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ASYMPTOTICS AND LIMIT THEOREMS FOR
HOROCYCLE ERGODIC INTEGRALS À LA RATNER

(with an appendix by Emilio Corso)

by Davide Ravotti

Abstract. — We apply a method inspired by Ratner’s work on quantitative mixing for the
geodesic flow [29] and developed by Burger [11] to study ergodic integrals for horocycle flows.
We derive an explicit asymptotic expansion for horocycle averages, recovering a celebrated
result by Flaminio and Forni [15], and we show that the coefficients in the asymptotic expan-
sion are Hölder continuous with respect to the base point. Furthermore, we provide short and
streamlined proofs of the spatial limit theorems of Bufetov and Forni [10] and, in an appendix
by Emilio Corso, of a temporal limit theorem by Dolgopyat and Sarig [12].

Résumé (Asymptotiques et théorèmes limites pour intégrales ergodiques des les flots horocy-
cliques à la Ratner)

Nous appliquons une méthode inspirée du travail de Ratner sur le mélange quantitatif pour
le flot géodésique [29] et développée par Burger [11] pour étudier les intégrales ergodiques pour
les flots horocycliques. Nous en déduisons un développement asymptotique explicite pour les
moyennes horocycliques, retrouvant ainsi un résultat célèbre de Flaminio et Forni [15], et nous
montrons que les coefficients dans le développement asymptotique sont Hölder continus par
rapport au point de base. En outre, nous fournissons des preuves courtes et simplifiées des
théorèmes limites spatiaux de Bufetov et Forni [10] et, dans un appendice d’Emilio Corso, d’un
théorème limite temporel de Dolgopyat et Sarig [12].
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1. Introduction

The prime example of a parabolic homogeneous flow is, arguably, the horocycle
flow on finite volume quotients of the Lie group PSL(2,R). On each such quotient,
the horocycle flow acts by multiplication by the one-parameter subgroup of upper
triangular unipotent matrices. Geometrically, it can be described as follows. Consider
a finite area hyperbolic surface S; the geodesic flow {ϕXt }t∈R acts on the unit tangent
bundle T 1S of S by moving each unit tangent vector v ∈ T 1S along the unique
geodesic starting at v. The stable leaf at v is a smooth curve passing through v which
consists of all tangent vectors w ∈ T 1S whose images ϕXt (w) get exponentially close
to ϕXt (v) as t → +∞. The horocycle flow {ht}t∈R moves the point v along its stable
leaf at unit speed.

Besides the interest from the parabolic dynamics perspective, the study of the
horocycle flow (and, more in general, of unipotent actions) has lead to important
breakthroughs in other areas of mathematics, notably in number theory and in math-
ematical physics. Its dynamical and ergodic properties are now well-understood thanks
to the work of several authors: interestingly, the horocycle flow displays an “interme-
diate” chaotic behaviour, with some features which are usually associated to orderly
ergodic systems (zero entropy [18], minimality [20], unique ergodicity [16]) and others
to highly chaotic ones (mixing of all orders [21], Lebesgue spectrum [24]). This is a
typical trait of the parabolic paradigm; we refer the reader to [19, Chap. 8] and to the
introduction of [3] for an extensive discussion on this topic.

In this paper, we will be interested in the ergodic properties of the horocycle
flow when the phase space M = Γ\PSL(2,R) is compact. It is a classical result
of Furstenberg [16] that the horocycle flow on M is uniquely ergodic; that is, the
Haar measure on M is the unique invariant probability measure. With respect to this
measure, it is mixing of all orders [21] and has Lebesgue spectrum [17, 24]. Some
finer properties, including some remarkable rigidity results, were studied by Ratner
[27, 26, 28].

Quantitative statements concerning the ergodic and mixing properties of the horo-
cycle flow are of great importance, in particular for some applications such as for the
study of its time-changes. In [29], Ratner showed that the rate of the decay of cor-
relations for Hölder observables is polynomial, and the optimal exponent depends on
the spectral gap, that is, on the smallest positive eigenvalue of the Laplace-Beltrami
operator on the underlying hyperbolic surface. The rate of equidistribution of horo-
cycle translates of generic arcs, from which one can deduce Ratner’s estimates, was
established in [30], as a consequence of the work of Bufetov and Forni [10], which we
recall below.

