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THE LERAY-GÅRDING METHOD FOR

FINITE DIFFERENCE SCHEMES

by Jean-François Coulombel

Abstract. — In the fifties, Leray and Gårding have developed a multiplier technique for deriving
a priori estimates for solutions to scalar hyperbolic equations. The existence of such a multiplier
is the starting point of the argument by Rauch [23] for the derivation of semigroup estimates
for hyperbolic initial boundary value problems. In this article, we explain how this multiplier
technique can be adapted to the framework of finite difference approximations of transport
equations. The technique applies to numerical schemes with arbitrarily many time levels. The
existence and properties of the multiplier enable us to derive optimal semigroup estimates for
fully discrete hyperbolic initial boundary value problems.

Résumé (La méthode de Leray et Gårding pour les schémas aux différences finies)
Dans les années 1950, Leray et Gårding ont développé une technique de multiplicateur pour

obtenir des estimations a priori de solutions d’équations hyperboliques scalaires. L’existence
d’un multiplicateur est le point de départ du travail de Rauch [23] pour montrer des esti-
mations de semi-groupe pour les problèmes aux limites hyperboliques. Dans cet article, nous
expliquons comment cette technique de multiplicateur peut être adaptée au cadre des schémas
aux différences finies pour les équations de transport. Ce travail s’applique à des schémas nu-
mériques multi-pas en temps. L’existence et les propriétés du multiplicateur nous permettent
d’obtenir des estimations de semi-groupe optimales pour des versions totalement discrètes des
problèmes aux limites hyperboliques.
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298 J.-F. Coulombel

Throughout this article, we use the notation

U := {ζ ∈ C, |ζ| > 1}, U := {ζ ∈ C, |ζ| > 1},

D := {ζ ∈ C, |ζ| < 1}, S1 := {ζ ∈ C, |ζ| = 1}, D := D ∪ S1.

We let Mn(K) denote the set of n × n matrices with entries in K = R or C. If
M ∈Mn(C), M∗ denotes the conjugate transpose of M . We let I denote the identity
matrix or the identity operator when it acts on an infinite dimensional space. We
use the same notation x∗y for the Hermitian product of two vectors x, y ∈ Cn and
for the Euclidean product of two vectors x, y ∈ Rn. The norm of a vector x ∈ Cn is
|x| := (x∗x)1/2. The induced matrix norm on Mn(C) is denoted ‖ · ‖.

The letter C denotes a constant that may vary from line to line or within the same
line. The dependence of the constants on the various parameters is made precise
throughout the text.

In what follows, we let d > 1 denote a fixed integer, which will stand for the di-
mension of the space domain we are considering. We also use the space `2 of square
integrable sequences. Sequences may be valued in Ck for some integer k. Some se-
quences will be indexed by Zd−1 while some will be indexed by Zd or a subset of Zd.
We thus introduce some specific notation for the norms. Let ∆xi > 0 for i = 1, . . . , d

be d space steps. We shall make use of the `2(Zd−1)-norm that we define as follows:
for all v ∈ `2(Zd−1),

‖v‖2`2(Zd−1) :=

( d∏
k=2

∆xk

) d∑
i=2

∑
ji∈Z
|vj2,...,jd |2.

The corresponding scalar product is denoted 〈· , ·〉`2(Zd−1). Then for all integers
m1 6 m2, we set

|||u|||2m1,m2
:= ∆x1

m2∑
j1=m1

‖uj1,•‖2`2(Zd−1),

to denote the `2-norm on the set [m1,m2] × Zd−1 (m1 may equal −∞ and m2 may
equal +∞). The corresponding scalar product is denoted 〈· , ·〉m1,m2

. Other notation
throughout the text is meant to be self-explanatory.

1. Introduction

1.1. The context. — The goal of this article is to derive semigroup estimates for
finite difference approximations of hyperbolic initial boundary value problems. Up
to now, the only available general stability theory for such numerical schemes is due
to Gustafsson, Kreiss and Sundström [13]. It relies on a Laplace transform with re-
spect to the time variable. For various technical reasons, the corresponding stability
estimates are restricted to zero initial data. A long standing problem in this line of
research is, starting from the GKS stability estimates, which are resolvent type esti-
mates, to incorporate nonzero initial data and to derive semigroup estimates, see, e.g.,
the discussion by Trefethen in [28, §4] and the conjecture by Kreiss and Wu in [17].
This problem is delicate for the following reason: the validity of the GKS stability
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The Leray-Gårding method for finite difference schemes 299

estimate is known to be equivalent to a slightly stronger version of the resolvent esti-
mate
(1.1) sup

z∈U
(|z| − 1)

∥∥(zI − T )−1
∥∥

L (`2(N))
< +∞,

where T is some bounded operator on `2(N) that incorporates both the discretiza-
tion of the hyperbolic equation and the numerical boundary conditions. Deriving an
optimal semigroup estimate amounts to showing that T is power bounded:

sup
n>1
‖Tn‖L (`2(N)) < +∞.

In finite dimension, the equivalence between power boundedness of T and the resolvent
condition (1.1) is known as the Kreiss matrix Theorem, but the analogous equivalence
is known to fail in general in infinite dimension. Worse, even the strong resolvent
condition

sup
n>1

sup
z∈U

(|z| − 1)n
∥∥(zI − T )−n

∥∥
L (`2(N))

< +∞,

does not imply in general that T is power bounded, see, e.g., the review [26] or [29,
Chap. 18] for details and historical comments.

Optimal semigroup estimates have nevertheless been derived for some discretized
hyperbolic initial boundary value problems. The very first results in this direction date
back to Kreiss and Osher [16, 22, 21], even though these works precede [13] but the
main results are exactly of the form we discuss. The first general derivation of semi-
group estimates starting from GKS stability is due to Wu [31], whose analysis deals
with numerical schemes with two time levels and scalar equations (as in [16, 22, 21]).
The results in [31] were extended by Gloria and the author in [7] to systems in ar-
bitrary space dimension, but the arguments in [7] are still restricted to numerical
schemes with two time levels. The present article gives, as far as we are aware of, the
first systematic derivation of semigroup estimates for fully discrete hyperbolic initial
boundary value problems in the case of numerical schemes with arbitrarily many time
levels. It generalizes the arguments of [31, 7] and provides new insight for the construc-
tion of ‘dissipative’ (sometimes called ‘absorbing’) numerical boundary conditions for
discretized evolution equations. Let us observe that the leap-frog scheme, with some
very specific homogeneous boundary conditions, has been dealt with by Thomas [27]
by using a multiplier technique. It is precisely this technique which we aim at devel-
oping in a systematic fashion for numerical schemes with arbitrarily many time levels.
In particular, we shall explain why the somehow magical multiplier un+2

j +unj for the
leap-frog scheme, see, e.g., [24], follows from a general theory that is the analogue of
the Leray–Gårding method [18, 10] for hyperbolic partial differential equations.

1.2. The main result. — We first set a few notations. We let ∆x1, . . . ,∆xd,∆t > 0

denote space and time steps where the ratios, the so-called Courant-Friedrichs-Lewy
parameters, λi := ∆t/∆xi, i = 1, . . . , d, are fixed positive constants. We keep
∆t ∈ (0, 1] as a small parameter and let the space steps ∆x1, . . . ,∆xd vary ac-
cordingly. The `2-norms with respect to the space variables have been previously
defined and thus depend on ∆t and the CFL parameters through the cell volume
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300 J.-F. Coulombel

(∆x2 · · ·∆xd on Zd−1, and ∆x1 · · ·∆xd on Zd). We always identify a sequence w
indexed by either N (for time), Zd−1 or Zd (for space), with the corresponding step
function. For instance, for a sequence (wn)n∈N, the step function w reads:

w(t) := wn, ∀ t ∈ [n∆t, (n+ 1)∆t), ∀n ∈ N.

In particular, we shall feel free to take Fourier and/or Laplace transforms of sequences.
For all j ∈ Zd, we set j = (j1, j

′) with j′ := (j2, . . . , jd) ∈ Zd−1. We let p, q, r ∈ Nd

denote some fixed multi-integers, and define p1, q1, r1, p′, q′, r′ according to the above
notation. We also let s ∈ N denote some fixed integer. We consider a recurrence
relation of the form:

(1.2)



s+1∑
σ=0

Qσu
n+σ
j = ∆tFn+s+1

j , j ∈ Zd, j1 > 1, n > 0,

un+s+1
j +

s+1∑
σ=0

Bj1,σu
n+σ
1,j′ = gn+s+1

j , j ∈ Zd, j1 = 1− r1, . . . , 0, n > 0,

unj = fnj , j ∈ Zd, j1 > 1− r1, n = 0, . . . , s,

where the operators Qσ and Bj1,σ are given by:

(1.3) Qσ :=

p1∑
`1=−r1

p′∑
`′=−r′

a`,σS
`, Bj1,σ :=

q1∑
`1=0

q′∑
`′=−q′

b`,j1,σS
`.

Let us comment a little on (1.2), (1.3). First of all, in (1.3), the coefficients a`,σ, b`,j1,σ
are real numbers and are independent of the small parameter ∆t (they may depend
on the CFL parameters though), while S denotes the shift operator on the space grid:
(S`v)j := vj+` for j, ` ∈ Zd. We have also used the short notation

p′∑
`′=−r′

:=

d∑
i=2

pi∑
`i=−ri

,

q′∑
`′=−q′

:=

d∑
i=2

qi∑
`i=−qi

.

This means that each operator Qσ, Bj1,σ in (1.2) acts on sequences indexed by the
‘spatial variable’ j ∈ Zd. In particular, the ‘time variable’ n enters as a parameter
when we apply these operators and, for instance, Qσun+σ

j is a short notation for the
application of the operator Qσ to the sequence un+σ, this resulting sequence being
evaluated at the space index j.

The numerical scheme (1.2) should then be understood as follows: one starts with `2
initial data (f0

j ), . . . , (fsj ) defined for j1 > 1−r1, j′ ∈ Zd−1, some given interior source
term (Fnj ) defined for j1 > 1, j′ ∈ Zd−1, n > s+ 1, and some given boundary source
term (gnj ) defined for j1 = 1− r1, . . . , 0, j′ ∈ Zd−1, n > s+ 1. The (space) cells associ-
ated with j1 > 1 correspond to the interior domain (the discretized counterpart of the
half-space {x1 > 0} in Rd), while those associated with j1 = 1 − r1, . . . , 0 represent
the discrete boundary (the discretized counterpart of the hyperplane {x1 = 0} in Rd).
Assuming that the solution (unj ) has been defined up to some time index n+ s for all
j1 > 1− r1, j′ ∈ Zd−1, with n > 0, then the first and second equations in (1.2) should
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The Leray-Gårding method for finite difference schemes 301

uniquely determine un+s+1
j for j1 > 1− r1, j′ ∈ Zd−1. More precisely, the equation

s+1∑
σ=0

Qσu
n+σ
j = ∆tFn+s+1

j ,

is meant to give an update for the interior values of un+s+1 by possibly inverting the
operator Qs+1, and the numerical boundary conditions

un+s+1
j +

s+1∑
σ=0

Bj1,σu
n+σ
1,j′ = gn+s+1

j

should determine the boundary values un+s+1
j , j1 = 1− r1, . . . , 0, by possibly giving

their expression in terms of finitely many interior values. More precisely, for each
j1 = 1 − r1, . . . , 0, and independently of the tangential variable j′ ∈ Zd−1, un+s+1

j

is assumed to be given by a linear combination of interior values, which amounts to
considering a linear combination of un+σ

1,j′+`′ , . . . , u
n+σ
1+q1,j′+`′

with a finite stencil for `′
and σ = 0, . . . , s+1. Some examples will be given later on. Let us just emphasize here
that some more general numerical boundary conditions might probably be considered,
including convolution type formula with respect to n, but we restrict in this article
to this form of numerical boundary conditions for simplicity.

