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ON THE L2 RATE OF CONVERGENCE IN THE LIMIT

FROM THE HARTREE TO THE VLASOV–POISSON

EQUATION

by Jacky J. Chong, Laurent Lafleche & Chiara Saffirio

Abstract. — Using a new stability estimate for the difference of the square roots of two solutions
of the Vlasov–Poisson equation, we obtain the convergence in the L2 norm of the Wigner
transform of a solution of the Hartree equation with Coulomb potential to a solution of the
Vlasov–Poisson equation, with a rate of convergence proportional to ℏ. This improves the ℏ3/4−ε

rate of convergence in L2 obtained in [L. Lafleche, C. Saffirio: Analysis & PDE, to appear].
Another reason of interest of this paper is the new method, reminiscent of the ones used to
prove the mean-field limit from the many-body Schrödinger equation towards the Hartree–Fock
equation for mixed states.

Résumé (Sur le taux de convergence dans L2 dans la limite de l’équation de Hartree à l’équation
de Vlasov-Poisson)

Grâce à une nouvelle estimée de stabilité pour la différence entre les racines carrées de deux
solutions de l’équation de Vlasov-Poisson, nous obtenons la convergence en norme L2 de la
transformée de Wigner d’une solution de l’équation de Hartree avec potentiel de Coulomb vers
une solution de l’équation de Vlasov-Poisson, avec un taux de convergence proportionnel à
la constante de Planck ℏ. Ceci améliore le taux de convergence h3/4−ε dans L2 obtenu dans
[L. Lafleche, C. Saffirio : Analysis & PDE, à paraître]. Un autre intérêt de cet article est la
nouvelle méthode, réminiscente de celles utilisées pour prouver la limite de champ moyen de
l’équation de Schrödinger à N corps vers l’équation de Hartree-Fock pour des états mixtes.
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1. Introduction and main result

In this paper, we study the limit of solutions to the Hartree equation towards
solutions to the Vlasov–Poisson equation in the semiclassical regime, that is when
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704 J. Chong, L. Lafleche & C. Saffirio

the Planck constant converges to 0. We focus on the cases of the three dimensional
Coulomb and gravitational interaction potentials

(1) K(x) =
±1

4π |x|
,

which are the most relevant singular potentials from a physical viewpoint and the
most challenging from a mathematical viewpoint.

We consider the Hartree equation

(2) iℏ ∂tρ = [Hρ,ρ] with ρ(0) = ρin,

where ℏ = h/2π is the reduced Planck constant, ρ = ρ(t) is a time-dependent positive
self-adjoint trace class operator acting on L2(R3) satisfying the normalization

(3) h3 Tr(ρ) = 1 and ∥ρ∥∞ = C∞,

where ∥·∥∞ is the operator norm and C∞ is a fixed independent-of-ℏ constant. Here
Hρ = −ℏ2∆/2 + Vρ denotes the Hartree Hamiltonian where the operator Vρ is the
operator of multiplication by the mean-field potential Vρ(x) = (K ∗ ρ)(x) associated
to the two-body interaction potential K defined in our case by Equation (1), and ρ(x)
is the quantum spatial density defined as the scaled restriction to the diagonal of the
integral kernel of ρ,

ρ(x) = diag(ρ)(x) := h3ρ(x, x),

where we adopt the same notation to denote both the operator ρ and its integral kernel
ρ(x, y). The choice of the normalization (3) is motivated by semiclassical analysis and
is natural in the analysis of many-body fermionic systems, although the results of this
paper apply to both the bosonic and fermionic settings.
The classical analogue of Equation (2) is the Vlasov–Poisson equation given by

(4) ∂tf + ξ · ∇xf + Ef · ∇ξf = 0 with f(0, x, ξ) = f in(x, ξ) ⩾ 0,

where Ef = −∇Vf is the self-consistent force field associated to the mean-field poten-
tial Vf (x) = (K ∗ ρf )(t,x) with ρf the spatial density given by

ρf (t,x) =

∫
R3

f(t, x, ξ) dξ.

For the well-posedness of the Hartree and the Vlasov–Poisson equations we refer
to [6] and [24, 21] respectively and the references therein.

Equation (4) can be seen as the semiclassical approximation of a system of many
interacting quantum particles, as pointed out in the pioneering works by Narnhofer
and Sewell [23] and by Spohn [28] where the Vlasov equation was obtained directly
from the many-body Schrödinger equation with smooth interaction in the combined
mean-field and semiclassical regime. This has been reconsidered in [13] and more
recently in [8, 7], where the case of the Coulomb potential with a N dependent cut-
off has been addressed. Moreover, a combined mean-field and semiclassical limit for
particles interacting via the Coulomb potential has been treated in [12] for factorized
initial data whose first marginal is given by a monokinetic Wigner measure (that can
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On the L2 rate of convergence 705

be seen as the Klimontovich solutions to the Vlasov equation), which leads to the
pressureless Euler–Poisson system.

Most of the above mentioned works rely on compactness methods that do not allow
for an explicit bound on the rate of convergence, which is essential for applications.
For this reason the Hartree equation (2) has been considered as an intermediate step
to decouple the problem into two separate parts, namely to prove the convergence of
the mean-field limit from the many-body Schrödinger equation towards the Hartree
equation, and then the semiclassical limit from the Hartree equation to the Vlasov
equation. In this paper, we are interested in the latter problem, that has been largely
studied in different settings. It was first proved by Lions and Paul in [20], and later
in [22, 10], that the Wigner transforms of the solutions of the Hartree equation (2)
converge in some weak sense to solutions of the Vlasov–Poisson equation. Quantitative
rates of convergence were then obtained, first in the case when the Coulomb potential
is replaced by a smoother potential, in Lebesgue-type norms [2, 1, 3] and in a quantum
analogue of the Wasserstein distances [11]. The case of singular interactions was then
treated in [15, 16] with the same quantum Wasserstein distances, and in [26, 27, 17]
in Lebesgue-type norms. In particular, for K as in Equation (1), the explicit rate has
been established in [15] for the weak topology and in [27, 17] for the Schatten norms.

In a different setting, the semiclassical limit has also been studied for local pertur-
bations of stationary states in the case of infinite gases in [19].

Our goals here are twofold. On the one hand, we want to improve the rate of
convergence in the L2 norm in terms of ℏ for the convergence of the Wigner transform
of the solution of the Hartree equation to the Vlasov–Poisson equation. The rate
ℏ3/4−ε, for ε > 0 small enough, was obtained in [17], the reason being that the
method used in that previous paper was relying on a L1 weak-strong uniqueness
principle, thus leading to the expected correct rate of order ℏ in trace norm, but
lower order rates for higher Schatten norms. In this paper we recover a rate of order ℏ
for the L2 convergence, that is expected to be optimal.

On the other hand, the ideas used in this paper are closer to those used in [4, 8]
to prove the semiclassical mean-field limit from the many-body Schrödinger equation
towards the Hartree–Fock equation for mixed states, in the sense that it considers the
square roots of the phase space densities in the L2 setting. Inspired by these ideas, we
introduce a new L2 weak-strong stability estimate for the Vlasov–Poisson and Hartree
equations, which can be compared with the L1 method used in [17]. It serves as a
guiding principle to our main theorem.

1.1. Notations

1.1.1. Functional spaces. — Let us fix some notations before stating our main result.
A point in the one-particle phase space R3

x × R3
ξ is denoted by z = (x, ξ). We denote

the phase space Lebesgue norm and its mixed norm variant by

∥f∥Lr =
(∫

R6

|f(z)|r dz
)1/r

, ∥f∥Lp
xL

q
ξ
=

∥∥∥f(x, ·)∥Lq
ξ(R3)

∥∥
Lp

x(R3)

J.É.P. — M., 2023, tome 10



706 J. Chong, L. Lafleche & C. Saffirio

for 1 ⩽ r < ∞ and with the usual modification when r = ∞. The corresponding
weighted Sobolev spaces W k,p

n are defined by the norm

∥f∥Wk,p
n

=
( ∑

|α|⩽k

∥⟨ξ⟩n ∂αf∥2Lp

)1/2
with

{
α ∈ N6

0, |α| =
∑6

i=1 αi,

∂α = ∂α1
x1

· · · ∂α6

ξ3
,

where ⟨z⟩ :=
√
1 + |z|2 is the standard bracket notation. We also use the standard

notation Hk
n =W k,2

n .
Due to our choice of the potential, it is natural to introduce the Lorentz spaces Lp,q

x

with (p, q) ∈ [1,∞]2 that are intermediate spaces between Lebesgue spaces such that
∇K ∈ L3/2,∞. They can indeed be defined by real interpolation of Lebesgue spaces
(see e.g. [5, Th. 5.3.1]), and as such they verify for any ε ∈ (0, p−1], Lp−ε∩Lp+ε ⊂ Lp,q.
Moreover, their dual is given by (Lp,q)′ = Lp′,q′ where p′ = p/(p− 1) denotes the
Hölder conjugate (see e.g. [14]). This implies the analogue of Hölder’s inequality for
these spaces.

