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SPECTRAL CORRESPONDENCES FOR
RANK ONE LOCALLY SYMMETRIC SPACES:
THE CASE OF EXCEPTIONAL PARAMETERS

BY CHRIsTIAN ARENDS & JoacHim HiLGERT

Asstract. — In this paper we complete the program of relating the Laplace spectrum for rank
one compact locally symmetric spaces with the first band Ruelle-Pollicott resonances of the
geodesic flow on its sphere bundle. This program was started in [FF03] by Flaminio and Forni for
hyperbolic surfaces, continued in [DFG15] for real hyperbolic spaces and in [GHW21] for general
rank one spaces. Except for the case of hyperbolic surfaces (see also [GHW18]) a countable set
of exceptional spectral parameters always remained untreated since the corresponding Poisson
transforms are neither injective nor surjective. We use vector valued Poisson transforms to treat
also the exceptional spectral parameters. For surfaces the exceptional spectral parameters lead
to discrete series representations of SL(2,R) (see [FF03, GHW18]). In general, the resulting
representations turn out to be the relative discrete series representations for associated non-
Riemannian symmetric spaces.

Résumié (Correspondances spectrales pour les espaces localement symétriques de rang 1 : le cas
des parameétres exceptionnels)

Dans cet article, nous complétons le programme sur la correspondance entre le spectre
du laplacien des espaces localement symétriques compacts de rang 1 et la premiere bande de
résonances de Ruelle-Pollicott de leur flot géodésique sur le fibré en sphéres. Ce programme
a débuté dans [FF03] par Flaminio et Forni pour les surfaces hyperboliques, poursuivi dans
[DFG15] pour les espaces hyperboliques réels et dans [GHW21] pour les espaces généraux de
rang 1. A Pexception du cas des surfaces hyperboliques (voir aussi [GHW18]), un ensemble
dénombrable de parameétres spectraux exceptionnels n’a pas été traité, la raison étant que les
transformées de Poisson correspondantes ne sont ni injectives ni surjectives. Nous utilisons des
transformées de Poisson a valeurs vectorielles pour traiter ces parametres spectraux exception-
nels. Pour les surfaces, les parameétres spectraux exceptionnels conduisent & des représentations
en série discrete de SL(2,R) (voir [FF03, GHW18]). En général, les représentations que l'on
obtient s’aveérent étre les représentations en série discréte relatives pour les espaces symétriques
non riemanniens associés.
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1. INTRODUCTION

Dynamical systems with additional symmetry are surprisingly rigid. One manifes-
tation of this observation is the close connection between geodesic flows on locally
symmetric spaces and their quantizations, the Laplace-Beltrami wave kernels. This
was first observed for tori in the form of the Poisson summation formula and its
non-commutative analog, the Selberg trace formula, where the length spectrum of
closed geodesics and the spectrum of the Laplacian enter. In specific cases corre-
spondences on the level of eigenfunctions were established about twenty years ago
[LZ01, FF03, DHO5, Miih06, Poh12].

In [DFG15] Dyatlov, Faure and Guillarmou showed that the spectrum of the
geodesic flow on compact hyperbolic manifolds essentially decomposes into bands,
the first of which is in one to one correspondence with the Laplace spectrum. For
these spectral values they also constructed linear isomorphisms between the corre-
sponding eigenspaces. In this context essentially means that there is a countable set
of explicitly known spectral values for which the methods do not apply.

In [GHW18] the very explicit information available for hyperbolic surfaces was used
to establish spectral correspondences also for the exceptional spectral values. In these
cases the quantum side turns out to be related to the discrete series representations
of SL(2,R), whereas the regular spectral values were related to irreducible unitary
spherical principal series representations.

The theory of quantum-classical spectral correspondences with spherical principal
series representations on the quantum side was extended to all rank one compact
locally symmetric spaces in [GHW21]. In this paper we complete the program for
these spaces by establishing quantum-classical spectral correspondences on the level
of eigenvectors for all exceptional spectral values.

We describe the setting in a little more detail. Let G be a non-compact simple
Lie group of real rank one and I" be a co-compact discrete subgroup of GG. For sim-
plicity we assume that G has finite center and I' is torsion free. We fix a maxi-
mal compact subgroup K and observe that the locally symmetric space T\G/K
is a compact Riemannian manifold. Therefore its (elliptic) Laplace-Beltrami oper-
ator has discrete spectrum on L?*(T'\G/K) with smooth eigenfunctions lifting to
I-invariant eigenfunctions on G/K. Note that on G/K the Laplace-Beltrami op-
erator comes from a Casimir element and generates the algebra of G-invariant dif-
ferential operators. For generic spectral parameters p the eigenfunctions generate
an irreducible G-representation which is equivalent to a spherical principal series
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representation H,,. The corresponding intertwiner is the Poisson transform P,. So,
generically the Laplace-Beltrami eigenspaces TE_ « can be identified with the I'-invari-
ant distribution vectors TH . in the corresponding spherical principal series repre-
sentation, where the normalization of the spectral parameters is taken from [GHW21].

The word generic in the previous paragraph can be given a precise meaning. Let gg
be the Lie algebra of G and g the complexification of gy (we use the analogous con-
vention for all subspaces of go). The eigenvalues of the Laplace-Beltrami operator
on G/K are parameterized by elements of a* via the Harish-Chandra isomorphism,
where g = ¢ + p is the Cartan decomposition of the Lie algebra g fixed by the choice
of K and ag is a maximal abelian subspace of pg. The parameters are unique up to
the action of the Weyl group W = Nk (a)/Zk (a). A spectral parameter p is generic if
and only if it is not a zero of the Harish-Chandra e-function which in turn is equiva-
lent to the bijectivity of the intertwining Poisson transform P,. Thus the exceptional
parameters alluded to in the title of the paper are the zeros of the e-function.

In the case of compact hyperbolic surfaces (see [GHW18]) the exceptional spectral
parameters are related to discrete series representations, which can be realized as
smooth (in fact, holomorphic or anti-holomorphic) sections of certain G-homogeneous
vector bundles over G/K. In these spaces of sections one has the action of a suitable
Bochner-Laplace operator (see [O1b94, Lem. 2.2]). While these representations are no
longer completely determined by the action of the Bochner-Laplacian, they are still
irreducible unitary representations of G obtained by a suitable vector valued Poisson
transform. This part can be generalized and we view the I'-invariant sections, which
descend to the locally symmetric space, as part of the quantization of the cotangent
bundle of this space.

The cotangent bundle T*(I'\G/K) = T'\G xk p§ of I'\G/K is foliated into the
cosphere bundles I'\G/Zxk (a) x {r} with r € af = R determining the radius and the
zero section I'\G/ K. Each leaf of the foliation is invariant under the geodesic flow. On
the zero section it is trivial, whereas on the cosphere bundles it is given by the right
action I'\G/M x A — T\G/M, (gM, a) — gaM, where we use the standard abbrevi-
ation M for the centralizer Zx (a) and set A = exp(ag). This decomposition reduces
the spectral analysis of the geodesic flow to the A-action on I'\G/M. This action is
Anosov as one sees from the Bruhat decomposition T(I'\G /M) = G x s (nd +ag+ny ),
where go = € + a9 + tﬁ are the two Iwasawa decompositions of gy associated with
the two possible orderings of the set ¥ of restricted roots in aj. The approach to
Ruelle-Pollicott resonances for the geodesic flow used in [GHW21] makes use of the
set D, (I'\G/M) consisting of the distributions v € D'(I'\G /M) whose wavefront set
WF(u) is contained in the annihilator T\G x5 (nd + ag)* € T*(I'\G/M). Then the
set of resonant states for the spectral parameter p € a* is defined as

Res(p) :== {u e D' (I\G/M) |VH € ap: H-u+ p(H)u =0},

where H acts as a left-invariant vector field on G/M descending to I'\G/M. A spectral
parameter p € a* is called a Ruelle-Pollicott resonance if Res(u) # 0. The Ruelle-
Pollicott resonances form a discrete set and the corresponding spaces of resonant states
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are finite dimensional. A first band resonant state is a resonant state u which satisfies
X -u =0, where X is any vector field on I'\G/M which is a section of the subbundle
G xpyny C T(I\G/M). We denote the space of first band resonant states for the
spectral parameter p € a* by Res’(1). In the case of generic spectral parameters the
quantum-classical spectral correspondence says that the push-forward of the canonical
projection pr : I'\G/M — I'\G/K is a linear isomorphism m, : Res”(u — p) — TE,,,
where p € qf is the usual half-sum of positive restricted roots counted with multiplicity
(see [GHW21, Th.4.5]).

The strategy for our extension of the quantum-classical correspondence to excep-
tional spectral parameters is as follows. As in the generic case (see [GHW21, §3.2])
we start by lifting the first band Ruelle-Pollicott resonances to I'-invariant distribu-
tions on the global symmetric space. The lifted spaces can be interpreted in terms of
spherical principal series (that part works for all spectral parameters, see [GHW21,
Prop. 3.8]) and the first band resonant states Res’(—u — p) correspond to the space
TH . of I'-invariant distribution vectors of the corresponding principal series. For an
exceptional spectral parameter p the corresponding principal series H,, is no longer
irreducible. But it has a manageable composition series and it turns out that the
I-invariant distribution vectors are all contained in the socle (i.e., the sum of all
irreducible subrepresentations) of the representation, see Theorem. 4.1. In each of
the rank one cases except SOp(2,1) (the case of surfaces, see [GHW18]) the socle
turns out to be irreducible with a unique minimal K-type 7,, (see Theorem. 4.5) and
we can show that the vector valued Poisson transform associated with this K-type
(sum of K-types in the case of surfaces) is injective, see Proposition 3.11. The image
consists of spaces of I-invariant sections of vector bundles over I'\G/K and we have
a quantum-classical correspondence as soon as we have characterized the image of
this Poisson transform.

We achieve the characterization of the image of the minimal K-type Poisson trans-
form via Fourier expansions of M-invariant functions with respect to M-spherical
K-representations. More precisely, we determine necessary and sufficient conditions
for a Fourier series to represent a distribution vector of the reducible spherical prin-
cipal series H,, see Theorem. 5.30, where the conditions are given in terms of gen-
eralized gradients (see [BOQ96]). In each of the cases it is possible to determine a
G-invariant system of differential equations on the sections of the homogeneous bun-
dle G xk V;, given by the minimal K-type (7,,V;,) of the socle such that on the
space of [-invariant solutions we can write down an explicit boundary value on K/M
in terms of Fourier coefficients, see Theorems. 6.6, 6.8 and 6.10. Then our Fourier
characterization of H, > allows us to show that the boundary values are contained in
TH . °°- In the case of SOg(n,1) and for most exceptional spectral parameters in the
case of SU(n, 1) we have an alternative (and simpler) characterization of the vector
valued Poisson transform, which is based on techniques developed in [Mea89] to study
Cauchy-Szego maps for SU(n, 1), see Theorems. 6.1 and 6.4.

We can explicitly determine the socle of all reducible spherical principal series
representations in rank one (see Theorem 4.5), and we see that the surface case,
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which so far was the only one known, is quite untypical. Not only is it the only case
where the socle is not irreducible, it is also one of the very few cases in which the rep-
resentation generated by the resonant states belongs to the discrete series of G. This is
only the case for SOq(2, 1) (surfaces), SU(2, 1), Sp(2, 1) and Fj(_s0), see Theorem 4.6.
On the other hand it turns out that all of these representations are unitarizable,
see Theorem 4.5. We can determine the Langlands parameters (see Theorem 4.6),
and in some cases geometric realizations, e.g. as solution spaces of differential equa-
tions are well-known (see [O1b94, Gai88]). But for most cases we did not find such
descriptions in the literature. From the detailed information on the K-types we can
actually identify the representations as relative discrete series representations of non-
Riemannian symmetric spaces G/H associated with G/K (Theorem 4.7). [TW89]
provides a geometric interpretation of a generating vector of such a representation in
terms of cohomology, but it gives no description of the representation space as such.
So our geometric realization as solution spaces of differential equations describing the
images of minimal K-type Poisson transforms might actually be new.

As mentioned above, our results complete the picture of first band quantum-
classical correspondences for compact locally symmetric spaces of rank one. In higher
rank an analogous quantum-classical correspondence for generic spectral parameters
has been established in [HWW23]. Extending that result to exceptional spectral para-
meters will be substantially harder as the information available on composition series
of spherical principal series is much less explicit in higher rank. Moreover, some of
the multiplicity one results we use (Propositions 2.1, 4.2, 5.19) or prove (Proposi-
tion 5.17) here are not always available in higher rank. As far as non-compact locally
symmetric spaces are concerned, one has to replace the (discrete) spectrum of the alge-
bra of invariant differential operators by a suitable concept of quantum resonances.
So far one only has quantum-classical correspondences for convex co-compact real
hyperbolic spaces and, for dimensions larger than two, only generic spectral parame-
ters [GHW18, Had20]. For locally symmetric spaces with cusps the results on record
are either very special (e.g. [LZ01, Miih06]) or else give only very rough information
(e.g. [DHO5)). In view of [GBW22, Poh12], however, a quantum-classical correspon-
dence for surfaces seems to be within reach. Finally, we mention [KW21], where
quantum-classical correspondences for lifts of geodesic flows on compact locally sym-
metric spaces of rank one are treated for generic spectral parameters. That exceptional
spectral parameters occur also in such situations can be seen from [KW20], where the
authors have to leave out the case of three dimensional hyperbolic spaces because the
Gaillard Poisson transform they use is not bijective.

We conclude this introduction with a brief description of the way the paper is
structured. In Section 2 we collect the information on principal series representations
and their K-types. In Section 3 we recall the scalar Poisson transforms for symmetric
spaces and introduce the minimal K-type Poisson transforms. In Section 4 we show
that I'-invariant distribution vectors in principal series representations have to be con-
tained in the socle of the representation. Moreover, we determine the socles and their
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minimal K-types in all cases. In Section 5 we study Fourier expansions of M-invariant
functions with respect to M-spherical K-representations. Apart from convergence is-
sues we deal with the technicalities needed to characterize the spherical principal
series representations in terms of Fourier expansions. In Section 6 we complete the
determination of the spectral correspondences by describing the I'-invariant vectors
in the image of the minimal K-type Poisson transform. Appendix A is devoted to
the case by case calculations we could not avoid in proving the technical results of
Sections 4 and 5.

Acknowledgements. We first thank Jan Frahm, without whom we might have over-
looked the connection to the non-Riemannian symmetric spaces (see Theorem 4.7).
Moreover, we thank Tobias Weich for numerous fruitful discussions and helpful re-
marks on the manuscript.

2. REDUCIBLE PRINCIPAL SERIES

In this section we recall the main facts about principal series representations we
use in this paper.

2.1. Basic ~vorarion. — Let G be a noncompact, connected, real, semisimple Lie
group with finite center and I' < G a co-compact, torsion free lattice. We denote
the Iwasawa decomposition of G by G = KAN. The K-, A-, or N-component in the
Iwasawa decomposition is denoted by ki, ar, or ny, respectively. Let M = Zx(A)
denote the centralizer of A in K. The corresponding Lie algebras will be denoted
by go, to, ag, ng, mg with complexifications g, £, a,n,m. Moreover, let g = £ @ p be the
Cartan decomposition and denote the corresponding Cartan involution by 6. Asso-
ciated with the ag-action we define the restricted root spaces g¢ corresponding to
the restricted roots ¥ C afj. Furthermore, we have the Bruhat decomposition given
by go = ag ©mo & P,y 8. The Iwasawa decomposition determines a positive sys-
tem YT C X. The half-sum of positive roots is denoted by p = %Zaez+ me with
the multiplicities m,, = dimg g¢. If log : A — ag denotes the logarithm on A and
p € a* we define a* = e#(1°2@) By K (resp. é, M ) we denote the equivalence classes
of irreducible unitary representations of K (resp. G, M). The Weyl group of (go, ao)
is denoted by W. Let x denote the Killing form of g and U(g) denote the univer-
sal enveloping algebra of g. For H € {K, M} and a finite-dimensional representation
(1,Y) of H we define the associated vector bundle G x Y as the quotient (GXY")/ ~,
where

VYge G, he HveY: (g,v)~ (gh, (R~ o).

We always identify the space of smooth sections of this bundle with

C¥(GxpY)={fecC®G,Y)|VgeG hec H: f(gh)y=1(h"')f(g)}.
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2.2. REALIZATIONS OF SPHERICAL PRINCIPAL SERIES REPRESENTATIONS. Spherical prin-
cipal series representations can be realized in different ways (“pictures”) all of which
have their advantages. Let 4 € a* and denote by L?(K) the space of C-valued func-
tions which are L? with respect to the normalized Haar measure dk on K.

In the induced picture the representation space H, is given by all measurable
functions f : G — C such that

(1) f(gman) =a*=*f(g) forall g€ G,m € M,a € A,n € N,
(2) [, € LA(K).

The representation is given by

(mu(@)f)(@) = flg'w),  gw€G, feH,

Endowed with the L?-norm || f||? := [, |f(k)|* dk this realization is a Hilbert space
representation. The parametrization is chosen such that H, is unitary if u € iag is
imaginary.

The Iwasawa decomposition shows that a function in H,, is completely determined
by its restriction to K. Thus, the surjective isometry

(2.1) H, = HP,

where HP' denotes the Hilbert space L*(K)™ of all functions f € L?(K) with
f(km) = f(k) for all k € K, m € M, gives another realization of the principal
series representation. This realization is called the compact picture. Note that the
representation space does not depend on u. However, in this picture the G-action is
more complicated compared to the induced picture. It is induced by the action 7, via
the isometry above and given by

(2.2) (m5P (9)f) (k) = ar(g™ k)7 f(ki(g™ k),

where k € K, g € G and f € Hﬁpt. In the following, we will simply write H,, for both
realizations for the sake of simplicity. Note that in the induced and compact picture,
respectively, the representation space naturally factors through the quotient G/M,
respectively K /M, and we will use these realizations from now on.

2.3. GLOBALIZATIONS AND INFINITESIMAL CHARACTER. — Let (m,J) denote a Hilbert
space realization of a (subrepresentation of a) principal series representation. In this
paragraph we define smooth and distribution vectors in (7, H). We call a vector v € H
a smooth or C*°-vector for 7 if

G — X, gr— m(g)v

is smooth. Let H>° C H denote the vector space of all smooth vectors in H. For 7 =

7(P' the smooth vectors are actually smooth functions (see e.g. [Vog08, Eq. (5.15)(a)]):

H>® ={f: K — Csmooth |Vk e K, me M: f(km)= f(k)} = C>®(K/M).

We equip the space H> with its natural Fréchet topology (see e.g. [Vog08, p. 18]).
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The distributional vectors H~°° are given by the elements of the dual representation
— with respect to the Fréchet topology — of the smooth vectors in the dual represen-
tation of (m, 7). We give an alternative description which often is more convenient.
For this we use [Hel00, Ch.I, §5.3., Eq. (25)] to see that, for each p € a*,

(o Hyx H o — C, (i, fa) = /K F2(R)(fr (k) dk

is a nondegenerate, bilinear, and G-invariant pairing between H,, and H_,. By this
pairing, we see that the distributional vectors H,* of the spherical principal series
representation H,, are given by the contragredient representation of H2,.

Note that the distributional vectors can be realized on D'(K/M) = C*(K/M)’,
the space of distributions on K /M. We also define D'(G/M) = C*(G/M)’, the space
of distributions on G /M. In rank one we have a unique H € ag such that a(H) =1 for
the unique simple positive restricted root « of (g, a). In this case, the distributional
vectors in the induced picture of H,, are given by

(23) R(u— p)
={ue D (G/M) | (H—u(H)+ p(H))u=0,YU € C®°(G xprng): Uu =0},
equipped with the left regular representation, and there is a topological isomorphism

(2.4) Q. (D(K/M), mP') — R(p — p),

which intertwines the G-actions and which extends, by duality, the isomorphism H,, =
HEPY from (2.1) (cf. [GHW21, Prop. 3.7]).
Note that we always have the linear embedding

LM:HM(_>H;I007 tu(f1)(f2) = (f1, fo)p YV f1 € Hy, f2€Hiou-

By the G-invariance of the pairing (-,-), ., this embedding ensures that the action
of G on H . extends the one on H), from Equation (2.2). However, note that test
functions f € C°°(K/M) = HX, are acted upon by 7, = 7_,.