We wish to deal here simultaneously with explicit and implicit schemes and there-
fore make the following solvability assumption.

Assumption 1 (Solvability of (1.2)). — The operator Qs+1 is an isomorphism on
`2(Zd). Moreover, for all (Fj) ∈ `2(N∗×Zd−1) and for all g1−r1,•, . . . , g0,• ∈ `2(Zd−1),
there exists a unique solution (uj)j1>1−r1 ∈ `2 to the system{

Qs+1uj = Fj , j ∈ Zd, j1 > 1,

uj +Bj1,s+1u1,j′ = gj , j ∈ Zd, j1 = 1− r1, . . . , 0.

In particular, Assumption 1 is trivially satisfied in the case of explicit schemes for
which Qs+1 is the identity (a`,s+1 = δ`1,0 · · · δ`d,0 in (1.3), with δ the Kronecker
symbol), for in that case, we first determine all interior values by the relation uj = Fj
(Fj is given), and we then use these values to define the boundary values uj , j1 =

1− r1, . . . , 0. The situation is more or less the same as for lower or upper triangular
systems. When Qs+1 is not the identity, then the values uj , j1 > 1 − r1, should be
determined all at once.

Using Assumption 1, the first and second equations in (1.2) uniquely determine
un+s+1
j for j1 > 1− r1, and one then proceeds to the following time index n+ s+ 2.

Existence and uniqueness of a solution (unj ) to (1.2) thus follows from Assumption 1,
so the last requirement for well-posedness is continuous dependence of the solution
on the three possible source terms (Fnj ), (gnj ), (fnj ). This is a stability problem for
which several definitions can be chosen according to the functional framework. The
following one dates back to [13] in one space dimension and was also considered
by Michelson [19] in several space dimensions. It is specifically relevant when the
boundary conditions are non-homogeneous ((gnj ) 6≡ 0).
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302 J.-F. Coulombel

Definition 1 (Strong stability). — The finite difference approximation (1.2) is said
to be ‘strongly stable’ if there exists a constant C such that for all γ > 0 and all
∆t ∈ (0, 1], the solution (unj ) to (1.2) with (f0

j ) = · · · = (fsj ) = 0 satisfies the
estimate:

(1.4) γ

γ∆t+ 1

∑
n>s+1

∆te−2γn∆t|||un|||21−r1,+∞

+
∑

n>s+1

∆te−2γn∆t

p1∑
j=1−r1

‖unj1,•‖
2
`2(Zd−1)

6 C

{
γ∆t+ 1

γ

∑
n>s+1

∆te−2γn∆t|||Fn|||21,+∞ +
∑

n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖gnj1,•‖
2
`2(Zd−1)

}
.

The main contributions in [13, 19] are to show that strong stability can be charac-
terized by a certain algebraic condition, which is usually referred to as the Uniform
Kreiss-Lopatinskii Condition, see [6] for an overview of such results. We do not pursue
such arguments here but rather assume from the start that (1.2) is strongly stable.
We can thus control, with zero initial data, `2 type norms of the solution to (1.2). Our
goal is to understand which kind of stability estimate holds for the solution to (1.2)
when one now considers nonzero initial data (f0

j ), . . . , (fsj ) in `2. Our main assumption
is the following and is related to stability of the recurrence relation:

s+1∑
σ=0

Qσu
n+σ
j = 0,

when applied on all Zd. Recall that in that case, stability is usually understood in
the `2 sense, and by Fourier analysis, this leads to studying solutions to the latter
recurrence relation of the form zn exp(ij · ξ) for arbitrary wave vectors ξ ∈ Rd, hence
the so-called dispersion relation (1.5) below, see, e.g., [24, 12].

Assumption 2 (Stability for the discrete Cauchy problem). — For all ξ ∈ Rd, the
dispersion relation

(1.5)
s+1∑
σ=0

Q̂σ(eiξ1 , . . . , eiξd)zσ = 0, Q̂σ(κ) :=

p∑
`=−r

κ`a`,σ,

has s + 1 simple roots in D. (The von Neumann condition is said to hold when the
roots are located in D.) In (1.5), we have used the classical notation κ` := κ`11 · · ·κ

`d
d

for κ ∈ (Cr {0})d and ` ∈ Zd.

Examples of numerical schemes that satisfy Assumption 2 are given in Section 1.3.
At the opposite, Assumption 2 excludes numerical schemes that are based on first
performing a space discretization and then using Adams-Bashforth or Adams-Moulton
methods of order 3 or higher (such methods have 0 as a root of multiplicity 2 or more
at the frequency ξ = 0, see [14, Chap. III.3]).
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The Leray-Gårding method for finite difference schemes 303

From Assumption 1, we know that Qs+1 is an isomorphism on `2, which implies by
Fourier analysis that Q̂s+1(eiξ1 , . . . , eiξd) does not vanish for any ξ ∈ Rd. In particular,
the dispersion relation (1.5) is a polynomial equation of degree s + 1 in z for any
ξ ∈ Rd. We now make the following assumption, which already appeared in [13, 19]
and several other works on the same topic.

Assumption 3 (Noncharacteristic discrete boundary). — For `1 = −r1, . . . , p1, z ∈ C
and η ∈ Rd−1, let us define

(1.6) a`1(z, η) :=

s+1∑
σ=0

zσ
p′∑

`′=−r′
a`,σei`

′·η.

Then a−r1 and ap1
do not vanish on U × Rd−1, and they have nonzero degree with

respect to z for all η ∈ Rd−1.

Assumption 3 is used when one performs a Laplace-Fourier transform on (1.2). The
Laplace transform refers to the time variable n ∈ N and the Fourier transform refers
to the tangential space variables j′ ∈ Zd−1. One is then led to a recurrence relation
with respect to the space normal variable j1 which, thanks to Assumption 3 can be
either written as an ‘evolution’ equation for increasing or decreasing j1. This will be
used in Section 3.

Our main result is comparable with [31, Th. 3.3] and [7, Th. 2.4 & 3.5] and shows
that strong stability (or GKS stability) is a sufficient condition for incorporating
`2 initial conditions in (1.2) and proving optimal semigroup estimates. The main
price to pay in Assumption 2 is that the roots of the dispersion relation (1.5), which
are nothing but the eigenvalues of the so-called amplification matrix for the Cauchy
problem, need to be simple. This property is satisfied by the leap-frog and modified
leap-frog schemes in two space dimensions under an appropriate CFL condition, see
Section 1.3 for more examples. Our main result reads as follows.

Theorem 1. — Let Assumptions 1, 2 and 3 be satisfied, and assume that the scheme
(1.2) is strongly stable in the sense of Definition 1. Then there exists a constant C
such that for all γ > 0 and all ∆t ∈ (0, 1], the solution to (1.2) satisfies the estimate:

(1.7) sup
n>0

e−2γn∆t|||un|||21−r1,+∞ +
γ

γ∆t+ 1

∑
n>0

∆te−2γn∆t|||un|||21−r1,+∞

+
∑
n>0

∆te−2γn∆t

p1∑
j1=1−r1

‖unj1,•‖
2
`2(Zd−1)

6 C

{ s∑
σ=0

|||fσ|||21−r1,+∞ +
γ∆t+ 1

γ

∑
n>s+1

∆te−2γn∆t|||Fn|||21,+∞

+
∑

n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖gnj1,•‖
2
`2(Zd−1)

}
.

In particular, the scheme (1.2) is ‘semigroup stable’ in the sense that there exists a
constant C such that for all ∆t ∈ (0, 1], the solution (unj ) to (1.2) with (Fnj ) = (gnj ) = 0
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304 J.-F. Coulombel

satisfies the estimate

(1.8) sup
n>0
|||un|||21−r1,+∞ 6 C

s∑
σ=0

|||fσ|||21−r1,+∞.

The scheme (1.2) is also `2-stable with respect to boundary data, see [28, Def. 4.5], in
the sense that there exists a constant C such that for all ∆t ∈ (0, 1], the solution (unj )

to (1.2) with (Fnj ) = (fnj ) = 0 satisfies the estimate

sup
n>0
|||un|||21−r1,+∞ 6 C

∑
n>s+1

∆t

0∑
j1=1−r1

‖gnj1,•‖
2
`2(Zd−1).

The semigroup estimate (1.8) as well as `2-stability with respect to boundary data are
indeed trivial consequences of the main estimate (1.7) by letting the parameter γ tend
to zero. Our main contribution in this article is to exhibit a suitable multiplier for
the multistep recurrence relation in (1.2). With this multiplier, we can readily show
that, for zero initial data, the (discrete) derivative of an energy can be controlled,
as in the work by Rauch [23] on partial differential equations, by the trace estimate
of (unj ) and this is where strong stability comes into play. This first argument gives
Theorem 1 for zero initial data(1). By linearity we can then reduce to the case of zero
forcing terms in the interior and on the boundary. The next arguments in [23] use
time reversibility, which basically always fails for numerical schemes(2). Hence we must
find another argument for dealing with nonzero initial data. Hopefully, the properties
of our multiplier enable us to construct an auxiliary problem, where we modify the
boundary conditions of (1.2), and for which we can prove optimal semigroup and trace
estimates by ‘hand-made’ calculations. In other words, we exhibit an alternative set
of boundary conditions that yields strict dissipativity. Using these auxiliary numerical
boundary conditions, the proof of Theorem 1 follows from an easy (though lengthy)
superposition argument, see, e.g., [3, §4.5] for partial differential equations or [31, 7]
for numerical schemes.

Remark 1. — It could seem at first that the general form of (1.2) incorporates not
only finite difference approximations of hyperbolic equations but more generally finite
difference approximations of any evolutionary constant coefficient partial differential
equation. Hence Theorem 1 could apply to more general situations. However, it should
be kept in mind that we assume here that each ratio ∆t/∆xj is constant, and there-
fore we consider each coefficient in the operators Qσ, Bj1,σ as independent of the time
and space steps. This point of view has some technical advantages since we may for
instance view the Qσ’s as bounded operators with norms that are independent of
the time and space steps, and all estimates in Theorem 1 are in fact independent

(1)It would even give the claim of Theorem 1 for nonzero initial data provided that the non-
glancing condition of [4] is satisfied, but we do not wish to make such an assumption here.