For any bounded linear operator ρ acting on L2(R3), we denote its operator norm
by ∥ρ∥∞, and for 1 ⩽ p <∞, we define its Schatten-p norm by

∥ρ∥p = Tr(|ρ|p)1/p,

where |ρ| =
√
ρ∗ρ. To obtain meaningful quantities in the semiclassical limit ℏ → 0,

we also define the semiclassical analogue of the Schatten spaces via the rescaled Schat-
ten norm

∥ρ∥Lp = h3/p ∥ρ∥p = h3/p Tr(|ρ|p)1/p

and ∥ρ∥L∞ = ∥ρ∥∞. Notice that, unlike its unscaled counterparts, the semiclassical
Schatten norms do not enjoy the same inclusion inequality in the limit as ℏ → 0, that
is, ∥ρ∥Lq is not bounded uniformly in ℏ by ∥ρ∥Lp for any 1 ⩽ p < q ⩽ ∞. These
semiclassical spaces play the roles of the Lebesgue spaces on the phase space. We will
denote by C a ℏ-independent constant that can change from line to line.

1.1.2. Weyl quantization and Wigner transform. — The Fourier transform is defined
with the convention that

ĝ(ξ) = F (g) (ξ) =

∫
R3

e−2πi x·ξ g(x) dx.

Consistently with our normalization (3), we associate to every function f ∈L1(R3
x×R3

ξ)

the operator ρf with integral kernel

ρf (x, y) =

∫
R3

e−2πi (y−x)·ξf((x+ y)/2, hξ) dξ.

The operator ρf is called the Weyl quantization associated to f(z). By the Fourier
inversion theorem, we could also define the inverse mapping called the Wigner trans-
form. More precisely, for any operator ρ with sufficiently regular kernel ρ(x, y), we de-
fine its Wigner transform by

fρ(x, ξ) =

∫
R3

e−2πi ξ·y/hρ(x+ y/2, x− y/2) dy.

J.É.P. — M., 2023, tome 10
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1.2. Main result. — Our main result reads as follows.

Theorem 1.1. — Let ρ ⩾ 0 be a solution to the Hartree equation (2) with initial
condition ρin ∈ L1 ∩ L∞ verifying (3) and f ⩾ 0, f ∈ L1(R6) be a solution to the
Vlasov–Poisson equation (4) with initial condition f in verifying

f in,
√
f in ∈W 4,∞

4 ∩H4
4 and

∫∫
R6

f in |ξ|n1 dx dξ <∞

for n1 > 6. Then there exist time-dependent functions Λ, C1, C2 ∈ C0(R+,R+), inde-
pendent of ℏ and depending on the initial conditions of equations (2) and (4) such that

(5) ∥fρ − f∥L2 ⩽ C1/2
∞

(∥∥f√
ρin −

√
f in

∥∥
L2 + C1(t) ℏ

)
eΛ(t) + C2(t) ℏ.

Remark 1.1. — The behavior of the time-dependent functions Λ, C1 and C2 appearing
in the theorem depends strongly on the propagation of weighted Sobolev norms for
the Vlasov–Poisson equation, and might lead in the worse case to functions growing
faster in time than eet . To simplify the exposition, more details about these functions
are given in the next section.

Remark 1.2. — Our method also allows us to treat the Hartree–Fock equation. In that
case, the exchange term vanishes in the semiclassical limit and can be treated as an
error term as in [17, Prop. 5.1].

1.2.1. Strategy and explicit constants. — Before giving more precise upper bounds on
the functions Λ, C1 and C2, let us explain our strategy. The rationale of our result
is a stability estimate for the square root of the solutions of the Vlasov equation
in L2, as explained in Section 2. Rephrasing this estimate in the quantum context to
estimate the difference between the solutions to the Hartree equation and the Vlasov
equation, we have to deal with the fact that the Weyl quantization of a non-negative
function is not always non-negative. Thus, we have to consider an alternative quan-
tization of f , sometimes called the Wick quantization, the anti-Wick quantization,
the Töplitz quantization, the Husimi quantization or the coherent state quantization.
We introduce the coherent state at the point z and its corresponding density operator

ψz(y) := (πℏ)−3/4
e−|y−x|2/(2ℏ) eiy·ξ/ℏ and ρz := h−3 |ψz⟩ ⟨ψz| .

Then, to every function f on the phase space, we associate the operator ρ̃f defined
by taking averages of the coherent states ρz against f(z), that is

(6) ρ̃f =

∫
R6

f(z)ρz dz =
1

h3

∫
R6

f(z) |ψz⟩ ⟨ψz|dz.

It follows from this formula that ρ̃f is a positive operator whenever f ⩾ 0. We sum-
marize some of its other well known properties which we will need in this work in
the following lemma. We refer the reader for example to [20, 18] and the references
therein for additional properties of this quantization and the proof of the following
lemma.

J.É.P. — M., 2023, tome 10
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Lemma 1.1. — Let f be a function of the phase space. Then the quantization (6) is
obtained from the Weyl quantization by a convolution with a Gaussian

(7) ρ̃f = ρf̃ , where f̃ = gh ∗ f with gh(z) := (πℏ)−3 e−|z|2/ℏ.

By (7), we have the estimate

(8)
∥∥ρf − ρ̃f

∥∥
L2 = ∥f − gh ∗ f∥L2 ⩽

3 ℏ
2

∥∇2f∥L2 .

For 1 ⩽ p ⩽ ∞, we have that

(9) ∥ρ̃f∥Lp ⩽ ∥f∥Lp .

This quantization will allow us to consider an intermediate equation between the
Hartree and the Vlasov–Poisson equations, depending on the mean-field force of the
Vlasov equation, but whose solution is a positive operator. More precisely, we con-
sider ρ̃ a solution to the equation

iℏ ∂tρ̃ = [Hf , ρ̃]

with Hamiltonian Hf = −(ℏ2/2)∆+ Vf and initial data ρ̃in := ρ̃2√
f in

, and we define

ṽ :=
√

ρ̃,

which satisfies the same equation.

1.2.2. Quantum Sobolev spaces. — To define a semiclassical version of Sobolev spaces
on the phase space, we introduce the following operators

∇xρ := [∇,ρ] and ∇ξρ :=
[ x
iℏ
,ρ

]
,

which can be seen as an application of the correspondence principle of quantum me-
chanics. More precisely, one observes that these operators correspond to the gradients
of the Wigner transform, that is

f∇xρ = ∇xfρ and f∇ξρ = ∇ξfρ.

We will refer to ∇xρ and ∇ξρ as the quantum gradients. The semiclassical analogues
of the kinetic homogeneous Sobolev norms are defined by

∥ρ∥p
Ẇk,p

:=
∑
|α|=k

∥∇α
z ρ∥

p
Lp with ∇α

z = ∇α1
x1

· · ·∇α6

ξ3
,

∥ρ∥Ẇk,∞ := sup
|α|=k

∥∇α
z ρ∥L∞ ,

and the inhomogeneous version by

∥ρ∥p
Wk,p := ∥ρ∥pLp +

∑
1⩽ℓ⩽k

∥ρ∥p
Ẇℓ,p

,

for any k ∈ N with the usual modification when p = ∞. Notice that for p = 2, we have
∥ρ∥Wk,2 = ∥fρ∥Hk which is suggestive of the strong connection between Wk,p and the
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classical kinetic Sobolev spaces. Moreover, we will also consider weighted versions of
these norms with the particular case of the weights defined for n ∈ R by

(11) m := ⟨p⟩n =
(
1 + |p|2

)n/2
,

where p = −iℏ∇ so that |p|2 = −ℏ2∆.

1.2.3. A refined version of the main theorem. — With the above definitions, we now
give another version of the main theorem with more explicit upper bounds on the
constants appearing in Inequality (5).

Theorem 1.2. — Under the assumptions of Theorem 1.1, the following estimate holds

(12)
∥∥ρ− ρf

∥∥
L2 ⩽ C1/2

∞

(∥∥∥ρ̃√
f in −

√
ρin

∥∥∥
L2

+ C1(t) ℏ
)
eΛ(t) + C2(t) ℏ.

