrees d1 and d2, by (∗) it can pass through at
most one of the singular points of P(1, 2, 13), so both degrees must either be 0 (mod 2)

or 0 (mod 13). Because d1+d2 = 26, these are mutually exclusive, and for n ∈ {2, 13},
d1 ̸= 0 (mod n) ⇐⇒ d2 ̸= 0 (mod n). Therefore, both components must pass
through exactly one of the singular points. Suppose the curves contain the 1

13 (1, 2)

singularity and di ≡ 0 (mod 2). Because the curve has multiplicity at most three
at the singularity, if ri is the remainder of di (mod 13) then r1 + r2 ⩽ 3. However,
d1 + d2 = 26, and this is impossible.

Now suppose that the curves contain the 1
2 (1, 1) singularity and di ≡ 0 (mod 13).

Because d1 + d2 = 26, this implies that d1 = d2 = 13. By (∗), these two unibranch
curves meet only at the 1

2 (1, 1) singularity. Blowing up this singular point of the
surface yields two curves intersecting at one point to order at least 5, contradicting
that the log canonical threshold is at most 3/5.

Finally, assume that the curve has only one component. Because the curve has
degree 26 in P(1, 2, 13) and has only unibranch singularities, it must avoid the sin-
gularities of the surface. Suppose there is a cusp in the smooth locus of the surface.
The curve has arithmetic genus 6, so by Remark 5.3 it is parameterized by a single
Newton pair (M1, N1) = (a, b) such that

12 = (M1 − 1)(N1 − 1) = (a− 1)(b− 1).

The only solutions are (a, b) = (2, 13), (3, 7), or (4, 5), and each of these has log
canonical threshold smaller than 3/5, contradicting (∗). □

7.3. Reduced limits of septic curves. — In this section we show that the only re-
duced limits of degree 7 curves are smooth curves DCY

0 ⊂ P2. Throughout, we assume
for contradiction that DCY

0 is reduced but singular. By Lemma 7.1, Theorem 4.11,
and Lemma 4.9 we make the following assumptions about DCY

0 :
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(⋄) DCY
0 has at most four components, all of which are rational and have unibranch,

there is a unique singular point P ∈ DCY
0 of multiplicity at most 4, and lct(P2, DCY

0 ) ⩾
3/7.

Proposition 7.7. — If D is a smooth family of curves such that the general fiber is a
plane septic and Hacking’s Calabi-Yau limit DCY

0 is reduced then DCY
0 is smooth.

Proof. — For contradiction we assume DCY
0 is singular, so we may assume (⋄). Except

for the case of a single component, these possibilities can all be ruled out by computing
that their log canonical thresholds are too small. These computations are carried out
in the following lemmas as indicated in the table.

Curves in P2 Curves in P(1, 1, 4)

Components Degrees Proof
4 2 + 2 + 2 + 1 Lem. 7.8
3 3 + 2 + 2 Lem. 7.9
3 4 + 2 + 1 Lem. 7.9
3 5 + 1 + 1 Lem. 7.9
2 6 + 1 Lem. 7.10
2 5 + 2 Lem. 7.10
2 4 + 3 Lem. 7.10
1 7 Lem. 7.12

Components Proof
multiple Lem. 7.11

one Prop. 7.14

□

Lemma 7.8. — There is no reduced limit DCY
0 ⊂ P2 satisfying (⋄) with 4 components.

Proof. — A line and 3 conics meeting at 1 point has lct(P2, DCY
0 ) = 4/11, a contra-

diction. □

Lemma 7.9. — There is no reduced limit DCY
0 ⊂ P2 satisfying (⋄) with 3 components.

Proof. — Suppose DCY
0 = R1 + R2 + R3 is such a limit satisfying (⋄) and assume

that R1 is the curve of degree ⩾ 3 – so R1 is cuspidal. By multiplicity considerations,
the singularity of R1 must be a double point – so analytically locally has equation
y2 = x2δ+1 (δ is the δ-invariant).

If the degrees are 3+2+2 then the cusp has local equation y2 = x3 and the conics
must meet the cubic to length 4. By Lemma 5.6 we have

lct(P2, DCY
0 ) ⩽

5

6 + 6 + 6
< 3/7,

a contradiction. If the degrees are 4+2+1 then the quartic cusp has local equation
y2 = x7. So by Lemma 5.6,

lct(P2, DCY
0 ) ⩽

9

14 + 8 + 4
< 3/7.

If the degrees are 5+1+1, then the quintic has local equation y2 = x13. So by
Lemma 5.6,

lct(P2, DCY
0 ) ⩽

15

26 + 5 + 5
< 3/7. □
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Lemma 7.10. — There is no reduced limit DCY
0 = R1+R2 ⊂ P2 with two components

satisfying (⋄).

Proof. — Suppose R1 + R2 has degrees 6 + 1. By Table 1, there are three rational
unicuspidal sextic curves. Two of them have multiplicity at least 4, so the multiplicity
of the intersection point of R1+R2 is too large. The remaining case has log canonical
threshold 14/33 which is smaller than 3/7, so the union R1 + R2 is too singular.
Therefore, degrees 6+1 for R1 and R2 are impossible.