(2)With the notable exception of the leap-frog scheme that is time reversible! Some schemes based
on the Crank-Nicolson integration rule are also time reversible.
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The Leray-Gårding method for finite difference schemes 305

of the (only left) small parameter ∆t (just divide for instance (1.8) by ∆td and use
the definitions of the norms on either side to simplify all cell volumes). However, our
assumption is also a clear limitation when the original system is stiff and one uses
implicit schemes in order to get free of CFL constraints (just think of an implicit
discretization of the heat equation). In that case, there would be several small param-
eters involved and the coefficients in Qσ, Bj1,σ could not all necessarily be considered
as constants (or even bounded). We postpone the extension of this work to parabolic
or dispersive equations to a future work.

1.3. Examples

1.3.1. Examples in one space dimension. — Our goal is to approximate the outgoing
transport equation (d = 1 here):

(1.9) ∂tu+ a∂xu = 0, u|t=0 = u0,

with t, x > 0 and a < 0. The latter transport equation does not require any boundary
condition at x = 0. However, discretizing (1.9) usually requires prescribing numerical
boundary conditions, unless one considers an upwind type scheme with a space stencil
‘on the right’ (meaning r1 = 0 in (1.2)).

Let us first emphasize that Assumption 3 excludes the case of explicit two level
schemes for which s = 0 and Q1 = I, for in that case a−r1 and/or ap1

do not depend
on z. However, this case has already been dealt with in [31, 7], and we shall see in
Section 3 where the assumption that a−r1 and ap1 are not constant is involved, and
why the proof is actually simpler in the case s = 0 and Q1 = I.

We now detail two possible multistep schemes for discretizing (1.9). Both are ob-
tained by the so-called method of lines, which amounts to first discretizing the space
derivative ∂xu and then choosing an integration technique for discretizing the time
evolution, see [12].

The leap-frog scheme. — It is obtained by approximating the space derivative ∂xu
by the centered difference (uj+1 − uj−1)/(2∆x), and by then applying the so-called
Nyström method of order 2, see [14, Chap. III.1]. The resulting approximation reads

un+2
j + λa(un+1

j+1 − u
n+1
j−1 )− unj = 0,

which corresponds to s = p = r = 1 (here d = 1 so we write p instead of p1 and so on).
Recall that λ > 0 denotes the fixed ratio ∆t/∆x. Even though (1.9) does not require
any boundary condition at x = 0, the leap-frog scheme stencil includes one point to
the left, and we therefore need to prescribe some numerical boundary condition at
j = 0. One possibility is to prescribe the homogeneous or inhomogeneous Dirichlet
boundary condition. With all possible source terms, the corresponding scheme reads

(1.10)


un+2
j + λa(un+1

j+1 − u
n+1
j−1 )− unj = ∆tFn+2

j , j > 1, n > 0,

un+2
0 = gn+2

0 , n > 0,

(u0
j , u

1
j ) = (f0

j , f
1
j ), j > 0.
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Assumption 1 is trivially satisfied because (1.10) is explicit. More precisely, (1.10) can
be written under the form (1.2) by setting:

Q2 := I, Q1 := λa(S − S−1), Q0 := −I,

and all operators Bj,σ are zero (q = 0 also). The leap-frog scheme satisfies Assump-
tion 2 provided that λ|a| < 1. In that case, the two roots to the dispersion relation

(1.11) z2 + 2iλa sin ξz − 1 = 0,

are simple and have modulus 1 for all ξ ∈ R. Assumption 3 is satisfied as long as the
velocity a is nonzero, for in that case a1(z) = −a−1(z) = λaz. The scheme (1.10) is
known to be strongly stable, see [11]. In particular, Theorem 1 shows that (1.10) is
semigroup stable. More accurate numerical boundary conditions can be considered,
and we refer to [12, 20, 25, 28] for some other possible choices which might be more
meaningful from a consistency and accuracy point of view.

A scheme based on the backwards differentiation rule. — We still start from the trans-
port equation (1.9), approximate the space derivative ∂xu by the centered finite dif-
ference (uj+1 − uj−1)/(2∆x), and then apply the backwards differentiation formula
of order 2, see [14, Chap. III.1]. The resulting scheme reads:

(1.12) 3

2
un+2
j +

λa

2
(un+2
j+1 − u

n+2
j−1 )− 2un+1

j +
1

2
unj = 0,

which corresponds to s = 1 and

Q2 :=
3

2
I +

λa

2
(S − S−1), Q1 := −2I, Q0 :=

1

2
I.

The operator Q2 is an isomorphism on `2(Z) since Q2 is an isomorphism for any
small λa (as a perturbation of 3/2I), Q2 depends continuously on λa, and there holds
(uniformly with respect to λa):

3

2
|||u|||−∞,+∞ 6 |||Q2u|||−∞,+∞.

The operator Q2 is therefore an isomorphism on `2(Z) for any λa (see, e.g.,
[5, Lem. 4.3]). Let us now study the dispersion relation (1.5), which reads here

(1.13)
(3

2
+ iλa sin ξ

)
z2 − 2z +

1

2
= 0.

It is clear that the latter equation has two simple roots in z for any ξ ∈ R. Moreover,
if sin ξ = 0, the roots are 1 and 1/3 which belong to D. In the case sin ξ 6= 0, none of
the roots belongs to S1 and examining the case λa sin ξ = 1, we find that for sin ξ 6= 0,
both roots belong to D (which is consistent with the shape of the stability region for
the backwards differentiation formula of order 2, see [15, Chap.V.1]). Assumption 2 is
therefore satisfied. Assumption 3 is satisfied as long as a is nonzero since there holds
p = r = 1 and a1(z) = −a−1(z) = λaz2/2.

Theorem 1 therefore yields semigroup boundedness as long as one uses numerical
boundary conditions for which the numerical scheme is well-defined (this is at least
the case for λa small enough) and strong stability holds. We shall go back later on to
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the form of our multiplier for the scheme (1.12) and compare it with another technique
that is available in the literature, see, e.g., [8, 9] and references therein.

1.3.2. Examples in two space dimensions. — We now wish to approximate the two-
dimensional transport equation (d = 2):

(1.14) ∂tu+ a1∂x1
u+ a2∂x2

u = 0, u|t=0 = u0,

in the space domain {x1 > 0, x2 ∈ R}. When a1 is negative, the latter problem does
not necessitate any boundary condition at x1 = 0. Following [1], we use one of the
following two-dimensional versions of the leap-frog scheme, either

(1.15) un+2
j,k + λ1a1(un+1

j+1,k − u
n+1
j−1,k) + λ2a2(un+1

j,k+1 − u
n+1
j,k−1)− unj,k = 0,

or

(1.16) un+2
j,k + λ1a1

(un+1
j+1,k+1 + un+1

j+1,k−1

2
−
un+1
j−1,k+1 + un+1

j−1,k−1

2

)
+ λ2a2

(un+1
j+1,k+1 + un+1

j−1,k+1

2
−
un+1
j+1,k−1 + un+1

j−1,k−1

2

)
− unj,k = 0.

Assumption 1 is trivially satisfied because (1.15) and (1.16) are explicit schemes. The
scheme (1.15) satisfies Assumption 2 if and only if λ1|a1| + λ2|a2| < 1, while the
scheme (1.16) satisfies Assumption 2 if and only if max(λ1|a1|, λ2|a2|) < 1. Let us
now study when Assumption 3 is valid. For the scheme (1.15), we have r1 = p1 = 1,
and

a1(z, η) = λ1a1z, a−1(z, η) = −a1(z, η),

so Assumption 3 is valid as long as a1 6= 0. For the scheme (1.16), we have again
r1 = p1 = 1, and

a1(z, η) = z(λ1a1 cos η + iλ2a2 sin η), a−1(z, η) = z(−λ1a1 cos η + iλ2a2 sin η),

so Assumption 3 is valid as long as both a1 and a2 are nonzero. We refer to [2]
for the verification of strong stability depending on the choice of some numerical
boundary conditions for (1.15) or (1.16). If strong stability holds, then Theorem 1
yields semigroup boundedness and `2-stability with respect to boundary data.

Acknowledgments. — This article was completed while the author was visiting the
Institute of Mathematical Science at Nanjing University. The author warmly thanks
Professor Yin Huicheng and the Institute for their hospitality during this visit.

2. The Leray-Gårding method for fully discrete Cauchy problems

This section is devoted to proving stability estimates for discretized Cauchy prob-
lems, which is the first step before considering the discretized initial boundary value
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problem (1.2). More precisely, we consider the simpler case of the whole space j ∈ Zd,
and the recurrence relation:

(2.1)


s+1∑
σ=0

Qσu
n+σ
j = 0, j ∈ Zd, n > 0,

unj = fnj , j ∈ Zd, n = 0, . . . , s,

where the operators Qσ are given by (1.3). We recall that in (1.3), the a`,σ are real
numbers and are independent of the small parameter ∆t (they may depend on the
CFL parameters λ1, . . . , λd), while S denotes the shift operator on the space grid:
(S`v)j := vj+` for j, ` ∈ Zd. Stability of (2.1) is defined as follows.

Definition 2 (Stability for the discrete Cauchy problem). — The numerical scheme
defined by (2.1) is (`2-) stable if Qs+1 is an isomorphism from `2(Zd) onto itself, and
if furthermore there exists a constant C0 > 0 such that for all ∆t ∈ (0, 1], for all
initial conditions (f0

j )j∈Zd , . . . , (fsj )j∈Zd in `2(Zd), there holds

(2.2) sup
n∈N
|||un|||2−∞,+∞ 6 C0

s∑
σ=0

|||fσ|||2−∞,+∞.

Let us quickly recall, see e.g. [12], that stability in the sense of Definition 2 is in
fact independent of ∆t ∈ (0, 1] (because (2.1) does not involve ∆t and (2.2) can be
simplified on either side by

∏
i ∆xi), and can be characterized in terms of the uniform

power boundedness of the so-called amplification matrix

(2.3) A (κ) :=



− Q̂s(κ)

Q̂s+1(κ)
. . . − Q̂0(κ)

Q̂s+1(κ)

1 0 . . . 0
. . . . . .

0
. . . . . .

...
0 0 1 0


∈Ms+1(C),

where the Q̂σ(κ)’s are defined in (1.5) and where it is understood that A is defined
on the largest open set of Cd on which Q̂s+1 does not vanish. Let us also recall
that if Qs+1 is an isomorphism from `2(Zd) onto itself, then Q̂s+1 does not vanish
on (S1)d, and therefore does not vanish on an open neighborhood of (S1)d. With the
above definition (2.3) for A , the following well-known result holds, see e.g. [12]:

Proposition 1 (Characterization of stability for the fully discrete Cauchy problem)
Assume that Qs+1 is an isomorphism from `2(Zd) onto itself. Then the scheme

(2.1) is stable in the sense of Definition 2 if and only if there exists a constant C1 > 0

such that the amplification matrix A in (2.3) satisfies

∀n ∈ N, ∀ ξ ∈ Rd,
∥∥A (eiξ1 , . . . , eiξd)n

∥∥ 6 C1.

