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A FINITE DIMENSIONAL PROOF OF

A RESULT OF HUTCHINGS

ABOUT IRRATIONAL PSEUDO-ROTATIONS

by Patrice Le Calvez

Abstract. — We prove that the Calabi invariant of a C1 pseudo-rotation of the unit disk, that
coincides with a rotation on the unit circle, is equal to its rotation number. This result has been
shown some years ago by Michael Hutchings (under very slightly stronger hypothesis). While
the original proof used Embedded Contact Homology techniques, the proof of this article uses
generating functions and the dynamics of the induced gradient flow.

Résumé (Une preuve en dimension finie d’un résultat de Hutchings sur les pseudo-rotations
irrationnelles)

Nous montrons que l’invariant de Calabi d’une pseudo-rotation irrationnelle de classe C1 qui
coïncide avec une rotation sur le bord, est égal au nombre de rotation. Ce résultat a été démontré
il y a quelques années par Michael Hutchings (sous des hypothèses légèrement plus fortes).
Alors que la démonstration originale s’inscrit dans le formalisme de l’« Embedded Contact
Homology », la preuve que nous donnons utilise les fonctions génératrices et les propriétés
dynamiques du flot de gradient associé.
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1. Introduction

1.1. Statement of the main theorem. — We denote by D the closed unit disk of the
Euclidean plane and by S the unit circle. We will furnish D with the standard area
form ω = dx∧dy and will denote by Diff1

ω(D) the group of diffeomorphisms of class C1

that preserve ω (we will say that f is symplectic). Note that every element of Diff1
ω(D)

preserves the orientation and therefore is isotopic to the identity. More precisely,
the set Diff1

ω(D) is path-connected when furnished with the C1-topology. We will

Mathematical subject classification (2020). — 37E30, 37E45, 37J11.
Keywords. — Irrational pseudo-rotation, Calabi invariant, generating function, rotation number,
linking number.
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838 P. Le Calvez

also denote by Homeo∗(D) the group of orientation preserving homeomorphisms of D
(which is also path-connected when furnished with the C0-topology).

If f ∈ Diff1
ω(D) fixes every point in a neighborhood of S, its Calabi invariant

Cal(f) ∈ R is a well-studied object that has several interpretations (see [Cal70],
[Fat80], [GG97] for instance). It admits a natural extension to Diff1

ω(D). We will
explain this extension, as described by Benoit Joly in his thesis [Jol21]. If κ is a
primitive of ω, and A : D → R a primitive of f∗(κ)−κ, then

∫
S Adµ does not depend

on µ, where µ is a Borel probability measure invariant by f|S.(1) Consequently, there
exists a unique primitive Af,κ of f∗(κ) − κ satisfying

∫
S Af,κ dµ = 0 for such µ.

Moreover, the quantity Cal(f) =
∫
D Af,κ ω does not depend on the choice of κ. For

example we have Cal(f) = 0 if f is an Euclidean rotation. Note that Cal(f) is the
usual Calabi invariant in case f fixes every point in a neighborhood of S (in that case,
Af,κ vanishes on a neighborhood of S).

We can also define a real function C̃al on the universal covering space ˜Diff1
ω(D) of

Diff1
ω(D) as follows. Every identity isotopy of f in Diff1

ω(D), meaning every continuous
path I = (fs)s∈[0,1] in Diff1

ω(D) joining the identity map of D to f , is homotopic,
relative to its endpoints, to a Hamiltonian isotopy I ′ = (f ′

s)s∈[0,1]. It means that
there exists a time dependent divergence free vector field (Xs)s∈[0,1] of class C1 such
that for every z ∈ D it holds that d

dsf
′
s(z) = Xs(fs(z)). There exists a (uniquely

defined) family (Hs)s∈[0,1] of functions of class C2 vanishing on S, such that for every
s ∈ [0, 1], every z ∈ D and every v ∈ R2 it holds that dHs(z).v = ω(v,Xs(z)).
The quantity C̃al(I) =

∫ 1

0

(∫
D Hs ω

)
ds depends only on the homotopy class [I] of I

and we can also denote it C̃al([I]). Let us give a simple example. For every α ∈ R,
denote Rα the rotation of angle 2πα and Tα the isotopy (Rsα)s∈[0,1]. It holds that
C̃al([Tα]) = π2α. As stated in [Jol21], there is a link between Cal and C̃al that we
will explain now. Every identity isotopy I = (fs)s∈[0,1] of f in Diff1

ω(D) defines by
restriction an identity isotopy I|S = (fs|S)s∈[0,1] of f|S in Diff1(S). Moreover, every

homotopy class [I] ∈ ˜Diff1
ω(D) defines by restriction a homotopy class [I]|S ∈ D̃iff1

∗(S),

where D̃iff1
∗(S) is the universal covering space of the group Diff1

∗(S) of orientation
preserving diffeomorphisms of the circle. We have the following equation,

C̃al([I]) = Cal(f) + π2 rot([I]|S),

where rot([I]|S) is the Poincaré rotation number of [I]|S. In particular, if µ is a Borel
probability measure invariant by f|S, then the asymptotic cycle of µ defined by an
isotopy I (see Schwartzman [Sch57]) is equal to rot([I])ϖ ∈ H1(S,R), where ϖ is the
fundamental class of S defining its usual orientation.

There is a more dynamical interpretation of the Calabi invariant in the case of a
compactly supported symplectic diffeomorphism of the open disk, due to Fathi [Fat80]

(1)Such a measure is unique when the rotation number of f|S is irrational and supported in the
periodic point set otherwise.

J.É.P. — M., 2023, tome 10



A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations 839

and developed by Gambaudo and Ghys [GG97]. This interpretation is still valid in
this more general situation. Consider the usual angular form

dθ =
xdy − ydx

x2 + y2

and define
W = {(z, z′) ∈ D× D | z ̸= z′}.

Consider f ∈ Diff1
ω(D). For every identity isotopy I = (fs)s∈[0,1] of f in Homeo∗(D)

and every (z, z′) ∈ W , one gets a path
Iz,z′ : [0, 1] −→ R2 ∖ {0}

s 7−→ fs(z
′)− fs(z).

The function
angI : W −→ R

(z, z′) 7−→ 1

2π

∫
Iz,z′

dθ

depends only on the homotopy class of I in Homeo∗(D) and is bounded because f is
a diffeomorphism of class C1. In particular, one naturally gets a function ang[I] for

every [I] ∈ ˜Diff1
ω(D).

If I = (fs)s∈[0,1]) and I ′ = (f ′
s)s∈[0,1] are two identity isotopies in Diff1

ω(D), one
can define an identity isotopy II ′ = (f ′′

s )s∈[0,1] in Diff1
ω(D) writing:

f ′′
s =

{
f ′

2s if 0 ⩽ s ⩽ 1/2,
f2s−1 ◦ f ′

1 if 1/2 ⩽ s ⩽ 1.

The homotopy class of II ′ depends only on [I] and [I ′] and one gets a group structure
on D̃iff

1

ω(D) by setting [I][I ′] = [II ′]. Note that for every n ⩾ 1 we have

ang[I]n =

n−1∑
k=0

ang[I] ◦(fk × fk).

Generalizing a proof due to Shelukhin [She15] the following equality

C̃al([I]) =

∫
W

ang[I](z, z
′)ω(z)ω(z′).

is proved in [Jol21]. Let us add that this interpretation of the Calabi invariant has
permitted to Gambaudo and Ghys [GG97] to prove that two elements of Diff1

ω(D)
fixing every point in a neighborhood of S and conjugate by an orientation and area
preserving homeomorphism have the same Calabi invariant. To conclude, just note
the following:

– the map [I] 7→ C̃al([I]) defined on ˜Diff1
ω(D) is a morphism;

– the map f 7→ Cal(f) defined on Diff1
ω(D)is a homogeneous quasi-morphism;

– for every [I], [I ′] in ˜Diff1
ω(D), there is a unique k ∈ Z such that [I ′] = [I][Tk] and

we have:
ang[I′] = ang[I] +k, C̃al([I ′]) = C̃al([I]) + π2k.

J.É.P. — M., 2023, tome 10



840 P. Le Calvez

– for every [I] ∈ ˜Diff1
ω(D) and every p, q in Z we have

C̃al([I]q[Tp]) = C̃al([I])q + π2p.

We will say that f ∈ Diff1
ω(D) is an irrational pseudo-rotation if it fixes 0 and

does not possess any other periodic point. Using an extension of Poincaré-Birkhoff
theorem due to Franks [Fra88], we know that for every lift [I] ∈ ˜Diff1

ω(D) of f , there
exists α ∈ R ∖ Q such that the sequence of maps z 7→ n−1 ang[I]n(0, z) converges
uniformly to the function z 7→ α. Of course it holds that α = r̃ot([I]|S), by definition
of r̃ot([I]|S), and that α = α+Z ∈ R/Z is the Poincaré rotation number of f|S. We will
say that f is a pseudo-rotation of rotation number α. The goal of the article is to
prove the following:

Theorem 1.1. — Let f ∈ Diff1
ω(D) be an irrational pseudo-rotation such that f|S is

C1-conjugate to a rotation. If [I] ∈ ˜Diff1
ω(D) is a lift of f , then we have

C̃al([I]) = π2 r̃ot([I]|S),

or equivalently, we have Cal(f) = 0.

The fact that the equalities C̃al([I]) = π2 r̃ot([I]|S) and Cal(f) = 0 are equivalent
is due to the equation

C̃al([I]) = Cal(f) + π2 rot([I]|S).

It is not difficult to prove that a C1 diffeomorphism of S can be extended to a C1

symplectic diffeomorphism of D. So, it is sufficient to prove the theorem in case f

coincides with a rotation on the unit circle. This theorem was already known and due
to Michael Hutchings (with a very slightly stronger hypothesis), appearing as an easy
consequence of a theorem we will recall now. Suppose that f ∈ Diff1

ω(D) coincides
with a rotation Rα in a neighborhood of S. Fix a primitive κ of ω and note that
Af,κ vanishes on S whether α is rational or irrational. If O is a periodic orbit of f ,
one proves easily that

∑
z∈O Af,κ(z) does not depend on the choice of κ. So, one can

define the mean action of O as being

act(O) =
1

#O

∑
z∈O

Af,κ(z).

One has the following ([Hut16]).(2)

Theorem 1.2. — Suppose that f ∈ Diff∞
ω (D) coincides with a rotation in a neighbor-

hood of S and denote O the set of periodic orbits of f . Then it holds that:
– if Cal(f) < 0, then infO∈O act(O) ⩽ Cal(f),
– if Cal(f) > 0, then supO∈O act(O) ⩾ Cal(f).

(2)The proof is stated for smooth diffeomorphisms but should be possibly extended supposing a
low differentiability condition, as Michael Hutchings explained to us.
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A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations 841

It is easy to prove that if f ∈ Diff1
ω(D) coincides with a rotation on S, then we

have act({0}) = 0. Consequently, by Theorem 1.2, it holds that Cal(f) = 0 if f is
an irrational pseudo-rotation. It must be noticed that Hutchings’ theorem has been
recently improved by Pirnapasov [Pir21] (still in the smooth category) that uses a
preliminary extension result. A much weaker hypothesis on the boundary is needed,
even weaker than being a rotation on the boundary. A nice corollary, is the fact that
Cal(f) = 0 for every smooth irrational pseudo-rotation f , regardless of any condition
on the boundary.