Next suppose R1 + R2 has degrees 5 + 2. By Table 1, there are two rational uni-
cuspidal quintics: one has a multiplicity 4 point, and the other has a singularity with
analytic equation y2 = x13. In the first case the multiplicity of R1 + R2 at the in-
tersection point is ⩾ 5 which is too singular. In the second case, in these analytic
coordinates we consider y with weight 13 and x with weight 2. As the intersection
R1 ∩ R2 has length 10, Lemma 5.6 implies that lct(P2, DCY

0 ) ⩽ 15/(26 + 10) = 5/12

which is too small, thus degrees 5 and 2 are impossible.
Finally, suppose R1 + R2 has degrees 4 + 3. There are two rational unicuspidal

quartics (Table 1): one has a multiplicity 3 point, and the other has a singularity with
analytic equation y2 + x7 = 0. In the case of the multiplicity 3 singularity, R2 must
be a cubic with an ordinary cusp at P . In this case, DCY

0 has multiplicity 5 at that
point, which is too great. In the case that R1 has a singularity of the form y2+x7 = 0,
then Lemma 5.6 implies that lct(P2, DCY

0 ) ⩽ 9/26 < 3/7 so is too singular. Therefore,
degrees 4 and 3 are impossible. □

Lemma 7.11. — There is no reduced limit DCY
0 ⊂ P(1, 1, 4) with multiple components.

Proof. — By Lemma 7.1 and Lemma 4.10, the unique singular point of DCY
0 must be

at the vertex, which is the only place the components of DCY
0 can intersect. Therefore,

by the log canonical threshold assumption, there can be at most four components of
DCY

0 . If there are exactly four components and they all pass through the vertex,
by the log canonical threshold assumption, they must each pass through the vertex
with multiplicity 1. By Lemma 4.10, they must each have degree 1 (mod 4), but the
degrees must sum to 14, which is impossible. Similarly, if there are three components,
at least two must have degree 1 (mod 4) and the third may have degree 1 or 2
(mod 4), which in both cases is impossible to sum to 14. If there are two components,
they could have multiplicities (1, 1), (1, 2), (1, 3), or (2, 2) at the vertex, but the only
case that could possibly sum to 14 is if both curves have degree 1 (mod 4), so the
curves are either a degree 1 and degree 13 curve or a degree 5 and degree 9 curve.
However, any smooth curve of degree at least 6 in P(1, 1, 4) is not rational, so the
larger degree component therefore must be singular at the vertex. In the first case, the
degree 13 curve has equation

∑3
i=0 f13−4i(x, y)z

i = 0, where x, y, z are the weighted
coordinates on P(1, 1, 4), and fj(x, y) denotes a degree j homogeneous polynomial
in x and y. To be singular at the vertex [0 : 0 : 1], the term f1(x, y) must vanish, so in
fact this curve has multiplicity at least 5 at the vertex, contradicting our assumption
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on multiplicity. Similarly, the degree 9 curve in the second case has multiplicity at
least 5 at the vertex, also a contradiction. □

Now, we have shown that any reduced curve DCY
0 has exactly one component,

is rational, and can have at most one singular point. We will use classification results
for rational cuspidal plane curves to prove no such curves exist with log canonical
threshold at least 3/7. First, assume DCY

0 is a plane curve.

Lemma 7.12. — If C ⊂ P2 is a reduced and irreducible degree 7 rational curve with a
single cuspidal singularity at p ∈ C then analytic locally at p, C is parametrized by
t 7→ (t6, t7). In particular, lct(P2, C) < 3/7.

Proof. — The δ invariant of such a cusp is 15 (the genus of a smooth degree 7 plane
curve). Thus according to Remark 5.3, the number of Newton pairs of the cusp is
at most 2. When k = 1 then by [3, Th. 1.1] the only possibility is (a, b) = (6, 7),
as desired in the statement of the lemma. When k = 2, then by looking at the
classification [21, Th. 1.1] of unicuspidal rational curves with 2 Newton pairs there
are no possibilities. □

Remark 7.13. — Lemma 7.12 implies that we could expand Table 1 to list all uni-
cuspidal rational curves of degree ⩽ 7 by adding the following row:

Degree Parameterization Local equation
of cusp

Multiplicity
sequence

Newton
pairs

Log canonical
threshold

7 (x, y) = (t6, t7) y6 = x7 (6) (6, 7) 13/42

Now, to complete the proof of Proposition 7.7, it suffices to consider the case that
DCY

0 is a curve in P(1, 1, 4).

Proposition 7.14. — If C ⊂ P(1, 1, 4) is a reduced and irreducible degree 14 rational
curve with an isolated unibranch singularity at the vertex, then lct(P(1, 1, 4), C) < 3/7.

