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RANDOM WALKS ON HYPERBOLIC SPACES:

SECOND ORDER EXPANSION OF THE RATE FUNCTION

AT THE DRIFT

by Richard Aoun, Pierre Mathieu & Cagri Sert

Abstract. — Let (X, d) be a separable geodesic Gromov-hyperbolic space, o ∈ X a basepoint
and µ a countably supported non-elementary probability measure on Isom(X). Denote by zn
the random walk on X driven by the probability measure µ. Supposing that µ has a finite expo-
nential moment, we give a second-order Taylor expansion of the large deviation rate function of
the sequence 1

n
d(zn, o) and show that the corresponding coefficient is expressed by the variance

in the central limit theorem satisfied by the sequence d(zn, o). This provides a positive answer
to a question raised in [6]. The proof relies on the study of the Laplace transform of d(zn, o) at
the origin using a martingale decomposition first introduced by Benoist–Quint together with an
exponential submartingale transform and large deviation estimates for the quadratic variation
process of certain martingales.

Résumé (Marches aléatoires sur les espaces hyperboliques : dérivée seconde en la vitesse de fuite
de la fonction de taux des grandes déviations)

Soit (X, d) un espace Gromov-hyperbolique, géodésique et séparable, o ∈ X un point base
et µ une mesure de probabilité non élémentaire et à support dénombrable sur le groupe Isom(X)

des isométries de X. Notons par zn la marche aléatoire sur X induite par µ. Sous l’hypothèse
de moment exponentiel fini de µ, nous donnons un développement de Taylor d’ordre 2 de la
fonction de taux des grandes déviations de la suite de variables aléatoires 1

n
d(zn, o) et exprimons

la dérivée seconde en la vitesse de fuite en fonction de la variance dans le théorème central
limite que vérifie la suite d(zn, o). Cela répond par l’affirmative à une question posée dans [6].
La preuve s’appuie sur l’étude de la transformée de Laplace de d(zn, o) en zéro en utilisant une
approximation par une martingale introduite pour la première fois par Benoist-Quint, combinée
avec une transformée exponentielle de martingales et des estimées de grandes déviations pour
le crochet de certaines martingales.
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1. Introduction

Let (X, d) be a separable geodesic Gromov-hyperbolic space, G = Isom(X), and
o ∈ X a base point of X. A probability measure µ on G defines a random walk on the
group G and subsequently on the metric space X in the following way. Let (Xi)i∈N be
a sequence of i.i.d. random variables on G with distribution µ. We let Ln = Xn . . . X1

denote the successive positions of the random walk on G. The process (zn)n∈N on X

defined by zn = Ln · o constitutes a Markov chain on X that we shall refer to as a
random walk on X. To avoid measurability issues, we will always suppose that the
probability measure µ is countably supported.

Thanks to the subadditive ergodic theorem, under a finite first moment assumption,
we have the following law of large numbers

(1.1) 1

n
d(zn, o)

a.s.−−−−→
n→∞

ℓµ,

where ℓµ ∈ [0,∞) is a constant called the drift of the random walk. There has recently
been substantial interest in the finer study of asymptotic properties of a random
walks on Gromov-hyperbolic spaces. This recent progress shows that the resemblance
between the asymptotic behaviour of random walk displacement and classical sums of
i.i.d. real random variables is far more than the law of large numbers (1.1): a central
limit theorem (CLT) with the optimal finite second moment assumption is proved by
Benoist–Quint [3] (see also Horbez [22]) improving previous more restrictive versions
by Ledrappier [23] and Björklund [5] — an alternative proof of the CLT was later
given by Mathieu–Sisto [26] and in a more restrictive setting by Gouëzel [19]. These
show that for a non-elementary probability measure µ with finite second moment (see
below for the definitions), we have

(1.2) 1√
n
(d(zn, o)− nℓµ)

law−−−−→
n→∞

N(0, σ2
µ).

The analogue of Cramér’s theorem on large deviation principles was recently proved
by Boulanger–Mathieu–Sert–Sisto [6] (see also Gouëzel [20]): they showed that for a
non-elementary probability measure with a finite exponential moment, the sequence
1
nd(zn, o) satisfies a large deviation principle (LDP) with a proper convex rate function
I : [0,∞) → [0,∞] vanishing only at the drift ℓµ: for every (measurable) subset R of
[0,∞), we have

− inf
α∈int(R)

I(α) ⩽ lim inf
n→∞

1

n
lnP

( 1

n
d(zn, o) ∈ R

)
⩽ lim sup

n→∞

1

n
lnP

( 1

n
d(zn, o) ∈ R

)
⩽ − inf

α∈R
I(α),

(1.3)

where int(R) denotes the interior and R the closure of R.
Furthermore, concentration inequalities reminiscent of Hoeffding inequalities were

recently shown by Aoun–Sert [1] and a local limit theorem for random walks on
Gromov-hyperbolic groups was proved by Gouëzel [18].
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Second order expansion of the rate function at the drift 551

However, establishing these results analogous to the classical setting of sums of
i.i.d. real random variables involves overcoming serious issues by use of various ap-
proaches and techniques. Apart from mostly geometric approaches such as the ones
used in [6, 20, 26], two classical methods are present — say in aforementioned differ-
ent proofs of the CLT. These are Nagaev’s analytic method [28] and Gordin–Lifšic’s
martingale method [16].

Nagaev’s method can be seen as a version of the classical Fourier–Laplace transform
and it relies on techniques of analytic perturbation theory, and in general, yields
sharper estimates. However, implementing it requires proving a certain spectral gap
result for a Markov operator acting on an appropriate boundary space. Although this
is by-now standard, say, on classical hyperbolic spaces or on free groups, it is not
well-developed in the generality of spaces, namely (not necessarily proper) geodesic
Gromov-hyperbolic spaces that we shall be working with in this article. A thorough
study of the analytical method in the case of Gromov-hyperbolic groups was done by
Gouëzel [19, Prop. 3.6, §5].

We will extensively use the martingale approach — developed in this setting by
Benoist–Quint [2, 3] and adapted to greater generality by Horbez [22] and Aoun–
Sert [1] — to tackle the analytic problem of giving a second-order expansion of the
limit Laplace transform of the sequence d(zn, o) (or by convex duality, of its large
deviation rate function in (1.3)) and relating it to the variance in the central limit
theorem (1.2). Similar results are known to hold in settings where spectral methods
are available. We now expound on these notions and precisely state the main result
of this note.

A geodesic metric space (X, d) is said to be Gromov-hyperbolic if there exists δ > 0

such that for every x, y, z, o ∈ X, we have (x|y)o ⩾ (x|z)o∧(z|y)o−δ, where (.|.). is the
Gromov-product given by (x|y)o = 1

2 (d(x, o)+d(y, o)−d(x, y)). A probability measure
µ on Isom(X) is called non-elementary if its support S generates a semigroup that
contains two independent loxodromic elements (see Section 3.2). For such a measure µ
and n ∈ N, we denote by µ∗n its nth convolution which is the law of the random
variable Ln.

Given a probability measure µ, the limit Laplace transform of the sequence
1
nd(zn, o) is the function Λ : R → (−∞,∞] defined by

(1.4) Λ(λ) = lim
n→∞

1

n
logE[eλd(zn,o)].

Note that, since the increments are i.i.d and G acts by isometries on X, subaddi-
tivity implies that the limit in (1.4) exists. Under a finite super-exponential moment
assumption, the Fenchel-Legendre transform of Λ is the rate function I of the large de-
viation principle satisfied by 1

nd(zn, o) (see [6, Lem. C.2]). Using this and [6, Th. 1.1],
one can deduce that the derivative of Λ at 0 is equal to the drift ℓµ.

The goal of this note is to prove the following result which answers part of
[6, Quest. C.1] and which says that the convex function Λ has a second order Taylor
expansion at 0 with second derivative equal to the variance in the central limit
theorem:
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Theorem 1.1. — Let (X, d) be a separable geodesic Gromov-hyperbolic space and µ

a non-elementary probability measure on Isom(X). Suppose that µ has a finite expo-
nential moment, i.e., for some α > 0,

∫
eαd(g·o,o)dµ(g) < +∞. Then, we have

lim
λ→0

Λ(λ)− λℓµ
λ2

=
σ2
µ

2
.