Let us continue with a nice consequence of Theorem 1.1. Let D ⊂ D be a closed
disk that does not contain 0 and does not meet S. One constructs easily f ′ ∈ Diff∞

ω (D)
arbitrarily close to the identity map for the C∞-topology, fixing every point outside D

and such that Cal(f ′) ̸= 0. If [I] is a lift of f and [I ′] is the lift of f ′ such that [I ′]|S
is the trivial homotopy, then it holds that

C̃al([I][I ′]) = C̃al([I]) + C̃al([I ′]) = r̃ot([I]|S) + Cal(f ′) ̸= r̃ot([I]|S) = r̃ot(([I][I ′])|S).

This implies that f ◦ f ′ is not an irrational pseudo-rotation, which means that it has
at least one periodic orbit different from {0}. Such a periodic orbit must meet D.

The proof of Hutchings is based on a reduction to a problem of contact geometry
and then the applications of methods of Embedded Contact Homology theory. The
previous perturbation result is true in a more general situation. Asaoka and Irie [AI16],
using Embedded Contact Homology as well, have proved that it remains true provided
f ∈ Diff1

ω(D) has no periodic point inside D. Other striking applications of contact or
symplectic geometry to dynamics on surfaces have appeared recently that use elabo-
rated tools of contact or symplectic geometry (for instance see Cristofaro-Gardiner,
Humilière, Seyfaddini [CGHS20], Cristofaro-Gardiner, Prasad, Zhang [CGPZ21], or
Edtmair, Hutchings [EH21]). The proof of Theorem 1.1 that will be given in the
present article does not use Floer homology but only generating functions. Is there
any hope to find proofs of these deep results using such classical tools?

1.2. Idea of the proof. — Let us state first the following result of Bramham [Bra15]:

Theorem 1.3. — Every irrational pseudo-rotation f ∈ Diff∞
ω (D) is the limit, for the

C0 topology, of a sequence of finite order C∞ diffeomorphisms.

Write α = rot(f). The proof says something more precise: if (qn)n⩾0 is a sequence
of positive integers such that (qnα)n⩾0 converges to 0 in R/Z, then there exists a
sequence of homeomorphisms (fn)n⩾0 fixing 0 and satisfying (fn)

qn = Id, that con-
verges to f for the C0 topology (to obtain a sequence of smooth approximations one
needs a simple additional argument of approximation). Theorem 1.1 would have been
an easy consequence of Theorem 1.3 if the stronger following properties were true:

– the fn are symplectic diffeomorphisms of class C1;
– the sequence (fn)n⩾0 converges to f in the C1 topology.

Unfortunately, there is no reason why the fn appearing in the construction of the
sequence satisfy these properties.

J.É.P. — M., 2023, tome 10



842 P. Le Calvez

The original proof of Theorem 1.3 uses pseudoholomorphic curve techniques from
symplectic geometry. In [LC16] we succeeded to find a finite dimensional proof by
using generating functions, like in Chaperon’s broken geodesics method [Cha84]. Let
us remind the ideas of this last proof. The hypothesis were slightly different, the
result was stated for an irrational pseudo-rotation f ∈ Diff1

ω(D) coinciding with a
rotation on S. This last property permits us to extend our map, also denoted f , to a
piecewise C1 diffeomorphism of the whole plane, being an integrable polar twist map
with increasing rotation number in an annulus {z ∈ R2 | 1 ⩽ |z| ⩽ r0} and equal to an
irrational rotation in {z ∈ R2 | |z| ⩾ r0}. Let I be an identity isotopy of f|D in Diff1

ω(D)
that fixes 0. We write α = rot([I]|S). One can extend I to an identity isotopy (fs)s∈[0,1]

of f , also denoted I, where each fs is an integrable polar map in {z ∈ R2 | 1 ⩽ |z| ⩽ r0}
and a rotation in {z ∈ R2 | |z| ⩾ r0}. The circle S is accumulated from outside by
invariant circles Sa/b, such that [I]b[T−a]|Sa/b

∈ ˜Diff1(Sp/q) is the trivial homotopy.
Moreover, one can find a sequence (an, bn) ∈ Z×(N∖{0}) such that |bnα−an| ⩽ b−1

n .
The map f being piecewise C1, one can write it as the composition of m maps “close
to IdR2”, where m ⩾ 1, and then construct a m-periodic family (hi)i∈Z of generating
real functions that are C1 with Lipschitz derivatives. One knows that for every b ⩾ 1,
the fixed point set of f b corresponds to the singular point set of a A-Lipschitz vector
field ζ defined on a 2mb-dimensional space Eb, furnished with a natural scalar product.
This vector field is the gradient flow of a function h defined in terms of the hi,
i ∈ Z, and the constant A is independent of b. In particular each circle Sa/b ⊂ R2

corresponds to a curve Σa ⊂ Eb of singularities of ζ. A fundamental result is the fact
that Σa bounds a disk ∆a ⊂ Eb that contains the singular point corresponding to the
fixed point 0 and that is invariant by the flow and by a natural Z/bZ action on Eb.
Moreover, the dynamics of the flow of ζ on ∆a is north-south and the non trivial orbits
have the same energy. This energy can be explicitly computed and is small if a/b is a
convergent of α. Using the independence of the Lipschitz constant A, one can deduce
that ζ is “uniformly small” on ∆a. The disk ∆a projects homeomorphically on the
disk bounded by Sa/b, denoted Da/b, by an explicit map q1. The Z/bZ action on ∆a

defines, by projection on Da/b, a homeomorphism f̂ of order b that coincides with f

on Sa/b. Using what has been said above, in particular the fact that ζ is small on ∆a,
one can prove that f̂ is uniformly close to f on the disk Da/b if a/b is a convergent
of α. This is the way we prove the approximation result.

The orbits of ζ|∆a
define a radial foliation on ∆a that projects by q1 onto a topo-

logical radial foliation F1 of Da/b that is invariant by f̂ . It is natural to ask whether
one can compute the Calabi invariant of f by using the fact that f̂ is arbitrarily close
to f . The main problem is that f̂ and F1 are continuous. There is no differentia-
bility anymore, and differentiability is crucial while dealing with Calabi invariants,
regardless of the approach we choose. Nevertheless, the fact that we are dealing with
Lipschitz maps close to Id (the maps f1, . . . , fm appearing in the decomposition of f)
permit us to state some quantitative results. The three key-points that will be used
to get the proof are related to the foliation F1:

J.É.P. — M., 2023, tome 10



A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations 843

(1) the energy of the non trivial orbits of ζ|∆a
is bounded by K|bα− a|, where K

does not depend on a and b;
(2) the leaves of F1 are Brouwer lines of IbT−a|Da/b

;
(3) the winding distance between F1 and f−b(F1) is bounded by 4mb.

Let us clarify these three points.
The non trivial orbits of ζ|∆a

have the same energy. This quantity measures the
area swept by a leaf of F1 along the isotopy IbT−a|Da/b

.
By saying that the leaves of F1 are Brouwer lines, we mean that they are pushed

on the right along the isotopy IbT−a|Da/b
. Equivalently, we can say the following: let

D̃a/b be the universal covering space of D∗
a/b = Da/b ∖ (Sa/b ∪{0}), let Ĩ = (f̃s)s∈[0,1]

be the identity isotopy on D̃a/b that lifts I|D∗
a/b

and set f̃ = f̃1. Denote F̃1 the
(non singular) foliation of D̃a/b that lifts F1|D∗

a/b
. Every leaf ϕ̃ of F̃1 is an oriented

topological line of D̃a/b that separates its complement into two components, one on
the left and one on the right. The time one map T of the identity isotopy of D̃a/b

that lifts T1|D∗
a/b

generates the group of covering automorphisms. The assertion (2)
states that f̃ b ◦ T−a(ϕ̃) is on the right of ϕ̃ for every leaf ϕ̃. The assertion (1) states
that the area of the domain between ϕ̃ and f̃ b ◦ T−a(ϕ̃), which is equal to the energy
of the corresponding orbit of ζ, is bounded by K|bα− a|.

The assertion (3) says that the foliation f−b(F1) winds relative to F1 no more than
4mq. A precise definition will be given in the next section. Just say that if F is a radial
foliation of class C1, there exists K > 0 such that for every b > 0 the winding distance
between the foliations F and f−b(F) is bounded by Kb. The foliation that appears
in our construction depends on a and b, is not differentiable, possesses interesting
dynamical properties stated in (1) and (2) and nevertheless satisfies a “differential-
like” property.

The properties (1), (2) and (3) will permit us to bound the Calabi invariant of each
map f|Da/b

. Note that we will use the third definition, as the map is only piecewise C1

on Da/b. The Calabi invariant will be small if a/b is a convergent that is close to α.
By a limit process, we will prove that Cal(f|D) = 0.

The rest of the article is divided into three sections.
Section 2 will be dedicated to the study of topological radial foliations defined on

a disk. We will introduce different objects on the set of such foliations, in particular
the winding distance between two foliations. We will see how to compute the Calabi
invariant of a symplectic diffeomorphism by using such a foliation.

In Section 3 we will recall the construction done in [LC16] and quickly explained
in the introduction. In particular we will define F1 and prove the properties (1), (2)
and (3) stated above.

We will prove Theorem 1.1 in the short section 4.

Acknowledgements. — I would like to thank Benoit Joly, Frédéric Le Roux and Sob-
han Seyfaddini for so useful talks. I am particularly indebted to John Franks for the
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many conversations we had on this subject some years ago and would like to thank
him warmly. Finally, I would like to thank the referee, the many comments have
permit to improve the redaction of the article.

2. Radial foliations and Calabi invariant

We will introduce a formal setting to study radial foliations on a disk, based on a
“discretization of the angles”, that seems pertinent for studying topological foliations.
Classical objects related to disk homeomorphisms, like rotation numbers or linking
numbers, will be investigated in this formalism. One can look at Bechara [Bec20] for
similar questions in a differentiable context.

2.1. The space of radial foliations. — Let D be an open disk of the form D =

{z ∈ R2 | |z| < r}, where r > 0. We will set D∗ = D ∖ {0} and will denote D̃ the
universal covering space of D∗. We will consider the sets

W = {(z, z′) ∈ D∗ ×D∗ | z ̸= z′} and W̃ = {(z̃, z̃′) ∈ D̃ × D̃ | z̃ ̸= z̃′}.

A radial foliation is an oriented topological foliation on D∗ such that every leaf ϕ
is a ray, meaning that it satisfies

α(ϕ) = {0}, ω(ϕ) ⊂ ∂D = {z ∈ C | |z| = r}.