Proof. — Suppose that C is as in the hypothesis of the proposition. Assume for
contradiction that lct(P(1, 1, 4), C) ⩾ 3/7. Let

π : F4 −→ P(1, 1, 4)

be the minimal resolution of P(1, 1, 4) with exceptional divisor E ⊂ F4. Then

π∗KP(1,1,4) = KF4
+

1

2
E.

Let C̃ be the strict transform of C in F4. Because 4C is Cartier, we have

π∗C = C̃ +
a

4
E

for a ∈ Z+. The assumption that lct(P2, C) ⩾ 3/7 implies that
1

2
+

3a

28
⩽ 1,
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so a ⩽ 4. Finally, intersecting π∗C = C̃+(a/4)E with a fiber ℓ of the ruled surface F4

gives
14

4
= C̃ · ℓ+ a

4

and C̃ · ℓ ∈ Z implies that a = 2. We can use this to compute the arithmetic genus
of C̃ is 14:

2ga(C̃)− 2 = (KF4
+ C̃) · C̃ = (KP(1,1,4) + C) · C − E · C̃ = 28− 2 = 26.

Alternatively, using the basis ⟨E, ℓ⟩ for Pic(F4), we can compute C̃ ∈ |3E + 14ℓ| to
determine the genus.

By assumption, C̃ is then a rational curve with a single unibranch singularity with
δ-invariant 14 at the unique intersection point p ∈ C̃ ∩ E. Moreover (F4,

3
7 C̃) is log

canonical. By Remark 5.3, the cusp is parameterized by k Newton pairs with k ⩽ 2.
If k = 2 then there are two Newton pairs with M1 = a ⩾ 4, b1 > a, and gcd(a, b1) ⩾ 2,
which implies b1 ⩾ 6. Thus

lct(F4, C̃) ⩽
1

4
+

1

6
<

3

7
,

a contradiction.
Therefore, there can only be one Newton pair (M1, N1) = (a, b). In this case,

28 = (M1−1)(N1−1) = (a−1)(b−1). This has three solutions: (a, b) = (5, 8), (3, 15)
or (2, 29). In the first two cases,

lct(F4, C̃) =
1

5
+

1

8
<

3

7
,

or
lct(F4, C̃) =

1

3
+

1

15
<

3

7
,

which both give a contradiction as above.
It remains to show that there is no rational curve C̃ ⊂ P4 in the linear system

|3E +14ℓ| with a single unibranch singularity along E having analytic local equation
y2 = x29. We rule out this last possibility by transforming this curve to a cuspidal
curve in P2 and applying the work of Borodzik and Livingston. This is carried out in
the following two lemmas. □

Lemma 7.15. — If there is a curve C̃ ⊂ F4 as above, then there is an irreducible
rational degree 7 curve Γ ⊂ P2 with two cusps at points p1, p2 ∈ P2 having each
having a single Newton pair: (2, 19) at p1 and (4, 5) at p2.

Proof. — Let
π : (X,D) −→ (F4, C̃)

be the minimal embedded resolution (with D := π∗(C̃)red). From above, C̃ has a cusp
with Newton pair (2, 29) at its unique set-theoretic intersection point p = E ∩ C̃. Let
Fp ∈ |ℓ| be the fiber going through p.

On X, D is a rational tree consisting of the strict transform C̃X of C̃ and 16
exceptional divisors E1, . . . , E16 (shown in the graph below).
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E1 E4 E5 E6 E14 E16 E15

EX C̃XFp,X

bottom

top

left right

On X, E2
i = −2 for 1 ⩽ i ⩽ 15 and E2

16 = −1. EX (resp. Fp,X) is the strict transform
of E (resp. Fp). We also have E2

X = −5 and F 2
p,X = −1.

The pair (F4, C) is obtained by contracting the bottom curves of the dual graph.
It is also possible to simultaneously contract the left and the right curves. The result
of this contraction is a smooth rational surface of Picard rank 1, so must be P2. Let
Γ ⊂ P2 be the image of C̃X . From the description of the dual graph, this produces
two unibranch singularities on Γ with Newton pairs (2, 19) and (4, 5). (Note that the
surface X is not a minimal resolution of (P2,Γ); to obtain the minimal resolution, we
must first contract Fp,X , and at this point the dual graph of the exceptional locus
uniquely determines the singularity type.) Now, the image of E5 is a line in P2, which
together with the above dual graph can be used to show that Γ has degree 7 as
desired. □

To complete the proof of the proposition, we show that Γ does not exist.

Lemma 7.16. — There is no degree 7 rational curve Γ ⊂ P2 with two cuspidal singu-
larities, each with a single Newton pair of types (2, 19) and (4, 5).

Proof. — Suppose that such a curve exists, and let p1 be the (2, 19) cusp and p2 the
(4, 5) cusp. The associated semigroups (Definition 5.4) are:

Wp1
= {0, 2, 4, 6, 8, 10, 12, 14, 16, . . . } and Wp2

= {0, 4, 5, 8, 9, 10, 12, 13, 14, 15, . . . }.

