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COEXISTENCE OF CHAOTIC AND ELLIPTIC BEHAVIORS

AMONG ANALYTIC, SYMPLECTIC DIFFEOMORPHISMS

OF ANY SURFACE

by Pierre Berger

Abstract. — We show the coexistence of chaotic behaviors (positive metric entropy) and elliptic
behaviors (integrable elliptic islands) among analytic, symplectic diffeomorphisms in many iso-
topy classes of any closed surface. In particular this solves a problem introduced by F. Przytycki
(1982).

Résumé (Coexistence de comportements chaotiques et elliptiques parmi les symplectomor-
phismes analytiques de toute surface)

Nous montrons la coexistence de comportements chaotique (entropie métrique positive) et
elliptique (îlots elliptiques intégrables) parmi les difféomorphismes analytiques symplectiques
dans de nombreuses classes d’isotopies et toute surface fermée. En particulier nous résolvons
un problème introduit par F. Przytycki (1982).
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Theorem A (Main result). — For every analytic, symplectic and closed surface (S,Ω),
there is an analytic symplectomorphism f of (S,Ω) such that:

(1) f has positive metric entropy,
(2) f displays elliptic islands.

A symplectic form Ω on an oriented surface is a nowhere-vanishing volume form.
This defines a smooth measure Leb on S. A symplectomorphism f of (S,Ω) is a
diffeomorphism of S which leaves the volume form Ω invariant. This is equivalent to
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526 P. Berger

say that it is orientation preserving and leaves Leb invariant. Then for Leb a.e. point
x ∈ S, the limit Λ(x) := limn→∞

1
n log ∥Dxf

n∥ exists. The metric entropy of f is the
mean of Λ. Hence a dynamics has positive entropy if it is exponentially sensitive to the
initial conditions with positive probability. An elliptic island is a domain bounded by
a smooth, invariant curve on which the dynamics acts as an irrational rotation. There
are many numerical experiments mentioning the coexistence of these two phenomena
for symplectic, analytic mappings, however so far no example was proved.

Remark. — In the proof of Theorem A, we will show moreover that S minus the
support of Λ is integrable: the dynamics is equal to the time-one map of a Hamiltonian
flow.

1. Introduction

1.1. History of the problem. — This problem enjoys a long history. The first exam-
ples of mappings with positive entropy on any surface were discovered by Katok
[Kat79]. These examples are isotopic to the identity. Then Katok and Gerber [GK82]
obtained mappings with positive entropy on any surface in the isotopy class of any
pseudo-Anosov map. Both constructions were smooth but not analytic. In [Ger85],
Gerber constructed real analytic symplectic pseudo-Anosov maps on any surface,
which display positive metric entropy but not the coexistence with an elliptic island.
In [Prz82], Przytycki built an example of conservative diffeomorphism of the torus with
coexistence of an invariant region with positive entropy and an elliptic island. His con-
struction was infinitely smooth but not analytic. He addressed the problem of whether
his construction could be generalized in the analytic class [Prz82, Rem. 1, p. 461]. The
issue of this problem was recalled as unclear by Liverani in [Liv04, Rem. 2.4, p. 3] where
a perturbation of Przytycki’s example was studied. Note that Theorem A solves in
particular Przytycki’s problem.

In [Gor12], Gorodetski proved that typical examples of analytic symplectic surface
maps are such that Λ is positive on a set of maximal Hausdorff dimension (= 2)
and this coexists with elliptic islands. However this leaves open a strong version of
the positive entropy conjecture which asserts that “some typical symplectic dynamics
have positive metric entropy” (Λ is positive on a set of positive Lebesgue measure),
see e.g. [Sin94, p. 144]. A weaker version of the positive entropy conjecture proposed
by Herman [Her98] asserts the existence of symplectic mappings C∞-close to the
identity on the disk with positive metric entropy; it implies the density of surface
maps with positive metric entropy among those with an elliptic cycle. In [BT19],
the Herman’s positive entropy conjecture was proved with Turaev. Our proof used a
quotient similar to the examples of Katok and Przytycki. During Katok’s memorial
conference in 2019, in a conversation with Gorodetski and Kleptsyn, I claimed that the
construction of [BT19] should be useful to prove the following analytic counterpart of
Herman’s positive entropy conjecture [Her98] and even the next analytic counterpart
of our main result with Turaev.

J.É.P. — M., 2023, tome 10



Coexistence of chaotic and elliptic behaviors among analytic symplectomorphisms 527

Conjecture 1.1. — There exists an analytic and symplectic perturbation of the iden-
tity of the closed disk with positive metric entropy.

Conjecture 1.2. — For every analytic and closed symplectic surface (S,Ω), for every
analytic symplectomorphism f of S displaying an elliptic periodic point, there are
analytic and symplectic perturbations of f with positive metric entropy.

These conjectures 1.1 and 1.2 might be solved by translating to the analytical
setting the strategy(1) of [BT19]. A first step in this strategy would be to prove the
analytic counterpart of Przytycki’s example. Following Gorodetski this step was not
in reach in a short time, and I bet with him the existence of such an example in a
short time.(2) Gorodetski offered me a nice oenological reward, as Corollaries B and C
provide many examples concluding our bit:

Corollary B. — There exists an analytic and symplectic diffeomorphism f of the
closed disk displaying a stochastic island bounded by four heteroclinic bi-links which
is robust relative link preservation.

Let us explain the meaning of the above statement. We recall that a stochastic
island is a domain I on which the maximal Lyapunov exponent Λ is positive Leb-
a.e. A bi-link C is a smooth circle equal to the union of two heteroclinic links C =

Wu(P ) ∪ {Q} = W s(Q) ∪ {P} between saddle fixed points P and Q, see Figure 4.
Note that a symplectomorphism displaying a stochastic island has a positive metric
entropy. Given a perturbation of the dynamics, the bi-link persists if the union of the
stable and unstable manifolds of the fixed points continue to form a differentiable
circle. The island is robust relative link preservation if for every C2-perturbation such
that each of the bi-links persists, the domain bounded by the continuations of these
bi-links is still a stochastic island.

We can wonder also what are the isotopy classes of analytic, symplectic surface
mappings which display coexistence phenomena. Our techniques enable (at least) to
obtain the following:

Corollary C. — Let (S,Ω) be an analytic and closed symplectic surface and let C be
an isotopy class of Diff(S). If

– S is the 2-sphere or the 2-torus and C is the isotopy class of the identity,
– or S is a surface of genus ⩾ 0 and C is the isotopy class of a pseudo-Anosov

map of S,
then there is an analytic symplectomorphism f of isotopy class C, such that f has
positive metric entropy and displays elliptic islands.

(1)For an introduction to the proof of [BT19], one could look at Arnaud’s Bourbaki Seminar
[Arn21].

(2)More precisely the bit was that someone would prove within five years the existence of an
analytic symplectomorphism of the torus, isotopic to the identity, with positive metric entropy and
displaying an elliptic island.
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528 P. Berger

A natural problem is:

Problem 1.3. — Realize any isotopy class of surface diffeomorphisms by an analytic
and symplectic dynamics displaying coexistence of positive metric entropy and elliptic
islands.

It seems that the techniques of this work together with the Nielsen-Thurston’s clas-
sification of symplectic dynamics on surface should lead to a solution of this problem.
Another approach would be to prove Conjecture 1.2, which would imply immediately
a solution to the latter problem.

The proof of Theorem A is here completely self contained.