The sets α(ϕ) and ω(ϕ) are defined as follows: if t 7→ ϕ(t) is a real parametrization
of ϕ compatible with the orientation of the leaf, then we have

α(ϕ) =
⋂
t∈R

ϕ((−∞, t]), ω(ϕ) =
⋂
t∈R

ϕ([t,+∞)),

where the notation Y means the closure of Y in R2. In other words, ϕ tends to 0

in the past and to ∂D in the future. We denote F the set of radial foliations. The
group Homeo∗(D

∗) of homeomorphisms of D∗ that are isotopic to the identity coin-
cides with the group of orientation preserving homeomorphisms that fix the two ends
of D∗. It acts naturally on F: if F ∈ F and f ∈ Homeo∗(D

∗), then the foliation f(F),
whose leaves are the images by f of the leaves of F, is a radial foliation. Moreover,
Homeo∗(D

∗) acts transitively on F. If Homeo∗(D
∗) is endowed with the C0 topology,

meaning the compact-open topology applied to maps and the inverse maps, the sta-
bilizer Homeo∗,F(D

∗) of F ∈ F is a closed subgroup of Homeo∗(D
∗). Consequently,

the map
Homeo∗(D

∗)/Homeo∗,F(D
∗) −→ F

f Homeo∗,F(D
∗) 7−→ f(F)

is bijective and F can be furnished with a natural C0 topology. It is the topology,
induced from the quotient topology defined on Homeo∗(D

∗)/Homeo∗,F(D
∗) by this

identification map. Note that this topology does not depend on F. It is well known
that the fundamental groups of Homeo∗(D

∗) and Homeo∗,F(D
∗) are infinite cyclic

and that the morphism i∗ : π1(Homeo∗,F(D
∗), Id) → π1(Homeo∗(D

∗), Id) induced by
the inclusion map i : Homeo∗,F(D

∗) → Homeo∗(D
∗) is bijective. This implies that F

is simply connected. In the whole article, when F is a radial foliation, the notation F̃
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A finite dimensional proof of a result of Hutchings about irrational pseudo-rotations 845

means the lift of F to the universal covering space D̃. Note that F̃ is a trivial foliation.
In particular, every leaf ϕ̃ of F̃ is an oriented line of D̃ that separates D̃ into two
connected open sets, the component of D̃ ∖ ϕ̃ lying on the left of ϕ̃ will be denoted
L(ϕ̃) and the component lying on the right will be denoted R(ϕ̃). We get a total order
⪯F on the set of leaves of F̃ as follows:

ϕ̃ ⪯F ϕ̃′ ⇐⇒ R(ϕ̃) ⊂ R(ϕ̃′).

We can also define a partial order ⩽F on D̃: denote ϕ̃z̃ the leaf of F̃ that contains z̃

and write z̃ <F z̃′ if z̃ ̸= z̃′, if ϕ̃z̃ = ϕ̃z̃′ and if the segment of ϕ̃z̃ beginning at z̃ and
ending at z̃′ inherits the orientation of ϕ̃z̃.

2.2. Topological angles in the universal covering space. — Consider the natural
projection

π : Z −→ Z/4Z

k 7−→ k̇ = k + 4Z.
If Z/4Z is endowed with the topology whose open sets are

∅, {1̇}, {3̇}, {1̇, 3̇}, {1̇, 2̇, 3̇}, {3̇, 0̇, 1̇}, {0̇, 1̇, 2̇, 3̇},

and Z with the topology generated by the sets {2k+1} and {2k−1, 2k, 2k+1}, k ∈ Z,
then π is a covering map.(3) Note that both sets Z/4Z and Z are non Hausdorff but
path connected.

If k, ℓ are two integers, we will define

λ(k, ℓ) =


0 if k = ℓ,
#(k, ℓ) ∩ 4Z+ (#{k, ℓ} ∩ 4Z)/2 if k < ℓ,
−#(ℓ, k) ∩ 4Z− (#{ℓ, k} ∩ 4Z)/2 if k > ℓ.

Note that for every integers k, ℓ,m we have

λ(k, ℓ) + λ(ℓ,m) = λ(k,m).

The quantity λ(k, ℓ) measures the “algebraic intersection number” of a continuous
path γ : [s0, s1]→Z/4Z with {0̇}, if γ is lifted to a path γ̂ : [s0, s1]→Z joining k to ℓ.

For every (z̃, z̃′) ∈ W̃ , we can define a continuous function θz̃,z̃′ : F → Z/4Z as
follows:

θz̃,z̃′(F) =


0̇ if z̃′ >F z̃,
1̇ if ϕz̃′ ≻F ϕz̃,
2̇ if z̃′ <F z̃′,
3̇ if ϕz̃′ ≺F ϕz̃.

The space F being simply connected, the Lifting Theorem asserts that there exists
a continuous function, θ̂z̃,z̃′ : F → Z, uniquely defined up to an additive constant
in 4Z, such that π ◦ θ̂z̃,z̃′ = θz̃,z̃′ .

(3)This topology on Z is usually called the digital line topology or Khalimsky topology on Z.
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Note that
– θz̃′,z̃(F) = θz̃,z̃′(F) + 2̇, for every F ∈ F,
– θ̂z̃,z̃′ and θ̂z̃′,z̃ can be chosen such that θ̂z̃′,z̃(F) = θ̂z̃,z̃′(F) + 2 for every F ∈ F,
– θf̃(z̃),f̃(z̃′)(f(F)) = θz̃,z̃′(F), for every F ∈ F and every f ∈ Homeo∗(D

∗),
– θ̂f̃(z̃),f̃(z̃′) and θ̂z̃,z̃′ can be chosen such that θ̂f̃(z̃),f̃(z̃′)(f(F)) = θ̂z̃,z̃′(F), for every

F ∈ F.
In particular, if F and F′ are two radial foliations, the numbers

τ̂(z̃, z̃′,F,F′) = θ̂z̃,z̃′(F′)− θ̂z̃,z̃′(F) and λ(z̃, z̃′,F,F′) = λ(θ̂z̃,z̃′(F), θ̂z̃,z̃′(F′))

do not depend on the choice of the lift θ̂.
Suppose that (z̃, z̃′) ∈ W̃ , that f ∈ Homeo∗(D

∗), that f̃ is a lift of f and that F,
F′, F′′ belong to F. The following results are immediate:

– |λ(z̃, z̃′,F,F′)| ⩽ |τ̂(z̃, z̃′,F,F′)|,
– τ̂(z̃′, z̃,F,F′) = τ̂(z̃, z̃′,F,F′),
– τ̂(z̃, z̃′,F,F′) + τ̂(z̃, z̃′,F′,F′′) = τ̂(z̃, z̃′,F,F′′),
– λ(z̃, z̃′,F,F′) + λ(z̃, z̃′,F′,F′′) = λ(z̃, z̃′,F,F′′),
– τ̂(z̃, z̃′,F′,F) = −τ̂(z̃, z̃′,F,F′),
– λ(z̃, z̃′,F′,F) = −λ(z̃, z̃′,F,F′),
– τ̂(f̃(z̃), f̃(z̃′), f(F), f(F′)) = τ̂(z̃, z̃′,F,F′),
– λ(f̃(z̃), f̃(z̃′), f(F), f(F′)) = λ(z̃, z̃′,F,F′).
The second assertion indicates that (z̃, z̃′) 7→ τ̂(z̃′, z̃,F,F′) is symmetric. The next

result clarifies the lack of symmetry of (z̃, z̃′) 7→ λ(z̃′, z̃,F,F′). For every (z̃, z̃′) ∈ W̃ ,
define a function δz̃,z̃′ : F → {−1/2, 0, 1/2} as follows:

δz̃,z̃′(F) =


0 if ϕ̃z̃′ = ϕ̃z̃,
1/2 if ϕ̃z̃′ ≻F ϕz̃,
−1/2 if ϕ̃z̃′ ≺F ϕz̃.

The next result express that λ(z̃, z̃′,F,F′)−λ(z̃′, z̃,F,F′) is the “algebraic intersection
number” of a “well-oriented” continuous path γ : [s0, s1] → Z/4Z joining θ̂z̃′,z̃(F) to
θ̂z̃,z̃′(F′) with {0̇} − {2̇}.

Lemma 2.1. — For every (z̃, z̃′) ∈ W̃ and every F, F′ in F, it holds that

λ(z̃, z̃′,F,F′)− λ(z̃′, z̃,F,F′) = δz̃,z̃′(F′)− δz̃,z̃′(F).

Proof. — Recall that

λ(z̃, z̃′,F,F′) = λ(θ̂z̃,z̃′(F), θ̂z̃,z̃′(F′))

and that one can suppose that

θ̂z̃′,z̃(F) = θ̂z̃,z̃′(F) + 2, θ̂z̃′,z̃(F
′) = θ̂z̃,z̃′(F′) + 2.
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Now observe that

λ(z̃, z̃′,F,F′)− λ(z̃′, z̃,F,F′) =



0 if θz̃,z̃′(F) = θz̃,z̃′(F′),
0 if θz̃,z̃′(F) = 0̇ and θz̃,z̃′(F′) = 2̇,
0 if θz̃,z̃′(F) = 2̇ and θz̃,z̃′(F′) = 0̇,
−1 if θz̃,z̃′(F) = 1̇ and θz̃,z̃′(F′) = 3̇,
1 if θz̃,z̃′(F) = 3̇ and θz̃,z̃′(F′) = 1̇,
−1/2 if θz̃,z̃′(F) = 1̇ and θz̃,z̃′(F′) = 0̇,
1/2 if θz̃,z̃′(F) = 0̇ and θz̃,z̃′(F′) = 1̇,
−1/2 if θz̃,z̃′(F) = 0̇ and θz̃,z̃′(F′) = 3̇,
1/2 if θz̃,z̃′(F) = 3̇ and θz̃,z̃′(F′) = 0̇,
−1/2 if θz̃,z̃′(F) = 1̇ and θz̃,z̃′(F′) = 2̇,
1/2 if θz̃,z̃′(F) = 2̇ and θz̃,z̃′(F′) = 1̇,
−1/2 if θz̃,z̃′(F) = 2̇ and θz̃,z̃′(F′) = 3̇,
1/2 if θz̃,z̃′(F) = 3̇ and θz̃,z̃′(F′) = 2̇.

□

The next result will be useful later:

Lemma 2.2. — For every compact set K̃ ⊂ W̃ and every F,F′ in F, there exists M > 0

such that for every (z̃, z̃′) ∈ K̃ it holds that

|τ̂(z̃, z̃′,F,F′)| ⩽ M.

Proof. — For every (z̃, z̃′) ∈ W̃ , there exists a neighborhood d̃z̃,z̃′ × d̃′z̃,z̃′ ⊂ W̃ of
(z̃, z̃′), where d̃z̃,z̃′ and d̃′z̃,z̃′ are topological closed disks. One can cover K̃ by a finite
family of such neighborhoods. So it is sufficient to prove the result when K̃ = d̃× d̃′

is the product of two topological closed disks. The map

d̃× d̃′ × F −→ Z/4Z
(z̃, z̃′,F) 7−→ θz̃,z̃′(F)

being continuous and the space d̃ × d̃′ × F being simply connected, one can lift this
last map to a continuous map

d̃× d̃′ × F −→ Z

(z̃, z̃′,F) 7−→ θ̂z̃,z̃′(F).