Now we apply Equation (5.3) when d = 7, n = 2, and j = 2. This reads

min
k1,kd∈Z;
k1+k2=15

(Rp1(k1) +Rp2(k2)) = 6.(7.1)

Here recall that Rpi
(k) := #Wpi

∩ [0, k).
Let R(k1, k2)=Rp1

(k1)+Rp2
(k2). In the case k1⩾13 (so k2⩽2), then Rp1

(k1)⩾7,
so R(k1, k2)⩾7. Similarly, in the case k2⩾13, then Rp2

(k2)⩾7, so R(k1, k2)⩾7>6.
Checking all intermediate values:

R(12, 3) = 7 R(11, 4) = 7 R(10, 5) = 7 R(9, 6) = 8 R(8, 7) = 7

R(7, 8) = 7 R(6, 9) = 7 R(5, 10) = 8 R(4, 11) = 8 R(3, 12) = 8

proves that Γ does not exist. □

Remark 7.17. — The previous arguments rely heavily on the classification of rational
unicuspidal plane curves for d ⩽ 6 in Table 1 and for degree d = 7 in Lemma 7.12.
To generalize the arguments in this section to larger primes p, one at least needs a
bound on the log canonical threshold of unicuspidal plane curves of degree d ⩽ p.
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For degree ⩽ 7, we see that the log canonical threshold of the curve is always less
than 3/d. Note that this is not always the case: Orevkov has exhibited two sporadic
curves rational unicuspidal curves with a single Newton pair, one of degree 8 and one
of degree 16, with log canonical threshold larger than 3/d ([27], or [3, Th. 1.1(e)(f)]).
However, these are highly special: Orevkov conjectures that these are the only exam-
ples of unicuspidal rational curves with a single Newton pair with a particularly large
degree as compared to the multiplicity [27, p. 2]. To that end, we conclude this section
with a classification question.

Question. — For what degrees d does there exist a unicuspidal rational plane curve
of degree d with log canonical threshold at least 3/d? Of particular interest is the case
when d = p is a prime number.

8. The case of nonreduced limits of septic plane curves

We use the results of the previous section and several additional computations
to prove Theorem E. By Section 7, we only need to consider the case that DCY

0 is
non-reduced. Throughout this section we assume for contradiction that there is a
nonreduced component of DCY

0 .

Proof of Theorem E. — By Proposition 7.7, we only need to consider the case that
there is an nonreduced component of DCY

0 . The following table enumerates the pos-
sible degrees of reduced and nonreduced components of DCY

0 .
Curves in P2 Curves in P(1, 1, 4)

Reduced
degrees

Nonreduced
degrees

Proof

5 1 Lem. 8.1
3 2 Lem. 8.1
3 1 + 1 Lem. 8.2
1 3 Prop. 8.4
1 2 + 1 Lem. 8.2

4 + 1 1 Lem. 8.2
3 + 2 1 Lem. 8.3
2 + 1 2 Lem. 8.3

Reduced
degrees

Nonreduced
degrees

Proof

12 1 Lem. 8.1
6 4 Lem. 8.1
4 5 Lem. 8.1
4 4 + 1 Lem. 8.2

8 + 4 1 Lem. 8.2

In each case, we prove that the configuration gives a contradiction. The computa-
tions are carried out in the lemmas and propositions indicated in the table. □

Lemma 8.1. — It is not possible that DCY
0 = R+ 2N ⊂ XCY

0 is non-reduced and has
two components, except for possibly in the case of a line and a doubled cubic curve.

Proof. — Suppose for contradiction that there is such a limit that is not a line and a
doubled cubic. Write:

DCY
0 = R+ 2N,

where R is the reduced curve and N is the non-reduced curve. By Lemma 4.9 and
Theorem 4.11, R and N meet at a single point, and if there are any singularities
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of R and N they must be unibranch. By degree considerations (in the previous table)
either R or N is smooth: one of them is either irreducible of degree 1 or 2 in P2 or
irreducible of degree 1 or 4 in P(1, 1, 4). By Lemma 5.6, if the intersection of R and N
has length at least 4 then lct(XCY

0 , DCY
0 ) is too small. There is only one remaining

case to consider: DCY
0 ⊂ P(1, 1, 4) and R and N have degrees 12 and 1 respectively.

In this case, the degree 12 curve R must be singular and rational with cuspidal
singularities. The δ-invariant of any cusp on R is the genus of a smooth degree 12
curve in P(1, 1, 4) which is 10. By Lemma 3.2, such a cusp cannot lie in the normal
locus of DCY. Therefore, there is exactly one cusp at the unique intersection point
of R and N . By multiplicity considerations, we see that the cusp in R is a double
point. Note: R and N do not meet at the vertex in P(1, 1, 4): R is Cartier and any
Cartier divisor meeting the vertex has multiplicity at least 4, so R+2N would be too
singular.

Therefore, R and N meet at a smooth point in P(1, 1, 4). Blowing up this smooth
point, the strict transforms of R and N still intersect (as they met to length 3 on
P(1, 1, 4)). Blowing up this new intersection point gives an exceptional divisor with
discrepancy 3/8. Thus lct(P(1, 1, 4), R+ 2N) ⩽ 3/8 < 3/7 a contradiction. □

Lemma 8.2. — It is not possible for DCY
0 to be the union of a reduced curve and two

non-reduced curves.

