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RIEMANNIAN ANOSOV EXTENSTION AND APPLICATIONS

BY Doxc CHen, ALENA ErciENKO & ANDREY GOGOLEV

AsstracT. — Let ¥ be a Riemannian manifold with strictly convex spherical boundary. Assum-
ing absence of conjugate points and that the trapped set is hyperbolic, we show that ¥ can
be isometrically embedded into a closed Riemannian manifold with Anosov geodesic flow. We
use this embedding to provide a direct link between the classical Livshits theorem for Anosov
flows and the Livshits theorem for the X-ray transform which appears in the boundary rigidity
program. Also, we give an application for lens rigidity in a conformal class.

Risumic (Extension d’ Anosov riemannienne et applications). — Soit ¥ une variété riemannienne
avec bord sphérique strictement convexe. Lorsque la métrique n’a pas de points conjugués et
que 'ensemble capté est hyperbolique, nous montrons que ¥ peut étre plongée isométriquement
dans une variété riemannienne fermée dont le flot géodésique est Anosov. Nous utilisons ce
plongement pour établir un lien direct entre le théoréme de Livshits classique pour les flots
d’Anosov et le théoréme de Livshits pour la transformée en rayons X qui apparait dans le
programme de rigidité des bords. Nous donnons également une application pour la rigidité
lenticulaire dans une classe conforme.
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1. INnTRODUCTION

A closed Riemannian manifold (M, g) is called Anosowv if the corresponding geodesic
flow on the unit tangent bundle T'M is an Anosov flow. For example, all closed
manifolds with strictly negative curvature are Anosov. Special examples of manifolds
which are not negatively curved, but carry Anosov geodesic flows are known. The first
one is probably due to Eberlein [Ebe73] who performed a careful local deformation
of a hyperbolic manifold to create a small disk of zero curvature. Due to the C*
stability of the Anosov property, Eberlein’s example can be perturbed further to create
some positive curvature while keeping the Anosov property. Further examples were
constructed by Gulliver [Gul75], using radially symmetric caps of positive curvature,
and by Donnay-Pugh [DP03] who constructed Anosov surfaces embedded in R®. It is
shown in a recent paper [DSW21] that for a geodesic billiard system whose trapped
set is hyperbolic and non-grazing, it is possible to produce a smooth model of Axiom
A flow for the discontinuous flow defined by the non-grazing billiard trajectories.

Our main result shows that one can embed certain Riemannian manifolds (X, g)
with boundary and hyperbolic trapped sets isometrically into an Anosov manifold
(Recall that the trapped set is the set of geodesics that are defined for all time, and a
boundary is called strictly convex if its second fundamental form is positive definite
everywhere).

Tueorem A (Theorem 8.1). — Let (X, g) be a compact smooth Riemannian manifold
with boundary. Assume that each component of the boundary is a strictly convex set
diffeomorphic to a sphere. Also, assume that (X, g) has no conjugate points and the
trapped set for the geodesic flow is hyperbolic. Then, there exists a codimension 0
isometric embedding (3,g) C (X%, ¢%%) such that (X, ¢g°**) is a closed Anosov
manifold.

Remark. — We do not require X to be connected. If we do not insist on the embedding
being codimensional 0 then it is not hard to apply Nash’s embedding theorem to
isometrically embed (X, g) into a high dimensional Euclidean space and then into a
horosphere in a manifold of constant negative curvature (we owe this remark to Keith
Burns).

To the best of our knowledge, the above theorem is the first general result on
existence of Anosov extensions. We note that all assumptions except for convexity
and diffeomorphism type of the boundary are necessary assumptions to admit an
Anosov extension. One fact which immediately follows from Theorem A is that for
any point in any Riemannian manifold, one can isometrically embed any sufficiently
small neighborhood of the given point into a closed Anosov manifold.

Theorem A allows one to transfer some results from the setting of closed Rie-
mannian manifolds to the setting of compact Riemannian manifolds with boundary.
We proceed with a description of such applications.

JIEP. — M., 2023, tome 10
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Denote by O_ (respectively, d4) the unit inward (respectively, outward) vectors
based on 0% (precise definition are given in Section 2.3). The lens data consists of
two parts: the length map £, : 0_ — [0, 0o] measuring the time at which 7, hits 0%
again for all v € 0_, and the scattering map s, : 0_~\I'_ — 0 associatingv € _~TI'_
with its exiting vector s4(v). Here I'_ := £, !(c0). We say that two metrics g and ¢’
on X are lens equivalent if {; = Iy and s, = sy. For any metric g on X, denote
by gy the lifted metric on the universal cover Y. Two metrics g and ¢ on X are
called marked lens equivalent if the lens data of gy and g;; coincide. The lens rigidity
(resp. marked lens rigidity) problem asks whether lens equivalent (resp. marked lens
equivalent) metrics are isometric via a diffeomorphism fixing 93.

Together with an argument of Katok [Kat88], we confirm the following extension
of Mukhometov-Romanov result [MR78] in the case when hyperbolic trapped sets are
allowed.

Cororrary B (Marked lens rigidity in a conformal class). Let p: ¥ — R4 be a
smooth function such that the metrics (¥, g) and (3, p?g) both satisfy the assumptions
in Theorem A. Assume that g and p*g are marked lens equivalent. Then, p = 1.

Remark. — Corollary B is related to the boundary rigidity problem, which asks
whether one can reconstruct the Riemannian metric g in the interior from knowing
the distance dy : X x 0¥ — R between points on the boundary. Michel [Mic81]
conjectured that all simple manifolds are boundary rigid, and the surface case was
proved by Pestov-Uhlmann [PUO05]. Partial results in higher dimensions can be found
in [SU09], [Var09], [BI10], [BI13], [SUV21], etc. When trapped sets are allowed, the
marked lens rigidity is equivalent to marked boundary rigidity, and certain local rigid-
ity results were recently established in [Guil7], [GM18], [Lef19], and [Lef20] in the
case when trapped sets are hyperbolic.

Another application is a smooth Livshits theorem for domains with sharp control
of regularity of the solution.

Cororrary C (Livshits Theorem for domains). Let (3, g) be as in Theorem A and
let a C"-smooth (r > 0) function B: T'Y — R be such that its C"-jet vanishes on the
boundary OT'Y. Assume that for allv € 0_\I'_,

Ly(v)
/0 Blryu())dt = 0.

Then, there exists u € CT= (T'X) such that Xu = 3 and ulp(risy = 0, where X is the
geodesic spray.

Here r_ = r if r is not an integer. If r is an integer then r_ = r—14Lip. Corollary C
was also proved in [Guil7, Prop.5.5], and the proof there applies to u € H*(T'X)
with s > 0. Our proof is more geometric and covers the Holder regularity.

Remark. — The reason why Livshits theorem is restricted to functions which are
flat on the boundary is that, otherwise, the standard bootstrap argument for solution
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of the cohomological equation [dILMMS86] does not work. However, notice that our
condition is not a restriction for the potential application to the deformation lens
rigidity (as in [Guil7]) due to a result of Lassas-Sharafutdinov-Uhlmann who recover
the jet of the metric from local lens data [LSU03].

Remark. — All our results have low regularity versions in the case when (X, g) has
finite regularity which exceeds C3+® for some positive a > 0.

Remark. — The basic example to which Theorem A applies is, of course, when ¥ is a
strictly convex ball equipped with a simple metric g. In this case the trapped set must
be empty since (X, g) is assumed to have no conjugate points. When dim ¥ = 2 it is
easy to make examples which have arbitrary genus, if the genus > 0 then the trapped
set is non-empty. It was pointed out to us by one of the referees that examples which
satisfy all assumptions of Theorem A and have non-empty trapped set might not
exist in dimensions > 3. While we do not know how to prove that this is the case, we
agree that the existence of such example, indeed, seems to be unlikely. We would like
to point out that interesting higher dimensional examples with non-empty trapped
set exist. While, formally speaking, these examples are not covered by Theorem A,
existence of Anosov extension for such examples still holds with some adjustments to
the proof of Theorem A.

Let v be a closed geodesic in a negatively curved manifold M which does not have
self-intersections. Then a small neighborhood ¥ of the “core” v in M satisfies all the
assumptions of Theorem A except that ¥ ~ S! x S"~2. Note that v constitutes a
non-trivial hyperbolic trapped set for ¥. (Alternatively one can obtain such example
by explicitly specifying a negatively curved metric on ¥ = S* x D".) We note that
already satisfies the conclusion of Theorem A since it is isometrically embedded in M.
However, one can deform the metric, for example by creating islands of positive cur-
vature away from 0¥ and <, such that existence of Anosov embedding becomes in
no way obvious. For this class of examples the proof remains exactly the same up to
Section 8, where we take advantage of spherical boundary to glue in out extended do-
mains into a hyperbolic manifold with a large injectivity radius. This argument, with
some work, can be adjusted to accommodate the above example. Specifically, the large
hyperbolic manifold has to be replaces with a hyperbolic manifold which contains a
“large geometric tube” with core 7. Existence of hyperbolic manifolds which contain
such “large geometric tubes” was established by Farrell and Jones [FJ93, Cor. 3.3]
who construct them via a carefully chosen finite cover.

1.1. OurLINE OF THE PROOF OF THEOREM A. We construct the extension by hand.
Firstly, for each boundary component of the given manifold, we find a metric on a
collar that smoothly connects the metric on this boundary to a constant curvature
metric. Afterward, we throw away from a compact manifold of a constant sectional
curvature (which has the same dimension as the given manifold) finitely many balls
(as many as the number of boundary components in the original manifold) that are

JIP. — M., 2023, tome 10
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sufficiently far away (see Lemma 8.3 and the paragraph before it). Finally, in the re-
sulting manifold with boundary and constant negative curvature, we glue in the given
manifold with attached collars. The metric on the collar is constructed in several
steps. First, we extend the given metric on the neighborhood of the boundary to the
negatively curved metric (Section 5). Then, we connect the resulting metric to a rota-
tionally invariant metric in the cylindrical coordinates (Section 6). Finally, we extend
the result of the previous extension to a metric of constant curvature (Appendix C).
The original metric in the collar is C1'! but we smooth it afterward (Section 7).

To guarantee that the constructed compact Riemannian manifold has Anosov ge-
odesic flow we use the criterion by Eberlein (see Theorem 2.3). In particular, we first
show that the constructed metric does not have conjugate points. Then, we prove
that all nonzero perpendicular Jacobi fields are unbounded. Instead of working di-
rectly with the Jacobi field, we estimate the growth rates p of the logarithm of the
square of the norm of nonzero perpendicular Jacobi fields (see (2.4)) using the com-
parison Lemma 2.8. In particular, the absence of conjugate points means that there
is no time interval so that p tends to infinity as we approach each end of the interval
(Proposition 8.10). By Lemma 2.8 and Remark 2.9, we will need to control what are
the values of 11 as the geodesic enters various regions (the given manifold with bound-
ary and various extension pieces that we construct to obtain the compact manifold
with Anosov geodesic flow) so that we have a control from below while it is in the
specific region (see Figure 2). To show that all nonzero perpendicular Jacobi fields are
unbounded, it is enough to show that the integral of p over a time ray is unbounded.

1.2. OrcGanNizATION. This paper is organized as follows. In Section 2 we set up nota-
tion and collect a number of preliminaries from geometry and dynamics. In Section 3
we prove Corollaries B and C using Theorem A. The estimates for Jacobi field within
a slightly larger domain containing > are carried out in Section 4. The estimates on
curvature for certain extension are presented in Sections 5-7. In Section 8 we construct
an explicit extension of the metric and prove Theorem A.

Acknowledgements. — The authors would like to express their gratitude to the refer-
ees for valuable suggestions on the improvement of the paper.

2. PRELIMINARIES

2.1. GEOMETRY OF THE TANGENT BUNDLE. — In this section, we formulate some general
facts about the tangent bundle. One can find more details in [Ebe73] and [EOS80].

Let (M, g) be a C?>T o > 0, n-dimensional compact Riemannian manifold with or
without a boundary. Denote by T M the unit tangent bundle of M. For any v € T' M,
let 7y, be the unit speed geodesic in (M, g) such that +,(0) = v. The geodesic flow
¢ : T'M — T'M is defined by setting ¢ (v) = 7/ (t). A vector field J(t) along 7, is
a Jacobi field if J(t) satisfies the Jacobi equation

(2.1) J" () + RO (1), 7, (£) 7, (£) = 0,

JIP — M., 2023, tome 10
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where R is the Riemann curvature tensor and ' corresponds to the covariant dif-
ferentiation along ~,. A Jacobi field is uniquely determined by the values J(0) and
J'(0).

Denote by m : TM — M the canonical projection. For any £ € TTM, let c(t),
for t € (—¢,¢), be a curve on TM with ¢/(0) = £. Define the connection map K :
TTM — TM by K = Vocc(0). It is well-defined since V,o.c(0) is independent of
the choice of ¢. The map dn @ K : TTM — TM & TM is a linear isomorphism. The
kernel of dm : TTM — TM, denoted by H, is called the horizontal subbundle, while
the kernel V' of the connection map K is called the wvertical subbundle. The Sasaki
metric on TTM is defined via

(€,m) = gmo(dm§, dmn) + gro (K& Kn)
for £, € T,TM. We denote by [£| := 1/(£,&) the Sasaki norm of £ € TTM.
Facr 2.1. — Now vectors in the tangent space T,T'M can be identified with Jacobi

fields along 7, in the following way: for any £ € T,(T*M), we define J¢ to be the
unique Jacobi field along v, with J¢(0) = dn{ and J;(0) = K¥¢.

The above identification is invariant under the geodesic flow, namely,

Ipe(e)(0) = Je(t) and I ) (0) = JE(t).