For every F in F, the function (z̃, z̃′) 7→ θ̂z̃,z̃′(F) is continuous on d̃ × d̃′ and so is
bounded by compactness of d̃× d̃′. This last affirmation comes from the fact that for
every ℓ ⩾ 1, the set {(z̃, z̃′) ∈ d̃× d̃′ | |θ̂z̃,z̃′(F)| < 2ℓ} is an open subset of d̃× d̃′ as the
preimage of an open set by a continuous map. So, for every F,F′ in F, the function
(z̃, z̃′) 7→ θ̂z̃,z̃′(F′)− θ̂z̃,z̃′(F) = τ(z̃, z̃′,F,F′) is bounded on d̃× d̃′. □
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Let us conclude with the following:

Lemma 2.3. — The function d : F× F → N ∪ {+∞} is an extended distance, where
d(F,F′) = sup

(z̃,z̃′)∈W̃

|τ̂(z̃, z̃′,F,F′)|.

Moreover, the equality d(f(F), f(F′)) = d(F,F′) holds for every f ∈ Homeo∗(D
∗).

Proof. — One proves immediately that d is symmetric and satisfies the triangular
inequality. The fact that d(F,F) = 0 for every F ∈ F is also obvious. It remains to
prove that d(F,F′) ̸= 0 if F and F′ are distinct radial foliations. In that case, one
can find (z̃, z̃′) ∈ W̃ such that z̃ and z̃′ belong to the same leaf of F̃ and to different
leaves of F̃′. Consequently, θ(z̃, z̃′,F) ∈ {0̇, 2̇} and θ(z̃, z̃′,F′) ∈ {1̇, 3̇}. This implies
that θ̂(z̃, z̃′,F) ̸= θ̂(z̃, z̃′,F′) if θ̂ is a lift of θ.

The equality d(f̃(F), f̃(F′)) = d(F,F′) if f ∈ Homeo∗(D
∗) is a direct consequence

of the equality
τ̂(f̃(z̃), f̃(z̃′), f(F), f(F′)) = τ̂(z̃, z̃′,F,F′). □

We will call d the winding distance between two radial foliations.

2.3. Topological angles in the annulus. — Let F be a radial foliation and f a
homeomorphism of D∗ isotopic to the identity. Let I = (fs)s∈[0,1] be an identity
isotopy of f in Homeo∗(D

∗) and Ĩ = (f̃s)s∈[0,1] the lifted identity isotopy to D̃. The
function

s ∈ [0, 1] 7−→ θf̃s(z̃),f̃s(z̃′)(F) = θz̃,z̃′(f−1
s (F)) ∈ Z/4Z

can be lifted to a function
s ∈ [0, 1] 7−→ θ̂z̃,z̃′(f−1

s (F)) ∈ Z

and the difference between the value at 1 and the value at 0 of this last map is nothing
but τ̂(z̃, z̃′,F, f−1(F)). Of course it depends neither on the choice of I, nor on the
choice of the lift Ĩ of I. Suppose now that z̃ and z̃′ project onto two different points
of D∗. Note that if k is large enough, then for every s ∈ [0, 1], it holds that

θf̃s(z̃),f̃s(Tk(z̃′))(F) = 1̇, θf̃s(z̃),f̃s(T−k(z̃′))(F) = 3̇,

and so the functions
s 7−→ θ̂z̃,Tk(z̃′)(f

−1
s (F)), s 7−→ θ̂z̃,T−k(z̃′)(f

−1
s (F))

are constant, which means that

τ̂(z̃, T k(z̃′),F, f−1(F)) = τ̂(z̃, T−k(z̃′),F, f−1(F)) = 0.

Consequently, if F and F′ are two radial foliations, then for every (z, z′) ∈ W , one
can define
τ̂(z, z′,F,F′) =

∑
k∈Z

|τ̂(z̃, T k(z̃′),F,F′)|, τ̂(z, z′,F,F′) =
∑
k∈Z

τ̂(z̃, T k(z̃′),F,F′),

λ(z, z′,F,F′) =
∑
k∈Z

λ(z̃, T k(z̃′),F,F′),

each sum being independent of the choice of the lifts z̃, z̃′ of z, z′.
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Suppose that (z, z′) ∈ W , that f ∈ Homeo∗(D
∗) and that F, F′, F′′ belong to F.

The following results are immediate
– |τ̂(z, z′,F′,F)| ⩽ τ̂(z, z′,F,F′),
– |λ(z, z′,F′,F)| ⩽ τ̂(z, z′,F,F′),
– τ̂(z′, z,F,F′) = τ̂(z, z′,F,F′),
– τ̂(z′, z,F,F′) = τ̂(z, z′,F,F′),
– τ̂(z, z′,F′,F) = τ̂(z, z′,F,F′),
– τ̂(z, z′,F,F′) + τ̂(z, z′,F′,F′′) = τ̂(z, z′,F,F′′),
– λ(z, z′,F,F′) + λ(z, z′,F′,F′′) = λ(z, z′,F,F′′),
– τ̂(z, z′,F′,F) = −τ̂(z, z′,F,F′),
– λ(z, z′,F′,F) = −λ(z, z′,F,F′),
– τ̂(f(z), f(z′), f(F), f(F′)) = τ̂(z, z′,F,F′),
– λ(f(z), f(z′), f(F), f(F′)) = λ(z, z′,F,F′).
Note that we have the following:

Lemma 2.4. — For every compact subset K ⊂ W , for every F,F′ in F, there exists
M > 0 such that for every (z, z′) ∈ K it holds that

τ̂(z, z′,F,F′) ⩽ M.

Proof. — Like in the proof of Lemma 2.2, it is sufficient to study the case where
K = d × d′ is the product of two topological closed disks. Choose a lift d̃ of d and
a lift d̃′ of d′ in D̃. Choose f ∈ Homeo∗(D

∗) such that F′ = f−1(F) and an identity
isotopy (fs)s∈[0,1] of f . Lift this isotopy to an identity isotopy (f̃s)s∈[0,1] on D̃. There
exists k0 > 0 such that if k ⩾ k0, then for every s ∈ [0, 1], every z̃ ∈ d̃ and every
z̃′ ∈ d̃′ it holds that

θf̃s(z̃),f̃s(Tk(z̃′))(F) = 1̇, θf̃s(z̃),f̃s(T−k(z̃′))(F) = 3̇,

and this implies that

τ̂(z̃, T k(z̃′),F,F′) = τ̂(z̃, T−k(z̃′),F,F′) = 0.

To conclude, it remains to apply Lemma 2.2 to the compact sets d̃×T k(d̃′), |k|<k0. □

Let us conclude this section by stating an analogous of Lemma 2.1. Define first
what is a displacement function. For every f ∈ Homeo∗(D

∗), every lift f̃ of f to D̃

and every ray ϕ we can define a function mf̃ ,ϕ : D∗ → Z as follows: we choose a lift ϕ̃

of ϕ, then for every z ∈ D, we consider the lift z̃ of z such that z̃ ∈ L(ϕ̃)∩R(T (ϕ̃)) and
we denote mf̃ ,ϕ(z) the integer m such that f̃(z̃) ∈ L(Tm(ϕ̃)) ∩ R(Tm+1(ϕ̃)), noting
that it does not depend on the choice of ϕ̃. Observe that mTk◦f̃ ,ϕ = mf̃ ,ϕ + k, for
every k ∈ Z. One proves easily the following result:
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Lemma 2.5. — For every compact subset K ⊂ D∗ and every rays ϕ, ϕ′, there exists
M > 0 such that for every f ∈ Homeo∗(D

∗) and every lift f̃ of f to D̃, it holds that

z ∈ K and f(z) ∈ K =⇒ |mf̃ ,ϕ(z)−mf̃ ,ϕ′(z)| ⩽ M.

The following result clarifies the lack of symmetry of (z, z′) 7→ λ(z, z′,F,F′).

Lemma 2.6. — Fix F, F′ in F. Choose a leaf ϕ of F, a lift ϕ̃ of ϕ to D̃ and a map
f ∈ Homeo∗(D

∗) such that F′ = f−1(F). For every z ∈ D∗, denote z̃∗ the unique lift
of z such that z̃ ∈ L(ϕ̃) ∩R(T (ϕ̃)). Then, for every (z, z′) ∈ W , we have

λ(z, z′,F,F′)− λ(z′, z,F,F′) = mf̃ ,ϕ(z
′)−mf̃ ,ϕ(z) + δ

f̃(z)
∗
,f̃(z′)

∗(F)− δz̃∗,z̃∗(F).

Proof. — Fix (z, z′) ∈ W . During the proof, we will lighten the notations by writing

z̃ = z̃∗, z̃′ = z̃′∗, m = mf̃ ,ϕ(z), m′ = mf̃ ,ϕ(z
′).

By using Lemma 2.1 we get

λ(z, z′,F, f−1(F))− λ(z′, z,F, f−1(F))

=
∑
k∈Z

λ(z̃, T k(z̃′),F, f−1(F))−
∑
k∈Z

λ(z̃′, T k(z̃),F, f−1(F))

=
∑
k∈Z

λ(z̃, T k(z̃′),F, f−1(F))−
∑
k∈Z

λ(T k(z̃′), z̃,F, f−1(F))

=
∑
k∈Z

λ(z̃, T k(z̃′),F, f−1(F))− λ(T k(z̃′), z̃,F, f−1(F))

=
∑
k∈Z

δz̃,Tk(z̃′)(f
−1(F))− δz̃,Tk(z̃′)(F)

=
∑
k∈Z

δf̃(z̃),Tk(f̃(z̃′))(F)− δz̃,Tk(z̃′)(F)

=
∑
k∈Z

δf̃(T−m(z̃)),Tk(f̃(T−m(z̃′)))(F)− δz̃,Tk(z̃′)(F)

=
∑
k∈Z

δf̃(T−m(z̃)),Tk+m′−m(f̃(T−m′ (z̃′)))(F)− δz̃,Tk(z̃′)(F).