Effective statements on the equidistribution of orbits are now well-known as well.
Burger proved a polynomial bound on the ergodic integrals for sufficiently smooth
functions [11], where the exponent depends again on the spectral gap, and is half of
the mixing exponent. This result was improved in the seminal work of Flaminio and
Forni [15], who established a full asymptotic expansion for the ergodic integrals of the
horocycle flow in terms of the horocycle invariant distributions. Bufetov and Forni [10]
J.É.P. — M., 2023, tome 10
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later refined Flaminio and Forni’s theorem by constructing Hölder functionals which
govern the asymptotics of horocycle integrals. Similar objects were first introduced
and studied by Bufetov for translation flows [9], and are sometimes called Bufetov
functionals. In the same work [10], the authors derived spatial limit theorems for a
large class of functions (namely, functions which are not fully supported on the discrete
series). Notably, Bufetov and Forni’s results show that the limiting distributions, when
they exist, are non degenerate and compactly supported. This is in sharp contrast with,
for example, the case of the geodesic flow and of many other hyperbolic systems, for
which a Central Limit Theorem holds.

In this paper, we study the ergodic integrals for horocycle flows, following a method
inspired by Ratner’s beautiful paper [29] and further developed by Burger [11]. This
approach has the advantage of being rather simple and, furthermore, of providing
explicit formulas. A similar strategy has been employed by Strömbergsson [31] to
derive effective bounds on horocycle integrals on finite volume, noncompact surfaces,
and by Edwards [14] to study the equidistribution rates of translates of pieces of
horospheres in quotients of semisimple groups. In our setting, we derive much more
precise results, as we now describe.

We establish a full asymptotic expansion for horocycle integrals, thus providing a
short proof of Flaminio and Forni’s result which does not rely on the study of the
cohomological equation and on the classification of invariant distributions. We can
also show that the coefficients in the expansion are Hölder continuous, a property
which, to the best of our knowledge, was not known before. We then recover the limit
theorems of Bufetov and Forni, and we obtain explicit expressions for the limiting
distributions. Finally, in an appendix by Emilio Corso, we derive a short proof of the
temporal distributional limit theorem by Dolgopyat and Sarig [12].

In a recent work [1], Adam and Baladi study horocycle flows in a general setting
that includes the case of surfaces of variable negative curvature, and they establish
power law convergence for the ergodic integrals. We believe that it would be interesting
to compare the strategies of the present paper and of their work, which relies on the
spectral theory of transfer operators.

1.1. Organization of the paper. — In Section 2, we state the main result of the
paper, Theorem 1, and its consequences: Flaminio and Forni’s asymptotic expansion
(Theorem 2), Bufetov and Forni’s spatial limit theorem (Theorem 4), and Dolgopyat
and Sarig’s temporal limit theorem (Theorem 5). Section 3 contains the key idea,
Proposition 8, derived from Ratner’s and Burger’s works, which reduces the problem
to solving a system of linear ordinary differential equations. In Sections 4 and 5, we
write the solutions of the equations and, in doing so, we prove Theorem 1. Finally, the
proofs of Theorems 2, 4 and, 5 are contained in Sections 6, 7, and in the appendix,
respectively.

Acknowledgements. — I would like to thank Livio Flaminio, Giovanni Forni, Omri
Sarig for several enlightening discussions, and Henk Bruin, Raphael Steiner, and the
referee for their comments on an earlier version of the paper.
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2. Statement of the main results

2.1. Preliminaries and notation. — We denote by PSL(2,R) the group of 2 × 2

real matrices with determinant 1 quotiented by {±I2}. By a little abuse of notation,
we write elements of PSL(2,R) as matrices in SL(2,R). The Lie algebra sl2(R) of
PSL(2,R) is the 3-dimensional real vector space of matrices of the same size with
zero trace. We fix the basis {U,X, V } of sl2(R) given by

U =

(
0 1

0 0

)
, X =

(
1/2 0

0 −1/2

)
, V =

(
0 0

1 0

)
,

for which the following commuting relations hold:
[X,U ] = U, [X,V ] = −V, [U, V ] = 2X.