In particular, if we fix £ € T,T'M then g, (Je(t),v,(t)) is independent of t. Thus,
for any & € T, T* M, Je is perpendicular to 7, if and only if (¢, X) = 0 where X is the
vector field on T'M generating the geodesic flow ¢; on (M, g). We denote the space
of Jacobi fields perpendicular to a geodesic v by J(7).

Note that the Sasaki norm of (dy;)¢ is given by

(2.2) [(dipe)&]* = [ JelI* () + 1 Te)1* (2).-

2.2, HypeerBoricity. — Let ¢r: M — M be a smooth flow on a Riemannian manifold
and let X be its generating vector field. Recall that an invariant set A is A-hyperbolic
(where A > 0) if there exist C' > 0 and a continuous flow-invariant splitting

TaAM =RX ® E“® E®

such that for all y € A,

(2.3) lder(y)wll < Ce M |lwl|, ¥t >0, Yw € E*(y)
' and e (y)w]| < CeMjwl], V<0, Vw € E“(y),
where ||-|| is the norm on T, M induced by the Riemannian metric. Distributions E°

and E" are called stable and unstable subbundles on A.
If A = M then ¢y is called an Anosov flow. For Anosov flows the classical Livshits
Theorem is stated as follows.

JIP. — M., 2023, tome 10
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Tueorem 2.2 ([Liv7l, dILMMS6]). Let pr: M — M be a transitive Anosov flow
and let B: M — R be a C" function such that

/mwmﬁ:o

for every periodic orbit . Then there exists u € C"™= (M) such that Xu = 8, where X
is the generator for the geodesic flow.

Recall that r— = r if r is not an integer and r— = r — 1 + Lip when r is an inte-
ger. We will use the following criterion, due to Eberlein, for establishing the Anosov
property of geodesic flows. Another proof of this criterion was given Ruggiero [Rug07]
following an idea of Mafié.

Tueorem 2.3 ([Ebe73], see also [Rug07]). — Let ¢; be a geodesic flow on a closed
Riemannian manifold without conjugate points. Then ¢, is Anosov if and only if all
nonzero perpendicular Jacobi fields are unbounded.

When A # M, the following result lets us extend the hyperbolic structure to a
neighborhood of A.

Levwva 2.4 ([HPPS70]). — Let A be a A-hyperbolic set. Then for any e € (0, ), there
exists an open neighborhood V. of A and extensions E° and E“ of the stable and
unstable subbundles to V. with the following properties:

(1) Local invariance: if an orbit segment [y, o' (y)] C Ve then, dpi(y)E*(y) =

E*(pi(y)) and dey(y)E* (y) = E*(¢e(y))
(2) Hyperbolicity: if an orbit segment [y, ¢*(y)] C V. then

lde:(y)w| < Ce™ A= wl|, Yw e E(y)
1 e u
and  ||dpi(y)w| > 56“ Hlwll,  Vw e E*(y).

Remark 2.5, — The reference [HPPS70] does not contain an explicit statement about
the hyperbolic rate being close to A (item (2) in Lemma 2.4). However, this rate, indeed
can be chosen as close to A as desired by choosing a sufficiently small neighborhood
of A. This follows from the fact that the expansion and contraction rates depend
continuously on the point. In the case when M is 3-dimensional such extensions of
bundles E° and E" can be chosen so that they integrate to locally invariant continuous
foliations. In a higher dimension this seems to be unknown. However, for our purposes
we will merely need locally invariant bundles which do not necessarily integrate to
foliations.

2.3. Tue nypERBOLIC TRAPPED SET. — Let (X2, g) be a smooth n-dimensional compact
Riemannian manifold with boundary. Denote by 7 : T'X — ¥ the canonical projec-
tion and (7'%)° the interior of T'%. Let d_ and 8, be the incoming and outgoing,
respectively, subsets of the boundary of T3 defined by

0y = {v e T'S | n(v) € 9%, +g(v,v) > 0},

JIP — M., 2023, tome 10
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where v is the unit normal vector field to 9% pointing outwards. For any v € 0_, the
geodesic 7, starting at v either has an infinite length or exits ¥ at a boundary point
with tangent vector in d. We denote by £4(v) € [0, 00] the length of 7, in X. Let

I'_:={ved_|ly(v) =00}

For each v € 0_ \ T'_ denote the exit point by s,(v) € 04+. Similarly we define the
set I'y C 04 which is trapped in ¥ in backwards time. Then the trapped set in the
interior of ¥ is defined via
A=T_nNnTy,.

If ¥ has strictly convex boundary, A is the set of v € (T'X)° such that the ¢;-orbit of v
does not intersect the boundary. Throughout this paper we will always assume that
the trapped set is hyperbolic. The stable and unstable bundles of A are denoted E*®
and E", respectively. It is clear from the discussion in Section 2.1 and (2.3) that
both E* and E" are perpendicular to the generating vector field X.

Remark 2.6. When v € A, the isomorphism dr & K : TTM — TM & T'M maps
the invariant subbundles E°(v) to the graph of stable/unstable Riccati tensors UZ on
vt = {w € Tr(p)M | gu(w)(w,v) = 0}, 0 = s,u. See [Ebe73] for more details.

Now we apply Lemma 2.4 to the trapped set with ¢ = % If v ¢ A then the invariant
subbundles along the orbit through v only exist for a finite time and, hence, they do
not have to be perpendicular to X. Nevertheless, we can still obtain perpendicular
invariant bundles by taking the orthogonal component (which only results in a slightly
different constant C' in Lemma 2.4).

More specifically, we define the following linear subspaces of the space of Jacobi
fields along a geodesic 7,:

() ={J|€€E7(v)} and  J7(v)={Jg €€ E(v)},
where J¢ = Jg‘ + J€” with Jg- being a perpendicular Jacobi vector field and Jg‘l being

a tangential Jacobi vector field, i.e., ng\ (t) = (at + B)~,(t) for some «a, B € R. For any
o € {s,u}, let E{(v):={£ € T,T'M | J¢ € 39 (v)}.

Now we have the following variant of Lemma 2.4 near the hyperbolic trapped set A
of the geodesic flow.

Levva 2.7, There erists a neighborhood U of A such that W C Vy /o and for o €
{s,u},

(1) ET are continuous subbundles in U;

(2) T,(T'Y) =RX (v) ® EY (v) ® ES (v) for allv e U;

(3) for any v € U, we denote by (t—(v),t4(v)) the mazimal time interval on which
we(v) € U; then we have doi(v)ET (v) = ET (pi(v)) for allt € (t_(v),t1(v));

4) there exists > 0 such that for all v €

(4) th c’ h that f {1 U,
|dpr(v)€] < C'em M2 g], Vit € (0,4 (v)), V6 € B (v)
and  |dey(y)¢| < CeNAe|, V€ (t-(v),0),Y€ € B (v);

JIP. — M., 2023, tome 10
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(5) let v € U and vt = {w € Tyr(y)M | gu(oy(w,v) = 0}; for each w € v*, there
exists a unique vector £5, € E9(v) such that dn&l = w, and the map XJ : vt —
ET(v), w &5 is a linear isomorphism;

(6) the map UZ := K o X7 is a linear endomorphism on v+ and there exists L > 0
depending only on A such that |UZ| < L for all v € U.

Proof. — By Lemma 2.4, E7 are continuous and invariant under the flow {¢;} in V2,
so we obtain the first three items of the lemma because the splitting into perpendicular
and tangential Jacobi vector fields is invariant under the flow.

Since ET (v) = E°(v) for all v € A, there exists a neighborhood U of A such that
for any v € U for any £ € E*(v) U E*(v) \ {0} we have (¢, X)|/[|€]| < 1/10. Thus,
using Lemma 2.4 (2), we obtain (4) with C’ = 2C. By choosing U sufficiently small
and using [Ebe73, Prop.2.6], we obtain (5). Finally, (6) follows from Remark 2.6
and (1). O

2.4. COMPARISON LEMMAS OF JACOBI FIELDS. Let J be a nonzero Jacobi field along
a unit speed geodesic 7. For any t with J(t) # 0, define
0 oy e LU (), 7))
2 1) gy (J (@), I (1))
Notice that ps is invariant under scaling of the Jacobi field J.
We will use the following comparison lemma from [Gul75] many times in this paper.

Levmva 2.8 ([Gul75, Lem. 3]). — Let v be a geodesic on a Riemannian manifold M
and let J be a perpendicular Jacobi field along . Assume that f: R — R is integrable
on bounded sets and gives an upper bound on sectional curvature as follows

K(span{~'(t), J(t)}) < f(#)
forallt. Let s* € R and let u be a solution of u”+ fu = 0 with u(s*) = ||J||(s*), v (s*)
< I (s%). Assume that u(t) > 0 for s* < t < s*. Then for any s* < t < s**,
J(t) #0, and
p(t) = u'(t)/ult).

Remark 2.9. — Let u be a solution of u” + fu = 0 where f: R — R is integrable on
bounded sets. We define the logarithmic derivative of w by w = u'/u. In particular,
u(t) = u(0) exp fgw(s)ds and w satisfies a first order non-linear equation

w = —f —w?.

This equation shows that if f < 0 then the graph of w crosses the graphs of \/—f
and —+/— f horizontally, w monotonically increases between them and decreases while
above /—f and below —/—f.

Thus, we get a good control on w from below (know that it does not drop to —oo
in the considered time) only if w(0) is above —/—f. In particular, by Lemma 2.8,
in that case we get a control on .

If f > 0, then w is monotonically decreasing so there is no good control from below.

JIP — M., 2023, tome 10
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Cororrary 2.10. Let (M, g) be a compact Riemannian manifold without conjugate
points. For any T > 0, there exists a constant Q = Q(7,g) such that for any v € TM
with v,[0,7] € M the following holds. Let J be a perpendicular Jacobi field along v, .
If uy(0) > Q (we allow p15(0) = 4+00), then py(t) > —Q for allt € [0, 7). In particular,
J does not vanish on (0,7].

Proof. — Because M is compact it admits an upper bound on sectional curvature K2
and we can assume that K > 1.

We argue by contradiction. Assume that there exists 79 > 0 such that for any
n € N, there exists v, € TM with ~,, [0,79] € M and perpendicular Jacobi field J,
along -, with py, (0) > n and py, (s,) < —n for some s,, € [0, 7]. First, we prove
that s, > (2/K)tan'(1/K). If J,(0) # 0, by applying Lemma 2.8 with f = K2,
s* =0, u(0) = [|J]|(0), ¥ (0) = n||J,||(0), we have

() > Z((;)) — —Ktan(Kt —tan~'(n/K)), te[0,7/2K].

Thus 9 5
sn27tan*1nk 2ftanfllf?.
IR (n/K) > = (1/K) i
If J,(0) = 0, we may assume ||J,|'(0) = 1, the solution to u” + K?u = 0, u(0) = 0,
u'(0) =11is u = (1/K)sin(Kt), thus

(1) > Z((tt)) — Reot(Kt), telo,r/K].

Hence s, > 7/2K > (2/K)tan~!(1/K) since K > 1. Thus, in either cases we have

sn = (2/K)tan~*(1/K). In particular,
2 -
0 = = tan” (1/K).
0> = (1/K)

Without loss of generality, we assume that ||J,,]|'(0) = 1 for all n € N. Thus,

(17a11%)" (0) = 295, (0)(J1.(0). Jn(0)) < 2T} 1 (0) [T 1(0) = 21|Tu | (0).
Since py, (0) > n, ||J,]/(0) < n~!. By taking a subsequence if necessary, we may
assume that v, — v, J/,(0) — w and s, — s > (2/K)tan~'(1/K) as n — oo for some
v,w € T'M and s € [0, 7]. Let J be a Jacobi field along -, with J(0) =0, J'(0) = w.
Then J, — J as n — 0o. On the other hand we have p7(0) = +00 and p(s) = —oc0
thus J(s) = 0. This contradicts to the fact that M has no conjugate points. |

2.5. THE SECOND FUNDAMENTAL FORM AND THE SHAPE OPERATOR. — In this section, we
recall the definitions of the second fundamental form and the shape operator and their
connection to sectional curvatures. See [Gro94] for more details.

Let S be an (n — 1)-dimensional smooth manifold. Consider the product (a,b) x S
with a Riemannian metric

ds? = dt* + gy,

where t € (a,b) and g; is a Riemannian metric on S; := {t} x S. In particular, for any
0 € S, we have that v(t) = (¢t,0), where ¢ € (a,b), is a geodesic on (a,b) x S.
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Define my : Rx S — Rx S by 75(t,0) = (t+s,0) for 6 € S. The second fundamental
form on Sy is a quadratic form given by:
1d
(2.5) IIg,(X,Y):= 378 OgHS(dWSX, drsY), VX,Y € T(49)S:, Vte (a,b).
Sls=
The shape operator A(t,0) : T(;9)S; — T(1,6)S: is the self-adjoint operator associ-
ated to IIg, via

s, (X,Y) = g:(A(t,0) X, Y), VX,Y € T(t,O)St-

In particular, A(t, 6) is diagonalizable and its eigenvalues A (¢,0) < -+ < A\p—1(¢,0)
are called the principal curvatures at (t,0). The eigenvectors of A(t,8) are called the
principal directions at (t,0). Define A(t): S — End(T(,.)S¢) via A(t)0 := A(t,0) and
Ai(t): S — R by A;(6)0 := \;i(¢,60). We say that Sy is strictly convez if A1(t) > 0. Let
Amax (St) = max{A,—1(¢,0) | 0 € St} and Apin(S:) = min{A;(¢,0) | 6 € S;}.