Recalling that z̃ = z̃∗ and z̃′ = z̃′∗, we have

δz̃,Tk(z̃′)(F) =

{
−1/2 if k < 0,

1/2 if k > 0,

and

δf̃(T−m(z̃)),Tk+m′−m(f̃(T−m′ (z̃′)))(F) =

{
−1/2 if k +m′ −m < 0,

1/2 if k +m′ −m > 0.
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So we deduce that

δf̃(T−m(z̃)),Tk+m′−m(f̃(T−m′ (z̃′)))(F)− δz̃,Tk(z̃′)(F)

=



0 if k < min(0,m−m′)

0 if k > max(0,m−m′)

1 if m−m′ < k < 0

−1 if 0 < k < m−m′

−δz̃∗,z̃′∗(F)− 1/2 if k = 0 < m−m′

−δz̃∗,z̃′∗(F) + 1/2 if k = 0 > m−m′

δ
f̃(z̃)

∗
,f̃(z̃′)

∗(F) + 1/2 if k = m−m′ < 0

δ
f̃(z̃)

∗
,f̃(z̃′)

∗(F)− 1/2 if k = m−m′ > 0

δ
f̃(z̃)

∗
,f̃(z̃′)

∗(F)− θ̌z̃∗,z̃′∗(F) if k = 0 = m−m′

and consequently, that

(2.1)
∑
k∈Z

δf̃(T−m(z̃)),Tk+m′−m(f̃(T−m′ (z̃′)))(F)− δz̃,Tk(z̃′)(F)

= m′ −m+ δ
f̃(z)

∗
,f̃(z′)

∗(F)− δz̃∗,z̃′∗(F). □

Remarks
(1) The function λf,F : (z, z′) 7→ λ(z, z′,F, f−1(F)) depends only on the folia-

tions F and f−1(F) (and not explicitly in f) and the function z 7→ mf̃ ,ϕ(z) depends
only on the ray ϕ and on f̃ .

(2) The equality proved in Lemma 2.6 can be written

Λf̃ ,F,ϕ(z, z
′)− Λf̃ ,F,ϕ(z

′, z) = δ
f̃(z)

∗
,f̃(z′)

∗(F)− δz̃∗,z̃∗(F),

where
Λf̃ ,F,ϕ(z, z

′) = λf,F(z, z
′) +mf̃ ,ϕ(z).

(3) For every k ∈ Z it holds that ΛTk◦f̃ ,F,ϕ = Λf̃ ,F,ϕ + k.

2.4. Rotation number and linking number. — We will see how to define rotation
numbers and self linking numbers within this formalism.

Definition 2.7. — Fix f ∈ Homeo∗(D
∗) and a lift f̃ to D̃. Say that z ∈ D∗ has a

rotation number rotf̃ (z) ∈ R if:
(1) there exists a compact set K ⊂ D∗ such that #{n ⩾ 0 | fn(z) ∈ K} = +∞;
(2) if ϕ is a ray and if K ⊂ D∗ is a compact set containing z, then for every ε > 0,

there exists n0 ⩾ 0 such that for every n ⩾ n0 it holds that

fn(z) ∈ K =⇒
∣∣∣∣ 1n

n−1∑
i=0

mf̃ ,ϕ(f
i(z))− rotf̃ (z)

∣∣∣∣ ⩽ ε.

Remark. — Note that
∑n−1

i=0 mf̃ ,ϕ(f
i(z)) = mf̃n,ϕ(z). Using Lemma 2.5, one deduces

that if the second assertion is true for a ray ϕ, it is true for every ray ϕ′.
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Definition 2.8. — Fix f ∈ Homeo∗(D∗) and a lift f̃ to D̃. Say that (z, z′) ∈ W has
a linking number linkf̃ (z, z

′) ∈ R if

(1) the points z and z′ have a rotation number;
(2) there exists a compact set K ⊂ W such that #{n ⩾ 0 | (fn(z), fn(z′)) ∈ K} =

+∞;
(3) if F is a radial foliation, if ϕ is leaf of F and if K ⊂ W is a compact set

containing (z, z′), then for every ε > 0, there exists n0 ⩾ 0 such that for every n ⩾ n0

it holds that

(fn(z), fn(z′)) ∈ K =⇒
∣∣∣∣ 1n

n−1∑
i=0

Λf̃ ,F,ϕ(f
i(z), f i(z′))− linkf̃ (z, z

′)

∣∣∣∣ ⩽ ε.

Remarks
(1) Note that

n−1∑
i=0

Λf̃ ,F,ϕ(f
i(z), f i(z′)) = Λf̃n,F,ϕ(z, z

′).

(2) As explained in the remark following the definition of the rotation number, we
know that if the third assertion is true for a leaf ϕ, it is true for every other leaf. Let
us explain now, why if the third assertion is true for a foliation F ∈ F, it is true for
every other foliation F′ ∈ F.(4) We have∣∣λ(z, z′,F, f−n(F))− λ(z, z′,F′, f−n(F′))

∣∣
=

∣∣λ(z, z′,F,F′) + λ(z, z′,F′, f−n(F))− λ(z, z′,F′, f−n(F′))
∣∣

=
∣∣λ(z, z′,F,F′)− λ(z, z′, f−n(F), f−n(F′))

∣∣
= |λ(z, z′,F,F′)− λ(fn(z), fn(z′),F,F′)|

⩽ τ̂(z, z′,F,F′) + τ̂(fn(z), fn(z′),F,F′).

It remains to apply Lemma 2.4: for every compact set K ⊂ D∗, there exists M > 0

such that for every point (z, z′) satisfying (z, z′) ∈ K and (fn(z), fn(z′)) ∈ K, we have
τ̂(z, z′,F,F′) ⩽ M and τ̂(fn(z), fn(z′),F,F′) ⩽ M .

(3) By the remark following Lemma 2.6, if linkf̃ (z, z
′) exists, then linkf̃ (z

′, z) exists
and linkf̃ (z

′, z) = linkf̃ (z, z
′). Indeed, we have∣∣Λf̃n,F,ϕ(z, z

′)− Λf̃n,F,ϕ(z
′, z)

∣∣ = ∣∣δ
f̃n(z)

∗
,f̃(nz′)

∗(F)− δz̃∗,z̃∗(F)
∣∣ ⩽ 1.

Definition 2.9. — Fix f ∈ Homeo∗(D
∗) and a lift f̃ to D̃. Suppose that f lets

invariant a finite Borel measure µ.

(4)This assertion is more or less what is used by Gambaudo and Ghys to prove in [GG97] that
two symplectic diffeomorphisms of D that are conjugate by an orientation and area preserving home-
omorphism have the same Calabi invariant.
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(1) Say that µ has a rotation number rotf̃ (µ) ∈ R if µ-almost every point z has a
rotation number and if the function rotf̃ is µ-integrable, and in that case set

rotf̃ (µ) =

∫
D∗

rotf̃ dµ.

(2) Say that µ has a self-linking number linkf̃ (µ) ∈ R, if
– µ is non atomic,
– µ has a rotation number,
– µ× µ-almost every pair (z, z′) ∈ W has a linking number and the function

linkf̃ is µ× µ-integrable, and in that case set

linkf̃ (µ) =

∫
W

linkf̃ dµ× dµ.

Remarks
(1) If there exists a ray ϕ such that mf̃ ,ϕ is µ-integrable, then by Birkhoff Ergodic

Theorem, one knows that µ has a rotation number and it holds that

rotf̃ (µ) =

∫
D∗

mf̃ ,ϕ dµ.

(2) If there exists a radial foliation F and a leaf ϕ of F such that mf̃ ,ϕ is µ-integrable
and λf,F is µ× µ-integrable, then µ has a self-linking number and it holds that

linkf̃ (µ) =

∫
W

Λf̃ ,F,ϕ dµ× dµ.

Suppose that f ∈ Diff1
ω(D). Define D∗ = D∖ (S∪ {0}). Choose an identity isotopy

I = (fs)s∈[0,1] of f in Homeo∗(D) that fixes 0 and write f̃ for the lift of f|D∗ naturally
defined by the restriction of I to D∗. Extend the isotopy to a family (fs)s∈R such
that fs+1 = fs ◦ f for every s ∈ [0, 1]. Denote µω the finite measure naturally defined
by ω. Consider the Euclidean radial foliation F∗ on D∗, whose leaves are the paths
(0, 1) ∋ t 7→ te2iπα, α ∈ [0, 1). Note now that for every leaf ϕ of F∗, every n ⩾ 1 and
every z ∈ D∗ it holds that ∣∣mf̃n,ϕ(z)− angIn(0, z)

∣∣ ⩽ 1.

Moreover, the function z 7→ angI(0, z) is bounded because f is a C1 diffeomorphism.
This implies that mf̃ ,ϕ is bounded and so, µωω has a rotation number (according to
Definition 2.9) and we have

rotf̃ (µ) =

∫
D∗

mf̃ ,ϕ dµω =

∫
D∗

angI(0, z) dµω.

Note now that for every n ⩾ 1 and every (z, z′) ∈ W it holds that∣∣Λf̃n,F∗,ϕ
(z, z′)− angnI (z, z

′)
∣∣ ⩽ 1 + 1 = 2.

To get this inequality, one must consider a frame at z moving with time: at time n

it is the image of the original frame at z by the rotation RangIn (0,z). Indeed, we have
the two following properties:
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– |mf̃n,ϕ(z)− angIn(0, z)| ⩽ 1;
– the difference between the variation of angle of the vector fs(z′)−fs(z), s ∈ [0, n],

in the moving frame and λfn,F∗(z, z
′) is smaller than 1.

One deduces that µω has a self-linking number (according to Definition 2.9) and
we have

linkf̃ (µω) =

∫
W

Λf̃ ,F,ϕ dµω × dµω =

∫
W

angnI (z, z
′) dµω × dµω = C̃al([I]).

Let us conclude with a proposition, that will useful to prove Theorem 1.1, and that
summarizes what has been done in this section.

Proposition 2.10. — Suppose that f ∈ Diff1
ω(D) fixes 0. Let I be an identity isotopy

of f and f̃ be the lift of f|D∗ naturally defined by [I]. If F ∈ F is a radial foliation
and ϕ is a leaf of F such that mf̃ ,ϕ is µω-integrable and λf,F is µω × µω-integrable,
then it holds that

C̃al([I]) =

∫
W

Λf̃ ,F,ϕ dµω × dµω.

3. Construction of a good radial foliation for an irrational
pseudo-rotation.

The three first sections of this chapter come from [LC16]. All proofs can be found
there. The fourth one, concerning properties of projected foliations is mainly new.
The last proposition of the fourth section and the isotopy defined in the last section
already appeared in [LC99] but in a slightly different context (twist maps instead of
untwisted maps).

3.1. Generating functions. — Let us denote π1 : (x, y) 7→ x and π2 : (x, y) 7→ y

the two projections defined on the Euclidean plane R2. An orientation preserving
homeomorphism f of R2 will be called untwisted if the map

(x, y) 7−→ (π1(f(x, y)), y)

is a homeomorphism, which means that there exist two continuous functions g, g′

on R2 such that

f(x, y) = (X,Y ) ⇐⇒

{
x = g(X, y),

Y = g′(X, y).

In this case, the maps X 7→ g(X, y) and y 7→ g′(X, y) are orientation preserving
homeomorphisms of R. If moreover, f is area preserving, the continuous form xdy +

Y dX is exact: there exists a C1 function h : R2 → R such that

g =
∂h

∂y
, g′ =

∂h

∂X
.

The function h, defined up to an additive constant, is a generating function of f .
We can make precise the definition by saying that f is a K Lipschitz untwisted

homeomorphism, where K ⩾ 1, if
(i) f is untwisted;
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(ii) f is K bi-Lipschitz;
(iii) the maps X 7→ g(X, y) and y 7→ g′(X, y) are K bi-Lipschitz;
(iv) the maps y 7→ g(X, y) and X 7→ g′(X, y) are K Lipschitz.
If f is a diffeomorphism of R2, denote Jac(f)(z) the Jacobian matrix at a point z.