The elements U,X, V generate, by exponentiating, the one-parameter subgroups of
upper triangular unipotent, diagonal, and lower triangular unipotent matrices, re-
spectively.

Let us fix a uniform lattice Γ < PSL(2,R), namely Γ is a discrete subgroup of
PSL(2,R) such that the quotient M := Γ\PSL(2,R) is compact. We will denote by
vol the unique PSL(2,R)-invariant probability measure on M , namely the probability
measure locally given by the Haar measure. The manifold M can be identified with the
unit tangent bundle of the compact hyperbolic surface S = Γ\H, where Γ acts on the
upper half plane H by Möbius transformations (recall that H = PSL(2,R)/PSO(2),
where the group PSO(2) of rotation matrices is the stabilizer of the point i ∈ H under
the transitive action of PSL(2,R) on H by Möbius transformations).

The group PSL(2,R) acts on M by right multiplication. The restrictions of this
action to the one-parameter subgroups generated by U,X and V are, respectively, the
stable horocycle flow {ht}t∈R, the geodesic flow {ϕXt }t∈R, and the unstable horocycle
flow {hut }t∈R. Explicitly, they are given by

ht(Γg) = Γg

(
1 t

0 1

)
, ϕXt (Γg) = Γg

(
et/2 0

0 e−t/2

)
, and hut (Γg) = Γg

(
1 0

t 1

)
.

for all g ∈ PSL(2,R) and t ∈ R.
Let f ∈ C 2(M) be a twice differentiable function on M . We are interested in

studying the asymptotics of the horocycle ergodic averages of f , namely of

Af (x, T ) :=
1

T

∫ T

0

f ◦ ht(x) dt,

defined for every x ∈ M and T ⩾ 1, as T → ∞. We recall that the second order
differential operator

□ = −X2 +X − UV,

called the Casimir operator, is a generator of the center of the universal enveloping
algebra of sl2(R), and hence commutes with U,X, V , and the associated homoge-
neous flows. It acts as an essentially self-adjoint operator on L2(M), in particular its
eigenvalues are real. If µ ∈ R is an eigenvalue of □, let ν ∈ R⩾0 ∪ iR>0 be such that

1− ν2

4
= µ.

J.É.P. — M., 2023, tome 10
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2.2. The main result. — The main result of this paper is the following theorem,
from which we will deduce several well-known results on the asymptotic behaviour
of ergodic averages and limit theorems for horocycle flows. We stress that the proof
of Theorem 1 is explicit, and the terms appearing in the statement are defined in
Sections 4 and 5 below. In what follows, given a point x ∈M and T ⩾ 1, we abbreviate
ϕXlog T (x) by xT .

Theorem 1. — Let f ∈ C 2(M) be an eigenfunction of the Casimir operator with
eigenvalue µ ∈ R.

(i) If µ > 1/4, there exist two Hölder continuous functions D+
µ f , D−

µ f , with Hölder
exponent 1/2 and with

∥D±
µ f∥∞ ⩽

( 11

ℑν
+ 1
)
∥f∥C 2 ,

such that for all x ∈M and T ⩾ 1 we have

Af (x, T ) = T−1/2 cos
(ℑν

2
log T

)
D+

µ f(xT )

+ T−1/2 sin
(ℑν

2
log T

)
D−

µ f(xT ) + Rµf(x, T ),

where the remainder term Rµf(x, T ) satisfies

|Rµf(x, T )| ⩽
16

ℑν
∥f∥C 2T−1.

Moreover,

(1) |Af (x, T )| ⩽
15(log T + 1)√

T
∥f∥C 2 .

(ii) If µ = 1/4, there exist two Hölder continuous functions, D+
1/4f with Hölder

exponent 1/2− ε for all ε > 0, and D−
1/4f with Hölder exponent 1/2, and with

∥D±
1/4f∥∞ ⩽ 9∥f∥C 2 ,

such that for all x ∈M and T ⩾ 1 we have

Af (x, T ) = T−1/2 D+
1/4f(xT ) + T−1/2 log T D−

1/4f(xT ) + R1/4f(x, T ),

where the remainder term R1/4f(x, T ) satisfies

|R1/4f(x, T )| ⩽ 8
log T + 2

T
∥f∥C 2 .