The proof uses extensively the martingale approach developed in this context by
Benoist–Quint [2, 3]. The martingale decomposition proved in these works allows us
to reduce the study of Λ near zero to the study of the limit Laplace transform of
a martingale induced by an i.i.d. random walk on the group Isom(X). Once this
reduction is done, the proof is divided into two parts: proving the lower bound, i.e.,
limλ→0 (Λ(λ)− λℓµ)/λ

2 ⩾ σ2
µ/2 and the upper bound, i.e., limλ→0 (Λ(λ)− λℓµ)/λ

2 ⩽
σ2
µ/2. The proof of the lower bound is based on a new exponential submartingale

transform that we establish in Proposition 2.2. The latter extends a classical result
of Freedman [15] to the case of martingales with unbounded differences. The proof
of the upper bound uses ideas from martingale concentration inequalities. Another
important tool is large deviation estimates for the quadratic variation of our martin-
gales.

Remark 1.2
(1) (Busemann cocycle) A general version of Theorem 1.1 will be proved in The-

orem 4.1 where the displacement d(zn, o) is replaced with the Busemann cocycle
σ(Ln, x) of Ln based at any point of x in the horofunction compactification of X. See
also Question 4.8 for an ensuing problem.

(2) (Translation distance) Thanks to [6, Th. 1.3], when µ has bounded support,
one can replace d(zn, o) by τ(Ln) in (1.4), where τ(.) denotes the translation distance
given for g ∈ Isom(X) by τ(g) = limn→∞

1
nd(g

n · o, o).
(3) (Positivity of σµ) By an argument of Benoist–Quint [3], it follows from the

expression of σ2
µ (see (3.14)) that σµ > 0 if any only if µ is non-arithmetic (see

Remark 3.7).

Using the convexity of the rate function proved in [6] and standard results from
convex analysis, we deduce

Corollary 1.3 (About the rate function). — Keep the assumptions of Theorem 1.1
and let I be the rate function (1.3). Then, we have

lim
λ→0

I(ℓµ + λ)

λ2
=

1

2σ2
µ

.

Finally, we note that our results are also valid for the right random walk Rn =

X1 . . . Xn since for every n ∈ N, Ln and Rn have the same distribution.

Remark 1.4 (Role of hyperbolicity and possible extensions). — The key ingredients
of the proof of our main result in which hyperbolicity plays a role are Lemma 3.1
(in combination with the solution of cohomological equation (3.4)) and Lemma 3.8
(a qualitative form of which is also sufficient for the purposes). It may therefore be
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possible to establish this connection between large deviations and central limit theo-
rem in similar geometric settings (see for example [22] and the recent monograph [8]
and the articles [9, 10].)

The paper is organized as follows. In Section 2, we recall some preliminaries on
submartingales and prove an exponential transform for submartingales. In Section 3,
we recall basic definitions about Gromov-hyperbolic spaces and metric compactifi-
cations as well as results from the theory of random walks on hyperbolic spaces.
In particular, we recall that d(zn, o)− nℓµ is at bounded distance from a martingale
and prove a large deviation estimate for the predictable quadratic variation of the
latter. In Section 4 we prove Theorem 1.1 in its general form Theorem 4.1, by treat-
ing separately the lower bound (Section 4.2) and the upper bound (Section 4.3).
In Section 4.4, we deduce Corollary 1.3, and finally, discuss some ensuing questions
in Section 4.5.

Acknowledgements. — The authors would like to thank the anonymous referee for
the careful reading of our paper and useful suggestions.

2. Preliminaries on martingales

In this section, we recall some preliminaries from the theory of martingales and
prove a result about exponential martingale transforms that will play a crucial role
in the proof of our main theorem.

Let us first fix our notation. We shall denote by F = (Fn)n∈N an increasing sequence
of σ-algebras (a filtration) on a fixed standard probability space Ω. Usually, we will
consider the filtration to be fixed and omit it from the notation. The notation M =

(Mn)n∈N will be reserved for an adapted sequence of random variables that form
either a martingale or submartingale. Denoting by ∆M the sequence of differences
given by ∆nM := Mn −Mn−1, we recall that M being a submartingale means that
for every n ∈ N, Mn is Fn-measurable, integrable, and it satisfies E[∆nM |Fn−1] ⩾ 0.
In the sequel, unless otherwise stated, we take M0 = 0 a.s. The predictable quadratic
variation (or conditional quadratic variation) of the submartingale Mn is denoted by
⟨M⟩n :=

∑n
i=1 E[(∆iM)2|Fi−1]. Given a positive constant a > 0, we denote

(2.1) Ga
n =

n∑
i=1

E[(∆iM)21|∆iM |⩽a|Fi−1]− a

n∑
i=1

|∆iM |1|∆iM |⩾a.

Finally, the following special function defined on R will play a significant role: f(λ) =
e−λ − 1 + λ.

We start by recalling Freedman’s submartingale transform whose statement and
proof strategy will be used in our generalization below.

Proposition 2.1 ([15, Cor. 1.4(b), (3.7) & (3.9)])
(1) Let X be an integrable random variable with E(X) = 0 (resp. E[X] ⩾ 0) and

X ⩾ −1 (resp. |X| ⩽ 1) a.s. Then, for every λ ⩾ 0, we have

E[eλX ] ⩾ ef(λ)Var(X).
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(2) Let (Mn)n∈N be a submartingale and such that for every 1 ⩽ n ∈ N, |∆nM | ⩽ 1

almost surely. Then for every λ ⩾ 0, the sequence of random variables

(exp (λMn − f(λ)⟨M⟩n))n∈N

is a submartingale with respect to the same filtration.

We note that the second statement above is a consequence of the first one. The
following result provides a generalization of Proposition 2.1 to submartingales with
increments possessing a finite exponential moment.

Proposition 2.2 (Submartingale transform). — Let (Mn)n∈N be a submartingale.
Suppose that there exists a constant α > 0 such that for every n ∈ N, we have
E[eα

∑n
k=1 |∆kM |] < ∞. Then, given any a > 0, for every λ > 0 small enough, the

sequence of random variables(
exp

(
λMn − f(λa)

a2
Ga

n

))
n∈N

is a submartingale with respect to the same filtration.

This is an extension (to unbounded differences) of Freedman’s submartingale
transform in his seminal work [15]. Indeed, if the difference sequence ∆nM satisfies
|∆nM | ⩽ 1 a.s., the transform in the previous result boils down to Proposition 2.1.
On the other hand, it applies, for instance, when there exists a constant α > 0

such that for every n ∈ N, E[eα|∆nM ||Fn−1] < +∞. This will be the case in our
application. The counterparts of Proposition 2.2 for supermartingale transforms were
obtained by Dzhaparidze–van Zanten [13] (see also Fan–Grama–Liu [14]).

Proof. — Let a > 0. By the finite exponential moment hypothesis on (Mn)n∈N, it is
clear that for every λ > 0 small enough and for every n ∈ N, exp(λMn−(f (λa)/a2)Ga

n)

is Fn-measurable and integrable. Therefore, by expanding the conditional expectation,
one sees that it is enough to show the following: for any integrable random variable X
with E[X] ⩾ 0, for any λ > 0,

(2.2) E
[
exp

(
λX +

f(λa)

a
|X|1|X|⩾a

)]
⩾ e(f(λa)/a

2)E[X2
1|X|⩽a].

Denote by ν the distribution of X.
– Case 1: E[X] = 0 and ν is supported on two points −c and d with c, d > 0 and

both c, d ⩽ a. Let r := max{c, d}. Since E[X] = 0 and X ⩾ −r almost surely, 1. of
Proposition 2.1 (applied to X/r and to λr) yields

E
[
exp

(
λX +

f(λa)

a
|X|1|X|⩾a

)]
= E[exp(λX)] ⩾ e(f(λr)/r

2)E[X2].

Since the function x 7→ f(x)/x2 is decreasing on R and since r ⩽ a, we deduce that
f(λr)/r2 ⩾ f(λa)/a2. Therefore

E
[
exp

(
λX +

f(λa)

a
|X|1|X|⩾a

)]
⩾ e(f(λa)/a

2)E[X2] = e(f(λa)/a
2)E[X2

1|X|⩽a].
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Second order expansion of the rate function at the drift 555

– Case 2: E[X] = 0 and ν is supported exactly on two points −c and d and we are
not in Case 1. By Jensen’s inequality, we obtain

(2.3)
E
[
exp

(
λX +

f(λa)

a
|X|1|X|⩾a

)]
⩾ exp

(
λE[X] +

f(λa)

a
E[|X|1|X|⩾a]

)
= exp

( f(λa)
a

E[|X|1|X|⩾a]
)
.