An upper bound for Λ is given by Λ(t) ⩽ C
∫ t

0
λ(s) ds where λ is defined for some

ε ∈ (0, 1) by

(13) λ(t) = ∥∇ξ ṽ∥W1,2 ∥ρf∥1/2L∞
x

+ C1/2
∞ ∥∇ξ ṽm∥

L3±ε

with n > 2, and where ∥·∥L3±ε is a shorthand notation for ∥·∥L3+ε + ∥·∥L3−ε . The
functions C1(t) and C2(t) are bounded from above by

C1(t)
2 ⩽ C

∫ t

0

eCE(s) ∥∇ξ ṽ(s)∥2W1,2

∣∣∣∣∫ s

0

C in + Cf (τ)
∥∥ρf(τ,·) ⟨p⟩

2 ∥∥
W2,2 dτ

∣∣∣∣2 ds(14)

C2(t) ⩽ C

(
C in +

∫ t

0

Cf (s)
∥∥∇2

ξf(s, ·)
∥∥
L2 ds

)
,(15)

which remain bounded at any time t ⩾ 0, and where Cf (t) =
∥∥ρf(t,·)∥∥W 1,∞

x ∩L1
x
,

(16) CE(t) = 2

∫ t

0

∥Ef (s, ·)∥L∞
x
ds

and

(17) C in =
∥∥√f in

∥∥2
W 1,4

1 ∩H3 +
∥∥f in∥∥

H1
1∩H2 .

The fact that these quantities (13), (14) and (15) remain bounded uniformly in ℏ
at any time is proved in the last section in Proposition 3.2.

Remark 1.3. — Notice that the quantity∥∥∥ρ̃√
f in −

√
ρin

∥∥∥
L2

=
∥∥∥ρ

gh∗
√

f in −
√

ρin
∥∥∥
L2

=
∥∥∥gh ∗

√
f in − f√

ρin

∥∥∥
L2

that appears in the right-hand side of Equation (12) is 0 in the case when ρin = ρ̃2√
f in

,
that is when ρin is the square of a Wick quantization. Due to the strategy of the
proof, that mimics the proof of the stability estimates presented in Section 2, the
initial datum for the auxiliary problem (24) has to be chosen positive, close to ρf in

in L2, its square root is close to
√

ρin in L2 and regular in the sense that the quantity∥∥∇ξ

√
ρ̃in m

∥∥
Lp +

∥∥∇x

√
ρ̃in m

∥∥
Lp is uniformly bounded with respect to ℏ. The choice

ρ̃in = ρ̃2√
f in

guarantees these properties.
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2. Stability estimates for the Vlasov–Poisson and Hartree equations

2.1. Classical case. — We start by explaining our method through examining the
classical case and obtaining a stability estimate for the Vlasov–Poisson equation.

Theorem 2.1. — Let f1 and f2 be two positive solutions of the Vlasov–Poisson equa-
tion verifying ∥f1∥L∞ , ∥f2∥L∞ ⩽ C∞. Then we have the following bound∥∥√f1 −

√
f2
∥∥
L2 ⩽

∥∥√f in1 −
√
f in2

∥∥
L2e

Λ(t),

where Λ(t) = C
∫ t

0
λ(s) ds with

λ(t) = ∥ρf2∥
1/2
L∞

x

∥∥∇ξ

√
f2
∥∥
L3

xL
2
ξ

+ C1/2
∞

∥∥∇ξ

√
f2
∥∥
L3,1

x L1
ξ

.

In particular, the following estimate holds

∥f1 − f2∥L2 ⩽ 2C1/2
∞

∥∥f in1 − f in2
∥∥1/2
L1 e

Λ(t).

Proof. — Let v1 =
√
f1, v2 =

√
f2 and v := v1 − v2. Then v satisfies the equation(

∂t + ξ · ∇x + Ev2
1
· ∇ξ

)
v =

(
Ev2

2
− Ev2

1

)
· ∇ξv2 =

(
∇K ∗ ρ(v2+v1)v

)
· ∇ξv2.

Then, by direct computation, we have that
1

2

d

dt
∥v∥2L2 =

∫
R6

v
(
∇K ∗ ρ(v2+v1)v

)
· ∇ξv2 dxdξ

=

∫
R12

(
|v(z′)|2 + 2 v2(z

′) v(z′)
)
∇K(x− x′) · (v(z)∇ξv2(z)) dz dz

′

=: I1 + 2 I2.

The first term is bounded by writing first

I1 ⩽
∥∥∥∇K ∗

∫
R3

v∇ξv2 dξ
∥∥∥
L∞

x

∥v∥2L2 ⩽
∥∥∥ |∇K| ∗

∫
R3

|∇ξv2|dξ
∥∥∥
L∞

x

∥v∥L∞ ∥v∥2L2

and then by applying Hölder’s inequality for the Lorentz spaces to get

I1 ⩽ ∥∇K∥
L

3/2,∞
x

∥∇ξv2∥L3,1
x L1

ξ
∥v∥L∞ ∥v∥2L2 .

The second term is bounded by the Hardy–Littlewood–Sobolev inequality and then
by the Cauchy–Schwarz inequality, leading to

I2 ⩽ C
∥∥∥∫

R3

v v2 dξ
∥∥∥
L2

x

∥∥∥∫
R3

v∇ξv2 dξ
∥∥∥
L

6/5
x

⩽ C
∥∥∥∥v∥L2

ξ
∥v2∥L2

ξ

∥∥∥
L2

x

∥∥∥∥v∥L2
ξ
∥∇ξv2∥L2

ξ

∥∥∥
L

6/5
x

.

Finally, by Hölder’s inequality, we obtain

I2 ⩽ C ∥v2∥L∞
x L2

ξ
∥∇ξv2∥L3

xL
2
ξ
∥v∥2L2 = C ∥ρf2∥

1/2
L∞

x
∥∇ξv2∥L3

xL
2
ξ
∥v∥2L2 .

Combining the bounds for I1 and I2 leads to
d

dt
∥v∥2L2 ⩽ C

(
∥ρf2∥

1/2
L∞

x
∥∇ξv2∥L3

xL
2
ξ
+ ∥v∥L∞ ∥∇ξv2∥L3,1

x L1
ξ

)
∥v∥2L2 .
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We conclude by using the fact that ∥v∥L∞ ⩽ ∥f1∥1/2L∞+∥f2∥1/2L∞ = 2C
1/2
∞ and Grönwall’s

lemma. □

2.2. Quantum case. — Using the quantum analogue of gradients and Lebesgue norms
of the phase space, we deduce a similar estimate for the Hartree equation.

Let us begin by recalling the following useful semiclassical commutator estimate.

Lemma 2.1 (Proposition 4.3 in [17]). — Let p∈ [1, 3/2) and q satisfying p−1=q−1+2/3.
Then for any ε ∈ (0, q − 1) and n > 2, there exists a constant C > 0 such that

∥[K(· − x),ρ]∥Lp ⩽ C h ∥∇ξρm∥(1/2)+ε̃
Lq+ε ∥∇ξρm∥(1/2)+ε̃

Lq−ε ,

where ε̃ = ε/q and m = ⟨p⟩n.

Notice that our scaling is different from the scaling used in [17, Prop. 4.3], but one
can easily pass from that scaling to our current scaling by multiplying both side of
the inequality in [17] by hd with d = 3.

Theorem 2.2. — Let ρ1 and ρ2 be two solutions of the Hartree equation (2) such that
∥ρ1∥L∞ ⩽ C∞ and ∥ρ2∥L∞ ⩽ C∞ and let v1 =

√
ρ1 and v2 =

√
ρ2. Then there exists

a universal constant C > 0 and T > 0 such that for any t ∈ [0, T ],

(18) ∥v1 − v2∥L2 ⩽
∥∥vin1 − vin2

∥∥
L2 e

Λ(t),

where Λ(t) = C
∫ t

0
λ(s) ds with λ given for some ε ∈ (0, 1) by

(19) λ(t) = ∥∇ξv2∥W1,2

∥∥ρv2
2

∥∥1/2
L∞

x
+ C1/2

∞ ∥∇ξv2 m∥
L3±ε ,

where n > 2. This implies the following estimate

(20) ∥ρ1 − ρ2∥L2 ⩽ 2C1/2
∞

∥∥ρin
1 − ρin

2

∥∥1/2
L1 e

Λ(t).

Remark 2.1. — It is actually not difficult to see from the interpolation argument in
the proof of Lemma 2.2 that ∥∇ξv2∥W1,2 = ∥∇ξfv2∥H1 can actually be replaced by
∥∇ξfv2

∥H1/2 .

Remark 2.2. — Contrarily to our main theorem, the result here is only local-in-time
since it is not yet known whether the global-in-time uniform in ℏ propagation of
regularity holds for the Hartree equation in the case of the Coulomb potential. For
slightly less singular potentials, we have proved it in our recent paper [9].

Proof. — Let v = v1 − v2. Then v satisfies the equation

iℏ ∂tv =
[
Hρ1

, v
]
+

[
Vρ1

− Vρ2
, v2

]
.

Differentiating its Hilbert–Schmidt norm with respect to time, we obtain
1

4π

d

dt
∥v∥2L2 = h2 Tr

([
Vρ1

− Vρ2
, v2

]
v
)
= h2 Tr

([
Vv2

1−v2
2
, v2

]
v
)
.

