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PURITY AND QUASI-SPLIT TORSORS OVER

PRÜFER BASES

by Ning Guo & Fei Liu

Abstract. — We establish an analogue of the Zariski–Nagata purity theorem for finite étale cov-
ers on smooth schemes over Prüfer rings by demonstrating Auslander’s flatness criterion in this
non-Noetherian context. We derive an Auslander–Buchsbaum formula for general local rings,
which provides a useful tool for studying the algebraic structures involved in our work. Through
the analysis of reflexive sheaves, we prove various purity theorems for torsors under certain
group algebraic spaces, such as the reductive ones. Specifically, using results from [EGA IV4]
on parafactoriality on smooth schemes over normal bases, we prove the purity for cohomology
groups of multiplicative type groups at this level of generality. Subsequently, we leverage the
aforementioned purity results to resolve the Grothendieck–Serre conjecture for torsors under a
quasi-split reductive group scheme over schemes smooth over Prüfer rings. Along the way, we
also prove a version of the Nisnevich purity conjecture for quasi-split reductive group schemes
in our Prüferian context, inspired by the recent work of Česnavičius [Čes22b].

Résumé (Pureté et torseurs quasi-déployés sur les bases de Prüfer). — Nous établissons un
analogue du théorème de pureté de Zariski–Nagata pour les revêtements étales sur les schémas
lisses sur les anneaux de Prüfer en démontrant le critère de platitude d’Auslander dans ce
contexte non noethérien. Nous dérivons une formule d’Auslander–Buchsbaum pour les anneaux
locaux généraux, qui fournit un outil utile pour étudier les structures algébriques impliquées
dans notre travail. Grâce à l’analyse des faisceaux réflexifs, nous prouvons divers théorèmes de
pureté pour les torseurs sous certains espaces algébriques en groupes, notamment ceux qui sont
réductifs. En particulier, en utilisant des résultats de [EGA IV4] sur la parafactorialité sur les
schémas lisses sur des bases normales, nous prouvons la pureté pour les groupes de cohomologie
des groupes de type multiplicatif à ce niveau de généralité. Ensuite, nous utilisons les résultats
de pureté susmentionnés pour résoudre la conjecture de Grothendieck–Serre pour les torseurs
sous un schéma en groupes réductifs quasi-déployés sur des schémas lisses sur des anneaux de
Prüfer. Nous prouvons également une version de la conjecture de pureté de Nisnevich pour
les schémas en groupes réductifs quasi-déployés dans notre contexte prüferien, inspirée par les
travaux récents de Česnavičius [Čes22b].
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1. Introduction

1.1. Purity and regularity. — In algebraic geometry, purity refers to a diverse range
of phenomena in which certain invariants or categories associated to geometric objects
are insensitive to the removal of closed subsets of large codimensions. In the classical
Noetherian world, purities, say, for vector bundles (and even torsors), or for finite
étale covers, are intimately related to the regularities measured by lengths of regular
sequences of geometric objects. For a concrete instance, the Auslander–Buchsbaum
formula [AB57, Th. 3.7]

depthR M + proj.dimR M = depthR R

controls the projective dimension of the finite type module M over the Noetherian
local ring R via depths, leading to the purity for vector bundles on regular local
rings of dimension 2 ([Sam64, Prop. 2]). Granted this, Colliot-Thélène and Sansuc
[CTS79, Th. 6.13] established the purity for reductive torsors over arbitrary regular
local ring R of dimension 2 by bootstrapping from the vector bundle case: for every
reductive R-group scheme G, the restriction map

H1
ét(SpecR,G)

∼−→ H1
ét(SpecR∖ {mR}, G)

is bijective. Nevertheless, not only does the term ‘regularity’ make sense for Noetherian
rings, its non-Noetherian generalization can still enlighten us to contemplate purity
problems.

1.2. Regularity and its avatar over Prüfer bases. — The concept of regularity for
non-Noetherian rings was first introduced by Bertin, as found in references [Ber71]
and [Ber72, Def. 3.5], specifically for coherent local rings. A ring R is termed regular if
every finitely generated ideal of R possesses a finite projective dimension. According
to Serre’s homological characterization [Ser56, Th. 3], this definition aligns with the
traditional understanding of regularity in the context of Noetherian rings. A typical
non-Noetherian example can be found in Prüfer domains. By definition, these are do-
mains whose all local rings as valuation rings. Recall that an integral domain V is a
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Purity and quasi-split torsors over Prüfer bases 189

valuation ring if every pair a, b ∈ V ∖{0} satisfies either a ∈ (b) or b ∈ (a). As a case in
point, Noetherian valuation rings are precisely either discrete valuation rings or fields.
The regularity of Prüfer domains is a direct consequence of the characteristic that all
finitely generated ideals of valuation rings are principal.(1) As a further instance, ev-
ery smooth algebra over a Prüfer domain is coherent regular (Lemma 3.7). For recent
research on the regularity of schemes over Prüfer domains, see [Kna03], [Kna08]. In
addition to their regularity and other properties (see e.g. Lemma 3.2), Prüfer domains
are ubiquitous in the study of nonarchimedean geometry, Zariski–Riemann spaces, and
other fields, which motivates further investigation of their algebro-geometric proper-
ties.

1.3. Auslander–Buchsbaum for general local rings. — Let A be a local ring with
quasi-compact punctured spectrum and M an A-module having a finite resolution by
finite free A-modules. We have the following Auslander–Buchsbaum formula

proj.dimA(M) + depthA(M) = depthA(A).

Here proj.dimA(0) = −∞ and depthA M is the smallest i such that the i-th local
cohomology of M is nonzero (Section 2.5). Our proof is significantly different from
the classical case [AB57, Th. 3.7]. Specifically, we bypass the interpretation of projec-
tive dimensions in terms of Tor functors, which is a crucial ingredient in Auslander–
Buchsbaum’s argument.

1.4. Basic setup I. — The purity part of the present article focuses on a semilocal
Prüfer domain R with dimR > 0 (and with dimR <∞ if necessary), an R-flat finite
type algebraic space X with regular R-fibres, and a closed subspace Z ⊂ X such that
j : X ∖ Z ↪→ X is quasi-compact. For a point x ∈ X lying in an open subscheme,
the local ring of X at x makes sense and we denote A := OX,x. When involving
torsors on X, we let G be an X-group algebraic space that étale locally permits an
embedding G ↪→ GLn such that GLn /G is X-affine. This condition is fulfilled if G is
X-reductive,(2) or finite locally free.

1.5. Purity for torsors on smooth relative curves over Prüfer bases. — Once the
projective dimensions of reflexive sheaves on X are controlled, by imposing codimen-
sional constraints on Z, we may extend vector bundles on X∖Z to X, as in Noetherian
scenarios. Subsequently, this allows us to obtain the purity Theorem 6.3 for G-torsors
(where G is as in the Basic setup I): if X is an S-curve and Z satisfies

Zη = ∅ for each generic point η ∈ S and codim(Zs, Xs) ⩾ 1 for all s ∈ S,

(1)To elucidate, given a Prüfer domain R (which is coherent), any partial resolution 0 → N →
Rn → I → 0 of a finitely generated ideal I ⊂ R results in N being finitely presented. As N is finite
free over each local ring of R, it is consequently finite projective over R.

(2)Namely, it is a smooth affine X-group algebraic space G whose geometric X-fibres are (con-
nected) reductive algebraic groups.
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190 N. Guo & F. Liu

then restriction induces the following equivalence of categories of G-torsors

Tors(Xfppf , G)
∼−→ Tors((X ∖ Z)fppf , G).

In particular, passing to isomorphism classes of objects, we have the bijection

H1
fppf(X,G) ≃ H1

fppf(X ∖ Z,G)

of nonabelian cohomology pointed sets. Meanwhile, a local version Theorem 6.5 allows
us to loose constraints on the relative dimension of X: if either

x ∈ Xη with dimOXη,x = 2, or
x ∈ Xs with s ̸= η and dimOXs,x = 1,

then every G-torsor over SpecOX,x ∖ {x} extends uniquely to a G-torsor over OX,x.
This permits us to iteratively extend reductive torsors beyond a closed subset of higher
fiberwise codimensions.

1.6. Zariski–Nagata over Prüfer bases. — The Zariski–Nagata purity, known as
“purity of branch locus”, states that every finite extension A ⊂ B of rings with A reg-
ular Noetherian and B normal is unramified if and only if so it is in codimension one
on SpecB. This purity was settled by Zariski [Zar58] in a geometric context, and more
algebraically by Nagata [Nag59] based on Chow’s local Bertini theorem. In contrast
to them, Auslander gave an alternative proof [Aus62, Th. 1.4] by skillful homological
methods leading to a criterion for flatness. In [SGA 2new, Exp. X, §3], Grothendieck
reformulated their results into a purity concerning finite étale covers and proved this
purity on a Noetherian local ring that is a complete intersection of dimension ⩾ 3 by
reducing the assertion to hypersurfaces via several passages involving formal comple-
tions. Nevertheless, a practical deficiency of the latter argument is that, even over a
rank-one valuation ring V with pseudo-uniformizer ϖ, the coherence of the ϖ-adic
completion Â of a certain local V -algebra A is unknown to us, not to mention the
crucial primary decomposition on it (that will guarantee a certain finiteness result).
To circumvent this technical obstacle, we revert to Auslander’s argument by establish-
ing a Prüferian counterpart Theorem 4.1 of the criterion for flatness [Aus62, Th. 1.3].
Granted this, we acquire the Prüferian Zariski–Nagata Theorem 6.9: the pullback

FÉtX
∼−→ FÉtX∖Z is an equivalence

for every closed subset Z ⊂ X in the Basic setup I Section 1.4 that satisfies the
conditions {

codim(Zη, Xη) ⩾ 2 for each generic point η ∈ S, and
codim(Zs, Xs) ⩾ 1 for all s ∈ S.

In particular, if X is connected and x : SpecΩ→ X ∖ Z is a geometric point, then

the map πét
1 (X ∖ Z, x) −→ πét

1 (X,x) is bijective.
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1.7. Basic setup II. — The rest of this section deals mainly with the following. For a
semilocal Prüfer domain R with fraction field K, an integral R-smooth scheme X, the
semilocalization A := OX,x of X at a finite subset x ⊂ X contained in a single affine
open of X, and a quasi-split reductive A-group scheme G, we study the trivialization
behaviour of G-torsors.

1.8. Grothendieck–Serre for quasi-split groups. — The Grothendieck–Serre con-
jecture predicts that every torsor under a reductive group scheme G over a regular
local ring A is trivial if it becomes trivial over FracA. This conjecture was settled in
the affirmative when A contains a field (that is, A is of equicharacteristic), but in the
mixed characteristic case, except for several sporadic or low dimensional cases, the
conjecture remains open beyond quasi-split groups [Čes22a]. For a detailed review
of the state of the art in this area, see [Pan18, §5] , as well as [GL23, §1.2] for a
summary of recent developments. In this paper, we prove Theorem 8.1(ii), thereby
generalizing the main result of [Čes22a] to the Prüferian context: in the basic setup
Section 1.7, assume in addition that the Prüfer ring R is of Krull dimension 1, then
every generically trivial G-torsor is trivial, that is, we have

Ker
(
H1(A,G) −→ H1(FracA,G)

)
= {∗}.

The proof follows a similar strategy of [Čes22a] (with its earlier version given by
Fedorov [Fed22]), and the key input is our toral version of purity Theorem 7.9 and
Grothendieck–Serre type Proposition 7.11 in this context. More precisely, by the val-
uative criterion of properness, a generically trivial torsor on X, say, reduces to a
generically trivial torsor under a Borel B away from a closed subset Z of X that
has codimension ⩾ 2 (resp. ⩾ 1) in the generic (resp. non-generic) R-fiber. Further,
thanks to the aforementioned toral purity and Grothendieck–Serre type results, the
above B-torsor even reduces to a radu(B)-torsor on X ∖ Z. Then, with the help
of the geometric Lemma 8.2 (unfortunately, whose validity imposes the dimension-1
constraint on R), we can reduce to studying torsors over the relative affine line via
excision and patchings, and we then conclude by [GL23, Th. 5.1].

1.9. A version of Nisnevich’s purity conjecture for quasi-split groups

Now, we turn to Nisnevich’s purity conjecture, where we require the total isotropic-
ity of group schemes. A reductive group scheme G over a scheme S is totally isotropic
at a point s ∈ S if in the following canonical decomposition

Gad
OS,s

∼=
∏

i ResAi/OS,s
(Gi)

(cf. [SGA 3III new, Exp. XXIV, Prop. 5.10(i)]) every Gi contains a Gm,Ai
, where

OS,s → Ai is finite étale, and Gi is an adjoint semisimple Ai-group scheme whose
geometric Ai-fibres have connected Dynkin diagram of fixed type i. If this holds for
all s ∈ S, then G is totally isotropic. For instance, tori and quasi-split group schemes
are totally isotropic.
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192 N. Guo & F. Liu

Proposed by Nisnevich [Nis89, Conj. 1.3] and modified due to the anisotropic coun-
terexamples of Fedorov [Fed22, Prop. 4.1], the Nisnevich conjecture predicts that, for
a regular semilocal ring R, a regular parameter r (i.e., r ∈ m∖m2 for every maximal
ideal m ⊂ R), and a reductive R-group scheme G such that GR/rR is totally isotropic,
every generically trivial G-torsor on R[ 1r ] is trivial, namely,

Ker(H1(R[1/r], G)→ H1(FracR,G)) = {∗}.

The case when R is a local ring of a regular affine variety over a field and G =

GLn was settled by Bhatwadekar–Rao [BR83] and was subsequently extended to
arbitrary regular local rings containing fields by Popescu [Pop02, Th. 1]. Nisnevich
in [Nis89] proved the conjecture in dimension two, assuming that R is a local ring
with infinite residue field and that G is quasi-split. For the state of the art, the
conjecture was settled in equicharacteristic case and in several mixed characteristic
case by Česnavičius in [Čes22b, Th. 1.3] (previously, Fedorov [Fed21] proved the case
when R contains an infinite field). Besides, the toral case and some low dimensional
cases are known and surveyed in [Čes22b, §3.4.2(1)] including Gabber’s result [Gab81,
Chap. 1, Th. 1] for the local case dimR ⩽ 3 when G is either GLn or PGLn. We prove
Theorem 8.1(i): in the Basic Setup II Section 1.7,

Ker
(
H1(A⊗R K,G) −→ H1(FracA,G)

)
= {∗}.

1.10. Notations and conventions. — All rings in this paper are commutative with
units, unless stated otherwise. Also, we adopt the notion of normal schemes as in
[EGA I, 4.1.4], that is, they are schemes whose all local rings are integrally closed
domains. A Prüfer scheme is a scheme that is covered by spectra of Prüfer domains.
For a point s of a scheme (resp. for a prime ideal p of a ring), we let κ(s) (resp. κ(p))
denote its residue field. For a global section s of a scheme S, we write S[1/s] for the
open locus where s does not vanish. For a ring A, we let FracA denote its total ring
of fractions. For a morphism of algebraic spaces S′ → S, we let (−)S′ denote the base
change functor from S to S′; if S = SpecR and S′ = SpecR′ are both affine schemes,
we will often write (−)R′ for (−)S′ .

Let S be an algebraic space, and let G be an S-group algebraic space. For an
S-algebraic space T , by a G-torsor over T we shall mean a GT := G ×R T -torsor
(see Definition 5.2). Denote by Tors(Sfppf , G) (resp. Tors(Sét, G)) the groupoid of
G-torsors on S that are fppf locally (resp. étale locally) trivial; specifically, if G is
S-smooth (e.g. G is S-reductive, see below), then every fppf locally trivial G-torsor is
étale locally trivial, so we have

Tors(Sfppf , G) = Tors(Sét, G).

For a scheme X, let Pic(X) denote the category of invertible OX -modules.
When X is locally coherent (Section 2.1), let OX -Rflx denote the category of
reflexive OX -modules.

Let S be an algebraic space. By a reductive S-group algebraic space we mean
a smooth affine S-group algebraic space whose geometric S-fibres are (connected)
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reductive algebraic groups. When S is a scheme, this aligns with the definition of
reductive S-group schemes presented in [SGA 3III new].
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2. Reflexive sheaves and depths

2.1. Locally coherent schemes. — A module M finitely generated over a ring A is
coherent if its finitely generated A-submodules are all finitely presented. A ring A is
coherent if it is coherent as an A-module. It is worth noting that one can determine the
coherence of either a module or a ring Zariski locally. Coherent rings characteristically
encompass Noetherian rings, but of primary significance to our discussion are finitely
generated flat algebras over Prüfer domains, as referenced in Lemma 3.7.

On a scheme X, a quasi-coherent OX -module F is coherent if there exists an
affine open cover X = ∪iUi such that F (Ui) is a coherent OX(Ui)-module for every i.
In such instances, this property holds true for all affine open covers of X. A scheme X

is locally coherent if OX is coherent as an OX -module. A locally coherent scheme is
coherent if it is quasi-compact quasi-separated.

Given a scheme X, the dual of an OX -module F is defined as

F∨ := HomOX
(F ,OX).

Lemma 2.2. — Let X be a scheme and let F and G be coherent OX-modules.
(i) If F

f−→ G is a morphism of OX-modules, then Ker f and Coker f are coherent.
(ii) Assume that X is integral. If G is OX-torsion-free, so is HomOX

(F ,G ).
In particular, F∨ is OX-torsion-free.

Now, assume that X is locally coherent.
(iii) An OX-module is coherent if and only if it is Zariski locally finitely presented.
(iv) HomOX

(F ,G ) is coherent. In particular, F∨ is coherent.

Proof. — We will argue Zariski locally on X. For (i), see [Stacks, 01BY]. For (ii),
we apply HomOX

(−,G ) to OI
X→→F and get an embedding HomOX

(F ,G ) ↪→
∏

I G .

J.É.P. — M., 2024, tome 11
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As
∏

I G is OX -torsion-free, so is HomOX
(F ,G ). For (iii), see [Stacks, 05CX].

For (iv), we apply (iii) to choose a finite presentation O⊕m
X → O⊕n

X → F → 0 and
take HomOX

(−,G ) of it. Then HomOX
(F ,G ) is a kernel of a map of coherent

modules, so by (i) is coherent. □

2.2.1. Reflexive sheaves. — For a locally coherent scheme X and a coherent OX -mod-
ule F , consider the canonical map

ϕF : F −→ F∨∨.

If ϕF is an isomorphism, then F is reflexive. We let OX -Rflx denote the category
of reflexive OX -modules. For instance, every vector bundle on X is reflexive. An
OX -module G is Zariski locally finitely copresented if it Zariski locally fits into an exact
sequence 0→ G → O⊕m

X → O⊕n
X for some integers m and n. If X is further assumed to

be integral, then the following Lemma 2.3(ii) shows that, for every coherent OX -mod-
ule G , the double dual G ∨∨ is OX -reflexive, hence G ∨∨ is called the reflexive hull
of G .

Lemma 2.3. — Let X be an integral locally coherent scheme and let F and G be
coherent OX-modules.

(i) The double dual ϕF : F → F∨∨ is injective if and only if F is OX-torsion-free.
In particular, all reflexive OX-modules are OX-torsion-free.

(ii) If G is reflexive, then so is HomOX
(F ,G ). Therefore, the dual of any coherent

OX-module is reflexive.
(iii) F is reflexive if and only if it is Zariski locally finitely copresented, if and

only if there are a finite locally free OX-module L and a torsion-free OX-module N

fitting into the short exact sequence

0 −→ F −→ L −→ N −→ 0.

(iv) If G is reflexive, then the following natural map HomOX
(ϕF ,G )

HomOX
(F∨∨,G ) −→HomOX

(F ,G )

is an isomorphism.

Proof. — We may prove all the assertions Zariski locally.

(i) By Lemma 2.2(ii), the injectivity of ϕF implies that F is OX -torsion-free.
Conversely, if F is torsion-free, then locally F ⊂ O⊕n

X for some integer n; taking
double dual, we find that the composite F → F∨∨ → O⊕n

X is injective, so ϕF is also
injective.

(ii) We apply Lemma 2.2(iii) to choose a finite presentation and we take its
HomOX

(−,G ). So we get an exact sequence 0 → HomOX
(F ,G )

u−→ G ⊕m → G ⊕n

for some integers m and n. Taking double dual of this exact sequence, we obtain the
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following commutative diagram

0 HomOX
(F ,G ) G ⊕m G ⊕n

HomOX
(F ,G )∨∨ (G ∨∨)⊕m (G ∨∨)⊕n

u

u∨∨

the reflexivity of G and diagram chase reduces us to showing that u∨∨ is injective.
Take (−)⊗OX

K(X) of the exact sequence

(G ∨)⊕m u∨

−−−→HomOX
(F ,G )∨ −→ Coker(u∨) −→ 0.

Since F is finitely presented, by [Stacks, 0583], we have Coker(u∨)K(X) = 0, namely,
Coker(u∨) is torsion. Thus Ker(u∨∨) = Coker(u∨)∨ = 0, as desired.

(iii) If F is reflexive, we choose a finite presentation of F∨ (which is coherent by
Lemma 2.2(iv)) and then taking its dual yields a finite copresentation of F∨∨ ≃ F .
Conversely, if F is finitely copresented as 0 → F → O⊕m

X
v−→ O⊕n

X , then F ≃
Coker(v∨)∨, which is reflexive by (ii). Taking L := O⊕m

X and N := Im(v), we obtain
the desired short exact sequence.