For each subrepresentation V' < H,, we have the restricted pairing

VX (H_,JVte) — C, (fi, fo+ V), = /Kfz(k)(ﬁ(k))dk,
where

(2.5) Vo= {fa € Hoy |V fL € Vi (f1, fa)u = O}

This implies that V=% is the contragredient representation of (H_,/V+u)>.

Any principal series representation has an infinitesimal character. In order to
describe the infinitesimal character of H,, we first fix some notation. Let t < m denote
a f-stable Cartan subalgebra of m and p,, denote the half-sum of positive roots for
(m,t) with respect to some ordering. Then H, has infinitesimal character pm — p
relative to h == a @ t (cf. [Kna86, Prop.8.22]). We recall the Casimir element Qg,
an important element of the center Z(U(g)) of U(g). Let B be a fixed multiple of
the Killing form x. For a basis Xi,..., Xdimg, of go let (¢%/);; denote the inverse
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matrix of (B(X;, X;)); ;. Then the dual basis (X*); is given by X’ = > ¢ X; and
the Casimir element is defined by

Qg = Zz X'X; = Z” 97 X;X; € Z(U(g))-

Since B is nondegenerate, there are unique elements X, € go for each ¢ € g such
that p(X) = B(X, X,,) for each X € go. We put (¢,7) = B(X,, Xy) for ¢, ¢ € g
resp. g*. Let us extend the ordering on a to h such that X+ arises by restriction from
the positive roots of (g, h). By [Kna86, Lem. 12.28], the action of the Casimir element
is then given by the scalar

Tu(Qg) = (i, 1) = (P + Pms P+ Pm) = (11, 1) — (s p)-

2.4. RepucisiLity. — We are particularly interested in principal series representa-
tions which are not irreducible, i.e., in the set

A" :={p € a* | H, reducible}.

In this subsection we introduce the representation theoretic tools we need to describe
the structure of these reducible representations.

Composition series, minimal K-types and socle. In general, principal series represen-
tations are not completely reducible. However, they are all of finite length (cf. [Kra78]).
This means, there exists a finite composition series, i.e., a chain of subrepresentations
of H, of the form

0CWyC---CW, =H,

such that the quotients W; 1 /W;, the composition factors, are irreducible. By the
Jordan-Holder theorem, any two composition series have the same length and the
same composition factors up to permutation and isomorphism.

Let 7 denote an admissible Hilbert representation of G (i.e., a continuous represen-
tation such that each K-isotypic component has finite dimension) and fix a Cartan
subalgebra by of ;. With respect to some ordering, we define p¢ as the half-sum of
the positive roots of (¢,b). We say that Y € K with highest weight \ is a minimal
K-type of w if Y occurs in 7 restricted to K and

<>‘ + QPEa A + 2PB>

is minimal with respect to this property. The set of minimal K-types is independent
of the choice of the ordering and its cardinality is finite and at least one. For spherical
principal series representations 7, each minimal K-type of 7, occurs in 7, | with
multiplicity one (cf. [Vog79, Th.1.1]).

For any Hilbert representation (w,H) of G we define socw, the socle of 7, as the
closure (in the sense of [Kna86, Th. 8.9]) of the sum of all completely reducible (g, K)-

submodules of the underlying (g, K')-module of (m, H) (see [KV95, p.538]).

P

JIP — M., 2023, tome 10



344 C. Arenps & J. HiLGerT

Decomposition as K -representation and M-spherical functions. We begin with a brief
discussion of the decomposition of 7r#| 5 in general and then give some more pre-
cise results of this decomposition in the rank one case. For the decomposition as
K-representation we consider the compact picture H/‘jpt. As K-representation this
coincides with the induced representation IndJ\K/l(trivM) of trivys to K. By Frobenius
reciprocity we thus obtain for each Y € K that

Hom (HP',Y) = Homp (Indj (trivay ), Y) = Homy (C,Y).

Let us denote the multiplicity of trivy, in Y (and analogously for other groups and
representations) by

mults (C,Y) := dimg Homps (C,Y).
Then, writing

Ky ={Y € K | mult),(C,Y) # 0},
we have that, denoting equivalence as K-representations by = and the Hilbert space
direct sum by @,

H =i @y, multy(C,Y)Y.

If not stated otherwise, we realize each Y € K M as a subrepresentation of H,ipt =
L?(K/M). Note that L?(K /M) carries the left regular representation L. We denote
the derived representation of L by 4.

Let us now assume that G has real rank one. In this case some more precise results
can be achieved. Most importantly, (K, M) is a Gelfand pair in this case (cf. [Hel94,
Ch.1II, §6, Cor. 6.8]). This implies the following

Prorosition 2.1. — Let C denote the trivial M -representation. Then
(2.6) VY € Ky multg (Y, H,) = multp (C,Y) = dime YM =1,
where

YM={veY|VmeM:m-v=uv}
denotes the space of M -invariant elements in Y. In particular, the decomposition

Hy, =k @YEI?MY

is multiplicity free.

Proof. The first equality follows from Frobenius reciprocity and the second equality
follows from [Hel00, Ch.V, Th. 3.5(iv)]. O

Note that Ind% (trivay) is given by the left regular representation of K on L2(K /M)
resp. L?(K)M, the M-invariant elements of L?(K) with respect to the right regular
representation. The following proposition describes the M-spherical elements Y™ for
cach Y € K M and is well-known to specialists. We give a proof for the convenience
of the reader.

Prorosition 2.2 (cf. [Hel00, Intro., Prop. 3.2(ii)]). — Let 0 # (7,Y) < L2(K)M be an
irreducible representation. Then
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(1) there exists a unique ¢y € YM such that ¢y (e) =1 and Y™ = Coy,
(2) p(k){(Py,dy)L2x) = (o, T(k)dy)L2(k) for k€ K, p €Y,
(3) <¢Ya¢Y>L2(K) = l/dle, qSy(kil) = d)y(k), |¢Y(k)‘ <1 forkeK.

Proof

(1) By Equation (2.6) we have dimc Y™ = 1. Let 0 # ¢ € Y and choose some

k € K such that (k) # 0. Replacing ¢ by 7(k~1)y we may assume that 1 (e) # 0.
The function

VK -—C, ke /M () (k) dm

is contained in Y™ with W(e) = 1(e) # 0. This proves the first part.
(2) For each m € M we have by the K-invariance of the Haar measure

(¢, by ) L2 (k) :/ch(k)qby(k)dk:/ o(k)py (m—1k) dk

K
— [ otmmay @ k= [ 5 [ otmb) ama.
K K M
Note that the map
0: K —C, k+r— / o(mk)dm = / 7(m™Hp(k)dm
M M

is contained in VM = Cg¢y. We infer that 6 = 0(e)¢y = p(e)py and thus

(v 12000 = 9(6) | DRy () k= o(e) G- 0 e

Replacing ¢ by 7(k~1)p we obtain (2).
(3) By the Schur orthogonality relations we have

1
Iy (0, 0) L2 (k) (DY, dY) L2(K) = A<T(k)¢Y7¢>L2(K)<T(k)¢Ya80>L2(K) dk

(:2)/Ktp(k)<¢y,¢Y>L2(K)cp(k)<¢y,¢y>L2(K) Ak

= <¢Y7¢>Y>%2(K)/I(W80(k)dk
= (dv, 9v) T2 (i) (s ) 12 (56) -

This proves (¢y, ¢y)r2(k) = 1/dimY. By (2) we deduce

oy (k) = dimY (oy, 7(k)dy) L2(k) = dim Y@y, T(k~1)dy) 2(k) = ¢y (k1)

and, using the Cauchy-Schwarz inequality,

|py (k)| = dim Y |(¢y, 7(k)dy ) L2(k)| < dimY (¢py, dy)r2(k) = 1. O
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Intertwiner. Finally, we describe a procedure to obtain G-equivariant maps
between sections of associated vector bundles. These generalized gradients generalize
the classical raising and lowering operators of PSL(2,R).

The following fact allows the definition of generalized gradients.

Prorosirion 2.3 (cf. [@rs00, Prop. 3.1]). Let K act on p* by the coadjoint repre-
sentation. The following map is defined for every (1,Y) € K :

V:0%(GxgY) — C®(G xg (Y @p*)),

N d
(VA)(9) € Hom(p, V) =Y @p", (V(9)(X) = 2| flgespix).
Moreover, it defines a G-equivariant covariant derivative with zero torsion.

Derintrion 2.4, — Let (1,Y7,) € K,ic {1,2}, with YV, < Y, ® p* and let T €
Homg (Y, ® p*,Y,,). Then we define the generalized gradient
To V: COO(G XK Yn) — COO(G XK Y‘rg)-

If not stated otherwise, we choose T' = pr_, the orthogonal projection onto Y7,.

3. Po1SSON TRANSFORMS

In this section we connect principal series representations with joint eigenspaces of
differential operators on vector bundles over G/K. We will first recall the standard
scalar Poisson transform and show how it is related to the exceptional parameters
of [DFG15] and [GHW21]. Then we introduce vector valued generalizations based
on [O1b94], discuss some mapping properties and relate them to specific generalized
gradients.

3.1. INVARIANT DIFFERENTIAL OPERATORS AND EIGENSPACES. — Let (7,Y) € K. A dif-
ferential operator D on C*°(G xk Y) is called invariant if it commutes with the
left regular representation L on C*°(G x g Y'). Let D(G, 7) denote the algebra of all
invariant differential operators on C*°(G Xk Y).

For the trivial bundle we abbreviate D(G/K) := D(G,triv). This space is
isomorphic to U(g)X/(U(g)® N U(g)t) and the Harish-Chandra homomorphism
X : D(G/K) — S(ag)" allows us to identify D(G/K) with the W-invariants S(ag)"
of the symmetric algebra S(ag) of ag (see [Hel00, Ch. I, Th. 4.3, 4.6, 5.18]). Moreover,
every character of D(G/K) is of the form

Xp: D(G/K) — C, xu(D) = x(D)(n)

for some p € a* and x, = x,, if and only if v € Wy (cf. [Hel00, Ch.III, Lem. 3.11}).
Let us denote the space of joint eigenfunctions of D(G/K) by

& ={f € C*(G/K) |[VD e D(G/K): Df = xu(D)f},
and, with the Riemannian distance function dg,x on G/K, for each r > 0
(3.1) €ur(G/K) = {f € &, | supyegle™rde/x(af) f(g)] < oo},
We put €, (G/K) = UT>0 &,.r(G/K), equipped with the direct limit topology.
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For arbitrary (7,Y) € K the right regular representation r of U(g) on C*(G,Y)
induces an isomorphism U(g) % /(U(g)® NU(g) opp(I;)) = D(G, 7), where I, := ker 7 C
U(€) and opp : U(g) — U(g) denotes the antihomomorphism defined by opp(X):=—X
for X € g (see [Min92, Th.1.3]). As r is a representation, we can define for each p € a*
a representation x,, of D(G, ) by
Xru: D(G,7) — End(Homg (Hy,,Y)),  Xryu(r(w)(T) = Tom,(oppu), u € Ulg)".
Note that x,, is well-defined by the K-equivariance of each T € Homg (H,,Y).

In the case of multys(C,Y) = 1 these representations are one dimensional and we can
define the space of joint eigensections

By ={feC™(GxxY)|VDeD(G,1): Df = xru(D)f},
where we identified End(Homg (H,,Y")) with C.

3.2. MAPPING PROPERTIES OF SCALAR Porsson Transrorms. — The asymptotics of joint
eigenfunctions in €, can be described by a specific meromorphic function on a*,
the Harish-Chandra c-function c(u). We define its “denominator”, the meromorphic
function e(u) ™, by (u € a*)
_ 1/1 (u, @) 1/1 (i, @)
1 ) )
= I rGGGEme 1+ 53))rG )
e(n) ];_[+ 2\ i (o, ) 2\g"Me Fm2at (o, @)

acy

see e.g. [Sch84, Eq. (5.17)]. Then e is an entire function on a* without zeros on the
closure of the positive Weyl chamber.

Dermnirion 3.1 (cf. [vdBS87, Th. 10.6, 12.2]). — For p € a* define the scalar Poisson
transform
P,:D'(K/M) = H;* — &, (G/K),
P.(f)(gK) = (f,m—pn(9)Lx m) = (f, 7 (9) Lic/nr) = (mu(g™ ) f Lieyna)s
where 1x /)y € HZ), denotes the constant function 1 on K /M. Then P, is a topological
isomorphism if and only if e(n) # 0. If e(u) = 0, then P, is neither injective nor
surjective.

Derintrion 3.2, — We call
Ex:={pca” [e(y) =0}
the set of exceptional parameters.
ExamrrLe 3.3. — The exceptional parameters are exactly the parameters which were
excluded in [DFG15] and [GHW21]. Indeed, let G be of real rank one. Then the

e-function is zero if and only if one of the Gamma functions has a pole which is the
case if and only if

1 1
uE (—§ma —1- 2N0)a U (_§ma — M2q — 2N0)047

where « denotes the unique simple positive real root. Moreover, (see [Hel70, Ch.IV,

Th.1.1
D H, irreducible <= e(u)e(—p) # 0.

Therefore, irreducibility of H,, is sufficient but not necessary for the bijectivity of P,,.
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3.3. VECTOR VALUED Po1SSON TRANSFORMS. In this subsection we describe general-
ized Poisson transforms based on [Olb94], which will serve as a substitute for the
scalar Poisson transform for the exceptional parameters.

Derinirion 3.4 (cf. [O1b94, Def. 3.2/Satz 3.4]). Let 7 € K and p € a*. Then we
define the (vector valued) Poisson transform by

Py :Homp(H, <, V;) @ H, > — C¥(G xk V7),
Pi(T @ f)(g) = T(mu(g~) ).
If F: Homg (H,,V;) = Homy(C, V;) denotes the Frobenius isomorphism we have
(33) PLT® Do) = [ rDF@)(F(gh)dk
K
for T'e Homg (H,, V;), f € H, and g € G. By [Hel00, Ch.1, §5.3, Eq. (25)] we obtain

PI(T® f)(g) = /K ar(g™ k) 207 (ke (g~ k) F(T) (f (g (g~ k) dk

(3.2)

_ /K ar(g~ k)27 (kr (g~ k) F(T)(f (knr (g~ k) ar(g~1k)1)) dk

_ /K ar(g k)~ 7 (kyp (g~ ) F(T) (£ (K)) dk.

The image of P is contained in E., and P} is D(G,7) x G-equivariant, where
D(G,7) acts on Homg (H,, V;) by xr,: For all u € W), f € H,;>, g,z € G,
T € Homg (H, >, V,),
Py (Xru(r(w)T @ f)(g) = T(mu(oppu)mu(9™) f) = r(w)(PL(T @ f))(9),
Pi(T @ mu(2)f)(9) = T(mu(g™ (@) f) = PL(T @ f)(z"g).
Remark 3.5 (Scalar vs. vector valued). — When 7 is the trivial representation of K

we have Hompg (H,,V;) = Hom;(C,C) = C. Let t € Hom;(C,C) be the identity
and T := F~1(t) = pre. Then

PT(T® f)(g) = /K ar(g~ k)~ f(k) dk = Py (f) (K-

The following lemma illustrates the naturality of Olbrich’s Poisson transforms.

Levva 3.6 (cf. [O1b94, Rem. after Lem.3.3]). — Let ¥ : H, — C*(G xg V;) be a
G-equivariant map. Then

V= P(T@")
where T € Homg (H,,, V;) is defined by T(f) == ¥(f)(e).

Proof. — For every k € K we have

T(mu(k)f) = W (mu (k) f)(e) = C(f) (k™) = 7(k)T(f)(e) = T(K)T(f)
and thus T' € Homg (H,,, V;). Moreover we have for every g € G and f € H,

Pi(T® f)(g) = U(mu(g™"))le) = ¥(f)(g). 0
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This lemma admits the following important implications.

Cororrary 3.7. — Let U : H, — C®(G xg V;) be a G-equivariant map where V;
does not contain the trivial M -representation. Then W = 0.

Proof. — By Lemma 3.6 there exists T' € Homg (Hy, V) such that ¥ = P7(T ® ).
But Homg (H,, V;) = Hom (C, V;) = 0 by Frobenius reciprocity. O

Cororrary 3.8. — Let (1;,V,) € K,ic {1,2}, be such that
multK(Vn,Hu) = dim¢ HOmK(HM, Vﬂ) =1

and let @ : C°(G xg V;) = C®(G xg V;,) be a G-equivariant map. By choosing
0 # T; € Hompg (H,, Vr,) we consider the Poisson transforms P as maps from H,
to C*°(G x i V). Then there exists some ¢ € C such that

<I>0P/I1 :c~P;2.

Proof. — Since
Qo Pl (Th ®@+): H, — C™(G xk Vy,)
is a G-equivariant map there exists some T € Homg (H,,, V;,) such that
Qo P (T ®+) =P (T®:)

by Lemma 3.6. Since dim¢c Homg (H,,V;,) = 1 there exists some ¢ € C with 7' =
C- TQ. |

3.4. InsecTiviTY OF VECTOR VALUED Poisson Transrorms. — In this subsection we
investigate specific vector valued Poisson transforms. We will see that if we pick
a minimal K-type for each irreducible subspace of the representation, the direct
sum of the associated Poisson transforms is injective. By our rank one assumption
each spherical principal series representation H, decomposes multiplicity-freely as a
K-representation (see Proposition 2.1). Therefore we have the following

Levva 3.9. — Let 0 # (7,V) < H, be an irreducible K-representation and t €
Hom s (C, V). Denote the orthogonal projection onto V' — which is well-defined by
Proposition 2.1 — by pry,. Then
- t(1)(e)
F7Ht) =
®) dimv PV
where as above F' denotes the Frobenius isomorphism.

Proof. — Let T := F~'(t) and T*: V* — H_, denote its dual. Then, for f € H,,
we VvV

(Tfow) = (£ T w), = /K FR)(T*w) (k) dk = /K ST F(E Yw) (e)) dk
_ /K (F(T)f(k), 7k~ )w) dk = /K (r(R)EF(R), w) dk.
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Since T and pry, are both contained in the one-dimensional space Homg (H,,, V') they
are multiples of each other. To compute this multiple we calculate

T(év)(e) = / (r ()t (v (k)))(e) dk = / ov () (r(R)t(1)) (e) dk

=/ ov(k t(1)(e)ov)(e) dk = (1 /</>v )y (k1) dk

_ tM)(e) _ t(1)(e)
N dlmV dim V' pry (¢v)(e),
where we used Proposition 2.2 (1) to infer ¢(1) = t(1)(e)¢y from t(1) € VM = Coy

and used Proposition 2.2 (3) in the last line. |

From now on we choose ¢ € Hom;(C, V) for each (7,V) € Ky by t(1) := ¢y and
define
PriH® — C®(GxgV),  Pi(f)=F[(F () f)
Note that, by Lemma 3.9, we have for each f € H,* and g € G

(34) Pr(f)g) = pry (., (9) ' f)-

dimV

Provosirion 3.10. — Let [(1,V,)] € Ky and i € a*. Then the Poisson transform
Pl H, > — C*(G xg V)

is injective if and only if every non-trivial G-invariant subspace of H, > contains 7.

Moreover, the kernel is given by the distributional elements in the closure of the sum
of all G-invariant subspaces V < H,, with multg (7, V) = 0.

Proof. — Since P7 is G-equivariant, the kernel ker P is G-invariant. We claim that
it equals the closure of the sum of all invariant subspaces of H,, which do not contain
the K-representation (7, V;):

If {0} # W < H, is an invariant subspace of H, which does not contain the
K-representation 7, by (3.4) we have

Pr(f)g) = dhi 7Py, (. (g™ f) =0

for every f € W and g € G since m,(g~')f € W. Thus, f € ker P7. This proves the
first inclusion because the kernel is closed.