Proof. — Suppose for contradiction that

DCY
0 = R+ 2N1 + 2N2.

By Lemma 4.9 and Theorem 4.11, DCY
0 has the following intersection graph.

2

2

There are 3 cases.
(1) DCY

0 ⊂ P2, R has degree 3, and N1 and N2 both have degree 1. R must be
a cuspidal rational curve. The cusp must lie on the line N1 or N2 and the length of
the intersection must be 3. By Lemma 5.6, lct(P2, R + 2N1 + 2N2) ⩽ 5/12 < 3/7,
a contradiction.

(2) DCY
0 ⊂ P2, R has degree 1, N1 has degree 2, and N2 has degree 1. The doubled

conic N1 and the doubled line N2 are tangent at a point. By Lemma 5.6, lct(P2, 2N1+

2N2) is at most 3/8, a contradiction.
(3) DCY

0 ⊂P(1, 1, 4), R has degree 4,N1 has degree 4 andN2 has degree 1. R andN1

are both smooth and meet at a single point to length 4. Then, by Lemma 5.6, R+2N1

has log canonical threshold at most 5/12, a contradiction. □

Lemma 8.3. — It is not possible that DCY
0 has two reduced components and one nonre-

duced component.
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Proof. — Suppose for contradiction that

DCY
0 = R1 +R2 + 2N.

By Lemma 4.9 and Theorem 4.11, DCY
0 has the following intersection graph.

2

There are four cases:
(1) DCY

0 ⊂ P2 and R1, R2, N have degrees 4, 1, and 1 respectively.
(2) DCY

0 ⊂ P2 and R1, R2, N have degrees 3, 2, and 1 respectively.
(3) DCY

0 ⊂ P2 and R1, R2, N have degrees 2, 1, and 1 respectively.
(4) DCY

0 ⊂ P(1, 1, 4) and R1, R2, N have degrees 8, 4, and 1 respectively.
All of these curves must be rational and everywhere unibranch. Any singularity must
occur at the unique intersection point with N . In cases (1), (2), and (4) this shows the
unique intersection point has multiplicity 5 which is too large by (H4). In case (3),
this would force that R1, R2, and N only meet at a single point p, but this means
that R2 and N are both tangent lines to the conic R1, which is impossible as the
tangent line is unique. □

The final case to eliminate is the possibility of a reduced line and a non-reduced
(doubled) cubic curve in P2.

Proposition 8.4. — The curve DCY
0 ⊂ P2 is not the union of a doubled cubic and a

line.

We will use a series of lemmas in the proof of the proposition.

Lemma 8.5. — If DCY
0 consists of a double cubic curve and a line, then the cubic is

smooth, the line is an inflection line, and the smooth limit D0 must be the component
of (Dnorm)0 that maps to N .

Proof. — Suppose that DCY
0 = R+2N , where R is a line and N is a cubic. By Theo-

rem 4.11, N cannot be nodal, and N cannot be cuspidal as the log canonical threshold
of a double (non-reduced) curve with a cusp is 5/12 < 3/7. Therefore, N must be
smooth. Theorem 4.11 also implies R and N meet at a single point with length 3,
so R is an inflection line. The smooth limit D0 must be the component of (Dnorm)0
that maps to N because any other component of (Dnorm)0 is necessarily rational. □

Lemma 8.6. — If DCY
0 ⊂ P2 is a doubled smooth cubic and an inflection line, there

is a suitable weighted-blow up of the intersection point of the curves in the family
(XCY, DCY) that improves the singularity: either the strict transform of DCY in the
exceptional divisor is reduced, or consists of two curves (one of which is doubled)
meeting to order at most 2.
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Proof. — Suppose that (XCY
0 , DCY

0 ) = (P2, R+2N), where R is a line in P2 and N is
a smooth cubic meeting R at one point to with length 3. In this case, the central fiber
of the normalization (Dnorm)0 necessarily contains 2 curves: the curve whose image in
(X,D) is the smooth curve D0 (which double covers the doubled elliptic curve, and
by abuse of notation which will denote also by D0) and the strict transform of the
line. The main idea in this proof is that the singularity at the intersection point of
R and N has the worst log canonical threshold (4/9), and that a suitable weighted
blow-up improves the situation. We then analyze the resulting modification of DCY.

Analytic locally at the intersection point, DCY
0 has equation x2(x − y3) = 0. If t

is an analytic coordinate vanishing at 0 ∈ T , then the total space (XCY, DCY) is
a hypersurface and near the singular point on the central fiber it has analytic local
equation

G(x, y, t) = x2(x− y3) +
∑
n⩾1

tngn(x, y) = 0.

Making a weighted blow-up depends on the coordinate system, so to start we want to
ensure we are working in an ideal coordinate system for the equation G. To a system
of coordinates x and y we associate the number

ζ(x, y) := max
{9− 3i− j

n

∣∣∣ n ̸= 0, and the monomial xiyjtn appear
with nonzero coefficient in G(x, y, t)

}
.