(iv) Pick a finite copresentation O⊕n
X → O⊕m

X → G → 0 and take Hom(ϕF ,−)
on it. We have the commutative diagram of OX -modules with exact rows

0 HomOX
(F∨∨,G ) HomOX

(F∨∨,O⊕m
X ) HomOX

(F∨∨,O⊕n
X )

0 HomOX
(F ,G ) HomOX

(F ,O⊕m
X ) HomOX

(F ,O⊕n
X )

HomOX
(ϕF ,G )

By the assertion (ii), F∨ is reflexive, hence ϕ∨,m
F , ϕ∨,n

F are bijective and so is
HomOX

(ϕF ,G ). □

By reflexive hull, reflexive sheaves extend from quasi-compact open (cf. [GR18,
Prop. 11.3.8(i)]).

Corollary 2.4. — For a quasi-compact open U in a coherent integral scheme X, the
restriction OX-Rflx→ OU -Rflx is essentially surjective.

Proof. — A reflexive OU -module F , by [Stacks, 0G41] and Lemma 2.2(iii), extends
to a coherent OX -module F̃ . By Lemma 2.3(ii), the reflexive F̃∨∨ extends F . □

Now, we recall the notion of depth in terms of local cohomology and use it to
describe reflexive sheaves.

2.5. Depths. — For a scheme X and an open immersion j : U ↪→ X with closed
complement i : Z := X ∖ U ↪→ X, consider the functor

ΓZ : ZX -Mod −→ ZX -Mod F 7−→ Ker(F −→ j∗j
∗F )
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which sends an abelian sheaf F on X to its largest subsheaf supported on Z. The
functor ΓZ is left exact, giving rise to a right derived functor

RΓZ : D+(ZX -Mod) −→ D+(ZX -Mod).

Explicitly, for an object K ∈ D+(ZX -Mod), taking an injective resolution K → I•,
one computes RΓZ(K) via RΓZ(I

•). Thus, RΓZ actually factors over the canonical
functor D+(ZZ-Mod)→ D+(ZX -Mod) and satisfies ΓZ ≃ R0ΓZ . Moreover, we have
the following exact sequence 0 → ΓZ(I

•) → I• → j∗j
∗(I•) → 0, giving rise to the

functorial distinguished triangle

RΓZ(K) −→ K −→ Rj∗j
∗(K) −→ RΓZ(K)[1].

Assume now that j : U ↪→ X is quasi-compact. Then, for any quasi-coherent sheaf F

on X, from the above triangle we see that RΓZ(F ) has quasi-coherent cohomology
sheaves as Rj∗j

∗(F ) does so. Consider the functor ΓZ := Γ(X,−) ◦ ΓZ . Since the
functor ΓZ sends injective sheaves to injective sheaves (ΓZ admits an exact left adjoint
i∗i

∗), the derived functor RΓZ of ΓZ is canonically isomorphic to RΓ(X,−) ◦ RΓZ .
Therefore, if X = SpecA is affine and M is an A-module, by the quasi-coherence of
RiΓZ(M̃) we get RiΓZ(M̃) ≃ (RiΓZ(M̃))∼ for all i ⩾ 0; in particular, all the A-mod-
ules RiΓZ(M̃) are supported on Z. Moreover, we have the following distinguished
triangle

RΓZ(M̃) −→M −→ RΓ(U, M̃) −→ RΓZ(M̃)[1],

which gives an exact sequence 0 → ΓZ(M̃) → M → Γ(U, M̃) → R1ΓZ(M̃) → 0 and
isomorphisms RiΓZ(M̃) ≃ Hi−1(U, M̃) for all i > 1.

In what follows, we will mainly consider the case where X = SpecA for a local
ring (A, x := mA) such that the punctured spectrum UA := SpecA ∖ {x} is quasi-
compact. Denote by j : UA ↪→ X the open immersion. In this case, we have seen that
the cohomology modules RiΓx(M̃) are all supported on {x}, where M is an A-mod-
ule. For simplicity, we shall often write RiΓx(M) for RiΓx(M̃). We warn readers that
the derived functor M 7→ RiΓx(M) here is obtained from an injective resolution of
the associated quasi-coherent sheaf M̃ , not from an injective resolution of the A-mod-
ule M . These two approaches do not, in general, produce equivalent theories, unless A
is Noetherian (see [Stacks, 0A6P]).

As defined in [GR18, Def. 10.4.14], the depth of an A-module M is given by

depthA(M) := sup{n ∈ Z | RiΓxM = 0 for all i < n} ∈ Z⩾0 ∪ {+∞}.

For a finitely generated A-module N supported on {x}, consider a closely related
quantity

τN (M) := sup{n ∈ Z | ExtiA(N,M) = 0 for all i < n} ∈ Z⩾0 ∪ {+∞}.

We note that by the finite generation of N , all the A-modules ExtiA(N,M) are sup-
ported on {x}.
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Lemma 2.6. — Let (A,mA) be a local ring with quasi-compact punctured spectrum.
Let M be an A-module and N a finitely generated A-module supported on {mA}. Let
(f1, · · · , fr) be an M -regular sequence in mA. We have (notations as in Section 2.5)

depthA(M) = depthA(M/
∑r

i=1 fiM) + r and τN (M) = τN (M/
∑r

i=1 fiM) + r.

Proof. — Denote x := mA as the closed point of SpecA. The two equalities are proved
similarly, so we only treat the one concerning depths. By induction on r, it suffices to
consider for a nonzero f ∈ mA the following short exact sequence

0 −→M
f−−→M −→M/fM −→ 0

to show that depthA(M) = depthA(M/fM) + 1. We have a long exact sequence

· · · → Ri−1ΓxM
f−−→ Ri−1ΓxM → Ri−1Γx(M/fM)→ RiΓxM

f−−→ RiΓxM → · · · .

Assume that for an integer n we have depthA(M) ⩾ n + 1, so RiΓxM = 0 for
0 ⩽ i ⩽ n. Then the displayed exact sequence implies that RiΓx(M/fM) = 0 for
0 ⩽ i ⩽ n − 1, so depthA(M/fM) ⩾ n. Conversely, if depthA(M/fM) ⩾ n, then
RiΓx(M/fM) = 0 for 0 ⩽ i ⩽ n − 1. The displayed exact sequence implies that
RiΓxM = 0 for 0 ⩽ i ⩽ n − 1, and there is an injection RnΓxM ↪

×f−→ RnΓxM .
However, since the A-module RnΓxM is supported on {x} and f ∈ mA, we deduce
that RnΓxM = 0, that is, depthA(M) ⩾ n+ 1. □

Examples
(2.7) Consider a valuation ring V that is not a field. If the punctured spectrum UV

is quasi-compact (e.g. when 0 < dimV <∞), then there exists an f ∈ mV such that
dim(V/fV ) = 0, which implies depthV (V/fV ) = 0. From the formula in Lemma 2.6,
we deduce that depthV (V ) = 1. Conversely, if UV is not quasi-compact, then one can
show that depthV (V ) ⩾ 2.

(2.8) Assume that A is a Noetherian local ring and N = A/I for an ideal I ⊊ A

(e.g. N = A/mA). Then for any finitely generated A-module M , we have

depthA(M) = τN (M).

Indeed, utilizing Lemma 2.6, one can check that both of them equal the length of
any maximal M -regular sequence in mA (so the length is independent of all choices).
However, this may be false when A is non-Noetherian. For instance, we let A := V

be a non-discrete valuation ring of finite rank and let N := V/mV be its residue field.
Take M = V/fV for a nonzero f ∈ mV . Then,

– depthV (V/fV ) = 0. Let p ⊊ mV be the second largest prime ideal of V . The
non-discreteness of V implies that mV ̸= fV , so we can pick g ∈ mV ∖ (p∪ fV ).
Then f1 := f/g is in mV , and its image f1 ∈ V/fV has annihilator gV which
strictly contains p, that is, 0 ̸= f1 ∈ ΓmV

(V/fV ).
– For any nonzero element h ∈ V/fV , we have mV h ̸= 0, that is,

HomV (V/mV , V/fV ) = 0. Indeed, any such non-invertible h is represented
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by some h ∈ mV with fV ⊊ hV . Then h has annihilator (f/h)V , which is
strictly contained in mV because V is non-discrete valued.

Therefore, we have τV/mV
(V/fV ) ⩾ 1 > 0 = depthV (V/fV ).

Lemma 2.9. — Let A be a local ring with quasi-compact punctured spectrum, and let
M,N be A-modules.

(i) If depthA(N) ⩾ 1, then depthA(HomA(M,N)) ⩾ 1.
(ii) If depthA(N) ⩾ 2 and M is finite over A, then depthA(HomA(M,N)) ⩾ 2.
(iii) If A is coherent and M is a reflexive A-module, then

depthA(M) ⩾ min(2,depthA(A)).

Proof. — Pick a presentation A⊕J → A⊕I → M → 0 and take HomA(−, N), we get
a short exact sequence

0 −→ HomA(M,N) −→
∏
I

N −→ N ′ −→ 0,

where N ′ ⊂
∏

J N for some index set J . Since depthA(N) ⩾ 1, by definition, we have
depthA(

∏
J N) ⩾ 1 and depthA(N

′) ⩾ 1. For (ii), take RΓx of this short exact
sequence, where x is the closed point of SpecA. Since depthA(N) ⩾ 2 and I is finite,
we have RΓi

x(
∏

I N) =
⊕

I RΓi
xN = 0. Combine this with RΓ0

xN
′ = 0, both R0Γx

and R1Γx of HomA(M,N) vanish, so we get depthA(HomA(M,N)) ⩾ 2. The last
assertion follows from (i) and (ii). □

Corollary 2.10. — Let X be an integral, coherent, and topologically locally Noether-
ian scheme and j : U ↪→ X an open immersion such that every z ∈ X ∖ U satisfies
depthOX,z

(OX,z) ⩾ 2. Then, every reflexive OX-module F satisfies

F
∼−→ j∗j

∗F .

Proof. — As U contains the generic point of X, the injectivity follows because F and
j∗j

∗F are subsheaves of their common generic stalk. To show the surjectivity, we show
that every section s ∈ F (U) extends over X. Let U1 ⊂ X be the domain of definition
of s; it is open and contains U . If U1 ̸= X, then every maximal point z ∈ X ∖ U1

is contained in X ∖ U . In particular, we have depthOX,z
(OX,z) ⩾ 2 by assumption.

By Lemma 2.9(iii), the localization Fz := F |OX,z
satisfies depthOX,z

(Fz) ⩾ 2, hence
the restriction of s to SpecOX,z ∩ U1 = SpecOX,z ∖ {z} extends to a section s1 ∈
Γ(V1,F ) for an affine open neighborhood V1 of z in X (by the quasi-compactness of
the open immersion U1 ↪→ X). Since X is integral and F is OX -torsion-free, the two
local sections s1 and s agree on V1∩U , and thus can be glued to a section over V1∪U .
This implies that z is already in U1, a contradiction. □

Corollary 2.11. — Let X be an integral, coherent, and topologically locally Noether-
ian scheme. Let j : U ↪→ X be an open subscheme such that every z ∈ X∖U satisfies
depthOX,z

(OX,z) ⩾ 2. Then, taking j∗ and j∗ induce an equivalence of categories

OX-Rflx
∼−→ OU -Rflx .
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Proof. — By Corollary 2.4, the restriction functor is essentially surjective. To show
the full faithfulness, we pick two reflexive OX -modules F ,G and consider H :=

HomOX
(F ,G ). By Lemma 2.3(ii), H is a reflexive OX -module, so Corollary 2.10

implies that H (X) ≃H (U), as desired. □

2.12. (Weakly) associated primes. — Let R be a ring and M an R-module. We define
the set of associated primes of M , denoted as AssR(M), to be the collection of prime
ideals p ⊂ R for which R0ΓpMp ̸= 0. Note that in the literature, the associated primes
referred to in this context are often termed as “weakly associated primes” (see [Stacks,
0546] and [Bou98, Chap. IV, §1, Ex. 17]). It then follows that AssR(M) ̸= ∅ whenever
M ̸= 0: for any nonzero m ∈M , AssR(M) contains all the minimal elements of

Supp(m) := {p ∈ Spec R : mp ̸= 0 ∈Mp}.

Now, we present Proposition 2.13, whose argument is pointed out by L. Moret-
Bailly, as a generalization of its Noetherian case [SGA 2new, Exp. III, Prop. 1.3]. In ad-
dition to its generality, this result leads to an alternative proof of Lemma A.6 con-
cerning the “matrix of direct sums of modules”.

Proposition 2.13. — Let A be a ring, M a finitely presented A-module, and N an
A-module. We have

AssA(HomA(M,N)) = Supp(M) ∩AssA(N).

Proof. — It is clear that AssA(HomA(M,N)) ⊂ Supp(M) ∩ AssA(N), so it suffices
to prove the converse inclusion. For a prime ideal p ∈ Supp(M) ∩ AssA(N), we have
p ∈ Supp(Mp) ∩AssAp

(Np). As M is finitely presented, it suffices to show that there
is an f ∈ HomA(M,N) such that p the minimal one in

Supp(f) = {q ∈ SpecA | 0 ̸= fq ∈ HomAq
(Mq, Nq)}.

Hence we are reduced to showing the following local case Lemma 2.14. □

Lemma 2.14. — Let (A,m) be a local ring, M a finitely presented nonzero A-module,
and N an A-module with Supp(N) = {m}. Then we have HomA(M,N) ̸= 0.

Proof. — As N has an A-submodule of the form A/J for an ideal J ⊂ A with
Supp(J) = {m}, we may replace both A and N by A/J and replace M by C/JC

iteratively to assume that A is a local ring of dimension zero. It suffices to prove that
M∨ ̸= 0. As M has a nonzero quotient of the form A/I for a finitely generated ideal
I ⊂ A, it suffices to note that (A/I)∨ = Ann(I) ̸= 0, because I is nilpotent. □

Lemma 2.15. — Let R be a domain with topologically Noetherian spectrum and
α : M → N a morphism of R-modules. Then α is an isomorphism, provided that N

is torsion-free and every prime p ⊂ R satisfies:
– either αp : Mp → Np is an isomorphism, or depthRp

(Mp) ⩾ 2.
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Proof. — Take K := Ker(α). If K ̸= 0, we choose an associated prime p ∈ AssR(K),
then 0 ̸= R0ΓpKp ⊂ R0ΓpMp = 0 (since depthRp

(Mp) ⩾ 2 > 0), a contradiction. This
proves that α is injective. Take Q := Coker(α). If Q ̸= 0, we choose an associated
prime p ∈ AssR(Q). Since R0ΓpMp = R1ΓpMp = R0ΓpNp = 0, taking RΓp of
the short exact sequence 0 → Mp → Np → Qp → 0 yields that R0ΓpQp = 0, a
contradiction. Thus α is also surjective. □

2.15.1. Weak dimensions. — Recall the weak dimension of a ring B, denoted by
wdim(B), is defined as

wdim(B) = sup{fl.dimB(M) |M is a B-module},

the supremum of flat dimensions of all B-modules. For example, we know from [Stacks,
092S] that wdim(B) ⩽ 1 if and only if all local rings of B are valuation rings. Note
that if a B-module M has a (possibly infinite) resolution by finite free modules,
then fl.dimB(M) = proj.dimB(M). This holds in particular if B is coherent and M

is finitely presented. Since any such M is an iterated extension of cyclic, finitely
presented B-modules, we conclude that (for B coherent)

wdim(B) = sup{proj.dim(B/J) | J ⊂ B is a finitely generated ideal}.

2.16. Coherent regular rings. — A coherent ring R is termed regular if every
finitely generated ideal of R has finite projective dimension. By Serre’s homological
characterization, one recovers the classical regularity for Noetherian rings. However,
the primary focus of this paper is on the class of non-Noetherian regular rings (e.g. a
flat finite type ring over a valuation ring with regular fibres, see Lemma 3.7). For read-
ers’ convenience, we briefly summarize the key properties of general regular coherent
rings, which closely resemble their Noetherian counterparts. Other useful properties
can be found in the appendix.

Theorem 2.17. — For a coherent regular local ring A, the following assertions hold.
(i) A is a normal domain; more precisely
(ii) A is the intersection (in FracA) of its local rings which are valuation rings;
(iii) Any two nonzero elements of A have a greatest common divisor and a least

common multiple;
(iv) If the punctured spectrum UA is quasi-compact, then

depthA(A) = wdim(A) <∞.

So, for every coherent local ring R with quasi-compact punctured spectrum,

wdim(R) <∞ if and only if R is regular.

Proof

(i) This follows from [Ber72, Cor. 4.3].
(ii) The reference for this is [Que71, Prop. 2.4]. Assuming the topological Noethe-

rianness of SpecA, this also follows from (i) and the more general Proposition 2.22
(or Theorem 2.21).
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(iii) See [Que71, Prop. 3.2]. Assuming the topological Noetherianness of X :=

SpecA, this result can also be deduced from Theorem 2.20 as follows: consider two
nonzero elements, f and g, in A. Now, examine the two (finitely generated) ideals,
fA + gA and fA ∩ gA, of A. These two ideals define two coherent sheaves on X,
which are invertible around each point of X whose local ring is a valuation ring, or,
equivalently, has a weak dimension ⩽ 1 ([Stacks, 092S]). By Theorem 2.20, there exist
two invertible sheaves on X that coincide with the two ideal sheaves at all local rings
of X having weak dimension ⩽ 1. Since X is local, these two invertible sheaves are
free, and, in view of (ii), any generators provide a greatest common divisor and a least
common multiple of f and g.

(iv) The finiteness of wdim(A) under the quasi-compactness assumption on UA

was originally established by Quentel [Que71, Cor. 1.1]. We refer to Corollary A.8 for
additional details. □

Lemma 2.18. — Let R be a coherent ring and n ⩾ 2 an integer. Denote (−)∨ :=

HomR(−, R). Then

wdim(R) ⩽ n if and only if fl.dimR(M
∨) ⩽ n− 2 for every R-module M .

Proof. — If wdim(R) ⩽ n, then for any R-module M one takes a presentation F2 →
F1 → M → 0 for free R-modules F1 and F2. As R is coherent, by [Stacks, 05CZ]
and Lazard’s theorem [Stacks, 058G], F∨

1 and F∨
2 are flat, so the exact sequence 0→

M∨ → F∨
1 → F∨

2 → C → 0 for C := Coker(F∨
1 → F∨

2 ) yields fl.dimR(M
∨) ⩽ n − 2.

Conversely, to estimate wdim(R), it suffices to consider finitely presented R-modules
and their flat dimensions. Every finitely presented R-module M fits into an exact
sequence

0 −→ K −→ R⊕m −→ R⊕n −→M −→ 0,

where K := Ker(R⊕m → R⊕n), so by Lemma 2.3(iii), K is a reflexive R-module.
Thus, by assumption, we have fl.dimR(M) = fl.dim(K∨∨) + 2 ⩽ n. This gives the
desired inequality wdim(R) ⩽ n. □

A locally coherent scheme is regular if it is covered by spectra of coherent regular
rings.

Theorem 2.19. — Let X be a locally coherent, integral scheme and let F be a coherent
OX-module.

(i) If F is reflexive at a point x ∈ X and wdimOX,x is finite,(3) then we have

proj.dimOX,x
Fx ⩽ max(0,wdimOX,x − 2).

(ii) If wdimOX,x ⩽ 2 for all x ∈ X, every reflexive OX-module is locally free.

(3)For instance, when OX,x is regular with a quasi-compact punctured spectrum; see Theo-
rem 2.17(iv).
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Proof. — We first note that wdimOX,x < ∞ implies that OX,x is regular, and the
regularity of OX,x guarantees that every coherent OX,x-module is a perfect complex.
The assertion (ii) follows from (i). The assertion (i) follows from Lemma 2.18 because
the perfectness of Fx leads to the following desired inequality

proj.dimOX,x
(Fx) = fl.dimOX,x

(F∨∨
x ) ⩽ max(0,wdimOX,x − 2). □

Theorem 2.20. — Let X be a topologically locally Noetherian, integral, locally coher-
ent, regular scheme. For a closed subset Z ⊂ X with wdimOX,z ⩾ 2 for all z ∈ Z and
the canonical open immersion j : X ∖ Z ↪→ X, the restriction j∗ and pushforward j∗
induce the following equivalences of categories:

OX-Rflx
∼−→ OX∖Z-Rflx, PicX

∼−→ PicX ∖ Z.

In particular, for every scheme Y affine over X, we have a bijection of sets

Y (X) ≃ Y (X ∖ Z).

Moreover, if wdimOX,x ⩽ 2 for all x ∈ X, then we have an equivalence of categories:

Vect(X)
∼−→ Vect(X ∖ Z).