Conversely, let f € ker P]. Since the kernel is invariant, the distributional elements
in the G-cyclic space Wy of f are also contained in the kernel of P]. Therefore, f is

contained in an invariant space which does not contain 7 (if Wy contains 7 we can
choose g = e to get a contradiction to W C ker P;) |

Prorosirion 3.11. — Let o € a* and Irr(p) be the set of all non-zero irreducible
subrepresentations of H,. Then, if (ty,Vy,) is any non-zero K-type of U for U €
Irr(p), the direct sum of the corresponding Poisson transforms

@Uelrr(p,)P;U : HN_OO — UEIGB( )COO(G XK VTU)
rr(u

is injective. A natural choice of (Ty,Vy,) s given by a minimal K -type of U.
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Proof. Since the kernel of the direct sum @©yerrr() Y 1s the intersection of the
kernels of PV, U € Irr(u), we can apply Proposition 3.10 to deduce

Guerrr(n) PV injective <= V{0} #V < H, 3U € Irr(p): multg(ry, V) # 0.

Let {0} # V < H, be a non-trivial (closed) G-invariant subspace. We claim that
there exists some U € Irr(p) such that multg (7, V) # 0. In fact, since H, has a
composition series, V' also has a composition series by [KV95, p.815]. In particular,
there exists an irreducible subrepresentation {0} # I < V. But I € Irr(u) by the
definition of Irr(u) and multg (77, V) # 0 since I < V. O

3.5. THE ROLE OF GENERALIZED GRADIENTS. — In this subsection we use general-
ized gradients to connect different Poisson transforms associated with inequivalent
K-representations. We first introduce some notation.

Norarion 3.12. We define the inner product
() = — k(6
T k(H H)
and identify
I:p—p", X+—(X,).
For a basis X1,..., Xdimp of p we denote its dual basis with respect to (-,-) by
Xl, .. Xdlmp, i.e.,
I(X3)(X;) = (X, X;) = 6.
Lemma 3.13. For Y € K let dY = TY oV with TY € Homg (Y ® p*,V),
where V < L?(K) denotes an irreducible subrepresentation of Y @p*, be a generalized

gradient and p € a*. Choose a basis X1,...,Xaimp of po such that X; € a and
X; €t®n (e.g. an orthonormal basis of p with X; € a). Let

dim p
Py = (1 +p)(X1)dy ® I(Xy) — ZMI Ny @I(X;) €Y ®@p7,

where kr(X;) € € denotes the {’—component in the €@ a®n-decomposition of X;. Then

(1) py, is independent of the basis and M -invariant,
(2) dY o PY Y (py#)(e)PlY if V is M-spherical, i.e., V < L*(K)M,
(3) dY o PY =0 if V is not M-spherical, i.e., VM = 0.

Proof
(1) Identifying

Y@p*=Hom(p,Y), [f®A— (X+— AX)f),
the tensor py,, corresponds to the homomorphism given by

pyu(X) = (p+p)(X)py VX €aq,
pyu(X) =L(k1(X))oy VX epn(tdn),
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which is independent of the basis. For the M-invariance note first that the K-action
on Hom(p,Y) is given by

(k-®)(X)=k-®(k~' X)=L(k)®(Ad(k")X), X €p, &€ Hom(p,Y).
Since M stabilizes a and ¢y is M-invariant we have for each X € a,
(m.py,u)(X) = L(m)py,.(Ad(m™)X) = L(m)py,.(X)
= (n+p)(X)L(m)y = (1 + p)(X)dy = py,u(X).
Moreover, since M leaves ¢, a and n invariant, we have for each X € p N (¢ @ n),
(m.py,u)(X) = L(m)pw(Ad( “HX) = L(m)l(kr(Ad(m™") X)) ¢y
L(m)e(Ad(m ™)k (X))py
L(m)L(m™)(kr (X)) L(m) ¢y
= f(kI(X) ¢y = pyu(X).

This proves the first part.
(2), (3) Let d.ps denote the Delta distribution at eM on K/M. Then

(3.5) PY (6er)(9) = ar(g™") " (ki(g7))dy € CF(G xk V).
We first obtain

d
(Vo PY G )(@(X) = 2| PY () (exptxy)
dt‘ 7(exp tXl) (u+p)¢y
=0
d

(;L+p)(X1)¢Y = (u+p)(X1)dy.

For j € {2,...,dimp} we write X, = k] ;) +nr(X;) € € @ ng and obtain

(
(Vo By (6ea))(€)(X;) = (V0 By (denr))(€) (kr(X;)) + (V 0 P (denr))(e) (n1(X;))
)

= (Vo Py (dem))(e)(kr(X;))

d
= |, T(exp —thi (X;))oy = —€(ki(X;))oy,

where we used in the second step that P} (d.ar)(n) = ¢y for n € N by (3.5). Thus,

dim p

(Vo PY (derr))e) = (u+ p)(X1)dy @ I(X1) — > L(kr(X;)dy @ 1(X;)

j=2
and therefore

(dV o Py (6enn))(e) = TV ((V 0 P (dear))(e))

dim p
1y (w L (X)dy OIE) — 3 Uki(X,))y © Io?j))-
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By Corollary 3.7 and 3.8, dY o PY has to be a multiple of RY if V' is M-spherical

and 0 otherwise. In particular, we deduce that
dim p

1y (a4 )6y 91T - > (X))o 15, )

is a multiple of P (d.ar)(e) = ¢v. Since ¢y (e) = 1 this multiple is given by
dim p B
1) 1+ )6y 91T - > ko (%) @) .

4. T'-INVARIANT ELEMENTS

In this section we investigate which principal series representations admit I'-invari-
ant distributional elements and, if the representation is reducible, in which composi-
tion factors they can occur. We do not have to assume that the co-compact lattice

< G is torsion free in this section.

Tueorem 4.1 (Location of T-invariant elements). — Let 1 € a*. Assume that the socle
of H,, decomposes multiplicity-freely. Then
"H,; > = Y(socH,)™™ = ® v
V<H, irred.
where the sum on the right hand side is finite. Moreover, for each irreducible V < H,,

the existence of I'-invariant distributional elements in V' implies that V is infinitesi-
mally unitary.

Proof. Note first that H,, has finitely many irreducible subrepresentations by the
finite length of H, and our multiplicity one assumption. We claim that the dual
principal series representation H_, has finitely many irreducible quotients. Indeed,
let H_,,/V, for some subrepresentation V' < H_,, denote an irreducible quotient
of H_,. Then we have that V-« < H,, is a subrepresentation (see Equation (2.5)
for the notation). Moreover, V+-» < H,, is the dual representation of H_,/V and
therefore irreducible. If H_,,/Vi # H_,,/V, are two different irreducible quotients, we
obtain two different irreducible subrepresentations Vll_” =+ V;_“ < H,, by the non-
degeneracy of (-, -)_,. Since there are only finitely many of the latter, H_,, resp. H%,
has finitely many irreducible quotients H_,/Vj, j = 1,...,n resp. HX, /V®, j =
1

N

By definition we have that H > = Homg¢ (H st C) is the space of continuous linear
maps from HZ to C, equipped with the dual representation of H>. This implies

that
(4.1) 'H,; > ="Homc(H?,,C) = Homp(H™,,C).

—p —

Note that HZ, is a nuclear Fréchet space (consider the compact picture and see
e.g. [CHMO0, §2]) and a differentiable G-module. Moreover, C is a differentiable nu-
clear T-module. Therefore we may use Frobenius reciprocity to obtain (see [Zuc78,

Lem. 1.3])
"H ;> = Homr(H™,, C) = Homg (H>,, Ind{">(C)),
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where Ind?’oo((C) >~ C°(T'\G) denotes the representation smoothly induced by the
trivial representation of I'. By [GGPS69, Th., Ch.1, §2.3], there exists a countable
subset G C @G such that Ind?(@) decomposes as a direct sum
Indf (C) = @, g, mr (™),
where each multiplicity mr(7) > 1 is finite. Therefore, if 0 # ¢ € 'H . with
corresponding pp € HomG(HEOH,Ind?’OO((C)), there exists some m € Gr such that
pr.opr # 0, where pr, denotes the orthogonal projection onto one copy of 7 in
Indlg (C). Since pp and pr, are continuous and linear they are smooth. Therefore,
pr, o @r maps H2, into 7. By [War72, §4.4, p. 253|, H, and 7°° are smooth Fréchet
representations. Therefore, the image of pr.. o ¢ is closed and a topological summand
of 7 [Wal92, Lem. 11.5.1 (moderate growth), Th.11.6.7(2)]. Since = is irreducible,
7w is irreducible (see e.g. [War72, p.254]) and therefore pr, o pp is surjective. Now
[Die70, Th. 12.16.8] implies that the canonical factorization H>, / ker(pr, o pp) — 7>
is a topological isomorphism. Since 7°° is irreducible, H> /ker(pr, opp) is irre-
ducible. It follows that ker(pr, opr) = V> for some j € {1,...,n}. Thus we proved
that if pr, opr # 0, then it factors through an irreducible quotient of H,.
Consider the finite set

F={reGr|3je{l,....n}: 7™ > H>, Vi
For m € F with 7 = H2] /V> we set j(7) := j. Moreover, let
Ir={je{l,....n}|3mj =m € F: j(r) =j}.
Then

Home(H,, Indf">(C)) = Homg (H>,, @F mr (7))
TE
mrp ()

@ @ Homg(HZ,, )

el k=1

mrp ()

"8, Homotsy V7 m

& EBFHOIDG(H?M/‘G??),WF(W)W)
e

= @ Homg(HSou/‘/joo,mFOTj)ﬂj)
JElr

IR

1%

o~ g@ Homg (H*, /V°, IndZ > (C))
Jelr
= j@ Homr(HZ, /V>, C)
r
= g@ Homrp((H-,/V;)>,C).
JELir
Note that the dual representation of H_,/V; is given by W; := le"“ < H,,. There-
fore, as in (4.1),
@ Homp((H_,/V;)®,C) = @ "W, .

J€Ir JjeIT
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*

1a; iap

Ficure 1. Parameters p for which H,, has a unitarizable subrepre-
sentation (red) resp. is reducible (dots) for G = SOqg(n,1), n > 2,
(left) resp. G = Sp(n, 1), n > 2, (right). The exceptional set is given
by the red dots except for u = p.

This proves the first part. We now prove the second part concerning the infinitesimal
unitarity. Let ¢ and 7 as above. Then, denoting the K-finite elements by - i, we have
(cf. [Wal92, Cor. 11.6.8])

(HSOM/ ker(pr,, owp))K =

as (g, K)-modules. Since 7 is unitary we infer that H_,, / ker(pr, opr) is infinitesimally
unitary. 0

Note that Theorem 4.1 applies if H, is irreducible. The following proposition shows
that the hypotheses of Theorem 4.1 are in particular satisfied in the rank one case.

Prorosition 4.2. — Let G be of real rank one. Then the socle of H, decomposes
multiplicity-freely for each p € a*.

Proof. — See [Col85, Th. (6.1.3)]. O

ExamrrLe 4.3. — Figure 1 describes the spherical principal series representations which
can possibly contain I'-invariant elements for G = SOq(n,1), n > 2, and G = Sp(n, 1),
n > 2. The unitary principal series is given by p € iaj in both cases and the
complementary series consists of the parameters p with pu(H) € | — p(H), p(H)[
resp. w(H) € | — p(H) + 2,p(H) — 2[, where H € ag as before denotes the unique
element with o(H) = 1 for the unique simple positive real root «. Moreover, H,, is
reducible if and only if u € +(p + Noa) resp. u € £(p + (2Ng — 2)ar) and p is excep-
tional if and only if H,, # H, is reducible and has a unitarizable subrepresentation.
In each case, the constant functions form an irreducible subspace of H, and thus

T(soc H,)=> # {0}.

ReEmARK 4.4. Recall from Theorem 4.1 that
I'rp—oco _ I'rr—oco
H, > = &b U—"°°.

U€elrr(p)
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Choosing (1, V7, ) as in Proposition 3.11 (e.g. a minimal K-type of U) we have by

Proposition 3.10 that each PV |U*°° is injective and therefore

"Hy>>~ @ "PrU™)C @ 'CFGxkVy).
U€lrr(p) U€elrr(p)

We describe the socle in more detail.

Tarorem 4.5. Denoting the set of minimal K-types by Tmin and the Harish-Chandra
module of soc(H,,) by soc(H,)x we have (see Appendiz A for the notation)
G Ex = {p | ¢ €Ny} soc(H, )k Tmin (s0c(H,,,))
SO0(2,1) pe = —p — Lo Dot Ye @Yo {Yo(e41), Yierny}
SOo(n,1), n =23 | pe=—p—la Dize1 Ve {Yera}
SU(n,1),n>=2 | pe=—p—2a @fq:zﬂ Y4 Y1041}
Sp(n, 1), n=2 | pp=—p—(20—2)a B,spsepq Vab {Verre41}
Fy(—20) pe=—p— (20— 6)a Gaﬁ;ﬁ%ffﬁ Vi {Vaes2,0}

In each case, every irreducible subrepresentation of soc(H,,) is unitarizable and has a
unique minimal K -type. For G # SO¢(2,1) the socle is irreducible for all exceptional
parameters. For G = SO¢(2,1) the socle decomposes into two irreducible subrepresen-
tations which are given by discrete series representations.

Proof. — The exceptional parameters can be computed by Example 3.3 and Table 1.
Using [JW77, Th. 5.1(2-4)] resp. [Joh76, Th.5.2(2)] with v = (p—u¢)(H) we have that
soc(H,,) is irreducible and can determine its K-module structure for G # SOy (2,1).
Moreover, [JW77, Th.6.3(1-3)] resp. [Joh76, Th.5.3(2)] show that these socles are
unitarizable. For G = SOg(2,1) the decomposition of the socle follows from [Kna86,
p. 38] with n = 2(£+1), where two (unitary, irreducible) discrete series representations
@;“w ) and Dz_(é 41y oceur. The K-types of these representations are determined in
[Kna86, p.40]. The highest weights of the K-representations needed for the compu-
tation of the minimal K-types are determined in Appendix A. O

Turorem 4.6 (Langlands parameters). — We have the Langlands parameters in the
table below for soc(Hy,), pe € Ex (see Theorem 4.5), in the notation of [Kna86,
Th. 8.54}.(1) Here, the highest weight of the M -representation w is denoted as in
[Bal79, Lem. 4.3, 5.3] for G € {SU(n,1),Sp(n,1)} and as in Appendiz A for G =
SO¢(n,1) (then M = SO(n — 1)). By definition, if S = G, the socle soc(H,,) is
tempered. Moreover, in these cases, it is a discrete series representation if and only
if (H) < —p(H). The Blattner parameter of the discrete series (see [Kna86, Ter-
minology p.310]) is given by its minimal K-type. If pe(H) > —p(H), the socle is
a limit of discrete series representation (this case only occurs for G = Sp(2,1) and
G = Fy—20))-

(DIn the table M = Z Kk (A), as before, denotes the reductive part of the minimal parabolic in
each case.
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G S weM vea
P _ _
SOm.1), n>2 | CUm
Pifn#2 £+ Dey ((n—3)/2)a
P _ ~
SU(n,1), n > 2 Gifn L
Pifn#2 (L+1)(E2—2n) (n—2)a
P — —
Sp(n,1), n > 2 Gifn
Pifn#2 (L+1)(E2+5E3) (2n —3)«
Fy—20) G - -

Proof. — Using the branching rules described in [Bal79] and [Kna02, Th. 9.16] we first
try to find w € M such that the minimal K-type of soc(H,,) is also minimal for the
induced representation Ind;(w). To determine v € a* we compare the infinitesimal
character of the socle, which is the same as that of H,,,,
of the principal series representation corresponding to the pair (w,v). They have to
coincide up to the action of an element of the Weyl group and can be calculated
using [Kna86, Prop. 8.22]. If one of the two steps above does not work, we must have
S = G, i.e., the socle is tempered. In this case [KZ82, Th. 14.2] shows that it has to be
a discrete series representation or a limit of discrete series representation depending on
the infinitesimal character being regular or singular. The connection to the Blattner
parameter follows from [Kna86, Ch. XV, §1, Ex. (1)]. O

with the infinitesimal character

Turorem 4.7. There is a one-to-one correspondence between the representations
soc(Hy,), 1 € Ex (see Theorem 4.5), and the relative discrete series of the associ-
ated pseudo-Riemannian symmetric spaces G/H. More precisely, each of these repre-
sentations corresponds to a minimal closed invariant subspace of L*(G/H) with H =
SOg(n—1,1),S(U1) x U(n —1,1)) X U(n —1,1), Sp(1) x Sp(n — 1,1), or Spin(1, 8)

respectively.

Proof. — In the classical cases the Plancherel formula for G/H is determined in
[Far79, Th.10 (¢ = 1)], where the representations occurring in its discrete part are
described in [Far79, proof of Th.9.2] (note that ¢(s)c(—s) = 0 for s > 0 iff u(H) :== —s
defines an exceptional parameter). Comparing the K-types one recovers our socle
representations, where &, in [Far79, p.399] corresponds to our Yy, Y, . @ Y, , with
2p = l+m, 2q := {—m, or V,, with 2a := ¢+m, 2b := £—m, for G = SO¢(n,1),n > 3,
or G = SU(n,1), Sp(n,1), n > 2, respectively (note that O(n,1), U(n,1) are used
instead of SOg(n,1), SU(n,1) in [Far79]). For G = SOy(2,1) the %, = %* ® %,} in
[Far79] is two-dimensional (%2 is spanned by (z & iy)*) and corresponds to Y; & Y_,
in our notation. For the exceptional case the Plancherel formula can be found in
[Kos83, p. 85|, where 6, should also occur for » = 0. Again, the exceptional points
correspond to the discrete part of this formula and thus again lead to relative dis-
crete series representations by [Kos83, Th. 3.12.1] (in [Kos83, Rem. 3.13.4] (5 and —6g
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are missing). By the definitions of the spherical distributions 6, and (, in [Kos83,
pp. 62, 81] we see that their associated representations are subquotients of spherical
principal series representations and, comparing the occurring K-types (see [Kos83,
Prop. 3.9.4, pp. 71,82]), that they are given by our socle representations. O

5. FOURIER SERIES

In this section we consider spherical principal series representations for exceptional
parameters in the rank one case. Our aim is to find explicit realizations of the uni-
tary irreducible subrepresentations occurring in Theorem 4.1 in the space of smooth
sections of a specific vector bundle. For this purpose we determine conditions the
images of I'-invariant elements under the injective vector valued Poisson transforms
from Section 3.4 have to satisfy (Lemma 5.21). We then prove that these conditions
suffice to describe the image (Theorem 5.30) and use this characterization to give
explicit descriptions of the images in each of the cases listed in Section 6.

5.1. Fourier Expansions. — In the following we describe a generalized Fourier series
that is closely related to the Poisson transform and essentially gives that, properly
interpreted, each f € H,, is the sum of all its Poisson transform images.

Derivition 5.1. — For each Y € Ky, realized in L2 (K/M) (see p.344), let
Ty : OF(G xg Y) — CF(G/M), 7y (p)(gM) = ¢(g)(eM).
Moreover, let D'(G xk Y) denote the dual of C°(G x g Y), where we realize the
dual representation Y of Y as the complex conjugate representation of Y. We embed
C*(G/M) into D'(G/M) by
et CF(G/M) — DG/M). 1ap(NNe) = [ Flad)elad)dg
and C°(G xg Y) into D'(G xx Y) by

by :C®(GxgY)— D'(GxkgY), wy(f)p):= /Gw(f)(g)w;(go)(g) dg.