For any vectors X,Y € T*!((a,b) x S) such that X and Y are orthogonal, the
sectional curvature of ox y = span{X,Y} is defined by

(2.6) K(oxy) = (R(X, Y)Y, X),
where (-, -) is the inner product corresponding to ds? and R is the Riemann curvature
tensor. In particular,

R(X,Y)Z =VxVyZ —VyVxZ -V xy1Z, forany X,Y,Z € T((a,b) x5),
where [, ] is the Lie bracket of vector fields.

Let T = 9/0t. For any vector X € T'S;, the sectional curvature of oxT =
span{X, T} is given by

(2.7) K(ox,r) = g:(R(1)X, X),
where R(t) := —A(t) — A(t)? and A(t)'(X) := & oo (At + 8)0) (dms X) for all X €
T(w)St.

For any 2-plane ox y = span{X,Y} C T'S; where X,Y € TS, let K'"*(ox y) be
the intrinsic sectional curvature of g; at ox y. Then, the relation between K int (o X,Y)
and K (ox,y) is given by Gauss’ equation:

g, (X, X)1ls, (Y,Y) — g, (X,Y)?
[ X AY; ’

(2.8) K(oxy)=K™(oxy)

where

(2.9) (X AY e = g:(X, X)go(Y,Y) — g:(X,Y)*.

We have the following estimate on K (o) where o is a 2-plane in T'S;.

Levma 2.11. Assume Sy is strictly convex. Then, for any 2-plane o C T(; 9)St,
K(o) < K™(0) — Amin(S:)?.

Proof. — Let {'éi}?z_ll be an orthonormal basis of T{; g)S; consisting of principal direc-
tions. Then, we have

s, (ei,€5) = gi(A(t, 0)€i, e5) = diNi(t, 0),
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where d;; is the Kronecker delta function. Let X = Z;:ll X6, and Y = Z;:ll Y;e;
be an orthonormal basis of o. Then

n—1
L=[XAY]e= Y X7V} - X\ViX;Y; = > (X,Y; - X;Y;)%.
i,j=1 i<j
Thus, we have
n—1
IISt (X7 X)IISt (K Y) - IISt (Xa Y)2 = Z (Xv?}/jz - Xi}/in}/j)Ai(tv 0))‘3 (tv 9)
ij=1
=D (XY = XYM, 0)0(£,60) = Amin(S0)* D_(X0Y5 = X;Yi)* = Amin(S1)*.
i<j i<j
By (2.8), we obtain K (o) < K™ (0) — Amin(S;)?. O

3. PROOFS OF APPLICATIONS

In this section we give proofs of Corollaries B and C.

Proofof Corollary B. — Denote by u the normalized Riemannian volume on ¥ with
respect to g. We can assume that fz p?du < 1. (Otherwise we can exchange the roles
of g and p?g so that the conformal factor becomes 1/p? and proceed in exactly same
way.)

We begin by applying Theorem A and extend (3, g) to a closed Anosov manifold
(X<t g®t). We also extend p to p®*: 3** — R by 1. Denote by u®** the normalized
Riemannian volume on (X, g®t).

Assume p®*t is not 1 everywhere on X°**. Then, by Cauchy-Schwartz inequality,

we have
/ pextduext < 1.
Zcxt

Now following [Kat88, Th. 2], we apply Birkhoff ergodic theorem and Anosov clos-
ing lemma to produce a unit speed geodesic v which approximates volume measure
sufficiently well so that

/ p(y(t))dt < length(y, g).

Let ¢ be a connected component of v N . Denote by ¢’ the geodesic segment for p?g
with the same entry and exit point as c¢. The universal cover ¥ equipped with the lift
of p?g does not have conjugate points. Hence the segment ¢’ is the global minimizer.
Thus

/ P (e(t))dt = length(c, p°g) > length(c’, p°g) = length(c, g)

where the last equality is due to the lens data assumption. By applying this inequality
to each connected component of ¥ N Y and noting that p®™* = 1 outside % we obtain

[ 90y > tengthir. ),
;

which gives a contradiction. Hence p®** = 1. O
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Remark 3.1, Using a local argument it is not hard to show that p|gs = 1. However,
note that in the above proof we do not need to consider an extension of ¢’ and, in
principle, p is allowed to be discontinuous on the boundary of X.

Proof of Corollary C. — We begin by applying our main result to extend X to an
Anosov vector field, which we continue denote by X on X°** 5 ¥. Then we extend 3
by the zero function. Because C"-jet of 8 vanishes on the boundary this extension
remains C".

For any periodic geodesic v which intersects boundary of 3, we have

/ﬁdtzo

from the assumption of the corollary. Further we also have the following

Lemma 3.2. If v is a periodic geodesic in the interior of ¥ then

[ sat=o.
~

Assuming the lemma we can easily finish the proof by applying the Livshits The-
orem 2.2 to B and X to obtain a C"- solution u: ¥°** — R to the cohomological
equation Xu = . To see that u|gixy = 0, pick a dense geodesic which intersect
A(T'Y) in a dense sequence of points {v,}necz. Because the integral of 3 from v,
t0 Up41 vanishes, by Newton’s formula we have that u(v,) = u(v,41) = const. for
all n. Hence, after subtracting the constant we indeed have u[g(71x) = 0. |

To finish the proof of Corollary C, we need to establish the lemma. This lemma is
established using a standard shadowing argument.

Proofof Lemma 3.2. — Recall that the trapped set A C ¥ consists of all geodesics
which are entirely contained in the interior of . In particular, v C A. Without loss
of generality, we may assume that ¥ is connected since 7 lies in one of the connected
components of 3.

We begin by observing that A has a local product structure. Indeed, given a pair of
sufficiently close points z,y € A the “heteroclinic point” [z,y] = W*(z,e) N W(y, )
stays close to the orbit of x in the future and close to the orbit of y in the past and,
hence, remains in the interior of ¥ as well.

The first step of the proof is show that A is nowhere dense. Assume that A has
non-empty interior int(A). Let A be the closure of int(A). It is easy to see that int(A)
and A still have a local product structure. (Hyperbolic set A could be a proper subset
of A, for example, when A has an isolated periodic orbit.) Note that A has positive
volume. The restriction of the Sasaki volume to A is an ergodic measure. Therefore,
by ergodicity, there exists a point p € int(A) whose forward orbit and backward orbits
are both dense in int(A) and, hence, are also dense in A. Because p is in the interior we
have W*(p, e)UW¥(p,e) C A for a sufficiently small € > 0. Then, for any z € A, we can
pick forward iterates of p which converge to x and, hence, because A is closed and
W (p,e) expands, we have W¥%(x) C A. In the same way, by considering backwards
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orbit of p we also have W#*(z) C A. Finally, from the local product structure, for
sufficiently small £ > 0 we have
{2} # Pe(z) = {ly, 2] = W>(y,e) "W (2,6) € A | y € W*(x,¢), 2 € W*(z,6)} C A

In particular, P.(x) contains a neighborhood of z. Thus, we conclude that z in an
interior point of A. This gives that the closed set A is also open which gives a contra-
diction because A is a proper subset of 3.

Now we can use an approximation argument to show that f7 Bdt = 0. Let p € y
and let ¢ € 4" be a point which is §-close to p on a periodic geodesic ' which intersects
the boundary of ¥. Existence of such a point ¢ follows from density of periodic orbits
and the fact that A is a closed nowhere dense set.

We now form a pseudo-orbit by pasting v and +' together and using Anosov closing
lemma to produce a periodic orbit o which passes close to [p, ¢] and first shadows ~
and then +/; see Figure 1. Clearly, such « intersects the boundary of ¥ as well and,
hence, fa Bdt = 0. Orbit a can be partitioned into 3 segments: one which shadows -,
one which shadows ~ and a short remainder segment which appears due to joint non-
integrability of strong foliations. More precisely, we let & = a3 Uag Uars, where oy has
the same length as v and relates to v via unstable-stable holonomy. The segment o is
followed by a2 has the same length as 7/ and relates to 7/ via unstable-stable holonomy.
Note that if we want the starting point of as to be related to g via unstable-stable
holonomy (as indicated on the figure) then we might need to reposition ¢ along +/
to achieve that. Finally, the remaining segment 3 has length < 34 by application
of triangle inequality. (For simplicity, we assume that |a| > |y| 4+ |7/]; if that is not
the case then a1 and ag would overlap and a3 would the the overlap; the same proof
works in this case.)

Ficure 1. Shadowing of v and +'. Here we use green (resp. red) curves
to denote stable (resp. unstable) manifolds.

By the standard “exponential slacking” argument which is used in the proof of the
Livshits Theorem [Liv71] we have

/Bdt—/ 6dt’<6Lip(B) and
Y (¢31

where Lip() is the Lipschitz constant of §.

/7, Bdt—/a2 ﬁdt’< 5 Lip(3),
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Remark 3.3. For the first difference an obvious crude upper bound 6 Lip(8)|y]
would suffice. However for 4/ the above better bound is needed because the length
of 7' goes to +o0 as § — 0.

Because the end-points of a3 are d-close to p and ¢ we also have

/ ﬂdt] < 358l co.

Also recall that f,y, Bdt = [ fBdt = 0. Putting these together we have

LBdt‘—i— /a ﬂdt'+ /a ,Bdt‘

[ | ﬁdt‘ + 36180 < 20 Lip(8) + 30]Bllco.
v’ a2

/ Bdt’ < SLip(8) + / Bdt‘ < SLip(8) +
Y (05}

/ ﬁdt‘ +
o

Taking 6 — 0 we obtain [ Sdt = 0. O

< 0Lip(8) +

4. A JACOBI ESTIMATE FOR GEODESICS WHICH ENTER A DOMAIN WITH HYPERBOLIC
TRAPPED SET

Following the outline of the proof (Section 1.1), we want to control the growth
rates of the logarithm of the square of the norm of nonzero perpendicular Jacobi
fields for the constructed compact Riemannian manifold. Consider a geodesic y and let
T, max () be the length of a maximal time interval so that the geodesic is in the given
Riemannian manifold M with boundary. In the presence of a trapped set, Tas,max(7Y)
can be arbitrarily large as a geodesic can be in the trapped set or accumulate for
arbitrarily long time on it. Since the trapped set is hyperbolic, we can show that
we have a “good” control on the growth rates of the logarithm of the square of the
norm of nonzero perpendicular Jacobi fields in a neighborhood of the trapped set.
The precise result is the following proposition.

Prorosition 4.1. — Let (M, g) be a manifold with boundary. Assume that (M, g) has
no conjugate points and a (possibly empty) hyperbolic trapped set A. Then, there exists
constants Qpr > 0 and Cyy > 0, which depend only on M, such that for any v € 0_
and a perpendicular Jacobi field J along ~y, with py(0) > Qar, J does not vanish as
long as 7y, lies in M. Moreover, the following properties hold:

(1) IfveT_, then ||J||(t) = oo as t — oco.

(2) If v ¢ T, then py(Ly(v)) > —Qun and foz“](v) py(m)dr = —Cyy.
(3) For any sufficiently small 6 > 0, let M_5 := {z € M | disty(x,0M) > ¢}.
Then, (1) and (2) remain valid with the same Qp and Chy if we replace M with M_s.

In order to prove Proposition 4.1 we need to analyze the behavior of Jacobi fields J
near the hyperbolic trapped set A.
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4.1. NEIGHBORHOOD OF HYPERBOLIC TRAPPED SET. For any T > 0, let

Ur(M) :=T'M - U ¢"(0T'M).
—T<tLT
It is clear that Ur(M_s) C Up4s(M) C Ur(M). Moreover the following simple lemma
shows that Ur (M) — A as T — oo.

Leyya 4.2, — For any n > 0 there exists Ty = Tp(n) such that 0, (A) D Ug,, where
Oy (A) is the open n-neighborhood of A in the Sasaki metric.

Proof. Notice that for any T' > 0 we have Ur is an open set and A C Up. Assume
that the conclusion of the lemma does not hold. Then, there exists 9 > 0 such that for
any n € N we have O,,,(A) 2 U,. In particular, for any n € N there exists z,, € T*M
such that z, € U, — Op,(A). Moreover, U,4+1 C U, for any n € N, and, by the
definition of the trapped set, we have A = (1, .y Uy.

By the compactness of T'M, we obtain that there exists € T'M such that
zn, — « in the Sasaki metric as n — +oo. Moreover, since z,, ¢ Op,(A), we have that
x ¢ Oy (A). Also, Oy /2(A) = Nen Ono/2(Un). In particular, there exists j € N such
that € T*M — O, /2(U;) for any i > j. Thus, we obtain the contradiction to the
fact that x,, — x as n — 400 because for any i > j we have x; € U;, so the distance
between = and z; is at least 79/2. O

4.2. InvArRiANT Jacosr FiELDS NEAR A. — Let U be the open neighborhood as in
Lemma 2.7 with constant C’. We pick Ty satisfying Uy, C U using Lemma 4.2. For
each v € U and w € v1, let £7 be the vectors defined in Lemma 2.7(5) and denote by
Jg = Jeo . We have

(4.1) (J2)'(8) = UZ,, i (t).

ptv
By Lemma 2.7(6), there exists L >0, which is independent of v, such that |UJ| <L
for all v € U. Together with (2.2) and (4.1) we know that whenever ¢'v € U we have
o o g 2 o
(4.2) ldee(€5)17 = 17517 () + (NI (E)7 < 1+ LTI (),

for all w € v*. Here |-| is the Sasaki norm defined in Section 2.1. Notice that the
constants C’, L, depend only on U.