(iii) If 0 < µ < 1/4, there exist two Hölder continuous functions D+
µ f , D−

µ f , with
Hölder exponents (1− ν)/2 and (1 + ν)/2 respectively, and with

∥D±
µ f∥∞ ⩽

6

ν(1− ν)
∥f∥C 2 ,

such that for all x ∈M and T ⩾ 1 we have

Af (x, T ) = T−(1+ν)/2 D+
µ f(xT ) + T−(1−ν)/2 D−

µ f(xT ) + Rµf(x, T ),

J.É.P. — M., 2023, tome 10
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where the remainder term Rµf(x, T ) satisfies

|Rµf(x, T )| ⩽
8

(1− ν2)ν
∥f∥C 2T−1.

Moreover,

(2) |Af (x, T )| ⩽
15

(1− ν)2
∥f∥C 2(log T + 1)T−(1−ν)/2

(iv) If µ = 0, then we have

Af (x, T ) = vol(f) +
1

T

∫ log T

0

(
V f ◦ ϕXξ ◦ hT (x)− V f ◦ ϕXξ (x)

)
dξ + R0f(x, T ),

where the remainder term R0f(x, T ) satisfies

|R0f(x, T )| ⩽
3

T
∥f∥C 2 .

(v) If µ < 0, then we have

|Af (x, T )| ⩽
5

T
∥f∥C 2 ;

in particular, f is a continuous coboundary, namely there exists a continuous func-
tion u such that f = Uu.

2.3. Flaminio and Forni’s theorem. — From Theorem 1, using some basic facts from
harmonic analysis, we can recover the seminal result of Flaminio and Forni on horocy-
cle ergodic averages [15, Th. 1.5]. Moreover, we strengthen their theorem by showing
that the coefficients in the asymptotic expansion are Hölder continuous with respect
to the base point.

In order to state our result, let us introduce some further notation. Let

Y =

(
0 −1/2

−1/2 0

)
, and Θ =

(
0 1/2

−1/2 0

)
,

and define
∆ = −(X2 + Y 2 +Θ2) = □− 2Θ2.

The operator ∆ acts as an essentially self-adjoint elliptic operator on L2(M), namely
is a Laplacian on M . We remark that ∆ and □ act as the Laplace-Beltrami operator
on L2(S), where, we recall, S = Γ\H = Γ\PSL(2,R)/PSO(2).

For every r > 0, we denote by W r = W r(M) the Sobolev space of functions
f ∈ L2(M) such that ∆r/2f ∈ L2(M), namely W r(M) is the maximal domain of the
operator (Id+∆)r/2 with the inner product

(3) ⟨f, g⟩W r = ⟨(Id+∆)rf, g⟩,

where ⟨· , ·⟩ is the inner product in L2(M). The space W r(M) coincides with the
closure of C∞(M) with respect to the norm ∥·∥W r induced by the inner product
above.

J.É.P. — M., 2023, tome 10
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By the Sobolev Embedding Theorem,W 4(M) ⊂ C 2(M) and there exists a constant
Cemb > 0 such that

∥f∥C 2 ⩽ Cemb∥f∥W 4 ,

for all f ∈W 4(M). Clearly, since M is 3-dimensional, the Sobolev embedding theorem
allows to replace W 4(M) with any W r(M), provided that r > 7/2.

We denote by Spec(□) the spectrum of the Casimir operator □ on L2(M). Since M
is compact, it is well-known that Spec(□) is discrete; moreover, Spec(□) ∩R⩾0 coin-
cides with the spectrum of the Laplace-Beltrami operator on the hyperbolic surface S.
We call

σcomp = Spec(□) ∩ (0, 1/4), and σprinc = Spec(□) ∩ (1/4,∞),

and we let

ε0 =

{
1 if 1/4 ∈ Spec(□),

0 otherwise.
Our version of Flaminio and Forni’s theorem is the following.