Now, for any ε > 0 there are only finitely many monomials xiyjtn such that
(9− 3i− j)/n > ε. On the other hand, there is a positive lower bound on ζ(x, y) that
is independent of the change of coordinates

x = x+ th1(x, y) and y = y + th2(x, y)

given by 1/N where N is any power of t that annihilates the cokernel of the relative
normal sequence

TP2
T /T |DCY −→ ODCY(DCY).

Here we are using that DCY is a smoothing of DCY
0 . Therefore, we may assume that

there is no change of coordinates x, y such that ζ(x, y) < ζ(x, y).
Define k to be the minimal power of t such that there is a monomial xiyjtk that

achieves the maximum in ζ(x, y). Let w = 3i + j (necessarily ⩽ 8) and consider the
base change that takes a (9 − w)th root of t, i.e., set s(9−w) = t. The base change
of DCY has analytic local equation: G(x, y, s(9−w)) = 0. Let

µ : Y −→ X

be the weighted blow-up of the base change of XCY where the coordinates (x, y, s)

have weights (3k, k, 1), and let DY be the strict transform of DCY. In these weights,
we can compute:

wt(s(9−w)nxiyj) = 9n− nw + k(3i+ j).

Thus the minimal possible weight is 9k. So the exceptional divisor of µ is a degree
9k curve in P(3k, k, 1). There is an isomorphism of the exceptional divisors P(3k, k, 1)
with P(3, 1, 1) (this is the cone over the twisted cubic) given by [x : y : s] 7→ [x : y : sk].
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This is not to say that Y is isomorphic to a (3,1,1) weighted blow-up. Generically Y
has Ak−1-surface singularities along the locus (s = 0) ⊂ P(3k, k, 1) ⊂ Y .

The surface DY is S2 and birational to DCY. The curve DY ∩P(3, 1, 1) ⊂ P(3, 1, 1)
is a degree 9 curve. Every component of DY ∩P(3, 1, 1) is rational and the curve when
thought of in P(3k, k, 1) is defined by the lowest weight monomials in G(x, y, s(9−w)).
The intersection with the line (s = 0) ⊂ P(3k, k, 1) is x2(x − y3) = 0. Thus there
is at most one nonreduced component of DY ∩ P(3k, k, 1) of multiplicity at most 2.
Moreover there are no components with degree not divisible by 3, as the curve does
not meet the cone point of P(3, 1, 1). Finally, we have that the intersection graph of
the normalization (Dnorm

Y )0 is still a tree.
Now we show that our assumption that the coordinates (x, y) minimize ζ(x, y)

implies that DY ∩ P(3, 1, 1) ̸= 2C1 + C2 where C1 and C2 are smooth, degree 3
rational curves in P(3, 1, 1) that meet to length 3. Suppose to the contrary that DY

has these two exceptional components. Denote by [x : y : v] the coordinates on
P(3, 1, 1) (so v = sk in the isomorphism P(3k, k, 1) ∼= P(3, 1, 1)). Then the curves have
equations:

C1 = (x+ sf2(y, v) = 0) , C2 =
(
x+ (y + λv)3 = 0

)
⊂ P(3, 1, 1),

where f2(y, v) is a quadratic polynomial in y and v. The condition that C1 and C2

meet to order 3 implies (after substitution) that

(8.1) vf2 + (−y − λv)3 = (ay + bv)3.

Now, if v divides f2 then f2 = 0 (considering both sides modulo v2 shows that the first
two coefficients of the expanded cubes are the same, which implies they are equal).
So either f2 = 0 or v does not divide f2.

Lifting the equation for C to the exceptional divisor P(3k, k, 1) under the isomor-
phism s 7→ sk = v shows DY ∩ P(3k, k, 1) has equation

(x+ skf2(y, s
k))2(x+ (y + λsk)3) = 0.

Expanding this equation, all s exponents are divisible by k. On the other hand, this
equation is the tangent cone of an equation pulled back under the map s 7→ s(9−w)

so all the s exponents of the expansion are divisible by (9− w). After expanding the
coefficient of x is

2sk(y + λsk)3f2(y, s
k) + s2kf22 .

If f2 ̸= 0 then s divides the right hand side to order exactly k, thus k = (9− w)ℓ for
some ℓ > 0. Similarly if f2 = 0 then analyzing the x2 term shows that k = (9 − w)ℓ

for some ℓ > 0. As a consequence, the change of coordinates

x = x+ sks2(y, s
k), y = y + λsk

lifts to the change of coordinates:

x = x+ tℓs2(y, t
ℓ), y = y + λtℓ

prior to the base change.
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Now we claim that this gives ζ(x, y) < ζ(x, y), giving the desired contradiction.
Suppose that the monomial xiyjtn appears with nonzero coefficient in G(x, y, t).
We need to study the monomials that appear in the expansion of

(x− tℓs2(y − λtℓ, tℓ))i(y − λtℓ)jtn.