4.3. Drcomposition or Jacosr FieLps NEAR A. — Let J be a perpendicular Jacobi field
along v, for some v € 0~. Let Ty be the constant in Lemma 4.2. When ¢ (v) > 2Ty,
let € € Ty (v)T"M be the tangent vector at o, (v) with J(t + Tp) = Je(t). Since
we(v) € Wtor t € [Ty, Ly(x,v) — Tp], by Lemma 2.7, we can decompose ¢ as

E=g e,
where £7 € E7 (¢, (v)) for 0 = s, u. This decomposition can be represented in terms
of Jacobi fields as follows:

J(t) = J*(t —To) + J“(t — Tp), Vt € [To, Ly(v) — Top),
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where J? = Je, € J9 (pr,(v)). The following proposition shows that the unstable
component of £ cannot be too small when £7(0) and £4(v) are sufficiently large.

Prorosition 4.3. — Assume the sectional curvature of M is bounded from below by
—k2. Let Q(Ty, g) be the constant defined in Corollary 2.10. Then there exists D,{ > 0
depending on A and U such that for any v € d_ with {,(v) > 2Ty + D, and any
perpendicular Jacobi field J along 7, with py(t) > max{k + 1,Q(To,g9)} for some
t € [0,Tp], we have [£*| = (|€].

Proof. — We argue by contradiction. Assume that we can find ¢, € [0,To], v, € 0—
with ¢4 (v,) = oo and J,, perpendicular Jacobi fields along v, with ps, (t,) >k +1
but at the same time |¢| < 1|¢,|. We may assume t,, — ¢, v, — v by passing to a
subsequence and it is clear that v, stays in Ug, for ¢ > Tp. In particular, v € I'_.
By definition of Q(Tb,g), Jn(t) # 0 for all n and t € [0, Tp]. Without loss of gener-
ality we assume that |, | = 1 for all n thus J,, — J for some Jacobi field J along -, .
By Lemma 2.7 the invariant bundles depend continuously on the base vectors, thus
the projection to invariant components of Jacobi fields through U is continuous. Hence
we have J(t) = J*(t — Tp) for t > Tp. Since v, stays in M for t > Ty, we also have
|pes] < k by [Ebe73, Prop. 2.11]. On the other hand, since pj, (t,) > k + 1 for all n
and J, — J, t, — t, we have pu;(t) > k + 1 > k which provides a contradiction. O

Proof of Proposition 4.1. — Take T > D so that

0/2

CQ(W AT _ sze—AT(Q + 3)) > 1.

2
It is clear that T also depends only on A and U. We take
Qur = max{k +1,Q(2Ty + T, 9)}

with k as in Proposition 4.3 and @ given by Corollary 2.10.
First assume that {y(v) > 2To + T If p;(0) > Qur, by Proposition 4.3 and the
parallelogram law,

€1 =€ - 6P < 2P + 2 < (2+ ) e

For all t € [f, ly(v) — 2Ty), by Proposition 4.3, (4.2) and definition of hyperbolicity
we have

@3) ITIPE+T0) > ZIT IR0 = 1710 > g ede)E — el

CIQSAt 0 0’26)‘t 2
> w2 2, —At 52> 2 =)t “ w2
> s P -0 Mer (—2(1“2) e (24 ;) )€
C"? 2
S (2 At A2 —At 4 2 _
> C(ggpm @ - 0% (2 @) I

Hence we finishes the proof of item (1).
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When v ¢ T'_ estimate (4.3) and our choice of T imply that || (4g(v) — Tp) >
IIJ11(To), which can be written as

eg (v)=To
/ wr(T)dr > 0.
To

Moreover, we have f17(t) > —Qas for all t € [(4(v) — Ty, £4(v)]. Otherwise by revers-
ing time, applying Proposition 4.3 and repeating an argument similar to the above
argument, we have ||.J||(¢4(v) — To) < ||J]|(To), contradiction.

Hence when £4(v) > 2T, + T, we have py(lg(v)) > —Qunr and

Ly (v) To Lg(v)
/ HJ(T)dT>/ MJ(T)d7'+/ py(r)dr = —2ToQw,
0 0 ¢

g(v)—To

If ¢, (v) < 2Tp + T, then by Corollary 2.10 we have

Zg(v) ~
/ js(r)dr > —(2Ty + T)Qar.
0

Thus by taking Cy := —(2Tp + T)QM we finish the proof of (2). The only part
left is (3). Recall that all the constant C, L, ¢, T depend on A and its neighborhood U.
By replacing M with M_s we still can work on a smaller neighborhood of A thus the
same argument goes through without any change. Thus we have finished the proof of
Proposition 4.1. O

5. ])EFOBMAT[ON TO NEGATIVE SECTIONAL CURVATURE

In this section we consider a cylinder with a given metric on a neighborhood O
of one of the boundaries, and extend it to a metric on the whole cylinder so that
the sectional curvatures is arbitrarily negative outside a small neighborhood of O.
We provide bounds on both sectional curvatures (see Section 5.1, Proposition 5.3,
Lemma 5.4) and the principle curvatures of the equidistant sets. In particular, all the
equidistant sets are also strictly convex. See the precise formulation of the main result
Proposition 5.2 of this section which is proved using the mentioned curvature bounds.

5.1. Tue serup AND NoTATION. — We use notation from Section 2.5.
Let S be an (n — 1)-dimensional smooth closed manifold. For £ > 0, consider the
product (—¢,0] x S with a Riemannian metric

(5.1) g = dt* + g,

where ¢; is the Riemannian metric on the hypersurface S; = {t} x S. Assume Sy is
strictly convex and recall that h = 2Ilg, is the positive definite second fundamental
form at ¢ = 0. For any 6 € S, since h is symmetric, there exists an orthonormal basis
{e;}?=} of gy such that h(e;, e;) = 2X:(0,60) > 0 where \;(0,6) is the i-th principal
curvature at (0, 6). Our goal now is to extend the metric in a controlled way for ¢ > 0.

More generally to setup terminology, we can consider a manifold of the form
[a,b] x S with coordinates (t,0) where ¢ € [a,b] and 6 € S. We say that a tangent
2-plane o at (t,0) is orthogonal to Sy if o contains a normal vector to S. As a result,
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we define orthogonal sectional curvatures of [a, b] x S as curvatures of tangent 2-planes
orthogonal to S; for some t € [a, b].
Let p: R — [0, 1] be a non-increasing C*° function such that p = 1 on (—o0, 0] and
p=0on [1,00). For any £ > 0, a function f;: R — R is given by
et —1

fe(t) = T teR.

Remark 5.1. — For any metric ¢’ on Sy, we consider its push-forward to a metric
(m¢)«g’ on Sy which we still denote by ¢’ using a slight abuse of notation.

5.2. DerorMATION OF THE METRIC. — We prove the following result assuming Propo-
sition 5.3 and Lemma 5.4.

Prorosition 5.2 (Notation of Section 5.1). — Let h = 2IIg,. Consider the manifold
[0,1+¢] x S with Riemannian metric gy . = dt* + g;, where

g =p(t—e)go+ fe(t)h  forall te€]0,1+¢].

Then, for any My > 0 there exists Kg = K4(g) and Lyeg = Lneg(Mo, g,€,p) > 0 such
that for any £ > Ly the following holds:

(a) all sectional curvatures of gy are bounded from above by K,;

(b) all sectional curvature of gp. on [e,1+¢] xS are bounded from above by —My;

(c) for allt € [0,1 + €], St is strictly convex. Moreover, the principal curvatures
of St fort €]0,¢] are bounded below by Amin(So).

Proof. — Recall that h is positive definite. Item (c) will be proved later in Proposi-
tion 5.3(1).

Let o be a tangent 2-plane at (¢g,6p) € [0,1 + €] x S. If o is orthogonal to Sy,
then Proposition 5.3 (2) implies that it satisfies a and b for sufficiently large Lyeg.
Otherwise, 0 = ox o1,y With a > 0 and {X, Y} being orthonormal in T, g,)St,-

Thus, by (2.6), the sectional curvature of o is given by

1
Kic(oxtary) = e (Ree(X +aT, Y)Y, X +aT)

1

= 1oz (Kecloxy) + @®Kee(ovir) + 20(Reo(X, Y)Y, T)),

where Ry . is the Riemann curvature tensor.
Assume that X = "7 Xi(my )wes, Y = S0 Yi(ms, )wei, where {e;}77] is the
orthonormal basis defined in Section 5.1. Since {X, Y} are orthonormal in T(4, 6,)St,,

(5.2)

we have
n—1 _ n—1 " n—1 o
(5.3) NoXP=Y V=1, > XY, =0,
i=1 i=1 i=1
where

(54) Xi = Xi/p(to — &) + 2fe()i(0,00), Y; :=Yin/pl(to — &) + 2fe(to) X (0, 6o).
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In particular, by (2.9),

n—1
(5.5) L=[X Y], = Y X2V - XV, XY, =) (XY, - X;Y0)%
i,j=1 i<
By (5.4), we know that
X X4 _ 14

Vot —e)+2fe(0)Xi(0,00) — /p(t — &) + 2fo(t) Anin(So)

Moreover, we have

(5'6) ‘<R€75(Xa Y)Y> T>|

n—1 n—1
=1 Y XYYeR) | =D Vi > (XiY; — X;V)RY,
i,4,k=1 k=1 i<j
n—1
< Cifito) Y Vil Y IXiY; — X;Yi| by Lemma A.1
k=1 1<J
C1f(to) ST e e
< - Y X;Y, — X,;Y;| by (5.4),
(p(to — €) + 2fe(to) Amin (S0))*/2 ,;‘ I;' 1ol by )
Cif)(to)v/n(n —1 L S = =
< lff( O)\/>( ) 3/2 Z|Yk|QZ|XLY7 _Xjn|2
V2(p(to — €) + 2fe(to) Amin (S0)) Pt i<

= Crfi(to)y/n(n —1) .
© V2(p(to — €) + 2fe(to) Amin (S0))3/2 by (5.3) and (5.5),

where we have used the Cauchy-Schwartz inequality after using (5.4). Thus,

[{Ree(X,Y)Y,T)] — 0 uniformly in ox,y and tg € [e,1 +¢] as £ — .

Moreover, by Lemma 5.4, we have that Ky (ocxy) — —oo uniformly in oxy and
to € [, 14¢]. By Proposition 5.3 (2), K .(oy,r) < 0 for large enough L. Therefore,
by (5.2), we obtain b in the proposition for a sufficiently large Lyeg.

Now we consider the case when tg € [0,]. By (5.8) we have

fé(to))\min(SO)

Amin(Sto) = 1+ 2f0(t0) Amin(So)
Thus
R ) 2a C1yv/n(n —1) fi(to)
(5.7) 1+ a2 )\mln( to) + 1+ a2 \/Q(].+2f£(t[)))\min(s()))3/2
1 ) 2.2 awz
T 2 S (S0 20750 )
1 a*Cin(n —1)* < Cin(n — 1)

S U2/t mm(50) A0~ Aum(So)2
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where z = f}(t0)//1 + 2f¢(to) Amin (So). Recall that by Proposition 5.3 (2), K¢ (oy,r)
< 0 for a sufficiently large Lyq. Therefore, by (5.2)(5.6)(5.7) and Lemma 5.4, we have

(Koe(oxy) +a*Ko(oyr) + 2a(Re (X, Y)Y, T))

2a Civ/n(n — 1) fi(to)
1+ a? \/5(1 + 2f[(t0))\min(s))3/2
Cin(n —1)?

Amin (S0)?

where K;;‘;x [0,1] is defined in Lemma 5.4. Hence, we obtain item a of the proposition.
O

KZ,& (UX+aT,Y) 1-1-7

1 int 1
S ] 4 g2 max[01] - 1+ a2

)\min(Sto)Q +

< max{0, Kp 0,1} + =: Ky,

5.3. UPPER BOUND ON ORTHOGONAL SECTIONAL CURVATURES

Prorosition 5.3 (setting of Proposition 5.2). — For any My > 0, there exists L1 =
Ly(My,e,g,p) >0 such that the following holds:

(1) Hypersurfaces Sy are strictly convex for all £ > Ly and all t € [0,1 + €].
Moreover, the principal curvatures of Sy fort € [0,¢] are bounded below by Amin(So)-
Also, Ain(St) — oo uniformly int € [e,1+ €] as £ — oo.

(2) Let Kj_(t) be the mazimum sectional curvature among planes ox . on
([0,1+¢] x S,ge.), where X € T'S;. Then, for all ¢ > Ly and allt € [0,1 + €],

Kés(t) < —M,.

Proof. — For any 0 € S, let el € T, 9)S; be defined by e! = (m;).e;, where {e;} is
the orthonormal basis in Section 5.1. By construction, {e!}”~/" is an orthogonal basis
of Tiy,6)St for t € [0,1 +¢]. Thus, any X € T(; 4)5; can be written in the coordinates
as (X1,...,X,_1)T with respect to {eﬁ}?:_f. In particular,

gt(Xv Y) = XTG(ta 0>Yv
where

G(t7 9) = dlag(p(t - 6) + 2f@(t))‘1(07 9)7 R p(t - 6) + 2f€(t)/\n*1(07 0))
For any t € [0,1 + €], the second fundamental form on S; is given by

1 _+0G
s, (X,Y) = §XTE(1§, 0)Y, XY €Ty0S:
Recall that A(t,#) is the matrix of the shape operator on S; with respect to the
basis to {e! ?:_11, i.e., the i-th column of A(t,0) is the image of e! under the shape

operator. Then, by the definition of the shape operator,

190G
At,0) = = —(t,0)G(t,0)".
(1,0) = 507 1,0)C(1,0)
Therefore, the i-th eigenvalue of A(t,0) is given by
1ni(t,0) + fi(t) pt —e)
(t,0) = = B TR e (2, 0) = 2L )
Ai(t, 0) S0 T o)’ where 7;(t,0) 27, (0.0)

In particular, Apin(S¢) — oo uniformly in ¢ € [¢,1 + ] as £ — oco.
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Furthermore, for ¢t € [0, ], we have

1 fo(@)
5.8 At 9) = —— 18
58) 0= 3000 + 1)
Therefore, if £ > 2\ pax(So) then

1 ‘
2 [0n;(0,6) — 1]e— +1

)\i(tve) = = /\1(07 9) P )\min(SO)'

Thus, there exists El = Zl(s, Amin (50)5 Amax(50), ) > 2Amax(So) such that for all
¢ > L, we have Amin(S¢) > 0 for all t € [0,1+¢] and i = 1,...,n — 1. Thus, all
hypersurfaces S; are strictly convex and the principal curvatures of S; for t € [0,¢]
are bounded below by Amin(So) proving Proposition 5.3 (1) for £ > L.

