Andrea Brini & Karoline van Gemst
Corrigendum: Mirror symmetry for extended affine Weyl groups
https://doi.org/10.5802/jep.243
CORRIGENDUM: MIRROR SYMMETRY FOR EXTENDED AFFINE WEYL GROUPS

by Andrea Brini & Karoline van Gemst

Abstract. — We correct an error in [1]. There was a typo in the exponent of one of the factors appearing in the expression of the Lyashko–Looijenga degrees in Corollary 5.2; the resulting wrong formula was then used in Table 5.1 to tabulate these degrees for all Dynkin types. We provide here the correct expressions for both Corollary 5.2 and Table 5.1.

The formula in the statement of [1, Cor.5.2] contains a computational error, whereby the exponent of \((\omega_k, \omega_k)\) in the numerator should have been \(\ell_R + 1\) (and not \(\ell_R\)). We give the rectified statement below.

Corollary 5.2. — The degree of the LL-map of the Hurwitz stratum \(M_{\omega}^{LG}\) is

\[
\frac{(\ell_R + 1)!((\omega_k, \omega_k)\ell_R + 1)}{\prod_{j=1}^{\ell_R}(\omega_j, \omega_k)}.
\]

The incorrect formula was used to tabulate the topological degrees for all Dynkin types other than \(A_\ell\) in Table 5.1. We correct those values in the table below.

Acknowledgements. — We became aware of an issue with the formula as presented in [1, Cor.5.2] after the appearance of [2]. We are very grateful to A. Takahashi for correspondence related to this.

Keywords. — Frobenius manifolds, mirror symmetry, integrable systems.

This project has been supported by the Engineering and Physical Sciences Research Council under grant agreement ref. EP/S003657/2.

http://jep.centre-nersanne.org/
Table 5.1. Lyashko–Looijenga degrees for all Dynkin types.

<table>
<thead>
<tr>
<th>R</th>
<th>g_ω</th>
<th>n_ω</th>
<th>d_{g_ω,n_ω}</th>
<th>$\ell_\omega(M_{DZ}^R)$</th>
<th>$\deg(LL)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_ℓ</td>
<td>0</td>
<td>$(\ell - 1, \ell - 1)$</td>
<td>$\ell + 1$</td>
<td>$3\ell^{[\mu]}{g\omega,n_\omega}$</td>
<td>$(\ell + 1 - K)\ell^{\ell+1} - (\ell - K)\ell^{\ell}$</td>
</tr>
<tr>
<td>B_ℓ</td>
<td>0</td>
<td>$(\ell - 2, \ell - 2, 1)$</td>
<td>$2\ell + 1$</td>
<td>$(3\ell^{[\mu]}{g\omega,n_\omega})^{\mu_2}$</td>
<td>$2(\ell + 1)(\ell - 1)^\ell$</td>
</tr>
<tr>
<td>C_ℓ</td>
<td>0</td>
<td>$(\ell - 1, \ell - 1)$</td>
<td>2ℓ</td>
<td>$(3\ell^{[\mu]}{g\omega,n_\omega})^{\mu_2}$</td>
<td>$(\ell + 1)^{\ell+1}$</td>
</tr>
<tr>
<td>D_ℓ</td>
<td>0</td>
<td>$(\ell - 3, \ell - 3, 1, 1)$</td>
<td>$2\ell + 2$</td>
<td>$(3\ell^{[\mu]}{g\omega,n_\omega})^{\mu_2}$</td>
<td>$4\ell(\ell^2 - 1)(\ell - 2)^{\ell-1}$</td>
</tr>
<tr>
<td>E_6</td>
<td>5</td>
<td>$(5, 5, 2, 2, 2, 2)$</td>
<td>42</td>
<td>(A.1)</td>
<td>$2^4 \cdot 3^4 \cdot 5 \cdot 7$</td>
</tr>
<tr>
<td>E_7</td>
<td>33</td>
<td>$(11, 5, 3, 11, 5, 3, 1, 1, 3, 3)$</td>
<td>130</td>
<td>(A.2)</td>
<td>$2^{14} \cdot 3^4 \cdot 5 \cdot 7$</td>
</tr>
<tr>
<td>E_8</td>
<td>128</td>
<td>$(29, 29, 14, 14, 14, 14, 14, 14, 9, 9, 9, 5, 5, 4, 4, 4, 4, 4, 2, 2, 0, 0)$</td>
<td>518</td>
<td>[6, 7]</td>
<td>$2^5 \cdot 3^6 \cdot 5^6 \cdot 7$</td>
</tr>
<tr>
<td>F_4</td>
<td>4</td>
<td>$(5, 5, 2, 2, 2, 2)$</td>
<td>36</td>
<td>(3.40); $(M_{LG}{10000}_D)^{S_3}$</td>
<td>$2^4 \cdot 3^4 \cdot 5$</td>
</tr>
<tr>
<td>G_2</td>
<td>0</td>
<td>$(1, 1, 1)$</td>
<td>7</td>
<td>$(3.41); (M_{LG}{1000}_D)^{S_2}$</td>
<td>$2^3 \cdot 3^2$</td>
</tr>
</tbody>
</table>

References

Manuscript received 19th September 2023
accepted 28th September 2023

Andrea Brini, School of Mathematics and Statistics, University of Sheffield
S3 7RH, Sheffield, United Kingdom
On leave from CNRS, DR 13, Montpellier, France
E-mail: a.brini@sheffield.ac.uk

Karoline van Gemst, School of Mathematics and Statistics, University of Sheffield
S3 7RH, Sheffield, United Kingdom
E-mail: kvangemst1@sheffield.ac.uk