1.2. Idea and structure of the proof. — All the proofs [Kat79, Prz82, GK82, Liv04,
BT19] used bump functions to localize the surgery of the dynamics in a subset of the
manifold. We recall that there is no analytic bump function. To deal with the analytic
case, Gerber [Ger85] showed that the pseudo-Anosov examples of [GK82] persist in a
finite co-dimensional submanifold which must intersect the (infinite-dimensional) sub-
manifold of analytic maps. However the examples of [Prz82, Liv04, BT19], displaying
the sought coexistence, persist actually along an infinite codimensional submanifold:
one have to keep intact heteroclinic links. It might be possible to generalize the pre-
vious strategy by using an extension of Cartan’s Theorem B. This strategy has been
successfully(3) applied by Burns-Gerber [BG89] to prove that Donnay’s construction
[Don88] of geodesic flow on the 2-sphere with positive entropy can be performed
analytically.

Instead we introduce a new approach:
We construct an analytic and symplectic extension of the surface punctured by sev-

eral saddle points, so that the extended surface remains diffeomorphic to the unpunc-
tured surface, and the analytic continuation of the dynamics on the extended surface
displays elliptic islands.

We will start with an analytic, conservative dynamics with positive entropy and
then we will perform blow-up, quotient, blow-down and connected sums, so that
the analytic continuation of the dynamics is well defined after these operations and
displays the sought coexistence properties. There is one “miracle” which enables to
perform these continuations:

Nearby a saddle point P , by Moser’s theorem, the dynamics is the time-one map of
an analytic Hamiltonian of the form P+(x, y) 7→ H(x ·y) and such can be analytically
lifted to the surface blown up at P .
Indeed, having a flow enables us to perform then analytic surgeries to create an
integrable KAM circle which can be in turn be analytically blown down. See Figures 2
and 3.

(3)Nonetheless, the space of analytic conservative maps is more complicated to deal with than
the open cone of analytic Riemannian metric.

J.É.P. — M., 2023, tome 10
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Figure 1. Analytic and conservative dynamics on a sphere displaying
coexistence of a stochastic region with elliptic islands.

In Section 2, we present a general framework to perform these surgeries, the main
novelties in these operations lie in providing sufficient conditions to obtain the analytic
and symplectic continuation of a dynamic after surgery. First we recall the definition
of analytic and symplectic manifolds and their mappings in Section 2.1. Then, in Sec-
tion 2.2, we state Theorem 2.3 which is a general theorem used in the proof of all the
surgery’s results of Section 2. In Section 2.3, we present Theorem 2.5 which enables
to glue two analytic and symplectic surface dynamics. In Section 2.4, we introduce
Theorems 2.9 and 2.11 which allow to blow up at a hyperbolic periodic orbit of an
analytic surface symplectomorphism. Finally in Section 2.5, we present Theorem 2.14
which enables to blow-down a nearby integrable circle of an analytic and symplectic
surface dynamics. This last operation was perhaps the most unexpected by dynamical
experts.

In Section 3, we use the surgery theorem of the previous section to construct
the stochastic sphere with four holes and the integrable caps depicted in Figure 1.
We start in Section 3.1 with a linear Anosov map on the 2-torus, then we blow-up
four of its fixed points à la Przytycki to define an analytic symplectic diffeomorphism
of the 2-torus T̂2 without four disks, then we quotient it à la Katok to define an
analytic symplectic diffeomorphism of the 2-sphere Ŝ without four disks in Section 3.2.
These steps were already performed in [BT19] and are depicted in Figure 2. This is
the construction of the stochastic spheres with four holes. Importantly nearby each
component of the boundary, the dynamics is the time-one map of a Hamiltonian H

on a semi-closed annulus.
Then we propose a new construction to obtain the integrable caps. In Section 3.3,

we consider an analytic extension of H to a symmetric semi-closed annulus A∆(ε).

J.É.P. — M., 2023, tome 10
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Then we perform surgeries as depicted in Figure 3. First we define a neighborhood ∆̃

of the circle ∂A∆(ε) such that ∆̃ has five sides, among which ∂A∆(ε) and two segments
of orbits. We glue the two remaining sides to obtain a closed disk ∆̂ with two holes
endowed with an analytic Hamiltonian. The borders of both holes are orbits of the
systems. Thus Theorem 2.14 enables to blow-down them to obtain a closed disk ∆

endowed with an analytic Hamiltonian. The time-one map of this Hamiltonian is the
integrable cap. Eventually, in Section 3.4, we show that the integrable cap recaps
analytically any holes of the stochastic sphere with holes.

This allows in Section 4 to prove the main theorem and the corollaries of its proof.
In Section 4.1, we start by proving Theorem A when the surface is a sphere; the con-
struction is depicted by Figure 1. Following the number of recaped holes, coexistence
phenomena are obtained on a disk (which contains the stochastic island of Corol-
lary B), a cylinder or a pair of pants. The boundary of these can be glued together
to form any closed symplectic surface, and so obtain Theorem A. A careful study
enables to obtain an analytic, symplectic diffeomorphism of the torus isotopic to the
identity, as wondered by Gorodetski and part of Corollary C.

In Section 4.2, we prove the remaining part of Corollary C regarding surface map-
pings isotopic to a pseudo-Anosov map. We will start with the example of analytic
pseudo-Anosov map of [Ger85], which can represent any isotopy class of orientation
preserving pseudo-Anosov maps (see also [GK82]). From this, Theorem 2.11 enables
to blow-up one of its hyperbolic periodic orbit, and obtain an analytic and symplectic
dynamics on the surface which is integrable nearby the holes. Then we proceed as
in Section 3.3-3.4 to recap these holes. The only difference is that the normal form
[Mos56] at the saddle points is more general and that we will be working on a 2-lifting
of the previous construction. Caps will be replaced by a certain generalized cap given
by Proposition 4.2 and Lemma 4.4. The proof of the lemma follows the same lines as
Section 3.3.

Acknowledgements. — I am grateful to A. Gorodetski and V. Kleptsyn for their en-
couragements. I am thankful to R. Krikorian and P. Le Calvez for nice conversations.
I am very grateful to S. Biebler for his careful reading.

2. Dynamical analytic and symplectic surgeries

In this section we revisit different surgery techniques which enable to construct a
new symplectic and analytic surface from an existing one. The main novelty of this
section will be to extend these operations to some symplectic and analytic dynamics on
these surfaces (see Theorems 2.5, 2.9 and 2.14). These will be the basic ingredients of
the proof of the main theorems; hopefully these will be also useful for other problems.

2.1. General definitions. — To perform analytical surgeries on surfaces, we shall
work with their manifold structure (rather than working on them as embedded
into R3).
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We recall that an analytic manifold (resp. with boundary or with corner) M of
dimension n is a paracompact space modeled on Rn (resp. R+×Rn−1 or Rn

+). By mod-
eled we mean that there is an atlas of M formed by charts ϕi : Ui ⊂ M → Vi ⊂ Rn

(resp. R+ × Rn−1 or Rn
+) for an open covering (Ui)i∈I of M so that the coordinate

changes ϕj ◦ ϕ−1
i are analytic diffeomorphisms on their definition domains (which

are open subsets of resp. Rn, R+ × Rn−1 or Rn
+). An analytic (or Cω) structure is a

maximal atlas. Note that the differentials of these charts form an analytic atlas (and
so a Cω-structure) on the tangent space TM of M . A map f : M → N between two
analytic manifolds is analytic (or of class Cω) if there are Cω-atlases (ϕi)I and (ψj)J
of M and N such that ϕi ◦ f ◦ψ−1

j is analytic on its definition domain for every i ∈ I

and j ∈ J . Then this property is satisfied with any greater Cω-atlas of M and N and
in particular with the Cω-structures.