Moreover,

0 19%°G 1 9
5 AL0) = 55 (1.0)G(1,0) 7 —2A(1.6)°.
Hence
0 s 1 0°G 1 9
(5.9) — o A10) — A(0)” = —5 T (1 0)G(1,0) 7! + A(t,0)*.

Using (5.9), we obtain that the eigenvalues of R(t,6), which is given by the matrix
of R(t)0 relative to {ef}"' (see (2.7) for definitions), for all i € {1,...,n — 1} are

given by
wmm+ﬁwq+1wmw+ﬁ@r
ni(t,0) + fo(t) |~ ALmi(E,0) + fu(t) |

By (2.7), we obtain Ke%g(t) = maxges 1i(t, 0).
For all ¢t € [0, €], we have

1
Ti(t,@) = —5

(5.10) ri(t,0) = —;{

) (1) 1 fo(t) 2
[771'(07 J) Jtr fz(t)} 1 [771‘(0793 i fz(t)}
52 eét £2 elt 2
) [zni(o,e) —1+ etft] T [em(o,e) —1+ e“}
B £2 ’t

1 [(zni(o,a)e— Tteft 1)2 - 1}

-5 Eoaeme) - <5 -1

= —LXi(0,0) + 22(0,0) < —LAmin(S) + A2, (S).

We conclude that for all £ > (Mg + A2,,.(S0))/Amin(So) and for all t € [0,¢],
we have Kz-s(t) < —Mp.
Moreover, by (5.10), since

ORI O
fg(t) fg(t) eft —1
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fort € [e, 1 +€], as £ — 0o, we have
of(e0) + P ] LT g 0) et T e e e
an(t,ﬂ)—&—e“—l it 0)+e*—1] — 2 4 4~
Thus there exists Ly = La(Mo, &, Amax(S0), Amin (S0 ), p) such that Kj)-g(t) < —M, for
all £ > Ly and t € [e,1 +¢].

Finally, taking L; = max{L1, L2, 2Amax(50), (Mo + A2, (S0))Amin(So0)} finishes
the proof of Proposition 5.3 (2). O

T (t, 0) =

5.4. UPPER BOUND ON LEVEL SECTIONAL CURVATURES
Lemma 5.4 (setting of Proposition 5.2)

There exists a constant Ly = La(€, Amin(S0), p) such that for any t € [0,1 + €],
any tangent 2-plane o C T(; 9ySt, and £ > La, we have the following upper bound on
the sectional curvature of g at o:

KZ,E( ) Kmt 0,11 — AInin(St)Qy

max
where K, é“; (o) the intrinsic sectional curvature of gy at o, K2t (g) is the mazimum
sectional curvature on (S,9), and

Krlrrlletxx [0,1] = afél[%ﬂi {K™ (g0 4 ah), K™ (agy + h)}.

Moreover, Ky (o) — —00 as £ — oo uniformly in o and t € [e,1+ ¢].

Proof. — According to the proof of Proposition 5.3, there exists a positive constant
L = Zl(a)\mm(S’o),)\maI(SO),p) such that for all £ > L; we have S, is strictly
convex for all ¢ € [0,1 + ¢]. We take Ly > L; such that for any [ > Lo, fo(e) > 1.
By Lemma 2.11, we have

KZ,E( ) Kmt( )*)\min(st)z-
Now we estimate K" (o) from above. For any fixed £ > Ly, if fy(t) < 1, then t < e.
Thus, K% (o) < K2 If fo(t) > 1, then

max,[0,1]"
L int p(t —¢€)g(0) Ki?;x.[o 1 peint
" h + ’ < ’ : KIIII;laX N
fe(t) ( fe(t) ) fe(t) 0.1]
Thus, K% (o) < K@ o1 for all o with ¢ € [0,1+¢].

max

K% (o) =

Furthermore, using Proposition 5.3 (1), we obtain that K, .(0) — —oo uniformly
incandtelel+e¢l] O

6. “ROUNDING” THE METRIC

In this section we consider a cylinder with given metrics on the boundaries. Then,
we use a linear combination of those metrics on each equidistant set to define a metric
of the form ¢ = dt? + §; on the whole cylinder so that it has the given metrics on
the boundary. Then, by choosing an appropriate exponentially growing function fy
of the distance to one of the boundaries, we can guarantee that a metric § = dt? +
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fe(t)g: has arbitrarily negative the sectional curvatures (see Propositions 6.3, 6.4).
We can guarantee that all the equidistant sets are also strictly convex. See the precise
formulation in Proposition 6.1.

Our aim is to glue a given metric on the manifold with boundary with the standard
hyperbolic metric. In regards of that, Proposition 6.1 allows us to “round up” the
metric through the cylinder meaning have a non-conformal metric on one end of the
cylinder and a conformal metric on the other end of it while having arbitrarily negative
curvature and strict convexity of the equidistant sets.

Prorosition 6.1 (Notation of Section 5.1). — Let h and h be Riemannian metrics
on S. Consider the manifold [0,1 + €] x S with Riemannian metric go. = dt* + Gy,
where
Gi = fe(t+1+e)(p(t)h + (1 — p(t)h), te[0,1+¢].
Then, for any My > O there exists L, = LT(MO,s,h,lAL, p) > 0 such that for any
¢ > L, the following holds:

(a) All sectional curvatures of gy are bounded from above by —Mj.
(b) For allt €[0,14¢], St is strictly conve.

Remark 6.2. We will use Proposition 6.1 in Proposition 7.1 for h = 2IIg,, where S
is from Section 5.1, and h being the standard round metric of curvature 1 on a sphere.

Proof. — The proof follows the same general approach as the proof of Proposition 5.2,
so we omit some of the details.

By Proposition 6.3 (1), we have item (b).

Moreover, by Propositions 6.3(2) and 6.4, we only need to prove a for a tan-
gent 2-plane o at (to,0p) which is neither tangent nor orthogonal to S;,. Then,

0 =0Xx+ar,y Wherea >0, X|Y € T(ltO 90)Sto and X,Y are orthogonal.

For any 6 € S, let {e;}7~]' be an orthonormal basis of h which also diagonalizes h
and let h(e;, e;) = p;(0). In particular,

n—1 n—1
X =) Xi(my)se; and Y =Y Yi(m,).es,
i=1 =1

where for all ¢ € {1,...,n — 1},

1
6.1 Xil il < i |
( ) ‘ | | | fé(to+1+5)1/2m1n{17umin(s)}1/2

Using Lemma A.2 and (6.1), we obtain that for all ¢y € [0,1 + €]

(n—1)*D; (1 2(1 + umax(S))> fil+e) + fo(1+e)M,,
min{1, ftmin(S)}2 2min (S) fe(1+¢)3/2

— 0 as ¢ — o0.
Thus, by (2.6), (5.2), and applying Propositions 6.3(2) and 6.4 for My + 1 instead

of My, we obtain that there exists L, = L, (My, e, h,ﬁ, p) > 0 such that for all £ > L,,
we have K (o) < —M, for all ¢y € [0,1 +¢]. a

(R(X, Y)Y, T)| <
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6.1. UPPER BOUND ON ORTHOGONAL SECTIONAL CURVATURES

Prorosirion 6.3 (Setting of Proposition 6.1). — For any My > 0, there exists a con-
stant L1 = L1(Mpy, ¢, h,?z,p) > 0 such that the following holds:

(1) Hypersurfaces Sy are strictly convex for allt € [0,1+¢]. Moreover, pimin(St) =
min{u;(¢,0) | 0 € S, i =1,...,n — 1} — oo uniformly int € [0,1+¢] as £ — ©
where {p;(t,0)} are principal curvatures of S;.

(2) Let Kj_(t) be the mazimum sectional curvature among planes ox . on
([0,1+¢] x S,Gr.), where X € T*S;. Then, for all ¢ > Ly and allt € [0,1 + €],

K;)E(t) < —M,.

Proof. — The proof follows the same approach as the proof of Proposition 5.3 so we
omit some details.

For any 6 € S, let {e;}7=;' be an orthonormal basis of h such that ﬁ(ei, ej) = pi(0).
Let pimax(S) = max{u;(0) | ¢ € {1,...,n — 1},0 € S} and similarly pmin(S) =
min{p; () |i € {1,...,n—1},0 € S}.

For any 0 € S, let e! € T4 9)S; be defined by e! = (m;).e;. By the construction,
{el}r ! is an orthogonal basis of T(1,0ySt for t € [0,1 + ¢]. Thus, any X € Ti; 95
can be identified with the coordinate vector (X1, ... Xn,l)T with respect to {et o 11

In particular,
a(X,Y) = XTG(t,0)Y,

where
G(t,0) := fo(t + 1+ e)diag(p(t) + (1 — p(£))pa(0), ... p(t) + (1 = p(t)) tn—1(8))-
For any t € [0,1 + €], the i-th eigenvalue of A(t, 0) is given by
1/fit+14¢) P ()1 — i (0))
i t,@ = (L + .
w0 =5 (5o 9 * 70+ 0= 0@
Thus, there exists L1 = L1 (€, ttmin (S), fimaz (S), p) > 0 such that for all £ > L; we

have mingeg p;(t,0) > 0forallt € [0,1+¢] and i = 1,...,n— 1. Thus, S; are strictly
convex. Moreover, we have

(6.2) tmin (St) — oo uniformly on ¢t € [0,1 + €] as | — oo.

Using (5.9), we obtain that the eigenvalues of R(¢, ) which is the matrix of R(t)d
in the basis {ef}?]' (see (2.7) for definitions) for all i € {1,...,n — 1} are given by

Ti(t,e):_z{fi(ﬁura)

(t+1+e)
210 }
fe@+142)(p(t) + (1= p(t)ps)  p(t) +
}[fé(t+1+€) ()(1—uz 9)) r
ALfe(t+1+e) = p(t) + (1 — p(t))pa(0)
Since Ké{-g(t) = maxgeg 7(t,0), there exists a constant Ly = Lo(Moy, €, timax(S), p,
tmin(S)) such that Kj)-g(t) < —My for all £ > Ly and t € [0,1 +¢].
By taking L; = max{L, Ly}, we prove Proposition 6.3. O

+ (- p)(
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6.2. UPPER BOUND ON LEVEL SECTIONAL CURVATURES

Prorosition 6.4. — Assume we are in the setting of Proposition 6.1. For any My >0,
there exists a constant Ly = Lo(Mo,e,h,h,p) > 0 such that for any £ > Lo, t €
(0,1 +¢], and tangent 2-plane o C T(4 9)St, we have Ky (o) < —Mo.

Proof. — For any 2-plane o C T(; 4)St, we obtain

1

Kint A,O’ —

K™ (p(0)h + (1= p(t)) h,0)
— 0 as {— oo uniformly in o and t € [0,1+ ¢].

By Proposition 6.3(1), for all £> Ly and t €0, €], we have that S, is strictly convex.
Moreover, fimin(S:) — oo uniformly in ¢ € [0,1+ ] as £ — co. Thus, by Lemma 2.11,

Kio(0) < K™(Gy,0) = fimin(St)* — —o0 as £ — oo uniformly in ¢ and ¢ € [0, 1+¢].

As a result, for any My > 0 there exists a constant Lo = LQ(M(),&,h,?L,p) >0
such that Ky (o) < —Mp for all t € [0,1 + €], tangent 2-plane o C T{; ¢)S;, and all
> L. U

7. Tue C11 anp O™ EXTENSIONS

The goal of this section is to construct a C!:!'-extension to the constant negative
curvature of a given metric on the product of infinite ray and a sphere. In the second
half of this section we will mollify the C™! metric to obtain a C> metric while still
controlling the curvature.

7.1. C! EXTENSION TO CONSTANT NEGATIVE CURVATURE. — We use the notation intro-
duced in Section 5.1. We also assume ¢ is small enough so that the principal curvatures
of S; are at least 3\ pin(So)/4 for t € (—¢,0).

Prorosition 7.1 (setting of Section 5.1). — Assume S is a sphere and ds?_, is the
standard round metric of curvature 1 on S. Let h = 2Ilg,. For any My > 0 and
My > 0 there exist Ky = K4(g) and L = L(My, M1, g,¢,p) such that for any ¢ > L
there exist k > M; and ¥ > —2 — 2¢ with the following properties. Consider the
manifold (—e,00) x S with the Riemannian metric g = dt> + g&*
Gt te (_57 0)7

p(tig)g()‘i»ff(t)hﬂ t€[071+5]7

9= ROt —1—h+ (L= plt—1—e)ds2_,)),  te[l+e2+2],

where

1 2
(Esmh[f@(wm) ds_,,  te[2+ 2, 00).
Then, the following holds:
(a) g“¢ is a CYL-metric which is O if t # 0,2 + 2¢;
(b) all hypersurfaces Sy are strictly convex. Moreover, the principal curvatures of S

are at least Amin(So) for t € (0,¢);
(¢) all sectional curvatures of g“¢ on (—e,€) x S are less than or equal to K,;
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(d) all sectional curvatures of g“¢ on (g,2+42¢) x S are less than or equal to —My;
(e) all sectional curvatures of g“¢ on (2 + 2¢,00) x S are —r2.