In particular, the spectral radius of A (eiξ1 , . . . , eiξd) should not be larger than 1 (the
so-called von Neumann condition).
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The eigenvalues of A (eiξ1 , . . . , eiξd) are the roots to the dispersion relation (1.5).
When these roots are simple for all ξ ∈ Rd, the von Neumann condition is both
necessary and sufficient for stability of (2.1), see, e.g., [6, Prop. 3]. Assumption 2 is
therefore a way to assume that (2.1) is stable for the discrete Cauchy problem. Let us
also recall that for each eigenvalue of A , the corresponding eigenspace has dimension 1

since A is a companion matrix. Therefore, assuming that the roots to the dispersion
relation (1.5) are simple is equivalent to assuming that A is diagonalizable.

Our goal is to derive the semigroup estimate (2.2) not by applying Fourier transform
to (2.1) and using uniform power boundedness of A , but rather by multiplying the
first equation in (2.1) by a suitable local multiplier. The analysis relies first on the
simpler case where one only considers the time evolution and no additional space
variable.

2.1. Stable recurrence relations. — In this section, we consider sequences (vn)n∈N
with values in C. The index n should be thought of as the discrete time variable, and
we therefore introduce the new notation T for the shift operator on the time grid:
(Tmv)n := vn+m for all m,n ∈ N. We start with the following elementary but crucial
Lemma, which is the analogue of [10, Lem. 1.1].

Lemma 1 (The energy-dissipation balance law). — Let P ∈ C[X] be a polynomial of
degree s + 1 whose roots are simple and located in D. Then there exists a positive
definite Hermitian form qe on Cs+1, and a nonnegative Hermitian form qd on Cs+1,
that both depend in a C∞ way on P , such that for any sequence (vn)n∈N with values
in C, there holds

∀n ∈ N, 2 Re
(
T (P ′(T )vn)P (T )vn

)
= (s+ 1)|P (T )vn|2 + (T − I)(qe(v

n, . . . , vn+s)) + qd(v
n, . . . , vn+s).

In particular, for all sequence (vn)n∈N that satisfies the recurrence relation

∀n ∈ N, P (T )vn = 0,

the sequence (qe(v
n, . . . , vn+s))n∈N is non-increasing.

The fact that there exists a Hermitian norm on Cs+1 that is non-increasing along
solutions to the recurrence relation is not new. In fact, it is easily seen to be a con-
sequence of the Kreiss matrix Theorem, see [26]. However, the important point here
is that we can construct a multiplier that yields directly the ‘energy boundedness’
(or decay). The fact that the coefficients of this multiplier are integer multiples of the
coefficients of P will be crucial in the analysis of Section 3, see also Proposition 2
below.

Proof. — We borrow some ideas from [10, Lem. 1.1] and introduce the interpolation
polynomials:

∀ k = 1, . . . , s+ 1, Pk(X) := a
∏
j 6=k

(X − xj),
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where x1, . . . , xs+1 denote the roots of P , and a 6= 0 its dominant coefficient. Since
the roots of P are pairwise distinct, the Pk’s form a basis of Cs[X] and they depend
in a C∞ way on the coefficients of P . We have

P ′ =

s+1∑
k=1

Pk.

We then consider a sequence (vn)n∈N with values in C and compute(3)

2 Re
(
T (P ′(T )vn)P (T )vn

)
− (s+ 1)|P (T )vn|2

=

s+1∑
k=1

T (Pk(T ))vn(T − xk)Pk(T )vn + T (Pk(T )vn)(T − xk)Pk(T )vn

−
s+1∑
k=1

(T − xk)(Pk(T )vn)(T − xk)(Pk(T )vn)

=

s+1∑
k=1

(T − |xk|2)|Pk(T )vn|2.

The conclusion follows by defining:

qe(w
0, . . . , ws) :=

s+1∑
k=1

|Pk(T )w0|2,(2.4)
∀ (w0, . . . , ws) ∈ Cs+1,

qd(w
0, . . . , ws) :=

s+1∑
k=1

(1− |xk|2)|Pk(T )w0|2.(2.5)

The form qe is positive definite because the Pk’s form a basis of Cs[X]. The form qd
is nonnegative because the roots of P are located in D. Both forms depend in a C∞

way on the coefficients of P because the roots of P are simple. �

Lemma 1 shows that the polynomial P ′ yields the good multiplier TP ′(T )vn for the
recurrence relation P (T )vn = 0. Of course, P ′ is not the only possible choice, though
it will be our favorite one in what follows. As in [10, Lem. 1.1], any polynomial of the
form(4)

Q :=

s+1∑
k=1

αkPk, α1, . . . , αs+1 > 0,

provides with an energy balance of the form

2 Re
(
T (Q(T )vn)P (T )vn

)
= (α1 + · · ·+ αs+1)|P (T )vn|2 + (T − I)(qe(v

n, . . . , vn+s)) + qd(v
n, . . . , vn+s),

with suitable Hermitian forms qe, qd that have the same properties as stated in
Lemma 1.

(3)Here we use repeatedly the property T (wn) = wn+1 = Twn, as well as TwnTwn = |wn+1|2 =

T |wn|2.
(4)The sign condition here on the coefficients αk is the analogue of the separation condition for

the roots in [18, 10].
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2.2. The energy-dissipation balance for finite difference schemes

In this section, we consider the numerical scheme (2.1). We introduce the following
notation:

(2.6) L :=

s+1∑
σ=0

T σQσ, M :=

s+1∑
σ=0

σT σQσ,

so that the discretized Cauchy problem (2.1) reads{
Lunj = 0, j ∈ Zd, n > 0,

unj = fnj , j ∈ Zd, n = 0, . . . , s.

The operatorM will be the ‘multiplier’ associated with L. Thanks to Fourier analysis,
Lemma 1 easily gives the following result:

Proposition 2 (The energy-dissipation balance law). — Let Assumptions 1 and 2 be
satisfied. Then there exist a continuous coercive quadratic form E0 and a continuous
nonnegative quadratic form D0 on `2(Zd;R)s+1 such that for all sequences (vn)n∈N
with values in `2(Zd;R) and for all n ∈ N, there holds

2〈Mvn, Lvn〉−∞,+∞
= (s+ 1)|||Lvn|||2−∞,+∞ + (T − I)E0(vn, . . . , vn+s) +D0(vn, . . . , vn+s).

In particular, for all initial data f0, . . . , fs ∈ `2(Zd;R), the solution to (2.1) satisfies

sup
n∈N

E0(vn, . . . , vn+s) 6 E0(f0, . . . , fs),

and (2.1) is (`2-)stable.

Proof. — We use the same notation vn for the sequence (vnj )j∈Zd and the correspond-
ing step function on Rd whose value on the cell [j1∆x1, (j1+1)∆x1)×· · ·×[jd∆xd, (jd+

1)∆xd) equals vnj . Then Plancherel Theorem gives

2〈Mvn, Lvn〉−∞,+∞ − (s+ 1)|||Lvn|||2−∞,+∞

=

∫
Rd

2 Re
(
T (P ′ζ(T )v̂n(ξ))Pζ(T )v̂n(ξ)

)
− (s+ 1)

∣∣Pζ(T )v̂n(ξ)
∣∣2 dξ

(2π)d
,

where v̂n denotes the Fourier transform of vn, and where we have let

Pζ(z) :=

s+1∑
σ=0

Q̂σ
(
eiζ1 , . . . , eiζd

)
zσ, ζj := ξj∆xj ,

and P ′ζ(z) denotes the derivative of Pζ with respect to z.
From Assumption 2, we know that for all ζ ∈ Rd, Pζ has degree s+1 and has s+1

simple roots in D. We can apply Lemma 1 and get

2〈Mvn, Lvn〉−∞,+∞ − (s+ 1)|||Lvn|||2−∞,+∞

=

∫
Rd

(T − I)qe,ζ
(
v̂n(ξ), . . . , v̂n+s(ξ)

)
+ qd,ζ

(
v̂n(ξ), . . . , v̂n+s(ξ)

) dξ

(2π)d
,
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where qe,ζ , qd,ζ depend in a C∞ way on ζ ∈ Rd and are 2π-periodic in each ζj .
Furthermore, qe,ζ is positive definite and qd,ζ is nonnegative. We then define

E0(w0, . . . , ws) :=

∫
Rd

qe,ζ
(
ŵ0(ξ), . . . , ŵs(ξ)

) dξ

(2π)d
,

∀ (w0, . . . , ws) ∈ `2(Zd;R)s+1,
D0(w0, . . . , ws) :=

∫
Rd

qd,ζ
(
ŵ0(ξ), . . . , ŵs(ξ)

) dξ

(2π)d
.

By compactness of [0, 2π]d, the hermitian forms qe,ζ , qd,ζ are uniformly bounded with
respect to ζ (because they depend continuously on ζ). Therefore E0 and D0 define
continuous quadratic forms on `2(Zd;R)s+1, and D0 is nonnegative as the integral
of a nonnegative quantity. Furthermore, qe,ζ is a positive Hermitian form for each ζ
so by compactness it is uniformly coercive with respect to ζ. Hence E0 is a coercive
quadratic form and the proof of Proposition 2 is complete. �

2.3. Examples. — Let us clarify Proposition 2 in the case of the one-dimensional
examples of Section 1.3. For the leap-frog scheme in one space dimension, there holds

L = T 2 + λaT (S − S−1)− I,

and our multiplier Munj reads

Munj = 2un+2
j + λa(un+1

j+1 − u
n+1
j−1 ) = un+2

j + unj + Lunj︸︷︷︸
=0

,

where the equality Lunj = 0 is used as long as (unj ) corresponds to a solution to
the leap-frog scheme. We thus recover the more classical multiplier un+2

j + unj used
in [24], but we emphasize that both multipliers coincide only on solutions to the
leap-frog scheme. It will appear more clearly in Section 3 why our choice for Munj
has a major advantage when considering initial boundary value problems because
the main energy-dissipation identity of Proposition 2 not only holds for solutions to
Lunj = 0 but for any sequence (un) with values in `2(Zd). Let us now look at the
energy and dissipation functionals provided by Proposition 2. Since the (two simple)
roots z1, z2 to (1.11) have modulus 1, if we keep the notation of the proof of Lemma 1
and Proposition 2, we get the expressions

qe,ζ(w
0, w1) =

∣∣w1 − z1(ζ)w0
∣∣2 +

∣∣w1 − z2(ζ)w0
∣∣2

= 2(|w0|2 + |w1|2) + 4 Re
(
iλa sin ζw1w0

)
,

qd,ζ(w
0, w1) = 0,

for all ζ ∈ [0, 2π]. After substituting ζ = ξ∆x and integrating with respect to ξ, we get

E0(vn, vn+1) = 2
∑
j∈Z

∆x(vnj )2 + ∆x(vn+1
j )2 + 2

∑
j∈Z

∆xλa
(
vnj+1 − vnj−1

)
vn+1
j ,

and D0 ≡ 0 (no dissipation). Proposition 2 shows that the energy functional E0 is
preserved for solutions to the leap-frog scheme, a fact that also comes more directly
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from the relation

2
∑
j∈Z

∆x(un+2
j + unj )

(
un+2
j + λa(un+1

j+1 − u
n+1
j−1 )− unj

)
= 0,

after regrouping

2
∑
j∈Z

∆x(un+2
j + unj )(un+2

j − unj )

= 2
∑
j∈Z

∆x(un+1
j )2 + ∆x(un+2

j )2 − 2
∑
j∈Z

∆x(unj )2 + ∆x(un+1
j )2,

and using summation by parts for the remaining terms. What is important here is that
both quantities |z1(ζ)|2+|z2(ζ)|2 and z1(ζ)+z2(ζ) are trigonometric polynomials in ζ,
and therefore the expression of E0 turns out to give a finite sum of ‘local’ quadratic
functionals of one of the forms∑

j∈Z
∆xvnj+`1v

n
j+`2 ,

∑
j∈Z

∆xvnj+`1v
n+1
j+`2

,
∑
j∈Z

∆xvn+1
j+`1

vn+1
j+`2

.