If it is clear from the context we omit the embeddings ¢, for the sake of readability.
We further define the pullback

Ty 1 D(G/M) — D'(G xk Y), 7y (f)(p) = f(my(p)).
Levva 5.2, — Let f € C*°(G/M) and
pry : L*(K/M)— Y,
denote the orthogonal projection onto Y, € K. For every fixred g € G, the series

S pry. (F(g7),

TEIA(M
where f(ge) € C*°(K/M) is defined by
flge) : K/M — C, kM — f(gkM),
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converges absolutely and uniformly to f(ge). Moreover, we can uniquely decompose
f= Z Iy,
TGIA(M
with fy, € wy_ (C°(GxkY;)) where the series converges pointwise. The functions fy,
are given by

fy, = v, (g — pry_(f(g*)))-
Proof. — By [Hel00, Ch.V, Th.3.5(iii)] we can decompose, for each g € G,
flgo) = > pry. (f(g)),
TEIA{M
where the series converges absolutely and uniformly. In particular, we obtain
flgM) = f(go)(eM) = > pry (f(g))(eM)= > fv,(gM).
TGIA(M TGRM

Note that (g — pry._ (fy)) € C>°(G xk Y;); indeed, for each kzrek,

pry. (F(a)) M) = dim ¥, | (k)i o)

= dimY, /K (b KE) £ (gh™ R M) dk = pry. (f(g+)) (ko M),

where y, denotes the character of 7. For the uniqueness let f =3 __ Ry Y (¢r) for

some ¢, € C*°(G Xk Y;). Then we calculate for each 71 € Ky
pry., (F@) @) = dimYs, 32 [ Sy, (o) (o) ad)
TEI?IVI

—dimY, 3 [ b @)k M) dk = g (0)@M). O
TGI?M

Noration 5.3. — Let
Ty : D'(G xk Y) — D(G/M), 7wy (f)(p) = f(75(p)).

In Lemma 5.4 (3) we will see that this extends the definition of 7y from Definition
5.1.

Lemva 5.4. — LetY € I?M and recall the maps tq/n, ty from Definition 5.1.
(1) 75 (f)(9) = pry (f(g+)) for each f € C*(G/M), g € G, so that
Ty (CF(G/M)) € CF(G xk Y) and my (CF(G/M)) € CF(G xk Y),

(2) f=221crk,, ™. (my._(f)) pointwise for each f € C=(G/M),
(3) my (ey (f)) = tam(my (f)) for each f € C*(G xkY) and
(4) Vpea: Pg/ = (1/dimY)n} 0 Q, on D'(K/M).
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Proof
(1) By Lemma 5.2 we can write f = >_ &y, (ur), where ur € C*(G xk Y7)

is given by u,(g) = pry. (f(ge)). For each p € C*(G xk Y) we use the orthogonality
of the Y, to obtain

J;
/K /K lg)(k) Y mv, (ur)(gk) dk dgK

TGIA(M

/K o(9) (k)ur (g) (k) dk dg K

7y (@) (gk)Ty (uy)(gk) dk dgK

= /GTF?(<P)(9)7TY(UY)(9) dg = ty (uy) ().

Note that if f has compact support supp f € G/M and pr : G — G/M denotes
the canonical projection, we have that supp(r}(f)) € pr~!(supp f) - K is compact
since M is compact.

(2) follows from Lemma 5.2 and (1).

(3) Let f € C®°(G xkY) and ¢ € CX(G/M). By (2) we decompose

= ™, (1%, (9)

TEIA(M

where 7} (¢) € C°(G x g Y). By the orthogonality of the Y; we have

LG/M(W(f))(@:/ () eheloM)dg _/G/K/ Ty (f)(gkM)p(gkM) dk dgK
/G/K EZ /f )(kM)my, (0)(g) (k) dk dgK

N / / F(9) (M) () (9) (k) dk dg K
G/K JK
- /Gﬂy(f)(g)ﬂi(ﬂgé(@))(g) dg = vy (F)(7E(9)) = 7y by () ()-

(4) By continuity (recall Equation (2.4)) we restrict our attention to smooth functions
¢ € C®(K/M). Then the equality follows from Lemma 3.9 and (1) (recall that

Py, (e) = 1). O
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5.2. CONVERGENCE OF GENERALIZED [FOURIER SERIES. In the following we will prove
that the convergence in Lemma 5.4 (2) is uniform on compact sets and that the same
is true for each derivative. Therefore the convergence is a convergence in C°(G/M)
for f € C*(G/M), where we equip C°(G/M) with the inductive limit topology
C(G/M) = limecg/u C&F (G/M), where the limit runs over all compact subsets
C C G/M and we denote by CX(G/M) C C°(G/M) the subset of all functions
which are supported in C.

Let B == {Xy,...,X,,} C go be a basis of gg. For £ € Ny and C' C G compact we
introduce the following norm on C*°(G/M)

¢
ey =D > supl(Xi--- Xuf)(gM)],

k=0 X,,... XeB IEC

where X € gg acts on f € C®°(G/M) by the derived left regular representation

Vg e G (XP)(gM) = | flexp(~tX)gM)

The summand for k& = 0 is understood as not differentiating, i.e., as sup,cc|f(gM)|.
We have the following lemma related to the Riemann-Lebesgue lemma.

Levma 5.5. Let f € C>*(G/M). For each C C G compact, { € Ny and N € N
there exists a constant Cr.c ne > 0 independent of Y. such that

VY, € K llmy, (75, (F)lmece) < Crone - 1+ 7)Y,
where ||T|| denotes the length of the highest weight of Y. Moreover, if f, — 0 in
C*(G/M) we can find Cy, o N such that lim, o Cy, c.ne = 0.

Proof. — For each g € G we have f(gs) € C°°(K/M). By a slight abuse of notation we
will write 7 also for the highest weight of (,Y:). Applying [Hel00, Ch.V, Lem. 3.2]
to C°(K/M) with the uniform norm [s||oc and the left regular representation A
we obtain

(5.1) VY€ Ky, VmeN: |7y (f)(g)lle < Crez™ dim(Y;)*[AQ™) f(g*)

o0y

where

(1) Qis a bi-invariant differential operator on K with

QXT =CrXr

for the character x, of Y; (cf. proof of [Hel00, Th. V.3.1]),

(2) cr =2 1+ A7+ ppee, ™+ preey) — (Plee)s Prey) = 1+ (7,7 + 2pper)), where pre g
denotes the half-sum of positive roots in the semisimple part [¢, €] of ¢, (see [Hel0O0,
Ch.V, Eq. (16) & proof of Lem. 3.2])

(3) C1 > 0 is some constant independent of f, C, N, ¢ and g given by the continuity
of A on C>®°(K/M).
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By the Weyl dimension formula we have

+ )
am(v,) = [ <T<Pw>a>
Plee], @
O‘EA[?E] [&.¢]
where AFE‘ g denotes the positive roots in [¢, £]. Therefore we can conclude that there

exists a constant C' depending only on ¢ such that, for m > my € N large enough,
™ dim(Y;)2 < C- (1 + 7)™V
and thus by Equation (5.1)
VY€ Ku: 7, (£)(9)]leo < CLCIMQ™ ) £(g4) oo - (1 + [I7]*) .
Taking the supremum over C on both sides we hence infer

VY, € Kye supl|nd (£)(9)]loo < C1C sup | A(Q™) f(go) oo - (1 + |72 7.
geC gecC

Note that since the map g — [[A(Q™V) f(g*)|lco from G to Rxg is continuous by the
smoothness of f, the suprema are actually finite. We abbreviate

Crono = C1C sup| A Q™) £(g*)]| o < 00.
geC
Note that the procedure above also works for X - - - X}, f instead of f for X1,..., X €B
and 0 < k < 4. We set
Crone = maX{Ctp,C,N7O |30< k<l 3IX,. ., Xp€B:p=X1-- Xif}
By the definition of 73, we have 7y, Xy Xef) =Xy - 'Xkﬂika(f) for all Xq,..., X%
as above. Finally we obtain that for each Y, € K

sup|(Xy -+ Xpmy, (73, ()(9)] = sggl(ﬂi()ﬁ - X)) (9)(e)]

gel
< sup|lmy, (X1 Xk f)(9)lloo
geC
<Crene (L4777
This proves the first part and the second part follows from the definition of Cy ¢ .
|

Levva 5.6. — Let f € C*(G/M). Then
(5:2) > (73, (1)

TEI?M
is absolutely convergent with respect to each ||s|| ye(cy and converges to f in C°(G/M).
Proof. — Let pr: G — G/M denote the canonical projection. By the definition of
the inductive limit topology on C°(G/M) we have to find a compact set C' C G/M
such that supp(my, (7y. (f))) € C for each Y, € Kjs and such that for each ¢ € Ny

we have that 3z my, (7. (f)) converges to f with respect to ||+l zre(pr-1(c))- As in
the proof of Lemma 5.4 (1) we see that the condition on the supports is fulfilled if we
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choose C = supp(f) - K. Let £ € Ny and N € N be fixed. By Lemma 5.5 there exists
a constant C ¢, n,¢ independent of Y, such that

VY, € K [lmy., (73, () lmeey < Crome - (U4 177N,

Thus we have for each finite subset F' C K v that

DILCATH] I ZFum (w3, (Pl
TE

TeF

(5.3) -
<Crone Y (1+]|7P)7N.
TEF

Let € > 0. Note that the weight lattice of [¢, €] is a lattice in the finite dimensional
space (itg)*, where ty denotes the Lie algebra of a maximal torus T in K , the analytic
subgroup of [€g, £g]. Therefore, we may identify K v with a subset of Z?¢ in R? with
d = dim tg. We infer that if N is large enough, there exists a finite set Fjy C I?M such
that the right hand side of (5.3) is smaller than ¢ for each finite set F C Kj; with
F N Fy = @. Therefore, for each such F,

I mv, (75 () ey < DIy, (75, ()l reoe-1(cy) < Crome - €
TEF TEF

Hence, the series in (5.2) converges absolutely and to its pointwise limit f (see Lemma
5.4 (2)) with respect to [|*|| ¢ (pr—1(cy)- O

We can also decompose distributions.
Lemma 5.7. Let u € D'(G/M) be a distribution. Then the sum
> vy, ()
TGIA(M

converges absolutely when evaluated at a test function and to u in the weak sense.

Proof. — Let f € C°(G/M). For cach Y, € K); we have (see Definition 5.1 and
Notation 5.3)

my, (13, (W)(f) = 73, (W) (75(f)) = u(7s (r3(f)))
and therefore, by Lemma 5.6 and the continuity of u,
> v (75 () = f in CX(G/M) = Y ulrp(rE(f) = ulf).
reRun r€Rm

For the absolute convergence note that u restricted to C*°(supp(f)K) is of finite order
(see [Hor90, Def. 2.1.1]), i.e., there exist £ € Ny and C' > 0 with

Vi € C%(supp(f)K): lu(@)| < Cllll e supp( i) -
Then
7y, (my, (w) ()] = lulry (75 ()] < Climg (75 () e (supp () 56) -
The absolute convergence now follows from Lemma 5.5. |
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Lrvwva 5.8. Fiz¢>0and N e N. If ¢, € C®°(G xg Y;) for T € I?M are chosen
such that

taym(my, () (my (9r)) < e (L+|I7]H)Y

then v =3 & ta/m(my, (7)) is absolutely convergent when evaluated at a test
function and defines a distribution on G/M.

Proof. — We first prove the pointwise convergence of 1) on C2°(G/M). For each test
function f € C°(G/M) we have by Lemma 5.4 (3), Notation 5.3 and Definition 5.1

LG/M(T"YT (W) = 7y, (v (V) (f) = vy, WT)(W%(f))
N /G”YT (We)(9)my, (w5 (£)(9)dg.

-

The Cauchy-Schwarz inequality thus implies that

. GNP < [ oy )@ dg- [ ms (75, (D)) do
For the first factor we obtain

/G\Wn (¥r)(9)1? dg = waym(my, (¥r))(my ($7)) < e (L+ 7)Y

For the second factor Lemma 5.5 implies that for each m € N there exists a constant
C == Cy pr—1(supp(f)) K,m,0 independent of Y7 such that
VYr € Kt Iy, (73, () o or-tsupp(rn iy < C - (L4 [I7]1%)7™
Choosing m sufficiently large we thus obtain that
Y ey, (W) (f)] < o0
TEIA(M

converges absolutely. We now prove the continuity of ¢. Let C C G be a compact set
and (fn)nen be a sequence of functions f, € C°(G/M) such that supp(f,) C CM
for each n € N and || fy| ge(cnry converges to 0 for each fixed £ € No. We have to
prove that ¥ (f,) — 0 (see [H6r90, Th.2.1.4]). Again by Lemma 5.5 we may choose
for each m € N constants CNZ'n independent of Y, such that

VY, € Ky Iy, (75 (fu))llzo(cnry < Co - (L+]||7]H)™

Moreover, by the second part of Lemma 5.5 we may choose the constants CN'n such
that lim,, ,., C,, = 0. Proceeding as above we arrive at

Z |[’G/M Ty, ¢T fn \/; Z 1-|—||7-H (N m)/2 _>0

TeRy reRum

since the series on the right hand side converges for m large enough. |
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5.3. TENSOR PRODUCT DECOMPOSITIONS. In this section we prove a number of techni-
cal results on the K-type decomposition of Y ®p for Y € K. Some of the calculations
have to be done case by case. Those calculations we put into Appendix A to make
the arguments presented in this subsection more transparent.

Noration 5.9. — For V, Y € K we write
VoY <= VYR < YV,
where the second equivalence follows from [BO®96, Rem. 2.8].
Derinition 5.10. — Define the K-equivariant map
wip — C2(K/M), w(X)(kM):=(Ad(k™"X, H),

where H € ag is defined on page 342. Note that w(H)(eM) = 1. For each Y € K
we further define the K-equivariant map

wy Y ®@p — CP(K/M), wy(p®X):=w(X)e.
Let V € K with V < Y. We write
VEY = V<wy(Yop)

Note that V <% Y implies V € K since the image of wy is contained in C> (K /M).
By [BOQ96, Lem. 4.4(c)] we have

VEY &= YOV
We realize V < L?(K/M) and define 7Y € Homg (Y ® p*,V) by
TV Y @p —V, Ty(p®9)=pry(wy(p®1T(©)),
where pry, denotes the orthogonal projection
pry : LA(K/M) 2 @ e, W — V.

If V <+ Y but not V<4 Y we define

TY :Y@p* —V, Ty =pryo(idy @),
with the orthogonal projection pry : Y ® p — V. Since the tensor product decom-
poses multiplicity-freely by Proposition 5.17, there exist uniquely determined homo-
morphisms ¢, € Homg (V,Y ® p*) such that

TY ouy =idy and Ty o1} =0

for each W Y Awith V 2 W. In Proposition 5.14 we give an explicit formula for (¥
in the case V € K),.

Remark 5.11. — By definition we have for each Y € IA(M
Z T‘}/ =Wy O (ldy ®I_1).
R34

In the following we will describe the embeddings +¥ from Definition 5.10 in more
detail.
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Lemma 5.12. Let Y,V € K with V < Y. Then the operator

dim p
DV -—Y®p, O Zpry ) I(X;)

is independent of the basis and K—equwamant. Moreover, the map

dim p

V—V, fr— > pry(w(X;)pry(w(X;)f))
j=1

is a multiple of the identity. We denote the corresponding scalar by A(V,Y).

Proof. — Let k € K and consider Y ® p* as Hom(p,Y) b
Y®@p*=ZHom(p,Y), [fRA— (X — ANX)f).

Then, for f € V,

dim p

Zpry )(k - PYIX;)(X) = pry (@(Xi) (k- f)).

By linearity we obtain <I>(k X)) =pry (w(X)(k- f)) for each X € p. Note that this
expression and thus @ is independent of the basis. On the other hand, note that

and thus
(k- @(f))(Ad(k)X;) = k - pry (w(Xi) f) = pry (k- w(Xi)) (k- f))
= pry (w(Ad(k)X;)(k - £)).

Since Ad(k) X1, ..., Ad(k)Xdimp is a basis of p we have (k-®(f))(X)=pry (w(X)(k-f))
for each X € p. This proves ®(k - f) = k- ®(f) and thus the first part of the lemma.
From Definition 5.10 we recall that

U= pryowy o (idy @I "): Y @p* — V

is K-equivariant. The map in the lemma is given by the composition Wo ®. It is scalar
by Schur’s lemma. O

The scalar A(V,Y") has the following properties.

Prorosirion 5.13 (cf. [BO@96, Lem. 4.4, Th. 4.6]). — Let V, Y€ Ky such that V<.
Then

(2 VEY —= AV, );Ao — ANY,V) #0,
(3) Xpesy AV W) =
(4) A(V,Y)dimV = (Y, )dimY.
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Prorosition 5.14. LetY, V € I?M with V <> Y. Then we have for each f € V
dim p

(5.4) YO = 575 Y ey (elX)) e LX)

Proof. — By Lemma 5.12 we know that the rand hand side of (5.4) is K-equivariant
as a function in f. The scalar A(V,Y") is non-zero by Proposition 5.13. For each
W e K with W < Y and V 2 W, the map T}, ot is an intertwiner between V
and W and thus zero by Schur’s lemma. The normalization by A(V,Y") ensures that
TY 0.y is the identity on V. This finishes the proof since we have multiplicity one by
Proposition 5.17. ]

The following lemma gives a method to calculate the scalars A(V,Y") (see Appen-
dix A).

Lemma 5.15. — The scalar \(V,Y) from Lemma 5.12 is given by
AV,Y) = pry (w(H)ov)(eM).

Proof. — It H=X,,...,Xdimp is as in Lemma 3.13 and H :)?1,...,)?dimp its dual

basis (see Notation 3.12) we may write, for each f € V,
dim p

(5.5) ZL@I )EY @p*

for some f1,..., faimp € Y. In partlcular, we have ¥ (f)(H)(eM) = f1(eM) by con-
sidering ¢}-(f) as an element of Hom(p,Y). By Definition 5.10 and Remark 5.11
we infer

dim p dim p
f= > V() =wy((dy @I () = > wr (X)) =Y w(X,)f;
WY j=1 j=1

Note that, since X; € ¢®n for j = 2,...,dimp and X; € a, the orthogonality of a and
£ n with respect to (-, -) implies w(X;)(eM) = (X, H) =0 for each j = 2,...,dimp
and therefore

f(eM) Z J(eM)f;(eM) = fi(eM) = Y (f)(H)(eM),

In particular, we have for f = ¢y
i (pv)(H)(eM) = ¢y (eM) = 1.
On the other hand, Proposition 5.14 shows that

Y (6v) (H)(eM) = ﬁpry(w(HWv)(eM) 0

Note that, in the situation of Lemma 3.13, we have for V.Y € IA(M with V <5 Y
that
(5.6) TV (pviu)(e) = (u+ p)(H)A(V,Y) + v(V.Y) with v(V,Y) = T¥ (pv, ) (e).
The following lemma allows us to compute the scalars Ty (py,,,)(e) from Lemma 3.13
explicitly in all the rank one cases (see Appendix A).
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Lemma 5.16. Let V,Y € Ky such that V < Y. If {0} # U < H* is a closed
G-invariant subspace such that multgx(Y,U) # 0 and multx(V,U) = 0 we have
1Y (pv,.)(e) = 0 and thus

v(V.Y) = =(p+ p)(H)A(V,Y).
Moreover, forV € [A(M with V < C we have
T (pvu)(e) = 0 <= u(H) = p(H).

Proof. — Let 0 # f € Y < U. Then, by Equation (3.4), we have P} (f)(e)
(1/dimY) pry (f) # 0. On the other hand Proposition 3.10 implies that P} (f) =
Therefore,

0.
0=dy (P, ())e) = T (pvu) () Py (f)(e)

implies that Ty (pv,,)(e) = 0. For u(H) = p(H) we have that the constant functions

form an invariant subspace, proving one direction. For the equivalence note that for

each V € K); with V <5 C, T (pv,u)(e) = v(V,C) + (u + p)(H)A(V,C) is an affine
map in pu(H) with A(V,C) # 0 (by Proposition 5.13.2). O

We have the following multiplicity one result.
Prorosirion 5.17. LetY € K. ThenY ® p* decomposes multiplicity-freely.