Proof. — Notice that h is a Riemannian metric on S as Sy is strictly convex.

Because f; and p are smooth the metric ¢“¢ is smooth in each component. Via the
choice of fg, p and & (in Lemma C.1), it is clear that g“¢ is smooth at ¢t = 1 4 ¢ and
Cl1 at t = 0,2 + 2¢. Thus we obtain (a). Moreover, Lemma C.1 shows that there
exists Zl = El(Ml) such that for any £ > Zl, the associated & is at least M;. Item (c)
follows from Proposition 5.2(a), while (e) follows from Lemma B.1.

Notice that the construction on ¢t € [1+¢,2+42¢] is just a translation reparametriza-
tion of the metric in Proposition 6.1. Thus (d) follows from Proposition 5.2(b) and
Proposition 6.1(a). Finally we get (b) via Proposition 5.2(c), Proposition 6.1(b) and
the assumption of € above this proposition. O

7.2. SMOOTHING OF THE EXTENSION FROM SkcTioN 7.1. — We apply a technique devel-
oped in [EK19] to smooth out the C1'! metric we obtained in Proposition 7.1.

Prorosrrion 7.2. Consider My > 1. Let gg’s be the Riemannian metric on
(—e,00) x S from Proposition 7.1 with My = M2. Then, for any § € (0,£/2) there
exists Ko = Ko(¢,€) > 0 and a smooth Riemannian metric g on (—e,00) such that
the following holds:

(a) g% = g% on ((—e,—d]U [62+25—5]U[2+25+5,oo))><S’;

(b) the sectzonal curvatures of g&¢ on (—9,0) x S are bounded above by Ky;

(c) the sectional curvatures of G5 on (242 —§,2+2c+6) x S are bounded above
by (M1 — 1) 5

(d) all hypersurfaces Sy are strictly convex; moreover, the principal curvatures of St
are at least Ayin(So)/2 fort € (=9,9).

Proof. — Pick a function ¢ € C°(R) such that v is supported on [—1,1], ¢ > 0 and
Jg ¥ = 1. For any n > 0 define a smooth mollifier

by (t) =07t /n).
For any given 4, let 35 be a bump function vanishing on |¢| > ¢ and with value 1 for

|t| < §/2. We fix £ and € and are going to smooth out g“ near {2+ 2¢} x S and near
{0} x S.

Step 1: Smoothing near {2+ 2¢} x S. — Notice that for t € [2+ ¢, 00|, we can express

g% in the following way: g*° = f(t)2ds2_,, where

B fe(®), te24¢,2+ 2]
=14
f(t) bmh[ﬁl(f +7)] , € 24 2, 00).

Since g“¢ is OV, so is f. The sectional curvature for g on t > 2 + ¢ is given by

K(0) = cos0(=F"/T) +sin?0(1/7* = (T /7)*).
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where 6 is the angle between the tangent 2-plane ¢ and 7. By Lemma B.1, we have
— [y — —2 — —\ 2
F>0, F/f>M and 1/f - (f/f)

Take the convolution of f with ),

- F(t — ) (s)ds

By properties of convolution, 771 — fin C' as n — 0. Define

Fa(t) = (1= Bs(0)F (1) + B3 (D) (8).
Let
% e fn( ) Sp—1-
We have that fn is smooth and f77 — f in C! topology, thus there exists n; > 0 such
that for all n < 7y,

= = 52
Fy>0 and 1/F2 - (F/5)F < (- 1)
Hence all S* with ¢t € (24 2 — 6,2 + 2¢ + §) are strictly convex.
In order to finish the proof of (¢) we only have to estimate f '/ fn When [t—2—2¢| <

/2, fn(t) = 777(15). Thus
/f (t = 5)n(s /M1 (t = )y (s)ds = MF, (1),

When [t — 2 — 2¢| € [§/2, 0], since f is C? on these intervals, we have f77 — fin C?
topology and we can find 7 such that for any n < g, f/f, = (M1 — 1)2. We finish
the proof by taking n < min{n,n2}.

Step 2: Smoothing near {0} x S. We define g, := dt* +g,, on (=0,8) x S via
convolution

n
yn,t = / gt—sd)n(s)ds
-n

It is clear that g, — ¢ in C"'. Since g is C™! with respect to t and smooth with respect
to coordinates on S, % dt2 g, is bounded by the Lipschitz constant of dtg, while other
second order derivatives of g, converge to those of g. Thus all second derivatives of g,
are uniformly bounded on any compact set. Hence there exists 73 > 0, Ko > K, such
that for any 1 € (0,73), the sectional curvatures of g, are bounded above by K¢ /2 on
[-9,0] x S.
Define
ghs = dt? + 3.5,
where
357 = (1= B5(0)gb= + Bs()7,-

We need to establish the bounds on sectional curvature when [t| € [6/2, §]. Notice
that in these domains g is at least C?, thus §n — gin C? asn — 0 on both [§/2,6] x S
and [—d, —0/2] x S. Hence for any fixed ¢, § ¢ — g in C? topology on these domains.
Since Ky > K, and the curvature of g“¢ on (—6,8) x S is bounded above by K,
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by Proposition 7.1(c), there exists 74 > 0 such that for any n < 74, the sectional
curvatures of ﬁf;’e on both [§/2,0] x S and [-d,—0/2] x S are bounded from above
by Ky. Thus we obtain item (b).

Now we prove (d), since ﬁfﬁ — ¢ in C" topology as 7 — 0 and principal curvatures
depend merely on §f]’5 and %ﬁfﬁ, by Proposition 7.1(b) and the assumption on &
above Proposition 7.1, we know that there exists 15 > 0 such that for n < ns, the
principal curvatures has a uniform lower bound Apin(So)/2.

We finish the proof by taking g*¢ := ﬁf;’e with 0 < i < min{ns, 4,75} O

8. ANOSOV EXTENSION

The goal of this section is to prove the main theorem whose statement we recall.

Tueorem 8.1 (Theorem A). — Let (3,g) be a compact smooth Riemannian mani-
fold with boundary. Assume that each component of the boundary is a strictly convex
sphere. Also assume that (3,g) has no conjugate points and the trapped set for the
geodesic flow is hyperbolic. Then, there exists a codimension 0 isometric embedding
(3, g9) C (2%, g% such that (B¢, g*) is a closed Anosov manifold.

We first describe the main construction where we allow 0% to have several con-
nected components. Afterward, we need to establish the estimates on Jacobi fields,
which then allow us to prove the absence of conjugate points and to finish the proof
in Section 8.4. For the sake of simpler notation, in this part of the proof we assume
that 9% has only one connected component. The argument for the general case is the
same.

8.1. DESCRIPTION OF THE EXTENSION. To describe the extension, we will need the
following fact.

Levma 8.2 ([Guil7, Lem. 2.3]). For any sufficiently small g > 0, there exists an
isometrical embedding of (¥,g) into a smooth Riemannian manifold (£%,g%) with
strictly convexr boundary which is equidistant to the boundary of ¥, has the same
hyperbolic trapped set as (X,g), and no conjugate points. Moreover, all hypersurfaces
equidistant to the boundary of ¥ in X% ¥ are strictly conver.

By the lemma we can fix a §o > 0 such that the principal curvatures of all hyper-
surfaces equidistant to the boundary of ¥ in X% < ¥ are at least Apin(0%)/2 where
Amin (0X) is the minimum of principal curvatures of 9.

We denote by Qg := Qx5 and Cy := Cyy5, the constants given by Proposition 4.1
when applied to ¥£%. Assume 9%% = L7 S7 with each S7 diffeomorphic to a sphere.
For any sufficiently small ¢ € (0,dp), we can consider normal coordinates in the
e-neighborhoods of each S7. In particular, for each j, the e-neighborhood of S7 is
isometric to (—¢,0] x S7 with metric jg = dt? + ;g; where t € (—¢,0] parametrizes
the (signed) distance to S7 and jg; is the Riemannian metric on (S7), = {t} x 57.
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Recall that a metric in Proposition 7.2 is the smoothing of a metric in Proposition 7.1.
By applying Proposition 7.2, for any M; > 1, § € (0,¢/2) and

(8.1) ¢ >max{L(M, M, g,e,p)} (see Proposition 7.1 for the definition of L),
J

there exists a smooth Riemannian metric jﬁéve

on (—e,00) x S; for each j with the
properties listed in Proposition 7.2. Let x and 7 be as in Proposition 7.1 for the
chosen M;, My = M? and ¢. Then, we excise e-neighborhood of the boundary of %%
and replace (—¢,0] x S with metric g% with |_|T:1(—6,2 + 2¢ + 0] x S; where each
(—£,2 + 2¢ + 6] x S; is equipped with the metric ;§%°. We denote the resulting
Riemannian manifold with constant curvature —x? near the boundary by (Zg?a, ggf’a).
Notice that, since 6 € (0,¢/2), the manifold (Zg?a
%, 9).

Fix R > 0. By Proposition 7.1 each metric jgé"f has the form

(smh[n(t +7)] >2dsfb_1

R

, g?)og) contains an isometric copy

for t > 3, which is the form of the hyperbolic metric constant curvature —x? on H".
Therefore we can remove m balls from H"™ and replace them with (Eg?s, 9?,05) in such
a way that the distance between different components is at least R. Clearly we can
also perform the same surgery procedure starting from a closed hyperbolic manifold
of curvature —x? provided that the injectivity radius is sufficiently large. Existence
of such hyperbolic manifolds is well-known and follows from the residual finiteness of
the fundamental groups of hyperbolic manifolds. We include the proof for the sake of

completeness.

Lemma 8.3. — Let M be a compact hyperbolic manifold. Given any D > 0 there exists
a finite cover M — M such that the injectivity radius of M is > D.

Proof. — Let ai,...,ay be the list of closed geodesics on M whose length is less
than 2D and let f1,..., BN be the elements of w1 (M, z¢) which are freely homotopic
to these geodesics. Because 71 (M, xg) is residually finite [Mal40] there exists a finite
group G and a homomorphism h: 71 (M, z9) — G such that h(53;) # idg. Then the
finite cover M which corresponds to kernel of h has injectivity radius > D. a

Thus we obtain a smooth closed Riemannian manifold (X%, g®*) which contains
an isometric copy of (X,g). To guarantee that the constructed extension is Anosov
(3ext g°xt) | we make some choice of parameters ¢, £, 8, M1, and R such that they
satisfy the following conditions:

(C1) M, is sufficiently large;

(C2) ¢ is sufficiently small;

(C3) § < min{dp,e/2} and is sufficiently small;
(C4) R is sufficiently large.

The precise conditions of above constants can be found in Appendix D.
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Remark 8.4. We want to point out that the resulting constant sectional curvature
k in the extension can be a priori arbitrarily large, and its value depends on ¢ which
depends on the given Riemannian manifold with boundary . This can be seen from
Lemma C.1.

We introduce notation that we will use in the next sections. Set
m

e = U608 x5 and €2 := J[5,e] xS,

j=1 J=1
We decompose ! into three domains
Y =YoUuCLUD_,

where ¥y :=X U U;.nzl[—(So, —0] x $9,€4 :=CL UCZ and D_ := T \ (ZyUCL).
We summarize the properties of the resulting extension that come from Proposi-
tions 4.1, Propositions 7.1 and 7.2 with our choice of parameters:

(i) We have the conclusion of Proposition 4.1 for (3¢, ¢®*") with Qo and Cj.

(ii) The sectional curvatures on D_ are at most —(Qo + 3)2. And all maximal
geodesic segments within D_ have length at least R.

(iii) On Gﬁr, the curvature upper bound is Ky and the principal curvatures for
hypersurfaces in Gi_ equidistant to X are at least A\pin(0%)/4.

(iv) On €3, the curvature upper bound is K, and the principal curvatures for
hypersurfaces in €2 equidistant to ¥ are at least Apin(9X)/2.

8.2. TRAVEL TIME AND JACOBI ESTIMATE IN THE COLLAR. — As we mentioned before, for
the sake of simpler notation, we assume that 9% has only one connected component.

We denote the boundary of ¥% by S (see Section 8.1) and let S; = {t} xS. We want
to estimate the travel time and change of iy when a geodesic goes through €. To do
that we consider a setting which is (formally) more general than (iii) and (iv) above
which we proceed to describe.

Let ¢ : [0,7] — [b—,by] X S be a unit speed geodesic segment in [b_,b;] x S on
which the sectional curvature is bounded from above by kg > 0. We may assume
the principal curvatures of Sy (b— < ¢t < by) are at least A > 0. Namely, the shape
operator satisfies

(8.2) (A)X, X) = M| X%, Vteb_,by],X €S,
Moreover, we assume that

1 A
(83) b+ — bf < X h’lCOSh(m)

for some @ > 0.

For any s € [0, 7], let d(s) be the t-coordinate of ¢(s). By the first variation formula,
d'(s) = (T, ¢(s)). Let W(s) be the component of ¢(s) orthogonal to T. Then, we have
[W(s)|[? = 1—d'(s)? V)T = V(T and V(T L T. Hence, by the second

variation formula,

(84)  d"(s) = (Ve T, é(s)) = (V)T W(s)) = (A(d(s)) W (s), W(s)).
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Lemma 8.5. The travel time in the collar has the following upper bound

< (ko +(Q+1)%)7!
For any perpendicular Jacobi field J along ¢ with J(0) # 0, if ny(0) > —Q, then
py(t) >—-Q —1 fort e [0,7] and
1

t)ydt > ———.
/0 p(t) 011
Similarly, if py(0) > Q + 1, then py(t) > Q fort € [0,7].