If both c, d ⩾ a, then the right hand side of (2.2) is equal to 1 and hence (2.2) holds
in view of (2.3). So, since we are also not in Case 1, we can suppose that either c > a

and d < a, or d > a and c < a. Let us treat the case c > a and d < a. Notice also
that since E[X] = 0 we have P(X = −c) = d/(c+ d) and P(X = d) = c/(c+ d). By
assumption on c, d and (2.3), these yield

(2.4) E
[
exp

(
λX +

f(λa)

a
|X|1|X|⩾a

)]
⩾ exp

( f(λa)
a

cd

c+ d

)
.

On the other hand,

(2.5) exp
( f(λa)

a2
E[X21|X|⩽a]

)
= exp

( f(λa)
a2

d2c

c+ d

)
.

Since d ⩽ a, (2.2) follows from combining (2.4) and (2.5). The case d > a and c ⩽ a

can be treated similarly.
– Case 3: E[X] ⩾ 0 and ν is supported on two points {−c, d} with c, d > 0. We

will study the behavior of the left-hand-side and the right-hand-side of (2.2) when
we vary ν with the condition E[X] ⩾ 0, while fixing a, c, d, λ. Since ν is supported on
two points, it is enough to treat the behavior of these quantities when β := P(X = d)

varies. Observe that since E[X] ⩾ 0, we have c/(c+ d) ⩽ β ⩽ 1. The function
ψ1(β) := Eν [exp(λX+(f(λa)/a)|X|1|X|⩾a)] is affine in β while the function ψ2(β) :=

e(f(λa)/a
2)Eν [X

2
1|X|⩽a] is convex in β (being of the form ψ2(β) = eL(β) with L an affine

map). Thus the function ψ := ψ1 − ψ2 is concave on [c/(c+ d), 1]. It suffices then to
check that ψ(c/(c+ d)) ⩾ 0 and that ψ(1) ⩾ 0. The case β = c/(c+ d) corresponds
to the case Eν [X] = 0 and hence, by cases 1 and 2, ψ(c/(c+ d)) ⩾ 0. The case β = 1

corresponds to ν = δd. Clearly, ψ(1) ⩾ 0 when d ⩾ a. When d < a, the relation
ψ(1) ⩾ 0 follows from the facts that the function x 7→ f(x)/x2 is decreasing and that
f(x) ⩽ x for every x ⩾ 0. This concludes the proof of (2.2) in this case.

– Case 4: here we treat the general case (cf. proof of [15, Prop. 3.6]). Since E[X] ⩾ 0,
we can find a family (να)α∈I of probability measures, each supported on two points
−cα ⩽ 0 and dα > 0 and of expectation ⩾ 0, and a probability measure θ on I such
that ν =

∫
dθ(α)να. We have

E
[
exp

(
λX +

f(λa)

a
|X|1|X|⩾a

)]
=

∫ (∫
eλx+(f(λa)/a)|x|1|x|⩾adνα(x)

)
dθ(α)

⩾
∫
e(f(λa)/a

2)
∫
x21|x|⩽adνα(x)dθ(α)

⩾ e(f(λa)/a
2)

∫∫
x2
1|x|⩽adνα(x)dθ(α)

= e(f(λa)/a
2)E[X21|X|⩽a],
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where we applied (2.2) for each probability measure να in the second inequality and
Jensen in the third inequality. □

3. Random walks on hyperbolic spaces

3.1. Preliminaries on hyperbolic spaces. — Let us first fix our notation. Let (X, d)

be a geodesic metric space. Fix a base point o ∈ X. Recall that (X, d) is said to be
δ-hyperbolic (where δ ⩾ 0) if for every x, y, z, o ∈M ,

(3.1) (x|y)o ⩾ (x|z)o ∧ (z|y)o − δ,

where (.|.). is the Gromov-product given by (x|y)o = 1
2 (d(x, o) + d(y, o) − d(x, y)).

For simplicity, we will often omit the basepoint o from the notation. We recall that
this category of metric spaces comprises many usual spaces: trees, classical hyperbolic
spaces, the fundamental group of compact surfaces of genus ⩾ 2. We recall that the
definition of hyperbolicity is equivalent to geodesic triangles being thin. We refer
to [11] for general properties of these spaces. Denote by G := Isom(X) the group of
isometries of the metric space (X, d). The displacement of g ∈ G is by definition

κ(g) := d(g · o, o).

An element γ ∈ G is said to be loxodromic if for any x ∈ X, the sequence (γnx)n∈Z
constitutes a quasi-geodesic (see [11, Ch. 3]). Equivalently, γ is loxodromic if and only
if it fixes precisely two points x+γ , x−γ on the Gromov boundary ∂X of X [11, Ch. 9
& 10]. Two loxodromic elements γ1, γ2 are said to be independent if the sets of fixed
points {x+γi

, x−γi
} for i = 1, 2 are disjoint. Finally, a set S, or equivalently a probability

measure with support S, is said to be non-elementary if the semigroup generated by S
contains at least two independent loxodromic elements.

Now we recall the definition of the Busemann compactification of X (no need
for hyperbolicity in this part). Denote by Lip1(X) the set of real valued Lipschitz
functions on X with Lipschitz constant 1, endowed with the topology of pointwise
convergence. Fixing o ∈ X, for x ∈ X, let the function hx ∈ Lip1o(X), defined by
hx(m) = d(x,m) − d(x, o), where Lip1o(X) is the subspace of Lip1(X) consisting of
functions f satisfying f(o) = 0. If X is separable (as we suppose in the sequel), the
closure of {hx | x ∈ X} is a compact metrizable subset of Lip1o(X), called the horofunc-
tion compactification of X (see e.g. [25, Prop. 3.1]). It will be denoted as Xh. The map
x 7→ hx is injective on X (and an embedding when X is a proper metric space) and we
usually identify X with its image in X

h. The horofunction boundary of X is defined
as ∂hX := X

h∖X. The group of isometries Isom(X) acts on Xh by homeomorphisms
given, for g ∈ Isom(X), h ∈ X

h and m ∈ X, by (g ·h)(m) = h(g−1m)−h(g−1o). This
extends equivariantly the isometric action of Isom(X) on X and the set ∂hX ⊂ X

h is
invariant under Isom(M). The Busemann cocycle σ : Isom(X)×X

h → R is defined by

σ(g, h) = h(g−1o).
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Observe that for every g ∈ G and x ∈ X
h,

(3.2) σ(g, o) = κ(g) and |σ(g, x)| ⩽ κ(g).

Finally, we recall that the Gromov-product can be extended to the whole Busemann
compactification by setting (x|y)o := −minz∈X

1
2 (hx(z) + hy(z)). In particular, one

can infer that for x ∈ X
h and y ∈ X,

(3.3) (x|y)o =
1

2
(d(y, o)− hx(y)).

3.2. Random walks. — There are two main goals in this section. The first one (dis-
cussed in Section 3.2.1) is to recall a martingale decomposition (Lemma 3.1) of the
Busemann cocycle along non-elementary random walks on Gromov-hyperbolic spaces
which is due to Benoist–Quint [2, 3] (see also an extension in [22]). We will use a
slightly more general version of this worked out in [1]. The second goal (discussed in
Section 3.2.2) is to prove Proposition 3.3 about large deviations of predictable qua-
dratic variation and its consequence expressed in Corollary 3.9. The latter will be
crucial in the proof of our main result.

3.2.1. Benoist–Quint martingale decomposition. — Let µ be a probability measure on
the isometry group G of X with countable support. Recall that it is said to have a
finite exponential moment (resp. finite second moment) if there exists α > 0 such that∫
eαd(g·o,o)dµ(g) < ∞ (resp.

∫
κ(g)2dµ(g) < ∞). Let Ln = Xn . . . X1 be the random

walk on G and ℓµ the drift of the random walk on X defined in (1.1). Denote by F

the natural filtration generated by the increments Xi’s. Finally, we denote by Pµ the
Markov operator on the horofunction compactification X

h induced by the random
walk on G, i.e., Pµf(x) =

∫
f(g · x)dµ(g) for every bounded measurable function f

on X
h. The starting point of the proof of Theorem 1.1 is the following.

Lemma 3.1. — Let µ be a non-elementary probability measure with finite second mo-
ment. Then, for every x ∈ X

h, there exists a martingale Mx = (Mx,n)n∈N with respect
to the filtration F starting at the origin and such that for every n ∈ N,

σ(Ln, x)− nℓµ =Mx,n +Ox,n(1),

where Ox,n(1) is a random variable whose absolute value is bounded uniformly in
n ∈ N and x ∈ X

h.