Proof. — We first note that the regularity of X guarantees that every coherent sheaf
on X is a perfect complex. The equivalence for vector bundles follows from that for
reflexive sheaves and Theorem 2.19(ii). By Theorem 2.17(iv), the depth and weak
dimension agree for each local ring of X, so the equivalence of reflexive sheaves fol-
lows from Corollary 2.11. For the assertion concerning Pic, by the result for reflex-
ive modules, it is enough to show that, for every invertible OX∖Z-module I , its
unique OX -reflexive extension F := j∗I is actually invertible. Consider the category
gr.Pic(X) of graded invertible OX-modules, whose objects are pairs (L , α) consisting
of an invertible OX -module L and a locally constant function α : X → Z, and mor-
phisms h : (L , α)→ (M , β) satisfies hx = 0 if α(x) ̸= β(x) for all x ∈ X. By [KM76,
Th. 1], there is a unique determinant functor from D(OX -Mod)∗perf the groupoid of
perfect complexes of OX -modules

det : D(OX -Mod)∗perf −→ gr.Pic(X).

Also, this functor det commutes with arbitrary base change. Thus, since the complex
F [0] is perfect, by Theorem 2.19(i), the invertible OX -module det(F [0]) is well-
defined, and we have isomorphisms

det(F [0])
∼−−−→ j∗j

∗det(F [0])
∼−−−→ j∗det(j

∗F [0])
∼←−− j∗det(I [0])

∼←−− j∗I .

Here, the first isomorphism follows from the assertion concerning Rflx, and the second
isomorphism used the base-change property of det. This shows that

F ≃ det(F [0]) is invertible.

Finally, since X ∖ Z is schematically-dense in X, the injectivity of the restric-
tion map Y (X) → Y (X ∖ Z) follows from [Stacks, 084N]. To prove the surjectivity,
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we (locally on X) write Y as the relative spectrum of a quasi-coherent OX -algebra A .
It remains to observe that every morphism AU → OU gives rise to a morphism

A −→ j∗AU −→ j∗OU ≃ OX . □

The following Theorem 2.21 generalizes Serre’s conditions (R1)+(S2) to the coher-
ent case. The key ingredient can be traced back to the research of the “multiplicative
theory of ideals” by M. Zafrullah, cf. [Zaf78, Lem. 7].

Theorem 2.21. — For a coherent domain R, the following are equivalent:
(i) R is normal;
(ii) R is the intersection (in FracR) of its local rings which are valuation rings;
(iii) every local ring A of R is either a valuation ring, or for any f ∈ mA we have

mA ̸∈ Ass(A/fA).

If local rings of R have topologically Noetherian spectra, then these are equivalent to

(†) every local ring of R is either a valuation ring or of depth ⩾ 2.

Proof. — First, for (iii)⇔ (†) under the Noetherian assumption, note that for every
R-module M we have Ass(M) = {p ∈ SpecR | depthRp

Mp = 0}, so it suffices to
apply Lemma 2.6, since R is a domain.

The implication (ii)⇒ (i) is clear, since an intersection of integrally closed subrings
is integrally closed.

For (iii) ⇒ (ii), we need to show that, for nonzero elements f, g ∈ R, if g ∈ fRp

whenever Rp is a valuation ring, p ∈ SpecR, then already g ∈ fR. If not, we
consider the annihilator Ann ⊊ R of g ∈ R/fR in R. By assumption on f, g,
we have Annp = Rp whenever Rp is a valuation ring. For any minimal element p

in V (Ann) ⊂ SpecR, since Annp ̸= Rp, we deduce that Rp is not a valuation ring.
But since pRp ∈ Ass(Rp/fRp), we have obtained a contradiction.

Finally, for (i)⇒ (iii), we may assume that R is a normal, coherent local domain.
It suffices to show that, if there exists an f ∈ mR such that mR ∈ Ass(R/fR), then R

is a valuation ring.
Note that since R is coherent, the inverse J−1 of every finitely generated ideal

J ⊂ R is again finitely generated; under the normality assumption on R, we also
have J ⊂ (J−1)−1 ⊂ R. Indeed, the first inclusion is clear, and for the second, any
x ∈ (J−1)−1 satisfies xJ−1 ⊂ R ⊂ J−1 which, by the Cayley–Hamilton, implies that x
is integral over R. Thus, x ∈ R, by normality.

For every ideal I ⊂ R define It as the union of (J−1)−1 for all finitely generated
subideals J ⊂ I, which is again an ideal of R (unless it is equal to R, but this is
shown to be impossible below). It is straightforward to check that It1 ⊂ It2 whenever
I1 ⊂ I2 ⊂ R, (aI)t = aIt for every a ∈ FracR ∖ {0}, and I ⊂ It = (It)t (e.g. using
that any finitely generated ideal of R equals its triple inverse).

Claim 2.1. — We have mR = mt
R. In particular, every subideal J ⊂ mR satisfies

J t ⊂ mR.

J.É.P. — M., 2024, tome 11



204 N. Guo & F. Liu

Proof of the claim. — It suffices to prove the first assertion. Consider the set of all
ideals I ⊂ R satisfying It = I. This set is stable under taking increasing unions
(of ideals), so Zorn’s lemma implies that every such I is contained in a maximal one
(ordered by inclusion); denote by M the subset of such maximal elements. Then we
have the following:

– every ideal I ⊂ R not contained in any ideal in M satisfies It = R: if not, since
the ideal It ⊂ R satisfies I ⊂ It = (It)t, it would be contained in some element of M,
a contradiction;

– every q ∈ M is a prime ideal: if x, y ∈ R ∖ q but xy ∈ q, then the inclusion
y(q + (x)) ⊂ q yields y(q + (x))t ⊂ qt = q, but (q + (x))t = R by the above, hence
y ∈ q, a contradiction;

– R =
⋂

q∈M Rq. It suffices to show that each a ∈
⋂

q∈M Rq is contained in R.
By assumption, we have a−1R ∩ R ̸⊂ q for all q ∈ M, so by the above we have
R = ((a−1R ∩R)−1)−1. Taking a further inverse, we get R = (a−1R ∩R)−1, but the
latter contains a, as desired.

Now we will use the crucial assumption that there exists an f ∈ mR such that
mR ∈ Ass(R/fR). This is equivalent to that, there exist f, g ∈ R such that g /∈ fR and
mR is the unique prime ideal of R containing Ann, the annihilator of 0 ̸= g ∈ R/fR

in R. If mR /∈ M (i.e., mR ̸= mt
R), then none of q ∈ M (which are primes) contains

Ann, so that Annq = Rq, i.e., g ∈ fRq, for all q ∈M. But by the intersection formula
R =

⋂
q∈M Rq, we would have g ∈ fR, a contradiction. □

Now we show that R is a valuation ring. By [Stacks, 090Q], it suffices to show
that I := (x, y) is principal for arbitrary nonzero elements x, y ∈ R. Observe that
(I · I−1)−1 = R: indeed, every c ∈ (I · I−1)−1 satisfies that c · I · I−1 ⊂ R, hence
c·I−1 ⊂ I−1. By Cayley–Hamilton, c is integral over R, but R is normal, thus c ∈ R, as
desired. Consequently, we have (I · I−1)t = ((I · I−1)−1)−1 = R, which, by Claim 2.1,
implies that I · I−1 = R. Thus, I is invertible and so principal because R is local. □

Proposition 2.22. — For an integral, locally coherent, and topologically locally Noe-
therian scheme X, a coherent OX-module F , if X is normal, then the following
conditions are equivalent:

(i) F is reflexive;
(ii) F is torsion-free and depthOx

(Fx) ⩾ min(2,depthOX ,x(Ox)) for all x ∈ X;
(iii) F is torsion-free and we have the following equality

F =
⋂

x∈X0
Fx in the generic stalk FK := F ⊗OX

KX ,

where X0 := {x ∈ X | wdimOX,x ⩽ 1} = {x ∈ X | OX,x is a valuation ring}.

Proof. — The assertions (i)–(iii) are local, we may assume that X = SpecA is affine
and F = M̃ for a coherent A-module M . Thus, A has quasi-compact punctured
spectrum. By Theorem 2.21, every local ring of A is either of depth ⩾ 2 or a valuation
ring. It follows from Lemmas 2.3(i) and 2.9 that (i)⇒ (ii). Assume that (ii) holds, then
the inclusion map M →

⋂
p∈X0

Mp is an isomorphism at every prime p ∈ X0. For any
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prime ideal p ̸∈ X0, the assumption on depths implies that depthAp
(Mp) ⩾ 2, hence

Lemma 2.15 gives that M →
⋂

p∈X0
Mp is an isomorphism, namely, (iii) holds. Finally,

assume that (iii) holds. By the assumption on X (or A), for every prime p ∈ X0, the
local ring Ap is a valuation ring with topologically Noetherian spectrum. As a torsion-
free finite Ap-module, Mp is free, so it is reflexive. Thus, the reflexive hull ϕM : M →
M∨∨ is an isomorphism at all p ∈ X0. Moreover, since M∨∨ is reflexive (Lemma 2.3(ii))
and (i)⇒ (iii) is already proved, we have M∨∨ =

⋂
p∈X0

(M∨∨)p. Combining this with
the assumption M =

⋂
p∈X0

Mp, we see that M∨∨ =
⋂

p∈X0
(M∨∨)p =

⋂
p∈X0

Mp = M

and ϕM is an isomorphism, that is, M is reflexive. □

Corollary 2.23. — Let A be a topologically locally Noetherian normal coherent do-
main with fraction field K. Let L/K be an extension of fields and B the integral
closure of A in L. If B is a coherent A-module, then B is reflexive over A.

Proof. — By Proposition 2.22, it suffices to prove that B =
⋂

p Bp where p ⊂ A

ranges over prime ideals such that Ap is a valuation ring. As B is normal, it remains
to show that B ⊃

⋂
p Bp. Take b ∈

⋂
p Bp and its minimal polynomial F (x) =

xr + cr−1x
r−1 + · · · + c0 ∈ K[x]. For each p ⊂ A, the extension of domains Bp/Ap

is finite, so b ∈ Bp satisfies F (x) ∈ Frac(Ap)[x] = K[x] and ci ∈ Ap. Consequently,
by Proposition 2.22 again, we have ci ∈ A for each i. In particular, F (x) ∈ A[x] so
b ∈ B, as desired. □

By using the criterion Proposition 2.22, we easily obtain the following result for
deducing Theorem 6.8.

Corollary 2.24. — Let f : X → Y be a finite, finitely presented, surjective morphism
of topologically locally Noetherian, integral, normal, coherent schemes. Let F be a
reflexive OX-module.

(i) f∗F is a reflexive OY -module.
(ii) Let j : Y ↪→ Y be an open immersion of integral coherent topologically locally

Noetherian schemes. If depthOY ,y ⩾ 2 for all y ∈ Y ∖ Y , then j∗f∗OX is a reflexive
OY -module, and the morphism

f : Spec
Y
(j∗f∗OX) −→ Y is finite.

In particular, Spec
Y
(j∗f∗OX) is the relative normalization of Y in X.

3. Geometry of schemes over Prüfer bases

In this section, we recollect useful geometric properties of scheme over Prüfer bases.

3.1. Geometric properties and reduction methods

Lemma 3.2. — For a Prüfer domain R with spectrum S, a finite type irreducible S-
scheme X, a point x ∈ X and its image s ∈ S, the following assertions hold

(i) all nonempty S-fibres have the same dimension;
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(ii) if X is S-flat and Xs is generically reduced, then for any maximal point ξ ∈ Xs,
we have an extension of valuation rings

OS,s ↪−→ OX,ξ

inducing an isomorphism of value groups;
(iii) for x′ ∈ X with x′ ̸= x whose image is denoted by s′, if x ∈ {x′}, then

– either s = s′, and we have dim(OXs′ ,x
′) < dim(OXs,x);

– or s ∈ {s′}, s ̸= s′, and we have dim(OXs′ ,x
′) ⩽ dim(OXs,x).

Proof. — For (i), see [EGA IV3, Lem. 14.3.10]. For (ii), see [MB22, Th. A]. Now,
to prove (iii), we may assume that X is affine and has a pure relative dimension,
say, n, over R. By assumption, we have s ∈ {s′}. Assume that we are not in the first
case. The schematic closure {x′} is a dominant scheme of finite type over {s′} (which
corresponds to the spectrum of a valuation ring). Therefore, by (i), all its non-empty
fibres have the same dimension. Thus, we deduce from {x′} ⊃ {x} that

dim({x′}s′) = dim({x′}s) ⩾ dim({x}s).

Hence, we have

dim(OXs′ ,x
′) = n− dim({x′}s′) ⩽ n− dim({x}s) = dim(OXs,x). □

The following Lemma 3.3 provides us a passage to the case when there is a section.

Lemma 3.3. — For a valuation ring V , an essentially finitely presented (resp essen-
tially smooth(4)) V -local algebra A, there are an extension of valuation rings V ′/V with
trivial extension of value groups, and an essentially finitely presented (resp. essentially
smooth) V -map V ′ → A with finite extension of residue fields.

Proof. — Assume A = OX,x for an affine scheme X finitely presented over V and a
point x ∈ X lying over the closed point s ∈ Spec V . Denote t = tr.deg(κ(x)/κ(s)).
As κ(x) is a finite extension of ℓ := κ(s)(a1, · · · , at) for a transcendence basis (ai)

t
1 of

κ(x)/κ(s), we have t = dimℓ Ω
1
ℓ/κ(s) ⩽ dimκ(x) Ω

1
κ(x)/κ(s). Choose sections b1, · · · , bt ∈

Γ(X,OX) such that db1, · · · , dbt ∈ Ω1
κ(x)/κ(s) are linearly independent over κ(x), where

the bar stands for their images in κ(x). Define p : X → At
V by sending the standard

coordinates T1, · · · , Tt of At
V to b1, · · · , bt, respectively. Since db1, · · · , dbt ∈ Ω1

κ(x)/κ(s)

are linearly independent, the image η := p(x) is the generic point of At
κ(s), so V ′ :=

OAt
V ,η is a valuation ring whose value group is ΓV ′ ≃ ΓV . Note that κ(x)/κ(η) is

finite, the map V ′ → A induces a finite residue fields extension.
When V → A is essentially smooth, the images of db1, · · · , dbt under the map

Ω1
X/V ⊗κ(x)→ Ω1

κ(x)/κ(s) are linearly independent, so are their images in Ω1
X/V ⊗κ(x).

Hence, p is essentially smooth at x. □

In the sequel, Lemma 3.4 (cf. [GL23, Lem. 2.2]), combined with limit arguments,
often allows us to only consider Prüfer rings of finite Krull dimension.

(4)By definition, this means that A is a local ring of a smooth V -algebra.
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Lemma 3.4. — Every semilocal Prüfer domain R is a filtered union of its subrings Ri

such that:
(i) for every i, Ri is a semilocal Prüfer domain of finite Krull dimension; and
(ii) for i large enough, Ri → R induces a bijection on the sets of maximal ideals

hence is fpqc.

3.4.1. Geometric presentation for the Grothendieck–Serre. — In both Fedorov’s and
Česnavičius’ works on mixed characteristic Grothendieck–Serre, significant empha-
sis is placed on geometric results of a certain type, reminiscent of Gabber–Quillen, as
demonstrated in [Fed22, Prop. 3.18] and [Čes22a, Var. 3.7], respectively. Similarly, in
our context, we observe an analogous result to loc. cit. and record it below.

Lemma 3.5. — Let
(i) R be a semilocal Prüfer ring;
(ii) X be a projective, flat R-scheme with fibres of pure dimension d > 0;
(iii) X ⊂ X be an open subscheme, smooth over R;
(iv) x ⊂ X be a finite subset;
(v) Y ⊂ X be a closed subscheme which is R-fiberwise of codimension ⩾ 1; assume

also that Y ∖ Y is R-fiberwise of codimension ⩾ 2.
Then, there are

(i) an affine open S ⊂ Ad−1
R and an affine open neighbourhood U ⊂ X of x, and

(ii) a smooth morphism π : U → S of relative dimension 1

such that Y ∩ U is S-finite.

Proof. — This can be proved similarly as [Čes22a, Var. 3.7]. □

3.6. Regularity and Reflexive sheaves over Prüfer bases. — Now, we turn to the
special case of schemes over Prüfer bases. To begin with, we consider the coherence
and calculation of depths over Prüfer bases, as the following Lemmas 3.7 and 3.8.

Lemma 3.7. — Let X be a scheme that is flat and locally of finite type over a Prüfer
domain R.

(i) X is locally of finite presentation and locally coherent.
(ii) For every point x ∈ X, the local ring OX,x is coherent.
(iii) If x ∈ X lies over s ∈ SpecR and OXs,x is regular, then every finitely

presented OX,x-module has a finite resolution by finite free OX,x-modules of length
⩽ dimOXs,x + 1. In particular, OX,x is coherent regular.

(iv) The local ring OX,x in (iii) is a normal domain.

Proof. — We may assume that X = SpecA is affine for a finite type flat R-algebra A.
For (i), by [RG71, Cor. 3.4.7] (or [Nag66, Th. 3’] when R is a valuation ring),

every finitely generated, flat algebra over a domain is finitely presented. So A is
finitely presented over R. The coherence of A thus follows from the following facts: 1)
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any polynomial ring over a Prüfer domain R is coherent ([Gla89, Cor. 7.3.4]); 2) the
quotient of a coherent ring by a finitely generated ideal is again coherent.

The assertion (ii) follows because each local ring of a coherent ring is coherent.
For (iii), see [GR18, Prop. 11.4.1]. Finally, (iv) follows from a more general result
Theorem 2.17(i). □

By the above Lemma 3.7, a flat, locally of finite type scheme over a valuation ring
is locally coherent. Further, when the fibres are Cohen-Macaulay, the depth of its
local ring can be computed as follows.

Lemma 3.8. — Let R be a Prüfer domain and let X be an R-flat finite type scheme.
Let x ∈ X be a point with image s ∈ SpecR and local ring A := OX,x. If the following
conditions hold

(a) s is not the generic point of SpecR;
(b) OXs,x is Cohen-Macaulay; and
(c) A has quasi-compact punctured spectrum, or equivalently, so does OSpecR,s,

then, A has a regular sequence in mA of length d+1 for d = dimOXs,x. In particular,
(i) depthA(A) = d+ 1; and
(ii) τN (A) ⩾ d+1 for any finitely generated A-module N supported on {x}, there-

fore,
ExtiA(N,A) = 0 for all i ⩽ d.

Proof. — We may assume that R is a valuation ring V with quasi-compact punctured
spectrum UV such that x is in the closed fiber. In view of Lemma 2.6, it suffices to
show that mA contains a regular sequence of A whose common vanishing locus is zero-
dimensional. As UV is quasi-compact, we can pick an f ∈mV such that dim(V/fV )=0.
Let (g1, · · · , gd) be a sequence in mA such that their images in the local ring A/mV A

forms a regular sequence. By the flatness criterion [EGA IV3, Th. 11.3.8], (g1, · · · , gd)
is a regular sequence of A, and the quotient ring A := A/(g1, · · · , gd) is V -flat with
maximal ideal mV A = mA. Therefore, (g1, · · · , gd, f) is a regular sequence of A for
which dimA/(fA+

∑d
i=1 giA) = 0, as desired. □

Let R be a Prüfer domain, X a scheme flat and of finite type over R, and A the
local ring of X at a point x ∈ X. So A is coherent. Knaf proved [Kna08, Th. 1.1]
that A is coherent regular if and only if wdim(A) is finite; moreover, in this coherent
regular case we have (cf. Lemma A.3(ii))

wdim(A) = dim(A⊗R κ(q)) + wdim(Rq),

where q ⊂ R lies below x and we have wdim(Rq) = 0 whenever x lies over FracR

otherwise wdim(Rq) = 1. Besides, if A is coherent regular, then A⊗R κ(q) is Cohen-
Macaulay and even Noetherian regular if Rq, or equivalently, A is non-Noetherian
([Kna08, Th. 1.3]). Conversely, we see that the regularity of A ⊗R κ(q) implies the
regularity of A (cf. Lemma 3.7(iii)). We formulate these into the following.
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Proposition 3.9. — Let R be a Prüfer domain and (A,mA) a local ring that is R-flat
and essentially finitely presented. Denote q ⊂ R the prime underlies mA.

(i) If mA is a minimal prime of A ⊗Rq
κ(q), then A is regular if and only if A is

a valuation ring.
(ii) If A is non-Noetherian, then A is regular if and only if A⊗Rq

κ(q) is regular,
in which case we have wdim(A) = dim(A⊗R κ(q)) + wdim(Rq).

(iii) Assume that A is regular with Noetherian spectrum. Define X0 ⊂ SpecA as

X0 := {height-one primes of A⊗ FracR} ∪ {minimal primes of R-fibres of A}.

Then X0 = {x ∈ SpecA | OSpecA,x is a valuation ring}, and all local rings at x ∈
(SpecA)∖X0 have depth ⩾ 2, or equivalently, have weak dimensions ⩾ 2.

Proof. — It suffices to deal with (iii). By Lemma 3.2(ii), X0 is the set of all points
of X where the local rings are valuation rings. The regularity of A and Theorem 2.17(i)
imply that A is normal, thus by Theorem 2.21, all local rings at x ∈ (SpecA) ∖X0

have depth ⩾ 2. Finally, by Corollary A.8, the regularity of A yields depth = wdim

locally on SpecA, thus all local rings at x ∈ (SpecA)∖X0 have wdim ⩾ 2. □

Finally, we present a Prüferian variant of Theorem 2.20, the purities of reflexive
modules, of line bundles, and of vector bundles. Note that our base now is a general
Prüfer domain so the local rings under consideration may have non-quasi-compact
punctured spectra. The crux is to carefully carry out a limit argument, which preserves
the fiberwise codimensions of closed subsets.