Theorem 2. — There exists a constant CM , defined explicitly in (20), such that the
following holds. Let f ∈ W 6(M). For all µ ∈ Spec(□) ∩ R>0, there exist bounded
functions D+

µ f,D
−
µ f satisfying∑

µ∈Spec(□)∩R>0

∥D±
µ f∥∞ ⩽ CM∥f∥W 6 ,

for which the following holds. For all x ∈M and T ⩾ 1, there exists Rf(x, T ), with

|Rf(x, T )| ⩽ CM∥f∥W 6

1 + log T

T
,

such that

Af (x, T ) =

∫
M

f d vol+
∑

µ∈σcomp

(
T−(1+ν)/2 D+

µ f(xT ) + T−(1−ν)/2 D−
µ f(xT )

)
+

∑
µ∈σprinc

(
T−1/2 cos

(ℑν
2

log T
)
D+

µ f(xT ) + T−1/2 sin
(ℑν

2
log T

)
D−

µ f(xT )

)
+ ε0 ·

(
T−1/2 D+

1/4f(xT ) + T−1/2 log T D−
1/4f(xT )

)
+ Rf(x, T ),

where xT = ϕXlog T (x). In fact, the functions D±
µ f are Hölder continuous with exponent

(1∓ℜν)/2, apart from D+
1/4f which has exponent 1/2− ε, for all ε > 0.

The proof of Theorem 2 is contained in Section 6 and follows from Theorem 1 by
exploiting a standard decomposition of the Sobolev space W 6(M) into a direct sum
of irreducible subspaces.

Let us further comment on the relation to [15, Th. 1.5]. Fix µ ∈ σcomp = Spec(□)∩
(0, 1/4). By comparison with Flaminio and Forni’s result we can write

D±
µ f(xT ) = c(x, T )DFF,±

µ (f),

J.É.P. — M., 2023, tome 10
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where DFF,±
µ are the horocycle invariant distributions classified by Flaminio and Forni

in [15]. An analogous equality holds also for µ = 1/4 and for µ ∈ σprinc, after perform-
ing a change of basis (see Proposition 3 below). We note that it follows immediately
from Theorem 2 that

D±
µ (Uf) = 0.

Flaminio and Forni proved that the horocycle invariant distributions are also eigen-
vectors for the action of the geodesic flow. By straightforward calculations, we can
verify that this is the case for the coefficients D±

µ f in Theorem 2.

Proposition 3. — The following identities hold:
– for 0 < µ < 1/4:

D±
µ (Xf) =

1± ν

2
D±

µ f,

– for µ = 1/4: (
D+

1/4(Xf)

D−
1/4(Xf)

)
=

(
1/2 −1

0 1/2

)(
D+

1/4f

D−
1/4f

)
,

– for µ > 1/4: (
D+

µ (Xf)

D−
µ (Xf)

)
=

(
1/2 −ℑν/2
ℑν/2 1/2

)(
D+

µ f

D−
µ f

)
.

The proof of Proposition 3 is contained in Section 6.3.

2.4. Limit Theorems: Bufetov and Forni’s theorem. — From Theorem 2 we can
deduce the limit theorems for horocycle integrals which were first established by
Bufetov and Forni [10]. Let us consider a real-valued function f ∈ W 6(M) with zero
average, and let D±

µ f be the continuous functions given by Theorem 2. Let us assume
that there exists µ ∈ Spec(□) ∩ R>0 for which the function D−

µ f is not identically
zero. In particular, by the Gottschalk-Hedlund theorem and Theorem 2, f is not a
continuous coboundary (indeed, it follows from the result by Flaminio and Forni [15]
on the cohomological equation that f is not a measurable coboundary). Let µf > 0

be the minimum of all such µ’s, i.e.,

µf = min{µ ∈ Spec(□) ∩ R>0 : D−
µ f does not vanish identically},

and let νf = ℜ
√
1− 4µf ∈ [0, 1). For T > 1, we denote by I(f, T ) the distribution of

the random variable

T−(1+νf )/2

∫ T

0

f ◦ ht(x) dt, if µf ̸= 1

4
,

(T 1/2 log T )−1

∫ T

0

f ◦ ht(x) dt, if µf =
1

4
,

where the point x is distributed according to the probability measure vol onM (we will
simply write x ∼ vol).