Proof. — When X is proper, Benoist–Quint [3, Prop. 4.6] showed that that there
exists a bounded measurable function ψ on the Busemann boundary ∂hX such that

ψ − Pµψ =

∫
σ(g, x)dµ(g)− ℓµ.

It was then verified in [22] that this solution can be extended to the case when X

is non-proper and also in [1] that ψ could be defined on the whole compactifica-
tion Xh while preserving the boundedness of ψ. This is equivalent to finding a cocycle
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σ0 : G×X
h → R with constant drift equal to ℓµ, i.e.,∫

σ0(g, x)dµ(g) = ℓµ

for every x ∈ X
h, such that the following identity holds for every (g, x) ∈ G×X

h:

(3.4) σ(g, x) = σ0(g, x)− ψ(g · x) + ψ(x).

Let then

(3.5) Mx,n := σ0(Ln, x)− nℓµ.

The constant drift property of σ0 implies that Mx := (Mx,n)n∈N is a martingale with
respect to the filtration F, which finishes the proof. □

Remark 3.2. — Observe that since E(Mx,n) = E(Mx,0) = 0 for every n ∈ N, we obtain
the existence of some C ⩾ 0 such that for every n ∈ N and every x ∈M ,

nℓµ − C ⩽ E[σ(Ln, x)] ⩽ nℓµ + C.

From now on, for every x ∈ X
h we denote by Mx = (Mx,n)n∈N the martingale

defined in the proof of Lemma 3.1, i.e.,

Mx,n := σ0(Ln, x)− nℓµ.

Many properties of a martingale are encoded in its different notions of quadratic
variation. For instance, a martingale whose predictable quadratic variation (see below
for the definition) is almost surely bounded satisfies a Bennett–Bernstein concentra-
tion result (see [15] for the bounded difference case and [29, 13, 14] for the general
case). Burkholder inequalities [7] are another instance of the relevance of the quadratic
variation in studying martingales.

3.2.2. Large deviation estimate for predictable quadratic variation of Mx,n. — We now
proceed with the second goal of Section 3.2, namely proving Proposition 3.3 below
and deducing Corollary 3.9. We first give some observations and definitions regarding
the martingale (Mx,n)n∈N introduced in Section 3.2.1. The martingale difference of
(Mx,n)n∈N is

(3.6) ∆nMx :=Mx,n −Mx,n−1 = σo(Xn, Zx,n−1)− ℓµ,

where (Zx,j := Lj · x) is the Markov chain on X
h induced by the random walk on G

and starting at x. We recall that the (predictable) quadratic variation of ⟨Mx⟩ is the
unique increasing predictable process such that (M2

x,n − ⟨Mx⟩n)n∈N is a martingale.
We have

(3.7) ⟨Mx⟩n =

n∑
j=1

E(∆jM
2
x |Fj−1) =

n∑
j=1

∫
(σ0(g, Zx,j−1)− ℓµ)

2dµ(g).

We now come to the main result of this section. Its statement contains the expression

(3.8) σ2
µ :=

∫∫
(σ0(g, x)− ℓµ)

2dµ(g)dν(x),
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where ν is any µ-stationary probability measure on Xh — we will see that the integral
does not depend on ν. This constant σ2

µ is also the variance appearing in the central
limit theorem (1.2) (see proof of [3, Th. 4.7.b] or [22, Th. 1.3]).

Proposition 3.3 (Large deviation estimates for the quadratic variation)
Let µ be a non-elementary probability measure with finite second moment. Then,

for every ε > 0,

lim sup
n→∞

1

n
log sup

x∈X
P(|⟨Mx⟩n − nσ2

µ| ⩾ nε) < 0.

To proceed to prove this result, we first observe that we can reformulate the state-
ment as a statement about large deviations for an additive functional of a Markov
chain. Indeed, for x ∈ X

h, defining

(3.9) ϕ(x) :=

∫
(σ0(g, x)− ℓµ)

2dµ(g),

the expression (3.7) shows that

⟨Mx⟩n =

n∑
j=1

ϕ(Zx,j).

Benoist–Quint showed a large deviation estimate for functionals along Markov
chains [2, Prop. 3.1], which is a quantitative refinement of Breiman’s law of large
numbers. In the aforementioned paper, the authors work with continuous functions in
the framework of Markov–Feller operators on compact metric spaces. However, in the
generality that we work with, we were not able to prove the continuity of ϕ. Note that
by the expression (3.4) of the cocycle σ0, the continuity of ϕ would follow from the
continuity of the Gromov-product on the Busemann compactification X

h. Up to our
knowledge, the latter is known in familiar cases including trees and classical hyperbolic
spaces but not in our generality (note that by [27, §10] the Gromov-product on the
Busemann compactification of a general metric space X may fail to be continuous even
if X is proper and geodesic). To overcome this issue, we will adapt the statement of
Benoist–Quint by relaxing the continuity assumption.

Proposition 3.4 ([2, Prop. 3.1] modified). — Let (Zn)n∈N be a Markov chain on a
state space E, P its Markov operator and ϕ : E → R a measurable bounded function.
Suppose that

(3.10) 1

n

n∑
j=1

P jϕ(x) −→ ℓϕ ∈ R,

uniformly in x ∈ E. Then the following large deviation estimate holds: for every ε > 0

lim sup
n→+∞

1

n
logPx

(∑n
i=1 ϕ(Zi) ̸∈ [nℓϕ − nε, nℓϕ + nε]

)
< 0,

uniformly in x ∈ E.
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The proof is an adaptation of Benoist–Quint’s proof of [2, Prop. 3.1]. We include
it for the convenience of the reader.

Proof. — We begin with a general result, which can be seen as a quantitative version
of the law of large numbers stated in [4, Th. 1.6]. If ξ = (ξn)n∈N is a sequence of
bounded real random variables adapted to a filtration F = {Fn | n ∈ N} , then for
every ε′ > 0 and n ∈ N

(3.11) P
(
|
∑n

j=1(ξj − E[ξj |Fj−1])| ⩾ nε′
)
⩽ 2 exp(−nε′2/8∥ξ∥2∞).

Indeed the sequence {ξn − E[ξn|Fn−1] | n ∈ N} is a bounded martingale difference
sequence with respect to the filtration F and hence (3.11) follows from Azuma–
Hoeffding’s concentration inequality for martingales with bounded differences.

In the second step, we show that for every m ∈ N, 1
n

∑n
j=1 ϕ(Zj) concentrates

around the Cesàro average 1
m

∑m
ℓ=1 P

ℓϕ(Zj); more precisely for every ε′ > 0, n,m ∈ N,
and x ∈ X,

(3.12) Px

(∣∣∑n
j=1

[
ϕ(Zj)− 1

m

∑m
ℓ=1 P

ℓϕ(Zj)
]∣∣ ⩾ mnε′ + 2m∥ϕ∥∞

)
⩽ 2m2 exp(−nε′2/8∥ϕ∥2∞).

Indeed, let 1 ⩽ ℓ ⩽ m. We write
ℓ+n∑

j=ℓ+1

(ϕ(Zj)− Ex[ϕ(Zj)|Fj−ℓ]) =

ℓ−1∑
k=0

ℓ+n∑
j=ℓ+1

(Ex[ϕ(Zj)|Fj−k]− Ex[ϕ(Zj)|Fj−k−1]),

where F is the filtration induced by the Markov chain. For each k ∈ {0, · · · , ℓ−1}, we
apply (3.11) with the sequence of random variables {ξj,k = Ex[ϕ(Zj)|Fj−k] | j ∈ N}
which are adapted to the filtration {Fj−k | j ∈ N} and bounded by ∥ϕ∥∞. Combining
the resulting ℓ estimates, we obtain that

Px

(∑ℓ+n
j=ℓ+1(ϕ(Zj)− Ex[ϕ(Zj)|Fj−ℓ]) ⩾ ℓnε′

)
⩽ 2ℓ exp(−nε′2/8∥ϕ∥2∞).

Noticing that Ex[ϕ(Zj)|Fj−ℓ] = P ℓϕ(Zj−ℓ), the previous estimate gives (after killing
the boundary terms using the boundedness of ϕ) that

Px

(∣∣∑n
j=1 [ϕ(Zj)− P ℓϕ(Zj)]

∣∣ ⩾ ℓnε′ + 2ℓ∥ϕ∥∞
)
⩽ 2ℓ exp(−nε′2/8∥ϕ∥2∞).