One proves easily, that for every K > 1, there exists a neighborhood U of the identity
matrix in the space of square matrices of order 2, such that every C1 diffeomorphism
satisfying Jac(f)(z) ∈ U, for every z ∈ R2, is a K Lipschitz untwisted homeomor-
phism.

Suppose that f is a C1 orientation preserving diffeomorphism of D that fixes 0

and coincides with a rotation Rα on S. Fix β > α. We can extend our map to a
homeomorphism of the whole plane (also denoted f) such that:

f(z) =

{
Rα+|z|−1(z) if 1 ⩽ |z| ⩽ β − α,

Rβ(z) if |z| ⩾ 1 + β − α.

Using the fact that the group of orientation preserving C1 diffeomorphisms of D
(and the group of symplectic diffeomorphisms of D) that fix 0 and every point of S,
when furnished with the C1 topology, is path connected, one can prove the following:

Proposition 3.1. — For every K > 1, one can find a decomposition f = fm ◦ · · · ◦ f1,
where each fi is a K Lipschitz untwisted homeomorphism that fixes 0 and induces a
rotation on every circle of origin 0 and radius r ⩾ 1. Moreover, if f is area preserving,
one can suppose that each fi preserves the area.

We fix K > 1 and a decomposition f = fm ◦ · · · ◦ f1 given by Proposition 3.1.
We define two families (gi)1⩽i⩽m, (g′i)1⩽i⩽m of continuous maps as follows

fi(x, y) = (X,Y ) ⇐⇒

{
x = gi(X, y),

Y = g′i(X, y).

For every i ∈ {1, . . . ,m} one can find an identity isotopy Ii = (fi,s)s∈[0,1], where each
fi,s is an untwisted map such that

fi,s(x, y) = (X,Y ) ⇐⇒

{
x = (1− s)X + sgi(X, y),

Y = (1− s)y + sg′i(X, y),

and a natural isotopy I = Im ◦ · · · ◦ I1 of f . Note that if each fi is area preserving,
one can find a family (hi)1⩽i⩽m of C1 maps, such that

gi =
∂hi

∂y
, g′i =

∂hi

∂X
.

In that case every map fi,s, 1 ⩽ i ⩽ m, s ∈ [0, 1], is area preserving and it holds that

(X, y) 7−→ (1− s)Xy + shi(X, y)

is a generating function of fi,s.
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3.2. The vector field associated to a decomposition. — We consider in this section
a C1 orientation preserving diffeomorphism f of D that fixes 0 and coincides with a
rotation Rα on S. We suppose that it is extended and then decomposed into untwisted
maps as in Section 3.1. We keep the same notations. We extend the families

(fi)1⩽i⩽m, (gi)1⩽i⩽m, (g′i)1⩽i⩽m,

to m periodic families
(fi)i∈Z, (gi)i∈Z, (g′i)i∈Z,

and the family (hi)1⩽i⩽m to a m periodic family (hi)i∈Z in case the fi are area
preserving.

We fix an integer b ⩾ 1 and consider the finite dimensional vector space

Eb =
{
z = (zi)i∈Z ∈ (R2)Z | zi+mb = zi, for all i ∈ Z

}
,

furnished with the scalar product

⟨(zi)i∈Z, (z
′
i)i∈Z⟩ =

∑
0<i⩽mb

xix
′
i + yiy

′
i,

where zi = (xi, yi) and z′i = (x′
i, y

′
i). We define on Eb a vector field ζ = (ζi)i∈Z by

writing

ζi(z) = (ξi(z), ηi(z)) =
(
yi − g′i−1(xi, yi−1), xi − gi(xi+1, yi)

)
.

Observe that ζ is invariant by the (b periodic) shift

φ : Eb −→ Eb,

(zi)i∈Z 7−→ (zi+m)i∈Z.

Let us state some facts about ζ.

Lemma 3.2. — The vector field ζ is A Lipschitz, where A =
√
6K2 + 3.

One deduces that the associated differential system{
ẋi = yi − g′i−1(xi, yi−1),

ẏi = xi − gi(xi+1, yi),

defines a flow on Eb. We will denote by zt the image at time t of a point z ∈ Eb by
this flow. As an application of Gronwall’s lemma, one gets:

Lemma 3.3. — For every (z, z′) ∈ Eb and every t ∈ R, one has

e−A|t|∥z − z′∥ ⩽ ∥zt − z′t∥ ⩽ eA|t|∥z − z′∥

and
e−A|t|∥ζ(z)∥ ⩽ ∥ζ(zt)∥ ⩽ eA|t|∥ζ(z)∥.
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In the case where the fi are area preserving, observe that ζ is the gradient vector
field of the function

h : z 7−→
∑

0<i⩽mb

xiyi − hi−1(xi, yi−1)

and that h is invariant by φ. One can define the energy of an orbit (zt)t∈R to be∫ +∞

−∞
∥ζ(zt)∥2 dt = lim

t→+∞
h(zt)− lim

t→−∞
h(zt).

As a consequence of Lemma 3.2 it holds that

Lemma 3.4. — For every z ∈ Eb, one has

∥ζ(z)∥2 ⩽ A

∫ +∞

−∞
∥ζ(zt)∥2 dt = A

(
lim

t→+∞
h(zt)− lim

t→−∞
h(zt)

)
.

For every i ∈ Z, define the maps Qi, Pi, Q
′
i : Eb → R2, where

Qi(z) = (gi(xi+1, yi), yi), Pi(z) = (xi, yi), Q′
i(z) = (xi, g

′
i−1(xi, yi−1)).

Let us state the main properties of these maps:
– fi ◦Qi = Q′

i+1,

– ζi = J ◦ (Q′
i −Qi), where J(x, y) = (−y, x),

– z ∈ Eb is a singularity of ζ if and only if Qi(z) = Q′
i(z) for every i ∈ Z,

– if z ∈ Eb is a singularity of ζ then Qi(z) = Pi(z) = Q′
i(z) for every i ∈ Z,

– Q1 induces a bijection between the singular set of ζ and the fixed point set of f b,
– the sequence 0 = (0)i∈Z is a singular point of ζ that is sent onto 0 by each Qi,

Pi or Q′
i,

– ζ is C1 in a neighborhood of 0.

3.3. The case of an irrational pseudo-rotation. — In this section we keep the nota-
tion of Section 3.2 but we suppose than f is an irrational pseudo-rotation. We suppose
moreover that β ̸∈ Q and that (α, β)∩Z = ∅. The extension f is a piecewise C1 area
preserving transformation that satisfies the following properties:

– 0 is the unique fixed point of f ;
– there is no periodic point of period b if (bα, bβ) ∩ Z = ∅;
– if (bα, bβ) ∩ Z ̸= ∅, the set of periodic points of period b can be written⋃

α<a/b<β Sa/b, where Sa/b is the circle of center 0 and radius 1 + a/b− α.
In that case, we have the additional following properties for the vector ζ defined

on Eb:
– the singular set consists of the constant sequence 0 and of finitely many smooth

closed curves (Σa)a∈(bα,bβ)∩Z;
– the curve Σa is sent homeomorphically onto Sa/b by each Qi, Pi or Q′

i;
– ξ is C∞ in a neighborhood of Σa.
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We fix an integer b ⩾ 2 such that (bα, bβ) ∩ Z ̸= ∅. If z and z′ are two singular
points of ζ, the quantity h(z)−h(0) is, up to the sign, the difference of action between
the two corresponding fixed points of f b. A computation gives us:

Lemma 3.5. — For every z ∈ Σa, one has

h(z)− h(0) = π(a− bα)
(
1 + (a/b− α) +

(a/b− α)2

3

)
.

We will denote

C(a, b) = π(a− bα)
(
1 + (a/b− α) +

(a/b− α)2

3

)
.

Now let us state the fundamental result of [LC16]:

Proposition 3.6. — The curve Σa bounds a topological disk ∆a ⊂ Eb that satisfies
the following:

(i) ∆a contains the constant sequence 0;
(ii) ∆a is invariant by φ;
(iii) each projection z 7→ (xi, yi−1), i ∈ Z, is one to one on ∆a;
(iv) each projection z 7→ (xi, yi), i ∈ Z, is one to one on ∆a;
(v) ∆a is invariant by the flow of ζ;
(vi) for every z ∈ ∆∗

a = ∆a ∖ ({0} ∪ Σa), one has

lim
t→−∞

zt = 0 and lim
t→+∞

d(zt,Σa) = 0.

Let us explain more precisely what is proved in [LC16]. In what follows, the function
sign assigns +1 to a positive number and −1 to a negative number.

Let us consider the set

V = {z ∈ Eb | xi ̸= 0 and yi ̸= 0 for all i ∈ Z}

and the function L on V defined by the formula

L(z) =
1

4

∑
0<i⩽mb

sign(xi)
(
sign(yi)− sign(yi−1)

)
,

=
1

4

∑
0<i⩽mb

sign(yi)
(
sign(xi)− sign(xi+1)

)
.

It extends continuously to the open set

V ′ = {z ∈ Eb | xi = 0 ⇒ yi−1yi > 0, yi = 0 ⇒ xixi+1 > 0}.

It is integer valued and takes its values in {−[mb/2], . . . , [mb/2]}, where the nota-
tion [x] denotes the integer part of a real number x. The assertions (iii) and (iv) are
immediate consequences of the following fact:

Proposition 3.7. — If z and z′ are two different points of ∆a, then z − z′ ∈ V ′ and
L(z − z′) = a.

The fundamental result that permits to construct ∆a is the following:
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Proposition 3.8. — If z, z are two distinct points of Eb satisfying z′ − z ̸∈ V ′, then
there exists ε > 0 such that for every t ∈ (0, ε], it holds that:

z′−t − z−t ∈ V ′, z′t − zt ∈ V ′, L(z′−t − z−t) < L(z′t − zt).

This result admits an infinitesimal version (see [LC99]):

Proposition 3.9. — If z ∈ Eb is non singular and satisfies ζ(z) ̸∈ W , then there
exists ε > 0 such that for every t ∈ (0, ε], it holds that:

ζ(z′−t
) ∈ V ′, ζ(z′t) ∈ V ′, L(ζ(z′−t

)) < L(ζ(z′t))

and
z′−t − z ∈ V ′, z′t − z ∈ V ′, L(z′−t − z) < L(z′t − z).

As an immediate corollary of the second assertion, one gets the following result
(not explicitly stated in [LC16])

Corollary 3.10. — If z ∈ ∆∗
a, then ζ(z) ∈ V ′ and L(ζ(z)) = a.

The assertion (iii) tells us that the maps Qi|∆a
and Q′

i|∆a
, i ∈ Z, induce homeo-

morphisms from ∆a to Da/b denoted respectively qi and q′i
(5). The assertion (iv) tells

us that the maps Pi|∆a , i ∈ Z, induce homeomorphisms from ∆a to Da/b denoted pi.
Note that pi◦q−1

i is a homeomorphism which let invariant every horizontal segment of
Da/b and induces on this segment an increasing homeomorphism and similarly pi◦q′−1

i

is a homeomorphism which let invariant every vertical segment of Da/b and induces on
this segment an increasing homeomorphism. We denote F the radial foliation defined
on ∆∗

a whose leaves are the gradient lines of ζ included in ∆∗
a.