Proof. — By [Kna02, Ch.IX.8, Probl.15] it suffices to prove that all weights of
p =g p* have multiplicity one, i.e., if g < £ is a maximal torus we have that t
acts multiplicity-freely on p.

Let us first assume that the ranks rk€; and rk gy coincide. Then t < € < g is a
Cartan subalgebra of g and we have the root-space decomposition

g=ta @ Ja,
a€A(g,t)

where each g,, is one-dimensional. We note that the root spaces g,, are invariant under
the (C-linear continuation of the) Cartan involution 6; indeed we have for each X € g,

VHet: [H,0X]=0[0H X]=0[H X]=a(H)0 = 0X € ga.

Therefore, writing X = (X +6X)/2+ (X — 0X)/2, we obtain g, = (£Ngo) ® (PN ga)
and thus

p= @ (pmga)'

a€A(g,t)
Since dimc(p N ga) € {0,1} we see that t acts multiplicity-freely on p.
Let us now consider the case rky < rk gg. By [Kna02, Prop. 6.60] the centralizer
ho = Zg,(to) = to ® Zp,(to) is a f-stable Cartan subalgebra of go. Our real rank one
assumption shows that ag := Z,,(to) is one-dimensional. For & € A we first note that

X €go = 0X € goa,

where we define (la)(H) = a(6H). Thus, g, + oo is 0-stable and decomposes into a
£- and p-part.
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We claim that if «, o/ € A are two roots with oz|t = o/|t7 then o’ = a or o/ = fa.
If this is true we obtain the result as follows. Let 5 € t*. For 5 = 0 the weight space
of B in p is given by a, which is one-dimensional. For 8 # 0 the weight space of 8 in p

Z 71-(goz + gea),

aEA
al=8

where 7: g — p, X — (X —0X)/2 denotes the projection onto p. Then our claim
implies that there are at most two roots «, o € A with a|y = fa|¢ = §. Therefore,
the weight space of 8 in p is given by the one-dimensional space 7(ga + goa)-

Let us finally prove our claim in the rank one case. By the classification of real
forms it suffices to consider the groups SOg(n,1) with n = 2p + 1 odd (recall that
we are in the case rk€y < rkgo). In this case all roots have the same length and

is given by

this implies our claim since every root a@ € A is determined by its restrictions to t
and a. ]

Remark 5.18. — Note that the proof above requires the rank-one assumption only
when rk gg > rk €. If rk gg = rk &y, more can be said.

Prorosition 5.19. Let tkg = rkt and Y, € K with highest weight 7. Denote the
non-compact roots by A,,. Then the tensor product Y. ® p* decomposes into

Y:op't= @ m(B)Yrg,
BEA,

where the multiplicities m(5) are at most 1 and Y; 3 has weight 7 + 5. Moreover,
we have

m(B)=1 = peS§,
with S ={B € A, | 7+ B dominant} C A,.

Proof. — First we note that p 2 p* by the Killing form. By [Kna02, Prop. 9.72] the
highest weight of each irreducible constituent of Y, ® p is of the form 7 + 3, where g
is a weight of p, i.e., 8 € A,,. Moreover each irreducible constituent occurs at most
with multiplicity one by [Kna02, Ch.IX.8, Probl. 15] since the weight spaces of p have
multiplicity one by the root space decomposition. Since the highest weight 7 + g has
to be dominant we can restrict the sum to the subset S C A,,. O

Prorosition 5.20. — LetY € I?M and V € K withV < Y. Then, for each i € a,
dyoP) #0 = V&Y.

Proof for G # S0¢(3,1)®. — By Lemma 3.13 (3) we see that dY, o P;/ # 0 implies
that V € I/(\'M. Using Proposition 5.13.2, Lemma 5.15 and Lemma A.4, A.9, A.12
resp. A.15 we infer that V <> Y if and only if V <+ Y and V € K. ]

@For G = SO((3,1) we have, for k € Ng, Y, < Yj but Y <5 Y, by Proposition A.6
and Lemma A.4. Realizing Yj explicitly as a subrepresentation of Y; ® p* one can prove that
pry, ((idy ®I71)(py, u))(e) = 0 for each p € a and thus dgj‘c o P:’“ = 0 by Lemma 3.13 (2). Thus,
Proposition 5.20 is also valid for G = SO¢(3,1).
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5.4. CoMPUTATIONS FOR THE FOURIER CHARACTERIZATION. The aim of this subsection
is proving the converse direction in Lemma 3.13, i.e., we want to prove that if the
equations derived from Lemma 3.13 are satisfied for some distribution f € D'(G/M)
we already have f € H, . The precise result is given in Theorem 5.30. It provides
a technique to determine images for Poisson transforms. We start with the following
reformulation of Lemma 3.13.

Levva 5.21. — Assume the setting from Lemma 3.13. Then for each f € H, >

(1) (dy o) (f) =T (pv,)(€) Gy 7 (f) if V' is M-spherical, i.e., V.<L*(K)M
(2) (d¥ om%)(f) =0 if V is not M-spherical, i.e., VM = 0.

Proof. — This is a direct consequence of Lemma 3.13 and Lemma 5.4 (4). O
We consider the ap- and ng-action separately and start with the first one.

Lemwa 5220 — Let p € o and f = Y g 7y, (73 (f)) € D'(G/M) (recall Lem-
ma 5.7) with 73, (f) € C°°(G X Y;) such that the equations from Lemma 5.21 (1)

and (2) hold for [ for every irreducible constituent of Yr ® p* and every Y, € IA(M.
Let X € ag. For each V, Y, € Ky with V < Y, we define

frmx €C(GIM),  frrx(gM) = w7 (x5, (£)(9))(X)(e).

Then, in the weak sense,

07= 3 Y S v,

r€Rm VeSY,
VeKn

where r denotes the right reqular representation of ag on D'(G/M).

Proof. — We first prove that fy,x € C®(G/M). For each g € G and m € M
we have

w (73, (F)(gm))(X)(e) = 17 (r(m™ )7, (£)(9)) (X)(e)
since 71y (f) € (G xk Y;). As 17 is K-equivariant we obtain
wr (r(m™Has, () (9)(X)(e) = w7 (w3, (£)(9)) (m - X)(m)

which equals ¢} (73 (f)(9))(X)(e), since M acts trivially on ag and each element of V'
is right M-invariant.
For each ¢ € C°(G/M) we have (denoting tq/a(f)() by (f,¥))

(r(X)f,0) = =(f,r(X)e) == > (v, (75, (1), 7( X))

TE}?M

= Y (r(X)my, (73, (1)), 9)-

TEIA(M
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In particular, by the absolute convergence from Lemma 5.7, we obtain that
> (X7, (73, ()
TGI?]M

converges absolutely to r(X) f in the weak sense. We will now compute the summands
explicitly. Note first that for each g € G

(r(X)my, (a3 (D)) = 5| 73 (F)(gexptX)(e)

(5.7)
= (((VOWYT(f))(g))(X))(e)'

We claim that

(Vory, (Ng)= D (1, o Ty )((Vomy (£))(9)).
VoY,
Indeed, both sides are elements of Y, ® p* and by Definition 5.10 they are equal if
T (Vo (D)) =1 (X (o TNV o (1)(0))
VY,

for each irreducible subrepresentation W with W < Y,. But this follows from the
definition of the .y, .
Note that, since diy = T" o V (see Lemma 3.13),

YW e Ty (Vo (M9) = D o, (dy (w3, ()(9)-

VY, V&Y,

The equations from Lemma 5.21 yield

(Vomy, (M9 = Y . (dv (7, (/)(9)

V&Y,
= 2 (Y ) @i (1))
V<—>AY
VeKn
= 3 G o 00
VEKM

By Proposition 5.20 it suffices to sum over all V' € Ky with V <5 Y;. Using Equa-
tion (5.7) we thus obtain

(r(X)my, (x5, S T () () (Y, (T () () (X)) )
V(—?\Y
VeKnm
illrrnn)‘// v pYT,u)( )fYT,VX(gM)
V(—}Y
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and r(X)f =32 g, r(X)7my, (73 (f)) equals
dim Y, dim Y,
Z Z dimV V (v, (@) fy, vix = Z Z dimV v (py, u)(€) fy, v.x-

reRn VESY, VeRu VESY,
VeKn TEK M

O

In order to compute the sums occurring in the proof of Lemma 5.22 we write
(5.8) py.u = (b +p)(H)oy @ I(H) + py, -
We first consider the contribution of the first summand in this decomposition.

Lemwva 5.23. LetY € IA(M, Xepandp €Y. Then

312; TV (¢v ® L(H))(e)ey (9)(X)(e) = (w(X)p)(e).

VESY
Proof. — By Definition 5.10 and Lemma 5.15 we have for each V' € K with V&Y
Y (¢v @ L(H))(e) = pry (w(H)ov)(e) = A(V,Y).
Using Proposition 5.13 4 and 5.14 we calculate

jﬁf/ TY (¢v @ I(H))(e)el () (X)(e)
VESY dimp .

-y 3 WY YV va )(e)1(X;)(X)

vESY
dim p B

=3 Y by (w(X)e)(e)L(X;)(X)
vy =1

= > pryw(X)p)(e) = (W(X)p)(e). 0
vESY

For the contribution of the second summand in (5.8) we need some preparation.
This is the content of the following three lemmas.

Lemma 5.24. — Let go be a semisimple Lie algebra, B be some non-zero multiple of
the Killing form k and 0 be a Cartan involution. If Xy, .. Xdlm(po/ao) is a basis of
poN(E Bng) let )~(1, .. Xdlm(po/ao) denote the dual basis deﬁned by B(Xl,X ) =dij.
Then Y30/ X, kr(X;)] € ap and

dim(po/ao)
> B([X),ki(X;)], H) = 2p(H) VH € a.

Proof of Lemma 5.24. — We first claim that Zd‘m(p‘)/uo [X;, k1 (X;)] € po is indepen-
dent of the basis. Let X7,..., X (’hm(po Jao) be another basis with base change ma-

trix (aiz), ie., Xj = >, amjXm. If (bij) denotes the inverse of (a;;) we claim that
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X! =3,bjeX;. Indeed,

B(Z bj[Xf,X{) = B(Z bj[jzz, ZamZXm> = Z bjmami = (S”
L L m m

Thus,
SRS k(K] = 3030 bRk (3 amsXn )| = 30 3K kr (X)) S
; p; 0 m m { J
=S ON Xkt (X)) lome = > (X, k1 (X))
m  / m

is independent of the basis.

We will now construct a convenient basis of pg N (€9 @ ngp). Let 2T denote the set of
positive restricted roots. We may assume that B is a positive multiple of the Killing
form (otherwise —B is of this form and the signs of the X ;’s are flipped). For each

A € ¥ we choose a basis Y, ..., Yd>i\mg)‘ of the restricted root space g* such that

B(Y}),0Y) = —56;% and define
X} =Y} —0Y}, je{l,... dimg'}.
Note that, since
B(X}, X}y = —2B(Y},0V}') = —=2B(Y}",0Y})ox,,

we have that the X?’s are orthonormal, i.e., )?J)‘ = X' By the restricted root space
decomposition, every X € po N (& @ ng) is of the form ), sy Xo — 06X, for some
X, € g*. Therefore, the X;‘, A € Xt form a basis of pg N (€ @ ng). Note that

X3 =2} — (Y] +0Y}) eng @by = ki(X}) = —(Y]' +0Y}).
By the invariance of the Killing form we deduce for each H € ag
B([X), kr(X))], H) = B(X}\, [k1(X}), H]) = B(X}, [H, Y} + 6Y}))
= B(X) \(H) (Y] — 0Y7)) = MH)B(X}, X)) = A(H).

Thus,
dim g*
S BUXN k(X)L H) = S A(H) dimg® = 2p(H).
Arext j=1 Aext
Moreover,

(X3 k(X)) = (X7, ki (X)) = [V) = 0V, () + 0Y))] = 20Y7, Y] € 6° npo
implies that [)Z'])‘, kr(X3})] € ag since g° = mg & dg. O

Levmma 5.25. Let Xq,..., Xdimp be as in Lemma 3.13. Then

dim p _
Y Uk (X5))w(X;) = —2p(H)w(H).

j=2
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Proof. — Since w: p — C°(K/M) is K-equivariant we have

dim p _ dim p _
Z Uk (X;))w(X;) = Z w(lkr(X;), X;]).

By Lemma 5.24, Zd‘mp[ kr(X;), X;] is an element of ag and therefore a multiple of H.
Let A € R denote thls multiple. Then Lemma 5.24 implies that
dim p _
A= (\H H) =Y ([ki(X;), X;], H) = =2p(H). O
=2

Lemma 5.26. LetY € IA(M and X € p. Then

Z dlmviv {Zp(H)¢Y : X =H,
VESY

(pv,—p)(e)ty (pv)(X) =
dimy v Pvi-p) @)y (9v)(X) 0(k(X))dy X La,
where the bar denotes complex conjugation.

Proof. — For each ¢ € L?>(K/M) we have by orthogonality and Proposition 2.2 (2),

oy _ by
(by, by ) 2(K) >L2(K) B <¢7 (v, dy) L2(K) >L2(K)'

Therefore, since w(X), X € po, is real valued (third step) and using the product rule
and Lemma 5.25 (fourth step), TV (pv,—,)(e) equals

(5.9)  pry()(e) = (pry (),

dim p

= Z pry (w kr(X;))¢v)(e)
dim p

= - X, Ny P

_ <JZ:; (X1 (X)) v, <¢Y’¢Y>L2(K)>L2(K)
¢>—Y>
(by, by )L2(x) / L2(K)

dim p

== > (ki (X)) pv,w(Xy)
j=2
= (év, ~20(H)w(H)

dim p

+ (o, D w(X) ki (X,))

=2

by >
(v, by ) 2Ky / L2(K)
3% >
(v, by ) L2 (k) / L2(K)

Applying Equation (5.9) for V and Proposition 2.2 (3) we infer dim V-TY (py,—,)(e) =
dimY - T (—py,,)(e) and thus

> 3ﬁgmb¥(¢v)(?{)= ST T (—pyp) (@) (6v)(X).
V<—>Y

VeSY

Note that T (—py,,) € V is left M-invariant since py,, is left M-invariant by Lemma
3.13(1) and TY : Y ® p* — V is K-equivariant. Therefore it is a multiple of ¢y and
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we have T, (—py.,) = T (—py.p)(e)py. We infer that

> TV (—pyp) (@ (3v)(X) = Y (T (—pv.p))(X) = —py,p(X).
VESY VESY

The lemma now follows from the definition of py,,(X). O
We are now able to compute the contribution of the second part in (5.8).

Levva 5.27. — Let Y € Ky, X € p and p €Y. Then

“2p(H)ple) X =,
—(Ukr(X)p)e) X La.

dimV

dim YTY (pv,—p)(€)ey (2)(X)(e) :{

VESY
Proof. — Note first that Proposition 5.14 implies that
dimV TV ( dim V Y (v ) (e) pry (w(X))(e)

Y
dimY Ty (pv.- p)( )y (@ dimY Ty (
VeSY VeSyY

By Equation (5.9) we infer that
1

> Sy TV v ) g e @(0)2)(6)
VSyY

B dimV Y 1 v
B v§<—>:y dimY Iy (pv=0)(€) X7y AY, V) <w(X)(p7 (dv, dv)12(K) >LQ(K)

B dimV e s v
=(» X aimy 1 (Pvi-o)(€) Ty w(X) <(Z)V,¢V>L2(K)>L2(K)
V<Y
dimV e v
Spver( dle Y pV P)( )A(K V) W(X <¢V>¢V>L2(K))> (K)

where the last equation follows from ¢ € Y and the orthogonality of the K-types.
Using Proposition 5.14 and Proposition 5.13 we deduce that

dlmvi 1 Pv
o (2 oy B v 57790 o)
VeSy
B dlmvi 1 v
a dle Y (pv.—p)(e ))\(Y, V) er(W(X)m)
- dlmVi)\(V,Y) v by
N Z dimY Ty (pv—p)le ))\(Y,V) LY(<¢Va¢V>L2(K))

y W&(ﬂ)“

" dv, V) L2 (k)
VESY
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Finally Proposition 2.2 (3) and Lemma 5.26 imply that

> Wov DO (i )

VESY
— 1 Py, dy)L2(K) m——— v
= <¢Ya ¢Y>L2(K) ; <¢V7 ¢V>L2(K) TY (pv,—p)(e) LY(¢V)(X)
V&Y
1

— dmV ——— v
(v, dv)Le) ng dimy Ly (Pvip)(e) by (év)(X)

1 Sop(H)dy i X =1,
oy Oy 2 |0k (X)dy X L.

Summarizing, we have for X = H

dimV Py
ng Gy TV )@ W0 = ~20(H) (0 =) |
— —2p(H)¢(e)
and for X € pwith X L a
S IRV )6 F@(X)(e) = (o, bk (X)) 7o)
S dle Y —r v ’ <¢Y, qﬁy)Lz(K) L2 (K)
¢y

= (kX))o Py -
= —(t(kr (X)) e). O

We are now ready to prove the Theorem 5.30.

Prorosition 5.28. In the setting of Lemma 5.22 we have
r(H)f = (u—p)(H)f.
Proof. — By Lemma 5.22 and Proposition 5.20 we have
dimV
f_ Z Z dl Y }‘// leL)( )fV,T,H7
TeRn VESY,

with (for g € G) fvru(gM) = 137 (73 (f)(g9))(H)(e). Lemma 5.23 and 5.27 imply
that

> G T v (@4 (55, (D0) (D))
v, = (u+ D) (H)7F, ({a)(e) — 20(H), (1)) (0
= (= P)(H), (()(e)
= (1~ O)(H)y, (. (F)(9).
Thus, r(H)f = 5., (0~ ) (H)3 (5 () = (u = p)(H)f 0

JIEP. — M., 2023, tome 10



SPECTRAL CORRESPONDENCES FOR RANK ONE LOCALLY SYMMETRIC SPACES %77

Prorosirion 5.29. Let p € a* and f =3 g v (73 (f)) € D'(G/M) (recall
Lemma 5.7) with 73, (f) € C®(G xg Yr). Suppose that the equations of Lem-
ma 5.21 (1) and (2) hold for f for every irreducible constituent of Y; ® p* and every
Y, € I?M. Let Uy € C*°(G xp n) be a smooth section. Then Uy f = 0.

Proof. — Note first that
Usf= Y Usny, (a3, ()
TEIA(M
Let X1,..., Xdimn be a basis of ng. Then there exist functions x; € C°°(G) such that

dimn

Ui(g) = Y ri(9)X; Vged.

j=1

Writing ko (X;) resp. po(X;) for the € resp. p-part of the Cartan decomposition of Yj,

we define
dimn dimn
Ut(g) = > rilgkc(X;), UL(g)=>_ r;j(9)pc(X;).
j=1 j=1

Note that, by definition of Uy and since M preserves the Cartan decomposition,
we have

Us(gm) = Ad(m™")Us(9), Ut (gm) = Ad(m~")U(g), U? (gm) = Ad(m~ U (g)

for each g € G and m € M. We have

Uiy, (73 (P)gM) = ) ri(9)—| v, (3 (f))(gexpthe(X;)M)

_ v, (F)(gexptke(X;))(e)

(5.10) == > w9 (ke (X)), (f)(9))(e)-

For the p-part we obtain

Uiy, (m3, (M) (gM) =} Ki(9)—

o= (1, () (g exp tpe (X5) M)

=Y )| (e tne(x)e)

= D #i(@)(((Vomy, (H))(9)(po(X;)))(e).
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As in the proof of Lemma 5.22 we infer that

Ubmy, (w3, (f))(gM)

dimn
=Y w0 Y WY @, (i () 0) (e (K)))(e).
J= VLY,

If we define
dimn
Uyy, € C¥(G/M), Wyy, (M) =Y r;i(g)y. (i (£)(9) (pc(X;))(e)
j=1
we thus have
dim Y,
U Ty, 7TY Z TV V pYT,u)(e)‘I’V,YT-
V<—>Y
Therefore
. » dim Y, y
Ubf= 3 Ulmn(.(N)= D D g v vy,
Y,eRm r€R M vy,

dim Y;
Z Z IV Ty (py, 1) () ¥vy..