Estimate (3.12) immediately follows.
Finally, let ε > 0 be given. The uniform convergence (3.10) yields an integer m0

such that Px-almost surely for every j ∈ N,

(3.13) 1

m0

m0∑
ℓ=1

P ℓϕ(Zj) ∈ [ℓϕ − ε/3, ℓϕ + ε/3].

Plugging (3.13) into (3.12) withm = m0 and ε′ = ε/3m0 gives some constant C(ε) > 0

such that for every n ⩾ 6m0∥ϕ∥∞/ε,

Px

(∑n
i=1 ϕ(Zi) ∈ [nℓϕ − nε, nℓϕ + nε]

)
⩽ exp(−nC(ε)),

concluding the proof. □
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Remark 3.5. — If E is a compact metric space, P a Markov Feller operator and ϕ is
a continuous function which has a unique average with respect to stationary measures
on E, then (3.10) is fulfilled. As mentioned earlier, this is the case, for instance, for
random walks on trees, classical hyperbolic spaces and also for strongly irreducible
and proximal random walks on projective spaces (see for instance [4]).

We now check that (3.10) is satisfied for our function ϕ defined in (3.9) and the
Markov operator P = Pµ of the Markov chain on X

h induced by the random walk
on G (see Section 3.2).

Lemma 3.6. — Let ϕ : X
h → R as defined in (3.9). Then the sequence of functions

fn(x) :=
1
n

∑n
j=1 P

j
µϕ(x) converges uniformly on X

h to σ2
µ ⩾ 0. The limit σ2

µ can be
expressed as

(3.14) σ2
µ :=

∫∫
(σ0(g, x)− ℓµ)

2dµ(g)dν(x),

where ν is any µ-stationary measure on X
h.

Remark 3.7. — It follows from (3.14) and the argument in the proof of [3, Th. 4.7.b]
that σµ = 0 if any only if there exists a constant C > 0 such that for every n ∈ N
and g ∈ supp(µ∗n), we have |κ(g) − nℓµ| ⩽ C. It follows that σµ > 0 if any only
if µ is non-arithmetic. Here, a probability measure µ on Isom(X) is said to be non-
arithmetic if there exists n ∈ N and g, g′ ∈ supp(µ∗n) such that τ(g) ̸= τ(g′) where τ
is the translation distance, τ(g) = limn→∞ κ(gn)/n.

The proof of the previous lemma is based on showing that fn(x)− fn(y) converges
uniformly to zero (see (3.17)), which imposes the limit to be the average σ2

µ as defined
in (3.14). To prove this, we express fn(x) as the variance of Mx,n/

√
n (see (3.18)).

Using Burkholder’s inequalities, the proof boils down to showing deviation inequalities
for σ(Ln, x)−σ(Ln, y) uniformly in x, y ∈ X

h (see (3.22)). For the latter fact, we will
use the following lemma which is a direct consequence of uniform punctual deviation
estimates given in [6, Prop. 2.12].

Lemma 3.8 (Uniform punctual deviations). — Keep the hypotheses of Proposition 3.3.
Then there are constants C, β > 0 such that for any k ∈ N and any x ∈ X

h, R > 0,
we have

P(κ(Lk)− σ(Lk, x) > R) ⩽ Ce−βR.

Proof. — Notice that for g ∈ Isom(M) and x ∈ X
h, by (3.3) we have κ(g)−σ(g, x) =

2(g−1o|x). In particular, when x ∈ X, the statement precisely corresponds to
[6, Prop. 2.12] applied with the image µ̌ of µ by the map g 7→ g−1 on Isom(X).
To extend it to Xh, given x ∈ X

h, let xn be a sequence in X such that xn → x in Xh.
By continuity of σ(g, ·), we have κ(g) − σ(g, x) = limn→∞ 2(g−1o|xn). Therefore,
given R > 0,

(3.15) µ∗k{g | κ(g)− σ(g, x) > R} = µ̌∗k{g | limn→∞(go|xn) > R/2},
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for every k ∈ N. Denoting by hn(·), the map g 7→ 1(go|xn)>R/2, by (3.15) we have

P(κ(Lk)− σ(Lk, x) > R) =

∫
lim
n→∞

hn(g)dµ̌
∗k(g) = lim

n→∞
µ̌∗k{g | (go|xn) > R/2},

where we used dominated convergence in the last equality. Hence the statement follows
from [6, Prop. 2.12]. □

Proof of Lemma 3.6. — First, we reduce the problem to showing that

(3.16) fn(x)− fn(y) −→ 0

uniformly in x and y in X
h. Indeed, let us assume for a while that (3.16) holds. Fix

any µ-stationary measure ν on Xh (the latter exists by compactness of Xh). We have
for every n ∈ N,

(3.17) fn(x) =
1

n

n∑
j=1

E[ϕ(Zj)|Z0 = x] =
1

n

n∑
j=1

E[
∫
(σ0(g, Lj · x)− ℓµ)

2dµ(g)].

Since ν is µ∗n-stationary for every n ∈ N, we deduce that for every n ∈ N,∫
X

h
fn(x)dν(x) =

∫∫
G×X

h
(σ0(g, x)− ℓµ)

2dµ(g)dν(x) := σ2
µ,ν .

Let ε > 0 and y ∈ X. We can find n0 depending only on ε such that for every n ⩾ n0

and for every x ∈ X
h, fn(x)− ε ⩽ fn(y) ⩽ fn(x) + ε. Integrating on both sides with

respect dν(x), we obtain that |fn(y) − σ2
µ,ν | ⩽ ε for every n ⩾ n0, concluding the

proof of the uniform convergence of the sequence of functions (fn)n∈N towards σ2
µ,ν .

It also shows that σ2
µ,ν is independent of the choice of the stationary measure ν.

From now on, we focus on showing the convergence (3.16) uniformly in x, y ∈ X
h.

Since (M2
x,n − ⟨Mx⟩n)n∈N is a martingale starting at zero, we have that E[⟨Mx⟩n] =

E[M2
x,n] for every n ∈ N so that by (3.17):

(3.18) fn(x) =
1

n
E[M2

x,n] = E
[(
Mx,n/

√
n
)2]

.

Let us check that the sequence {(Mx,n/
√
n)2 | n ∈ N, x ∈ X

h} is uniformly bounded
in Lp for every p > 1; and hence in particular uniformly integrable. Indeed, by
Burkholder’s inequality ([7, Th. 9]), we have for every k > 2,

(3.19) E[|Mx,n|k] ⩽ CkE[[Mx]
k/2
n ],

where Ck > 0 is a constant depending only on k, [Mx]n =
∑n

j=1 (∆jMx)
2 is the

quadratic variation of Mx. By Jensen’s inequality, we have

[Mx]
k/2
n ⩽ nk/2−1

n∑
j=1

|∆jMx|k,

so that

(3.20) E[[Mx]
k/2
n ] ⩽ nk/2−1

n∑
j=1

E[|∆jMx|k] ⩽ nk/2 sup
j∈N

E[|∆jMx|k].
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Remembering that σ(g, x) = σ0(g, x) − ψ(g · x) + ψ(x), |σ(g, x)| ⩽ κ(g), and that ψ
is bounded on X

h, we get that for every n ∈ N,

(3.21) |∆nMx| = |σ0(Xn, Ln−1 · x)− ℓµ| ⩽ κ(Xn) + ℓµ + 2∥ψ∥∞.

Since the Xi’s have the same distribution, by plugging (3.21) and (3.20) in (3.19) we
get

E[Mk
x,n] ⩽ Ckn

k/2E[|κ(X1) + ℓµ + 2∥ψ∥∞|k].

The right-hand-side is finite (since µ has a finite moment of any order k > 2) and does
not depend neither on n nor on x, showing the boundedness in Lk/2 of (Mx,n/

√
n)2

uniformly in n and x.
Let now ε > 0. It follows from the uniform integrability of the family Mx,n/

√
n

that there exists L(ε) > 0 such that for every n ∈ N and x, y ∈ X
h we have

P
(
max

{
|Mx,n|/

√
n, |My,n|/

√
n
}
> L(ε)

)
< ε.

Using Lemma 3.8 together with the fact that σ differs from σ0 by a bounded function
on X

h, we obtain some T (ε) > 0 such that for every n ∈ N, x, y ∈ X
h,

(3.22) P(|σ0(Ln, x)− σ0(Ln, y)| > T (ε)) ⩽ ε.