Lemma 3.10. — Let S be a semilocal, affine, integral Prüfer scheme and η its generic
point. Given

(i) a flat, surjective, finitely presented morphism f : X → S with regular fibres
(resp. f is smooth);

(ii) a coherent OX-module F that is reflexive at a point x ∈ X; and
(iii) a constructible closed Z ⊂ X such that

codim(Zs, Xs) ⩾ 1 for every s ∈ S and codim(Zη, Xη) ⩾ 2.

Then, there are
(1) a semilocal, affine, integral Prüfer scheme S0 of finite dimension with generic

point η0;
(2) a flat, surjective, finite type morphism f0 : X0 → S0 with regular fibres (resp. f0

is smooth) such that X0 ×S0
S ≃ X;

(3) a coherent OX0-module F0 as the inverse image of F and is reflexive at the
image x0 of x; and

(4) a constructible closed subset Z0 ⊂ X0 such that Z0 ×S0
S ≃ Z and

codim((Z0)s, (X0)s) ⩾ 1 for every s ∈ S0 and codim((Z0)η0
, (X0)η0

) ⩾ 2.

Proof. — We apply Lemma 3.4 to S then use limit arguments in [EGA IV3, §8]. The
condition that X has regular S-fibres descends to Xλ0

by [EGA IV2, Prop. 6.5.3]
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(resp. the smoothness of f descends by [EGA IV4, Prop. 17.7.8]). The reflexive
OX -module F descends thanks to [EGA IV3, Th. 8.5.2] and by applying [EGA IV3,
Cor. 8.5.2.5] to F

∼−→ F∨∨. Because Z is constructible closed, by [EGA IV3,
Th. 8.3.11], it descends to Zλ such that p−1

λ (Zλ) = Z. For fλ : Xλ → Sλ, by the
transversality of fibres and [EGA IV2, Cor. 4.2.6], Zλ does not contain any irre-
ducible components of f−1

λ (sλ) for any sλ ∈ Sλ. Finally, the image of the generic
point η ∈ S is the generic point ηλ ∈ Sλ. By [EGA IV2, Cor. 6.1.4], we have
codim((Zλ)ηλ

, (Xλ)ηλ
) = codim(Zη, Xη) ⩾ 2. □

Theorem 3.11. — Let R be a semilocal Prüfer domain with spectrum S and f : X → S

a flat, locally of finite type morphism of schemes with regular fibres. Let Z ⊂ X be a
constructible closed subset such that{

codim(Zs, Xs) ⩾ 1 for all s ∈ S, and
codim(Zη, Xη) ⩾ 2 for the generic point η ∈ S.

For the open immersion j : X∖Z ↪→ X, the restriction j∗ and pushforward j∗ induce
the equivalences

OX-Rflx
∼−→ OX∖Z-Rflx and PicX

∼−→ PicX ∖ Z.

In particular, for every scheme Y affine over X, we have a bijection of sets

Y (X)
∼−→ Y (X ∖ Z).

Proof. — The problem is Zariski-local on X, so we may assume that f is of finite
type. By a limit argument involving Lemma 3.10, we may further assume that |S| is
finite. Then, |X| is the finite union of its S-fibres |Xs|, which are Noetherian spaces,
so X is topologically Noetherian. By Lemma 3.7(iii), X is coherent regular (see also
Corollary A.4). Since the local rings of X are normal (Theorem 2.17(i)) and the
generic fibre Xη is regular and schematic dense in X, X is Zariski locally an inte-
gral scheme. The assumption on Z implies that X ∖ Z contains X0 ⊂ X defined in
Proposition 3.9(iii), so for every z ∈ Z, we have wdimOX,z ⩾ 2. Hence, the assertion
follows from Theorem 2.20. □

4. Auslander’s flatness criterion

The goal is to establish Theorem 4.1 as a counterpart of Auslander’s flatness cri-
terion [Aus62, Th. 1.3] on schemes smooth over valuation rings. As expected, our
criterion leads to the analog of Zariski–Nagata purity (Theorem 6.9).

Theorem 4.1. — Let V be a valuation ring, X a V -smooth scheme, and x ∈ X a
point. Set A := OX,x. Let M be a reflexive A-module. If EndA(M) is isomorphic to a
direct sum of copies of M , then M is A-free.

Similar to Auslander’s proof, our strategy relies on an estimate of the length of
cohomology groups of M . To begin with, we introduce the length function on torsion
modules over valuation rings.
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4.2. Lengths of torsion modules. — Let V be a valuation ring, distinct from a field,
with fraction field K, and a valuation map ν : K → Γ. Every finitely presented torsion
V -module M can be expressed as

M ≃
⊕

i V/aiV for finitely many ai ∈ V ∖ {0}.

Define the length of M as δ(M) =
∑

i ν(ai) ∈ Γ⩾0. The element δ(M) is well defined,
and δ(M) = 0 if and only if M = 0. Every acyclic, bounded complex M• of torsion,
finitely presented V -modules satisfies∑

j(−1)jδ(M j) = 0.

Lemma 4.3. — Let V be a valuation ring that is not a field. Let (V,mV )→ (A,mA) be
an essentially smooth, local map of local rings. Denote by A-Modtor,fp the collection
of all finitely presented A-modules M supported on {mA}. Then there exist a totally
ordered abelian group Γ and a map ℓ : A-Modtor,fp → Γ⩾0 satisfying the following
properties:

– for A-module M ∈ A-Modtor,fp, we have ℓ(M) = 0 if and only if M = 0;
– for every acyclic, bounded complex M• such that M j ∈ A-Modtor,fp for each j,

one has ∑
j(−1)jℓ(M j) = 0.

It is worth mentioning that the set A-Modtor,fp might be trivial, consisting only
of the zero module. In fact, this occurs precisely when SpecV ∖ {mV } is not quasi-
compact. This totally ordered abelian group Γ is a value group, and in the sequel,
we will only use its property of being partially ordered.

Proof. — First we assume that the structural map V →A admits a retraction A→→V .
In this case we claim that M is finitely presented over V and is V -torsion. So we can
simply let Γ be the valuation group of V and set ℓ(M) := δ(M), where δ is delivered
from Section 4.2. Indeed, it is clear that M is V -torsion. Any section SpecV → SpecA

is a regular immersion [Stacks, 067R], so there is a finitely generated ideal J ⊂ A such
that V ≃ A/J . Hence, since M ∈ A-Modtor,fp, we see that JnM = 0 for a large n.
On the other hand, the essential smoothness of A over V implies that J/J2 is a free
V ≃ A/J-module whose rank equals the rank of the free A-module Ω1

A/V , and there
is a natural isomorphism of graded V ≃ A/J-algebras⊕

n⩾0 J
n/Jn+1 ≃ Sym•

A/J(J/J
2).

In particular, A/Jn is a finite free V -module for every n ⩾ 1. Therefore, by tensoring
a presentation

AN −→ AN ′
−→M −→ 0

of M with A/Jn for a large enough n, we get a desired finite presentation of M over V .
In the general case, we first use Lemma 3.3 to reduce to the case when the residue

fields extension of V → A is finite. Then, if B is the integral closure of V in an
algebraic closure of FracV , we let V ′ be a valuation ring of Frac(B) centered at a
maximal ideal of B. It is clear that V ′ is absolutely integral closed, so it is strictly

J.É.P. — M., 2024, tome 11

https://stacks.math.columbia.edu/tag/067R


212 N. Guo & F. Liu

Henselian and there exists a V -map ϕ : A/mA → V ′/mV ′ . Let A′ := A⊗V V ′. Then ϕ

induces a V ′-map ϕ′ : A′ → V ′/mV ′ ; let p ⊂ A′ be its kernel. Then A′
p is essentially

smooth over V ′ and ϕ′ induces a V ′-map A′
p → V ′/mV ′ , which, by the Henselianity

of V ′, lifts to a V ′-map A′
p → V ′. By the previous paragraph, the lemma is true

for A′
p, say, with corresponding map ℓ′ valued in Γ, where Γ is the valuation group

of V ′. Since A→ A′
p is faithfully flat, it suffices to define

ℓ(M) := ℓ′(M ⊗A A′
p). □

4.4. Homological algebra lemmas

Lemma 4.5. — Let (A,mA) be a coherent local ring with a regular sequence of length
d ⩾ 1. Let M

ϕ−→ N be a morphism of coherent A-modules that induces an isomor-
phism over SpecA ∖ {mA}. We have isomorphisms ExtiA(N,A)

∼−→ ExtiA(M,A) for
all i < d− 1 and a monomorphism Extd−1

A (N,A) ↪→ Extd−1
A (M,A).

This will be applied to Theorem 4.1 with A := OX,x, d = dim(OXs,x) + 1, and s is
not the generic point.

Proof. — By Lemma 2.2(i), Kerϕ and Cokerϕ are coherent A-modules supported on
{mA}. By assumption and Lemma 2.6, we have τKerϕ(A) ⩾ d and τCokerϕ(A) ⩾ d (see
Section 2.5 for the definition of τ−(−)). Consider the following short exact sequences

0 −→ Kerϕ −→M −→ Imϕ −→ 0 and 0 −→ Imϕ −→ N −→ Cokerϕ −→ 0.

By applying HomA(−, A), we get two long exact sequences concerning Ext’s, and the
lemma follows from ExtiA(Kerϕ,A) = 0 and ExtiA(Cokerϕ,A) = 0 for i < d. □

Lemma 4.6. — Let V be a valuation ring, X a V -smooth finite type scheme, and
x ∈ X a point that lies over a non-generic point s ∈ SpecV . For finitely presented
A := OX,x-modules M and N , ExtiA(M,N) and TorAi (M,N) are finitely presented
over A for all i ⩾ 0 and are zero for i > d+ 1, where d = dimOXs,x.

Proof. — By Lemma 3.7(iii), M has a resolution by finite free A-modules of length
⩽ d+ 1: F• →M , Fi = 0 for i > d+ 1. Then the A-modules

ExtiA(M,N) = Hi(Hom(F•, N)) and TorAi (M,N) = Hi(F• ⊗N)

are all coherent, i.e., finitely presented A-modules, and are zero for i > d+ 1. □

Lemma 4.7. — Let A be a coherent domain with a topological Noetherian spectrum.
If A is normal, then for every finitely presented A-module M , we have a natural
isomorphism

EndA(M)∨∨ ∼−→ EndA(M
∨∨).

Proof. — By the functoriality of (−)∨∨, there is a natural homomorphism

EndA(M) −→ EndA(M
∨∨).

As the target is reflexive by Lemma 2.3(ii), this map factors through EndA(M)∨∨,
thus yielding a natural map EndA(M)∨∨ → EndA(M

∨∨). Since both the source and
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target of this map are reflexive, by Theorem 2.21 and Proposition 2.22, it is enough
to check this map is an isomorphism when A is a valuation ring. But if this is the
case, then there are an N ∈ Z⩾0 and finitely many ai ∈ mA ∖ {0} for which

M ≃ A⊕N ⊕ (
⊕

i A/aiA).

Consequently, we conclude by the following isomorphisms

EndA(M)∨∨ ≃ EndA(A
⊕N ) ≃ EndA(M

∨∨). □

4.8. Proof of Theorem 4.1. — The proof proceeds as the following steps.

Preliminary cases and reductions. — Firstly, since X is locally of finite presentation
over S and M is finitely presented over A, by a standard limit argument involving
Lemma 3.4, we are reduced to the case when V is a finite-rank valuation ring. Secondly,
if V ′ is a valuation ring of an algebraic closure of Frac(V ) that dominates V and if
x′ ∈ X ′ := X ×V V ′ is a point lying over x ∈ X, then MA′ := M ⊗A A′ is a finitely
presented reflexive A′-module and EndA′(MA′) ≃ EndA(M) ⊗A A′ is isomorphic to
a direct sum of copies of MA′ , where A′ := OX′,x′ (because A′ is faithfully flat
over A). By faithfully flat descent [Stacks, 08XD, 00NX], the freeness of M over A is
equivalent to the freeness of MA′ over A′. Therefore, by replacing V by V ′, A by A′,
and M by MA′ , we are reduced to the case where Frac(V ) is algebraically closed. It is
important to emphasize that the smoothness of X plays a crucial role in this reduction,
as the regularity of fibres is not maintained under base changes. Furthermore, while
the assumption that FracV is algebraically closed will be invoked only towards the
conclusion of the proof, the true necessity lies in ensuring the perfectness of all residue
fields of V .

Let s ∈ SpecV be the image of x. Set dx := dimOXs,x and r := dimV . The case
r = 0 and dx arbitrary is classical. The case r arbitrary and dx = 0 is trivial, where A

is a valuation ring (Lemma 3.2(ii)). The case r arbitrary and dx = 1 follows from
Theorem 2.19(ii). Thus, we may assume dx ⩾ 2 in the sequel.

Case 1: r is arbitrary and dx = 2. — We will proceed by induction on r. The induction
hypothesis is that the assertion holds for dx = 2 and r′ ⩽ r − 1. Notice that, for any
proper generalization x′ ∈ X of x that lies over, say, s′ ∈ SpecV , by Lemma 3.2(iii),
we have either s′ = s and dx′ < 2, or the height of s′ is less than r and dx′ ⩽ 2.
Hence, by induction hypothesis and the preliminary cases above, the assertion holds
for OX,x′ . As Mx′ is a finitely presented reflexive OX,x′ -module and

EndOX,x′ (Mx′) = EndOX,x
(M)⊗OX,x

OX,x′ ≃ (
⊕

M)⊗OX,x
OX,x′ =

⊕
Mx′ ,

the induction hypothesis applies to the OX,x′ -module Mx′ , implying that Mx′ is OX,x′ -
free. In other words, M̃ is locally free over SpecA ∖ {x}. Consider the following
evaluation map

M∨ ⊗A M −→ HomA(M,M), f ⊗m 7−→ [m′ 7→ f(m′)m].
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By the local freeness of M̃ over SpecA∖{x}, it is an isomorphism over SpecA∖{x}.
Since dx = 2 > 1, by Lemma 4.5, we apply Ext1A(−, A) to the above map to obtain

(4.8.1) Ext1A(M
∨ ⊗M,A) ≃ Ext1A(EndA(M), A) ≃ Ext1A(M,A)⊕rkM

as isomorphisms of A-modules that are supported on {x} by the local freeness of M̃
over SpecA∖ {x}, where rkM = dimFracA M ⊗A FracA. By Lemma 4.6, the modules
in (4.8.1) are also finitely presented over A.

For the adjunction HomA(M,HomA(M
∨,−)) ≃ HomA(M ⊗M∨,−), we take their

derived functors valued at A, so the E2-page of the associated Grothendieck spectral
sequence yields a monomorphism

Ext1A(M,M) ↪−→ Ext1A(M ⊗M∨, A)
(4.8.1)
≃ Ext1A(M,A)⊕rkM ,

where we have used M∨∨ ≃ M ; again, by the local freeness of M̃ over SpecA ∖ {x}
and Lemma 4.6, they are finitely presented supported on {x}. In particular, the map ℓ

from Lemma 4.3 applies so we have

(4.8.2) ℓ(Ext1A(M,M)) ⩽ rkM · ℓ(Ext1A(M,A)).

Since M is reflexive, by Theorem 2.19(i), we have proj.dimA M ⩽ dx−1 = 1. We prove
proj.dim(M) = 0 by contradiction. If proj.dim(M) = 1, then M has a free resolution
0→ F1 → F0 →M → 0 by finite A-modules. This sequence is nonsplit, corresponding
to a nontrivial extension class in

Ext1A(M,F1) ≃ Ext1A(M,A)rank(F1).

In particular, C := Ext1A(M,A) ̸= 0. Applying HomA(−, A) to F• →M yields

an exact sequence 0 −→M∨ −→ F∨
0 −→ F∨

1 −→ Ext1A(M,A) −→ 0.

Tensoring it with M , we get an exact sequence

F∨
0 ⊗A M −→ F∨

1 ⊗A M −→ Ext1A(M,A)⊗A M −→ 0.

Since
Coker (F∨

0 ⊗M −→ F∨
1 ⊗M) ≃ Coker (HomA(F0,M) −→ HomA(F1,M))

= Ext1A(M,M),

we deduce that Ext1A(M,M) ≃ Ext1A(M,A)⊗A M = C ⊗A M .
By tensoring 0 → F1 → F0 → M → 0 with C = Ext1A(M,A) (which is nonzero,

finitely presented, and supported at {x}, by the local freeness of M̃ over SpecA∖{x}),
we get an exact sequence of finitely presented A-modules supported on {x}:

0 −→ TorA1 (C,M) −→ C ⊗A F1 −→ C ⊗A F0 −→ C ⊗A M −→ 0.

Denote rkM := rankF0 − rankF1 > 0. Applying the map ℓ from Lemma 4.3, we get

ℓ(C ⊗A M) = ℓ(C ⊗A F0)− ℓ(C ⊗A F1) + ℓ(TorA1 (C,M)

= rkM · ℓ(C) + ℓ(TorA1 (C,M)).
(4.8.3)
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On the other hand, since C⊗AM ≃ Ext1A(M,M), we deduce the following inequality

(4.8.4) ℓ(C ⊗A M)
(4.8.2)
⩽ rkM · ℓ(C).

The combination of (4.8.3) and (4.8.4) leads to ℓ(TorA1 (C,M)) = 0. So, we obtain a
short exact sequence

0 −→ C ⊗A F1 −→ C ⊗A F0 −→ C ⊗A M −→ 0,

which combined with Lemma A.6 implies that the map F1 → F0 splits, that is, M
is A-free, contradicting our assumption that proj.dimA(M) = 1. This completes the
case when r is arbitrary and dx = 2.

Case 2: r is arbitrary and dx > 2. — We will proceed by double induction on the
pair (r = ht(s), dx). By induction hypothesis, the assertion holds for all smooth
V -schemes X ′ and all points x′ ∈ X ′ such that ht(s′) ⩽ ht(s) and dx′ ⩽ dx,
where s′ ∈ SpecV lies below x′, and at least one of equalities is strict. In particular,
by Lemma 3.2(iii), the induction hypothesis applies to OX,x′ for all proper general-
ization x′ ∈ X of x. As Mx′ is finitely presented reflexive over OX,x′ and

EndOX,x′ (Mx′) = EndOX,x
(M)x′ ≃

⊕
Mx′ ,

the induction hypothesis gives that Mx′ is OX,x′ -free. In other words, M̃ is locally
free over SpecA∖ {x}.

Claim 4.8.5 ([Stacks, 057F]). — Assume that the residue field extension of V → A is
separable (e.g. this holds if κ(s) := V/mV is perfect), then there exists an a ∈ A such
that A := A/(a) is essentially V -smooth and

dim(A/mV A) = dx − 1.

Since our V has algebraically closed fraction field (by the first paragraph), all of
its primes have algebraically closed residue fields, so we can choose a ∈ A as in the
above claim. Since a is a nonzerodivisor in A and M = HomA(M

∨, A), we see that a

is M -regular. Set M := M/aM . Applying HomA(M,−) to the short exact sequence
0→M

a−→M →M → 0, we get an exact sequence

0 −→ HomA(M,M)
a−−→ HomA(M,M) −→ HomA(M,M) −→ Ext1A(M,M).

Substituting our assumption HomA(M,M) ∼= M⊕rkM into it yields an exact sequence

0 −→M
⊕rkM −→ HomA(M,M) −→ T −→ 0

of A-modules, where T ⊂ Ext1A(M,M) is a finitely presented A-submodule (see
Lemma 4.6), which, by the locally freeness of M̃ over SpecA ∖ {x}, is supported
on {x}. Since dim(A/mV A) = dx − 1 ⩾ 2, taking dual (as A-modules) of the above
short exact sequence and using Lemma 4.5, we see that

(M
∨
)⊕rkM ≃ HomA(M,M)∨.
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Taking dual further and invoking Lemma 4.7, we get the following isomorphism

(M
∨∨
)⊕rkM ≃ HomA(M

∨∨
,M

∨∨
).

Since the double dual M∨∨ is finitely presented and reflexive over A (Lemma 2.3(ii)),
we can apply the induction hypothesis to the A-module M

∨∨ and conclude that it is
A-free. The same lemma also implies that M

∨ is A-reflexive, so that M
∨ ≃ M

∨∨∨ is
A-free of rank rkM .

Finally, we show that M is A-free. Since M̃ is locally free over SpecA ∖ {x}, the
natural map M →M

∨∨ is an isomorphism over SpecA∖ {x}. Since dim(A/mV A) =

dx − 1 > 1, we may apply Lemma 4.5 to see that Ext1
A
(M,A) ≃ Ext1

A
(M

∨∨
, A) = 0.

Since a is M -regular, we have

Ext1A(M,A) ≃ Ext1
A
(M ⊗L

A A,A) ≃ Ext1
A
(M,A) = 0.

Applying HomA(M,−) to the short exact sequence 0 → A
a−→ A → A → 0, we get

an exact sequence

0→M∨ a−−→M∨ → HomA(M,A)→ Ext1A(M,A)
a−−→ Ext1A(M,A)→ Ext1A(M,A).