This means that we could also define the energy functional E0 for sequences (vj)

defined only for j > 0 and not on all Z by ‘localizing’ in space (this fact is used
in [23] in the context of partial differential equations because the energy functional
that arises in [18, 10] turns out to be a local quantity).

Let us now turn to the scheme (1.12) that is based on the backwards differentiation
formula of order 2. In that case, we have

L = T 2
(3

2
I +

λa

2
(S − S−1)

)
− 2T +

1

2
I, M = T 2

(
3I + λa(S − S−1)

)
− 2T ,

so even if Lunj = 0, our multiplier Munj does not coincide with the ‘more stan-
dard’ un+2

j used in [8, 9]. Here the multiplier Munj incorporates some terms that take
into account the spatial discretization while the multiplier un+2

j is designed to take
advantage of the G-stability of the BDF-2 integration rule, see [15, Chap.V.6]. The
energy-dissipation functionals provided by Proposition 2 are not as elegant in this case
as what they were in the case of the leap-frog scheme. Namely, we keep the notation
of the proofs of Lemma 1 and Proposition 2. Letting z1, z2 denote the roots to the
dispersion relation (1.13), and introducing the notation

Q(ζ) :=
∣∣∣3
2

+ iλa sin ζ
∣∣∣2(|z1(ζ)|2 + |z2(ζ)|2

)
,

we compute

qe,ζ(w
0, w1) =

∣∣∣3
2

+ iλa sin ζ
∣∣∣2(∣∣w1 − z1(ζ)w0

∣∣2 +
∣∣w1 − z2(ζ)w0

∣∣2)
= 2
∣∣∣(3

2
+ iλa sin ζ

)
w1
∣∣∣2 + Q(ζ)|w0|2 − 4 Re

((3

2
+ iλa sin ζ

)
w1w0

)
,
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qd,ζ(w
0, w1) =

(
2
∣∣∣3
2

+ iλa sin ζ
∣∣∣2 −Q(ζ)

)
|w1|2 +

(
Q(ζ)− 1

2

)
|w0|2

− 4 Re
((3

2
+ iλa sin ζ

)
w1w0

)
− 2
∣∣∣3
2

+ iλa sin ζ
∣∣∣2 Re

((
|z1|2z2 + |z2|2z1

)
w1w0

)
,

for all ζ ∈ [0, 2π]. The energy functional is then defined as

E0(vn, vn+1) =

∫
R
qe,ξ∆x

(
v̂n(ξ), v̂n+1(ξ)

) dξ

2π
,

and using the above expression for the Hermitian form qe,ζ , we get

E0(vn, vn+1) = 2
∑
j∈Z

∆x
(3

2
vn+1
j +

λa

2
(vn+1
j+1 − v

n+1
j−1 )

)2

− 4
∑
j∈Z

∆x
(3

2
vn+1
j +

λa

2
(vn+1
j+1 − v

n+1
j−1 )

)
vnj +

∫
R

Q(ξ∆x)|v̂n(ξ)|2 dξ

2π
,

and rather similar expression for D0. The problem at this stage is that there is no
obvious reason for Q to be a trigonometric polynomial in ζ and therefore the last term
in the decomposition of E0 does not obviously decompose as a linear combination of
local energy functionals ∑

j∈Z
∆xvnj+`1v

n
j+`2 .

Though the energy functional E0 will be sufficient for our purpose here, its nonlo-
cal feature may prevent from extending the current multiplier technique to obtain
stability results on non-Cartesian meshes. We leave this question to further study.

3. Semigroup estimates for fully discrete initial boundary value problems

We now turn to the proof of Theorem 1 for which we shall use the results of Section 2
as a toolbox. By linearity of (1.2), it is sufficient to prove Theorem 1 separately in
the case (f0

j ) = · · · = (fsj ) = 0, and in the case (Fnj ) = 0, (gnj ) = 0. The latter case
is the most difficult and requires the introduction of an auxiliary set of ‘dissipative’
boundary conditions. Solutions to (1.2) are always assumed to be real valued, which
means that the data are real valued. For complex valued initial data and/or forcing
terms, one just uses the linearity of (1.2).

3.1. The case with zero initial data. — We first assume (f0
j ) = · · · = (fsj ) = 0.

By strong stability, we already know that (1.4) holds with a constant C that is inde-
pendent of γ > 0 and ∆t ∈ (0, 1]. Therefore, proving Theorem 1 amounts to showing
the existence of a constant C, that is independent of γ > 0 and ∆t ∈ (0, 1] such that
the solution to (1.2) with (f0

j ) = · · · = (fsj ) = 0 satisfies

(3.1) sup
n>0

e−2γn∆t|||un|||21−r1,+∞ 6 C
{
γ∆t+ 1

γ

∑
n>s+1

∆te−2γn∆t|||Fn|||21,+∞

+
∑

n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖gnj1,•‖
2
`2(Zd−1)

}
.
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We thus consider a parameter γ > 0 and a time step ∆t ∈ (0, 1], and focus on the
numerical scheme (1.2) with zero initial data (that is, (f0

j ) = · · · = (fsj ) = 0). For all
n ∈ N, we extend the sequence (unj ) by zero for j1 6 −r1:

vnj :=

{
unj if j1 > 1− r1, j′ ∈ Zd−1,

0 otherwise.

Observe that Lvnj is not zero for all j ∈ Zd hence the need for the general framework
of Proposition 2. We thus use Proposition 2 and compute:

(T − I)E0(vn, . . . , vn+s) +D0(vn, . . . , vn+s)

= 2〈Mvn, Lvn〉−∞,+∞ − (s+ 1)|||Lvn|||2−∞,+∞.

Due to the form of the operator L, see (2.6), and the fact that vnj vanishes for j1 6 −r1,
there holds:

Lvnj =

{
∆tFn+s+1

j if j1 > 1,

0 if j1 6 −r1 − p1,

and we thus get

(T − I)E0(vn, . . . , vn+s) +D0(vn, . . . , vn+s)

=

( d∏
k=1

∆xk

)∑
j1>1

∑
j′∈Zd−1

2∆t(Mvnj )Fn+s+1
j − (s+ 1)∆t2(Fn+s+1

j )2

+

( d∏
k=1

∆xk

) 0∑
j1=1−r1−p1

∑
j′∈Zd−1

2(Mvnj )Lvnj − (s+ 1)(Lvnj )2.

We multiply the latter equality by exp(−2γ(n + s + 1)∆t), sum with respect to n
from 0 to some N and use the fact that D0 is nonnegative. Recalling that the initial
data in (1.2) vanish, we get

(3.2) e−2γ(N+s+1)∆tE0

(
vN+1, . . . , vN+s+1

)
+
(
1− e−2γ∆t

) N∑
n=1

e−2γ(n+s)∆tE0(vn, . . . , vn+s)︸ ︷︷ ︸
>0

6 S1,N + S2,N ,

with

(3.3) S1,N

:=

N∑
n=0

e−2γ(n+s+1)∆t
(

2∆t〈Mvn, Fn+s+1〉1,+∞ − (s+ 1)∆t2|||Fn+s+1|||21,+∞
)
,

and

(3.4) S2,N

:=

( d∏
k=1

∆xk

) N∑
n=0

e−2γ(n+s+1)∆t
0∑

j1=1−r1−p1

∑
j′∈Zd−1

2(Mvnj )Lvnj − (s+ 1)(Lvnj )2.
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Let us now estimate the two source terms S1,N , S2,N in (3.2). We begin with the
term S2,N defined in (3.4). Let us recall that the ratio ∆t/∆x1 is fixed(5). Furthermore,
the form of the operators L and M in (2.6) gives the estimate (recall that vnj vanishes
for j1 6 −r1):

S2,N 6 C∆t

( d∏
k=2

∆xk

) N∑
n=0

e−2γ(n+s+1)∆t

p1∑
j1=1−r1

∑
j′∈Zd−1

(unj )2 + · · ·+ (un+s+1
j )2,

for a constant C that does not depend on N , γ nor on ∆t. We thus have, uniformly
with respect to N ∈ N, γ > 0 and ∆t ∈ (0, 1]:

S2,N 6 C
N+s+1∑
n=s+1

∆te−2γn∆t

p1∑
j1=1−r1

‖unj1,•‖
2
`2(Zd−1)

6 C
∑

n>s+1

∆te−2γn∆t

p1∑
j1=1−r1

‖unj1,•‖
2
`2(Zd−1)

6 C

{
γ∆t+ 1

γ

∑
n>s+1

∆te−2γn∆t|||Fn|||21,+∞

+
∑

n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖gnj1,•‖
2
`2(Zd−1)

}
,

where we have used the trace estimate (1.4) that follows from the strong stability
assumption.

Let us now focus on the term S1,N in (3.2), see the defining equation (3.3). We use
the Cauchy-Schwarz inequality and derive (using now the interior estimate in (1.4)
that follows from the strong stability assumption and the fact that the coefficients in
the multiplier M are independent of ∆t):

S1,N 6 2

N∑
n=0

∆te−2γ(n+s+1)∆t|||Mvn|||1,+∞|||Fn+s+1|||1,+∞

6 C
N∑
n=0

∆te−2γ(n+s+1)∆t
(
|||vn+1|||1−r1,+∞ + · · ·+ |||vn+s+1|||1−r1,+∞

)
|||Fn+s+1|||1,+∞

6 C
γ

γ∆t+ 1

N+s+1∑
n=s+1

∆te−2γn∆t|||un|||21−r1,+∞ + C
γ∆t+ 1

γ

N+s+1∑
n=s+1

∆te−2γn∆t|||Fn|||21,+∞

6 C

{
γ∆t+ 1

γ

∑
n>s+1

∆te−2γn∆t|||Fn|||21,+∞ +
∑

n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖gnj1,•‖
2
`2(Zd−1)

}
.

Ignoring the nonnegative term on the left-hand side of (3.2) and using the coercivity
of E0, we have proved that there exists a constant C > 0 that is uniform with respect

(5)This is one first occurrence where restricting to the ‘hyperbolic scaling’ for the time and space
steps is convenient.
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to N, γ,∆t such that:

e−2γ(N+s+1)∆t|||vN+s+1|||2−∞,+∞ 6 C
{
γ∆t+ 1

γ

∑
n>s+1

∆te−2γn∆t|||Fn|||21,+∞

+
∑

n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖gnj1,•‖
2
`2(Zd−1)

}
,

which yields (3.1) and therefore the validity of Theorem 1 in the case of zero initial
data.