In order to state our limit theorem, we need to introduce some further notation.
If µf ⩽ 1/4, let D(f) be the distribution of the random variable D−

µf
f(x), where

J.É.P. — M., 2023, tome 10
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x ∼ vol. Since, by definition of µf , the function D−
µf
f is not identically zero and

is bounded, the associated probability measure D(f) on the real line is not a Dirac
mass and it is compactly supported. If µf > 1/4, let D(f, T ) be the distribution of
the following sum of “oscillating” random variables∑

µ∈σprinc

cos
(ℑν

2
log T

)
D+

µ f(x) + sin
(ℑν

2
log T

)
D−

µ f(x),

where x ∼ vol. We denote by dLP the Lévy-Prokhorov distance between probability
distributions, which induces the topology of weak convergence (see, e.g., [7]). The
following distributional limit theorem holds (see [10, Th. 1.4, 1.5]).

Theorem 4. — Let f ∈ W 6(M) be real-valued, with vol(f) = 0, and let µf > 0 be
defined as above. If µf ⩽ 1/4, then there exists an explicit η ∈ (0, 1) such that

dLP (I(f, T ),D(f)) ⩽ 2CM∥f∥W 4T−η(1 + log T ).

If µf = 1/4, then

dLP (I(f, T ),D(f)) ⩽ 2CM∥f∥W 4(log T )−1.

If µf > 1/4, then

dLP (I(f, T ),D(f, T )) ⩽ CM∥f∥W 4T−1/2(1 + log T ).

In particular, the first two cases of Theorem 4 are classical spatial distributional
limit theorems (DLTs): the distribution of the ergodic integrals of f , appropriately
normalized, converges to a non-atomic, compactly supported distribution. In the third
case, the renormalized ergodic integrals converge to a “moving target”, that is, to a
quasiperiodic motion in the space of random variables. It is reasonable to expect
that a limit theorem does not hold in this case; however it is still possible that the
limiting random variables all have the same distribution. A careful analysis of the
formulas established in Section 4 might be enough to rule out the possibility of this
“degenerate” case, and hence prove the absence of a spatial limit theorem. For the
moment, this remains an open problem.

2.5. Limit theorems: Dolgopyat and Sarig’s theorem. — Theorem 4 shows that
the standard CLT does not hold for the horocycle flow. As we already remarked, this
is in stark contrast with several hyperbolic systems, where the ergodic integrals of
sufficiently regular observables satisfy a spatial limit theorem with a Gaussian limit,
see, e.g., [25].

However, a Central Limit Theorem holds when fixing a deterministic initial point
x and randomizing time instead. Limit theorems for this type of random variables are
called temporal distributional limit theorems, and have been investigated for several
zero entropy dynamical systems; see, e.g., [5, 6, 2, 12, 23, 8] and references therein.
In the setting of this paper, i.e., for horocycle flows on compact surfaces, a temporal
DLT was first proved by Dolgopyat and Sarig in [12]. They first established the result
for horocycle windings (namely, for harmonic 1-forms) and then relied on the work of
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Flaminio and Forni, and of Bufetov and Forni, to deduce it for more general observ-
ables. In the appendix by Emilio Corso, we provide a direct proof of Dolgopyat and
Sarig’s temporal DLT; see Theorem 5, which we now state.

For any σ ∈ R, let N(0, σ2) indicate the Gaussian distribution on the real line with
mean 0 and variance σ2. For any T ∈ R>0, let U[0,T ] denote the uniform probability
measure, that is, the normalized Lebesgue measure, on the interval [0, T ] ⊂ R.

Theorem 5. — Assume that 1/4 /∈ Spec(□). Let f ∈W 6(M) be a real-valued function
with vol(f) = 0, and assume that D±

µ f ≡ 0 for all µ ∈ Spec(□) ∩ R>0. If f is not a
measurable coboundary, then there is a real number σ > 0 and, for every x ∈ M , a
collection of real numbers AT (x) ∈ R such that∫ t

0
f ◦ hs(x) ds−AT (x)√

log T

T→+∞−−−−−−→ N(0, σ2), t ∼ U[0,T ]

in distribution. Therefore, the ergodic integrals of f satisfy a temporal distributional
limit theorem on any horocycle orbit.

The constants AT (x) in Theorem 5 are explicitly defined in the appendix.

Remark 6. — As we will explain in Section 6.4 and in the appendix, the assumptions
in Theorem 5 can be replaced by asking that all the components of f corresponding
to positive Casimir parameters are coboundaries for the horocycle flow, while f itself
is not. Under these or under the assumptions of the theorem, the ergodic integrals
of f up to time t grow as log t, according to the formula in Theorem 1(iv); we refer
the reader to Lemma 18 and Theorem 20 for the details.