Since v21 − v22 = (v + v2)
2 − v22 = v2 + v v2 + v2 v and diag(v v2) = diag(v2 v), we get

1

4π

d

dt
∥v∥2L2 = h2 Tr([Vv2 , v2] v) + 2h2 Tr([Vv2 v, v2] v) =: I1 + 2 I2.
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To bound the first term, we introduce the notation Kx := K(x− y) and write

I1 = h2
∫
R3

Tr([Kx, v2] v) ρv2(x) dx ⩽ sup
x∈R3

(
h−1 ∥[Kx, v2]∥L1 ∥v∥L∞

) ∫
R3

|ρv2 |dx

⩽ C∥∇ξv2 m∥
L3±ε ∥v∥L∞ ∥v∥2L2 ,

where we have used Lemma 2.1 to bound the commutator in trace norm. To bound
the second term, we use Hölder’s inequality to get

I2 ⩽ h−1 ∥[Vv v2
, v2]∥L2 ∥v∥L2

and then we apply the following inequality which we will prove in the subsequent
section (see Lemma 2.2)

∥[Vv v2 , v2]∥L2 ⩽ C ∥∇ξv2∥W1,2 ∥ρv v2∥L2
x
.

Also, notice that

∥ρv v2∥L2
x
= h3

(∫
R3

∣∣∣ ∫
R3

v(x, y) v2(y, x) dy
∣∣∣2 dx)1/2

⩽ h3/2 ∥v2∥L∞
x L2

y
∥v∥L2 .

Hence, since h3 ∥v2∥2L2
y
= diag(ρ2) = ρ2, we deduce that

I2 ⩽ C ∥∇ξv2∥W1,2 ∥ρ2∥1/2L∞
x
∥v∥2L2 ,

and, as in previous proposition, applying Grönwall’s lemma proves (18). Inequal-
ity (20) follows from the identity ρ1 − ρ2 = 1

2 (v1 − v2)(v1 + v2) +
1
2 (v1 + v2)(v1 − v2)

and the Powers–Størmer inequality∥∥√A−
√
B
∥∥2
L2 ⩽ ∥A−B∥L1 ,

which holds for any positive operators A,B (see [25, Lem. 4.1]). □

2.2.1. A Semiclassical inequality for commutators

Lemma 2.2. — There exists a constant C > 0 such that for any self-adjoint trace class
operators ρ and µ, we have the following estimate

1

ℏ
∥[Vρ,µ]∥L2 ⩽ C ∥ρ∥L2

x
∥∇ξµ∥W1,2

where ρ = diag(ρ).

Proof of Lemma 2.2. — We use a first order Taylor expansion of Vρ of the form

Vρ(x) = Vρ(y) + (x− y) ·
∫ 1

0

∇Vρ(zθ) dθ,

where zθ = (1− θ)x+ θ y. This implies that 1
iℏ [Vρ,µ] is the operator with kernel

1

iℏ
[Vρ,µ] (x, y) =

∫ 1

0

∇Vρ(zθ) ·∇ξµ(x, y) dθ.
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Its Hilbert–Schmidt norm being given by the L2 norm of its kernel, and doing the
change of variables (x, y) 7→ (x+ θy, x− (1− θ)y) with Jacobian equal to 1, we obtain∥∥ 1

iℏ [Vρ,µ]
∥∥2
L2 ⩽ h3

∫ 1

0

∫∫
R6

|∇Vρ(x) ·∇ξµ(x+ θy, x− (1− θ)y)|2 dx dy dθ

⩽ h3 ∥∇Vρ∥2L6
x

∫ 1

0

∫
R3

∥∇ξµ(x+ θy, x− (1− θ)y)∥2L3
x
dy dθ,

where the second inequality follows by Hölder’s inequality. The first factor on the
right-hand side is controlled using the Hardy–Littlewood–Sobolev inequality by ∥ρ∥L2

x
.

To control the second factor, we perform the change of variable x 7→ x− θy to get∫ 1

0

∫
R3

∥∇ξµ(x+ θy, x− (1− θ)y)∥2L3
x
dy dθ =

∫
R3

∥∇ξµ(x, x− y)∥2L3
x
dy.

The L3 norm in this term is now bounded using the Gagliardo–Nirenberg–Sobolev
inequality associated to the embedding H1 ⊂ L3 which yields

∥∇ξµ(x, x− y)∥2L3
x
⩽ C

(
∥∇ξµ(x, x− y)∥2L2

x
+ ∥∇x(∇ξµ(x, x− y))∥2L2

x

)
.

However, notice now that the gradient with respect to x appearing in the above
formula is actually also a quantum gradient of the operator since

∇x(∇ξµ(x, x− y)) = ((∇1 +∇2)∇ξµ)(x, x− y) = [∇,∇ξµ] (x, x− y)

and this is exactly ∇x∇ξµ(x, x − y). Using the fact that for both ν = ∇ξµ and for
ν = ∇x∇ξµ, by the Fubini theorem and the change of variables y 7→ x− y it holds

h3
∫
R3

∥ν(x, x− y)∥2L2
x
dy = h3

∫∫
R6

|ν(x, x− y)|2 dxdy = ∥ν∥2L2 ,

we therefore arrive at the inequality∫ 1

0

∫
R3

∥∇ξµ(x+ θy, x− (1− θ)y)∥2L3
x
dy dθ ⩽ C∥∇ξµ∥W1,2 ,

which concludes the proof. □

3. Semiclassical limit in L2 Schatten norm

We consider ρ a solution of the Hartree equation (2) and f a solution of the Vlasov–
Poisson equation (4). Then, in the same spirit as [17], we will use the fact that the
Weyl transform ρf of f solves the equation
(21) iℏ ∂tρf =

[
Hf ,ρf

]
−Bf (ρf ) with ρf (0) = ρf in ,

where Bf (ρf ) is the operator with kernel

(22) Bf (ρf )(x, y) =

(
Vf (x)− Vf (y)− (x− y) · ∇Vf

(x+ y

2

))
ρf (x, y).

A second order Taylor expansion (see the proof of [17, Prop. 4.4]) leads to the following
estimate
(23) 1

ℏ
∥∥Bf (ρf )

∥∥
L2 ⩽ C ℏ ∥∇Ef∥L∞

x

∥∥∇2
ξf

∥∥
L2 ,

where ∥∇Ef∥L∞
x

is controlled by ∥ρf∥W 1,∞
x

and ∥ρf∥L1
x
.
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Let ρ̃ be a solution to the following Cauchy problem for the linear Hartree equation

(24) iℏ ∂tρ̃ = [Hf , ρ̃] with ρ̃(0) = ρ̃in := ρ̃2√
f in
,

with Hamiltonian Hf = −ℏ2∆/2 + Vf .

Remark 3.1. — The choice ρ̃in = ρ̃2√
f in

guarantees∥∥∇ηρ̃√f in m
∥∥
Lp =

∥∥ρ
gh∗∇η

√
f in m

∥∥
Lp ,

which is bounded by a Sobolev norm of
√
f in by [17, Prop. 3.2]. See also Remark 1.3.

Our aim is to show that the bound on the difference between ρ and ρf in L2 is of
order ℏ. To this end, we consider ρ̃ the solution to the auxiliary problem (24) with
initial datum ρ̃in = ρ̃2√

f in
. Then, applying Minkowski’s inequality yields

(25)
∥∥ρ− ρf

∥∥
L2 ⩽ ∥ρ− ρ̃∥L2 +

∥∥ρ̃− ρf

∥∥
L2 .

The second term on the right-hand side is needed in our method because of the
possible lack of positivity of the Weyl quantization of f , which prevents us to take its
square root. Hence we will call it the term due to the lack of positivity. The equations
verified by ρ̃ and ρf yields

iℏ∂t
(
ρ̃− ρf

)
=

[
Hf , ρ̃− ρf

]
+Bf (ρf ).

Hence, Inequality (23) leads to

(26)
∥∥ρ̃− ρf

∥∥
L2 ⩽

∥∥ρ̃in − ρf in

∥∥
L2 + C ℏ

∫ t

0

∥∇Ef (s, ·)∥L∞
x

∥∥∇2
ξf(s, ·)

∥∥
L2 ds.

The first term on the right-hand side of Inequality (25) is the true nonlinear error that
corresponds to the stability estimate for the Hartree equation proved in the previous
section. It can be readily estimated in a similar manner as in Section 2.2 by

(27) ∥ρ− ρ̃∥L2 ⩽
∥∥√ρ−

√
ρ̃
∥∥
L2

(
∥√ρ∥

L∞ +
∥∥√ρ̃

∥∥
L∞

)
.

We now estimate each term separately.

3.1. An estimate on the term due to the lack of positivity. — For the second term
on the right-hand side of Equation (26), ∥∇Ef∥L∞

x
and ∥∇2

ξf∥L2 are bounded by [17,
Prop. A.1]. As for the first term, the difference between the initial data ρ̃in and ρf in

can be written as follows

ρ̃in − ρf in = ρ̃2√
f in

− ρ̃f in + ρ̃f in − ρf in .