VeRu VESY,

Finally Lemma 5.23 and 5.27 imply that, for V € I?M fixed,

dim Y,
> TV Ty (py, 1) (€)Wv,y, (gM)
VS,

dimn

PILLP3 ‘fif;}; ¥ (o ), (1 () 0)) (pc (X)) €)

(511) dimn
= > 5(9)(=Lki(po (X)) (£)(9))(€)

j=1

dim n

= Z K5 (9) (ke (X;))m () (9))(e).

Jj=1

Combining Equation (5.10) and (5.11) we infer

dim Y,
Upf=ULf+ULf= > Ulmv(mp (M) + Y. Gy TV (oven)(€) vy, =0,
VeRy vy,

O
Tueorewm 5.30 (Fourier characterization of spherical principal series)
Let p € a* and f = 3 g 7y, (3. (f)) € D'(G/M) (recall Lemma 5.7) with

7y (f) € C°(G xx Y;). Suppose that the equations of Lemma 5.21 (1) and (2) hold
for f for every irreducible constituent of Y- @p* and every Y, € K. Then feH,™
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Proof. This follows from Proposition 5.28, Proposition 5.29 and the characteriza-
tion R(p — p) of H, > from (2.3). O

Lemva 5.31. — LetY € Ky and f € C™(G xk Y). Then, for each g € G,

dim p
S N =Y wE)EENN9).
VESY J=1

Proof. — By definition we have (Vf)(g9) = Z?i:rqp(r(Xj)f)(g) ®I(X;) € Y ®p*.
Therefore,
dim p

(wy o (idy ®T))(V1)(9) = Y w(X;)(r(X;)f)(g)

=1

and by Remark 5.11 and the definition of the generalized gradients d"; = T‘}/ oV
we obtain

dim p _
Y AN = Y w(X) (X)) (9)- O
vy J=1

Levvia 5.32. — Let VY €Ky withV <5 Y, 0eC®(Gx g Y) and 1 € C® (G x V).
Then, if one side exists,

<7TY(<P)’7TY(d¥(¢))>L2(G) = _<7TV(d§(<p))v7rV(¢)>L2(G)-
Proof. — Note first that if Y # W € K and n € C®(G xx W) we have
(mv (@), 7w (n)r2(c) =0
by splitting the integral into G/K and K. Therefore we obtain

(my (9), Ty (@Y @) 12y = (nv(9), 3 mw(dl ()

— L2(G)
W<—V

Evaluating Lemma 5.31 at eM € K/M yields (since w(X;)(eM) =0 for j > 2)
> mw(din () = r(H)my ().
WSV
Together we conclude that

(my (@), 7y (dy (¥))) 26y = (my (@), 7(H) v (¥)) L2() = —(r(H)my (9), 7v (¥)) L2 @),

where we used the right-invariance of the Haar measure on G. The same argument
yields

(r(H)my (9), mv (¥)) 2() = (mv (dy (), v (1)) 2() - O
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6. SpECTRAL CORRESPONDENCE

In this section we describe the image of the minimal K-type Poisson transforms
occurring in Proposition 3.11 restricted to the socle. This will yield a quantum-
classical correspondence for the first band by Remark 4.4. The characterization of
the Poisson images require some case by case calculations to decompose certain ten-
sor products. We put these calculations into Appendix A to make the arguments
presented in this section more transparent.

6.1. Tue Cask or G = SOg(n,1), n > 3. By Propositions A.6 and A.7 we have for
each k € Ny

V@p " 2Y, 1 @Y @V ifn#3, YeRp* 2V 10Y180Y, ifn=3,

where Vj, with highest weight ke; + eq, is not M-spherical. We define generalized
gradients dx‘;’f = T‘)//’“ o V with T‘),/k € Homg (Y ® p*, V) as in Definitions 2.4, 5.10
and abbreviate

dy = d%::il, D= d%;’; resp. D= d?;

for n # 3 resp. n = 3. Let u = —p — la € Ex, see Theorem 4.5, be an exceptional
parameter and recall the structure and properties of soc(H,,) from Theorem 4.5. Using
Proposition 5.20, Proposition 5.13.2 and Remark A.5 we infer for each k € Ny

VY, = difoPlr =0 and VSY < Ve {Yio1, Vi)

if Yi_; exists®. Therefore,
Do PY* =0.

By Theorem 4.5 the minimal K-type of soc(H,,) is Ye11. Since
d o P;/Hl — T;//;‘Fl (pY£+1,ﬂ)(e)P:Z

by Lemma 3.13(2), and since Proposition 3.10 implies that Plf‘f (soc(H,))-= — 0,
we obtain

d_o Pyt =0.

|(SOC(HH))_OO
Summarizing, we have

Pt (soc(Hy,)) ™ — {f € C%(G xx Yeyr) [d-f =0, Df = 0}.

We will now investigate which K-types p with highest weight pie; + -+ + pmenm,
m = rkt = [n/2], occur on the right hand side. Applying [DGKS88, Th.6] to the
minimal K-type 7 := Y41 (with highest weight (¢ 4 1)e;) of soc(H,), we find that
p; = 0for j > 1, u1 > £41 and that each p of this form occurs with multiplicity one.
Therefore, the highest weights of the K-types in {f € C®(G xg Yyy1) | d-f =0,
Df = 0} are given by ke; for k > £+ 1. Since Y}, has highest weight ke, these K-types
are exactly the same as the K-types of soc(H,,) (see Theorem 4.5). Hence, we have

(soc(H,))x = {f € C™(G xx Yey1) | d_f = 0, Df = O},
G)For k =0 we only have Y7 on the right hand side of the second equivalence.
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where the K in the index denotes the Harish-Chandra module. We can now use the
Casselman-Wallach globalization as in [O1b94, Satz 4.13] to lift this isomorphism to
distributions; since the reference is not readily available we added the proof in The-
orem B.3. We infer that the Poisson transform P,y“l yields an isomorphism (similar
to the scalar case, see Equation (3.1), Definition 3.1) from (soc(H,))~ > to

{f € C®(GxkYen1) |d-f =0,Df = 0,37 > 0: supyegle /w95 f(g)] < oo}
In particular, we have the following correspondence for the I'-invariant elements.

Tueorewm 6.1 (Spectral Correspondence). — Let Ex 3> u = —(p + fa), £ € Ny, be an
exceptional parameter. Then the socle soc(H,) of H, is irreducible, unitary and its
K-types are given by Yy, for k > €+ 1. The minimal K-type is Yyy1 and the corre-
sponding Poisson transform induces an isomorphism

P:“l: Hsoc(H,)) ™ 2 f € C™°(G xk Yiq1) | d_f =0, Df = 0}.

Proof. — This follows from the discussion above and the fact that each I'-invariant
function fulfills the growth condition (for each r > 0)

sup|e™ e/ (K05 f£(g)| = sup|erde/x (K9 £ (g)] < oo,
geqG geTF

where F denotes a fundamental domain of I'\G (note that the latter is compact by
assumption). O

ExamrLre 6.2. For the first exceptional parameter y = —p we get (Y7 & p*)
PX,: H(soc(H )™ = {f € C*(A(T\G/K)) | 6f =0, df =0},

where AY(I'\G/K) denotes the bundle of one forms and (& resp.) d is the (co)-
differential. The dimension is given by the first Betti number b, (I'\G/K) in this case.

Remark 6.3. — Given the previous example, a general geometric characterization of
the occurring generalized gradients would be desirable. At the moment, in general
we can only describe them in terms of Schur orthogonality.

6.2. Tue Case or G = SU(n,1), n > 2. — By Proposition 5.19 and Remark A.11
we have for p,q € Ny

Y;hq ®p* = EB Yp,q,ﬁv
BeS

where S = {£(e1 — ent1),€2 — €nt1, —€n—1 + €nt1, t(€n — eny1)} C A,. The
representations V; resp. Vo with highest weights geq + ea — pe,, + (p — ¢ — 1)ent
resp. ge1 — en—1 — pen + (p — g+ 1)e, 41 are not M-spherical. In this notation we have

Y q®p 2Y, 1 @Y 1,0® Y1 @Y1 ®@VIB VS
whenever these representations exist (i.e., whenever the corresponding weights of
Y, .5 are indeed dominant). We define generalized gradients d‘};"’q = T‘)//p’q o V with
Ts,/”"‘ € Homg (Y, ® p*, V) as in Definition 5.10 and abbreviate

Ay = dire dis=d

Ypti1,9’

Yp-,q
Yp,q21?

D; = d%q, j=1,2.

JIP — M., 2023, tome 10



382 C. ArenDs & J. HiLGERrT

Let u = —(p+20a) € Ex, £ € Ny, be an exceptional parameter and recall the structure
and properties of soc(H,) from Theorem 4.5. Using Proposition 5.20, Proposition
5.13.2 and Remark A.10 we infer

Vb Yy, = d/"oPri=0 and V3Y,, = Ve Vi Yoo

whenever the occurring representations exist. Therefore, for j € {1, 2},
(6.1) DjoPYre =
The minimal K-type of soc(H,) is given by Yy11 ¢+1 (see Theorem 4.5). By Lemma

3.13(2),

Yot1,041 _ mYet1,e41 Yo e41
d7:1 o PH = TYz,Hl (pYZ+1,Z+1;H)(e)PH ’

Yot1,041 _ mYot1,e4+1 Yoii1,e
d—,2 0 Pﬂ = TYZJFL,Z (pY£+1,2+17H)(e)Pﬂ :

Since Proposition 3.10 implies that PI““ |(soc(t,,))~= =0 and P:“l’g |(soc(H,))~= =0,
we obtain that, for j € {1,2},

d_jo By ety =

Summarizing, we have
(6.2) Pyt (soc(H,)) ™™

— S € OF(G Xk Yepr41) [ d- ;[ =0, Djf =0, j € {1,2}}.
We will first present a method similar to the case of G = SOg(n, 1). For this method
we have to assume n # 2 and £ # 0. Then [Mea89, Eq. (2.7.3), (2.7.4), Lem. 6.2.1,
Prop. 6.4.6] imply that the highest weights of the K-types on the right hand side
of (6.2) are given by p'e; —¢'e, + (¢’ — p')ent1 withp’ > £+ 1 and ¢’ > £+ 1, each
occurring with multiplicity at most one. By definition, the corresponding representa-
tions are Y, , for p,q > £+ 1. Since the Poisson transform P, *"**' is injective by
Proposition 3.11, each K-type of the socle (see Theorem 4.5) has to occur in its image
(restricted to the socle). Therefore the K-types of

{feC®(G xg Yog1041) |d_jf =0, D;f =0, je{1,2}}

are given by Y, ., p,q = £ + 1, each one occurring with multiplicity one. Hence,
we obtain

(SOC(HM))K = {f S COO(G XK }/ZJrl,EJrl) | d,’jf = O7 Djf = O, j S {1,2}}[{.
Proceeding as in the case of G = SOg(n,1) we find

Tueorem 6.4 (Spectral Correspondence 1). — Let n# 2 and Ex 3 p= —(p+20a),
¢ € Ny, be an exceptional parameter with £ # 0. Then the socle soc(H,) of H, is
irreducible, unitary and its K-types are given by Y, , for p,q > £+ 1. The minimal
K-type is Yy11,041 and the corresponding Poisson transform induces an isomorphism

By Hsoe(H,)) >
= Hf € 0%(G Xk Yerre41): dojf =0, Djf =0, j € {1,2}}.
Proof. — See Theorem 6.1. O
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In order to treat the remaining parameters (n = 2 or £ = 0) we will use the Fourier
characterization of the principal series. The following lemma is based on Lemma 5.8.

Levya 6.5, — Let p = —(p+ 2la), £ € Ny, an exceptional parameter. Let ¢, 4 €
C®(GxkYyp,q) forp,q = +1 be such that the equations from Lemma 5.21 are fulfilled
(with ¥y q instead of w3, (f)). Assume that Ty, . ., (VY1 en) € CF(G) has finite
L%-norm. Then the form;zl sum

[= Z LG/M(WYp,q(wp,q))

p,q=f+1

defines a distribution on G/M.

Proof. — We abbreviate T21:01 = T, :21 - (PYy,.0,..)(€) € C. It suffices to prove the
estimate in Lemma 5.8. Using Lemma 5.32 (second step) and the equations from

Lemma 5.21 (first and third step) we infer for the L? inner product

dimY, , 1
||7Typ,q(wp;q)||2 dimY, 1 Tp 1,q <7TYP,q (wP,Q)’ 7-‘-Yp,q(d‘i'71wp_17q)>
p—1,q
dimY, 1
T — - <7TYp71,q(df,1wp,q)v7TYp71,q(wp7Lq)>

p—1,q
dimY,_1,4 5,

_ dimY), 4 )2 T;”_‘IM
o (dimypfl,q Tz’iZl?q <7TYP*1)4(¢I’_17‘1)’Wypfl»q(q’bp_lvq»'

By Proposition A.18, Remark A.10 and Remark A.11 this equals

(n+p—2)(n+p+q—1) n+p ” (v )H2
p(n+p+q—2) p—1— ¢ emraPrtalll

Iteratively applying this equation we find that for each m € Ny

I3 Wema I
_H n+l+r—-2)(n+Ll+r+qg—1)n+Ll+r
B st l+r)(n+Ll+r+qg—2) r—1

||7TY[,+1,q (¢£+1,q)||2~

The latter product equals
m+l4+m+qg—1(n+L+m—2)(L+1)(n+ L+ m)!
(n+L+q)(n+€—D)(L+m)(m—1)(n+L+1)!

17Yesr g (Vet1,0) 117,

which grows polynomially in m (in fact it is O(m?"**)). Interchanging the roles of p
and ¢ this proves the estimate in Lemma 5.8 and therefore the lemma. (|

Tueorem 6.6 (Spectral Correspondence 2). — Let Ex 3 u = —(p + 2¢a), £ € Ny,
be an exceptional parameter. Then the socle soc(H,,) of H,, is irreducible, unitary and
its K -types are given by Y, , for p,q = {+1. The minimal K -type is Y1 041 and the
corresponding Poisson transform induces an isomorphism from : Y(soc(H,))™ onto

u € C®(G xk Yir1,041) | properties (i)—(vi) below},

where the properties are as follows.
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Foru € C®(G Xk Yot1,041) let Yoy1 041 = dim Yy o471 - v and define recursively
forp,g =€+ 1 (see Lemma 5.21)
dim Yp,ZJrl 1

= d _
Uptt dim Yy, 1,041 T;?Zii“l L
dimY, 4 1
= : d _
¢p’q dim}/p,q—l T;;)’gil +,2¢p7q 1
where we abbreviate TP 0} = T;:: :; (Py,, 4,..)(€) € C. Then we define the properties
dimY,
; _ g p.q
(i) dy1¥pq =T\ 4 dimY,s1, Vpt1,q) (p=2l+1, g=0+2),
dimY,
. _ 7P pq
(ii) d_1tp,q = Tpfl,q m VYp—1,q5 (p=2Ll+2, g=0+1),
(111) d7711/)£+1,q =0, (q =L+ 1)7
dimY,
; X P.q
(iv)  deptpg =15, dmY,, Yp,g—1s (p=l+1, ¢=0+2),
(v)  deatbpes =0, (p=>l+1),
(Vi) Dﬂ/}p,q =0, (p7q >l+1, je {172})
Proof. We first prove that the Poisson transform maps into the claimed space.
If u = Py (f) for some f € (soc(H,))~> we have Y1041 = 7y, . (f)

by Lemma 5.4 (4). Properties (i), (ii), (iv) and (vi) are exactly the equations from
Lemma 5.21. To prove the third property we note that

dsbenrg = oy, () = TE S, (1) =0,
since the socle does not contain the K-type Yy . Similarly we see that property (v)
is fulfilled. Since the Poisson transform is G-equivariant it preserves I'-invariant ele-
ments.

For the surjectivity let u € TC°(G X ¢ Yy11,0+1) with the desired properties. Define

f= Z va/m(my, , (Vpq))-
p,q=L+1

By Lemma 6.5, f defines a distribution on G/M (note that, since I' is co-compact,
the norm |7y, ,., (¥yiis o0 )ll22(c) s finite). By Theorem 5.30 we have f € H, >
and since there are only terms for p,q > ¢ + 1 in the defining sum for f we also
have f € (soc(H,)) . Since each 1, , is I'-invariant and each involved map is G-
equivariant, f is also I-invariant. The orthogonality of the K-types implies

7Tik’z+1,tz+1 ( Z LG/M(WYp,q(QZJqu))) = Z LG/M('R—Yp,q("/)p,q)) OTMYoi1 041 — 0

p,q€J p,q€J
for J == {(p,q) € N§: (p,q) # ({+1,£+ 1)} and
Wik’Hl,Hl ([’G/M (7TY£+1,£+1 ("/’€+1,€+1))) = W1 041 ("/}Z+1,€+1)

(see Definition 5.1 for the relevant definitions). Using Lemma 5.4 (4) again we obtain

Y, 1 . 1
Py (f) = Ter o0 (F)

=— Yor1,e01 = U O
dim Yo4 1,041

dim Yo41,041
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6.3. Tue Case or G = Sp(n,1), n > 2. By Proposition 5.19 and Remark A.14
we have for each a,b € Ny with a > b

Vab @9 " =Vor10BVor10® Va1 Vap1® D Vapg.
Bes
Va,b,ﬁQIA{M
We define generalized gradients d“;“’b = T“,/“’b oV with T“//“’b € Homg (Vo p @ p*, V)
as in Definition 5.10 and abbreviate

" Van
dl’i '_ dVail,b’

Va,b
Va,b+1?

Va,b

dg)i = d Vab g

Dg =d

for each g € S with V, ;5 ¢ K. Let = —(p+ (20 — 2)a) € Ex be an exceptional
parameter and recall the structure and properties of soc(H,,) from Theorem 4.5. Using
Proposition 5.20, Proposition 5.13.2 and Remark A.13 we infer for each a,b € Ny with
a=b

Vb Vo = Ay o Py =0
and V&S Vo <= V€ {Vas1, Va1, Vapt 1, Vap—1}
whenever the occurring representations exist. The minimal K-type of soc(H,,) is given
by Viet1,e+1 (see Theorem 4.5).
The spectral correspondence in the quaternionic case is established by using the

Fourier characterization of the principal series (see Theorem 5.30). By Lemma 5.8 we
obtain the following result.

Levva 6.7. — Let p = —(p+ (2 — 2)a), ¢ € Ny, an exceptional parameter. Let
Yap € CP°(G xXx Vo) for a,b = €+ 1 be such that the equations from Lemma 5.21
are fulfilled (with v, instead of 7y, (f)). Assume that v, .., (Vv 00,) € CF(G)
has finite L?-norm. Then the formal sum
f= Y emmv,, @)
azb>l+1
defines a distribution on G/M.

Proof. — We abbreviate T(f;é’; = T“,Z’ ;’:21 (PVa, 0,..)(€) € C. It suffices to prove the
estimate in Lemma 5.8. Using Lemma 5.32 (second step) and the equations from
Lemma 5.21 (first and third step) we infer for the L?-norm as in Lemma 6.5

I”.

a,b
dimV,, \2 T~
Ilwva,b(wa,wu?:_( m Va,b ) Ta 1b

dim Vafl,b ;;Lb ||7TVa71,b(¢Uz—17b)

By Equation (5.6), Proposition A.18 and Proposition 5.13.4 we have
Ty —2n41—a—0 AVap,Va1s) —2n+1—a—€dimV,_y,

ngl,b - a—/V )\(Va,by Vafl,b) B a—/ dim Va,b

and thus
2n—1+a+¢ dimV,,

2
a—/ dimVa_l,b || ’

17V, (Yap)I* =

Hﬂ-va—l,b ('L/}afl,b)

JIP — M., 2023, tome 10



386 C. ArenDs & J. HiLGERrT

Iteratively applying this equation we infer that for each m € Ny

m

H7TVe+m,b (¢€+m,b) ||2 = H

r=2

M —14+20+r dimViy,y
r dim Vg r—1p

17Vess o (e1,0)”

17Visr 0 (e 1) 1%

~dim Vi ﬁ 2n—1+20+7r

dim Vi1 5 T

Note that

T  m!(2n +20)!