3.2. Construction of dissipative boundary conditions. — In this paragraph, we
consider an auxiliary problem for which we shall be able to prove simultaneously
an optimal semigroup estimate and a trace estimate for the solution. The argument
here is independent of the original numerical scheme (1.2), but the auxiliary scheme
introduced in Theorem 2 below will be used later on to decompose the solution to
(1.2) into two pieces, each of which being estimated by separate tools. We thus forget
temporarily about (1.2) and state the following key result.

Theorem 2. — Let Assumptions 1, 2 and 3 be satisfied. Then for all P1 ∈ N, there
exists a constant CP1 > 0 such that, for all initial data (f0

j ), . . . , (fsj ) ∈ `2(Zd) and
for all source term (gnj )j160,n>s+1 that satisfies

∀Γ > 0,
∑

n>s+1

e−2Γn
∑
j160

‖gnj1,•‖
2
`2(Zd−1) < +∞,

there exists a unique sequence (unj )j∈Zd,n∈N solution to

(3.5)


Lunj = 0, j1 > 1, j′ ∈ Zd−1, n > 0,

Munj = gn+s+1
j , j1 6 0, j′ ∈ Zd−1, n > 0,

unj = fnj , j ∈ Zd, n = 0, . . . , s.

Moreover for all γ > 0 and ∆t ∈ (0, 1], this solution satisfies

(3.6) sup
n>0

e−2γn∆t|||un|||2−∞,+∞ +
γ

γ∆t+ 1

∑
n>0

∆te−2γn∆t|||un|||2−∞,+∞

+
∑
n>0

∆te−2γn∆t
P1∑

j1=1−r1

‖unj1,•‖
2
`2(Zd−1)

6 CP1

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.

Theorem 2 justifies why we advocate the choice Munj = 2un+2
j + λa(un+1

j+1 − u
n+1
j−1 )

rather than the more standard un+2
j + unj as a multiplier for the leap-frog scheme.

Despite repeated efforts, we have not been able to prove the estimate (3.6) when
using the numerical boundary condition un+2

j +unj on j1 6 0, in conjunction with the
leap-frog scheme on j1 > 1.
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Proof. — Let us first quickly observe that the solution to (3.5) is well-defined since,
as long as we have determined the solution up to a time index n + s, n > 0, then
un+s+1 is sought as a solution to an equation of the form

Qs+1u
n+s+1 = F,

where F belongs to `2(Zd) (this is due to the form of L and M , see (2.6)). Hence un
is uniquely defined and belongs to `2(Zd) for all n ∈ N.

The proof of Theorem 2 starts again with the application of Proposition 2. Using
the non-negativity of the dissipation form D0, we get(6)

(T − I)E0(un, . . . , un+s) + (s+ 1)|||Lun|||2−∞,+∞
6 2〈Mun, Lun〉−∞,+∞ = 2〈gn+s+1, Lun〉−∞,0.

By the Young inequality

2〈gn+s+1, Lun〉−∞,0 6
s+ 1

2
|||Lun|||2−∞,0 +

2

s+ 1
|||gn+s+1|||2−∞,0,

we get

(T − I)E0(un, . . . , un+s) +
s+ 1

2
|||Lun|||2−∞,+∞ 6

2

s+ 1
|||gn+s+1|||2−∞,0.

We multiply the latter inequality by exp(−2γ(n+ s+ 1)∆t), sum from n = 0 to some
arbitrary N and already derive the estimate (here we use again the fact that ∆t/∆x1

is a fixed positive constant):

sup
n>1

e−2γ(n+s)∆tE0(un, . . . , un+s) +
(
1− e−2γ∆t

)∑
n>0

e−2γ(n+s)∆tE0(un, . . . , un+s)

+
∑
n>0

∆te−2γ(n+s+1)∆t
∑
j1∈Z
‖Lunj1,•‖

2
`2(Zd−1)

6 C

{
e−2γs∆tE0(f0, . . . , fs) +

∑
n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.

Using the coercivity of E0 and the inequality

1− e−2γ∆t >
γ∆t

γ∆t+ 1
,

we have therefore derived the estimate

(3.7) sup
n>0

e−2γn∆t|||un|||2−∞,+∞ +
γ

γ∆t+ 1

∑
n>0

∆te−2γn∆t|||un|||2−∞,+∞

+
∑
n>0

∆te−2γ(n+s+1)∆t
∑
j1∈Z
‖Lunj1,•‖

2
`2(Zd−1)

6 C

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
,

(6)Since Lunj = 0 for j1 > 1, one could also write |||Lun|||2−∞,0 rather than |||Lun|||2−∞,+∞ on the
left hand-side of the inequality.
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where the constant C is independent of γ, ∆t and on the solution (unj ). In order to
prove (3.6), the main remaining task is to derive the trace estimate for (unj ). This is
done by first dealing with the case where γ∆t is ‘large’.
• From the definition of the operator L, see (2.6), there exists a constant C > 0

and an integer J such that

(Lunj )2 >
1

2
(Qs+1u

n+s+1
j )2 − C

s∑
σ=0

∑
|`|6J

(un+σ
j+` )2.

Since Qs+1 is an isomorphism, there exists a constant c > 0 such that

∑
j∈Zd

(Lunj )2 > c
∑
j∈Zd

(un+s+1
j )2 − 1

c

s∑
σ=0

∑
j∈Zd

(un+σ
j )2.

Multiplying by exp(−2γ(n+ s+ 1)∆t) and summing with respect to n ∈ N, we get

(3.8)
∑

n>s+1

∆te−2γn∆t
∑
j1∈Z
‖unj1,•‖

2
`2(Zd−1)

6 C

{∑
n>0

∆te−2γ(n+s+1)∆t
∑
j1∈Z
‖Lunj1,•‖

2
`2(Zd−1)

+ e−2γ∆t
∑
n>0

∆te−2γn∆t
∑
j1∈Z
‖unj1,•‖

2
`2(Zd−1)

}
.

The second term on the right-hand side is decomposed as

∑
n>s+1

∆te−2γn∆t
∑
j1∈Z
‖unj1,•‖

2
`2(Zd−1) +

s∑
σ=0

∆te−2γn∆t
∑
j1∈Z
‖fσj1,•‖

2
`2(Zd−1)

6
∑

n>s+1

∆te−2γn∆t
∑
j1∈Z
‖unj1,•‖

2
`2(Zd−1) + λ1

s∑
σ=0

|||fσ|||2−∞,+∞.

Choosing γ∆t large enough, that is γ∆t > lnR0 for some numerical constant R0 > 1

that depends only on the (fixed) coefficients of the operator L, we can absorb the
term ∑

n>s+1

∆te−2γn∆t
∑
j1∈Z
‖unj1,•‖

2
`2(Zd−1),

from right to left in (3.8), and we have therefore derived the estimate∑
n>s+1

∆te−2γn∆t
∑
j1∈Z
‖unj1,•‖

2
`2(Zd−1)

6 C

{∑
n>0

∆te−2γ(n+s+1)∆t
∑
j1∈Z
‖Lunj1,•‖

2
`2(Zd−1) + e−2γ∆t

s∑
σ=0

|||fσ|||2−∞,+∞
}
.
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It remains to use (3.7) to bound the first term on the right-hand side, and we get an
even better estimate than (3.6) which we were originally aiming at:∑
n>s+1

∆te−2γn∆t
∑
j1∈Z
‖unj1,•‖

2
`2(Zd−1)

6 C

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.

This gives a control of infinitely many traces and not only finitely many (this restric-
tion to finitely many traces will appear in the regime where γ∆t can be small).
• From now on, we have fixed a constant R0 > 1 such that (3.6) holds for γ∆t >

lnR0 and we thus assume γ∆t ∈ (0, lnR0]. (Getting rid of all large values of γ∆t

will be used to gain ‘compactness’.) We also know that the estimate (3.7) holds,
independently of the value of γ∆t, and we now wish to estimate the traces of the
solution (unj ) for finitely many values of j1.

We first observe from (3.7) that for all γ > 0 and ∆t ∈ (0, 1], there exists a constant
Cγ,∆t such that

∀n ∈ N, e−2γn∆t
∑
j∈Zd

(unj )2 6 Cγ,∆t.

In particular, for any j1 ∈ Z, the Laplace-Fourier transforms ûj1 of the step functions

uj1 : (t, y) ∈ R+×Rd−1 7−→ unj if (t, y) ∈
[
n∆t, (n+1)∆t

)
×

d∏
k=2

[
jk∆xk, (jk+1)∆xk

)
,

is well-defined on {τ ∈ C,Re τ > 0}×Rd−1. The dual variables are denoted τ = γ+iθ,
γ > 0, and η = (η2, . . . , ηd) ∈ Rd−1. It will also be convenient to introduce the notation
η∆ := (η2∆x2, . . . , ηd∆xd). Given Γ > 0, the sequence (ûj1(Γ + iθ, η))j1∈Z belongs to
`2(Z) for almost every (θ, η) ∈ R× Rd−1.

We first show the following estimate, which is the Laplace-Fourier analogue of (3.7).

Lemma 2. — With R0 > 1 fixed as above, there exists a constant C > 0 such that for
all γ > 0 and ∆t ∈ (0, 1] satisfying γ∆t ∈ (0, lnR0], there holds

(3.9)
∑
j1∈Z

∫
R×Rd−1

∣∣∣∣ p1∑
`1=−r1

a`1
(
e(γ+iθ)∆t, η∆

)
ûj1+`1(γ + iθ, η)

∣∣∣∣2dθdη

+
∑
j160

∫
R×Rd−1

∣∣∣∣ p1∑
`1=−r1

e(γ+iθ)∆t∂za`1
(
e(γ+iθ)∆t, η∆

)
ûj1+`1(γ + iθ, η)

∣∣∣∣2dθdη

6 C

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.
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Proof of Lemma 2. — Given τ = γ + iθ and η, we compute (here j1 ∈ Z is fixed):

(3.10)
p1∑

`1=−r1

a`1
(
eτ∆t, η∆

)
ûj1+`1(τ, η)

= L̂uj1,•(τ, η) +
1− e−τ∆t

τ

s+1∑
σ=1

σ−1∑
σ′=0

e(σ−σ′)τ∆tFσ,σ′

j1
(η),

(3.11)
p1∑

`1=−r1

eτ∆t∂za`1
(
eτ∆t, η∆

)
ûj1+`1(τ, η)

= M̂uj1,•(τ, η) +
1− e−τ∆t

τ

s+1∑
σ=1

σ−1∑
σ′=0

σe(σ−σ′)τ∆tFσ,σ′

j1
(η).

where, in (3.10) and (3.11), we have set

Fσ,σ′

j1
(η) =

p1∑
`1=−r1

( p′∑
`′=−r′

a`,σei`
′·η∆

)
̂fσ′j1+`1,•

(η),

which corresponds to the partial Fourier transform with respect to y = (x2, . . . , xd) ∈
Rd−1, of the step function associated with the sequence (Qσf

σ′

j ) (no Laplace transform
here).