All modules are finitely presented over A. Since Ext1A(M,A) = 0, Nakayama’s lemma
gives that Ext1A(M,A) = 0. Therefore, M∨/aM∨ ≃ HomA(M,A) = M

∨ is A-free of
rank rkM , implying that dimκ(x)(M

∨ ⊗A κ(x)) = rkM = rkM∨ . It follows that M∨,
and equivalently M ≃M∨∨, is A-free.

5. Generalities on torsors over algebraic spaces

5.1. Setup. — Throughout this section, we let S denote a base scheme, X an alge-
braic space over S, and G an X-group algebraic space.

Definition 5.2
(1) A (right) G-torsor (for the fppf topology) is an X-algebraic space P equipped

with a G-action a : P×X G→ P such that the following conditions hold:
(i) the induced morphism P ×X G → P ×X P, (p, g) 7→ (p, a(p, g)), is an

isomorphism; and
(ii) there exists a fppf covering {Xi → X}i∈I of algebraic spaces [Stacks,

03Y8] such that P(Xi) ̸= ∅ for every i ∈ I.
(2) For G-torsors P1 and P2, a morphism P1 → P2 is a G-equivariant morphism

P1 → P2 of X-algebraic spaces.
(3) By a trivialization of a G-torsor P we mean a G-equivariant isomorphism t :

G
∼−→ P, where G acts on itself via right multiplication; this amounts to the choice

of a section t(1G) ∈ P(X). A G-torsor P is trivial if there exists a trivialization, or,
equivalently, if P(X) ̸= ∅.

Note that every morphism of two G-torsors is an isomorphism. To see this, one
may pass to a fppf covering of X to reduce to the case when both torsors are trivial;
in this case the assertion is trivial.
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Remark 5.3. — One can also define a sheaf torsor for an X-group algebraic space G.
It is a sheaf

P : (Sch/S)
opp
fppf −→ Set

equipped with a map P → X of sheaves and a G-action a : P ×X G → P such that
the above two conditions (i) and (ii) in (1) hold. However, it turns out that such a
sheaf torsor is necessarily representable by an algebraic space, so working with sheaf
torsors adds no more generality. To see this, let {Xi → X}i∈I be a fppf covering as
in (ii) that trivializes P. Then every P ×X Xi ≃ G ×X Xi is an algebraic space, and
the map ⊔

i P×X Xi → P

is representable by algebraic spaces and is a fppf covering, because it is the base
change of the fppf covering

⊔
i Xi → X of algebraic spaces via P → X. Here, all

coproducts are taken in the category of sheaves on (Sch /S)fppf . It follows from (3)
of [Stacks, 04S6] that P is an algebraic space, as desired.

Let P1,P2 be two G-torsors. Define a functor

IsomX(P1,P2) : (Sch/X)opp −→ Set

which associates to any scheme T over X the set of GT -equivariant isomorphisms
P1,T → P2,T over T .

Lemma 5.4. — For two G-torsors P1 and P2, IsomX(P1,P2) is an algebraic space
over S. Further, G→ X is quasi-compact (resp. étale, smooth, flat, separated, (local-
ly) of finite type, (locally) of finite presentation, quasi-affine, affine, or finite) if and
only if IsomX(P1,P2)→ X is so.

Proof. — Since IsomX(P1,P2) is fppf locally on X isomorphic to G, it admits a
representable fppf covering by algebraic spaces, hence it is an algebraic space by
[Stacks, 04S6].

The list properties of morphisms of algebraic spaces are all stable under base
changes and are fppf local on the target, see [Stacks, 03KG] (resp. [Stacks, 03XT,
03ZF, 03MM, 03KM, 040Y, 0410, 03WM, 03WG, 03ZQ]). Consequently, since the
functor IsomX(P1,P2) is fppf locally on X isomorphic to G, the properties of G are
inherited by and can be detected from IsomX(P1,P2). □

Since every G-torsor P→ X trivializes over a fppf covering {Xi → X}, one may try
to obtain P by gluing the trivial GXi-torsors PXi using the canonical isomorphisms

ϕij : (PXi)Xij ≃ PXij ≃ PXj )Xji , where Xij = Xi ×X Xj .

It turns out that, unlike the case of schemes, this is always possible in the framework
of algebraic spaces, see Lemma 5.6. Note that, by taking U :=

⊔
i Xi, we may assume

that PU is trivial for a fppf covering U → X with U an algebraic space.
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Definition 5.5 (Descent data for torsors). — Let S, X and G be as in Section 5.1.
Let U → X be a fppf covering of algebraic spaces over S. For every integer n ⩾ 0,
denote by U (n) the n-fold fibre product of U over X. The category of descent data
for G-torsors relative to U → X, denoted

Tors
(
(U (2) ⇒ U)fppf , G

)
,

has pairs (Q, ϕ) as objects, where
– Q→ U is a GU -torsor; and
– ϕ : pr∗1Q → pr∗2Q is an isomorphism of GU(2)-torsors such that the following

diagram commutes (i.e., the cocycle condition holds)

pr∗12pr
∗
1Q pr∗12pr

∗
2Q pr∗23pr

∗
1Q pr∗23pr

∗
2Q

pr∗13pr
∗
1Q pr∗13pr

∗
2Q.

pr∗12(ϕ)

≃

≃ pr∗23(ϕ)

≃

pr∗13(ϕ)

A morphism from a pair (Q, ϕ) to another pair (Q′, ϕ′) is a morphism θ : Q → Q′ of
GU -torsors compatible with ϕ and ϕ′, that is, pr∗2(θ)ϕ = ϕ′pr∗1(θ).

To every G-torsor P one can associate a pair Ψ(P) := (PU , can) via base changes,
where can denotes the canonical isomorphism pr∗1(PU ) ≃ PU(2) ≃ pr∗2(PU ). Thus we
obtain a functor

Ψ : Tors(Xfppf , G) −→ Tors((U (2) ⇒ U)fppf , G).

Lemma 5.6 (Descent G-torsors). — Ψ is an equivalence of categories.

In other words, every descent data (Q, ϕ) for G-torsors are effective in the sense
that there exists a G-torsor P and an isomorphism Q ≃ PU compatible with θ and
the canonical descent data for PU .

Proof. — The full faithfulness of Ψ follows from the sheaf property of the functor
IsomX(P1,P2) for any G-torsors P1 and P2. For the essential surjectivity, we pick
a descent data (Q, ϕ), and need to show that there exists a G-torsor P for which
(PU , can) ≃ (Q, ϕ).

When both X and U are schemes, this is proved in [Stacks, 04U1]. The case of
algebraic spaces can be proved similarly, and we repeat the argument for convenience.
First we view Q as a sheaf on the site (AS/U)fppf (by the natural equivalence of the
topoi associated to (AS/U)fppf and (Sch /U)fppf). Since descent data for sheaves
on any site are always effective [Stacks, 04TR], we may find a sheaf P on the site
(AS/X)fppf and an isomorphism of sheaves PU ≃ Q compatible with the descent data.
Further, since maps of sheaves on any site can be glued [Stacks, 04TQ], the GU -action
on Q descends to a G-action on P. All the assumptions (i) and (ii) of Definition 5.2
hold, because they can be checked on the fppf covering U → X. It remains to see
that P is representable by an algebraic space over X. However, this follows from (3)
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of [Stacks, 04S6], in view of the fact that the map Q→ P is representable by algebraic
spaces and is a fppf covering (being a base change of the fppf covering U → X). □

We end this section with the following result, which is used repeatedly in the sequel.

Lemma 5.7. — Let S be a scheme, X an algebraic space over S, and G an X-group
algebraic space. Let f : Y → X be a morphism of algebraic spaces over S. Assume
that the following conditions hold:

(i) for every fppf covering T → X with T a scheme, the map G(T ) → G(YT ) is
bijective, where YT := Y ×X T ; and

(ii) for every GY -torsor P, there is an fppf covering T → X with T a scheme such
that PYT

lies in the essential image of f∗
T , where fT := f ×X T .

Then pullback induces an equivalence f∗ : Tors(Xfppf , G)
∼−→ Tors(Yfppf , GY ).

Similarly, if G→ X is smooth, then we have an equivalence

f∗ : Tors(Xét, G)
∼−→ Tors(Yét, GY ),

provided that one replaces ‘fppf’ by ‘étale’ everywhere in the above assumptions.

Proof. — We prove the lemma for fppf torsors. The assumption (i) implies that the
functor f∗ is fully faithful. It remains to check the essential surjectivity. Let P be a
GY -torsor. By assumption (ii) there is a fppf covering T → X with T a scheme and
a GT -torsor Q such that f∗

TQ ≃ PYT
. Using this isomorphism we can transform the

canonical descent data on PYT
to a descent data

θ : pr∗1f
∗
TQ

∼−→ pr∗2f
∗
TQ

on f∗
TQ (relative to the covering YT → Y ). For every integer n ⩾ 0, denote by T (n)

the n-fold fibre product of T over X. Using the canonical identifications

pr∗1f
∗
TQ = f∗

T (2)pr
∗
1Q and pr∗2f

∗
TQ = f∗

T (2)pr
∗
2Q,

the full faithfulness of fT (2) implies that there is a unique isomorphism

τ : pr∗1Q
∼−→ pr∗2Q

of GT (2)-torsors such that f∗
T (2)(τ) = θ. Since

pr∗13(θ) = pr∗13(f
∗
T (2)(τ)) = f∗

T (3)pr
∗
13(τ)

and

pr∗13(θ) = pr∗23(θ)pr
∗
12(θ)

= pr∗23
(
f∗
T (2)(τ)

)
pr∗12

(
f∗
T (2)(τ)

)
= f∗

T (3) (pr
∗
23(τ)) f

∗
T (3) (pr

∗
12(τ))

= f∗
T (3)

(
pr∗23(τ)pr

∗
12(τ)

)
,

the full faithfulness of f∗
T (3) implies that pr∗13(τ) = pr∗23(τ)pr

∗
12(τ), that is, τ is a

descent data on Q relative to T → X. By Lemma 5.6, there is a G-torsor R and
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an isomorphism (Q, ϕ) ≃ (RT , can) of descent data. Pulling back to YT , we get an
isomorphism of descent data

(PYT
, can) ≃ f∗

T (Q, τ) ≃ (RYT
, can).

By Lemma 5.6 again (applied to the covering YT → Y ), we see that f∗(R) = RY ≃ P,
as desired. □

6. Purity for torsors and finite étale covers

We begin with discussing generalities on linear groups that will be fundamental
in multiple types of purities for torsors. The overall argument is bootstrapped from
that for vector bundles, and controlling on the projective dimensions of extended
reflexive sheaves leads to relative-dimensional constraints. In particular, we obtain the
purity for torsors on relative curves and its local variants in Section 6.1, where the
constraints on dimensions in the local case are more flexible. This allows us to shrink
complements of domains of reductive torsors (cf. [GL23, Prop. 2.9 & Cor. 2.10]), which
is crucial for our proof of the Grothendieck–Serre for constant reductive group schemes
given in [GL23]. Finally, utilizing our Prüferian analog of Auslander’s flatness criterion
(cf. Theorem 4.1), we establish in Section 6.7 the Purity Theorem 6.8 for torsors under
finite locally free groups, and, consequently, we obtain a Prüferian counterpart of the
Zariski–Nagata Purity Theorem 6.9.

6.0.1. Coaffine locally linear groups. — Let X be an algebraic space. An X-group
algebraic space G is linear if there exists a group monomorphism G ↪→ GL(V ) for a
locally free OX -module V of finite rank.

An X-group algebraic space G is fppf locally coaffine (resp. étale locally coaffine),
if, fppf locally (resp. étale locally) on X, there is a monomorphism G ↪→ GL(V ) such
that the sheaf quotient GL(V )/G is representable by an X-affine algebraic space. Such
a G is necessarily affine over X and the monomorphism G ↪→ GL(V ) is automatically
a closed immersion. For instance, if G is X-reductive (resp. X-finite locally free),
then G is étale locally coaffine(5) (resp. fppf locally coaffine). In the sequel, we will
mainly consider (fppf or étale) locally coaffine X-group algebraic spaces G.

6.1. Purity for torsors on relative curves. — Now we study the extension behav-
ior of torsors over relative curves. Motivated by [EGA IV4, Prop. 21.9.4] that every
invertible sheaf on a curve over a field extends across finitely many closed points,
Proposition 6.2 concerns relative curves over Prüfer rings and generalizes [Guo24,
Lem. 7.3].

(5)If G is X-reductive, then étale locally G splits, so (by e.g. [Gil22, Th. 1.1 & Cor. 4.3]) there
exists a closed immersion G ↪→ GLn,X for some integer n, and [Alp14, 9.4.1] ensures that the quotient
GLn,X/G is X-affine of finite type.
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6.1.1. Torsors on relative curves. — Let R be a semilocal Prüfer domain with spec-
trum S and X an S-flat scheme of finite type with regular one-dimensional fibres. Let
D ⊂ X be an S-quasi-finite closed subscheme contained in an affine open SpecA ⊂ X,
and cut out by a nonzerodivisor t ∈ A. Assume that

(i) |S| is finite; or
(ii) D is S-finite.
Note that these imply that D is semilocal, and (ii) holds for instance when X is

S-proper. Consider
– BD := Spec Â, the formal neighborhood of D, where Â := lim←−n

A/tnA;
– UD := BD ∖D = Spec Â[ 1t ], the punctured formal neighborhood.

Indeed, BD is semilocal, which follows from the semilocality of D. As D is S-quasi-
finite, it is S-flat. By [Stacks, 0B9D], D is a relative effective Cartier divisor, so its
each nonempty fibre has codimension one. By Hensel’s lemma, (Â, tÂ) is a Henselian
pair, in particular, tÂ is contained in all maximal ideals of Â. Combining this with
the fiberwise codimension-one property of D, we conclude that BD is semilocal.

The following proposition specializes to [Guo24, Lem. 7.3] when A = V [t] and
D = SpecA/tA for a valuation ring V .

Proposition 6.2. — With the setup in Section 6.1.1, the restriction functor for vector
bundles

VectX −→ VectX∖D

is essentially surjective. Furthermore, we have

H1
Zar(UD,GLn) = H1

ét(UD,GLn) = {∗}.

Proof. — Note that by Lemma 3.7(iii) or Proposition 3.9(ii), all local rings of X have
weak dimension ⩽ 2. By Corollary 2.4, every vector bundle on X ∖ D extends to a
reflexive sheaf on X, which, by Theorem 2.19(ii), is actually a vector bundle. This
proves the first assertion.

Next, let V be a vector bundle on UD = Spec Â[ 1t ] and denote the Henselization
of the pair (X,D) by (Bh

D, D). Write Bh
D = SpecAh and set Uh

D := Bh
D ∖ D =

SpecAh[1/t]. Then, since the t-adic completion of Ah is isomorphic to Â, [BČ22,
Cor. 2.1.22(c)] implies that V descends to a vector bundle V h on Uh

D. Since Bh
D is

the limit of elementary étale neighborhoods D ⊂ X ′ of D ⊂ X, by a limit argument,
V h descends to a vector bundle V ′ on X ′ ∖ D for some D ⊂ X ′. Since VectX′ →
VectX′∖D is essentially surjective, V ′ extends to a vector bundle Ṽ ′ on X ′ whose
pullback gives a vector bundle Ṽ on BD extending V . Finally, as in Section 6.1.1,
Â is semilocal, so over which the bundle Ṽ and thus V is trivial. □

The following purity result in the case when G is a reductive X-group scheme was
proved in [GL23, Th. 2.7]. It turns out that the same argument works for any X-group
algebraic space G that is étale locally coaffine (cf. Section 6.0.1) in the setting of
algebraic spaces.
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Theorem 6.3. — Let S be a semilocal affine Prüfer scheme and X an S-flat, locally of
finite type algebraic space with regular one-dimensional S-fibres. Let G be an X-affine
group algebraic space that is étale locally coaffine.(6) Given a closed subspace Z of X
such that the inclusion j : X ∖ Z ↪→ X is quasi-compact, and

Zη = ∅ for each generic point η ∈ S and codim(Zs, Xs) ⩾ 1 for all s ∈ S.

Then, the restriction gives an equivalence of categories of G-torsors

(6.3.1) Tors(Xfppf , G)
∼−→ Tors((X ∖ Z)fppf , G).

Consequently, when considering isomorphism classes, there exists a bijection:

H1
fppf(X,G) ≃ H1

fppf(X ∖ Z,G).

Furthermore, if S is allowed to be a general Prüfer algebraic space,(7) (not necessarily
semilocal) the above conclusions remain valid as long as G is finitely presented over X

(and étale locally coaffine).

Proof. — First, consider the case when S is a semilocal affine Prüfer scheme. We show
that (6.3.1) is an equivalence. Since G is X-affine, by checking étale locally and using
Theorem 2.20, we see that G(X) ≃ G(X ∖Z), which proves the full faithfulness (this
uses the analogous bijection when we base change everything to a scheme étale over X
and the condition on fibres remains valid).

For essential surjectivity, we choose a G-torsor P over X∖Z and wish to extend P to
a G-torsor over X. In the special case where G = GLn, G-torsors correspond to vector
bundles of rank n. Due to the condition on fibres imposed on Z, by Proposition 3.9(iii)
and Theorem 2.20, the pushforward j∗P is reflexive. Now, we leverage the essential
assumption that X has one-dimensional regular S-fibres: by Proposition 3.9(ii), every
local ring of X is coherent regular with wdim ⩽ 2. Therefore, Theorem 2.19(ii) implies
that the reflexive OX -module j∗P is locally free. For a general G, by gluing in the
étale topology, it suffices to demonstrate that P extends, at least étale locally on X,
to a G-torsor over X (see Lemma 5.7).

To prove this, we may assume that X is affine, G ⊂ GLn,X , and that GLn,X/G is
affine over X. We exploit the following commutative diagram of pointed sets, where
the two rows are exact sequences:

(GLn,X/G)(X) H1
fppf(X,G) H1

fppf(X,GLn,X)

(GLn,X/G)(X ∖ Z) H1
fppf(X ∖ Z,G) H1

fppf(X ∖ Z,GLn,X).

≃

The bijectivity of the left vertical arrow follows from Theorem 2.20. By the case of
vector bundles, we may replace X by an affine open cover to assume that the induced

(6)For example, G could be X-reductive, or X-finite locally free.
(7)Namely, it admits an étale cover by a disjoint union of spectra of Prüfer domains.

J.É.P. — M., 2024, tome 11



Purity and quasi-split torsors over Prüfer bases 223

GLn,X∖Z-torsor P ×GX∖Z GLn,X∖Z is already trivial. Then, a diagram chase yields
a G-torsor Q over X such that Q|X∖Z ≃ P.

Now, let us assume that S is a Prüfer algebraic space, and that G is finitely
presented over X. We may assume that X is of finite type over S. By Lemma 3.7(i),
the S-flatness of X ensures its finite presentation over S. So, G and hence all G-torsors
are also finitely presented over S. At this point, we can use a standard argument
to deduce the conclusion in the present case from the previous semilocal case. For
example, to establish full faithfulness, we prove that G(X) ≃ G(X∖Z). The question
is étale local on X, allowing us to assume that S is an affine Prüfer scheme and X

is an affine scheme. We consider both sides as Zariski sheaves on S, given by T 7→
G(XT ) and T 7→ G(XT ∖ ZT ), respectively. The previous semilocal case implies that
G(X(s)) ≃ G(X(s) ∖ Z(s)) for each point s ∈ S, where X(s) := X ×S Spec(OS,s),
etc. Since j is quasi-compact and G → X is finitely presented, both sides of the last
bijection can be identified with the stalks of the two Zariski sheaves at s. This implies
G(X) ≃ G(X ∖ Z), as desired. □

Remark 6.4. — In higher relative dimensions, even in the classical Noetherian setting,
the purity Theorem 6.3 is inapplicable, even for the simplest group G = GLn. For
instance, there exists a vector bundle over Spec(R)∖ {mR} that cannot be extended
to Spec R, where (R,mR) is any Noetherian regular local ring of Krull dimension at
least three.

The following is a local version of Theorem 6.3. Its proof closely mirrors that
of Theorem 6.3 (also refer to [GL23, Th. 2.8], or can be straightforwardly deduced
from it.

Theorem 6.5 (Local variant of purity). — Let V be a valuation ring of finite rank,
with spectrum S, and let η ∈ S be the generic point. Let X be an S-flat, finite type
scheme with regular fibres. Let G be an X-group scheme that is coaffine étale locally.
If x ∈ X satisfies one of the following

(i) x ∈ Xη with dimOXη,x = 2, or
(ii) x ∈ Xs (where s ̸= η) with dimOXs,x = 1,

then every G-torsor over SpecOX,x ∖ {x} extends uniquely to a G-torsor over OX,x.

It is worth noting that the stipulation of V possessing finite rank guarantees that
any finite type V -scheme will be topologically Noetherian. This ensures that the punc-
tured spectrum SpecOX,x∖{x} remains quasi-compact. This property is fundamental
when establishing results concerning vector bundles.

As a corollary of Theorem 6.5, one proves the following result about extending
generically trivial torsors.