Since, by Inequality (8), we have that

(28)
∥∥ρ̃f in − ρf in

∥∥
L2 ⩽

3 ℏ
2

∥∥∇2f in
∥∥
L2 ,

it remains to estimate ρ̃2√
f in

− ρ̃f in in L2. This is done via the following lemma.
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Lemma 3.1. — Let g ∈W 1,2p with p ∈ [1,∞]. Then∥∥ρ̃g2 − ρ̃2
g

∥∥
Lp ⩽ 48 ℏ ∥∇g∥2L2p ,

where ρ̃2
g means (ρ̃g)

2.

Proof. — Notice that for any (f, g) ∈ (L1 + L∞)2,

ρ̃f ρ̃g = h−6

∫∫
R6

f g′G(z, z′) |ψz⟩ ⟨ψz′ |dz dz′,

where f = f(z), g′ = g(z′) and

G(z, z′) = ⟨ψz |ψz′⟩ =
( 2

h

)3/2
∫
R3

e−(|y−x|2+|y−x′|2)/(2ℏ) ei y·(ξ
′−ξ)/ℏ dy.

Using the parallelogram identity and the formula for the Fourier transform of a Gauss-
ian, one obtains the following expression for G,

G(z, z′) = e−|(z−z′)/2|2/ℏ ei (x+x′)·(ξ′−ξ)/(2ℏ).

Notice also that ρ̃1 = 1 is the identity operator. Hence, we write

ρ̃fg =
ρ̃fg ρ̃1 + ρ̃1 ρ̃fg

2
= h−6

∫∫
R6

f ′g′ + fg

2
G(z, z′) |ψz⟩ ⟨ψz′ |dz dz′.

Therefore, since f g + f ′ g′ − f g′ − f ′ g = (f − f ′) (g − g′), we obtain

Λ(f, g) := ρ̃fg −
ρ̃f ρ̃g + ρ̃g ρ̃f

2

= h−6

∫∫
R6

(f − f ′) (g − g′)

2
G(z, z′) |ψz⟩ ⟨ψz′ |dz dz′.

To obtain bounds on Λ(g, g) = ρ̃g2 − ρ̃2
g, we will now bound Λ(f, g) by bilinear

interpolation.

Trace norm estimate. — Using Minkowski’s inequality and the fact that the trace norm
of |ψz⟩ ⟨ψz′ | is 1, we obtain the following trace norm estimate

∥Λ(f, g)∥L1 ⩽
h−3

2

∫∫
[0,1]2

∫∫
R6×R6

|∇f(zθ)| |∇g(zθ′)|G2(z − z′) dz dz′ dθ dθ′

⩽
h−3

2

(∫∫
R6×R6

|∇f(u)|2G2(v) dudv

)1/2 (∫∫
R6×R6

|∇g(u)|2G2(v) dudv

)1/2

⩽ 48 ℏ ∥∇f∥L2 ∥∇g∥L2 ,

where G2(z) = |z|2 e−|z/2|2/ℏ and zθ = (1− θ) z + θ z′.
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Operator norm estimate. — Let (φ, ϕ) ∈ (L2)2 and define ψφ(z) := ⟨ψz |φ⟩. Then

⟨ϕ |Λ(f, g)φ⟩ = h−6

∫∫
R6×R6

(f − f ′) (g − g′)

2
G(z, z′)ψϕ(z)ψφ(z

′) dz dz′

⩽ h−6 ∥∇f∥L∞ ∥∇g∥L∞

∫∫
R6×R6

G2(z − z′) |ψϕ(z)| |ψφ(z
′)|dz dz′

⩽ h−6 ∥∇f∥L∞ ∥∇g∥L∞ ∥G2∥L1 ∥ψϕ∥L2 ∥ψφ∥L2 ,

where the last inequality follows from Young’s inequality. Observing that ψφ(z) =

F (ψ0(x− ·)φ) (ξ/h), we deduce that ∥ψφ∥L2 = h3/2 ∥φ∥L2 and so

∥Λ(f, g)∥L∞ ⩽ 48 ℏ ∥∇f∥L∞ ∥∇g∥L∞ .

General Schatten norms. — By the complex bilinear interpolation (see e.g. [5, §4.4]),
we deduce that for any p ∈ [1,∞],

∥Λ(f, g)∥Lp ⩽ 48 ℏ ∥∇f∥L2p ∥∇g∥L2p ,

which leads to the desired result by taking f = g. □

3.2. Bound on ∥ρ− ρ̃∥L2 . — In Equation (27), ∥√ρ∥L∞ and ∥
√

ρ̃∥L∞ are bounded
because ρ ∈ L∞. The main result of this section is Proposition 3.1 which gives an
estimate for ∥√ρ−

√
ρ̃∥L2 in terms of ℏ. To prove the proposition, we come back to

the equations satisfied by ρ and ρ̃ and proceed similarly as in the proof of Theorem 2.2
about the stability for the Hartree equation. However, the equation of ρ̃ is different
from the Hartree equation as its force field is given by the classical force field. This
makes appear several additional error terms. To bound these error terms, we first
establish some preliminary results.

As a first tool, it will be useful to exchange the role of x and ξ to manipulate
weights of the form ⟨x⟩ instead of weights of the form ⟨p⟩. The quantum analogue of
exchanging the x and ξ variables is obtained by conjugation with the semiclassical
Fourier transform Fhφ(ξ) := h3/2 φ̂(hξ). More precisely, we define ρ⋆ := F−1

h ρFh.
Then it holds

(29) ρ⋆
f = ρf⋆ with f⋆(x, ξ) = f(ξ, x).

This exchange operation is a linear automorphism which preserves the Lp norms.
Moreover, from the definition of a Fourier multiplier, ⟨p⟩Fh=Fh ⟨x⟩ and so ⟨x⟩⋆=⟨p⟩
and ⟨p⟩⋆ = ⟨x⟩.

Proof of (29). — Computing the kernel of ρ⋆
f yields

ρ⋆
f (x, y) =

1

h3

∫
R9

e2πi (x·x
′−y′·y)/h e−2πi (y′−x′)·ξ f

(
x′+y′

2 , h ξ
)
dx′ dy′ dξ

Therefore, by the change of variables ζ = (x′ + y′)/2h and η = x′ − y′

ρ⋆
f (x, y) =

∫
R6

e−2πi (y−x)·ζ/h e2iπη·(x+y)/2h F (f(h ζ, h ·))(η) dη dζ

and we deduce Equation (29) by the Fourier inversion theorem. □
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We can now use the above defined operation to prove the following lemma.

Lemma 3.2. — Let f be a phase space function. Then there exist r, r2 ∈ L2(R6) such
that

ρ⟨ξ⟩f − ρf ⟨p⟩ = ρr,

⟨p⟩ρf ⟨p⟩ − ρ⟨ξ⟩2f = ρr2 ,

satisfying the following estimates

∥r∥L2 =
∥∥ρ⟨ξ⟩f − ρf ⟨p⟩

∥∥
L2 ⩽

ℏ
2
∥∇xf∥L2 ,(30a)

∥r2∥L2 =
∥∥ ⟨p⟩ρf ⟨p⟩ − ρ⟨ξ⟩2f

∥∥
L2 ⩽

3ℏ2

4
∥∆xf∥L2 .(30b)

Notice that a similar result holds when we replace ρf ⟨p⟩ by ⟨p⟩ρf , which follows by
taking the adjoint. Furthermore, we also have

∥r∥H2 ⩽ C ℏ ∥f∥H3

for some C > 0 independent of ℏ.

Proof. — Notice the kernel of the difference ρ⟨x⟩f − ρf ⟨x⟩ is given by∫
R3

e−2πi(y−x)·ξ (〈x+y
2

〉
− ⟨y⟩

)
f
(
x+y
2 , hξ

)
dξ

=
iℏ
2

(x+y
2 ) + y〈

x+y
2

〉
+ ⟨y⟩

·
∫
R3

e−2πi(y−x)·ξ ∇ξf
(
x+y
2 , hξ

)
dξ = ρr,

where r ∈ L2 is defined by r(z) = iℏ
2 (ax(iℏ∇ξ)·∇ξf)(z) where ax(iℏ∇ξ) is a bounded,

x-dependent Fourier multiplier of the ξ variable associated to the function ax(η) =

(2x− η/2)/(⟨x⟩+ ⟨x− η/2⟩). More explicitly, we have

r(z) =
iℏ
2

∫
R6

e2πi(ξ−ξ′)·η ax(hη) · ∇ξf(x, ξ
′) dξ′ dη.

In particular, it follows that

(31)
∥∥ρ⟨x⟩f − ρf ⟨x⟩

∥∥
L2 = ∥ρr∥L2 = ∥r∥L2 ⩽

ℏ
2
∥∇ξf∥L2 .