Proof. — Tt |d'(sg)| =1 for some sq € [b_,b;] then ¢(sg) = T and therefore ¢(s) =T
for all s € [b_, b, ] thus the travel time is 7 = by —b_. Hence we can assume |d'(s)| < 1
for all s € [0,7]. By (8.2) and (8.4), we have

= (VwT, W) = [[W|[* (A(d(s)) (W/[WI), W/[WIl) = (1 = (d)*)X.

Assume d(tg) = mind(s). If ¢y € (0,7) then d’'(t9) = 0, while t¢ = 0 implies that
d'(tp) > 0. The case when ty = 7 is symmetric to t¢ = 0. Thus we may assume
d'(tp) = 0. For s >ty we have

T+d(s)] 1 |1+d(t) [° d'(r)
1 7‘ ) s s — o),
—d(s) 2 M=) +/t01d’(r)2 T2 Als —to)

which implies that d’'(s) > tanh(A(s — ¢p)). Hence,

b

’ s In cosh(A(s — ¢
d(s) = d(to) +/ d'(r)dr >b_ +/ tanh(Ar)dr = b_ + — (A(S o))
to 0
On the other hand, d(s) < by for all s € [0, 7]. Together with (8.3) we obtain
v
2k +2(Q +1)2°

1
T—ty < X cosh ™t eMb+—b-) <

Thus, again by symmetry, we have

7 < (ko + (Q+1)5)7!

Now we estimate the change of ;. The solution of u” + kou = 0 with u(0) = 1,
u'(0) = —Q satisfies

w(t) =—kK tan(\/m t+ tan™* i) t€0,7]
U(t) 0 0 \/H»O ) s 1]
By the mean value theorem,
1 1 - R+1 1 _1 Q

T < <
H0+(Q+1)2 w/lﬁo /K /K /K
Thus o/ (t)/u(t) > —Q — 1 for 0 < ¢ < 7. Since the sectional curvature in [b_,by] x S
is bounded from above by kg, applying Lemma 2.8 with f = kg on [0, 7], we obtain

pa(t) = ' (t)/u(t) > —Q — 1. Thus

T Q+1 1
/0 MJ(t)dt>7m0+(Q+1)2 27@—1—1'
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The last assertion of the lemma follows by using the argument by contradiction and
reversing time. O

CoroLrary 8.6. — Let J be a nonzero perpendicular Jacobi field along ¢ with J(t*) = 0
for some t* € (0,7), then J does not vanish on (t*,7] and p;(1) > Q.

Cororrary 8.7. — Let ¢: [0,79] = C4 be a geodesic in C4 and J be a perpendicular
Jacobi field along c.
(a) If ¢(0) € S_s,c(m0) € Se and py(0) > —Qq, then py(t) > —Qo — 2 for all
t € [0, 79] and
T0 2
t)dt > ———.
/0 p(t) Qo+ 1
(b) Ifc(0) € Se, c(70) € S—5 and u;(0) > Qo+2, then py(t) > Qo for allt € [0,70].
(c) If both c(0),c(r0) € Se and py(0) > Qo + 2, then py(t) > —Qo — 2 for all
t € [0,70] and
2

Qo+ 1

Proof. — On €L (resp. C2), we apply Lemma 8.5 with kg = Ko (resp. kg = Kj),
A = Anin(0%)/4 (resp. A = Apin(9%)/2) and (C3) (resp. (C2)) is equivalent to condi-
tion (8.3) with @ = Qo (resp. Q@ = Qo + 1).

(a) Since all hypersurfaces S; are convex, there exists T € [0, 7] such that c[0, 7] C €L
and c[r,79] C C3. By applying Lemma 8.5 on both €} and €3 we obtain p;(t) >
—Qo —1on [0,7] and ps(t) > —Qo — 2 on |7, 79]. Thus

o 1 1 2
/0 u(E)dt > Qo+l Qo+2 ~ Qo+1

(b) This item follows by reversing time and applying (a).

(c) If ¢[0,79] does not intersects €4, then applying Lemma 8.5 on €2 implies
pa(t) > Qo + 1 for all t € [0,70]. Otherwise assume c[a,b] C €%, then we get (c)
by applying Lemma 8.5 three times on ¢[0, al, c[a, b] and c[b, 7o]. The estimate on the
integral follows from item (a). O

/ p(t)dt > —
0

8.3. Jacosr FIELD ESTIMATE OUTSIDE 9. — The following lemma allows us to estimate
how Jacobi fields change outside X.

Levwa 8.8, — Letc: [11,72] = CLUD_ be a mazimal geodesic with c(11) € 0EoUD_,
and J a perpendicular Jacobi field along ¢ with —Q¢ < pj(m1) < oo, then J(t) # 0
for all t € |1y, 12]. Moreover,

(i) if 72 < 00, and c(m1) € 0%, then p;(m2) > Qo and f:f pa(t)dt > Qo+ Co + 2;

(ii) if T2 = oo, then f:lz py(t)dt = oo;

(111) /,L](t) > —Q() —2 for all t € [Tl,TQ].

Proof. — Let {a;}1_, and {b;}I_, be the sequences of times with 74 < ag < by < -+ <
ap, < by, < apt1 < 72 (n and 75 could be 0o) such that c[ag, bi](k = 0,1,...,n) are the
geodesic segments in Co, and c¢(7y,ap), ¢(bg,ar+1)(k = 0,1,...,n), and c(an+1,72)
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are contained in D_. Since ¢(m) € 05 UD_ and —Qo < py(11) < oo, we have

/U’J(ao) € (_Q()» OO)
By construction of ¥t we know that for all 0 < k < n,

A1 — br > R.
Firstly, we prove that

/,I/J(bk;) >—Qy—2 = Mj(t) >—Qo—2forte [bk,ak+1],

(8.5) pilags1) > Qo+2 and

Ap+1
8.6 t)dt > C 2 .
(8.6) /bk () Qo+ Co + +Q0+1

Indeed, c[bg,ar+1] € D_ on which the sectional curvatures are bounded above by
—(Qo + 3)%. By Lemma 2.8, we know that for ¢ € [0, a1 — bx),

_ +2
(b +1) > (Qo -+ ) tanh (1(Qo +3) — tanh ™ Qoi).
Qo+3
By choosing R sufficiently large, pj (b +t) > —Qo—2 for t € [0, ag41 — b]. Moreover,

we have py(by +1t) > Qo+ 2 forall t € [ﬁ tanh ™! gﬁigv“kﬂ — bk] and

b+t 2 1 Qo+2
(8.7) /b’c wy(r)dr > (Qo+2)(tf O +3tanh Q0+3>.

In particular, we have (8.5) and (8.6). Together with Corollary 8.7, we have the
following two statements:

(8.8) prlag) > Qo+2 = puy(t) > —Qo— 2 for t € [ag, ari1],
p(ak1) > Qo + 2 and

A1
(8.9) / wy(t)dt > Qo + Co + 2.
(8.10) wr(be) > —Qo—2 = puy(t) > —Qo — 2 for ¢ € [bg, bp+1],

. (bkt1) > —Qo — 2 and
b1

(811) / u,](t)dt > Q() + C() + 2.

b

Now we make the estimate on the entire [, T2]. Since puy(m1) > —Qo, by Corollary
8.7(a), we know that p7(bg) = —Qo — 2. By (8.5) and (8.8), we obtain iii and for any
k>1, pylar) > Qo + 2 and

n—1

/Tz g (T)dr > / po(r)dr =Y /+ g (T)dr > n(Qo + Co + 2).

k=0

Thus, when n = oo, [ j1;(T)dT = co. When 75 < oo, by (8.5) and (8.8), ps(an) >
Qo + 2, thus pus(m2) > Qo due to Corollary 8.7 and we obtain i. The only case left is
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i 9
> 24
//’ py = Qo+ Co+ +Qn+l

Ficure 2. Graph of uy

when n < 0o but 72 = co. In this case we apply (8.7) and obtain

T2 bn 00
/ MJ(T)CZT:/ uJ(T)dT+/ wy(7T)dr = 00. O
T1 T1 brn
Cororrary 8.9. — Let ¢ : [11,72] — C4 UD_ be a geodesic segment and J be a
nonzero perpendicular Jacobi field along ¢ with J(t*) = 0 for some t* € (11,72), then
wy > —Qo — 2 on (t*,72]. In particular, J does not vanish on (t*,2].

Proof. — It t* € (ag,by) for some k, then py; > Qo on (t*, b] via Corollary 8.6. Thus,
g > —Qo — 2 on (t*, 2] follows from Lemma 8.8(iii). If t* € (bg, ag41) for some k,
apply Lemma 2.8 we have uy > Qo + 2 on (t*, ag41]. Finally, from Lemma 8.8(iii),
we have uy > —Qo — 2 on (t*, 72]. O

8.4. PROOF OF ABSENCE OF CONJUGATE POINTS AND OF THE MAIN THEOREM. — In order to
prove (X% ¢®*%) is Anosov, we first prove the absence of conjugate points.

) has no conjugate points.

Prorosition 8.10. — The extension (X%, g

Proof. — We need to prove that for any geodesic 7, and perpendicular Jacobi field J
along 7,, if J(t*) = 0, then J(t) # 0 for all t > t*. Assume t] <t] <ty <t <---
are the times when 7, crosses 0%y and we assume that ,[t; .t ],k € Z are the
segments within 3.

Levma 8.11. For any n with t} > t*, we have p;(t}) > —Qo and J does not
vanish on (t*,t}].

Proof. — Firstly, we prove the statement for the first n with ¢,7 > ¢*. If t* € [t, , ¢]] for
some k then /u(tz) > —(Qo, otherwise by reversing time we obtain a Jacobi field, J*,
entering Xy with pj« > Qo but vanishing within ¥, contradicting Proposition 4.1.
If t* € (—oo,t;] then ps(t7) > Qo via Corollary 8.6. Thus, us(t7) > —Qo by
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Proposition 4.1. Similar argument can be applied when t* € [t:,t,;_ﬂ} to obtain
NJ(tz+1) > —Qo.

For general n, notice that 1;(t,7) > —Qo implies ps(t;}, ;) > —Qo due to Lemma
8.8(i) and Proposition 4.1. O

We finish the proof of the proposition by considering the cases for the sequence of
times {tF}.

Case 1. — The sequence {t;t} is empty. This means that ~, never enters Xg. Then
the non-vanishing property of J follows from Corollary 8.9.

Case 2. The sequence {tF} never ends. In this case J does not vanish for ¢ > t*
due to Lemma 8.11.

Case 3. — The sequence {t} ends with some ;.. If t* < ¢ then by Lemma 8.11
we have py(t}) > —Qo and Lemma 8.8 tells us that J does not vanish after ¢} .
If t* > ¢} then Lemma 8.8 can be applied again to show that J does not vanish for
t>t*.

Case 4. The sequence {tF} ends with some ¢,,. In this case 7, ends up in I'_ at
time t,,. If t* < ¢} |, then p;(t), ;) > —Qo by Lemma 8.11 and thus p,(¢;,) > Qo

by Lemma 8.8. Therefore J does not vanish after ¢, due to Proposition 4.1. If ¢} | <
t* < t, then we again have u;(t,,) > Qo by Corollary 8.9. If t* > ¢, then J does
not vanish after t* since ¥y has no conjugate points. (|

Now we are ready to prove the geodesic flow on (X% ¢®**) is Anosov.

Proofof Theorem 8.1. — By Theorem 2.3 and Proposition 8.10, in order to show the
geodesic flow is Anosov, it suffices to prove that all non-zero perpendicular Jacobi
fields on a manifold without conjugate points are unbounded.

If a geodesic v, stays in Xq for all t € R, then v € A. Thus any Jacobi field along ~,
is unbounded by hyperbolicity. Therefore it remains to consider the case when -,
passes through D_. Let J be a Jacobi field along ~,. By changing the starting time
we may assume that the geodesic segment v,|(_r/2,r/2) lies within D_. We can also
assume that J(0) # 0 and p;(0) > 0 (otherwise we can replace v with —v). We will
show that ||J||(t) — oo as t — oc.

Recall that py = ||J||'/]|J||, hence we have only to prove the integral of pj is
unbounded on [0, +00). As before denote by 0 < 7 < tf < t; < t§ < --- the
moments -y, crosses 0¥y with 7, [t, , tz], k € Z being the segments within 3.

Case 1. Geodesic v, never enters ¥y on ¢t > 0. We decompose 7,[0,+00) using
0<a; <by <ag <bg <--- asin the proof of Lemma 8.8. If a; = 400, by Lemma 2.8
we know that [|J|| is unbounded. Now we assume a1,b; < 400, by Lemma 2.8 again
we have py(a1) > Qo+2 thus py(b1) > —Qo—2 by Corollary 8.7. The unboundedness
of ||J] is a consequence of Lemma 8.8(ii).
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Case 2. Geodesic 7, enters Xy infinitely many times on ¢ > 0. Since t; = by for
some £ > 1, the argument as in Case 1 can be carried out to obtain uy(t;7) > Qo.
Then we proceed by induction to get ps(t;) > Qo and uy(t)) > —Qq for all k > 1.
Moreover Proposition 4.1 implies that

ty
/ p(t)dt = —Co.
t

k

For each k, by Lemma 8.8(i) we have

tl:+1
/+ py(t)dt > Qo+ Co + 2
t

k
hence

L
/ py(t)dt = Qo + 2.
t

k

Thus the integral of p; is unbounded.