ﬁQn—l—F%—i—r (2n — 1420+ m)!
r=2

is O(m2"~1+2%). Moreover, the dimension formula from Remark A.14 shows that
dim V4, grows at most polynomially in m. A similar argument works for the b-vari-
able. ]

Tueorem 6.8 (Spectral Correspondence). Let Ex> p=—(p+ (20 — 2)a), £ € Ny,
be an exceptional parameter. Then the socle soc(H,,) of H,, is irreducible, unitary and
its K-types are given by Vo for a > b > £+ 1. The minimal K-type is Vi1 041 and
the corresponding Poisson transform induces an isomorphism from : Y(soc(H,))™*>
onto

N € C®(G xx Vig1,041): properties (1)-(v) below},

where the properties are as follows. For uw € C®(G Xk Vit1,41) let Yop1,041 =
dim Vog1 ¢+1 - w and define recursively for a > b >+ 1 (see Lemma 5.21)

dim Va /+1 1
Va1 = = : dy1ta—1,641,
+ dim Vo141 T;Zii“l ’ o
dim Va b 1
a,b = - d a,b—1;
Vb dim V,, p—1 T(f’lf_l 2%
. a Vay. .

where we abbreviate Ta;,f; = TVa;bb; (PV., s, ,)(€) € C. Then we define the properties

dim V,
. a,b a,b
1) dpavapr =T,30, dim V1o Var1p, (a=b=>0+2),

dim V,
. a,b a,b

— b MM Vad > >

(11) d—,lwa,b Ta—l,b dim Vafl,b wa—l,ba (a 2042, b=+ 1),

dim V, b
d_ " :Ta,b o rab b >b>£ 2’
(iii) 2%ab @51 dim Vi py Yap-1, (a +2)
(IV) d—,Qwa,€+1 = 0, (a 2 f + 1),
(v) Ay as =0, (a=b2l+1, V& Ve, VERy.

Proof. — The proof is analogous to the prove of Theorem 6.6. O
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6.4. Tur Case or G = Fy_a0). By Proposition 5.19 and Remark A.17 we have for
each m, k € Ny with m > k and m = k mod 2
Vi @9 Z Vit 1541 B Ve 1,51 B Vit 1,61 @ Vip—1 k11 @ D Vs
pes
Vm,k,B€I?M
We define generalized gradients dg"””“ = T“//m”“ oV with T“,/""’“ € Homg (Vi 1, @9*, V)
as in Definition 5.10 and abbreviate

AV " 1Vm, o AVmk
dl’i — deikl,kiN dQ’i '_ dejfl,k:Fl’ Dﬁ — de,:ﬁ
for each 8 € S with Vi, p & IA(M. Let p = —(p+ (20 — 6)a) € Ex, £ € N,

be an exceptional parameter and recall the structure and properties of soc(H,,) from
Theorem 4.5. Using Proposition 5.20, Proposition 5.13.2 and Remark A.16 we infer
for each m > k € Ny with m = k mod 2

van,k,

Vb Vir = A" o P/ =0 and V&V <= Ve {Viaige}

whenever the occurring representations exist. The minimal K-type of soc(H,,) is given
by Vagia,0 (see Theorem 4.5).

As in the quaternionic case we use Theorem 5.30 to prove a spectral correspondence.
By Lemma 5.8 we obtain

Levva 6.9, — Let p = —(p+ (20 — 6)a), ¢ € Ny, an exceptional parameter. Let
Ymp € CP(G Xk Vipg) for m = kmod 2, m — k > 2({ + 1), be such that the
equations from Lemma 5.21 are satisfied (with Y y instead of my,  (f)). Assume
that Ty, s 0 (Wvapyao) € C(G) has finite L?-norm. Then the formal sum

f = Z la/m (71'\/,,”,;C (¢m,k))

m—k>20+2
m=k mod 2

defines a distribution on G/M.

Proof. — We abbreviate T F1 .= T“//:“kl (PV,n, 1, ,.)(€) € C. It suffices to prove the

ma,ka 9.ko
estimate in Lemma 5.8. Using Lemma 5.32 (second step) and the equations from

Lemma 5.21 (first and third step) we infer for the L?-norm as in Lemma 6.5

. m,k
dim Vm,k )2 Tm—l,k—l

m—1,k—1
Tm,k

v )2 = =

2
T R O

By Equation (5.6), Proposition A.18 and Proposition 5.13.4 we have
T:nn’—kLk—l —14 =20 —m —k X Vi ks Vin—1,k-1)

T;"ﬁ;l’kfl 4 =20+m+k AVinks Vine1.k-1)

—14 -2 —m —k dim Vm—l,k—l
4—20+m+k  dimV,,

and thus
H2 M4+ 20+m+k dim Vi,
C 4—20+m+k dim Vi1 k1

17V, 1 (k) 7V 1oy (Wm—1,0—1) 1
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Iteratively applying this equation we infer for a(m, k) = ”"”T*k and p == a(m, k)—({+1)

p—1 .
T+L+a(m,k)—r dimVy_pp—r
2_ ’ : 2
17V Y )l {[12 iy ey s pel e e L CESICESE
—1
dimV,, . yp 7+ L0+ a(mk) —r 5
= TV —p k—p \Pm—p,k— ’
dlme_p,k_prl;[lZ—f—l—a(m,k)—rH Vinepy (Um—p—p)ll
with a(m — p, k — p) = £ + 1. Note that
’ﬁ T+l+a(mk)—r  (T+20+p)-6
2—Ll+a(m,k)—r (T+20+1)!(2+p)!

r=1
is O(p"t2¢=2). Moreover, the dimension formula from Remark A.17 shows that
dim V;,, ,, grows at most polynomially in m and k. A similar argument works for the
step from V;,, x with a(m, k) = £+ 1 to Vy41),0 by decreasing b(m, k) := (m — k)/2
(by going from Vi, 1 to Vi1 k11)- O

Turorem 6.10 (Spectral Correspondence). — Let Ex 3 u= —(p+(2¢—6)a), £ € Ny,
be an exceptional parameter. Then the socle soc(H,,) of H, is irreducible, unitary and
its K-types are given by Vi, for m = kmod 2, m — k > 2(¢{ + 1). The minimal
K-type is Vagyo0 and the corresponding Poisson transform induces an isomorphism
from : Y(soc(H,,))~>° onto

Tu € C®(G xk Varyao): properties (i)—(v) below},

where the properties are as follows. Let a(m, k):=(m + k)/2 and b(m, k) :=(m — k)/2.
For u € C™(G x g Vagyo,0) let Yoy10+1 = dim Vapyo o - u and define recursively for
m=kmod2, m—k>2({+1) (see Lemma 5.21)

'(/) . dim Vm,m72€72 1 d w
a,l+1 = . — +,1%a—1,04+1,
dim Vm—l,m—2€—3 Tseif—i_l
dim Vm k 1
(L ’ d4 2%a,b—1,

~ dim Vo1 gt T;f‘l

. b Vai{4by,a;—b
where we abbreviate To'y)t = T, 1 "1~
ag+bg,ag—bo

P (PVa, 1010, -5,.0)(€) € C. Then we define
the properties

dim V, b

i d ab = Ta’b a0 o , > b 2 Y/ 2 ,

(0 +1%as = Tabip dim Vg1 Varie: (@ +2)
dim V,

.. a,b a,b

_ = ’ —_— o 2 , 2 1 ;

(i)  d-1vep=T,7, GmV 1y Vo1, (@=L0+2, b=0+1)
dim V, b

B _ Tu,b W Vab B 2 2 9

(111) d 72¢a>b a,b—1 dimVaJ;_l ’(/)(Lb 1 (a/ b £+ ),

(iv)  d_2¥ae41 =0, (
(v) dga’biﬁa,b =0, (a >

Proof. — The proof is analogous to the prove of Theorem 6.6. O

+1),
S0+1, Vo Vi VE Ku).

Q

>4
b
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ApPPENDIX A. COMPUTATIONS OF SCALARS RELATING POISSON TRANSFORMS

TasLe 1. Structural data of rank one groups (recall that «(H) = 1
for the unique simple positive restricted root a of (g,a)). The iso-
morphism of K/M with a sphere is given by the adjoint action of K
on H €ayg Cp.

G K K/M | mo | maa | p(H)
SOp(n,1), n =2 | S(O(n) x O(1)) =2SO(n) | S* ! | n—1 0 | (n—1)/2
SU(n,1), n>2 | S(U(n) xU(1))=Un) |S*t|2n—-2| 1 n
Sp(n,1), n>2 Sp(n) x Sp(1) Stn=lldn—4| 3 2n+1
Fy(_20) Spin(9) S15 8 7 11

In order to compute the scalars T‘},/ (py,u) occurring in Lemma 3.13 we first com-
pute the scalars A(V,Y) in each case and then conclude by using Lemma 5.16 and
Equation (5.6). For the explicit calculations we will use hypergeometric functions.

Derinition A1, — The (Gaussian, ordinary) hypergeometric function F (of type (2,1))
is defined by (if the series converges)

where a,b,c,z € R, ¢ > 0, and
1 n=20
(Q)n:
glg+1)...(¢g+n-1) :n>0

denotes the Pochhammer symbol. Note that F' is a polynomial in z if a or b is a non-
positive integer.

Levvia A2 (cf. [JWT7, Lem. 4.1]). — Assume |z| <1 ora € —Ng orb € —Ny. Then F'
has the following properties:

(i) %F(a,b,c,z):%bF(a—}—l,b-i-Lc—i- 1,2),

(i) c—b—a)F(a,b,c,z) =(c—=b)F(a,b—1,¢,2) +a(z —1)F(a+1,b,¢,2),
(iii) c—b—a)F(a,b,c,z) =(c—a)F(a—1,b,¢,2) + b(z — 1)F(a,b+ 1,¢,2),
(iv) F(a,b+1,¢,2) — F(a,b,e,2z) = a—CZF(a—l—l,b—!—l,c—Fl,z),

(v) F(a+1,b,¢c,2) — F(a,b,c,z) = %F(a—l—l,b—kl,c—i—l,z).
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A.1. Tue Case or G = SOq(n,1),n > 3. Considering the compact picture and the

isomorphism K/M = S"~! we see that H » decomposes as the Hilbert space direct
sum
(A1) Hy, =g LH(E/M) 2k L*(S"™) 2k @yen, Yo,

where Y; denotes the space of all harmonic, homogeneous polynomials of degree /¢
restricted to S*~1.

Remark A.3. — For G = SO¢(2,1) we have H,, =g ®lezn’ with Yy == C - 2¢ C
C>(Sh).
We choose a Cartan subalgebra t of £ as in [Kna02, §I1.1 Ex. 2, 4] with roots
Ag={te;te; |1 <i#j<m}U{te; |1<i<m},
resp. Ap={te; L e; |1 <i#j<m},

if K 2 SO(2m + 1) resp. K = SO(2m) for some m € N. We choose the positive
systems

Af ={e;tej|1<i<j<m}U{e:1<i<m},
resp. Af ={e;tej|1<i<j<m}
The corresponding half sum of positive roots is given by
1 3 1
Pe = (m_§)€1+ (m—5)62+~-~+§em resp. pe = (m—1)ey + -+ + epm1.

The highest weight of Y is fe; (see e.g. [Kna02, Ex.1 of §V.1, p.277]). Introducing
the angular coordinates

x1 =rcos(€), x; =rsin(éw;, i > 2,

where Y7, w? =1, 0 < € <, we infer by [JW77, Th. 3.1(2)] that

k1—k n—
by, = cosk(f)F(—g,lT, 5 1,—tan2(§)).

In order to compute the scalars A(V,Y) for Y, V € Ky = {[Yi] | £ € Ny} it suffices
to decompose w(H )¢y by Lemma 5.15.

Levva A4, For each k € Ny we have

w(H)oy, = % oy, ., + %12__22 ¢Y,€+1-
Proof. — Recall that the identification from Equation (A.1) comes from the K-action
on p, where e; € S*~! corresponds to H € a. This implies that
w(H) =x1 = cos(§)
as a function in C°°(S"~1). Therefore,
k1—-k n-1

w(H)y, = cos™ 1 (€)F (=5, ~5 5

,—tanzf).
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By Lemma A.2 (i) with a = —k/2, b= (1 —k)/2, ¢ = (n—1)/2 and z = —tan?¢
we infer that (n + 2k — 2)F (=k/2,(1 — k)/2,(n — 1)/2, z) equals

(n+k—2)F(—k+1 _k n—lz) k (1—k: 2—k n—lz)
2 727 27 cos? & 2 7 2 7 2 )
Multiplying by cos®+1 ¢ yields the result. O

Remark A.5. — Note that Lemma 5.15 implies that

n+k—2 n+k—2

)\(Yk7Yk+1> = erk+1(w<H)¢Yk)(eM) = n+ 2%k — 2 ¢Yk+1(eM) = n—+ 2%k — 2

Similarly, we have A\(Yy, Yx—1) = k/(n + 2k — 2). The scalars T%fil(pyk,u)(e) will be

computed in Proposition A.18.

In order to describe the generalized gradients properly we will now decompose the
relevant tensor products.

Prorosition A.6. — Let K = SO(2m + 1), m > 1. For m > 1 the tensor product
Y, ® p* decomposes for k € N into

Y @p*" =2 Y18 Yt & Vi,

where Vi, is the K-representation with highest weight keq + es. Moreover we have
YVi@p* =Y, 10Y, DYy if m=1.

Proof. The coadjoint representation of K on p* = C2?™*! is equivalent to the
defining representation (as well as Y1) and has weights +e;, i € {1,...,m}, and 0.
Writing

Viop'2Y,@Y1= @ L,

AeR

where £; = mult(A;, Yy ® Y1) denotes the multiplicity, we have by [FS97, p. 274]

L; = Z sign(w) multy, (w(A; + pe) — pe — ke1),

where multy, (1) € Ng denotes the multiplicity of the weight p in Y7 and W denotes the
Weyl group of £. If £; # 0 there has to exist some w € W such that w(A;+p.)—p.—kes
is a weight of Y7, i.e.,

wW(A; + pe) — pe —ker = £e; <= A; = w(pe + key + €j) — Pe
for some j € {1,...,m} or
w(A; +pe) — pe—ker =0 <= A; = ufl(pC + ke1) — pe.
Let us first consider the case m # 1. Since A; is a highest weight it is dominant. Thus,

pc + kei £ e; resp. p. + ke must not lie on the boundary of any Weyl chamber. This
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is the case if and only if the weight of Y7 is contained in {0, +ey, €2, —e,, }. In the first
three cases we obtain for A; + p.

1 3 1
w oot ker) =w (Kt m = g )ent (m=Feat oot gem)

1 1
wil(Pchkel ter)= w71(<k:|: 14+m— 5)61 + (mf g>eg + e+ iem)
. . 1 1 1
w (pe + ker +e2) =w (<k+mf§)el+ (m*§>€2+"'+§€m)
which is dominant if and only if w = id yielding A; = ke, (k & 1)e1, key + ea respec-
tively. For A; + p. = w_l(Pc + key — e,,) we have
1 3 3 1
(T TS S
+p.=w k+m 261+m 262+ +26 1= 5¢
which is dominant if and only if w = s, is the reflection along e,,. For this w we have
A; = ke;. Altogether we have

mult(ke;, Yy @ Y1) = Z sign(w) multy, (w(A; + pc) — pe — keq)
weW
= sign(id) multy, (0) + sign(s.,, ) multy, (—e;n) =0

and similarly that the representations with highest weights (k & 1)e; resp. ke + eo
occur with multiplicity one. For m = 1 the weights of Y; are —e;,0 and e;. We get
A; = (k — 1)eq, key resp. (k + 1)e; in this case, each with multiplicity one. O

Prorosirion A.7. Let K = SO(2m), m > 2. The tensor product Y, ®p* decomposes
for k € N into

Vi @p* =2 Y1 ® Vi1 © Vi,
where Vy, is the K-representation with highest weight kej + es.

Proof. — The coadjoint representation of K on p* = C?™ is equivalent to the defining
representation (as well as Y1) and has weights +e;, i € {0,...,m — 1}. Each weight
occurs with multiplicity one. We can now decompose Y; ® p* = Y, ® Y7 using the
Racah-Speiser algorithm. Let
VioY1= @ LiA;
N eR

with £; == mult(A;, Yy ® Y1) = > oy sign(w) multy, (w(A; + pc) — pe — key) as in the
odd case. Since w(A; + p.) — p. — kep = *e; if and only if A; = w™(p.+ke; £ e;) — pe
and as A; has to be dominant (since A; is a highest weight), the weight p. + key + e;
must not lie on the boundary of any Weyl chamber. This is the case if and only if
the weight +e; is +e; or es. In these cases the weight p. + ke; £ e; is dominant, so
w = id. Moreover, the weight w=!(p. + key & €;) — p. is given by ke; ey = (k+1)e;
resp. kej + es.

Remark A.8. — Using the Weyl dimension formula we see that
. n+k—-3\n/2+k-1 n+k—3\n+2k-2
Yy = netr R ntk—2
dim Y ( k ) n/2—1 ( k ) n—2
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A.2. Tue Case or G = SU(n,1), n > 2. — Using the isomorphism K/M = §?7~!
we see that H,, decomposes as the Hilbert space direct sum

(A.2) Hy, =g LZ(K/M) Lz(Szn 1) =K Gap quoYp a
where
(A.3) Y,q=1{f €Ypry| flaz) =a’alf(z) Va €C, |a| =1, z € S*" 1}

with f(z) = f(Re(z1),Im(21),...,Re(z,),Im(z,)). Let ty denote the diagonal matri-
ces in su(n, 1). Then ty = 3(€) ®ho where by is a Cartan subalgebra of [€g, o] = su(n)
(traceless diagonal matrices). Denoting the dual basis of the standard diagonal matrix
basis E;;, 1 <i < n+1, by (e;); we obtain that the roots Ag of (¢, t) resp. A of (g,t)
are given by

(A4) Ag={e;—e; | 1<iF#j<n}resp. A={e;—e; | 1<i#j<n+1}

We choose the positive system Af = {e; —e; | 1 <i < j < n} with
n—1 -3 n—1
pe= 2 Jer+ (2 2 Jeatee 2 ™
The highest weight of Y}, , is given by ge1 —pe,, + (p—q)en+1 (see e.g. [Kna02, Ex. 1 of
§V.1, p.276], the e, +1-part accounts for the trivial action of the center). Introducing
the angular coordinates (on C" = R?")

z1 =rcos()e'?,  zj =rsin(€w;, 2<j < n,
where 37 _olw;? =1, 0 < ¢ < 27 and 0 < & < 7/2 we have (see [JW77, Th. 3.1(3)])
Oy, , = " P7I% cos? &) F(—p, —¢,n — 1, — tan*(€)).
Lemma AL9. For each p,q € Ny we have
2p+q+n—Dw(H)py,, =(p+n—1)dy,,,
+qoy, , ., +(@+n—1)oy, .. +pdy,_, -

Proof. — Write ¢y, e'P=D¢h,, (€). In the angular coordinates introduced above

we have
w(H) = Re(z1) = cos(&) cos(p)

as a function in C°°(S?"~1). Therefore,
w(H)dy,,, = cos(€) cos(p)e' PR, 4 (€)
(A5) _ COS(S) ( ) i(pqurl)ga + Cos(g)gpyq(f) ei(pqul)cp.
Lemma A.2 (iii) implies that
__ptn-1l -
(AG) COS(&)hpwq(f) - pt+qg+n— 1 thrl,q(g) + p+q+n— 1 hp,qfl(g)
and Lemma A.2 (ii) implies that
g+n—1 P
A. 3 =—— —— hy_ .
(A7) cos(§)hp,q(8) Ptgtn—1 hp,q+1(§) + Ptgtn—1 hp—1,4(£)

Combining the equations (A.5), (A.6) and (A.7) yields the result. O
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Remark A.10. As in Remark A.5, Lemma A.9 determines the scalars A(Y), 4, V)
for each V € Ky with V < Y} ,.