Corollary 6.6 (Extending generically trivial torsors, [GL23, Cor. 2.10])
Fix

(i) R a semilocal Prüfer domain with spectrum S;
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(ii) X an S-flat finite type quasi-separated scheme with regular fibres;
(iii) Y the spectrum of a local ring of an affine open subset of X;
(iv) r ∈ R a nonzero element; and
(v) G a reductive X-group scheme.

Then, every generically trivial G-torsor over Y (resp. over an open subset of X[1/r] :=

XR[1/r]) extends to a G-torsor over an open subset U ⊂ X. Here, the complementary
closed Z := X ∖ U satisfies the condition:{

codim(Zη, Xη) ⩾ 3 for each generic point η ∈ S,
codim(Zs, Xs) ⩾ 2 for all s ∈ S.

6.7. Purity for finite locally free torsors and the Zariski–Nagata. — By combin-
ing Theorem 2.20 on the purity of reflexive sheaves and Auslander’s flatness criterion
Theorem 4.1, we are able to establish the following Prüferian analog of a result of
Moret-Bailly, detailed in [Mar16].

Theorem 6.8 (Purity for torsors under finite locally free groups)
(i) Let S be a Prüfer algebraic space and X an S-smooth algebraic space. Let G

be an X-finite, locally free group algebraic space. Given a closed Z ⊂ X such that
j : X ∖ Z ↪→ X is quasi-compact, and{

codim(Zη, Xη) ⩾ 2 for each generic point η ∈ S,
codim(Zs, Xs) ⩾ 1 for all s ∈ S,

then the restriction induces an equivalence of categories of G-torsors:

Tors(Xfppf , G)
∼−→ Tors((X ∖ Z)fppf , G).

Consequently, when considering isomorphism classes, there exists a bijection:

H1
fppf(X,G) ≃ H1

fppf(X ∖ Z,G).

(ii) Let V be a finite-rank valuation ring, X a V -smooth scheme, and G an X-finite
locally free group scheme. Let x ∈ X be a point such that dimOX,x ⩾ 2. If x is
not a maximal point in the S-fibres of X, then the restriction functor establishes an
equivalence of categories of G-torsors:

Tors((SpecOX,x)fppf , G)
∼−→ Tors((SpecOX,x ∖ {x})fppf , G).

Consequently, when considering isomorphism classes, there exists a bijection:

H1
fppf(SpecOX,x, G) ≃ H1

fppf(SpecOX,x ∖ {x}, G).

We anticipate that the theorem is valid for all X which are flat, locally finitely
presented over S (or over V ), with regular fibres. However, our approach does not
confirm this due to its reliance on Auslander’s criterion for flatness (see Theorem 4.1),
which necessitates the smoothness of X over S (or over V ).
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Proof
(i) We may assume that X → S is quasi-compact. The assumption implies that X

and G are both finitely presented over S. Thus, similar to the proof of Theorem 6.3,
we are reduced to the case where S is the spectrum of a valuation ring.

It remains to verify the assumptions of Lemma 5.7. All assumptions of Lemma 5.7
are étale local on X, so we may assume that X is a scheme, finitely presented over S.
Employing the limit argument Lemma 3.10 involving Lemma 3.4, we can further
restrict our scenario to instances where S has a finite Krull dimension. Furthermore,
since |S| is finite and each R-fibre of X is Noetherian, |X| is Noetherian.

The condition (i) of Lemma 5.7 can be deduced from Proposition 3.9(iii) and
Theorem 2.20, which needs the condition on fibres of Z.

To verify the condition (ii) of Lemma 5.7, we will check that, étale locally on X,
every G-torsor over X ∖ Z extends to a G-torsor over X. Let P be a GX∖Z-torsor.
By Proposition 3.9(iii) and Corollary 2.24, j∗OP is a reflexive OX -module. First, we
prove the OX -flatness of j∗OP. We can use Noetherian induction to reduce to the case
where X is local, essentially smooth over R, and Z = {x} is its closed point. Then,
Auslander’s criterion Theorem 4.1 reduces us to showing the isomorphism

HomOX
(j∗OP, j∗OP) ≃ (j∗OP)

⊕r
, where r = rankOX

OG.

Note that in such local case, we have OG ≃ O⊕r
X . Consider the following map

HomOX
(OG, j∗OP) −→HomOX

(j∗OP, j∗OP),

f 7−→
(
j∗OP

j∗ρ−−−−→ OG ⊗OX
j∗OP

(f, id)
−−−−−−→ j∗OP

)
of reflexive OX -modules. This is an isomorphism: by Theorem 2.20, it suffices to argue
over X ∖ Z, then its explicit inverse is

g 7−→
(
OGX∖Z

id⊗ 1−−−−−−→ OGX∖Z
⊗OX∖Z

OP

(ρ, id)−1

−−−−−−−−→ OP⊗OX∖Z
OP

(g, id)
−−−−−−→ OP

)
.

We now prove that the G-torsor structure of P extends uniquely to that of the
scheme Spec

X
(j∗OP). As G is finite locally free, by projection formula [Stacks, 01E8],

taking j∗ of the co-action ρ : OP → j∗OG ⊗OX∖Z
OP yields

j∗ρ : j∗OP −→ OG ⊗OX
j∗OP.

To check that j∗ρ is a co-action, we verify the associativity, the commutativity of the
following diagram

j∗OP OG ⊗OX
j∗OP

OG ⊗OX
j∗OP OG ⊗OX

OG ⊗OX
j∗OP,

j∗(ρ)

j∗(ρ) id⊗ j∗(ρ)

µG ⊗ id

where µG : OG → OG⊗OX
OG is the co-multiplication of G. Since all sheaves involved

are OX -reflexive, the commutativity over X ∖ Z by Theorem 2.20 extends over X.
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Finally, the following map

(j∗ρ, 1⊗ id) : j∗OP ⊗OX
j∗OP −→ OG ⊗OX

j∗OP,

by the OX -flatness of j∗OP and Theorem 2.20, is an isomorphism since so is its
restriction on X ∖ Z.

(ii) A similar argument can be employed for its proof. Specifically, to establish
the essential surjectivity of the restriction functor, the finite-rank assumption on V

ensures that j : SpecOX,x∖{x} ↪→ SpecOX,x is quasi-compact quasi-separated. Con-
sequently, for any G-torsor P over SpecOX,x ∖ {x}, j∗OP is a reflexive OX,x-module
(by Theorem 2.20). By invoking Auslander’s criterion (see Theorem 4.1), we deduce
that j∗OP is free over OX,x and retains the G-torsor structure from P. This subse-
quently yields the sought-after extension of P to SpecOX,x. □

From Theorem 6.8 one can now derive an analog of the classical Zariski–Nagata.

Theorem 6.9 (Zariski–Nagata purity for finite étale covers)
(i) Let S be a Prüfer algebraic space, and X an S-smooth algebraic space. Given a

closed subspace Z of X such that j : X ∖ Z ↪→ X is quasi-compact, and that{
codim(Zη, Xη) ⩾ 2 for each generic point η ∈ S,
codim(Zs, Xs) ⩾ 1 for all s ∈ S,

then the restriction gives an equivalence of categories of finite étale objects

FÉtX
∼−→ FÉtX∖Z .

(ii) Let R be a finite-rank valuation ring with spectrum S, and consider an S-smooth
scheme X. Given a point x ∈ X with properties such that dimOX,x ⩾ 2 and x is not
a maximal point in the S-fibres of X. Then the restriction functor establishes an
equivalence of categories of finite étale covers

FÉtSpecOX,x

∼−→ FÉtSpecOX,x∖{x}.

Again, we anticipate that the theorem is valid for all X which are flat, locally
finitely presented over S, with regular fibres.

Proof
(i) Full faithfulness. For finite étale covers πi : Xi → X, i = 1, 2, consider

the X-functor Y := HomX(X1, X2)

that parameterizes X-morphisms from X1 to X2; it is a subfunctor of

HomX(π2,∗OX2 , π1,∗OX1)

consisting of sections compatible with algebraic structures of π2,∗OX2
and π1,∗OX1

,
which amount to the commutativity of a certain diagram of OX -modules. It follows
that Y ⊂ HomX(π2,∗OX2 , π1,∗OX1) is a closed subfunctor. Thus, Y is an algebraic
space finite over X. (Using the infinitesimal criterion for formal smoothness, one can
check that Y → X is even finite étale, but we will not need this in the sequel.)
By Theorem 2.20, we have Y (X) ≃ Y (X ∖ Z), thereby proving the full faithfulness.
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Essential surjectivity. Given the full faithfulness established in the preceding para-
graph, we can first pass to an étale cover and then to a connected component, allowing
us to assume that X is an integral affine scheme. To apply Theorem 6.8(i) and con-
clude, it suffices to observe that the category of finite étale covers of X of degree n

(with isomorphisms) is equivalent to the category of Sn,X -torsors. (Here Sn denotes
the n-th symmetric group.)

(ii) This is proved in the same manner as (i), using Theorem 6.8(ii) instead of
Theorem 6.8(i). □

7. Cohomology of groups of multiplicative type

Inspired by the purity results in [ČS24, Th. 7.2.8], we investigate the parafactori-
ality over Prüfer bases and then present the purity for cohomology of group algebraic
spaces of multiplicative type.

7.1. Geometrically parafactorial pairs

7.1.1. Parafactorial pairs. — Let (X,OX) be a ringed space with a closed subspace
Z ⊂ X and the canonical open immersion j : V := X ∖ Z ↪→ X, if for every open
subspace U ⊂ X the following restriction is an equivalence of categories

PicU
∼−→ Pic (U ∩ V ) L 7−→ L |U∩V ,

then the pair (X,Z) is parafactorial. In particular, for an invertible OX -module L ,

L (U) = HomOU
(OU ,L |U ) ≃ HomOU∩V

(OU∩V ,L |U∩V ) = L (U ∩ V )

for all open U ⊂ X; in other words, L ≃ j∗j
∗L . A local ring A is parafactorial if

the pair (SpecA, {mA}) is parafactorial. We list several parafactorial pairs (X,Z) and
local rings.

(i) By [EGA IV4, Prop. 21.13.8], a local ring A is parafactorial amounts to

Pic(Spec(A)∖ {mA}) = 0 and A ≃ Γ(Spec(A)∖ {mA}, Ã);

(ii) By [EGA IV4, Ex. 21.13.9(ii)], a Noetherian factorial local ring is parafactorial
if and only if its Krull dimension is at least 2;

(iii) When X is locally Noetherian, Z satisfies codim(Z,X) ⩾ 4, and OX,z are
locally complete intersection(8) for all z ∈ Z, by [SGA 2new, Exp. XI, Prop. 3.3 &
Th. 3.13(ii)], the pair (X,Z) is parafactorial;

(iv) For a normal scheme S, an S-smooth scheme X and a closed Z ⊂ X satisfying{
codim(Zη, Xη) ⩾ 2 for each generic point η ∈ S,
codim(Zs, Xs) ⩾ 1 for every s ∈ S,

by [EGA IV4, Prop. 21.14.3], the pair (X,Z) is parafactorial.

(8)This means that its completion is the quotient of complete regular local ring by an ideal
generated by a regular sequence.
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7.1.2. Geometrically parafactorial pairs. — Below, we are mainly interested in the
case when X is a scheme, and Z ⊂ X is a closed subscheme such that the canonical
open immersion j : V := X ∖ Z ↪→ X is quasi-compact. By [EGA IV2, Lem. 2.3.1],
the quasi-compactness of j guarantees that the pushforward by j of a quasi-coherent
OV -module is quasi-coherent and its formation commutes with arbitrary flat base
changes (in particular, localizations).

A pair (X,Z) is geometrically parafactorial if j : V = X∖Z ↪→ X is quasi-compact
and if, for every X-étale X ′ with base change Z ′ := Z ×X X ′, the pair (X ′, Z ′) is
parafactorial. A local ring A with a quasi-compact punctured spectrum is geomet-
rically parafactorial if its strict Henselization Ash is parafactorial. By the following
Lemma 7.2, one can see that a local ring A with a quasi-compact punctured spectrum
is geometrically parafactorial if and only if the pair (SpecA, {mA}) is geometrically
parafactorial.

Lemma 7.2. — Let A be a local ring with a quasi-compact punctured spectrum. Then A

is geometrically parafactorial if and only if for any local and essentially étale(9) map
A→ B of local rings, B is parafactorial.

Proof. — Assume that A is geometrically parafactorial, that is, Ash is parafactorial.
Let A→ B be a local and essentially étale map; we will show that B is parafactorial.
For any local ring C, denote by jC : U◦

C := Spec(C) ∖ {mC} ↪→ UC := Spec (C)

the canonical open immersion. Choose an A-map B → Ash. Let L be an invert-
ible OU◦

B
-module. By the quasi-compactness of jB (inherited from that of j = jA)

and the faithful flatness of UAsh → UB , the OUB
-module jB,∗L is quasi-coherent

and its pullback to UAsh is isomorphic to jAsh,∗(L |U◦
Ash

). Since Ash is parafactorial,
we have jAsh,∗(L |U◦

Ash
) ≃ OU

Ash
. Descent theory implies that jB,∗L ≃ OUB

and thus
L ≃ OU◦

B
. Similarly, by considering the pullback to UAsh , we see that the natural

map OUB
→ jB,∗OU◦

B
is bijective, that is, B ≃ Γ(U◦

B ,OU◦
B
). This proves that B is

parafactorial (cf. Section 7.1.1(i)).
For the other side, fixing a separable closure κA of κA = A/mA and a geometric

point t : A → κA, then Ash is the filtered colimit of all B for essentially étale local
ring maps A→ B along with a geometric point tB : B → κA lifting t. Consequently,
if all such B are parafactorial, then we have the following equivalences

PicUAsh
∼←−− 2-colim(B,tB)PicUB

∼−−−→ 2-colim(B,tB)PicU◦
B
∼−−−→ PicU◦

Ash ,

where the rightmost equivalence follows from [Stacks, 0B8W], because U◦
A is quasi-

compact. This proves that A is geometrically parafactorial. □

The following is a generalization of [EGA IV4, Prop. 21.13.10] to the case of topo-
logically locally Noetherian schemes.(10)

(9)Recall that by definition an essentially étale ring map is a localization of an étale ring map.
(10)A scheme is topologically locally Noetherian if it admits a cover by open subschemes whose

underlying topological spaces are Noetherian (i.e., any descending sequence of closed subsets is
eventually constant); it is topologically Noetherian if its underlying topological space is Noetherian.
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Lemma 7.3. — For a topologically locally Noetherian scheme X and a closed sub-
scheme Z ⊂ X,

(i) the pair (X,Z) is parafactorial if and only if OX,z is parafactorial for every
z ∈ Z;

(ii) the pair (X,Z) is geometrically parafactorial if and only if Osh
X,z is parafactorial

for every geometric point z → Z.

Proof. — By [EGA IV4, Cor. 21.13.6(i)], we can work Zariski locally on X, so we may
assume throughout that X is topologically Noetherian. By [BS15, Lem. 6.6.10(3)], any
quasi-compact étale cover of X is also topologically Noetherian. Therefore, taking into
account of Lemma 7.2, we see that (ii) follows from (i) because SpecOsh

X,z is the inverse
limit of étale neighborhoods of z → X.

It remains to prove (i). Assume that (X,Z) is a parafactorial pair and denote
by j : V := X ∖ Z ↪→ X the canonical open immersion. For each z ∈ Z, denote
Uz := SpecOX,z and U◦

z := Uz∖{z}. To show that OX,z is parafactorial, we prove that
every invertible OU◦

z
-module L0 is isomorphic to OU◦

z
. By [EGA IV3, Prop. 8.2.13] and

[EGA I, Prop. 2.4.2], U◦
z is the inverse limit of B◦ := B ∖ (B ∩ {z}), where B ranges

over all open affine neighborhoods of z ∈ X. Since B◦ ↪→ B is quasi-compact (by topo-
logical Noetherianness), the limit argument [Stacks, 0B8W] implies that there exists
such a B and an invertible OB◦ -module LB◦ for which L0 ≃ LB◦ |U◦

z
. By assump-

tion and [EGA IV4, Cor. 21.13.6(i)(ii)], the pair (B,B ∩ {z}) is parafactorial. Thus,
there exists an invertible OB-module L̃B such that L̃B |B◦ ≃ LB◦ . Shrinking B if
necessary, we have L̃B ≃ OB hence L0 ≃ OU◦

z
.

Conversely, assuming that OX,z are parafactorial for all z ∈ Z, we will prove that
the pair (X,Z) is parafactorial. We first show that for any open U ⊂ X with the open
immersion jU : U ∩ V ↪→ U , the canonical map E → jU,∗(E |U∩V ) is bijective for any
finite-rank locally free OU -module E . By [EGA IV4, Cor. 21.13.3(b)], this is equivalent
to saying that OX

∼−→ j∗OV is bijective. The Noetherian assumption implies that j

is quasi-compact, so j∗OV is quasi-coherent and commutes with flat base changes.
It suffices to prove that we have an isomorphism after localizing at points z ∈ X.
This is trivial if z ∈ V , and if z ∈ Z it follows from parafactoriality of OX,z (see
Section 7.1.1(i)).

To finish the proof, by [EGA IV4, Prop. 21.13.5], it remains to show that for every
invertible OV -module L , the pushforward j∗L is an invertible OX -module. For this,
we consider the subset

Ω := {x ∈ X | j∗L is invertible on an open neighborhood of x};

it is open in X and contains V = X ∖ Z. Denote Y := X ∖ Ω ⊂ Z. If Y ̸= ∅, we
choose a maximal point y ∈ Y (every non-empty scheme has maximal points). Then
Ω∩Uy = U◦

y , and so L0 := (j∗L )|U◦
y

is an invertible OU◦
y
-module. The parafactoriality

of OX,y yields an extension of L0 to an invertible OUy
-module L̃0, which, by the

limit argument [Stacks, 0B8W] again, descends to an invertible OW -module L̃W for
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an open affine neighborhood W of y ∈ X. As W shrinks, it becomes Uy and Ω ∩W

becomes U◦
y . Since Ω∩W is quasi-compact, loc. cit. implies that we may shrink W to

assume that the restrictions of j∗L and L̃W to Ω ∩W are equal. Set Ω′ := Ω ∪W .
By Zariski gluing, we obtain an invertible OΩ′ -module L ′ such that L ′|W = L̃W and
L ′|Ω = (j∗L )|Ω. Since V ⊂ Ω, we have L ′|V = L , and so L ′ ∼−→ (j∗(L ′|V ))|Ω′ =

(j∗L )|Ω′ (by the previous paragraph), which leads to a desired contradiction with the
definition of Ω. □

Proposition 7.4. — Let S be a normal scheme and X an S-scheme. Assume that one
of the following holds:

(i) either X → S is a smooth morphism of topologically locally Noetherian schemes;
or

(ii) S is semilocal Prüfer of finite dimension and X is S-flat locally of finite type
with regular S-fibres.
Then, if x ∈ X is not a maximal point of S-fibres of X and satisfies dimOX,x ⩾ 2,
it holds that OX,x is geometrically parafactorial, namely, Osh

X,x is parafactorial.

Proof. — Notice that, in both cases (i)–(ii), the scheme X is topologically locally
Noetherian. By Lemma 7.2, the parafactoriality of Osh

X,x is equivalent to those of
OX′,x′ for all X-étale X ′ and x′ ∈ X ′ lying over x. Moreover, since all X ′ and x′

satisfy the conditions in the statement above (in the case (i), the topologically locally
Noetherianness of X ′ follows from [BS15, Lem. 6.6.10(3)]), thus it suffices to show
that OX,x is parafactorial. For the Zariski closure Z := {x}, by Lemma 7.3, we are
reduced to finding a small open neighborhood U of x ∈ X such that (U,Z ∩ U)

is a parafactorial pair. Now, take an arbitrary open neighborhood U of x ∈ X, by
[EGA IV3, Prop. 9.5.3] applied to Z ⊂ X, shrinking U if needed, we may assume that
U ∩ Z does not contain any irreducible components of S-fibres of X. In addition,
if some z ∈ Z lies over a maximal point η ∈ S, since x specializes to z, then we
have dimOXη,z = dimOX,z ⩾ 2. Consequently, we have codim(Xη ∩ Z,Xη) ⩾ 2

and, by Section 7.1.1(iv) (in case (i)) and Theorem 2.20 (in case (ii)), the desired
parafactoriality of (U,Z ∩ U) follows. □

7.5. Purity for groups of multiplicative type. — The goal of this subsection is to
study purity for groups of multiplicative type over algebraic spaces that are topologi-
cally locally Noetherian in the following sense: they admit étale covers by topologically
locally Noetherian schemes. By [BS15, Lem. 6.6.10(3)], we see that any scheme étale
over a topologically locally Noetherian algebraic space is again topologically locally
Noetherian.

7.5.1. The fppf local cohomology. — Let X be an algebraic space. Let (Sch/X)fppf
denote the site of schemes over X with fppf covers. Recall that the sections of a sheaf
on (Sch/X)fppf over an X-algebraic space U are defined as the set of morphisms from
the fppf sheaf

Sch/X ∋ V 7−→ HomX(V,U).
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Given a closed subspace Z ⊂ X, denote by j : X ∖Z ↪→ X the open immersion. For
an abelian sheaf F on (Sch/X)fppf , we define

H0
Z(F )(V ) := Ker(F (V ) −→ F (V ∖ (V ×X Z))), V ∈ Sch/X ;

it is the largest subsheaf of F supported on Z. For an algebraic space U over X, we
denote

H0
Z(U,F ) := Γ(U,H0

Z(F )).