Observe that if (x, y, t) are given weights (3ℓ, ℓ, 1) then every monomial that appears
has weight ℓ(3i+ j) + n. Suppose xi′yi′tn′ appears in this expansion. Now:

(9− wn)/n ⩽ (9− w)/k = 1/ℓ ⇐⇒ (9− wn)ℓ ⩽ n

⇐⇒ (9− w′)ℓ+ (w′ − wn)ℓ ⩽ n ⇐⇒ (9− w′)ℓ ⩽ n+ ℓ(wn − w′)

⇐⇒ (9− w′)ℓ ⩽ (9− w)(n+ ℓ(wn − w′)) ⇐⇒ (9− w′)/n′ ⩽ 1/ℓ = (9− w)/k.

So we know ζ(x, y) ⩽ ζ(x, y). The only terms that can achieve equality in the above
inequalities are the monomials xiyjtn such that (9 − 3i − j)/n = (9 − w)/k, which
are exactly the lowest weight monomials with respect to the (3ℓ, ℓ, 1)-weighting. But
this change of coordinates has been chosen so that after the change of coordinates,
the lowest weight part of G(x, y, t) is exactly x2(x + y3). Thus ζ(x, y, t) < ζ(x, y, t)

— a contradiction.
We have now shown that there is a weighted blow-up improving the worst singu-

larity (the point of intersection of the non-reduced cubic and inflection line), and this
results in two cases to consider: first, the curve in the exceptional divisor P(3, 1, 1) is
reduced, or that the curve in P(3, 1, 1) is non-reduced. In this case, as the curve avoids
the singular point of P(3, 1, 1), it is necessarily the union of a doubled degree 3 curve
and another degree 3 curve, which can meet to order at most 2 at any point. □

Lemma 8.7. — In the weighted blow-up and notation from Lemma 8.6, if the intersec-
tion of the strict transform of DCY with the exceptional divisor P(3, 1, 1) is reduced,
it must be a degree 9 unicuspidal curve with a singularity that locally has the form
x2 = v15. Moreover the ruling of P(3, 1, 1) locally meets the singularity to order 2.

Proof. — We continue to use the notation from Lemma 8.6 and its proof. Suppose the
curve DY ∩P(3, 1, 1) ⊂ P(3, 1, 1) is reduced. By the observations above, this curve has
degree 9 in P(3, 1, 1) and all components are rational. The curve C := DY ∩ P(3, 1, 1)
must intersect the line (v = 0) to order 3 in two smooth points of the surface.

If C is reducible, because every component has degree a multiple of 3 on P(3, 1, 1),
it has either two or three components. If the curve C had two reduced components C1

and C2 of degrees 6 and 3, the degree 6 component must be rational (and hence
singular), but cannot have any singularities away from (v = 0) as they would have
a non-zero contribution to the δ-invariant of the curve, impossible by Remark 6.1.
Because one of the intersections of C with (v = 0) is smooth with order 1, it cannot
be a singular point of C1, so in fact C1 can have only one singularity, a double point
on the line (v = 0), which must be the singular point of C1. However, this implies
that the intersections of the components C1 and C2 lie entirely away from the line
(v = 0), and these intersections must be transverse because they have δ-invariant 0
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(Remark 6.1). This is impossible as the dual graph is a tree. For the same reasoning,
it is impossible that the curve C has three reduced degree 3 components.

If the curve C is irreducible, it is rational so must be singular, and by the argument
above, can have only one singularity, a double point on the line (v = 0). In order
for C to be rational, this forces C to have a singularity analytically locally of the
form x2 = v15. The reduced case will be concluded by the next lemma. □

Lemma 8.8. — There is no irreducible degree 9 curve C ⊂ P(3, 1, 1) with an isolated
singularity in the smooth locus of P(3, 1, 1) of the form x2 = v15 such that the ruling
locally meets this singularity to order 2.

Proof. — Suppose such a curve C exists. We will transform this curve to a rational
quintic curve on P2 with a two singularities with Newton pairs (2, 3) and (2, 11). First,
resolve the 1

3 (1, 1) singularity on P(3, 1, 1), which creates a −3 curve that does not
intersect C. Let F be the fiber of the ruled surface F3 through the singular point
of C, and blow up the singular point with exceptional divisor E, then contract the
strict transform of F . The resulting surface is F2, and the image of the curve C has a
(2, 13) singularity on its intersection with the image of E, and the image of C meets
the negative section of F2 transversally. Now, blow up the singular point of the image
of C and contract the image of E. We are now in F1, and the image of C has a (2, 11)

singularity and meets the negative section of F1 to order 2. Contracting the negative
section yields a curve in P2 with a (2, 11) and (2, 3) singularity. Because the curve
was initially a degree 3 multi-section of F3 and met the −1 curve in F1 to order 2, the
resulting curve in P2 has degree 5. However, by the classification of cuspidal quintic
plane curves in P2 in [25, 6.1.3], this curve does not exist. □

Now we are in the position to complete the proof of Proposition 8.4.