For every s ∈ [0, 1], and every i ∈ Z we define

qsi = (1− s)qi + spi, q′si = (1− s)pi + sq′i.

The maps qsi and q′si are homeomorphisms from ∆a to Da/b (all coinciding on Σa)
and send F onto a radial foliation of Da/b.

3.4. Projected radial foliations. — Recall that d denotes the winding distance be-
tween two radial foliations. Let us begin with the following result:

Lemma 3.11. — For every s1, s2 in [0, 1] and every i ∈ Z, we have

d(qs1i (F), qs2i (F)) ⩽ 2, d(q′s1i (F), q′s2i (F)) ⩽ 2.

Proof. — We fix i ∈ Z and will prove the first inequality, the proof of the second one
being similar. The leaves of qsi (F) are the paths t 7→ qsi (z

t), z ∈ ∆∗
a. Note that the

map t 7→ π2(q
s
i (z

t)) is C1 and that
d

dt
π2 ◦ qsi (zt)|t=0 = ηi(z) = xi − gi(xi+1, yi).

(5)We do not refer to a to lighten the notations.
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Say that z ∈ D∗
a/b is horizontal if it can be written z=qi(z), where xi−gi(xi+1, yi)=0.

Denote Hi the set of horizontal points.(6) For every point z ∈ D∗
a/b, define J(z) to

be equal to {z} if z is horizontal and to the largest horizontal interval contained in
D∗

a/b ∖ Hi and containing z, if z is not horizontal. The sign of ηi(q−1
i (z′)) does not

depend on the choice of z′ ∈ J(z). We orient J(z) with x increasing if this sign is
positive and with x decreasing if this sign is negative. Note that the path s 7→ us

i (z) =

qsi ◦ q
−1
i (z) is constant if z is horizontal and is an oriented segment of J(z) inheriting

the same orientation if z is not horizontal. The fact that d
dtπ2 ◦ qsi (z

t)|t=0 = ηi(z),
for every s ∈ [0, 1] and every z ∈ ∆∗

a, implies that if z is not horizontal, the oriented
interval J(z) is transverse to the foliations qsi (F), s ∈ [0, 1], crossing locally every leaf
from the left to the right.

Denote D̃a/b the universal covering space of D∗
a/b and for every z̃ ∈ D̃a/b that lifts

z ∈ D∗
a/b, denote J̃(z̃) the lift of J(z) containing z̃, with the induced orientation in

case z ̸∈ Hi. Write H̃i for the lift of Hi, write q̃si (F) for the lift of qsi (F) and denote
(ũs

i )s∈[0,1] the identity isotopy that lifts (us
i )s∈[0,1]. Suppose that z̃ ∈ D̃a/b is not in H̃i.

For every s0 ∈ [0, 1], the oriented interval Ĩ(z̃) is transverse to the foliation q̃s0i (F),
crossing locally every leaf from the right to the left. Moreover, if 0 ⩽ s1 < s2, then
ũs2
i (z̃) follows ũs1

i (z̃) on J̃(z̃). Consequently it holds that:
0 ⩽ s0 ⩽ 1 and 0 ⩽ s1 < s2 ⩽ 1 =⇒ θũs1

i (z̃),ũ
s2
i (z̃)(q

s0
i (F)) = 1̇.

Now, let us fix two different points z̃0 and z̃1 in D̃a/b and s ∈ [0, 1]. Observe that
the three sets

{(z̃′0, z̃′1) ∈ J̃(z̃0)× J̃(z̃1) | z̃′0 ̸= z̃′1, θz̃′
0,z̃

′
1
(qsi (F)) = 1̇},

{(z̃′0, z̃′1) ∈ J̃(z̃0)× J̃(z̃1) | z̃′0 ̸= z̃′1, θz̃′
0,z̃

′
1
(qsi (F)) = 3̇},

{(z̃′0, z̃′1) ∈ J̃(z̃0)× J̃(z̃1) | z̃′0 ̸= z̃′1, θz̃′
0,z̃

′
1
(qsi (F)) ∈ {0̇, 2̇}},

are connected, whether the points belong to H̃i or not. Indeed, the paths J̃(z̃0) and
J̃(z̃1) in D̃a/b draw intervals of leaves of the foliation q̃si (F) whose intersection is an
interval of leaves if not empty. In particular the set of pairs (z̃′0, z̃′1) ∈ J̃(z̃0)×J̃(z̃1) such
that z̃′0 and z̃′1 are distinct and belong to the same leaf of q̃si (F) is connected: it is an
interval (possibly empty) if J̃(z̃0)∩J̃(z̃1) = ∅, it is empty if J̃(z̃0)∩J̃(z̃1) ̸= ∅ (because
the intersection is a “horizontal” path in D̃a/b). The map (z̃′0, z̃

′
1) 7→ θz̃′

0,z̃
′
1
(qsi (F))

being continuous on W̃ , takes at most three values on J̃(z̃0)× J̃(z̃1) (either 0̇ or 2̇ is
missing).

In particular, if 0 ⩽ s1 < s2 ⩽ 1, the map

s ∈ [s1, s2] 7−→ θũs
i◦(ũ

s1
i )−1(z̃0), ũs

i◦(ũ
s1
i )−1(z̃1)

(qs2i (F)) = θz̃0,z̃1(u
s1
i ◦ (us

i )
−1 ◦ qs2i (F))

∈ Z/4Z

(6)if ηi(z) = 0, then ξi(z) ̸= 0, so every leaf of pi(F) is a C1 embedded line and Hi is nothing
but the set of points where the foliation pi(F) is horizontal.
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takes at most three values and is lifted to a map

s ∈ [s1, s2] 7−→ θ̂z̃0,z̃1(u
s1
i ◦ (us

i )
−1 ◦ qs2i (F)) ∈ Z

taking at most three values, which implies that

|τ̂(z̃0, z̃1, qs2i (F), qs1i (F))| ⩽ 2. □

The homeomorphism ũs
i sends the foliation q̃i(F) onto the foliation q̃si (F). The

leaves of q̃i(F) are pushed on the right by the isotopy (ũs
i )s∈[0,1]. More precisely, for

every 0 ⩽ s1 < s2 ⩽ 1 and every leaf ϕ̃ of q̃i(F), it holds that:

– R(ũs2
i (ϕ̃)) ⊂ R(ũs1

i (ϕ̃)),
– if z̃ ∈ ϕ̃ belongs to H̃i, then z̃ ∈ ũs1

i (ϕ̃) ∩ ũs2
i (ϕ̃),

– if z̃ ∈ ϕ̃ does not belong to H̃i, then ũs2
i (z̃) ∈ R(ũs1

i (ϕ̃)).
Similarly, for every z ∈ ∆∗

a, the map t 7→ π1(q
′s
i (z

t)) is C1 and we have

d

dt
π1 ◦ q′si (zt)|t=0 = ξi(z) = yi − gi−1(xi, yi−1).

Say that z ∈ D∗
a/b is vertical if it can be written z=q′i(z), where yi−gi−1(xi, yi−1)=0.

Denote Vi the set of vertical points and Ṽi its lift in D̃a/b. Define u′s
i = q′si ◦ p

−1
i and

lift the isotopy (u′s
i )s∈[0,1] to an identity isotopy (ũ′s

i )s∈[0,1]. Write q̃′si (F) for the lift
of q′si (F). Then, for every 0 ⩽ s1 < s2 ⩽ 1 and every leaf ϕ̃ of q̃′i(F), it holds that:

– R(ũ′s2
i (ϕ̃)) ⊂ R(ũ′s1

i (ϕ̃)),
– if z̃ ∈ ϕ̃ belongs to Ṽi, then z̃ ∈ ũ′s1

i (ϕ̃) ∩ ũ′s2
i (ϕ̃),

– if z̃ ∈ ϕ̃ does not belong to Ṽi, then ũ′s′
i (z̃) ∈ R(ũ′s

i (ϕ̃)).
To conclude, consider the family (vsi )s∈[0,2], where

vsi =

{
us
i if 0 ⩽ s ⩽ 1,

u′s−1
i ◦ u1

i = q′s−1
i ◦ q−1

i if 1 ⩽ s ⩽ 2.

It is an isotopy from Id to q′i ◦ q−1
i . The isotopy (vsi |D∗

a/b
)s∈[0,2] can be lifted to an

identity isotopy (ṽsi )s∈[0,2] such that

ṽsi =

{
ũs
i if 0 ⩽ s ⩽ 1,

ũ′s−1
i ◦ ũ1

i if 1 ⩽ s ⩽ 2.

The map ṽsi sends the foliation q̃i(F) onto the foliation q̃si (F) if 0 ⩽ s ⩽ 1 and onto
the foliation ˜q′s−1

i (F) if 1 ⩽ s ⩽ 2. Moreover:

– for every 0 ⩽ s1 < 1 < s2 ⩽ 2 and every leaf ϕ̃ of F̃0
i , it holds that R(ṽs2i (ϕ̃)) ⊂

R(ṽs1i (ϕ̃).
Indeed, the sets Hi and Vi are disjoint.

J.É.P. — M., 2023, tome 10



862 P. Le Calvez

3.5. Construction of a good isotopy. — One gets a m-periodic family of homeo-
morphisms (f̂i)i∈Z of Da/b by writing:

f̂i = qi+1 ◦ q−1
i .

Its periodicity comes from the equalities

f̂i+m = qi+m+1 ◦ q−1
i+m = qi+1 ◦ φ|∆a

◦ (qi ◦ φ|∆a
)−1.

Moreover, f̂ = f̂m ◦ · · · ◦ f̂1 has order q because

f̂ = qm+1 ◦ q−1
1 = q1 ◦ (φ|∆a

) ◦ q−1
1 ,

or equivalently because

f̂ b = f̂mb ◦ · · · ◦ f̂1 = qmb+1 ◦ q−1
1 = IdDa/b

.

Note also that f̂i fixes 0 and coincides with fi on Sa/b because

fi|Da/b
= q′i+1 ◦ q−1

i .

Let us define an isotopy Ǐ = (f̌s)s∈[0,mb] from Id to f b in the following way:
If s ∈ [2k, 2k + 1], 0 ⩽ k < mb, then

f̌s = fmq ◦ · · · ◦ fmb−k+1 ◦ qs−2k
mb−k+1 ◦ q

−1
1

= fmq ◦ · · · ◦ fmb−k+1 ◦ qs−2k
mb−k+1 ◦ q

−1
mq−k ◦ f̂mb−k−1 ◦ · · · ◦ f̂1.

If s ∈ [2k + 1, 2k + 2], 0 ⩽ k < mq, then
f̌s = fmb ◦ · · · ◦ fmb−k+1 ◦ q′s−2k−1

mb−k+1 ◦ q
−1
1

= fmq ◦ · · · ◦ fmb−k+1 ◦ q′s−2k−1
mb−k+1 ◦ q

−1
mb−k ◦ f̂mb−k−1 ◦ · · · ◦ f̂1.