Both the functors F 7→ H0
Z(F ) and F 7→ H0

Z(U,F ) are left exact. Let Hi
Z and

Hi
Z(U,−) denote their i-th right derived functors. From the definition we see that

Hi
Z(F ) can be identified with the sheafification of the presheaf V 7→ Hi

Z(V,F ).
Moreover, as the functor H0

Z sends injective sheaves to injective sheaves (because it
admits an exact left adjoint), we have the local-to-global E2-spectral sequence:

Epq
2 = Hp(U,Hq

Z(F ))⇒ Hp+q
Z (U,F ).

By employing an injective resolution, one also derives the long exact sequence for
fppf local cohomology, analogous to the approach used for Zariski local cohomology
as discussed in Section 2.5. The key lies in the surjectivity of the restriction map
F (X)→ F (X ∖ Z) for an injective abelian sheaf F , a result that naturally follows
by applying Hom(−,F ) to the monomorphism j!ZX∖Z → ZX .

Although not directly pertinent to our discussion, let’s briefly elucidate the con-
nection with Zariski local cohomology presented in Section 2.5. Consider the natural
morphism µ : (Sch/X)fppf → XZar to the small Zariski site. For any abelian sheaf F

on (Sch/X)fppf , there exists a natural comparison map

RΓZar(X,µ∗F ) −→ RΓZar(X,Rµ∗F ) = RΓfppf(X,F ).

While this is not an isomorphism in general, it holds true if X is a scheme and F is
quasi-coherent, as µ∗F = Rµ∗F (quasi-coherent sheaves have vanishing higher fppf-
cohomology on affines). Considering the long exact sequence for local cohomology,
a similar comparison result holds for local cohomology.

On occasion, we will use the étale local cohomology. Its definition mirrors its coun-
terpart, using either the big or small étale site of X in lieu of the fppf site.

The following result concerning étale descent of fppf local cohomology will be
needed.

Lemma 7.6 (cf. [ČS24, Lem. 7.1.1]). — For an algebraic space X, a closed subspace
Z ⊂ X, and an abelian sheaf F on (Sch/X)fppf , if for any integer q ⩾ 0, H̃

q
Z(F )

denotes the étale-sheafification of the presheaf (V → X) 7→ Hq
Z(V,F ) where V → X

is étale, then we have a convergent spectral sequence

Epq
2 = Hp

ét(X, H̃q
Z(F ))⇒ Hp+q

Z (X,F ).

Proof. — There is a trouble with recursive references, so we give a proof for the
convenience of the readers.
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Let Ab(−) denote the category of abelian sheaves on a site. Consider the following
sequence of functors:

Ab((Sch/X)fppf)
H0

Z−−−−→ Ab((Sch/X)fppf)
ν∗−−−→ Ab((ÉtSch/X)ét)

Γ(X,−)
−−−−−−−→ Ab,

where (ÉtSch/X)ét is the site of étale schemes over X with étale covers, and ν :

(Sch/X)fppf → (ÉtSch/X)ét denotes the natural morphism of sites. The first two
functors send injectives to injectives because they admit exact left adjoints. For any
abelian sheaf F on (Sch/X)fppf , we have (ν∗ ◦H0

Z)(F )(V ) = H0
Z(V,F ) where V is a

scheme étale over X. This implies that the q-th right derived functor of ν∗◦H0
Z is given

by the étale sheafification of the presheaf (V → X) 7→ Hq
Z(V,F ). Now the lemma

follows from the Grothendieck spectral sequence applied to the functors ν∗ ◦H0
Z and

Γ(X,−). □

7.6.1. Setup. — From now on we assume the following, unless stated otherwise:
– let X be a topologically locally Noetherian algebraic space, Z ⊂ X a closed

subspace, and j : X ∖ Z ↪→ X the canonical open immersion;
– for every geometric point z → Z, the strict local ring Osh

X,z
(11) is (geometrically)

parafactorial;(12)

– let M be an X-group algebraic space of multiplicative type, that is, its base
change MX′ is a group scheme of multiplicative type, where X ′ → X is some étale
cover by a scheme X ′.

Remark 7.7. — In the case when X is a scheme, Lemma 7.3(ii) implies that the
first two assumptions above are equivalent to saying that the pair (X,Z) is geometri-
cally parafactorial in the sense of Section 7.1.2. Moreover, Proposition 7.4(i)–(ii) gives
examples of such pairs (X,Z), where Z satisfies the conditions{

codim(Zη, Xη) ⩾ 2 for every generic point η ∈ S,
codim(Zs, Xs) ⩾ 1 for all s ∈ S.

Proposition 7.8. — In the Setup 7.6.1, assume that X is a scheme. For a point z ∈ Z

and an OX,z-torus T , we have

Hi
{z},fppf(Spec(OX,z), T ) ≃ Hi

{z},ét(Spec(OX,z), T ) = 0 for 0 ⩽ i ⩽ 2.

(11)By a geometric point of an algebraic space we refer to a map from the spectrum of a separably
closed field. For a given geometric point t : Spec(Ω) → X, the strict local ring Osh

X,t
of X at t is

defined as the filtered colimit of all B, where Spec(B) → X is an étale map, along with a geometric
point tB : Spec(Ω) → Spec(B) lifting t. The strict local ring Osh

X,t
, up to isomorphism, depends only

on the equivalence class of the geometric point t: indeed, if t′ : Spec(Ω′) → Spec(Ω)
t−→ X is another

geometric point and Spec(B) → X is an étale map, there exists a natural bijection between liftings
of t and t

′ to Spec(B). Clearly, this definition aligns with the classical definition of strict local rings
for schemes.

(12)Note that the topologically locally Noetherian assumption on X implies that Osh
X,z has a quasi-

compact punctured spectrum, thus it is geometrically parafactorial if and only if it is parafactorial.
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Proof. — The fppf and étale cohomology of a smooth group scheme coincides. So we
may work with the étale site. By the local-to-global E2-spectral sequence [SGA 4II,
Exp. V, Prop. 6.4],

Hp
ét(Spec(OX,z),H

q
{z}(T ))⇒ Hp+q

{z} (Spec(OX,z), T ).

Therefore, it suffices to prove that Hq
{z}(T ) = 0 for 0 ⩽ q ⩽ 2. Since OX,z has a quasi-

compact punctured spectrum, we can identify their stalks at a geometric point z lying
over z:

H
q
{z}(T )z = Hq

{z}(Spec(O
sh
X,z), T ).

Now, since TOsh
X,z
≃ Gdim T

m,Osh
X,z

and Osh
X,z is parafactorial, we have

Hq
ét(Spec(O

sh
X,z), T ) ≃ Hq

ét(Spec(O
sh
X,z)∖ {z}, T ) for 0 ⩽ q ⩽ 1.

Moreover, as Osh
X,z is strictly Henselian, we have

H2
ét(Spec(O

sh
X,z), T ) = 0.

Looking at the local cohomology exact sequence for the pair (Spec(Osh
X,z), z) and T ,

we see that
Hq

{z}(Spec(O
sh
X,z), T ) = 0 for 0 ⩽ q ⩽ 2,

giving that H
q
{z}(T ) = 0 for 0 ⩽ q ⩽ 2, as desired. □

The following result is a variant of [ČS24, Th. 7.2.8(a)], where X is assumed topo-
logically locally Noetherian but the local rings OX,z are not supposed to be Noetherian
for z ∈ Z.

Theorem 7.9. — In the Setup 7.6.1, we have

Hi
fppf(X,M)

∼−→ Hi
fppf(X ∖ Z,M) for i = 0, 1, and

H2
fppf(X,M) ↪−→ H2

fppf(X ∖ Z,M).

Proof. — By the local cohomology exact sequence for the pair (X,Z) and the sheaf M ,
everything reduces to showing the vanishings Hq

Z(X,M) = 0 for 0 ⩽ q ⩽ 2. By the
spectral sequence in Lemma 7.6, it suffices to show the vanishings of H̃

q
Z(M), the

étale-sheafification of the presheaf

(V → X) 7−→ Hq
Z(V,M), where V −→ X is étale.

In particular, the problem is étale-local on X, so we may pass to an étale cover to
assume that X is a scheme (noting that the assumptions of the Setup Section 7.6.1
still hold) and that M splits as µn or Gm. Now, since µn = ker(Gm

×n−→ Gm), it suffices
to show that H̃

q
Z(Gm) = 0 for 0 ⩽ q ⩽ 2.

For q = 0, 1 this follows from the fact that the pair (X,Z) is parafactorial (using
Lemma 7.3). (This is where the Noetherian hypothesis is used.)
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For q = 2, by the case q = 0, 1 already proved and the long exact sequence for local
cohomology, we have

H2
Z(X,Gm) ≃ Ker(H2

fppf(X,Gm) −→ H2
fppf(X ∖ Z,Gm))

≃ Ker(H2
ét(X,Gm) −→ H2

ét(X ∖ Z,Gm)).

The same is true for every scheme that is étale over X. Consequently, every class in
H2

Z(X,Gm) vanishes in an étale cover of X, since this property holds for H2
ét(X,Gm).

This implies that H̃2
Z(Gm) = 0. □

7.10. Grothendieck–Serre type results for groups of multiplicative type

We record the following result from [GL23, Prop. 3.6] for later use.

Proposition 7.11. — Let R be a Prüfer domain. Consider an irreducible scheme X

essentially smooth over R having function field K(X), and an X-group scheme M of
multiplicative type. If there exists a connected finite étale Galois covering X ′ → X

that splits M ,(13) then the restriction maps

H1
fppf(X,M) −→ H1

fppf(K(X),M) and H2
fppf(X,M) −→ H2

fppf(K(X),M)

are injective in the following scenarios:
(i) X = Spec(A) where A is a semilocal ring that’s essentially smooth over R;
(ii) There exists an essentially smooth semilocal R-algebra A such that X em-

beds into X via a quasi-compact open immersion, with X being a smooth projective
A-scheme having geometrically integral fibres. Furthermore, Pic(XL) = 0 for any
finite separable fields extension L/Frac(A), and M = NX where N is an A-group of
multiplicative type (e.g. X could be a quasi-compact open subscheme of PN

A );
(iii) For any étale covering X ′′ → X dominating X ′ → X, we have Pic(X ′′) = 0.

Moreover, if M is a flasque X-torus, then in all cases from (i)–(iii), the restriction

H1
ét(X,M)

∼−→ H1
ét(K(X),M)

is bijective.

8. Generically trivial torsors under a quasi-split group

In this section, we study generically trivial torsors under quasi-split reductive group
schemes. The main result is Theorem 8.1, which consists of (i) a version of Nisnevich
conjecture inspired by the recent preprint of Česnavičius [Čes22b, Th. 1.3(2)], who
proved it in the case when R is a Dedekind domain, and (ii) the Grothendieck–
Serre conjecture over one-dimensional Prüfer bases. The proof follows the strategy
of [Čes22a] (with its earlier version given by Fedorov [Fed22]), which is possible due
to the availability of the main tools in our Prüferian context, such as the toral ver-
sion of purity (cf. [GL23, Th. 3.3] and Theorem 7.9) and the toral version of the
Grothendieck–Serre conjecture (cf. Proposition 7.11(i)).

(13)Such a covering always exists, because X is normal and so M is isotrivial.
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Theorem 8.1. — For a semilocal Prüfer domain R with fraction field K, an integral,
semilocal, and essentially smooth R-algebra A, and a quasi-split reductive A-group
scheme G,

(i) every generically trivial G-torsor over A⊗R K is trivial, that is,

Ker
(
H1

ét(A⊗R K,G) −→ H1
ét(FracA,G)

)
= {∗};

(ii) if R has Krull dimension 1, then every generically trivial G-torsor is trivial:

Ker
(
H1

ét(A,G) −→ H1
ét(FracA,G)

)
= {∗}.

We start with the following consequence of Lemma 3.5, which is the key geometric
input permitting a series of reductions that eventually lead to Theorem 8.1.

Lemma 8.2 (cf. [Čes22a, Prop. 4.1]). — For
(i) a semilocal Prüfer domain R;
(ii) a smooth, faithfully flat R-algebra A of pure relative dimension d ⩾ 1;
(iii) a finite subset x ⊂ X := Spec A;
(iv) a closed subscheme Y ⊂ X that satisfies{

codim(Ys, Xs) ⩾ 1 for all closed points s ∈ SpecR, and
codim(Ys, Xs) ⩾ 2 otherwise.

there are an affine open U ⊂ Spec A containing x, an affine open S ⊂ Ad−1
R , and a

smooth R-morphism π : U → S of relative dimension 1 such that Y ∩ U is S-finite.

Proof. — Choosing an embedding of X into some affine space over R and taking
schematic closure in the corresponding projective space, we get a projective com-
pactification X of X. Since X is flat and projective over R, by Lemma 3.2(i), all its
R-fibres have the same dimension d. Denoting by Y ⊂ X the schematic closure of Y ,
to apply Lemma 3.5 and conclude (in which X is X here, W is X here, and Y is Y

here), we need to check that the boundary Y ∖Y is R-fiberwisely of codimension ⩾ 2

in X.
By [Stacks, 01RG], for a quasi-compact immersion of schemes, the schematic closure

has the underlying space the topological closure. Thus, set-theoretically we have Y =⋃
y {y}, where y runs through the (finitely many) generic points of Y .
Let y ∈ Y be a generic point, lying over s ∈ SpecR. By Lemma 3.2(i), X has equal

R-fibre dimension d and all non-empty R-fibres of {y} have the same dimension. If s
is not a closed point, then for any specialization s⇝ s′ ∈ SpecR, we have

codim({y}s′ , Xs′) = codim({y}s, Xs) ⩾ 2;

a fortiori, the contribution of such a generic point y to the R-fibre codimension of
Y ∖ Y in X is ⩾ 2.

Otherwise, s is a closed point, then {y}s = {y} ⊂ Ys. As assumed, codim(Ys, Xs) =

codim(Ys, Xs) ⩾ 1, so we have codim({y}s, Xs) ⩾ 1. But since the generic point y

of {y}s is not contained in Y ∖ Y , we deduce that the contribution of such a generic
point y to the s-fibre codimension of Y ∖ Y in X is again ⩾ 2. □
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Lemma 8.3 (Lifting the torsor to a smooth relative curve; cf. [Čes22a, Prop. 4.2])
Let R be a semilocal Prüfer domain with fraction field K. Let A be the semilocal-

ization of an irreducible, R-smooth algebra A′ at a finite subset x ⊂ SpecA′ and let G
be a quasi-split reductive A-group scheme with a Borel subgroup B.

(1) Given a generically trivial G-torsor PK over AK := A⊗R K, there are
(i) a smooth, affine relative A-curve C with a section s ∈ C(A);
(ii) an A-finite closed subscheme Z ⊂ C;
(iii) a quasi-split reductive C-group scheme G with a Borel subgroup B ⊂ G

whose s-pullback is B ⊂ G, compatible with the quasi-pinnings;
(iv) a G -torsor PK over CK := C ×R K whose sAK

-pullback is PK such that
PK reduces to a radu(B)-torsor over CK ∖ ZK (here sAK

denotes the image
of s in C(AK)).

(2) If R has Krull dimension 1 and P is a generically trivial G-torsor, there are
(i) a smooth, affine relative A-curve C with a section s ∈ C(A);
(ii) an A-finite closed subscheme Z ⊂ C;
(iii) a quasi-split reductive C-group scheme G with a Borel subgroup B ⊂ G

whose s-pullback is B ⊂ G, compatible with the quasi-pinnings;
(iv) a G -torsor P whose s-pullback is P such that P reduces to a radu(B)-

torsor over C ∖ Z.

Proof. — In the case (1) we can first use a limit argument involving Lemma 3.4 to
reduce to the case when R has finite Krull dimension.

If A′ is of relative dimension 0 over R, then AK = Frac(A) and A is a semilocal
Prüfer domain. Thus, PK is trivial, and, by the Grothendieck–Serre conjecture on
semilocal Prüfer schemes (cf. [GL23, Th. A.0.1]), P is also trivial. In this case we
simply take C = A1

A, s = 0 ∈ A1
A(A), Z = ∅, (G ,B) = (GA1

A
, BA1

A
), and PK =

(PK)A1
AK

(resp. P = PA1
A

). Thus, for what follows, we can assume that the relative
dimension of A′ over R is d > 0.

By spreading out and localizing A′, we may assume that our quasi-split G

(in particular, the Borel B) and torsor P all live over A′, and PK lives over A′
K .

By [SGA 3III new, Exp. XXVI, Cor. 3.6 & Lem. 3.20], the quotient PK/BK (resp. P/B)
is representable by a smooth projective scheme over A′

K (resp. over A′). Now we
treat the cases (1)–(2) separately.

(1) Since PK is generically trivial, the valuative criterion of properness applies to
PK/BK → SpecA′

K , we find a closed subset YK ⊂ SpecA′
K of codimension ⩾ 2 such

that PK/BK → SpecA′
K has a section over SpecA′

K∖YK that lifts to a generic section
of PK . In other words, (PK)SpecA′

K∖YK
reduces to a generically trivial BSpecA′

K∖YK
-

torsor PB
K . Consider the A′-torus T := B/ radu(B) and the induced T -torsor

PT
K := PB

K / radu(B)K over Spec(A′
K)∖ YK .

Since PT
K is generically trivial, by Corollary 6.6, it extends to a T -torsor P̃T

K over
SpecA′ ∖ F for a closed subscheme F ⊂ SpecA′ satisfying

codim(FK ,SpecA′
K) ⩾ 3 and codim(Fs,SpecA

′
s) ⩾ 2 for all s ∈ Spec(R);

J.É.P. — M., 2024, tome 11



Purity and quasi-split torsors over Prüfer bases 237

by purity for tori (cf. [GL23, Th. 3.3] or Theorem 7.9), this torsor further extends to
the whole SpecA′. As P̃T

K is generically trivial, by the Grothendieck–Serre conjec-
ture for tori (Proposition 7.11(i)), we may localize A′ around x to assume that P̃T

K ,
and hence also PT

K , is already trivial. In other words, (PK)Spec(A′
K)∖YK

reduces to a
radu(B)-torsor over Spec(A′

K)∖ YK .
Denote by Y the schematic closure of YK in SpecA′; by Lemma 3.2(i), it is R-

fiberwisely of codimension ⩾ 2 in SpecA′. Applying Lemma 8.2 to the R-smooth
algebra A′ and the closed subscheme Y ⊂ SpecA′, we obtain an affine open U ⊂
SpecA′ containing x, an affine open S ⊂ Ad−1

R , and a smooth R-morphism π : U → S

of relative dimension 1 such that Y ∩ U is S-finite.
Recall that A is the semilocal ring of U at x. Denote

C := U ×S SpecA and Z := (Y ∩ U)×S SpecA.

Then C is a smooth affine relative A-curve, the diagonal in C induces a section
s ∈ C(A), and the closed subscheme Z ⊂ C is A-finite. Thus (1i) and (1ii) hold. Let
B ⊂ G be the pullback of BU ⊂ GU under the first projection pr1 : C → U , and
let PK be the pullback of (PK)UK

under the first projection pr1 : CK → UK . Then,
PK is a G -torsor over CK , and, by construction, the s-pullback (resp. sAK

-pullback)
of B ⊂ G (resp. of PK) is B ⊂ G (resp. PK). Finally, since PK reduces to a radu(B)-
torsor over Spec(A′

K) ∖ YK , PK reduces to a radu(B)-torsor over CK ∖ ZK . Thus
(1iii) and (1iv) also hold.

(2) Recall that, by Lemma 3.2(ii), the local rings of all maximal points of R-fibres of
SpecA′ are valuation rings. As P is generically trivial, applying the valuative criterion
of properness to P/B → SpecA′ yields a closed subscheme Y ⊂ SpecA′, which avoids
all the codimension 1 points of the generic fibre SpecA′

K and all the maximal points
of R-fibres of SpecA′. Moreover, P/B → SpecA′ has a section over SpecA′ ∖ Y that
lifts to a generic section of P . In other words, Y satisfies

codim(YK ,SpecA′
K) ⩾ 2 and codim(Ys,SpecA

′
s) ⩾ 1 for all s ∈ Spec(R).

Therefore, PSpecA′∖Y reduces to a generically trivial BSpecA′∖Y -torsor PB . Consider
the A′-torus T := B/ radu(B) and the induced T -torsor

PT := PB/ radu(B) over SpecA′ ∖ Y.

By purity for tori (cf. [GL23, Th. 3.3] or Theorem 7.9), PT extends to a T -torsor P̃T

over SpecA′. As P̃T is generically trivial, by the Grothendieck–Serre conjecture for
tori (Proposition 7.11(i)), we may localize A′ around x to assume that P̃T , and hence
also PT , is already trivial. In other words, PSpecA′∖Y reduces to a radu(B)SpecA′∖Y -
torsor.

Now, applying Lemma 8.2 to the R-smooth algebra A′ and the closed subscheme
Y ⊂ SpecA′, we obtain an affine open U ⊂ SpecA′ containing x, an affine open
S ⊂ Ad−1

R , and a smooth R-morphism π : U → S of relative dimension 1 such that
Y ∩ U is S-finite.
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Recall that A is the semilocal ring of U at x. Denote

C := U ×S SpecA and Z := (Y ∩ U)×S SpecA.