Hence, if Ax,y,n denotes the event

Ax,y,n := {|σ0(Ln, x)− σ0(Ln, y)| > T (ε)} ∪
{
max

{
|Mx,n|/

√
n, |My,n|/

√
n
}
> L(ε)

}
,

we have for every n ∈ N, x, y ∈ X
h that P(Ax,y,n) < 2ε. Now we write

|fn(x)− fn(y)| ⩽ E
[∣∣∣(Mx,n/

√
n
)2 − (

My,n/
√
n
)2∣∣∣1Ax,y,n

]
︸ ︷︷ ︸

ax,y,n

+ E
[∣∣∣(Mx,n/

√
n
)2 − (

My,n/
√
n
)2∣∣∣1AC

x,y,n

]
︸ ︷︷ ︸

bx,y,n

.

Let us estimate ax,y,n. By Cauchy–Schwarz inequality, we have for every n ∈ N,

a2x,y,n ⩽ 2max
x,y

E
[(
Mx,n/

√
n
)4]P(Ax,y,n) ⩽ C4ε,

where C4 > 0 is a constant independent of n, x and ε; guaranteed by the uniform
boundedness in L4 shown at the beginning of the proof. Finally, we estimate bx,y,n.
Since the function x 7→ x2 is uniformly continuous on [−L(ε), L(ε)], we can find
δ(ε) > 0 such that |t2 − t′2| < ε whenever |t− t′| < δ(ε) and max{|t|, |t′|} ⩽ L(ε). Let
n0(ε) ∈ N be such that T (ε)/

√
n0(ε) < δ(ε). From the definition of the event AC

x,y,n,
we deduce that for every n ⩾ n0(ε), x, y ∈ X

h, bx,y,n < ε. Hence for n ⩾ n0(ε),
x, y ∈ X

h

|fn(x)− fn(y)| <
√
C4ε+ ε,

which finishes the proof of the uniform convergence (3.16). □
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We end this section with the following consequence of Proposition 3.3. In the
statement below, for every x ∈ X

h, we use the transform Ga
n introduced in (2.1)

associated to the martingale Mx. To ease the notation, we omit the dependence on x
in Ga

n.

Corollary 3.9. — Suppose µ has finite exponential moment. Then for every x ∈ X
h,

lim
a→+∞

lim sup
λ→0+

1

λ
lim sup
n→+∞

1

n
logE[exp(−λ(Ga

n − nσ2
µ))] = 0.

Proof. — Let x ∈ X
h. The result will follow from Cauchy–Schwarz inequality and

the following two estimates

(3.23) lim sup
λ→0+

1

λ
lim sup
n→+∞

1

n
logE[exp(−λ(⟨Mx⟩n − nσ2

µ))] ⩽ 0

and

(3.24) lim sup
a→+∞

lim sup
λ→0+

1

λ
lim sup
n→∞

1

n
logE[exp(λ(⟨Mx⟩n −Ga

n))] ⩽ 0.

(i) We start by proving (3.23). To ease the notation, let Yn = ⟨Mx⟩n − nσ2
µ. Let

ε > 0. By Proposition 3.3, there exists α(ε) > 0 and n0(ε) ∈ N such that for every
n ⩾ n0(ε),

P(Yn ⩽ −nε) ⩽ exp(−α(ε)n).

Noticing that Yn ⩾ −nσ2
µ, we write

Yn = Yn1Yn⩾0 + Yn1−nε⩽Yn⩽0 + Yn1−nσ2
µ⩽Yn⩽−nε.

Since E[exp(−λYn)1−nε⩽Yn⩽0] ⩽ exp(nλε) and, for n ⩾ n0(ε),

E[exp(−λYn)1−nσ2
µ⩽Yn⩽−nε] ⩽ exp(nλσ2)P(Yn ⩽ −nε) ⩽ exp(n(σ2

µλ− α(ε))),

we get that for every n ⩾ n0(ε),

E[exp(−λ(⟨Mx⟩n − nσ2
µ))] ⩽ 1 + exp(nλε) + exp(nσ2

µλ− α(ε)n).

Keeping ε and λ > 0 (small enough) fixed, we let n→ +∞ and deduce that

lim sup
n→+∞

1

n
logE[exp(−λ(⟨Mx⟩n − nσ2

µ))] ⩽ max{λε, λσ2
µ − α(ε)}.

Since α(ε) > 0, we get by letting λ→ 0+ (while keeping ε fixed) that

lim sup
λ→0+

1

λ
lim sup
n→+∞

1

n
logE[exp(−λ(⟨Mx⟩n − nσ2

µ))] ⩽ ε.

Letting ε→ 0, we conclude that

lim sup
λ→0+

1

λ
lim sup
n→+∞

1

n
logE[exp(−λ(⟨Mx⟩n − nσ2

µ))] ⩽ 0.

This shows (3.23).
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(ii) Finally, we show (3.24). Using the expression (2.1) for Ga
n, we see that

⟨Mx⟩n −Ga
n =

n∑
i=1

E[(∆iMx)
2
1|∆iMx|>a|Fi−1] + a

n∑
i=1

|∆iMx|1|∆iMx|⩾a.

Observe that by the expression of our martingale difference (3.6) and by the decom-
position (3.4), we have a.s. for every i ∈ N,

(3.25) |∆iMx| = |σ0(Xi, Li−1 · x)− ℓµ| ⩽ κ(Xi) + ℓµ + ∥ψ∥∞ := ζi.

Since the ζi’s have the same distribution,

E[(∆iMx)
2
1|∆iMx|>a|Fi−1] ⩽ E(ζ211ζ1>a) := hµ(a).

Observe that the constant hµ(a) is independent of i. Since µ has finite second moment,
we deduce that

(3.26) lim sup
a→∞

lim sup
λ→0+

1

λ
lim sup
n→∞

1

n
logE

[
eλ

∑n
i=1 E[(∆iMx)

2
1|∆iMx|>a|Fi−1]

]
⩽ lim sup

a→∞
hµ(a) = 0.

On the other hand, for every a > 0, the random variables aζi1|ζi|>a are i.i.d random
variables. Denote by ζa their common distribution and by Λζa the Laplace transform
of ζa. The latter is differentiable at 0 for every a > 0 as ζ1 has finite exponential
moment (because µ has finite exponential moment). It follows that

(3.27) lim sup
a→+∞

lim sup
λ→0+

1

λ
lim sup
n→∞

1

n
logE

[
eλa

∑n
i=1 |∆iMx|1|∆iMx|⩾a

]
⩽ lim sup

a→+∞
lim sup
λ→0+

1

λ
lim sup
n→∞

1

n
logE

[
eλ

∑n
i=1 a|ζi|1|ζi|⩾a

]
= lim sup

a→+∞
Λ′
ζa(0).

But Λ′
ζa
(0) = aE[|ζ1|1|ζ1|>a] ⩽ E[ζ211|ζ1|>a] −−−→

a→∞
0. This concludes the proof of

(3.24) and hence the corollary. □

4. Proof of the main result

Having established the submartingale transform from Section 2 and the exponen-
tial decay of large deviation probabilities of the predictable quadratic variation from
Section 3.2, we are now ready to give the proofs of Theorem 1.1 and Corollary 1.3.
In fact, we will prove a slightly more general version given by Theorem 4.1 below.

4.1. Statement of the main result. — To state the more general version of Theo-
rem 1.1, we recall and introduce some notation. We are given a separable geodesic
Gromov-hyperbolic space X with a fixed based point o ∈ X. The Busemann cocycle
σ : Isom(X) × X

h → R with respect to the base point o is as defined in Section
3.1. Given a countably supported probability measure µ on Isom(X) and x ∈ X

h,
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we define the upper Λ+
x and lower Λ−

x limit Laplace transforms as

Λ+
x (λ) := lim sup

n→∞

1

n
logE[eλσ(Ln,x)]

Λ−
x (λ) := lim inf

n→∞

1

n
logE[eλσ(Ln,x)].and

Whenever µ has finite exponential moment both functions have values in R in a
neighborhood of 0 ∈ R.

We will omit sub/super-scripts when x ∈ X, indeed, for every x ∈ X, we have
Λ+
x ≡ Λ−

x ≡ Λo (since |σ(g, x) − σ(g, y)| ⩽ 2d(x, y) for g ∈ G and x, y ∈ X). This
common function Λ = Λo is the notation used in Theorem 1.1 where we work with
the basepoint x = o ∈ X.

Theorem 4.1. — Let (X, d) be a separable geodesic Gromov-hyperbolic space and µ

a non-elementary probability measure on Isom(X). Suppose that µ has a finite expo-
nential moment. Then for every x ∈ X

h,

lim
λ→0

Λ−
x (λ)− ℓλ

λ2
= lim

λ→0

Λ+
x (λ)− ℓλ

λ2
=
σ2
µ

2
.