Note that
f̌2k = fmb ◦ · · · ◦ fmb−k+1 ◦ f̂mb−k ◦ · · · ◦ f̂1,

f̌2k+1 = fmb ◦ · · · ◦ fmb−k+1 ◦ pmb−k+1 ◦ q−1
mb−k ◦ f̂mb−k−1 ◦ · · · ◦ f̂1.

In particular, we have

f̌s(q1(F)) =

{
fmb ◦ · · · ◦ fmb−k+1(q

s−2k
i (F)) if s ∈ [2k, 2k + 1],

fmb ◦ · · · ◦ fmb−k+1(q
′s−2k−1
i (F)) if s ∈ [2k + 1, 2k + 2].

Proposition 3.12. — For every s1, s2 in [0, 2mb] we have

d
(
f̌s1(q1(F)), f̌s2(q1(F))

)
⩽ 2|s2 − s1|+ 4.

Moreover, if s1 and s2 are integers we have

d
(
f̌s1(q1(F)), f̌s2(q1(F))

)
⩽ 2|s2 − s1|.

Proof. — We will use Lemma 3.11. Note that for every s1, s2 in [2k, 2k + 1] we have
d
(
f̌s1(q1(F)), f̌s2(q1(F)

)
= d

(
fmb ◦ · · · ◦ fmq−k+1(q

s1−2k
i (F)), fmb ◦ · · · ◦ fmb−k+1(q

s2−2k
i (F))

)
= d

(
qs1−2k
i (F), qs2−2k

i (F)
)
⩽ 2,
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and similarly for every s1, s2 in [2k + 1, 2k + 2] we have

d
(
f̌s1(q1(F)), f̌s2(q1(F)

)
= d

(
fmb ◦ · · · ◦ fmb−k+1(q

′s1−2k−1
i (F)), fmb ◦ · · · ◦ fmb−k+1(q

′s2−2k−1
i (F)

)
= d

(
q′s1−2k−1

i (F), q′s2−2k−1
i (F))

)
⩽ 2.

We easily deduce Proposition 3.12. □

We immediately deduce

Corollary 3.13. — It holds that

d
(
f b(q1(F)), q1(F)

)
⩽ 4mb.

Let us conclude this section by the following result

Proposition 3.14
If ˜̌I = (˜̌fs)s∈[0,2mb] is the identity isotopy that lifts (f̌s|D∗

a/b
)s∈[0,2mb], then every

leaf ϕ̃ of q̃1(F) is a Brouwer line of ˜̌f2mb.

Proof. — Let ϕ be a leaf of F, then for every s ∈ [0, 2mq], we have

f̌s(q1(ϕ)) =

{
fmq ◦ · · · ◦ fmb−k+1 ◦ qs−2k

mb−k+1(ϕ) if s ∈ [2k, 2k + 1], 0 ⩽ k < mb,

fmq ◦ · · · ◦ fmb−k+1 ◦ q′s−2k
mb−k+1(ϕ) if s ∈ [2k + 1, 2k + 2], 0 ⩽ k < mq.

Equivalently, it holds that

f̌s(q1(ϕ)) = fmq ◦ · · · ◦ fmb−k+1 ◦ vs−2k
mb−k+1(qmb−k+1(ϕ))

if s ∈ [2k, 2k + 2], 0 ⩽ k < mb.
We deduce that for every leaf ϕ̃1 of q̃1(F), it holds that R(˜̌fs2(ϕ̃1)) ⊂ R(˜̌fs1(ϕ̃1)) if

0 ⩽ s1 < s2 ⩽ 2mb and that R(˜̌f2k+2(ϕ̃1)) ⊂ R(˜̌f2k(ϕ̃1)) if 0 ⩽ k < mb. In particular

we have R(˜̌f2mb(ϕ̃1)) ⊂ R(ϕ̃1). □

4. Proof of Theorem 1.1

Proof of Theorem 1.1. — Let f ∈ Diff1
ω(D) be an irrational pseudo-rotation that coin-

cides with a rotation on S. We want to prove that Cal(f) = 0. We extended our map
to the whole plane and decompose it in untwisted maps as explained in Section 3. In
particular we get a natural identity isotopy I such that rot(I|S) = α, where α ∈ R∖Q
and we want to prove that C̃al(I) = π2α. We use the results of Section 3, keeping the
same notations. If (a, b) ∈ Z×N∖{0}, satisfies a ∈ (bα, bβ), then f|Da/b

is a piecewise
diffeomorphism of class C1. It is easy to see that C̃al(I|Da/b

) is well-defined, if one
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refers to the third definition given in the introduction. It can be explicitly computed,
we have

C̃al(I|Da/b
) = C̃al(I) + 2

∫ 1+a/b−α

1

(πr2)(α− r + 1)2πr dr

= C̃al(I) + 4π2

∫ 1+a/b−α

1

r3(α− r + 1)dr.

Of course it holds that
lim

a/b→α
C̃al(I|Da/b

) = C̃al(I|D).

We have constructed a radial foliation F on ∆∗
a ⊂ Eb. We define F1 = q1(F) and

denote F̃1 the lift of F1 to D̃a/b. We define Wa/b = {(z, z′) ∈ D∗
a/b | z ̸= z′}. Note

that the area of Da/b is
A(a, b) = π(1 + a/b− α)2

and recall that the difference of the value of h between the points of Σa and {0} is

C(a, b) = π(a− bα)
(
1 + (a/b− α) +

(a/b− α)2

3

)
.

Lemma 4.1. — The following bound holds

µω × µω

(
{(z, z′) ∈ Wa/b | τ̂(z, z′,F1, f

−b(F1)) ̸= 0}
)
⩽ 2A(a, b)C(a, b).

Proof. — Fix z ∈ D∗
a/b and choose a lift z̃ ∈ D̃a,b. The set

O(z̃) = R(˜̌f2mq
−1(ϕ̃z̃)) ∩ L(ϕ̃z̃)

has measure C(a, b) (for the lifted measure µ̃ω) and projects onto a subset O(z) ⊂ Da/b

satisfying µω(O(z)) ⩽ C(a, b). Moreover, we have

z̃′ ∈ Õ(z̃) ⇐⇒ ˜̌I(z̃′) ∩ ϕ̃z̃ ̸= ∅, z′ ∈ O(z) ⇐⇒ Ǐ(z′) ∩ ϕz ̸= ∅.

Note that ˜̌I(z̃) and ˜̌I(z̃′) meet a common leaf if and only if z̃′ ∈ Õ(z̃) or z̃ ∈ Õ(z̃′)

and that Ǐ(z) and Ǐ(z′) meet a common leaf if and only if z′ ∈ O(z) or z ∈ O(z′).
Obviously, I(z) and I(z′) meet a common leaf if τ̂(z, z′,F1, f

−b(F1)) ̸= 0 and so,
it holds that

µω × µω

(
{(z, z′) ∈ Wa/b | τ̂(z, z′,F1, f

−b(F1)) ̸= 0}
)

⩽
∫
D∗

a/b

µω(O(z)) dµω(z) +

∫
D∗

a/b

µω(O(z′)) dµω(z
′)

⩽ 2A(a, b)C(a, b). □

We can be more precise:

Lemma 4.2. — The following bound holds∫
Wa/b

τ̂(z, z′,F1, f
−b(F1)) dµω(z) dµω(z

′) ⩽ 8mbA(a, b)C(a, b).
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Proof. — We keep the same notations as in Lemma 4.1. For every (z, z′) ∈ Wa/b

define
ν(z, z′) = #{k ∈ Z | τ̂(z̃, T−k(z̃′), F1, f

−b(F1)) ̸= 0},
where z̃, z̃′ are given lifts of z, z′. Now, for every z ∈ D∗

a/b, define a function γz :

D∗
a/b → N assigning to every point z′ ∈ D∗

a/b the number of its lifts that are in O(z̃),
where z̃ is a given lift of z. Suppose that γz(z

′) ̸= 0, or equivalently that z′ ∈ O(z).
Then, for every ℓ ∈ {1, . . . , γz(z′)} there exists a unique lift z̃′ ∈ Õ(z̃) of z′ such that
Ĩ(z̃′) meets the leaves T r(ϕ̃z̃), 0 ⩽ r < ℓ. Note also that∫

D∗
a/b

γz(z
′) dµω(z

′) = µ̃ω(Õ(z̃)) = C(a, b)

and that
ν(z, z′) ⩽ γz(z

′) + γz′(z).

To conclude, we refer to Corollary 3.13 that says that for every (z̃, z̃′) ∈ Wa/b, it holds
that |τ̂(z̃, z̃′,F1, f

−b(F1))| ⩽ 4mb. □

Note also that for every pair (a, b) defined as above, it holds that˜̌f2mb = (f̃|D̃a/b
)b − T a

(or equivalently that [Ǐ] = [I]b|Da/b
[T−a]|Da/b

). Indeed both maps lift f b and coincide
on Sa/b. If ϕ is a leaf of F1, then m˜̌f2mb,ϕ

is non positive and∫
D∗

a/b

m˜̌f2mb,ϕ
dµω = −C(a, b).

We deduce that µω has a rotation vector (which was obviously known) and that

rot˜̌f2mb

(µω) =

∫
D∗

a/b

m˜̌f2mb,ϕ
dµω = −C(a, b).

We deduce from Lemma 4.2 that λfb,F1
is integrable on Wa/b for the measure µω×µω

and that ∣∣∣∣∫
Wa,b

λfb,F1
dµω(z) dµω(z

′)

∣∣∣∣ ⩽ 8mbA(a, b)C(a, b).

According to the results of Section 2, we deduce that µω has a self linking number for˜̌f2mb and that∣∣∣∣link˜̌f2mb

(µω)−
∫
D∗

a/b

rot˜̌f2mb

(z) dµω(z) dµω(z
′)

∣∣∣∣ ⩽ 8mbA(a, b)C(a, b).

But we know that ˜̌f2mb = f̌ b ◦ T−a and so we obtain∣∣∣∣b linkf̃|D̃a/b

(µω)− aA(a, b)2 −A(a, b)

∫
D∗

a/b

rot˜̌f2mq

(z) dµω(z)

∣∣∣∣ ⩽ 8mbA(a, b)C(a, b),

which can be written∣∣∣linkf̃|D̃a/b

(µω)−
a

b
A(a, b)2 +

A(a, b)C(a, b)

b

∣∣∣ ⩽ 8mA(a, b)C(a, b).

One can find a sequence (an, bn)n⩾0 such that limn→+∞ bnα− an = 0. Writing∣∣∣linkf̃|D̃an/bn

(µω)−
an
bn

A(an, bn)
2 +

A(an, bn)C(an, bn)

b

∣∣∣ ⩽ 8mA2(an, bn)C(an, bn)
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and letting n tend to +∞, one obtains

linkf̃|D̃
(µω)− π2α = 0.

But we know that linkf̃|D̃
(µω) = C̃al(I), so we can conclude. □
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