An analytic symplectic form Ω : TM⊗2 → R on M is an analytic, bilinear, closed
and non-degenerate form. Then we say that (M,Ω) is an analytic symplectic manifold.
An analytic map f between two symplectic manifolds (M,Ω) and (N,Ω′) is symplectic
if it pushes forward Ω to Ω′: f∗Ω = Ω′. Then we say that f is of class Cω

Ω. If (M,Ω) =

(N,Ω′) and if f is a diffeomorphism, then f is an analytic symplectomorphism of
(M,Ω). The space of analytic symplectomorphisms of (M,Ω) is denoted by Diffω

Ω(M).
A manifold is closed when M is compact and boundary less. When M is a surface

with boundary or corner, we recall that it is modeled on R+ × R or R2
+ via an atlas

(ϕi)i. The boundary ∂M of M is⋃
i

ϕ−1
i ({0} × R) or respectively

⋃
i

ϕ−1
i ({0} × R ∪ R× {0}),

while the corner of M is
⋃

i ϕ
−1
i ({0}).

Remark 2.1. — Given a submanifold N ⊂M , we will denote ∂N the boundary of N
as manifold and not the subset cl(N)∖ int(N). These are different in general.

The above (classical) definitions may sound over formal, however they will turn out
to be very efficient to verify the analyticity of the dynamics lifted by the surgeries.
Also this formalism clarifies that being analytic for a mapping is a local property:

Proposition 2.2. — A map f :M → N between two analytic manifolds M and N is
analytic iff there exists an open covering (Vi)i∈I of M such that each restriction f |Vi
is analytic. Moreover if f :M → N is analytic, then its restriction to any open subset
of M is analytic.

In more sophisticated terms, the latter implies that the space of analytic maps
defines a sheaf.

2.2. A general result for analytic and symplectic surgeries. — Let M be a Cω-
manifold possibly with boundaries and possibly not connected. Let O be an open
subset of M and let J ∈ Diffω(O) be an analytic involution: J2 = id. Note that J
must preserve the boundary of M : J(O∩∂M) = J(O)∩∂M . Let M/J be the quotient
of M by the equivalence relation defined by x ∼ x′ if either x = x′, or x ∈ O and

J.É.P. — M., 2023, tome 10



532 P. Berger

x′ = J(x). Denote π : M → M/J the canonical projection. The following will be the
basis of all the surgeries performed:

Theorem 2.3. — Assume J without fixed point and satisfying the following separation
criterion:

(C) There is a neighborhood W of cl(O)∖O in M such that J(W ∩O) and W ∩O
are disjoint.
Then there exists a unique Cω-manifold structure on M/J such that π : M → M/J

is an analytic local diffeomorphism. Also for every analytic manifold M ′, a map f :

M/J →M ′ is analytic iff f ◦ π is analytic.

Proof. — It suffices to show that the following set is a closed analytic submanifold of
M ×M :

E := {(x, y) ∈M ×M : x = y or y = J(x) with x ∈ O}
such that pr1 : E →M is a local diffeomorphism. Indeed [Bou67, §5.9.5] implies then
the theorem.

Note that Diag := {(x, x) : x ∈ M} and Graph(J) = {(x, J(x)) : x ∈ O} are sub-
manifolds. Furthermore, they are disjoint since J does not fix any points. Furthermore,
Diag is obviously closed and we can show that Graph(J) is closed. If (xn, J(xn))n con-
verges to some (x, y) ∈ M2 which is not in Graph(J), then x is in cl(O) ∖ O and so
in W . Thus xn ∈ W for every n large. Therefore J(xn) is not in W by (C). So y

belongs to the closed set O ∖ int(W ). Using that J is an involution, it comes that
x ∈ J(O∖ intW ) ⊂ O. A contradiction. This shows that E is a disjoint union of two
closed Cω-submanifolds of M ×M and so is a closed Cω-submanifold of M ×M . Also
pr1 : E →M is clearly a local diffeomorphism. □

The latter proposition enables to preserve the symplectic structure:

Corollary 2.4. — Under the assumptions of Theorem 2.3, if Ω is an analytic sym-
plectic form on M such that Ω|O is left invariant by J , then there is a canonical
analytic symplectic form on M/J for which π is symplectic.

Proof. — We recall that Ω is a mapping from TM⊗2 to R. Note that DJ acts on
TM⊗2|O as (x, u, v) 7→ (J(x), DxJ(u), DxJ(v)); it is an involution without fixed point
satisfying condition (C). Thus by the latter proposition TM⊗2/DJ is an analytic
manifold. By uniqueness TM⊗2/DJ is equal to T (M/J)⊗2. As J leaves Ω invariant,
by the last statement of Theorem 2.3, it is pushed forward by the projection TM⊗2 →
TM⊗2/DJ = T (M/J)⊗2 to an analytic symplectic form on M/J . □

2.3. Symplectic gluing and induced dynamics

Theorem 2.5. — Let (M1,Ω) and (M2,Ω) be two analytic symplectic surfaces with
boundary. For 1 ⩽ i ⩽ 2, let Ci be a component of ∂Mi, let Vi ⊂Mi be a neighborhood
of Ci in Mi and let fi ∈ Diffω

Ω(Mi) which leaves Ci invariant: fi(Ci) = Ci. Assume
that there exist η > 0 and a map Φ : V1 ⊔ V2 → R/Z× (−η, η) such that:

J.É.P. — M., 2023, tome 10
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(1) the restriction of Φ to V1 is a Cω-symplectomorphism onto R/Z× (−η, 0] and
the restriction of Φ to V2 is a Cω-symplectomorphism onto R/Z× [0, η),

(2) there is an analytic symplectomorphism f1,2 from a neighborhood of R/Z×{0}
into R/Z×R such that for each i ∈ {1, 2}, f1,2 ◦Φ|Vi coincides with Φ ◦ fi nearby Ci.
Then the gluing of M1 and M2 at C1 and C2 by (Φ|C2)

−1◦Φ|C1 supports a structure of
analytic and symplectic manifold (M,Ω) so that there exists f ∈ Diffω

Ω(M) satisfying
f |Mi = fi.

Proof. — We are going to apply Theorem 2.3 with the symplectic manifold:

M := (M1 ∖ C1) ⊔ (M2 ∖ C2) ⊔ R/Z× (−η, η),

its open subset:

O := (V1 ∖ C1) ⊔ (V2 ∖ C2) ⊔ R/Z× {r ∈ (−η, η) : r ̸= 0}

and the Cω
Ω-involution J defined by:

J := x ∈ O 7−→

{
Φ(x) if x ∈ V1 ⊔ V2,
Φ−1(x) otherwise.

Note that Condition (C) of Theorem 2.3 is satisfied with:

W :=
(
M1 ⊔M2 ∖ Φ−1(R/Z× (−η/2, η/2))

)
⊔ R/Z× (−η/2, η/2).

Hence there is a unique Cω
Ω-structure on M/J such that π :M →M/J is of class Cω

Ω.
Note that for η′ < η, there are canonical inclusions (M1 ∖ C1) ⊔ (M2 ∖ C2) ↪→ M/J

and R/Z× (−η′, η′) ↪→M/J and their images form a open covering of M/J on which
the maps π ◦ f1, π ◦ f2 and π ◦ f12 agree. So, by Proposition 2.2, these maps define
a Cω

Ω-map f of M/J . As π is a local diffeomorphism, f is a local diffeomorphism.
We conclude by noting that f is a homeomorphism as it is the gluing of two homeo-
morphisms. □

Remark 2.6. — In Theorem 2.5, we can assume thatM1 =M2 provided that C1 ̸= C2.

2.4. Symplectic blow-up and induced dynamics. — Let (M,Ω) be a symplectic
Cω-surface. A blow-up at a point P ∈M ∖∂M consists of replacing P by a circle and
a neighborhood V of P by symplectic polar coordinates. Usually these coordinates
are parametrized by a Möbius strip, here we will parametrize them by a semi-closed
annulus:

A(δ) := R/2πZ× [0, 12δ
2), for δ > 0.