To decompose the relevant tensor products we use Proposition 5.19. By Equa-
tion (A.4) we infer that the non-compact roots are given by

A, ={t(e; —ent1) | 1 <i < n}.

The following remark ensures that each representation Y- g, 8 € S, in Proposition 5.19
actually occurs.

Remark A.11. — Using the Weyl dimension formula we see that

. g+n—-2\(p+n—-2\n+p+qg-—1
dimY, , = L
’ n—2 n—2 n—1
. g+n—1\/p+n—-2\(n+p+qg—1)p(n—2)
dimY} 4 ¢ e =
P entenn ( q )( P > (n+q—2)(p+1)
=dimY,

q,P,€2—€n+1°

=dimY, ,,

For n = 2 this has to be read as dim Y, 0, —c;4e; =P = dim Yy pc,—e,. We get that
> dimY, s =dimp-dimY,, = 2n-dimY,,,
BESCAR

which implies that m(8) = 1 if and only if the corresponding formula for the dimension
of Y}, 4.5 in not zero.

A.3. Tue Case or G = Sp(n,1), n > 2. — In this case we have K = Sp(n) x Sp(1)
and g = sp(n, 1)c = sp(n+1,C). We choose a Cartan subalgebra of sp(n, C) x sp(1, C)
and introduce notation as in [Kna02, §I1.2 Ex. 3] such that we have for the roots Ay
of (¢ 8) resp. A of (g,bh)

YU {22 | 1<

#£j<n n+1}
iAj<n+1}U{£2e |1

(A.8) i<n+1}.

<
<

We choose the positive system
Af ={e;te [1<i<j<nU{2;|1<i<n+1}.
The corresponding half sum of positive roots is given by
pe=mner+(n—1ea+---+2e,_1+e, +ent.

By the isomorphism K/M = S~ and [Kna02, Ch.IX.8, Probl. 12] we see that H,
decomposes as the Hilbert space direct sum

(A9) H, =g L*(K/M) =g L2(S*"1) =k Dazr0Vas

where V,; has highest weight ae; + bes + (a — b)ep+1. We now introduce angular
coordinates on H" 22 R*" as in [JW77, Th. 3.1(4)]. For (wy,...,w,) € H" we write

wy = rcos(§)(cos(t) + ysin(t)), w; =rsin(€)q;, i = 2,
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where ¢;, y € Hsuch that [y|> =1=>"" ,|¢]* Re(y) =0and 0 < £ < 7/2,0 <t < .
Then we have by [JW77, Th.3.1(4)]) (our V,, corresponds to V?¢ of [JW77] with
p=a+band ¢:=a—bby [JWT7, Lem. 3.3])

1 sin((a — b+ 1)t)
a—-b+1 sin(t)
where the normalizing factor 1/(a — b+ 1) follows from ¢y, ,(eM) = 1, where eM
corresponds to t = ¢ = 0, and using lim;_,gsin((a — b+ 1)t)/sin(t) = a — b+ 1.

¢Va,b = Osa+b(§)F(_b7 —(CL + 1)7 2(” - 1)7 - tan2(£))7

Lemma A 12. — For a,b € Ng with a > b we have
2@ —b+1)2n—1+a+bw(H)oy,, =(a—b+2)2n—1+a)dy,.,,
+b(a—b+2)py,,_,
+(a—=0)(2n—2+b)dv, ,,,
+(a=b)(a+ 1oy, ,,.

Proof. — Write ¢y, , = a_ih_lxq(t)ha,b(g) such that x4(t) = sin((q + 1)t)/sin(t).
In the angular coordinates above we have

w(H) = Re(wy) = cos(§) cos(t)

as a function in C°°(S*"~1). Note that 2 cos(t)xq(t) = Xg+1(t) + Xq—1(t). Therefore,
w(H) v, , = cos(£) cos(t)xq(t)hap(§)
(A.10) cos(&)hy, cos(&)h,
_ (5)2 ,b(g) Xqt1 (t) + (5)2 ,b(é.) Xq—l(t)-

Lemma A.2 (iii) implies

2n—2+5b a+1
(A.11) cos(§)hab(§) = mtatb_1 hap1(8) + Mmtatb_1 ha—1,(€)
and Lemma A.2 (ii) implies that

n—1+a b
A2 = o _ .
(A12)  cos(Ehanl€) = 5 b1 b(6) + ot B (O
Inserting Equation (A.11) and (A.12) into Equation (A.10) proves the result. O

Remark A.13. — As in Remark A.5, Lemma A.12 determines the scalars A(Yyp, V)
for each V € Ky with V <> Y, 4.

To decompose the relevant tensor products we use Proposition 5.19. By Equa-
tion (A.8) we infer that the non-compact roots are given by

An = {:I:ei:I:e,H_l | 1 < 7 < n}

The following remark ensures that each representation Y g, 8 € S, in Proposition 5.19
actually occurs.

(Y There is a sign error in [JW77, Th. 3.1(4)]; solving the differential equation in [JW77, p.147]
actually gives sin((a+1)t) cosP (&) F (%ﬂ, —W, 2(n—1),— tan2(§)).

sin(t)
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Remark A.14. Using the Weyl dimension formula we see that the representation
We, ¢,,¢, With highest weight 1eq + &2e2 + £3€,41 has dimension

. G t&+2n—1 G +2n—2\ (& +2n—3
dlmW&ly&vaB_(2n_1)(2n_2) (51_£2+1)(§3+1)( o — 3 >< o — 3 )

and the representation Wé,&,&' with highest weight &1e1 + &es + e3 + &3e,,41 has
dimension

dimpl . o (St (Gt 2n =2\ (& + &+ 2n —1)(2n - 4)(6 — &+ 1)
§1,82,83 2n — 3 2n—1 2(51 + 2n — 2)(52 + 2n — 3)

(6 + D&+ 1)
& +1 '

Using these dimension formulas we get that

> dimV,gp = dimp - dimV,, = 4n - dim V,,
BESCA,,
so that m(B) = 1 if and only if the corresponding formula for the dimension of V, 4 3 is
not zero. Alternatively, the algorithm we used in the case of SOg(n, 1) can be applied
to verify this result.

A4, Tur Cask oF G = Fy(_gp). — In this case we have K = Spin(9) with € = s50(9)
and rk g = rk € = 4. Therefore, we may choose a Cartan subalgebra t of both ¢ and g.
The root system can be realized in V = R?* with the standard basis e, es, e3,e4 in
the following way (see [Bou02, Plate VIII])

A:{:‘:61|1<Z<4}U{:‘:61iej|].<’L<j<4}U{%(:|:61:|:€2:|:63:|:€4)}
(A.13)

We choose the positive system A? ={e;—e;: 1<i<j<4}U{e;: 1<i<4} with
*ze +§e +§e +16
/%*21 22 23 24-
By [Joh76, Th.3.1] we see that H,, decomposes as the Hilbert space direct sum
(A.14) Hy, =g L*(K/M) =g L*(S) 2k @ m>e20 Vi

m=¢ mod 2

where V, ¢ is the K-representation with highest weight Fe; + %eg + %63 + %64 (see
[Joh76, p.278]). Introducing angular coordinates on R'® as in [Joh76, p.275] we can
write (see [Joh76, Th. 3.1])
Voo = Xe () im0 (€)
with
0 —0+1 7 ,
_57 2 a§7_tan(90) )7

b—m —m—{0—-6 9
2 ) 2 a47_tan(£) )

xe(p) = COS(@)KF(

o e(€) = cos(€)" F

JIEP. — M., 2023, tome 10



SPECTRAL CORRESPONDENCES FOR RANK ONE LOCALLY SYMMETRIC SPACES 3()7

Lemma AL15. For m,{ € Ny, £ <m, m =/ mod 2, we have
(64 20)(14 + 2m)w(H)ov,, , = (6 + )14 +m + L)y, .\ ,py
+(6+0)(m—0)dy, ., +LEB+m =0y, ., , +{m+L+6)py, ., ..
Proof. — In the angular coordinates of [Joh76, p.275] we have
w(H) =z = cos(§) cos(p)
as a function in C°°(S'%). We claim that

6+ ¢ Y4
(A.15) cos(@)xe(p) = 620 Xe+1(p) + Y, Xe—1().

Using Lemma A.2 (ii) and the symmetry of the hypergeometric function in the first
two variables we infer that for z :== — tan(ip)?

(6+2£)F(—§,#,g,z) _ (6+€)F(#,—g,g,z)
Y4 —A+1 —4+2 z z)

+COS((p)2 ( 2 72 72

Multiplying both sides by cos(¢)**! now proves the claim. We now express the product
cos(§)hm,¢(§) in two different forms. By Lemma A.2 (iii) we have

_8+m—{ m+4£—6

(A16) Cos(g)hm,f(g) = 14+ 2m hm+1,€—1(§) + 14 + 2m hm—l,é—l(g)
and by Lemma A.2 (ii) similarly
144+m+4L m—4{
(A.17) c08(§)hm,e(§) = Tatom hmt1,e41(€) + TAtom Bm—1,041(§)-
Since w(H )¢y, , = cos()x () cos(§)hm,e(§) we arrive at the desired result by com-
bining Equations (A.15), (A.16) and (A.17). O

Remark A.16. — As in Remark A.5, Lemma A.15 determines the scalars A(Y,, ¢, V)
for each V € Ky with V' < Yy, 0.

To decompose the relevant tensor products we use Proposition 5.19. By Equa-
tion (A.13) we infer that the non-compact roots are given by

1
An = {§(i€1 ieg ieg i€4)}.

The following remark ensures that each representation Y g, 8 € S, in Proposition 5.19
actually occurs.

Remark A.17. — By the Weyl dimension formula we see that the representation
Wai,as,a3,0, With highest weight aie; + ages + ases + ases has dimension

4

<61+ 62+ 63 - [ (9 + 2(a; — 1)),

i=1

1
6!-4!1-2-7-5-3

dim W, a5,a5,00 =

JIP — M., 2023, tome 10



398 C. ArenDs & J. HiLGERrT

with §; : H] iv1(ai +a;+9—i—j)(a; —aj + j —i). Using this dimension formula
we get
> dim Vi s = dimp - dim V,, o = 16 - dim V;,, ¢,
BESCA,
so that m(5) = 1 if and only if the corresponding formula for the dimension of V,,, 4  is
not zero. Alternatively, the algorithm we used in the case of SOg(n, 1) can be applied
to verify this result.

We will now compute the scalars Ty (py,,,)(e) from Lemma 3.13. Since we already
computed the scalars \(V,Y") in each case, it suffices to determine the scalars v(V,Y)
(see Equation (5.6) for the notation).

Prorosirion A.18 (Scalars between Poisson transforms)
(1) G =S0q(n,1), n > 3: For{ € Ny,

V(Yo Y1) = AYe, Yerr),  1(Ye, Yior) = —(20(H) + £ — DA(Y2, Yiy),

(2) G=SU(n,1), n > 2: Forp,q€ Ny,
V(Yp.gs Ypt1.0) = 20A(Yp.gs Ypt1.4),
V(Yp,q’Yp,q 1) = ( (H)+q— 1)>\(Yp7qup7q—1)a
V(Yp7qayp7q+1> = ( p7q7Yp7q+1)
V(Y Yp-1,4) = ( (H)+p—=DAYp.q, Yo-1.0);

(3) G=Sp(n,1), n>2: Fora,be Ny witha >0,

V(Vap, Vat1p) = 2aA(Vap, Vat1p),

V(Vap, Vap—1) = —(4n — 24200 A(Vap, Vap—1),
V(Vabs ab+1) =2(b—DA(Vap, Vapt1)s
V(Vap, Va—1p) = —(4n +2a)A(Va b, Va—1,)s

(4) G =Fy—20): Form,l €Ny, £ <m, m=/{mod 2,

v

(m + E)A( m,ly Vm+1,€+1)a

(Vs Ving1,041) =
V(Vints Vin—1,041) = —(14 +m — OX Vi e, Vin—1,041)5
( )
( )

v Vm@avm+1€ 1 :(m l— 6) (VmE;Verl,efl)v

—20+m+ DAV e, Vin—1,0-1)-

v Vm/vvm 1,6—1

Proof. In view of Lemma 5.16 it suffices to find a closed G-invariant subspace
U < H*, for some p € a*, such that multx(V,U) = 0 and multg(Y,U) # 0.
In this case we have v(V,Y) = —(u + p)(H)A(V,Y). The following table determines
the Harish-Chandra module Uk of U in each case (see [JW77, Th.5.1] and [Joh76,
Th. 5.2)). O
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G vV Y Uk p(H) (1 +p)(H)
SOo(n, )||Ye  |Yeya B2 11Y; —p(H) — ¢ —L
Yo Yo @ﬁ;éYj p(H)+¢—-1 n+f—2
SU(n, 1) Yoa [Yp+14 Bp/>p+1,¢20Yp ¢ —2p — P(H) —2p
Yoq [Ypa—1 Bp20,q'<q—1Yp ¢ p(H)+2(g—1) |2(n+qg—1)
Yoq | Yo+t Bp>0,g'>q+1Yp ¢ —2q — p(H) —2q
Yoa |Yp-1.4 Bp'<p—1,¢'20Yp ¢ p(H)+2(p—1) |2(n+p—1)
Sp(n,1) ||Vap |Vas1p Da'za+1,a'3b Var b —(p(H) + 2a) —2a
Vaw |Vap—1 B <b—1,a’ b Var by p(H)+20—4 |[dn+2(b—1)
Vab |Vapr1 Cvzvtt,arse Vary | —(p(H) — 2+ 2b) —-2(b-1)
Vap |Va—1 Dar<a—1,a’ b Var by p(H) —2+42a 4n + 2a
Fa—20)  ||Vinot|Vins1,e41 | vosmier2Vinror| —(p(H) +m +£) —(m+Y)
Vm,é Vm71,3+1 @m’fl’<m7€72vm/,£/ p(H) +m—£—8 144+m-—/
Vo, t\Vint1,0-1|®mr—rsm—t42 Vi o0 |—(p(H) =6 +m — £)| 6 —m +{
Vine|Vin—1,0-1|®m/ 400 <mat—2Vimr o | p(H) =24+m+£ | 204 m + £

AprPENDIX B. MODERATE GROWTH OF POISSON TRANSFORMS

In this section we state a result (Theorem B.3) of [Olb94] on the image of Pois-
son transforms restricted to distributions. As the reference is not readily available,

we include the proof. We start with two preliminary results.

Tueorem B.1 ([O1b94, Satz 2.3]).

(Eru) Kk of K-finite elements in E; ,, is a Harish-Chandra module.

Proof.

Consider the K-equivariant embedding

Let (1,Y) € K and pu € a*. Then the space

Y — (Brux, V€ (B i@)() =@ f(e),

where (E; )k denotes the K-finite functionals on E, . Set W = U(g)(¢(Y")). Note
that [(Z(U(g)) € D(G, 7). Since X, is finite-dimensional, Z(U(g)) acts locally finite
on W, ie., dimZ(U(g))w < oo for all w € W. Since W is also finitely generated,
W is a Harish-Chandra module ([Wal88, 3.4.7]). By [Min92, Lem. 2.2], the canonical
map (Er,)x — W is injective (if the Taylor series of f vanishes at e it vanishes

identically). Since W is admissible, we have W = W and thus (Erp)x = W. Now
(Er,.) K is a Harish-Chandra module as the dual of the Harish-Chandra module W
([Wal8s, 4.3.2)). O

We denote the G-representation on eigensections of moderate growth by
Ap = 1{f € Brpu | 35 € R: supyeglesto/xFaf) f(g)] < oo},

where dg /i denotes the Riemannian distance function on G/K.

Lemva B.2 ([O1b94, Lem. 4.12]). — Let f € A, such that |f(g)| < Cresde/x(eK9K),
Then, for each X € U(g), there exists a constant Cx such that

(B.1) [(r(X)f)(g)] < Cxeders (KoK,

JEP,
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Proof. — According to [HC66, Th. 1], for every f € E, , there exists a (K-biinvariant)
function o € CX(G) with f *xa = f. Then

[(r (X)) (@) = r(X)(f * @) (g) = T(X)/ f@)a(z™!

< sup y)| / z)|dx
y€g(supp o)~ 1 (supp @)~ 1

<C sup |(r( X)) (1) | e =€ supp o) = 1dg i (2KeK) sda/x (9K eK) [
y€g(supp a) 1

Turorem B.3 ([O1b94, Satz 4.13]). Let (1Y) € Ky and consider P as a map
from D'(K/M) = H_;*° to C*(G x i Y) with respect to some fived t € Homps(C,Y).
If f € D'(K/M) has order m, then

Vge G |PI(A(9)] < Cal* " (max ag)",

acx+ 7
where ag € A is defined as the unique element such that g € KagK and ay > 1 for
every a € X1 and, for each X € af, {\T} =WAN{vea* |VaeXt: (v,a) > 0}.
In particular,
P;(D’(K/M)) CA,.
Moreover, let V- < H,, denote a subrepresentation such that P maps V'~ into the

joint kernel X C E. ,, of some invariant differential operators di,...,d,. Assume that
the restriction

P;L—vi : VK — g{K
to the Harish-Chandra module Vi of V is an isomorphism with inverse 8. Then (3

continues to a map B: A, NH — V==,

Proof. — Let U € Y and f € D'(K/M). Then, by interpreting Equation (3.3) for
distributions,

(0, P7 f(9))=(0, Ly (P} f)(e))=(tmu(g~ ") f,7(« 0y =(tf, m_.(g)(pr, 7(+~)D)),

where (-,-) denotes the natural pairing of Y with Y resp. D/(K xj; Y) with
C>(K x5 Y)and pry: Y — Y (1) denotes the projection onto the M-isotypic compo-
nent of the trivial representation of M in Y. Let ¢ := pr; 7(s~1)0 € C°°(K x Y (1)) =
H®,. When f is a distribution of order m, there exist finitely many elements Y; € U(€)

—ut

of order at most m such that (recall ¢ defined in Section 2.4 and opp in Section 3.1)

[{tf,m-n(9)p)l < ZEEE\(T(E)W—;L(Q)@)(MI < Z:g}gl(5(0pp(Ad(g’1k)Yi))SO)(g’lk‘)|

< (gglglaf(g’lk)’(““)l) Z sggl(4(0pp(Ad(g’1k)Yi))<ﬁ)(k’z(g’lk))|~

By Kostant’s convexity theorem ([Hel00, Ch.IV, Th. 10.5]) we have, for each a € A,
{log(ar(ak)) | k € K} = conv{wlog(a) | w € W},
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where conv denotes the convex hull. Thus,

—(Re +
|a1(g_1k?)_(”+p)‘ < a(g,SR ptp))" _ a;Reu+p)+.

If |s| denotes a K-invariant norm on U(g), we obtain
-1 - « m __ a)™m
[Ad(g™ k)Yi] < (max agi,)™ = (max ag)
Therefore, there exist constants C; such that
SU}I@I(€(Opp(Ad(g*1k)3€))<P)(kz(gflk))| = sulgl(f(opp(Ad(gflk)Y}))w)(/f)|
€ €

< Ci(max ag)™

Hence, we proved

v. PT (Re pu+p)* a\m
(L0 < Caff " (s )

which is the first assertion of the theorem.
For the second part let 8 := (P lvi )1 H — Vi and consider its adjoint

B Vie — Hie,  BE(N)(h) = A(B(h)).

As in Theorem B.1 we obtain that Hy is generated under U(g) by the point evalu-
ations &z, 0 € Y, at the identity eK of G/K. Therefore, the growth condition from
Equation (B.1) implies that each f € A, N H defines a moderate functional on Hye
in the terminology of [Wal92, 11.6]. Therefore, with

VoeVi: B = F(B*),

B(f) defines a moderate functional on Vk. By [Wal92, Prop.11.6.2], each of these
functionals extend continuously to V*°. Thus, § extends to a map

B: A, NH — (V) =V, O
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