Case 3. — The sequence {t=} ends with some ;. The argument in Case 2 implies
py(th) > —Qo. The norm ||J|| is unbounded by Lemma 8.8(ii).

Case 4. The sequence {tX} ends with some ¢,,. The argument in Case 2 implies
ps(ts,) > Qo. Notice that in this case 7,[t;,, +00) lies in X. Thus Proposition 4.1(1)
tells us that ||J|| is unbounded.

Hence, for any v € X' all nonzero perpendicular Jacobi fields along -, are
unbounded. Thus we have finished the proof of Theorem 8.1. O

ArPENDIX A. ESTIMATES ON THE CURVATURE TENSOR

Throughout this section we use notations from Section 5.

A.l. Tur CURVATURE TENSOR FOR THE DEFORMATION TO NEGATIVE SECTIONAL CURVATURE

For any 6 € S, let {e;}7~}" be the an orthonormal basis of gy such that h(e;,e;) =
2X:(0, §). Consider normal coordinates {z;}"~}' on S for gy in a neighborhood of (0, )
such that %ko,go) = ¢;. For notational convenience we denote by xg := t.

Lemma A.1 (The above setting, also see Section 5.1). We use the setting described
in this section. Let € > 0. Consider the manifold [0, 1+¢] x S with Riemannian metric
Go.e = dt? + g, where

gt = p(t —e)go+ fe(t)h for allt €]0,1+¢].

Then, there exists a constant C1 = C1(g, p) such that for any i,j5,k € {1,...,n—1}
and (to,00) € [0,1+¢€] x S,

|RY;1.(t0, 00)] < C1fi(to),

0 _ 1o} o) 9 1o} . ; .
where Ry = (Rg,g(gj, 5o ) 9ar 2ac) 18 the coefficient of the Riemann curvature

tensor with respect to {x;}—coordinates.
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Proof. Let (go)ij = 90(82 78(3: ) and h;; = h(ax ,390 ) Recall that zp = ¢ and

{x;}7=]' are normal coordinates near (0,6o) such that 5> |(0 6,) = €i- We have
(90)ij(0,00) = dij,  hij(0,00) = 2X:(0, 00)ds;,
(A1) %(go)”(o,eo) =0 and VY 6i =0 foralli,jke{l,...,n—1},
Moreover, the metric tensor of g, . in coordinates {x¢,z1,...,2n—1} defined in a

neighborhood Oy, g, of (to,6p) on [0,1 + €] x S has the following entries:
- _ _ ~ 0 )
Goo = 9e.e(T,T) =1, Go; = Gjo = Gr.e (T, 87) =0forall je{l,...,n—1},
) !
Gy = Gee (525 = Pt = £)(g0)ij + fe(®)hiy for all i, j € {1,...,n ~ 1}.
7 N &rl axj g ’
Thus, using (A.1), for any 4,7,k > 1, the Christoffel symbols I’?j for g in Oy,
and their partial derivatives are

1 0 0 0 190
F (t 0) 2 (8,’EJ Y9i0 + 8(Ei g]O 81597]) (t? 0) 2 atglj (t70)
1 1
— 50t = £)(90)i5(0,0) - ifé(t)hij((), 0);
0

2 15(0,0) = — 30/t — £) 5 (005 (0.0) = 5 ()5 his(0,0).

8$k
In particular, at (tg,6p), they are

1
I, (to, 00) = (—§P/(to —&) = fu(to)Xi(0, 90))%?
0 _o 1 0 1 o
Txkrij(toaao) = _ifé(to)aixkhij(oaao) = _ifé(to) (Vekh) (eiaej)7
where V0 is the covariant derivative of tensor at S.
For general F]k, by (A.2), we have

0 hik(0,60) = fe(to) (Ve h)(ej,ex),

iﬁjk(toﬁo) = p(to— 6)88 (90,1 (0, 90)4-1%(750)(9

ox;
Thus, for all 4,7,k > 1,

i 1_,7 0 _ 0 _ J _
Ik (to, 0o) = 59 (Tz:kglj + T%glk - %gjk)(t0790)
1 0 _ 0 _ 0

= —g¥ A+ —T. — —0.. ) (to, 0
29 (8xkg”+8xjgm 3xig]k>(0’ 0)

fg(to) (ng h)(eia ej) + (vgj h)(eiv ek) - (vgih)(eﬁ ek)
2 p(to — €) + 2fe(to)Ai(0, 6o)

Let

Dy, = max {(ng h)(wi,u;) | {w})=}! is an orthonormal basis of go}-
i ke{l,...,n—1} '
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Then, we have |52-T?;(to,00)| < Dpf}(to)/2 and

3fe(to)Dp, < 3Dy,
2(p(to — €) + 2fe(to)Ai(0,60)) ~ 4Amin(So)”

T4 (t0, 60)| <

Since f;(to) > 1, we have
0

0
[BSl10,00)| = | =T = 5 + Tl = T3l (t0,60)
J

9 1o 0 k 10
- ‘%F’“ - Trji + F?WF]] Fjirkk’(th 6o)

3Dy
< Dy fi(to) + m(”ﬂ”cl + 2f5(t0) Amax(S0))
3Dy,
Dp+—F—r— 2Amax (S }/t =: C1f,(to).
<[t 5y Ueller + 2Amax(S0) | filto) == Cu i)
Thus, we finish the proof of Lemma A.1. O
A.2. THE CURVATURE TENSOR FOR THE “ROUNDING~ DEFORMATION. — For any 0 € S, let

{e;}"=! be an orthonormal basis of h such that h(e;, e;) = 0ijpi(6)0;;. Let

Hmax(S) = max{u;(0) i € {1,...,n—1},0 € S},

Pmin(S) = min{p;(0) | i € {1,...,n—1},0 € S}.
Consider normal coordinates {z;}7~' on S for h in a neighborhood of (0,6,) such
that - |(0 9o) = €i- For notational convenience, we again denote xg := t.
Lemva A2, — We use the setting described in this section. Let € > 0. Consider the
product [0,1 + €] x S with Riemannian metric g, = dt*> + g; where

Gi = fet+14)(pMh + (1= p(t)h), te[0,1+¢].

Let
(A.3) My = max|p(7)| and Dj = max{ (V" ) (ui,u;)},
where the mazimum in the definition of D; is taken overi,j,k € {1,...,n —1} and

an orthonormal basis {u;}]" of h which also diagonalizes h.
Then, for any i,j,k € {1,...,n — 1} and (to,00) € [0,1+¢] x S,

2(1 + pmax(5))

|RY.,.(t0, 0)| < D (1 n )(fg(to +14e)+ folto+1+e)M)).

2lffmin(s)
where R?jk = <Rg,5(a%, %)aﬁp%> is the coefficient of the Riemann curvature

tensor with respect to {x;}— coordinates.

Proof. — Let h;; = h(az > ) and h” = h(az 76:,: ) Recall that g = t and

{z;}2 i:l is normal coordinate near (0, 6y) such that ari l(0,00) = €i, we have
hi;(0,60) = 055, ﬁij((), o) = 1i(60)dij,

A4
(8.4) ihij(O,é’o)—O and VZ 4 -=0foralli,j,k € {1,...,n—1},
8xk 8
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The metric tensor of g¢ . in coordinates {¢,z1,...,2,—1} defined in a neighborhood
Oty.0, Of (to,00) on [0,1+ €] x S has the following entries:

Goo = ?fé,e (6/6t78/8t) =1,
Goj = Gj0 = 90.(0/0t,0/0x;) =0 forall j € {1,...,n—1},
. 9 >
Gij = G0, (0/ 00 5—) = fult + 14 &) (p()hsg + (1= p(t))i5)
! foralli,j € {1,...,n—1}.
Thus, using (A.4), the Christoffel symbols for g . in O, ¢,y are

D0(,0) = —5 (et + 1+ )p() iy = 3 (et +1+ )1 = p(0) Tz, 50

I (t0,00) = (=3 et + 1+ )p(t)) = 5 (et + 1+ 2)(1 = p(e)) 1iC00))|,_ 5o
ST 10, 00) = = (ot -+ 1)1 = p(0) iz (VAR ervey),
1 1 — p(to)

F;k(tm to) = §p(t0) + (1= p(to))pi(6o)

(VBB (eives) + (TR (e ex) = (VER) e en))

foralli,j,k e {1,...,n—1}.
As a result, the coefficients R%k(to, o) of the Riemann curvature tensor are
R (to,00) = %F%(tm to) — %F?i(toﬁo) + T, (to, 00)T9; (t0, 60) — T (to, 00) TP
i k
Then, using (A.3), we have
2(1 + fmax)

2lffmin

|RY.,.(t0, 6)| < D; (1 n )(fg(to Fl4e)+ filto+1+0)M). O

APrpPENDIX B. SECTIONAL CURVATURE FOR A PRODUCT MANIFOLD

Lemma B.1. — Consider the product (c1, ce) x S with Riemannian metric ds®> = dt* +
f(t)%gs where c1,ca € R, f(t) > 0 fort € (c1,c2), and gs is a Riemannian metric
on S. Let T = 9/0t. Then,

(1) the shape operator on Sy is given by (f'(t)/f(t))Id;

(2) for any nonzero X € T'S, the sectional curvature of a plane ox 1 is given by
K(oxy)=—f"(t)/f();

(3) for any linearly independent X, Y € TS, the sectional curvature of a plane

ox,y s given by

K(Jx’y) =

e K™ as,ox) = (10 0)’

(4) let o be a plane which is neither tangent nor orthogonal to S and can be ex-
pressed as 0 = ox o1,y for some linearly independent X, Y € T'S and a > 0; then,
the sectional curvature of o is given by

1 a?
K(O’) = K(O’XJFQT’y) = WK(UX’Y)—'_ QK(O'ny).

1+a
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Thus, we obtain immediately the following.

CoroLrAry B.2. Consider the product (c1,c2) X S with Riemannian metric ds® =
dt?> + f(t)%gs where c1,co € R, f(t) > 0 for t € (c1,¢2), and gs is a Riemannian
metric on S. Then,

(1) ds? has negative curvature if and only if f"(t) > 0 and f'(t)? > K™ (gs,0) for
allt € (c1,¢2) and any plane o tangent to S;

(2) if ds? has constant negative curvature —k?, then

f(t) = ay sinh(kt) + by, cosh(kt), where t € (c1,c2)
for some a,, b, € R such that a, tanh(ka,) > —by.

Proofof Lemma B.1. — We have that IIg, = f'(¢)f(t)gs and hence, from definition,
the shape operator if given by

A0 = LW,
By (2.7), we obtain Lemma B.1(2). Since
int 1
K (f(t)ZgS7UX,Y) = f(t)2

for any linearly independent X,Y € T'S, by (2.8), we obtain Lemma B.1(3).

Let X,Y € T{4,,0,)S- We have that the t-coordinate and normal coordinates on S
for gs at (tg,6p) define coordinates on (c1,c2) x S. Using those coordinates and the
definition of Riemann curvature coefficients, we can obtain that (R(X,Y)Y,T) = 0.
Thus, by (2.6), we obtain Lemma B.1(4). O

int(QS, UX7Y)

AppEnDIX C. Cl-GLUING FOR FUNCTIONS OF SPECIAL TYPE
Levva C.1. — Let fo(t) = (et —1)/¢ and let
1
u(t) = el (asinh(kt) + bcosh(/@t))Q,

where a,b € R are such that a®>+b> # 0. For any T > 0 there exists L = L(r,a,b) > 0
such that for all £ > L there exist k € R and r > —7 such that fo(7) = ue(T+ 1) and
f1(1) = ul (T +r). Moreover, —k? — —o0 as { — co.

Proof. — To prove the lemma we need to solve the following system of equations:
-1
267 k2 + a? — b = 2absinh(2k(T + 7)) + (a® 4 b?) cosh(2k(T + 1)),

Tk = (a2 + b%) sinh(2k(7 + 7)) + 2abcosh(2k(T + 1)).
Let p = 24;%1 k2 +a?—b% and g = e k.
Thus, if a2 = b2 then
@ ¢
a2+ b2l -t

+1—e*571 (e“—l 252 >>
r=—r1 n : —T.
/ Y4 a? 4 b2
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Otherwise,

2 2 _
cosh(2k(T + 7)) = (a® + b*)p — 2abq

(a2 —b2)2
) a® + b?)q — 2abp
sinh(2x(1 + 7)) = ( o z I

Notice that there exists L' = L/(r,a,b) > 0 such that for all £ > L’ we have
er —4#(@2 —b?) > 0. Using the fact that cosh(2x(7+7))? —sinh(2k(7+71))? = 1,
we obtain that for all £ > L there exists a solution

\/€QZT -4 a2 -2

K= S ~ g5 00 as { — oo,
z

(& )

1 1
~ =T+ 7 sinh ™ (5((1 —b)2e0 + 2ab(¢ — a® + 62)) > -7 as £ — o0.

1
r=—7+ —sinh™!
2K

Thus, there exists L = L(7, a,b) > 0 required by the lemma. O

AppEnDIX D. CONSTANTS IN THE CONSTRUCTION OF M

(C1) My = Qo +4;

2 Amin (0%)
C2) e< In cosh , where K, comes from Proposition 7.1;
(©2) €< D) 1K, +4(Qo + 2)° . P
e 2 Amin (95)
C3) 0 < min{dy, =, ———=—Incosh where K, comes from
(C3) {90, 3 Amin (03) 8Ko + 8(Qo + 1)2} 0
Proposition 7.2 and depends on ¢ and /;
2 Co 1 Qo+2
C)) Ri=——=+1+ + tanh™ ——.
() (Qo +1)? Qo+2 Qo+3 Qo +3
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