We now use Inequality (31) together with the properties of the exchange operation (29)
to get ∥∥ρ⟨ξ⟩f − ρf ⟨p⟩

∥∥
L2 =

∥∥ρ⋆
⟨ξ⟩f − ρ⋆

f ⟨x⟩
∥∥
L2 =

∥∥ρ⟨x⟩f⋆ − ρf⋆ ⟨x⟩
∥∥
L2

⩽ ℏ ∥∇ξf
⋆∥L2 = ℏ ∥(∇xf)

⋆∥L2 = ℏ ∥∇xf∥L2 ,

which completes the proof of Inequality (30a). To get the second inequality, a similar
computation gives that

⟨x⟩ρf ⟨x⟩ − ρ⟨x⟩2f = ρr2

with r2(z) =
−ℏ2

4 (bx(iℏ∇ξ)∆ξf)(z), where bx is the bounded function given by

bx(2η) =
4 ( η

|η| · x)
2 − 2 |x|2 − 2− |η|2

⟨x⟩2 + ⟨x+ η⟩ ⟨x− η⟩
=

4 ( η
|η| · x)

2 − 3 |x|2 − 2 + (x+ η) (x− η)

⟨x⟩2 + ⟨x+ η⟩ ⟨x− η⟩
,

and the same reasoning leads to Inequality (30b). □
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Another simple observation is that the commutator between convolution with the
Gaussian function gh(z) = (πℏ)−3

e−|z|2/ℏ and multiplication by a weight is also of
order ℏ.

Lemma 3.3. — Let h ∈ (0, 1). Then there exists C > 0 such that for any p ∈ [1,∞]

and any function of the phase space it holds

∥[⟨ξ⟩ ,∼] f∥W 2,p ⩽ C ℏ ∥f∥W 3,p ,(32a) ∥∥[⟨ξ⟩2,∼]
f
∥∥
Lp ⩽ C ℏ ∥f∥W 1,p

1
,(32b)

where [m,∼] f := m (gh ∗ f)− (gh ∗ (mf)).

Proof. — For any z = (x, ξ) ∈ R6 and any general m(ξ), it holds

[m,∼] f(z) =

∫
R6

gh(z
′) (m(ξ)−m(ξ − ξ′)) f(z − z′) dz′,

where z′ = (x′, ξ′). By a second order Taylor expansion, this can be written as

[m,∼] f =

∫
R6

gh(z
′) ξ′ ·

(
∇m(ξ)−

∫ 1

0

(1− θ) ξ′ · ∇2m(ξ − θξ′) dθ

)
f(z − z′) dz′

= I1 − I2.

Next, using the fact that that gh is even, one can replace f(z− z′) by f(z− z′)− f(z)
in I1, leading to

I1 = ∇m(ξ) ·
∫ 1

0

∫
R6

ξ′ gh(z
′) ξ′ · ∇ξf(x− x′, ξ − θξ′) dz′ dθ.

By Minkowski’s inequality, we obtain

∥I1∥Lp ⩽ ∥∇m∥L∞

∥∥|ξ|2 gh∥∥L1 ∥∇ξf∥Lp =
3

2
ℏ ∥∇m∥L∞ ∥∇ξf∥Lp .

Similarly, I2 is bounded by

∥I2∥Lp ⩽
1

2

∥∥∇2m
∥∥
L∞

∥∥|ξ|2 gh∥∥L1 ∥f∥Lp =
3

4
ℏ
∥∥∇2m

∥∥
L∞ ∥f∥Lp .

In particular, if m = ⟨ξ⟩, then it yields ∥[m,∼] f∥Lp ⩽ 3 ℏ ∥f∥W 1,p . Noticing that
∇2

x [m,∼] f = [m,∼]∇2
xf also yields

∥∥∇2
x [m,∼] f

∥∥
Lp ⩽ 3 ℏ

∥∥∇2
xf

∥∥
W 1,p . Finally,

noticing that

∇2
ξ [m,∼] f = [m,∼]∇2

ξf + 2 [∇m,∼]∇ξf +
[
∇2m,∼

]
f

and using the above estimates with m replaced by ∇m and ∇2m leads to∥∥∇2
ξ [m,∼] f

∥∥
Lp ⩽ 36 ℏ ∥f∥H3

and so to Inequality (32a). To get Inequality (32b), notice that [⟨ξ⟩2 ,∼]f = [|ξ|2 ,∼]f

and write[
|ξ|2 ,∼

]
f =

∫
R6

gh(z
′) (ξ′)

⊗2
:

(
f(z − z′) Id + 2 ξ ⊗

∫ 1

0

∇ξf(z − θ ξ′) dθ

)
dz′,
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where A : B = Tr(A⊤B) =
∑

i,j AijBij is the Frobenius inner product for square
matrices A and B. Then it follows that∥∥[|ξ|2 ,∼]

f
∥∥
Lp ⩽

3 ℏ
2

(
∥f∥Lp + 2 ∥|ξ| ∇ξf∥Lp

)
+

16 ℏ3/2√
π

∥∇ξf∥Lp ,

which concludes the proof. □

Lemma 3.4. — Let h ∈ (0, 1). Then there exists C > 0 such that for any function g

on the phase space∥∥ ⟨p⟩ (ρ̃2
g − ρ̃g2

)
⟨p⟩

∥∥
L2 ⩽ C ℏ

(
∥g∥2W 1,4

1 ∩H3 +
∥∥g2∥∥

H1
1∩H2

)
.

Proof. — Let m := ⟨p⟩ and m(ξ) = ⟨ξ⟩. By the definition of the absolute value for
operators, by the proof of Lemma 3.2 and by Lemma 3.3, we can write

m ρ̃2
g m = |ρ̃gm|2 = |ρg̃m|2 = |ρm g̃ + ρr|2 = |ρ̃mg + ρr1 |

2,

where r1 = [m,∼] g + r, and

m ρ̃g2 m = ρ
m2g̃2 + ρr2 = ρ̃m2 g2 + ρr0 ,

where r0 =
[
m2,∼

]
g2 + r2. It follows that

(33)
∥∥m(

ρ̃2
g − ρ̃g2

)
m
∥∥
L2 =

∥∥|ρ̃mg + ρr1 |
2 − ρ̃m2 g2 − ρr0

∥∥
L2

⩽
∥∥ρ̃2

mg − ρ̃m2 g2

∥∥
L2 + ∥ρr1∥

2
L4 + 2∥ρ̃mg ρr1∥L2 + ∥ρr0∥L2 .

The first term on the right-hand side of Inequality (33) is bounded by Lemma 3.1
with p = 2, leading to ∥∥ρ̃2

mg − ρ̃m2 g2

∥∥
L2 ⩽ 48 ℏ ∥∇(mg)∥2L4 .

The second term can be bounded by

∥ρr1∥L4 ⩽ ∥ρr1 − ρ̃r1∥L4 + ∥ρ̃r1∥L4

and then noticing that the Schatten-4 norm is controlled by the Hilbert–Schmidt
norm, one obtains ∥ρr1 − ρ̃r1∥L4 ⩽ h−3/4∥ρr1 − ρ̃r1∥L2 ⩽ h1/4∥∇2r1∥L2 , where we
used Inequality (8) in the last inequality. Hence we deduce that∥∥ρr1

∥∥
L4 ⩽ ∥r1∥L4 + h1/4∥∇2r1∥L2 ⩽ C ℏ ∥g∥H3 .

The third term can be bounded by Hölder’s inequality and Inequality (9) as follows

∥ρ̃mg ρr1∥L2 ⩽ ∥ρ̃mg∥L4∥ρr1∥L4 ⩽ C ℏ ∥mg∥L4 ∥g∥H3 .

Finally, the last term can be bounded by

∥ρr0∥L2 ⩽ C ℏ
(
∥g2∥H1

1
+ ℏ ∥∆xg

2∥L2

)
.

Combining all the inequalities leads to the desired result. □

J.É.P. — M., 2023, tome 10



720 J. Chong, L. Lafleche & C. Saffirio

Lemma 3.5. — Let ρf be a solution to Equation (21) and ρ̃ be a solution to Equa-
tion (24). Then∥∥diag(ρ̃− ρf )

∥∥
L2

x

⩽ C eCE (t) ℏ
(
C in +

∫ t

0

∥ρf(s,·)∥W 1,∞
x ∩L1

x

∥∥ρf(s,·) ⟨p⟩
2 ∥∥

W2,2 ds

)
,

where C in is given by Equation (17) and CE(t) by Equation (16).

Proof. — Let m = ⟨p⟩. We will use the fact that∥∥diag(ρ̃− ρf )
∥∥
L2

x

⩽ C
∥∥m (ρ̃− ρf )m

∥∥
L2 .

as follows for example from the proof of [8, Prop. 6.4]. By the equation verified by
ρ̃− ρf and the cyclicity of the trace, one gets

iℏ
d

dt

∥∥m (ρ̃− ρf )m
∥∥2
L2 = hd Tr

(
2
∣∣m (

ρ̃− ρf

)
m
∣∣2 m−1

[
|p|2 , Vf

]
m−1

)
+ hd Tr

(
m
(
ρ̃− ρf

)
m2Bf (ρf )m

)
.