We need to estimate integrals with respect to (θ, η) of the right-hand side of (3.10)
and (3.11). The first term on the right of (3.10) and (3.11) are easy. For instance, we
have (applying Plancherel Theorem):∑
j1∈Z

∫
R×Rd−1

∣∣L̂uj1,•(τ, η)
∣∣2dθdη = (2π)d

∑
j1∈Z

∑
n>0

∫ (n+1)∆t

n∆t

e−2γs‖Lunj1,•‖
2
`2(Zd−1)ds

= (2π)d
1− e−2γ∆t

2γ∆t

∑
n>0

∆te−2γn∆t
∑
j1∈Z
‖Lunj1,•‖

2
`2(Zd−1).

We now recall that γ∆t is restricted to the interval (0, lnR0], and we use (3.7) to
derive∑
j1∈Z

∫
R×Rd−1

∣∣L̂uj1,•(τ, η)
∣∣2dθdη

6 C

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.

Similarly, we have∑
j160

∫
R×Rd−1

∣∣M̂uj1,•(τ, η)
∣∣2dθdη

= (2π)d
1− e−2γ∆t

2γ∆t

∑
n>0

∆te−2γn∆t
∑
j160

‖Munj1,•‖
2
`2(Zd−1),

which we can again uniformly estimate by the right-hand side of (3.9).

J.É.P. — M., 2015, tome 2



322 J.-F. Coulombel

Going back to the right-hand side terms in (3.10) and (3.11), we find that there
only remains for proving (3.9) to estimate the integral (here there are finitely many
values of σ and σ′):

∑
j1∈Z

∫
R×Rd−1

∣∣∣1− e−τ∆t

τ

∣∣∣2∣∣Fσ,σ′

j1
(η)
∣∣2dθdη

=

(∫
R

∣∣∣1− e−τ∆t

τ

∣∣∣2dθ

)∑
j1∈Z

∫
Rd−1

∣∣Fσ,σ′

j1
(η)
∣∣2dη,

where we have applied Fubini Theorem. Applying first Plancherel Theorem with re-
spect to the d− 1 last space variables, we get

∑
j1∈Z

∫
Rd−1

∣∣Fσ,σ′

j1
(η)
∣∣2dη 6 C

∑
j1∈Z

∑
j′∈Zd−1

( d∏
k=2

∆xk

)
(fσ

′

j )2 6
C

∆t

s∑
σ=0

|||fσ|||2−∞,+∞.

The conclusion then follows by computing∫
R

∣∣∣1− e−τ∆t

τ

∣∣∣2dθ = 2π∆t
1− e−2γ∆t

2γ∆t
,

and by recalling that γ∆t belongs to (0, lnR0]. We can eventually bound the integrals
on the left-hand side of (3.9) by estimating separately the integrals of each term on
the right-hand side of (3.10) and (3.11). �

The conclusion in the proof of Theorem 2 relies on the following crucial result. Here
both Assumptions 2 and 3 are heavily used.

Lemma 3 (The trace estimate). — Let Assumptions 1, 2 and 3 be satisfied. Let R0 > 1

be fixed as above and let P1 ∈ N. Then there exists a constant CP1 > 0 such that for
all z ∈ U with |z| 6 R0, for all η ∈ Rd−1 and for all sequence (wj1)j1∈Z ∈ `2(Z;C),
there holds

(3.12)
P1∑

j1=−r1−p1

|wj1 |2

6 CP1

{∑
j1∈Z

∣∣∣∣ p1∑
`1=−r1

a`1(z, η)wj1+`1

∣∣∣∣2 +
∑
j160

∣∣∣∣ p1∑
`1=−r1

z∂za`1(z, η)wj1+`1

∣∣∣∣2}.
Recall that the functions a`1 , `1 = −r1, . . . , p1, are defined in (1.6).

The proof of Lemma 3 is rather long. Before giving it in full details, we indicate
how Lemma 3 yields the result of Theorem 2. We apply Lemma 3 to z = exp(τ∆t),
τ = γ + iθ with γ∆t ∈ (0, lnR0], η∆ ∈ Rd−1 and the sequence (ûj1(τ, η))j1∈Z. We
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then integrate (3.12) with respect to (θ, η) and use Lemma 2 to derive

P1∑
j1=−r1−p1

∫
R×Rd−1

|ûj1(γ + iθ, η)|2 dθdη

6 C

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.

It remains to apply Plancherel Theorem and we get

1− e−2γ∆t

2γ∆t

P1∑
j1=−r1−p1

∑
n∈N

∆te−2γn∆t‖unj1,•‖
2
`2(Zd−1)

6 C

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.

Recalling that γ∆t is restricted to the interval (0, lnR0], we have thus derived the
trace estimate∑
n∈N

∆te−2γn∆t
P1∑

j1=−r1−p1

‖unj1,•‖
2
`2(Zd−1)

6 C

{ s∑
σ=0

|||fσ|||2−∞,+∞ +
∑

n>s+1

∆te−2γn∆t
∑
j160

‖gnj1,•‖
2
`2(Zd−1)

}
.

Combined with the semigroup and interior estimate (3.7), this gives the estimate (3.6)
of Theorem 2 for γ∆t ∈ (0, lnR0]. �

Proof of Lemma 3. — Let us recall that the functions a`1 are 2π-periodic with respect
to each coordinate of η. We can therefore restrict to η ∈ [0, 2π]d−1 rather than con-
sidering η ∈ Rd−1. We argue by contradiction and assume that the conclusion to
Lemma 3 does not hold. This means the following, up to normalizing and extracting
subsequences; there exist three sequences (indexed by k ∈ N):

– a sequence (wk)k∈N with values in `2(Z;C) such that (wk−r1−p1
, . . . , wkP1

) belongs
to the unit sphere of CP1+r1+p1+1 for all k, and (wk−r1−p1

, . . . , wkP1
) converges to

(w−r1−p1
, . . . , wP1

) as k tends to infinity,
– a sequence (zk)k∈N with values in U ∩ {ζ ∈ C, |ζ| 6 R0}, which converges to

z ∈ U ,
– a sequence (ηk)k∈N with values in [0, 2π]d−1, which converges to η ∈ [0, 2π]d−1,

and these sequences satisfy:
(3.13)

lim
k→+∞

∑
j1∈Z

∣∣∣∣ p1∑
`1=−r1

a`1(zk, ηk)wkj1+`1

∣∣∣∣2 +
∑
j160

∣∣∣∣ p1∑
`1=−r1

zk∂za`1(zk, ηk)wkj1+`1

∣∣∣∣2 = 0.

We are going to show that (3.13) implies that (w−r1−p1
, . . . , wP1

) must be zero, which
will yield a contradiction since this vector must have norm 1.
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• Let us first show that each component (wkj1)k∈N, j1 ∈ Z, has a limit as k tends
to infinity. This is already clear for j1 = −r1 − p1, . . . , P1. For j1 > P1, we argue by
induction. From (3.13), we have

lim
k→+∞

p1∑
`1=−r1

a`1(zk, ηk)wkP1−p1+1+`1 = 0,

and by Assumption 3, we know that ap1
(z, η) is nonzero. Hence (wkP1+1)k∈N converges

towards

− 1

ap1
(z, η)

p1−1∑
`1=−r1

a`1(z, η)wP1−p1+1+`1
,

which we define as wP1+1. We can argue by induction in the same way for all indices
j1 > P1 + 1, but also for indices j1 < −r1 − p1 because the function a−r1 also does
not vanish on U × Rd−1.

Using (3.13), we have thus shown that for each j1 ∈ Z, (wkj1)k∈N tends towards
some limit wj1 as k tends to infinity, and the sequence w, which does not necessarily
belong to `2(Z;C), satisfies the induction relations:

∀ j1 ∈ Z,
p1∑

`1=−r1

a`1(z, η)wj1+`1
= 0,(3.14)

∀ j1 6 0,

p1∑
`1=−r1

z∂za`1(z, η)wj1+`1
= 0.(3.15)

• The induction relation (3.14) is the one that arises in [13, 19] and all the works
that deal with strong stability. The main novelty here is to use simultaneously (3.14)
for controlling the unstable components of (w−r1−p1

, . . . , w−1) and (3.15) for control-
ling the stable components of (w−r1−p1

, . . . , w−1). The fact that w satisfies simultane-
ously (3.14) and (3.15) for j1 6 0 automatically annihilates the central components.
This sketch of proof is made precise below.

We define the source terms:

F kj1 :=

p1∑
`1=−r1

a`1(zk, ηk)wkj1+`1 , Gkj1 :=

p1∑
`1=−r1

zk∂za`1(zk, ηk)wkj1+`1 ,

which, according to (3.13), satisfy

(3.16) lim
k→0

∑
j1∈Z
|F kj1 |

2 = 0, lim
k→0

∑
j160

|Gkj1 |
2 = 0.

We also introduce the vectors (here T denotes transposition)

W k
j1 :=

(
wkj1+p1

, . . . , wkj1+1−r1
)T
, W j1

:=
(
wj1+p1

, . . . , wj1+1−r1
)T
,
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and the matrices:

L(z, η) :=



−ap1−1(z, η)

ap1
(z, η)

. . . −a−r1(z, η)

ap1
(z, η)

1 0 . . . 0
. . . . . .

0
. . . . . .

...
0 0 1 0


∈Mp1+r1(C),(3.17)

M(z, η) :=



−∂zap1−1(z, η)

∂zap1
(z, η)

. . . −∂za−r1(z, η)

∂zap1
(z, η)

1 0 . . . 0
. . . . . .

0
. . . . . .

...
0 0 1 0


∈Mp1+r1(C).(3.18)

The matrix L is well-defined on U ×Rd−1 according to Assumption 3. The matrix M
is also well-defined on U ×Rd−1 because for any η ∈ Rd−1, Assumption 3 asserts that
ap1

(·, η) is a non-constant polynomial whose roots lie in D. From the Gauss-Lucas
Theorem, the roots of ∂zap1

(·, η) lie in the convex hull of those of ap1
(·, η). Therefore

∂zap1(·, η) does not vanish on U . In the same way, ∂za−r1(·, η) does not vanish on U .
With our above notation, the vectors W k

j1
, W j1 , satisfy the one step induction

relations:

∀ j1 ∈ Z,
W k
j1+1 = L(zk, ηk)W k

j1 +
(
F kj1+1/ap1(zk, ηk), 0, . . . , 0

)T
,

W j1+1 = L(z, η)W j1
,

(3.19)

∀ j1 6 −1,
W k
j1+1 = M(zk, ηk)W k

j1 +
(
Gkj1+1/(z

k∂zap1
(zk, ηk)), 0, . . . , 0

)T
,

W j1+1 = M(z, η)W j1
.