Then C is a smooth affine relative A-curve, the diagonal in C induces a section
s ∈ C(A), and the closed subscheme Z ⊂ C is A-finite. So (2i) and (2ii) hold. Let
B ⊂ G and P be the pullback of BU ⊂ GU and PU under the first projection
pr1 : C → U , respectively. Then, P is a G -torsor over C, and, by construction, the
s-pullback of B ⊂ G and P are B ⊂ G and P , respectively. Finally, since P reduces to
a radu(B)-torsor over SpecA′ ∖ Y , P reduces to a radu(B)-torsor over C ∖Z. Thus,
(2iii) and (2iv) also hold. □

Lemma 8.4 ([Čes22a, Lem. 5.1]). — For a semilocal ring A whose local rings are geo-
metrically unibranch, an ideal I ⊂ A, reductive A-groups G and G′ that on geometric
A-fibres have the same type, fixed quasi-pinnings of G and G′ extending Borel A-sub-
groups B ⊂ G and B′ ⊂ G′ and an A/I-group isomorphism

ι : GA/I
∼−→ G′

A/I

respecting the quasi-pinnings; in particular, ι(BA/I) = B′
A/I , there are

(i) a faithfully flat, finite, étale A-algebra Ã equipped with an A/I-point

a : Ã −→−→ A/I;

(ii) an Ã-group isomorphism ι̃ : GÃ

∼−→ G′
Ã

respecting the quasi-pinnings such that
a∗(ι̃) = ι.

Note that the original formulation [Čes22a, Prop. 5.1] assumed that A is Noether-
ian, though the Noetherianness of A was not used in the proof.

Lemma 8.5 (Changing the relative curve C to equate G and GC ; cf. [Čes22a, Prop. 5.2])
In the setting of Lemma 8.3, for both cases (1) and (2), we may replace C by an

étale neighborhood of Im(s) to further achieve that

(G ,B) = (GC , BC).

Proof. — Consider the semilocalization Spec(D) of C at the closed points of Im(s)∪Z.
Since C is normal, all the local rings of D are geometrically unibranch. The image
of the section s : SpecA → Spec(D) gives rise to a closed subscheme Spec(D/I) ⊂
Spec(D). By the conclusion of Lemma 8.3, the restrictions of BD ⊂ GD and BD ⊂ GD

to Spec(D/I) agree with each other in a way respecting their quasi-pinnings. Thus,
by Lemma 8.4, there is a faithfully flat, finite, étale D-algebra D̃, a point s̃ : D̃ →→
D/I ≃ A lifting s : D →→ D/I ≃ A such that BD̃ ⊂ GD̃ is isomorphic to BD̃ ⊂ GD̃

compatibly with the fixed identification of s̃-pullbacks. We then spread out the finite
étale morphism Spec(D̃) → Spec(D) to obtain a finite étale morphism C̃ → C ′ for
an open C ′ ⊂ C that contains Im(s) ∪ Z, while preserving an s̃ ∈ C̃(A), and an
isomorphism between BC̃ ⊂ GC̃ and BC̃ ⊂ GC̃ . It remains to replace C, s, Z and PK

(resp. P) by C̃, s̃, Z ×C C̃ and (PK)C̃K
(resp. PC̃). □
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Lemma 8.6 (Changing the smooth relative curve C for descending to A1
A; [Čes22a,

Prop. 6.5])
In the setting of Lemma 8.3, for both cases (1) and (2), in addition to (G ,B) =

(GC , BC), we may change C to further achieve that there is a flat A-map C → A1
A

that maps Z isomorphically onto a closed Z ′ ⊂ A1
A such that

Z ≃ Z ′ ×A1
A
C.

Proof. — Assume that, in both cases (1) and (2) of Lemma 8.3, we have achieved the
conclusion of Lemma 8.5. We have the data of a smooth affine relative A-curve C,
a section s ∈ C(A), and an A-finite closed subscheme Z ⊂ C. Replacing Z by Z∪im(s),
we may assume that s factors through Z. Unfortunately, in general, the A-finite
scheme Z may be too large to embed into A1

A. (For instance, if R = k is a finite
field, then Z cannot be embedded into A1

k as soon as #Z(k) > # k.) To overcome
this difficulty, we first apply Panin’s ‘finite fields tricks’ [Čes22a, Lem. 6.1] to obtain
a finite morphism C̃ → C that is étale at the points in Z̃ := C̃ ×C Z such that s lifts
to s̃ ∈ C̃(A), and there are no finite fields obstruction to embedding Z̃ into A1

A in the
following sense: for every maximal ideal m ⊂ A and every d ⩾ 1,

#
{
z ∈ Z̃κ(m) : [κ(z) : κ(m)] = d

}
< #

{
z ∈ A1

κ(m) : [κ(z) : κ(m)] = d
}
.

Then, by [Čes22a, Lem. 6.3], there are an affine open C ′ ⊂ C̃ containing im(s̃), a
quasi-finite, flat A-map C ′ → A1

A that maps Z isomorphically onto a closed subscheme
Z ′ ⊂ A1

A with
Z ≃ Z ′ ×A1

A
C ′.

It remains to replace C by C ′, Z by Z̃, s by s̃, and PK by (PK)C′
K

(resp. P by PC′). □

Lemma 8.7 (Descend to A1
A via patching; cf. [Čes22a, Prop. 7.4]). — In the setting of

Lemma 8.3, for both cases (1) and (2), we may further achieve that

(G ,B) = (GC , BC), C = A1
A, and s = 0 ∈ A1

A(A).

Proof. — By the reduction given in Lemma 8.6, we have a flat A-curve C, a section
s ∈ C(A), an A-finite closed subscheme Z ⊂ C, a quasi-finite, affine, flat A-map
C → A1

A that maps Z isomorphically onto a closed subscheme Z ′ ⊂ A1
A such that

Z = Z ′×A1
A
C, and a G-torsor PK over CK whose sAK

-pullback is PK (resp. a G-tor-
sor P over C whose s-pullback is P ) and whose restriction to CK ∖ZK (resp. C ∖Z)
reduces to a radu(B)-torsor. Now, since Z = Z ′ ×A1

A
C ≃ Z ′, [Čes22a, Lem. 7.2] (the

Noetherian hypothesis is not needed) implies the pullback maps

H1
ét(A1

A ∖ Z ′, radu(G)) −→ H1
ét(C ∖ Z, radu(G))

and
H1

ét(A1
AK

∖ Z ′
K , radu(G)) −→ H1

ét(CK ∖ ZK , radu(G))

are surjective. Combining these, we see that PK |CK∖ZK
(resp. P|C∖Z) descends to a

G-torsor QK (resp. Q) over A1
AK

∖Z ′
K (resp. A1

A∖Z ′) that reduces to a radu(B)-torsor.
By [Čes22a, Lem. 7.1], we may (non-canonically) glue PK with QK (resp. P with Q)
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to descend PK (resp. P) to a G-torsor P̃K (resp. P̃) over A1
AK

(resp. over A1
A) that

reduces to a radu(B)-torsor over A1
AK

∖ Z ′
K (resp. over A1

A ∖ Z ′). It remains to re-
place C by A1

A, Z by Z ′, s ∈ C(A) by its image in A1
A(A), and PK by P̃K (resp. P

by P̃). Finally, by shifting, we may assume that s = 0 ∈ A1
A(A). □

Proof of Theorem 8.1. — Let PK (resp. P ) be a generically trivial GAK
-torsor (resp.

G-torsor). By the reduction Lemma 8.7, we get an A-finite closed subscheme Z ⊂ A1
A,

and a GA1
AK

-torsor PK (resp. GA1
A

-torsor P) whose pullback along the zero section
is PK (resp. P ) such that (PK)|A1

AK
∖ZK

(resp. P|A1
A∖Z) reduces to a radu(B)-torsor.

Since any A-finite closed subscheme of A1
A is contained in {f = 0} for some monic

polynomial f ∈ A[t], we may enlarge Z to assume that A1
A ∖Z is affine, to the effect

that any radu(B)-torsor over A1
AK

∖ ZK (resp. over A1
A ∖ Z), such as (PK)|A1

AK
∖ZK

(resp. P|A1
A∖Z), is trivial. By section theorem [GL23, Th. 5.1], the pullback of PK

(resp. of P) along the zero section is trivial, that is, PK (resp. P ) is trivial, as desired.
□

Appendix. Regular coherent rings

In this appendix, we delve into the homological properties of coherent regular rings.
A coherent ring is regular if its every finitely generated ideal has finite projective
dimension. Localizations of a coherent regular ring remain coherent regular. This is
due to the stability of coherence under localization, combined with the fact that every
finitely generated ideal in the localization is the localization of a finitely generated
ideal. Moreover, one can verify coherent regularity Zariski locally, as can be deduced
from the following more general result.

Lemma A.1 (Faithfully flat descent for coherent regularity). — For a faithfully flat
ring map A→ B, if B is coherent regular, then so is A.

Proof. — The coherence of A follows since the property of being finitely presented
satisfies faithfully flat descent. To see the regularity of A, we let I ⊂ A be a finitely
generated ideal and pick a resolution P• → I with each Pi finite free over A (using the
coherence of A). Since A→ B is flat, P• ⊗A B → I ⊗A B ≃ IB is a resolution of the
B-module IB. As B is regular, Im(Pn+1 ⊗A B → Pn ⊗A B) ≃ Im(Pn+1 → Pn)⊗A B

is finite projective over B for some n ⩾ 0, and so Im(Pn+1 → Pn) is finite projective
over A by faithfully flat descent. □

Lemma A.2 (Étale-local nature of coherent regularity). — Let A→ B be an étale ring
map. If A is coherent regular, then so is B. The converse holds if A→ B is faithfully
flat and étale.

Proof. — In light of Lemma A.1, it is enough to show the coherent regularity of B.
By Zariski descent, we may work Zariski locally to assume that B is a (principal)
localization of a finite free A-algebra C (using the local structure of étale algebras).
In this scenario, every finitely generated ideal of C is finitely presented over A and
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so is it over C. Thus, C is coherent, and so is its localization B. Now, to show the
regularity of B, our goal is to prove that fl.dimB I < ∞ for every finitely generated
ideal I ⊂ B.

There exists a finitely generated ideal J ⊂ C such that J ⊗C B ≃ JB = I. As A is
coherent regular, we have fl.dimA J <∞. But I is a filtered colimit of copies of J , so
fl.dimA I <∞. Since B is A-flat, choosing a partial flat resolution of the B-module I,
we are reduced to the following claim (cf. [Stacks, 05B9]). □

Claim A.2.1. — If A→ B is an étale ring map and M is a B-module which is A-flat,
then M is B-flat.

Proof of the claim. — We will argue by induction on the supremum of the cardinality
of the geometric points in the fibres of SpecB → SpecA. Since flatness can be checked
Zariski locally, we may localize to assume that SpecB → SpecA is étale surjective.
By the faithfully flat descent of flatness, we can replace A with B, B with B ⊗A B,
and M with M ⊗A B, thus assuming that A → B possesses a retraction B → A. In
this scenario, we have B ≃ A × B1, where B1 is an étale A-algebra. Consequently,
M ≃ M0 ×M1, with M0 = M ⊗B A and M1 = M ⊗B B1. By assumption, both M0

and M1 are A-flat.
Now, since the supremum of the cardinality of the geometric points in the fibres

of SpecB1 → SpecA is strictly less than that of SpecB → SpecA, our induction
hypothesis gives the B1-flatness of M1, and consequently, the B-flatness of M . □

Lemma A.3. — Let f : A → B be a flat local map of local rings and κA the residue
field of A. Assume that B is coherent. Let M be a finitely presented B-module.

(i) If M is A-flat, then we have proj.dimB(M) ⩽ fl.dimB⊗AκA
(M ⊗A κA).

(ii) In general, we have proj.dimB(M) ⩽ fl.dimA(M) + wdim(B ⊗A κA). Conse-
quently, we have

wdim(B) ⩽ wdim(A) + wdim(B ⊗A κA).

(iii) If every finitely presented B-module, considered as an A-module, and every
finitely presented B ⊗A κA-module have finite flat dimensions, then B is coherent
regular.

Proof. — For (i), set ℓ := fl.dimB⊗AκA
(M⊗AκA). If ℓ =∞, there is nothing to show.

Otherwise, we choose a partial resolution over B

0 −→M ′ −→ Pℓ−1 −→ · · · −→ P0 −→M −→ 0

with each Pi finite free and M ′ finitely presented (Lemma 2.2(i)). By assumption, M
and B are A-flat, so by [Stacks, 03EY], this is an A-flat resolution of M . Tensoring
it with κA ⊗A (−) gives a partial flat resolution of the B ⊗A κA-module M ⊗A κA.
The latter has flat dimension ℓ, so that M ′ ⊗A κA is flat hence free over B ⊗A κA.
Since M ′ is A-flat, by [EGA IV3, Prop. 11.3.7] and Nakayama’s lemma, M ′ is free
over B of the same rank. This proves that proj.dimB(M) ⩽ ℓ, as desired.
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In general, although M may not be A-flat, we can first choose a partial resolution

0 −→M ′′ −→ Fs−1 −→ · · · −→ F0 −→M −→ 0

with each Fi finite free over B and s := fl.dimA(M) (if it is finite). Then, the finitely
presented B-module M ′′ is A-flat, so we can apply the part (i) to M ′′ and obtain

proj.dimB(M) ⩽ s+ proj.dimB(M
′′) ⩽ s+ fl.dimB⊗AκA

(M ′′ ⊗A κA).

This simultaneously proves the assertions (ii)–(iii). □

Combining Lemma A.3 and Theorem 2.17(iv), we obtain the following.

Corollary A.4. — Let f : A → B be a local map of local rings and κA the residue
field of A. Assume that

(i) f is flat,
(ii) A has finite weak dimension,
(iii) B ⊗A κA is coherent regular, and
(iv) B is coherent,

then B is regular. The same conclusion holds if (ii) is replaced by
(ii)′ A is coherent regular with a quasi-compact punctured spectrum.

Example A.5
Let A → B be a flat, regular ring map of coherent rings. If wdim(A) < ∞ (this

implies that A is regular; e.g. when A is a valuation ring), then B is also coherent
regular.

Finally, we aim to prove Theorem A.7, which serves as an extension of the classical
Auslander–Buchsbaum formula to general non-Noetherian rings, drawing parallels
with the conventional regular scenario established in [AB57, Th. 3.7].

The following simple lemma from linear algebra will be used in the proof of Theo-
rem A.7.

Lemma A.6. — For a local ring (A,mA), a nonzero A-module M supported on {mA},
and a matrix H ∈ Mm×n(A), if the A-linear map HM : M⊕n →M⊕m induced by H

(via left multiplication) is injective, then H admits a left inverse, or, equivalently, H
exhibits A⊕n as a direct summand of A⊕m.

Proof. — Recall [Stacks, 0953] that the assumption on the support of M means that,
for any w ∈ M and any finitely generated ideal I ⊂ A, we have IN · w = 0 for
large enough N . Denote H = (hij). We observe that at least one of hij is invertible.
Otherwise, the entries hij generate a proper ideal I of A; pick a nonzero element w∈M
and let N ⩾ 0 be the smallest integer such that IN ·w ̸= 0, then HM ((IN ·w)⊕n) = 0,
contradicting our assumption that HM is injective. Without loss of generality, we may
assume that h11 ∈ A×. By subtracting suitable multiples of the first row of H to other
rows (resp. the first column of H to other columns), we may also assume that h1j = 0

for 1 < j ⩽ n and hi1 = 0 for 1 < i ⩽ m (the assumption and conclusion of the
lemma are preserved if we replace H by H1HH2, where H1 ∈ Mm×m(A) and H2 ∈
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Mn×n(A)). In other words, we have H = (h11) ⊕H ′, where H ′ ∈ M(m−1)×(n−1)(A).
Then the map H ′

M : M⊕(n−1) → M⊕(m−1) induced by H ′ is also injective. So we
may assume by induction that H ′ admits a left inverse H ′′ ∈M(n−1)×(m−1)(A). Then
(h−1

11 )⊕H ′′ is a left inverse of H. □

As L. Moret-Bailly pointed out, since Ker(HM ) = HomA(Coker(H
t),M), where Ht

is the transpose of H, the above lemma is also a direct consequence of Lemma 2.14.
Now, we acquire the the Auslander–Buchsbaum formula (cf. [AB57, Th. 3.7]) for

general local rings. Since our depth is not well-behaved over non-quasicompact punc-
tured spectra, we need to assume this condition in the sequel.

Theorem A.7 (Auslander–Buchsbaum formula)
(i) Let (A,mA) be a local ring with a quasi-compact punctured spectrum. Let M be

an A-module having a finite resolution by finite free A-modules. Then we have

proj.dimA(M) + depthA(M) = depthA(A).

(ii) Let V be a valuation ring such that s := mV is the radical of a finitely generated
ideal. Let X be a V -flat finite type scheme and x ∈ X a point lying over s ∈ Spec V .
Assume that the local ring OXs,x is regular. Denote A := OX,x. Then, for every finitely
presented A-module M ,

proj.dimA(M) + depthA(M) = depthA(A) = dim(OXs,x) + 1.

(By convention, proj.dimA(0) = −∞.)

Proof. — By Lemma 3.7(ii)–(iii), the local ring OX,x in (ii) is coherent regular. The
assumption on V implies that SpecOX,x ∖ {x} is quasi-compact, so, by Lemma 3.8,
OX,x has depth dim(OXs,x) + 1. Therefore, it is enough to prove part (i).

For (i), consider first the case where depthA(A) = 0. We claim that every A-mod-
ule M having a finite resolution by finite free A-modules is free; thus in this case the
formula in (i) holds. Clearly, it suffices to prove that every short exact sequence of
the form 0→ A⊕m s−→ A⊕n → N → 0 splits. Indeed, since R0ΓxA ̸= 0 and the map
R0Γx(s) is injective, the last statement follows from Lemma A.6. Here and in what
follows, we redefine x := mA.

Assume now that depthA(A) ⩾ 1. Set d := depthA(A) − 1. We will induct on
proj.dimA(M) to verify the formula in (i). If proj.dimA(M) = 0, that is, M is A-free,
then it is clear that the formula holds.

Next, assume that proj.dimA(M) ⩾ 1, so every partial resolution 0 → M ′ ι−→
A⊕n →M → 0 is non-split and satisfies proj.dimA(M

′) = proj.dimA(M)− 1. It is a
standard fact that M ′ also has a finite resolution by finite free A-modules. We exploit
the associated long exact sequence

· · · → Ri−1ΓxM
′ −→ Ri−1ΓxA

⊕n −→ Ri−1ΓxM −→ RiΓxM
′ −→ RiΓxA

⊕n → · · · .

If proj.dimA(M) = 1, then M ′ ≃ A⊕m for some m ⩾ 1. We have seen that
depthA(M

′) = d+1, and so RiΓxM
′ = 0 for all i ⩽ d. It follows from the above long
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exact sequence that RiΓxM = 0 for all i ⩽ d− 1. If RdΓxM were zero, then

Rd+1Γx(ι) :
(
Rd+1ΓxA

)⊕m ≃ Rd+1ΓxM
′ −→

(
Rd+1ΓxA

)⊕n

would be injective. Since Rd+1ΓxA is nonzero and supported on {x}, we deduce from
Lemma A.6 that ι splits, and so M is A-free. This contradicts our assumption that
proj.dimA(M) = 1. Therefore, depthA(M) = d, leading to the desired formula

proj.dimA(M) + depthA(M) = d+ 1.

If proj.dimA(M) > 1, then proj.dimA(M
′) = proj.dimA(M) − 1. Applying the

induction hypothesis to M ′, we obtain that
depthA(M

′) = d+ 1− (proj.dimA(M)− 1)

= d+ 2− proj.dimA(M), which is ⩽ d.

It follows from the above long exact sequence that Ri−1ΓxM ≃ RiΓxM
′ for all i ⩽ d.

Combining this with the bound depthA(M
′) ⩽ d, we deduce that depthA(M) =

depthA(M
′)− 1. Therefore, by induction hypothesis, we have

proj.dimA(M) + depthA(M) = (proj.dimA(M
′) + 1) + (depthA(M

′)− 1) = d+ 1.

This finishes the induction step. □

The following corollary fails without the quasi-compactness assumption, see Ex-
ample 2.7.

Corollary A.8. — If A is a regular coherent local ring with a quasi-compact punctured
spectrum, then

wdim(A) = depthA(A) <∞.

Proof. — The Auslander–Buchsbaum formula implies that every finitely presented
A-module has projective dimension at most depthA(A). Since for any ring R, we have

wdim(R) = sup{fl.dim(R/J) | finitely generated ideal J ⊂ R},

we obtain that wdim(A) ⩽ depthA(A). On the other hand, the quasi-compactness
assumption implies that there is a finitely generated ideal I ⊂ A contained in the
maximal ideal mA such that

√
I = mA. Now we let M := A/I; it is a coherent

A-module and therefore perfect with depth zero. Applying the Auslander–Buchsbaum
formula, we have proj.dimA(A/I) = depthA(A), which implies:

wdim(A) = depthA(A) = proj.dimA(A/I) <∞. □
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