By the fact that 1
iℏ
[
|p|2 , Vf

]
= Ef · p+ p · Ef and Hölder’s inequality for the trace,

we deduce that
d

dt

∥∥m (ρ̃− ρf )m
∥∥
L2 ⩽ 2

∥∥m (ρ̃− ρf )m
∥∥
L2

∥∥m−1Ef · pm−1
∥∥
L∞+

1

ℏ
∥∥mBf (ρf )m

∥∥
L2

⩽ 2 ∥Ef∥L∞

∥∥m (ρ̃− ρf )m
∥∥
L2 +

1

ℏ
∥∥Bf (ρf )m

2
∥∥
L2 .

By Grönwall’s lemma, this implies∥∥m (ρ̃− ρf )m
∥∥
L2 ⩽ eCE(t)

(
∥m (ρ̃in − ρf in)m∥L2 +

1

ℏ

∫ t

0

∥∥Bf (ρf )m
2
∥∥
L2

)
.

with CE(t) given in (16). With our choice of the initial datum ρ̃in = ρ̃2√
f in

, the
first term on the right-hand side is bounded in Lemma 3.4. For the second term, we
compute explicitly the L2 norm of the kernel of the operator Bf (ρf )m

2. Recall the
definition of Bf (ρ) given by Formula (22) and define

δ2V (x, y) := Vf (x)− Vf (y)− (x− y) · ∇Vf
(x+ y

2

)
so that the integral kernel of B can be written Bf (ρ)(x, y) = δ2V (x, y)ρ(x, y). Then
by the chain rule, the integral kernel of the operator Bf (ρf ) |p|

2 is given by(
Bf (ρf ) |p|

2 )
(x, y) = −ℏ2 δ2V (x, y)∆yρf (x, y)− ℏ2∆y

(
δ2V (x, y)

)
ρf (x, y)

− 2 ℏ2 ∇yδ
2V (x, y) · ∇yρf (x, y) =: J1 + J2 + J3.

The J1 term is simply Bf (ρf |p|
2
) which can be bounded in L2 by Inequality (23),

leading to ∥∥Bf (ρf |p|
2
)
∥∥
L2 ⩽ C ℏ2 ∥ρf∥W 1,∞

x ∩L1
x

∥∥∇2
ξ

(
ρf |p|

2
)∥∥

L2 .

For the J2 term, since V is the solution of the Poisson equation, we have that

−ℏ2 ∆yδ
2V (x, y) = ±ℏ2

(
ρf

(x+ y

2

)
− ρf (y)

)
− ±ℏ2

4
∇ρf

(x+ y

2

)
· (x− y),
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which means

J2(x, y) = ±ℏ2
(
ρf

(x+ y

2

)
− ρf (y)

)
ρf (x, y)±

ℏ3

4i
∇ρf

(x+ y

2

)
·∇ξρf (x, y).

Then we deduce that

∥J2∥L2 ⩽ 2 ℏ2 ∥ρf∥L∞
x

∥∥ρf

∥∥
L2 +

ℏ3

4
∥∇ρf∥L∞

x
∥∇ξρf∥L2 .

Lastly, for the J3 term, observe that

−2 ℏ2 ∇yδ
2V (x, y) = 2 ℏ2

(
Ef

(x+ y

2

)
− Ef (y)

)
+ ℏ2 (x− y) · ∇Ef

(x+ y

2

)
,

which means

J3(x, y) = iℏ3
∫ 1

0

∇Ef (y + t (x− y)/2) : ∇y∇ξρf (x, y) dt

+ iℏ3∇Ef ((x+ y)/2) : ∇y∇ξρf (x, y).

Hence it follows that

∥J3∥L2 ⩽ C ℏ2 ∥∇Ef∥L∞
x
∥∇ξρf p∥L2 .

This completes our proof of the lemma. □

Proposition 3.1. — Let ρ be a solution to the Hartree equation (2) with initial da-
tum ρin and ρ̃ be a solution to (24) with initial datum ρ̃in. We denote by v1 :=

√
ρ,

ṽ :=
√
ρ̃ and vin1 and ṽin the corresponding initial data. Then for any t ∈ R+,

∥v1 − ṽ∥2L2 ⩽
∥∥vin1 − ṽin

∥∥2
L2 e

2Λ(t) + ℏ2
∫ t

0

c(s)2 e2(Λ(t)−Λ(s)) ds,

where Λ(t) = C
∫ t

0
λ(s) ds with λ given by (13) and c(t) is given by

c(t) = C eCE(t) ∥∇ξ ṽ∥W1,2

∫ t

0

C in + ∥ρf(s,·)∥W 1,∞
x ∩L1

x

∥∥ρf(s,·) ⟨p⟩
2 ∥∥

W2,2 ds

with C in given in Equation (17) and CE(t) in Equation (16).

Proof. — Define v := v1 − ṽ. Observe that v1 solves

iℏ ∂tv1 = [H1, v1], H1 := Hv2
1

and ṽ solves
iℏ ∂tṽ = [Hf , ṽ].

Now we proceed by mimicking the proof of Theorem 2.2. By direct computation, we
have that

iℏ ∂tv = [H1, v] +
[
Vρ − Vρf

, ṽ
]
,

which implies

(34) 1

4π

d

dt
∥v∥2L2 = h2 Tr

([
Vv2

1
− Vρf

, ṽ
]
v
)
.
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Now adding and subtracting h2 Tr
([
Vρ̃, ṽ

]
v
)

to the right-hand side of Equation (34)
yields

1

4π

d

dt
∥v∥2L2 = h2 Tr

([
Vρ − Vρ̃, ṽ

]
v
)
+ h2 Tr

([
Vρ̃ − Vρf

, ṽ
]
v
)

= h2 Tr
([
Vv2

1−ṽ2 , ṽ
]
v
)
+ h2 Tr

([
Vρ̃−ρf

, ṽ
]
v
)
=: J1 + J2.

(35)

We bound J1 in the same manner as in Theorem 2.2 and get that

J1 ⩽ h2 Tr([Vv2 , ṽ] v) + 2h2 Tr([Vṽv, ṽ] v) =: J1,1 + 2 J1,2,

where the two terms are readily bounded as follows

J1,1 ⩽ C ∥∇ξ ṽm∥
L3±ε ∥v∥L∞ ∥v∥2L2 ,

J1,2 ⩽ C h−1 ∥[Vvṽ, ṽ]∥L2 ∥v∥L2 .

The right-hand side of J1,1 is controlled by ∥v∥2L2 since ∥∇ξ ṽm∥
L3±ε is bounded

thanks to Proposition 3.2 and ∥v∥L∞ ⩽ ∥v1∥L∞ + ∥ṽ∥L∞ , which are both bounded.
By Lemma 2.2, similarly as in the proof of Theorem 2.2, we get

J1,2 ⩽ C ∥∇ξ ṽ∥W1,2 ∥ρṽ∥1/2L∞
x
∥v∥2L2 ,

where ρṽ ∈ L∞(R3) and ∥∇ξ ṽ∥W1,2 is bounded in time thanks to Proposition 3.2.
We are now left to bound the term J2. By Hölder’s inequality for Schatten norms and
Young’s inequality for products we obtain

J2 = h2 Tr
([
Vρ̃−ρf

, ṽ
]
v
)
⩽

∥∥ 1
h

[
Vρ̃−ρf

, ṽ
]∥∥2

L2 + ∥v∥2L2 .

We aim at showing that 1
h

∥∥[Vρ̃−ρf
, ṽ
]∥∥

L2 is small. To this end, apply Lemma 2.2 to
get

(36) 1

h

∥∥[Vρ̃−ρf
, ṽ
]∥∥

L2 ⩽ C ∥∇ξ ṽ∥W1,2

∥∥diag(ρ̃− ρf )
∥∥
L2

x
.

The term ∥diag(ρ̃− ρf )∥L2
x

in Equation (36) is controlled in Lemma 3.5, leading to
the statement of the proposition. □

3.3. Proof of the main theorems. — Now that we have a bound on √
ρ−

√
ρ̃ in L2

by the above proposition, we are ready to finish the proof of the semiclassical limit.