Sections 4.2 and 4.3 are devoted to the proof of Theorem 4.1.

4.2. Proof of the lower bound. — Here we prove the following.

Proposition 4.2. — Keep the setting of Theorem 4.1. Then, for every x ∈ X
h

lim
λ→0

Λ−
x (λ)− ℓµλ

λ2
⩾
σ2
µ

2
.

Proof of Proposition 4.2. — Given a probability measure µ as in the statement and
x ∈ X

h, let Mx be the martingale given by Lemma 3.1. It satisfies

σ(Ln, x)− nℓµ =Mx,n +Ox,n(1),

for every n ∈ N, where Ox,n(1) is a random variable that is bounded (in absolute
value) uniformly in x ∈ X

h and n ∈ N. Let σ2
µ > 0 be as defined in (3.14). Let

x ∈ X
h be fixed for the rest of the proof. For every λ ∈ R, we have

Λ−
x (λ)− λℓµ = lim inf

n→∞

1

n
logE

[
eλ(σ(Ln,x)−nℓµ)

]
= lim inf

n→∞

1

n
logE

[
eλ(Mx,n+Ox,n(1))

]
= lim inf

n→∞

1

n
logE

[
eλMx,n

]
,

where we used the fact that the random variables Ox,n(1) are bounded below and
above uniformly in n ∈ N. Notice that since µ has finite exponential moment, for
every λ in a neighborhood of 0 ∈ R (independent of x ∈ X

h), the last quantity in the
above displayed equation is finite.
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We first prove that

(4.1)
σ2
µ

2
⩽ lim inf

λ→0+

Λ−
x (λ)− λℓµ

λ2
.

Let n ∈ N, a > 0, and λ > 0 small enough. By Proposition 2.2, we have

1 ⩽ E
[
exp

(
λMx,n − f(aλ)

a2
Ga

n

)]
,

where, we recall,

Ga
n =

n∑
i=1

E[(∆iMx)
21|∆iMx|⩽a|Fi−1]− a

n∑
i=1

|∆iMx|1|∆iMx|⩾a.

Let p > 1. By Hölder inequality, we get

1 ⩽ E[exp(pλMx,n)]
1/pE

[
exp

(
−q f(aλ)

a2
Ga

n

)]1/q
,

where q ⩾ 1 satisfies 1/p + 1/q = 1. Taking logarithm and dividing by nλ2, adding
and subtracting the term (f(aλ)/(aλ)2)σ2

µ gives

(4.2) 0 ⩽
1

npλ2
logE[exp(pλMx,n)]

+
1

nqλ2
logE

[
exp

(
−q f(aλ)

a2
(Ga

n − nσ2
µ)
)]

− f(aλ)

(aλ)2
σ2
µ.

Using the elementary fact lim infn→+∞(an+bn) ⩽ lim infn an+lim supn bn for real
sequences an and bn, letting n→ ∞ in (4.2), we get

0 ⩽ p
Λ−
x (λp)− λpℓµ

(λp)2
+

1

qλ2
lim sup
n→+∞

1

n
logE

[
exp

(
−q f(aλ)

a2
(Ga

n − nσ2
µ)
)]

− f(aλ)

(aλ)2
σ2
µ.

Letting λ→ 0+ while noting that f(aλ) ∼
λ→0

(aλ)2/2 and in particular η = qf(aλ)/a2

−−−→
λ→0

0+, we obtain:

σ2
µ

2
⩽ p lim inf

λ→0+

Λ−
x (λ)− λℓµ

λ2
+

1

2
lim sup
η→0+

1

η
lim sup
n→+∞

1

n
logE[exp(−η(Ga

n − nσ2
µ))].

Letting a→ ∞, we deduce from Corollary 3.9 that we have
σ2
µ

2
⩽ p lim inf

λ→0+

Λ−
x (λ)− λℓµ

λ2
.

The desired inequality (4.1) is now proved by taking p→ 1.
The inequality

(4.3)
σ2
µ

2
⩽ lim inf

λ→0−

Λ−
x (λ)− λℓµ

λ2

is proved in precisely the same way replacing the martingale Mx by the martingale
−Mx using the fact that both martingales have same transforms Ga. This completes
the proof of Proposition 4.2. □
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4.3. Proof of the upper bound. — Here we prove the following.

Proposition 4.3. — Keep the setting of Theorem 4.1. Then, for every x ∈ X
h

(4.4) lim
λ→0

Λ+
x (λ)− ℓµλ

λ2
⩽
σ2
µ

2
.

The proof is based on showing that for large n ∈ N the random variable
1
nσ(Ln, x)− ℓµ has a subgaussian behaviour in a neighborhood of 0. This is shown in
the following proposition which controls the limit Laplace transform of the sequence
of random variables 1

nσ(Ln, x) − ℓµ. The proof is based on the martingale decom-
position given in Lemma 3.1 and standard techniques for concentration results for
martingales (in particular [31, Th. 2.19]). With the notation of Section 3, the main
tool for the proof of Proposition 4.3 is the following.

Proposition 4.4. — Let

(4.5) v(µ) := sup
ξ∈X

h

E
[
(σ0(X1, ξ)− ℓµ)

2
]
= sup

ξ∈X
h

E[M2
ξ,1].

Then there exists C > 0 such that for every ε > 0, there exists b > 0 such that for
every |λ| < v(µ)/b, every n ∈ N and every x ∈ X

h,

(4.6) E
[
eλ(σ(Ln,x)−nℓµ)

]
⩽ exp

(λ2(v(µ) + ε)n

2
+ C|λ|

)
.

This proposition will yield (4.4) with σ2
µ replaced by the larger quantity v(µ).

To obtain (4.4), we will use an acceleration technique speeding up the random walk,
see the proof of Proposition 4.3.

We now proceed with proving Proposition 4.4. The proof is based on the following
control of the conditional expectation of the martingale difference ∆Mx:

Lemma 4.5. — For every ε > 0, there exists a constant b > 0 such that for every
|λ| < b, n ∈ N and x ∈ X

h, the following inequality holds almost surely:

E [exp(λ∆nMx) |Fn−1] ⩽ exp
(λ2(v(µ) + ε)

2

)
.

Proof. — By expanding the expression (3.5) of the martingale Mx and taking con-
ditional expectation, it suffices to show that for every ε > 0, there exists a constant
b > 0 such that for every ξ ∈ X

h and |λ| < b

(4.7)
∫
eλ(σ0(g,ξ)−ℓµ)dµ(g) ⩽ exp

(λ2(v(µ) + ε)

2

)
.

Using the exponential moment assumption on µ, let α > 0 be such that∫
eακ(g)dµ(g) <∞.

Thanks to (3.4), we have that for every g ∈ Isom(X) and ξ ∈ X
h, |σ0(g, x) − ℓµ| ⩽

κ(g) + 2(∥ψ∥ + ℓµ). Therefore, for every |λ| < α, using dominated convergence, we
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have∫
eλ(σ0(g,ξ)−ℓµ)dµ(g) = 1 +

λ2

2
E[(σ0(X1, ξ)− ℓµ)

2] +

∞∑
k=3

λk

k!
E[(σ0(X1, ξ)− ℓµ)

k],

where we have used the fact that σ0(X1, ξ)−ℓµ=Mξ,1 has mean zero (as the cocycle σ0
has constant drift). Now using again the fact that |σ0(g, x)− ℓµ| ⩽ κ(g)+2(∥ψ∥+ ℓµ)
and that µ has finite exponential moment, we get that there exists C > 0 (independent
of ξ) such that for every |λ| < α∫

eλ(σ0(g,ξ)−ℓµ)dµ(g) ⩽ 1 +
λ2v(µ)

2
+ Cλ3.

This readily implies (4.7) and hence finishes the proof. □

Proof of Proposition 4.4. — By the tower property of the conditional expectation, we
deduce from Lemma 4.5 that for every ε > 0, |λ| < b (where b = b(µ, ε) is given by
the aforementioned lemma), every n ∈ N and x ∈ X

h,

E
[
eλMx,n

]
= E

[
eλMx,n−1E[eλ∆Mx,n |Fn−1]

]
⩽ exp

(λ2(v(µ) + ε)

2

)
E
[
eλMx,n−1

]
.

Iterating the same process, we deduce that

E[exp(λMx,n)] ⩽ exp
(λ2(v(µ) + ε)n

2

)
.