We will blow-up P to the circle R/2πZ × {0} = ∂A(δ) which is the boundary of
A(δ). We will obtain an analytic symplectic surface M̂ with an extra hole surrounded
by the circle replacing P . This surgery will be used in Sections 3.1 and 4.2, and an
example of such is depicted Figure 2 [left-center]. Let us precise the construction of
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534 P. Berger

such a blow-up. We endow the following with the standard symplectic form dx ∧ dy
or dθ ∧ dr:

D(δ) = {(x, y) ∈ R2 : x2 + y2 < δ2},

A(δ) = R/2πZ× [0, 12δ
2) and Å(δ) = R/2πZ× (0, 12δ

2),

The blow-up depends on the choice of a Cω
Ω-chart φ of a neighborhood V of P of the

form:
φ : D(δ) −→ V ⊂M and φ(0) = P.

We glue the surfaces A(δ) and M ∖ {P} at the open subsets Å(δ) and V ∖ {P}
with the symplectomorphism:

(2.1) ψ : (θ, r) ∈ Å(δ) 7−→ φ
(√

2r · cos(θ),
√
2r · sin(θ)

)
∈ V ∖ {P}.

To apply Theorem 2.3, we define the involution J of O := Å(δ) ⊔ V ∖ {P} which
coincides with ψ on Å(δ) and with ψ−1 on V ∖ {P}.

Definition 2.7. — The quotient M̂ := Å(δ)⊔ (M ∖{P})/J endowed with the canon-
ical projection p : M̂ →M is a blow-up of M at P given by φ.

Note that J has no fixed point. Also Condition (C) of Theorem 2.3 is satisfied with
W = A(δ/3) ⊔M ∖ ψ(A(2δ/3)). By Corollary 2.4, it comes:

Proposition 2.8. — The space M̂ has a canonical structure of analytic and symplectic
surface.

Here is the first key ingredient of the proof of the main theorem.

Theorem 2.9. — Let f ∈ Diffω
Ω(M) which displays a hyperbolic fixed point P with

positive eigenvalues. Then there is a blow-up p : (M̂,Ω) → (M,Ω) of M at P and
a lifting f̂ ∈ Diffω

Ω(M̂):
p ◦ f̂ = f ◦ p.

Moreover, there are coordinates ψ̂ : A(δ) → V̂ of a neighborhood V̂ of p−1(P ), a func-
tion Λ ∈ Cω([0, 12δ

2),R) with positive derivative and a Hamiltonian H ∈ Cω(A(δ),R)
whose time-one map ϕ1H satisfies:

f̂ ◦ ψ̂(θ, r) = ψ̂ ◦ ϕ1H(θ, r) and H(r, θ) = Λ(r · sin(2θ)),

for every (θ, r) nearby R/2πZ× {0}.

Proof. — By [Mos56], there exist δ > 0, a Cω
Ω-chart φ : D(δ) → V of a neighborhood V

of P ∈ M and an analytic and positive function λ : D(δ) → R such that every (x, y)

small satisfies:

φ−1 ◦ f ◦ φ(x, y) = (exp(λ(x · y)) · x, exp(−λ(x · y)) · y).

We perform the blow-up using this map φ. Let p : M̂ →M be the blow-up obtained.
Let ψ : Å(δ) → V ∖ {P} be given by Equation (2.1). Let ψ̂ : Å(δ) → M̂ be the lifting
of ψ: it satisfies p ◦ ψ̂ = ψ.
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Let Λ be an integral of the function λ so that Λ(0) = 0. Note that DΛ > 0 and that
φ−1◦f ◦φ coincides with the time-one of the flow of the Hamiltonian (x, y) 7→ Λ(x ·y).
Hence the time-one map ϕ1H of the flow of the Hamiltonian

H : (θ, r) ∈ A(δ) 7−→ Λ(r · sin(2θ))

coincides with ψ−1 ◦ f ◦ ψ on the intersection of their definition domains. Thus by
Theorem 2.3, the maps f |M∖{P} and ϕ1H define a map f̂ ∈ Diffω

Ω(M̂) which satisfies
the sought properties. □

Actually, in the proof of the main theorem, we will blow-up the surface at a finite
set P ⊂ M . The blow-up of M at P depends on the choice of a Cω

Ω-chart φ of a
neighborhood V of P and of the form:

φ : D(δ)× P −→ V ⊂M and φ({0} × P) = P.

We glue the surfaces A(δ)×P and M ∖P at the open subsets Å(δ)×P and V ∖P

with the symplectomorphism:

(2.2) ψ : (θ, r, P ) ∈ Å(δ)× P 7−→ φ
(√

2r · cos(θ),
√
2r · sin(θ), P

)
∈ V ∖ P.

We apply Corollary 2.4, with the involution J of O = Å(δ) × P ⊔ V ∖ P which
coincides with ψ on Å(δ)× P and with ψ−1 on V ∖ P, to obtain similarly:

Definition 2.10. — The quotient M̂ :=M/J endowed with the canonical projection
p : M̂ → M is a blow-up of M at P given by φ. The space M̂ has a unique analytic
and symplectic surface structure such that p is analytic.

A similar proof to the one of Theorem 2.9 gives:

Theorem 2.11. — Let f ∈ Diffω
Ω(M) which displays a finite union of hyperbolic peri-

odic orbits P with positive eigenvalues. Then there is a blow-up p : (M̂,Ω) → (M,Ω)

at P and a lifting f̂ ∈ Diffω
Ω(M̂):

p ◦ f̂ = f ◦ p.

Moreover, there are coordinates ψ̂ : A(δ) × P → V̂ of a neighborhood V̂ of p−1(P)

and a Hamiltonian H ∈ Cω(A(δ)× P,R) whose time-one map ϕ1H satisfies:

f̂ ◦ψ̂(θ, r, P ) = ψ̂(ϕ1H(θ, r, P ), f(P )) and H(r, θ, P ) = Λ(r ·sin(2θ), P ) = H(r, θ, f(P ))

for every (θ, r, P ) nearby R/2πZ×{0}×P and for a function Λ ∈ Cω([0, 12δ
2)×P,R)

with positive first derivative.

2.5. Symplectic blow-down. — The symplectic blow-down is the inverse operation
of the blow-up. This surgery will be used in Sections 3.3 and 4.2 as depicted by
Figures 3 and 5 [center-right].

Let (M̂,Ω) be a symplectic surface with boundary ∂M̂ . Assume that a component
of ∂M̂ is a circle C. Let:

ψ̂ : A(δ) = R/2πZ× [0, 12δ
2) −→ Û
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be a Cω-symplectomorphism onto a neighborhood Û of C in M̂ . Put:

(2.3) φ̂ :
(√

2r · cos(θ),
√
2r · sin(θ)

)
∈ D(δ)∖ {0} 7−→ ψ̂(θ, r) ∈ Û ∖ C.

We glue the surfaces D(δ) and M̂ ∖ C at the open subsets D(δ)∖ {0} and Û ∖ C

with the diffeomorphism φ̂. To apply Theorem 2.3, we define the involution Ĵ of
O = D(δ)∖{0}⊔ Û∖C which coincides with φ̂ on D(δ)∖{0} and with φ̂−1 on Û∖C.
Note that Condition (C) of Theorem 2.3 is satisfied withW := D(δ/2)⊔M̂∖φ̂(D(δ/2)).

Definition 2.12. — The quotient M := D(δ)⊔(M̂∖C)/Ĵ is called a blow-down of M̂
at C. Denote by p : M̂ →M the canonical projection.

By Theorem 2.3 and Corollary 2.4 it comes the following:

Proposition 2.13. — There exists a unique structure of analytic surface on M such
that p is analytic. Moreover the Cω-symplectic form of M̂ pushes forward to one on M
for which p is symplectic.