Proof of Theorem 1.1 and Theorem 1.2. — As explained in the beginning of the sec-
tion, by Lemma 3.1 with p = 2, we get that

(37)
∥∥ρ̃f in − ρ̃in

∥∥
L2 ⩽ 48 ℏ

∥∥∇√
f in

∥∥2
L4 ,

and so, together with Inequality (26), Inequality (28) and the fact that ∥∇Ef∥L∞
x

can
be controlled by ∥ρf∥W 1,∞

x ∩L1
x
, the error due to the lack of positivity can be estimated

above by

(38)
∥∥ρ̃− ρf

∥∥
L2 ⩽ C ℏ

(∥∥∇2f in
∥∥
L2 +

∥∥∇√
f in

∥∥2
L4 +

∫ t

0

∥ρf∥W 1,∞
x

∥∥∇2
ξf

∥∥
L2

)
.
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On the other side, the nonlinear stability error (27) is controlled, using Proposition 3.1
and recalling that ρ̃in = ρ̃2√

f in
, by

(39) ∥ρ− ρ̃∥L2 ⩽ C1/2
∞

(∥∥√ρin − ρ̃√
f in

∥∥
L2 + ℏ ∥c∥L2([0,t])

)
eΛ(t).

Summing up (38) and (39) and using the estimate on the initial state (37) prove
Theorem 1.2.

Moreover, we can control the difference of the square roots using Inequality (8)
which tells us that the Wick and Weyl quantization are close since

√
f in is sufficiently

regular, and then the fact that the Wigner transform is an isometry from L2 to L2

to get ∥∥√ρin − ρ̃√
f in

∥∥
L2 ⩽

∥∥√f in − f√
ρin

∥∥
L2 +

3 ℏ
2

∥∥∇2
√
f in

∥∥
L2 ,

which leads to our main inequality (5). □

3.4. Propagation of regularity. — In this section, we prove the following proposi-
tion about the semiclassical propagation of regularity for ṽ assuming sufficient regu-
larity on the solution to the Vlasov–Poisson equation.

Proposition 3.2. — Let h ∈ (0, 1), q ∈ [1,∞), n ∈ N, f be a sufficiently smooth
solution of the Vlasov–Poisson equation (4) and ṽ be the solution to the linear equation

iℏ ∂tṽ = [Hf , ṽ],

where Hf = −ℏ2

2 ∆ + Vf . Let m = ⟨p⟩2n. Then for any ε ∈ (0, 1), there exists Cq,n

depending only on q, n and ε, such that for every t > 0 it holds

∥ṽm∥Wk,q ⩽ ∥ṽin m∥Wk,q exp

(
Cq,n

∫ t

0

∥ρf (s, ·)∥W 2n,3±ε
x

ds

)
.

Remark 3.2. — To obtain the result of Theorem 1.1, we need bounds on the norm
of ṽ in W2,2 ∩ W1,3±ε(⟨p⟩2n) with 2n > 2. In particular, by the inequalities in [17],
these norms are bounded for the initial data ṽin = ρ̃√

f in if∥∥√f in
∥∥
H2∩W 1,3±ε

2n
+ ℏ2

∥∥√f in
∥∥
W 4,3±ε

is bounded uniformly in ℏ ∈ (0, 1).

Proof. — We define ∇k
x and ∇k

ξ to be the composition of quantum gradients. From
this definition, we see that

∇k
x ṽ = [∇, [∇, · · · [∇, ṽ]]]︸ ︷︷ ︸

k-times

and ∇k
ξ ṽ =

1

(iℏ)k
[x, [x, · · · [x, ṽ]]]︸ ︷︷ ︸

k-times

are tensor-valued operators acting on L2(R3). Here the multiplication of vectors is
defined to be their tensor products, that is, for any two vectors x, y ∈ R3 we have
that xy = x⊗ y.

By the Jacobi identity, we arrive at the equation

(40) ∂t∇k
x ṽ =

1

iℏ
[
Hf ,∇k

x ṽ
]
−

k∑
j=1

(
k

j

)
1

iℏ
[
∇j−1

x Ef ,∇k−j
x ṽ

]
.
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Likewise, using the fact that ∇j
ξHf = 0 for j ⩾ 3, we have that

∂t∇k
ξ ṽ =

1

iℏ
[
Hf ,∇k

ξ ṽ
]
− k∇k−1

ξ ∇xṽ

and

∂t∇ℓ
x∇

k−ℓ
ξ ṽ =

1

iℏ
[
Hf ,∇ℓ

x∇
k−ℓ
ξ ṽ

]
− (k − ℓ)∇k−ℓ−1

ξ ∇ℓ+1
x ṽ

−
ℓ∑

j=1

(
ℓ

j

)
1

iℏ
[
∇j−1

x Ef ,∇ℓ−j
x ∇k−ℓ

ξ ṽ
]
,

where ℓ < k. Let us focus on propagating moments for ∇k
x ṽ since Equation (40) only

depends on ∇ℓ
xṽ for ℓ ⩽ k. Define a weight equivalent to m by m̃ = 1 +

∑3
i=1 p

2n
i as

in [8, Lem. 6.3]. Then, by [8, Lem. 6.2], we arrive at the estimate
d

dt

∥∥∇k
x ṽ m̃

∥∥
Lq ⩽

1

ℏ
∥∥ [Vf , m̃]∇k

x ṽ
∥∥
Lq +

1

ℏ

k∑
j=1

(
k

j

)∥∥[∇j−1
x Ef ,∇k−j

x ṽ
]
m̃
∥∥
Lq

for q ⩾ 2. Let us estimate the first term. To simplify the notation, we write V = Vf ,
E = Ef , and µ = ∇k

x ṽ. Recall the identity [V,p] = iℏE. Then it follows
1

iℏ
[
V,p2n

i

]
=

2n−1∑
k=0

pk
i Ei p

2n−1−k
i =

2n−1∑
k=0

k∑
ℓ=0

(
k

ℓ

)
gℓ p

2n−1−ℓ
i ,

where gℓ = (−iℏ)ℓ ∂ℓiEi. Using the above identity yields the estimate
1

ℏ
∥∥[V,p2n

i

]
µ
∥∥
Lq ⩽

2n−1∑
ℓ=0

(
2n

ℓ+ 1

)
∥gℓ∥L∞

x
∥µm∥Lq .

Notice that
∥gℓ∥L∞

x
= ℏℓ

∥∥∇K ∗ ∂ℓi ρf
∥∥
L∞

x
⩽ C ℏℓ

∥∥∂ℓi ρf∥∥L3±ε
x

for ε ∈ (0, 1), then it follows that
1

ℏ
∥∥[V,p2n

i

]
µ
∥∥
Lq ⩽ Cf (t)

( (1 + ℏ)2n − 1

ℏ

)
∥µm∥Lq .

Let us now estimate the second term. Write µk−j = ∇k−j
x ṽ. Using the fact that[

∇j−1
x E,µk−j

]
p2n
i =

[
∇j−1

x E,µk−j p
2n
i

]
− µk−j

[
∇j−1

x E,p2n
i

]
,

then it follows
1

ℏ
∥∥[∇j−1

x E,µk−j

]
p2n
i

∥∥
Lq

⩽
1

ℏ
∥∥[∇j−1

x E,µk−j p
2n
i

]∥∥
Lq +

1

ℏ
∥∥µk−j

[
∇j−1

x E,p2n
i

]∥∥
Lq =: I1 + I2.

By [8, Prop. 6.5], we have that

I1 ⩽ C
∥∥∇j−1ρf

∥∥
W 1,r

x

∥∥∇ξµk−j p
2n
i

∥∥
Lq with 1

r
=

1

2
− 1

q
<

1

3
and k > j.

Term I2 is handled in the same manner as in the case of 1
iℏ

[
V,p2n

i

]
µ, which yields

I2 ⩽ Cq sup
1⩽ℓ⩽2n

∥∥∂ℓi ρf∥∥L3±ε
x

( (1 + ℏ)2n − 1

ℏ

)
∥µm∥Lq .
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Hence it follows
d

dt

∥∥∇k
x ṽ m̃

∥∥
Lq ⩽ Cq,f,n(t)

(∥∥∇k
x ṽ m̃

∥∥
Lq +

k∑
j=1

(
k

j

)∥∥∇ξ∇k−j
x ṽ m̃

∥∥
Lq

)
.

In fact, recycling the above argument yields the estimates
d

dt

∥∥∇k
ξ ṽ m̃

∥∥
Lq ⩽ Cq,f,n(t)

(∥∥∇k
ξ ṽ m̃

∥∥
Lq +

∥∥∇k−1
ξ ∇xṽ m̃

∥∥
Lq

)
and
d

dt

∥∥∇ℓ
x∇

k−ℓ
ξ ṽ m̃

∥∥
Lq ⩽ Cq,f,n(t)

(∥∥∇ℓ
x∇

k−ℓ
ξ ṽ m̃

∥∥
Lq

+ (k − ℓ)
∥∥∇k−1−ℓ

ξ ∇ℓ+1
x ṽ m̃

∥∥
Lq +

ℓ∑
j=1

(
ℓ

j

)∥∥∇ℓ−j
x ∇k−ℓ

ξ ṽ m̃
∥∥
Lq

)
.

Combining the above estimates (41) gives us a bound of the form
d

dt
∥ṽm∥Wk,q ⩽ C ′

q,f,n(t)∥ṽm∥Wk,q ,

which then by Grönwall’s lemma leads to the result. □
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