(3.20)

• From Assumption 3 and the above application of the Gauss-Lucas Theorem,
we already know that both matrices L(z, η) and M(z, η) are invertible for (z, η) ∈
U × Rd−1. Furthermore, Assumption 2 shows that L(z, η) has no eigenvalue on S1

for (z, η) ∈ U × Rd−1. This property dates back at least to [16]. However, central
eigenvalues on S1 may occur for L when z belongs to S1. The crucial point for proving
Lemma 3 is that Assumption 2 precludes central eigenvalues of M for all z ∈ U .
Namely, for all z ∈ U and all η ∈ Rd−1, M(z, η) has no eigenvalue on S1. This
property holds because otherwise, for some (z, η) ∈ U × Rd−1, there would exist a
solution κ1 ∈ S1 to the dispersion relation

p1∑
`1=−r1

z∂za`1(z, η)κ`11 = 0.
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For convenience, the coordinates of η are denoted (η2, . . . , ηd). Using the definition
(1.6) of a`1 , and defining κ := (κ1, e

iη2 , . . . , eiηd), we have found a root z ∈ U to the
relation

(3.21)
s+1∑
σ=1

σQ̂σ(κ)zσ−1 = 0,

but this is not possible because the s+ 1 roots (in z) to the dispersion relation (1.5)
are simple and belong to D. The Gauss-Lucas Theorem thus shows that the roots to
the relation (3.21) belong to D (and therefore not to U ).

At this stage, we know that the eigenvalues of M(z, η), (z, η) ∈ U ×Rd−1, split into
two groups: those in U , which we call the unstable ones, and those in D, which we
call the stable ones. For (z, η) ∈ U × Rd−1, we then introduce the spectral projector
Πs

M(z, η), resp. Πu
M(z, η), of M(z, η) on the generalized eigenspace associated with

eigenvalues in D, resp. U . We can then integrate the first induction relation in (3.20)
and get

Πs
M(zk, ηk)W k

0 =
1

zk∂zap1
(zk, ηk)

∑
j160

M(zk, ηk)|j1|Πs
M(zk, ηk)

(
Gkj1 , 0, . . . , 0

)T
.

The projector Πs
M depends continuously on (z, η) ∈ U × Rd−1. Furthermore, since

the spectrum of M does not meet S1 even for z ∈ S1, there exists a constant C > 0

and a δ ∈ (0, 1) that are independent of k ∈ N and such that

∀ j1 6 0,
∥∥M(zk, ηk)|j1|Πs

M(zk, ηk)
∥∥ 6 Cδ|j1|.

We thus get a uniform estimate with respect to k:∣∣Πs
M(zk, ηk)W k

0

∣∣2 6 C ∑
j160

|Gkj1 |
2.

Passing to the limit and using (3.16), we get Πs
M(z, η)W 0 = 0, or in other words

W 0 = Πu
M(z, η)W 0.

• The sequence (W j1)j160 satisfies both induction relations (3.19) and (3.20). Due
to the form of the companion matrices L and M, see (3.17)-(3.18), we can conclude
that the vector W 0 belongs to the generalized eigenspace (of either L or M) associ-
ated with the common eigenvalues of M(z, η) and L(z, η). We have already seen that
M(z, η) has no eigenvalue on S1 and W 0 = Πu

M(z, η)W 0, so we can conclude that W 0

belongs to the generalized eigenspace of L associated with those common eigenvalues
of M(z, η) and L(z, η) in U .

The matrix L(z, η) has Nu eigenvalues in U , Ns in D and N c on S1. (Since z may
belong to S1, N c is not necessarily zero.) With obvious notations, we let Πu,s,c

L (z, η)

denote the corresponding spectral projectors of L for (z, η) sufficiently close to (z, η).
In particular, the eigenvalues corresponding to Πu

L(z, η) lie in U uniformly away
from S1 for (z, η) sufficiently close to (z, η). We can then integrate the first induction
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relation in (3.19) and derive (for k sufficiently large):

Πu
L(zk, ηk)W k

0 = − 1

ap1(zk, ηk)

∑
j1>0

L(zk, ηk)−j1−1Πu
L(zk, ηk)

(
F kj1 , 0, . . . , 0

)T
.

Using the uniform exponential decay of L(zk, ηk)−j1−1Πu
L(zk, ηk) and (3.16), we finally

end up with
Πu

L(z, η)W 0 = 0.

Since W 0 belongs to the generalized eigenspace of L associated with those common
eigenvalues of M(z, η) and L(z, η) in U , we can conclude thatW 0 equals zero. Apply-
ing the induction relation (3.19), the whole sequence (W j1)j1∈Z is zero which yields
the expected contradiction. �

The crucial property that we use in the proof of Lemma 3 is the fact that up to
z ∈ S1, the eigenvalues of M(z, η) lie either in D or U . For the leap-frog scheme,
this property would not be true if we had imposed the auxiliary numerical boundary
condition un+2

j + unj rather than 2un+2
j + λa(un+1

j+1 − u
n+1
j−1 ).

Let us also observe that we have used the fact that ap1
and a−r1 are non-constant

in order to study the induction relation (3.15). There might be some schemes for
which ap1 and/or a−r1 are constant but for which one can still apply similar arguments
as in the previous proof, even though (3.15) is an induction relation with fewer steps
than (3.14). In this respect, Assumption 3 might be relaxed in specific applications.

Remark 2. — The auxiliary problem (3.5) is in general not of the same form as (1.2)
because in (3.5) one has to impose infinitely many numerical boundary conditions.
This is due to the fact that the stencil of M incorporates points ‘on the left’ with
respect to the first space variable. A remarkable exception occurs for explicit schemes
with s = 0, for in that case the multiplier Mvnj reads vn+1

j and (3.5) is exactly
the auxiliary problem considered in [7] (and labeled (2.7) there) where one imposes
Dirichlet boundary conditions on finitely many boundary meshes (just use gnj = 0

for j1 6 −r1). In full generality, there still remains an open problem of constructing
a set of dissipative numerical boundary conditions of the same form as (1.2) with
s > 1, that is with finitely many numerical boundary conditions, and for which one
can prove by hand both a semigroup and a trace estimate as in Theorem 2.

3.3. End of the proof. — As explained in the introduction of Section 3, the linearity
of (1.2) reduces the proof of Theorem 1 to the case (Fnj ) = 0, (gnj ) = 0, since we have
already dealt with the case of zero initial data. We thus focus on (1.2) with (Fnj ) = 0

and (gnj ) = 0, and write the corresponding solution (unj ) as unj = vnj + wnj , where the
sequence (vnj ) solves:

(3.22)


Lvnj = 0, j1 > 1, j′ ∈ Zd−1, n > 0,

Mvnj = 0, j1 6 0, j′ ∈ Zd−1, n > 0,

vnj = fnj , j ∈ Zd, n = 0, . . . , s,
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and (wnj ) solves:

(3.23)


Lwnj = 0, j ∈ Zd, j1 > 1, n > 0,

wn+s+1
j +

s+1∑
σ=0

Bj1,σw
n+σ
1,j′ = g̃n+s+1

j , j ∈ Zd, j1 = 1− r1, . . . , 0, n > 0,

wnj = 0, j ∈ Zd, n = 0, . . . , s.

For (vnj + wnj )j1>1−r1 to coincide with the solution (unj ) to (1.2), it is sufficient to
extend the initial data f0

j , . . . , f
s
j by zero for j1 6 −r1, which provides with the initial

data in (3.22) on all Zd, and to define the boundary source term in (3.23) by:

(3.24) g̃n+s+1
j := −vn+s+1

j −
s+1∑
σ=0

Bj1,σv
n+σ
1,j′ .

We can estimate the solution (vnj ) to (3.22) by applying Theorem 2. In particular,
the trace estimate:∑

n>0

∆te−2γn∆t
P1∑

j1=1−r1

‖vnj1,•‖
2
`2(Zd−1) 6 C

s∑
σ=0

|||fσ|||21−r1,+∞,

for P1 = max(p1, q1 + 1) gives (recall the definition (3.24) of g̃n+s+1
j ):

∑
n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖g̃nj1,•‖
2
`2(Zd−1) 6 C

∑
n>0

∆te−2γn∆t

max(p1,q1+1)∑
j1=1−r1

‖vnj1,•‖
2
`2(Zd−1)

6 C
s∑

σ=0

|||fσ|||21−r1,+∞.

We can apply Theorem 1 to the solution (wnj ) to (3.23) because the initial data in
(3.23) vanish. We get:

sup
n>0

e−2γn∆t|||wn|||21−r1,+∞ +
γ

γ∆t+ 1

∑
n>0

∆te−2γn∆t|||wn|||21−r1,+∞

+
∑
n>0

∆te−2γn∆t

p1∑
j1=1−r1

‖wnj1,•‖
2
`2(Zd−1)

6 C
∑

n>s+1

∆te−2γn∆t
0∑

j1=1−r1

‖g̃nj1,•‖
2
`2(Zd−1) 6 C

s∑
σ=0

|||fσ|||21−r1,+∞.

Combining with the similar estimate provided by Theorem 2 for (vnj ), we end up with
the expected estimate:

sup
n>0

e−2γn∆t|||un|||21−r1,+∞ +
γ

γ∆t+ 1

∑
n>0

∆te−2γn∆t|||un|||21−r1,+∞

+
∑
n>0

∆te−2γn∆t

p1∑
j1=1−r1

‖unj1,•‖
2
`2(Zd−1) 6 C

s∑
σ=0

|||fσ|||21−r1,+∞,

which completes the proof of Theorem 1.
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4. Conclusion and perspectives

Let us first observe that in [30], Wade has constructed symmetrizers for deriving
stability estimates for multistep schemes, even in the case of variable coefficients.
His conditions for constructing a symmetrizer are less restrictive than Assumption 2.
However, the symmetrizer in [30] is genuinely nonlocal and it is therefore not clear that
it may be useful for boundary value problems. The main novelty here is to construct
a local multiplier whose properties allow for the design of an auxiliary dissipative
boundary value problem. This is the key to Theorem 1, despite the nonlocal feature
of our energy functional.

The main possible improvement of Theorem 1 would consist of assuming that only
the roots to (1.5) that lie on S1 are simple. Here we have assumed that all the roots,
including those in D are simple. If we could manage to deal with multiple roots in D,
then Theorem 1 would be applicable to any stable numerical approximation of the
transport equation (1.9) (recall that uniform power boundedness for the amplification
matrix A given in (2.3) requires only that eigenvalues of modulus 1 be simple).

The results in this paper achieve the proof of a ‘weak form’ of the conjecture in [17]
that strong stability, in the sense of Definition 1, implies semigroup stability. However,
an even stronger assumption was made in [17], namely that the sole fulfillment of the
interior estimate

γ

γ∆t+ 1

∑
n>s+1

∆te−2γn∆t|||un|||21−r1,+∞ 6 C
γ∆t+ 1

γ

∑
n>s+1

∆te−2γn∆t|||Fn|||21,+∞,

when both initial and boundary data for (1.2) vanish, does imply semigroup stability.
The analogous conjecture for partial differential equations seems to be still open so
far, but we do hope that our multiplier technique may yield some insight for dealing
with the strong form of the conjecture in [17]. We also hope to extend our multiplier
technique to prove some stability estimates for some multistep finite volume schemes
on non-Cartesian meshes.
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