The following states that if a symplectic diffeomorphism of a surface M̂ is integrable
and non-degenerate nearby one circle in its boundary then there is a blow-down which
pushes forward the dynamics to one with an elliptic point at the blown-down circle.

Theorem 2.14. — Let (M̂,Ω) be an analytic symplectic surface, let C be a circle in the
boundary of M̂ and let f̂ ∈ Diffω

Ω(M̂) be such that its restriction to a neighborhood Û
of C coincides with the time-one map of the flow of a non-degenerate(4) analytic
Hamiltonian Ĥ on Û . Then C can be blown down by a map p : M̂ → M and there
exists f ∈ Diffω

Ω(M) satisfying:
f ◦ p = p ◦ f̂ .

Moreover p(C) is an elliptic fixed point, and on p(Û), the map f is the time-one map
of an analytic function H satisfying H ◦ p = Ĥ.

Proof. — By the classical existence of the angle-action coordinates for integrable
systems (see e.g. [AKN88, Th. 8, p. 114]) we have:

Lemma 2.15. — Up to shrinking Û , we can assume the existence of a Cω-symplecto-
morphism ψ̂ : A(δ) → Û such that ∂θ(Ĥ ◦ ψ̂)(θ, r) = 0 for every (θ, r) ∈ A(δ).

In particular this lemma implies the existence of an analytic map h : [0, 12δ
2) → R

such that Ĥ ◦ ψ̂(θ, r) = h(r) for every (θ, r) ∈ A(δ).
Let us perform the blow-down using the map φ̂ : D(δ)∖ {0} → V given by Equa-

tion (2.3) with ψ̂ as set up by the latter lemma. This defines a surface M and a pro-
jection p : M̂ → M . By Proposition 2.13, M has a canonical structure of symplectic
and analytic surface. Note that Ĥ defines an analytic maps H on D(δ):

H : (x, y) ∈ D(δ) 7−→ Ĥ ◦ φ̂(x, y) = h( 12 · (x2 + y2)).

(4)This means that DH does not vanish.
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The time-one map of the Hamiltonian H defines a Cω
Ω-map on a neighborhood of

0 ∈ D(δ), whose restriction to D(δ)∖{0} coincides with φ̂−1 ◦ f̂ ◦ φ̂|D(δ)∖{0}, so this
defines indeed a Cω

Ω-map f on M by Theorem 2.3. □

3. Integrable caps for stochastic spheres with four holes

In this section, we apply the surgery techniques of the previous section to construct
an analytic and stochastic dynamics on the sphere without four disks and a dynamics
on a disk which enables to recap analytically these holes.

3.1. A stochastic dynamics on the torus without four disks. — This step is depic-
ted in Figure 2 [left-center].

Figure 2. Surgery on an Anosov map

We start with the Anosov map A(x, y) = (13 · x + 8 · y, 8 · x + 5 · y) which acts
on the torus T2 := R2/Z2 endowed with the symplectic form Ω = dx ∧ dy. Let
R ∈ O2(R) and λ > 0 be such that A = R−1 × diag(exp(λ), exp(−λ)) × R. The set
P := {0, (1/2, 0), (0, 1/2), (1/2, 1/2)} is formed by four fixed points of the Anosov
map A.

Theorem 2.11 states the existence of a symplectic blow-up p : T̂2 → T2 at P and
a lifting Â ∈ Diffω

Ω(T̂2):
p ◦ Â = A ◦ p.

Moreover, there are coordinates ψ̂ : A(δ)× P → V̂ of a neighborhood V̂ of p−1(P),
a function Λ ∈ Cω([0, 12δ

2) × P,R) with positive first derivative and a Hamiltonian
Ĥ ∈ Cω(A(δ)× P,R) with time-one map ϕ̂1H satisfying:

Â ◦ ψ̂(θ, r, P ) = ψ̂(ϕ1H(θ, r, P ), P ) and Ĥ(r, θ, P ) = Λ(r · sin(2θ), P ),

for every (θ, r, P ) nearby R/2πZ × {0} × P. Note that T̂2 is diffeomorphic to the
torus without four disks. Let us precise the function Ĥ and ψ̂ given by Theorem 2.11.
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For δ > 0 sufficiently small, the following is a diffeomorphism onto a neighborhood V
of P:

φ : (x, y, P ) ∈ D(δ)× P 7−→ P +R(x, y) ∈ V ⊂ T2.

Observe that φ−1 ◦ A ◦ φ coincides with the time-one of the flow of H : (x, y, P ) ∈
D(δ)× P 7→ λ · x · y. Then T̂2 is given by gluing A(δ)× P and T2 ∖ P at the open
subsets Å(δ)× P and V ∖ P with

(3.1) ψ : (θ, r, P ) ∈ Å(δ)× P 7−→ φ
(√

2r · cos(θ),
√
2r · sin(θ), P

)
∈ V ∖ P.

Hence with ψ̂ : A(δ) × P ↪→ T̂2 the canonical inclusion onto a neighborhood V̂ :=

p−1(V ) of the boundary of T̂2, we have that ψ̂−1 ◦ Â ◦ ψ̂ coincides with the time-one
map of the Hamiltonian:

(3.2) Ĥ : (θ, r, P ) ∈ A(δ)× P 7−→ λ · r · sin(2θ).

3.2. A stochastic dynamics on the sphere with four holes. — In this subsection
we are going to construct an analytic and symplectic non-uniformly hyperbolic dyna-
mics g of the sphere with fours holes Ŝ as in Figure 1. In order to do so, we proceed
as depicted in Figure 2 [center-right], by taking the quotient of T̂2 by an involution Γ

that we shall define.
We recall that T̂2 is the quotient of the disjoint union of A(δ) × P with T2 ∖ P

and the involution induced by the map ψ of Equation (3.1). We identity A(δ) × P

and T2 ∖ P to open subsets of T̂2, using the projection p whose restriction to each
latter set is an embedding. Recall that in this identification, Â acts on T2 ∖ P as A
and its restriction to A(δ)× P coincides with the time-one map of the Hamiltonian
H(θ, r, P ) = λ · r · sin(2θ).

The involution − id on T2 fixes each point of P and lifts to T̂2 as the involution Γ

whose restriction to T2 ∖ P is equal to − id and whose restriction to A(δ)× P is

(θ, r, P ) ∈ R/2πZ× [0, δ)× P 7−→ (θ + π, r, P ).

Note that Γ is an analytic symplectomorphism which leaves invariant the subsets
T2 ∖ P and A(δ) × P of T̂2 and acts freely on them. Thus πΓ := T̂2 → T̂2/Γ is a
2-covering. Observe that Ŝ := T̂2/Γ is a sphere without four holes. As A◦(− id) = −A
and Ĥ(θ + π, r, P ) = Ĥ(θ, r, P ), we have Â ◦ Γ = Γ ◦ Â.

Using Theorem 2.3 and Corollary 2.4 with O = M = Ŝ and J = Γ, it comes that
Ŝ = T̂2/Γ has a canonical structure of symplectic and analytic surface for which the
2-covering πΓ is symplectic and analytic. Moreover the dynamics Â descends to an
analytic and symplectic dynamics g on Ŝ. In other words, there is g ∈ Diffω

Ω(Ŝ) such
that:

g ◦ πΓ = πΓ ◦ Â.

As the hyperbolic map Â|T2∖P is a lifting of g|S∖∂S, the map g has positive metric
entropy. Let us now describe the dynamics of g at the neighborhood of ∂S. Let

AΓ(δ) := R/πZ× [0, δ)
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and note that AΓ(δ)×P is equal to the quotient A(δ)×P/Γ. Denote also by H the
analytic function such that Ĥ = H ◦ πΓ, which is:

(3.3) H := (θ, r, P ) ∈ AΓ(δ)× P ≡ R/πZ× [0, δ)× P 7−→ λ · r · sin(2θ) ∈ R.