Proof. — Suppose for contradiction that (XCY
0 , DCY

0 ) = (P2, R + 2N), where R is
a line in P2 and N is a smooth cubic meeting R at one point to with length 3,
and recall that the central fiber of the normalization (Dnorm)0 necessarily contains 2
curves: the curve whose image in (X,D) is the smooth curve D0 (which double covers
the doubled elliptic curve, and by abuse of notation we will also denote by D0) and
the strict transform of the line. By Lemma 8.6, there is an appropriate weighted blow-
up of the intersection point of R and N in the family (XCY, DCY) with exceptional
divisor isomorphic to P(3, 1, 1) improving the singularity. By Lemma 8.7, if the strict
transform DY in this weighted blow up has C := DY ∩P(3, 1, 1) reduced, it must have
a singularity analytically of the form x2 = v15. By Lemma 8.8, this is contradiction
as this singularity does not exist. Therefore, C must be non-reduced. Then, as all
components have degree a multiple of three, DY ∩ P(3, 1, 1) is necessarily the union
of two curves C1 + 2C2 where C1 and C2 both have degree 3. By Lemma 8.6, the
curves cannot meet at a single point to length 3 as this contradicts the choice of
weighted blow-up. If there are 3 points in the intersection then using the inequality
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in Theorem 4.8, we obtain a contradiction to the fact that the intersection graph of
(Dnorm

Y )0 is a tree.
It remains to consider the case of 2 intersection points, in which case C1 and C2

must meet transversely at one point and to order two at the other point.

P(3, 1, 1)P̃2

∆

2N

R

2C2

C1
2 2

Figure 2. A sketch of (DY )0 and its intersection graph.

As the intersection graph of (Dnorm
Y )0 is a tree, it is necessary that the curve C2

breaks into two components Cα and Cβ in the normalization. An easy analysis of the
possible intersection graphs shows that (Dnorm

Y )0 can be a tree only if one (and not
both) of the curves Cα or Cβ meets D0 in (Dnorm

Y )0.
To reach a contradiction, we want to show that both branches Cα and Cβ both

meet D0 in (Dnorm
Y )0. This can be checked analytically locally around the intersection

point p ∈ N ∩C2. Analytic locally DY can be described as a µk-quotient of a divisor
in a simple normal crossing degeneration. More precisely, consider the threefold in
affine space A4 with coordinates (x′, y′, z′, t′):

Y1 = (y′z′ = t′) ⊂ A4

and consider the action of the k-th roots of unity µk = ⟨ζ⟩ that sends y′ 7→ ζy′, z′ 7→
(ζ−1)z′, and fixes x′ and t′. Then there is an analytic local isomorphism (Y1/µk, 0) ∼=
(Y, p) (by abuse of notation we use Y1 to denote an analytic neighborhood of 0 that
gives rise to such an isomorphism). Under the analytic map

ρ : Y1 −→ Y

we can assume that the equation of µk-invariant divisor D1 := ρ∗DY is given by

D1 =
(
(x′)2 + t′f(x′, y′k, z′k, t′) = 0

)
⊂ Y1.

Assume, without loss of generality that in this neighborhood ρ maps the curve (t′ =

x′ = y′ = 0) dominantly onto C2 and (t′ = x′ = z′ = 0) onto N , and by construction,
note that (Y1,

1
2D1 + (Y1)0) is log canonical.

Now we define Yi+1 and Di+1 iteratively as follows. Assume that there is only one
curve in Di that dominates (t′ = x′ = y′ = 0) ⊂ Y1 (i.e., the branches have not
been separated yet). Then blow-up the reduced ideal of this curve in Yi to arrive at
πi+1 : Yi+1 → Yi and let Di+1 be the strict transform of Di. Because KYi+1

+ 1
2Di+1+

(Yi+1)0 = π∗(KYi
+ 1

2Di + (Yi)0), the pair (Yi+1,
1
2Di+1 + (Yi+1)0) is log canonical

by [20, Lem. 2.30]. By induction Yi has a natural µk-action, Di is preserved by this
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µk-action, and the ideal of the blown-up curve has a natural equivariant structure.
Thus Yi+1 carries a natural µk-action and Di+1 is preserved by this action. After
ℓ > 1 blow-ups, Dℓ has two distinct branches that each map isomorphically onto
(t′ = x′ = y′ = 0). The natural map:

Yℓ/µk −→ Y

is birational onto the original analytic neighborhood of p ∈ Y . It follows that the pair
(Yℓ,

1
2Dℓ+(Yℓ)0) is log canonical and hence (Yℓ/µk, (

1
2Dℓ+(Yℓ)0)/µk) is log canonical

by [20, Prop. 5.20]. Therefore Dℓ cannot contain any components of the double locus
(non-normal locus) of Yℓ (otherwise, the pair would not be log canonical). Therefore,
the quotient Dℓ/µk is an S2 partial normalization of DY which separates Cα and Cβ .
However, each blow-up has been the blow-up of a smooth curve in Yi, so the total space
remains Q-factorial, and hence both branches Cα and Cβ must intersect (the strict
transform of) N . Therefore, by Corollary 3.8, both branches Cα and Cβ intersect D0

(the pre-image of N) in (Dnorm
Y )0, and we have reached a contradiction. □
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