Finally, recall that σ(Ln, x)− nℓµ = Mx,n + Rx,n where |Rx,n| ⩽ 2∥ψ∥∞ := C. This
finishes the proof of the proposition. □

A remark on the proof Proposition 4.4 is in order.

Remark 4.6. — Given a martingaleM with unbounded differences, controlling various
quantities involving the conditional expectation of the martingale difference sequence
∆M is generally an important step to prove concentration results for the martin-
gale M ; see the works of de La Peña [30], Dzhaparidze–van Zanten [13], Fan–Grama–
Liu [14] and Liu–Watbled [24] who prove Bennett–Bernstein type concentration in-
equalities generalizing results of Freedman [15] to the case of unbounded differences.
Proposition 4.4 avoids using these more sophisticated results thanks to Lemma 4.5
which, exploiting the special form of our martingales (namely, coming from an i.i.d.
random walk on a group), gives a deterministic bound for the exponential of the
conditional expectation.

We are now ready to give:

Proof of Proposition 4.3. — Using Proposition 4.4 and taking logarithm and dividing
by n on both sides of (4.6), letting first n → +∞, then λ → 0, and finally ε → 0,
we get that

(4.8) lim sup
λ→0

Λ+
x (λ)− λℓµ

λ2
⩽
v(µ)

2
.
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This yields (4.4) with σ2
µ replaced with the larger quantity v(µ). We now employ an

acceleration trick. More precisely, consider, for every k ∈ N, the probability mea-
sure µ∗k (distribution of Lk), which is a non-elementary probability measure with
finite exponential moment. Denote by Λ(µ∗k, .) the Laplace transform based at x = o

for the µ∗k-random walk (Lnk)n∈N. In particular, Λ(µ, .) = Λ(.). Applying (4.8) for
the µ∗k-random walk, we deduce that for every k ⩾ 1,

lim sup
λ→0

Λ(µ∗k, λ)− λℓµ∗k

λ2
⩽
v(µ∗k)

2

and Λ(µ∗k, .) = kΛ(.). Hence, for every k ⩾ 1,

lim sup
λ→0

Λ(λ)− ℓµλ

λ2
⩽
v(µ∗k)

2k
.

It remains to check that

(4.9) lim
k→∞

v(µ∗k)

k
= σ2

µ.

By definition of v(µ∗k) given in (4.5) and using (3.18) (with the notation of Lem-
ma 3.6), we get that for every k ⩾ 1,

v(µ∗k)

k
= sup

ξ∈X
h

fk(ξ).

Finally, the uniform convergence given in Lemma 3.6 for the sequence (fk)k∈N im-
plies (4.9) and finishes the proof of the proposition. □

4.4. Proof of Corollary 1.3. — If σµ = 0, it is easy to deduce from Remark 3.7
that the rate function I satisfies I(ℓµ) = 0 and I(x) = ∞ for every x ∈ R ∖ {ℓµ}
and hence Corollary 1.3 is true in that case. We therefore suppose σ2

µ > 0. To treat
this case, we will use some standard terminology from convex analysis, for which we
refer the reader to [21]. Let, as usual, Λ denote the limit Laplace transform of the
sequence 1

nd(Ln · o, o). Note that Λ is convex (as it follows by a direct application of
Hölder inequality), and, thanks to the finite exponential moment assumption, it takes
finite values on an interval of type (−∞, α) with α > 0 and hence it is continuous
on this interval. Let Λ∗ be its Fenchel–Legendre transform. By Theorem 1.1 and [21,
Prop. 6.1.2], we have ∂Λ∗(ℓµ) = {0} where ∂Λ∗ is the multi-valued subdifferential
function of Λ∗. Moreover, by Theorem 1.1, Λ has a second-order development at 0

and therefore, by [21, Th. 5.1.2] its subdifferential ∂Λ is differentiable in the sense
of [21, Def. 5.1.1]. Since also σ2

µ > 0, we can apply [21, Prop. 6.2.5] (see also [17,
Prop. 4.5]) and deduce that Λ∗ satisfies

(4.10) Λ∗(ℓµ + x) =
1

2σ2
µ

x+ o(x2)

as x→ 0. Now, let α > 0 be the constant appearing in the finite exponential moment
condition, i.e.,

∫
eαd(g·o,o)dµ(g) < ∞. Then, it follows by Varadhan’s integral lemma

[12, Th. 4.3.1] for every λ < α, we have I∗(λ) = Λ(λ), where I∗ is the Fenchel–
Legendre transform of I. But since the second-order term σ2

µ/2 in the second-order
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expansion of Λ at 0 (given by Theorem 1.1) is positive, it follows that the Fenchel–
Legendre transforms of I∗ and Λ coincides in a neighborhood of ℓµ, i.e.,

(4.11) I∗∗(x) = Λ∗(x)

for every x ∈ (ℓµ − β, ℓµ + β) for some β > 0. But since by [6, Th. 1.1], the function I
is convex (and lower semi-continuous), thanks to Fenchel–Legendre duality, we have
I ≡ I∗∗ and hence the corollary follows from (4.10) and (4.11). □

Remark 4.7 (On finite time large deviation estimates). — Corollary 1.3 is an asymp-
totic statement obviously in its expression (as λ → 0) but also concerning the rate
function I itself (which controls, from below and above, the exponential rate of decay
of probabilities of large deviations of 1

nd(Ln ·o, o)− ℓµ as n→ ∞). In regard to giving
upper bounds for the large deviation probabilities, Corollary 1.3 parallels Proposi-
tion 4.3. However, in the spirit of concentration estimates, as in the proof of Proposi-
tion 4.3, we could have directly used Proposition 4.4 together with the Chernoff bound,
to obtain finite time estimates for the large deviations of 1

nd(Ln · o, o)− ℓµ
(1). This is

in line with the recent work [1] where, under additional assumptions, the appearing
constants are made explicit (e.g. relating with the spectral radius of the probability
measure µ in the regular representation L2(G) of the isometry group G).

4.5. Concluding remarks and questions. — In this final part, we include two ques-
tions motivated by our results and and make some brief comments on them.

4.5.1. Limit Laplace transform of the Busemann cocycle. — As a direct consequence of
Theorem 4.1, we have that the functions Λ+

x and Λ−
x have the same derivatives at 0

for every x ∈ X
h. Moreover, it is not hard to see that Λ+

x = Λ−
y on [0,+∞) for every

x, y ∈ X
h. These suggest the following questions:

Question 4.8. — Is it true that Λ+
x = Λ−

x for every x ∈ X
h? More importantly, does

there exist a neighborhood of 0 such that Λ+
x = Λ+

y for every x, y ∈ X
h (and similarly

Λ−
x = Λ−

y )?

The answer to Question 4.8 is positive for x, y ∈ ∂hX in standard cases when an
analytic approach can be implemented. These include random walks on free groups
or on classical hyperbolic spaces Hn. Regarding the last part of the question, we note
that there are simple examples which show that one cannot ask that the functions Λx

and Λy coincide throughout the region where they are finite/well-defined — take
for example the random walk on the group F2 = ⟨a, b⟩ driven by the measure µ =
1
2 (δa + δb) and consider x = a+∞ ∈ ∂F2 and y = a−∞ ∈ ∂F2.

(1)These finite time estimates then can be used, with the acceleration trick, to prove that
limλ→0 I(ℓµ + λ)/λ2 ⩾ 1/2σ2

µ.
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4.5.2. Second-order expansion below the drift without exponential moment. — The rate
function I appearing in (1.3) for 1

nκ(Ln) exists without any moment assumption
[6, Th. 2.8]. Moreover, if µ fails to have finite exponential moment, then the rate
function I vanishes on [ℓµ,+∞) (see [6, Rem. 3.2]). On the other hand, it follows from
Gouëzel’s [20, Th. 1.2] that I is positive on [0, ℓµ) when µ has finite first moment.
This suggests the following question

Question 4.9. — Suppose µ is a non-elementary probability measure with finite second
order moment. Is it true that

lim
λ→0−

I(λ+ ℓµ)

λ2
=

1

2σ2
µ

?

Moreover, we note that thanks to Benoist–Quint [3, §5], the definition of the vari-
ance σ2

µ given in (3.14) even makes sense under the finite first moment hypothesis
supposing that the isometry group Isom(X) acts cocompactly on X. Therefore, this
suggests the subsequent question as to whether the second-order term in the second-
order expansion of I below the drift vanishes when σ2

µ = ∞. Similar questions can be
asked about the second-order expansion of the limit Laplace transform Λ below zero.
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