Note that there is a Cω-symplectomorphism ψΓ from AΓ(δ)× P onto the neighbor-
hood VΓ := V̂ /Γ of the boundary ∂Ŝ such that ψΓ ◦ πΓ = ψ̂. Moreover ψ−1

Γ ◦ g ◦ ψΓ

coincides with the time-one map of the flow of H. To summary we obtained:

Claim 3.1. — There is a symplectic sphere with four holes (Ŝ,Ω) and g ∈ Diffω
Ω(Ŝ)

such that:
(1) every point x ∈ Ŝ has positive Lyapunov exponent: lim sup 1

n log ∥Dgn∥ → ∞,
(2) there are δ > 0 and a Cω-symplectomorphism ψΓ from AΓ(δ)×P onto a neigh-

borhood of ∂Ŝ ⊂ Ŝ, such that g coincides with the time-one map of the Hamiltonian
flow of HΓ := H ◦ ψ−1

Γ at a neighborhood of ∂Ŝ.

3.3. Integrable cap. — We are now going to construct the cap which recaps the
holes of Ŝ. For ε > 0, let

A∆(ε) = R/πZ× (−ε, 0]
and denote also H := (θ, r) ∈ A∆(δ) 7→ λ·r ·sin(2θ). We will see in the next subsection
that the following claim provides the sought cap:

Claim 3.2. — There exist a Cω-Hamiltonian H∆ on a closed symplectic disk (∆,Ω)

which satisfies:
(1) H∆ has only two critical points in ∆∖ ∂∆, the Hessian is definite positive at

them,
(2) there are ε ∈ (0, 12δ

2) and a Cω-symplectomorphism ψ∆ from A∆(ε) onto a
neighborhood V∆ of the boundary of ∆ such that H = H∆ ◦ ψ∆.

In this subsection we show this claim, by proceeding as in Figure 3.

Figure 3. Making an integrable cap by gluing the green rectangles
together and then blowing down.

First we shall define ∆̃ ⊂ A∆(δ) as in Figure 3 [left]. For a small ε ∈ (0, δ) fixed
later, we put:

∆̃ :=
{
(θ, r) ∈ R/πZ× (−ε, 0] : |H(θ, r)| ⩽ ε2

}
.
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Now fix ε > 0 small enough so that the set cl(∆̃) is a pentagon whose sides are
R/πZ× {0}, L+, L−, Σin and Σout, where:

L+ := {(θ, r) ∈ R/πZ× (−ε, 0) : H(θ, r) = ε2},

L− := {(θ, r) ∈ R/πZ× (−ε, 0) : H(θ, r) = −ε2},

Σin := {θ ∈ (−π/4, π/4) : |H(θ,−ε)| ⩽ ε2} × {−ε}

Σout := {θ ∈ (π/4, 3π/4) : |H(θ,−ε)| ⩽ ε2} × {−ε}.and

Let (ϕt)t be the flow of H; observe that ∂tϕt := λ(− sin(2θ), 2 · r · cos(2 · θ)) is
tangent to the sides of R/Z × {0}, L+ and L−. On the other hand, it enters into ∆̃

by Σin and exits ∆̃ by Σout. Indeed, we have:

Σin :=
[
− 1

2 arcsin (ε/λ) ,
1
2 arcsin (ε/λ)

]
× {−ε}

Σout :=
[
π/2− 1

2 arcsin (ε/λ) , π/2 +
1
2 arcsin (ε/λ)

]
× {−ε},and

and on these segments, the r-component of ∂tϕt(π/2, r)|t=0 is equivalent (as ε is small)
to resp. 2λ · ε and −2λ · ε. As in Figure 3 [left], we glue ∆̃ to itself at:

∆in ⊔∆out with ∆in :=
⋃

0<t<1
ϕt(Σin) ⊂ ∆̃ and ∆out :=

⋃
0<t<1

ϕ−t(Σout) ⊂ ∆̃,

using the involution J which sends ϕt(θ,−ε) ∈ ∆in to ϕt−1(π/2− θ,−ε) ∈ ∆out and
vice-versa for every t ∈ (0, 1). Note that we can use Theorem 2.3 with M = ∆̃ and
O := ∆in ⊔ ∆out since condition (C) is satisfied with the following neighborhood of
cl(O)∖O ⊂ ∆̃:

W :=Win ⊔Wout,

Win :=
⋃

1/2<t<2

ϕt(Σin) ⊂ ∆̃ and Wout :=
⋃

1/2<t<2

ϕ−t(Σout) ⊂ ∆̃.where

Using that J is symplectic and leaves H equivariant (H ◦ J |O = H|O), Theorem 2.3
and Corollary 2.4 asserts that the quotient ∆̂ := ∆̃/J has a unique structure of
Cω

Ω-surface for which πJ : ∆̃ → ∆̂ is of class Cω
Ω and for which there exists Ĥ ∈

Cω(∆̃,R) satisfying:
Ĥ ◦ πJ = H.

We notice that ∆̂ is symplectomorphic to a closed disk D without two open disks D+

and D−, as depicted in Figure 3 [center]:

∆̂ = D ∖ (D+ ⊔ D−).

We chose the identification such that the circle ∂D± is the quotient of L± for each
± ∈ {−,+} and the circle ∂D is the quotient of R/πZ× {0}.

As the symplectic gradient of H is colinear to R/πZ× {0} and L±, and moreover
non-degenerate at ∆̃∖R/πZ× {0}, the same occurs for the quotient: the symplectic
gradient of Ĥ is colinear to the boundary ∂∆̂ and non-degenerate on D∖ (D+ ⊔D−).

Hence we can apply Theorem 2.14 twice to blow down each of the holes of ∆̂.
This defines a symplectic closed disk ∆ and a Cω-map p : ∆̂ → ∆ so that p sends
∂D+ ⊔ ∂D− to two points {p+, p−} ⊂ ∆ and the restriction p|∆̂∖ (∂D+ ⊔ ∂D−) is a
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symplectomorphism onto ∆̂∖{p+, p−}. Moreover, Theorem 2.14 implies that there is
a Cω-Hamiltonian H∆ on ∆ such that H∆ ◦ p = Ĥ for which p+ and p− are elliptic.
As H̃ has no critical point, it comes that H∆ has no critical point on int ∆∖{p−, p+}.
This gives the first statement of Claim 3.2. The second statement is obvious since p
is a symplectomorphism from a neighborhood of ∂D ⊂ ∆̂ onto a neighborhood of
∂∆ ⊂ ∆, and since πJ is a symplectomorphism from a neighborhood of ∂∆ ⊂ ∆ onto
a neighborhood of R/πZ×{0} in ∆̃. Hence for ε > 0 sufficiently small, the restriction
ψ∆ := p ◦ πJ |Aδ(ε) is a Cω-symplectomorphism onto a neighborhood V∆ of ∂∆ ⊂ ∆.
Moreover H∆ ◦ ψ∆ = H.

3.4. Gluing the cap ∆ to a hole of Ŝ. — In this subsection we show the following:

Claim 3.3. — For every 1 ⩽ n ⩽ 4, the symplectic and analytic surface (Ŝ,Ω) can
be extended to a symplectic and analytic surface (M,Ω) which is the union of Ŝ and
n-copies of the disk ∆, each of which is glued at its boundary to a different component
of ∂Ŝ, and such that there is a Cω-symplectomorphism fM of M whose restriction
to Ŝ is g and whose restriction to each copy of ∆ is the time-one map f of the Hamil-
tonian H∆.

Proof. — Let us show the case n = 1. Let C be a component of ∂Ŝ. Let P ∈ P be
such that V1 := ψΓ(AΓ(ε)× {P}) is a neighborhood of C in Ŝ by Claim 3.1(2). Note
that V2 := ψ∆(A∆(ε)) is a neighborhood of ∂∆ in ∆ by Claim 3.2(2). To this end,
it suffices to apply Theorem 2.5 with M1 = Ŝ, M2 = ∆, f1 = g, f2 = f and f12 the
time-one of the Hamiltonian flow of H : (θ, r) ∈ R/πZ× (−ε, ε) 7→ r sin(2θ) and

Φ := V1 ⊔ V2 −→ R/πZ× (−ε, ε),

defined by Φ(x) = y iff x = ψΓ(y, P ) for x = ψ∆(y). Note that by Claims 3.1(2) and
3.2(2), the assumptions of Theorem 2.5 are satisfied; this theorem provides the sought
conclusions.

Finally note that the case 4 ⩾ n > 1 can be proved by induction on n using the
later argument of the inductive step. □

4. Application of the construction

4.1. Proof of Theorem A and Corollary B

Proof of Theorem A. Case where S is the sphere. — We apply Claim 3.3 with n = 4.
Then each of the four holes of Ŝ are recapped with a copy of the disk ∆, so that M is
a symplectic sphere S. The claim asserts the existence of an analytic symplectomor-
phism fS whose restriction to Ŝ ⊂ S is the stochastic map g and whose restriction to
the complement S ∖ Ŝ is equal to four copies of the cap dynamics h which displays
each time two elliptic islands and so eight in total.

Proof of Theorem A. Case where S is the torus. — We apply Claim 3.3 with n = 2.
Then two holes of Ŝ are recapped with two copies of the disk ∆, so that M is an
annulus A. The claim asserts the existence of an analytic symplectomorphism fA

whose restriction to Ŝ ⊂ A is the stochastic map g and whose restriction to the
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complement A ∖ Ŝ is equal to two copies of the cap dynamics f which displays each
time two elliptic islands and so four in total. Moreover, there is an open neighbor-
hood N of the two circles ∂A which is symplectomorphic to A(δ) × {+1,−1}, via a
Cω-symplectomorphism ψ which conjugates the dynamics fA|N to the time-one map
of the Hamiltonian H : (θ, r,±1) 7→ λ · r · sin(2θ).

So it suffices to glue the two boundaries of ∂A so that the quotiented dynamics
remains analytic (and symplectic). To this end, we apply Theorem 2.5 with M1 =

M2 = A, f1 = f2 = fA, f12 the time-one map of the flow of (θ, r) 7→ λ · r · sin(2θ)
and the map Φ : ψ(A(δ) × {+1,−1}) → R/πZ × (−δ, δ) which sends ψ(θ, r,±1) to
(±θ,±r) for every (θ, r,±1) ∈ A(δ)× {+1,−1}.

Proof of Theorem A. Case where S is a surface of higher genus. — We apply Claim 3.3
with n = 1. Then M is a pair of pants P: a disk with two holes. The dynamics fP on P
is of class Cω

Ω and is stochastic at Ŝ ⊂ P and integrable at one cap ∆ with exactly two
elliptic islands. We recall that every closed, oriented surface S of genus ⩾ 2 displays
a pants decomposition. We glue canonically (using Theorem 2.5 as above) the pants
at their boundaries to obtain the sought dynamics. □

Proof of Corollary C for S equal to the torus and f isotopic to the identity
We constructed above a symplectic and analytic map fA on the closed annulus A

satisfying the coexistence phenomena and moreover the following property. There is
an open neighborhood N of the boundary ∂A which is symplectomorphic to A(δ) ×
{+1,−1}, via a Cω-map ψ which conjugates the dynamics fA|N to the Hamiltonian
flow of H : (θ, r,±1) 7→ λ · r · sin(2θ).

In the proof of Theorem A, we glued the two components C+ and C− of ∂A to
obtain a dynamics on the torus displaying the coexistence phenomena. Nevertheless
this dynamics is a priori in a non-trivial isotopy class. To vanish this isotopy class,
the idea is to glue fA with its inverse (fA)−1. To this end, let f1 be the dynamics
induced by fA on the copy M1 = A × {1} of A, and let f2 be the dynamics induced
by (fA)−1 on another copy M2 = A× {−1} of A.

At the boundary C+⊔C− of A, the map (fA)−1 is conjugated via ψ to the time-one
map of the flow of −H(θ, r,±1) = H(−θ−π/2,−r,±1). So we can apply Theorem 2.5
to glue M1 and M2 at C+ × {1} and C+ × {−1} with the following map:

Φ+ : ψ(A(δ)× {1})× {−1, 1} −→ R/πZ× (−δ, δ)
(ψ(r, θ, 1),±1) 7−→ (±θ + (±1− 1)π/4,±r).

Similarly the gluing is done at C− × {1} and C− × {−1} with the following map:

Φ− : ψ(A(δ)× {−1})× {−1, 1} −→ R/πZ× (−δ, δ)
(ψ(r, θ,−1),±1) 7−→ (±θ + (±1− 1)π/4,±r).

Then observe that the surface obtained after these two gluings is a symplectic torus
endowed with a Cω

Ω-dynamics f whose restriction to the halve of this torus is fA and
to other other halve is (fA)−1. Hence f displays the coexistence phenomena and is
isotopic to the identity (as the twist of (fA)−1 vanishes the one of fA). □
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Proof of Corollary B. — We apply Claim 3.3 with n = 3. This defines an analytic
and symplectic map fD on the disk D. Note that the disk is not endowed with its
standard symplectic form, but using [DM90], we can analytically conjugate it to one
which leaves invariant the standard symplectic form on D. The image I of Ŝ in D is
depicted Figure 4. Therein the Lyapunov exponent function Λ is equal to a positive
constant. In the sense of [BT19] (inspired from [Kat79, AP09, Prz82]), the set I is

Figure 4. Stochastic island I in grey.

called a stochastic island. This means that I is a disk with three holes; and that the
boundary of I is formed by four pairs of heteroclinic bi-links {(Ľa

i , Ľ
b
i ) : 0 ⩽ i ⩽ 3}.

Each Ľa
i ∪ Ľb

i is a smooth circle included in the stable and unstable manifolds of
hyperbolic fixed points P̌i and Q̌i respectively:

Ľa
i ∪ Ľb

i ⊂Wu(P̌i; f
D) ∪W s(Q̌i; f

D).

For every f which is C1-close to fD, for every 0 ⩽ i ⩽ 3, the hyperbolic continua-
tions Pi and Qi of P̌i and Q̌i are uniquely defined hyperbolic fixed points for f . If
{Wu(Pi; f)∪W s(Qi; f) : 0⩽ i⩽3} form four heteroclinic bi-links {La

i ∪Lb
i : 0⩽ i⩽3}

close to {Ľa
i ∪ Ľb

i : 0 ⩽ i ⩽ 3}, then we say that the bi-links are persistent for the
perturbation f .

Then the next proposition implies Corollary B. □

Proposition 4.1 ([BT19, Prop. 2.1]). — For every conservative map f which is
C2-close to fD if the bi-links are persistent, then the continuations of these bi-links
bound a stochastic island. In particular, the metric entropy of f is positive.

4.2. Proof of Corollary C. — To achieve the proof of Corollary C, it remains the
case of mappings isotopic to pseudo-Anosov maps (the case of the torus has been
done above and the case of the sphere is an immediate consequence of Theorem A).
To carry them we use the following generalization of the cap’s construction:
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Proposition 4.2. — Let (S,Ω) be a symplectic surface and let f ∈ Diffω
Ω(S) be dis-

playing a periodic hyperbolic orbit with positive eigenvalues. Let (Ŝ, ω) → (S,Ω) be
the blow up given by Theorem 2.11 and let f̂ ∈ Diffω

Ω(M̂) be the lifting of f .
Then there is an analytic extension (S̃,Ω) ⊃ (Ŝ,Ω) and an extension f̃ ∈ Diffω

Ω(S̃)

of f̂ such that S̃ is diffeomorphic to S and S̃ ∖ Ŝ consists of a finite union of disks
on which f̃ is the product of a cycle k ∈ Z/nZ → k + 1 with an integrable map of the
disk displaying three elliptic fixed points.

This proposition is proved below.

Proof of Corollary C for f isotopic to a pseudo-Anosov map.. — Let (S,Ω) be a sym-
plectic orientable, closed surface. Then by [GK82, Ger85], any orientation preserving
pseudo-Anosov isotopy class is represented by an analytic symplectomorphism f .
Then observe that Corollary C follows immediately from Proposition 4.2 and the
next lemma. □

Lemma 4.3. — The map f displays a hyperbolic periodic cycle (Pi)i∈Zq with positive
eigenvalues.

Proof. — As f has positive topological entropy, it displays a horseshoe [Kat80] with
at least two rectangles. There are two possibilities: Either one of these rectangles is
not rotated by the induced dynamics, and so we get immediately a saddle periodic
cycle with positive eigenvalues. Or both rectangle are rotated by a half turn. Then
we can compose the induced dynamics by these two rectangles to obtain a hyperbolic
periodic orbit with positive eigenvalues. □

Proof of Proposition 4.2. — Let P be the periodic orbit which is blown up and let
p : Ŝ → S be the canonical projection. By Theorem 2.11, there are coordinates
ψ̂ : A(δ) × P → V̂ of a neighborhood V̂ of p−1(P) and a Hamiltonian H ∈
Cω(A(δ)× P,R) whose time-one map ϕ1H satisfies:

f̂ ◦ ψ̂(θ, r, P ) = ψ̂(ϕ1H(θ, r, P ), f(P )) and H(r, θ, P ) = Λ(r · sin(2θ))

for every (θ, r, P ) nearby R/2πZ × {0} × P and for a function Λ ∈ Cω([0, 12δ
2),R)

with positive first derivative. Note that Λ does not depend on P ∈ P because P is
formed by a unique orbit. Hence on V̂ the dynamics is conjugated to the product of
the shift map on P with the time-one map fo of the Hamiltonian flow of:

Ho : (r, θ) ∈ A(δ) = R/2πZ× [0, 12δ
2) 7−→ Λ(r · sin(2θ)).

Observe that on C = R/2πZ × {0}, the flow of Ho displays four saddle fixed
points Qq = ((q/2 + 1)π/4, 0) with q ∈ Z/4Z, so that

⋃2
i=1W

s(Q2i) ∪ {Q2i+1} =⋃2
i=1W

u(Q2i+1) ∪ {Q2i} = C. In particular C consists of four heteroclinic links.
Note also that Ho can be canonically extended to R/2πZ× (− 1

2δ
2, 12δ

2). Thus we can
use the next lemma with k = 2 to recap each hole of Ŝ (as we did in Claim 3.3)
of Ŝ and obtain the sought surface and dynamics (more precisely the extension is
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P ×∆ endowed with the product of shift map on P with the time-one map of the
Hamiltonian H∆ defined in the next lemma). □

Lemma 4.4 (Generalized cap). — Let δ > 0 and let Ho be an analytic Hamiltonian
defined on R/2πZ×(− 1

2δ
2, 0] such that C = R/2πZ×{0} is a union of 2k-heteroclinic

links:
C =

⋃
i∈Zk

W s(Q2i) ∪ {Q2i+1} =
⋃

i∈Zk

Wu(Q2i+1) ∪ {Q2i}.

Then there exist a Cω-Hamiltonian H∆ on a symplectic disk (∆,Ω) such that:
(1) H∆ has only k + 1 critical points, their Hessian is definite positive,
(2) there are ε ∈ (0, 12δ

2) and a Cω-symplectomorphism ψ∆ from R/2πZ× (−ε, 0]
onto a neighborhood V∆ of the boundary of ∆ such that Ho = H∆ ◦ ψ∆.

Proof. — We depict the construction for k = 2 in Figure 5 [left-center]. For k = 1,
this lemma implies Claim 3.2; its proof is basically the same.

Figure 5. Making an integrable generalized cap by surgery with k = 2.

On C the function Ho must be constant; let us assume it equal to 0. For η > 0

small, we define:

∆̃ := {(θ, r) ∈ R/2πZ× (−ε, 0] : |Ho(θ, r)| ⩽ ε2}.

The boundary of cl(∆̃) is made by 4k+1 curves (see Figure 3 [left]); 2k of them form
the components of:

Σ := {θ ∈ R/2Z : |Ho(θ,−ε)| ⩽ ε2} × {−ε}.

Indeed, Ho has critical point only at {Qi : 1 ⩽ i ⩽ 2k}, which are non degenerate,
so Σ is indeed formed by 2k-components, each of which with length ≍ ε when ε→ 0.
Note that:

Σ = Σout ⊔ Σin, with Σout =
⊔
i∈Zk

Σout,i and Σin =
⊔
i∈Zk

Σin,i,

and where each Σout,i is the component of Σ which intersectsWu
2η(Q2i) while each Σin,i

is the component of Σ which intersects W s
2η(Q2i+1). On each Σout,i, the restriction
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Ho|Σout,i is a diffeomorphism onto [−ε2, ε2]. Thus there is a canonical parametrization
of Σout with [−ε2, ε2]×Zk. Likewise there is a canonical parametrization of Σin with
[−ε2, ε2]×Zk. Let ϕt be the Hamiltonian flow of Ho. As in Figure 5 [left-center], using
Theorem 2.3 as in Claim 3.2, we glue ∆̃ to itself at:

∆out ⊔∆in with ∆out :=
⋃

t∈(0,1)

ϕ−t(Σout) ⊂ ∆̃ and ∆in :=
⋃

t∈(0,1)

ϕt(Σin) ⊂ ∆̃,

using the Cω
Ω-involution J which swap for every t ∈ (0, 1) and k ∈ Zk, each pair of

points ϕ−t(θ0,−ε) and ϕ1−t(θ′0,−ε) among (θ0,−ε) ∈ Σout,k and (θ′0,−ε) ∈ Σin,k such
that Ho(θ0,−ε) = Ho(θ

′
0,−ε). Then Theorem 2.3 and Corollary 2.4 assert that the

quotient ∆̂ := ∆̃/J has a unique structure of Cω
Ω-surface for which πJ : ∆̃ → ∆̂ is of

class Cω
Ω. Moreover as J leaves Ho equivariant, there exists Ĥ ∈ Cω(∆̃,R) satisfying:

Ĥ ◦ πJ = Ho.

We notice that ∆̂ is equal to the closed disk D without k + 1 disks (Di)0⩽i⩽k as
depicted in Figure 5 [center]:

∆̂ = D∖
( k⋃
i=0

Di

)
.

Also on ∂Di, the Hamiltonian Ĥ is equal to ε2 or −ε2. Hence the symplectic gradient
of Ĥ is colinear to each boundary ∂Di. Moreover its symplectic gradient does not
display critical point at these circles. So we can blow down each of the k+1-holes Di

using Theorem 2.14 as depicted in Figure 5 [center-right]. These blow-downs define
a symplectic closed disk (∆,Ω) endowed with an analytic Hamiltonian H∆ satisfying
the second item of the lemma. As the unique critical points of Ho|∆̃ were (Qi)i∈Z2k

,
these surgeries create only k + 1-new critical points at Pi which are all with definite
positive Hessian. □
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