3. Reduction to a system of ODEs

The geodesic and horocycle flows satisfy the well-known commutation relation

ϕXt ◦ hs(x) = he−ts ◦ ϕXt (x).

In other words, the geodesic flow at time t maps any horocycle orbit segment with unit
speed starting at a point x into an horocycle orbit segment at ϕXt (x) with constant
speed e−t. By a change of variable, we immediately get the following lemma.

Lemma 7. — Let ℓ ∈ C (M). Then, for all t ⩾ 0 we have∫ 1

0

ℓ ◦ ϕX−t ◦ hs(x) ds =
1

et

∫ et

0

ℓ ◦ hs(ϕX−t(x)) ds.

Let now f be a C 2 function, and assume that □f = µf for some µ ∈ R. We define

Jf (x, t) :=

∫ 1

0

f ◦ ϕX−t ◦ hs(x) ds,

so that, by Lemma 7, we have

(4) Af (x, T ) = Jf (ϕ
X
log T (x), log T ).
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Hence, for any fixed x ∈M , we now focus our attention on the function Jf (x, ·). The
key idea, coming from Ratner’s and Burger’s works [29, 11], is to show that it satisfies
a certain ODE, as shown in the next proposition.

Proposition 8. — Fix x ∈M . The function J(t) = Jf (x, t) satisfies the linear ODE

J ′′(t) + J ′(t) + µJ(t) = e−t
[
V f ◦ ϕX−t(x)− V f ◦ ϕX−t ◦ h1(x)

]
,

with the initial conditions

J(0) =

∫ 1

0

f ◦ hs(x) ds, J ′(0) =

∫ 1

0

(−Xf) ◦ hs(x) ds.

Proof. — By assumption, Xf , X2f , and UV f are continuous, hence bounded, func-
tions. We can then write

(5) J ′(t) =

∫ 1

0

d

dt
f ◦ ϕX−t ◦ hs(x) ds =

∫ 1

0

(−Xf) ◦ ϕX−t ◦ hs(x) ds,

and

J ′′(t) =

∫ 1

0

d2

(dt)2
f ◦ ϕX−t ◦ hs(x) ds

=

∫ 1

0

d

dt
(−Xf) ◦ ϕX−t ◦ hs(x) ds =

∫ 1

0

X2f ◦ ϕX−t ◦ hs(x) ds.
(6)

Let us also notice that, by Lemma 7,∫ 1

0

(UV f) ◦ ϕX−t ◦ hs(x) ds = e−t
[
V f ◦ het ◦ ϕX−t(x)− V f ◦ ϕX−t(x)

]
.

Therefore, we compute

µJ(t) =

∫ 1

0

µf ◦ ϕX−t ◦ hs(x) ds =
∫ 1

0

(□f) ◦ ϕX−t ◦ hs(x) ds

=

∫ 1

0

(−X2f +Xf − UV f) ◦ ϕX−t ◦ hs(x) ds

= −J ′′(t)− J ′(t)− e−t
[
V f ◦ ϕX−t ◦ h1(x)− V f ◦ ϕX−t(x)

]
.

The initial conditions are clear from the definition of J(t) and from (5) and (6). □

For the sake of notation, let us call

G(t) = Gf (x, t) := V f ◦ ϕX−t(x)− V f ◦ ϕX−t ◦ h1(x).

Note that

(7) |Gf (x, t)| ⩽ 2∥V f∥∞ ⩽ 2∥f∥C 2 .

By Proposition 8, in order to find an expression for Jf (x, t), we need to solve the
ODE

(8) J ′′(t) + J ′(t) + µJ(t) = e−tG(t).
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Its solution, with initial conditions J(0) and J ′(0), can be written explicitly and
depends on the complex numbers

z± = −1± ν

2
, where ν =

√
1− 4µ ∈ R⩾0 ∪ iR>0,

which are the roots of the characteristic polynomial Pµ(z) := z2 + z + µ of (8).

4. Positive Casimir parameters

In this section, we prove parts (i), (ii), and (iii) of Theorem 1, namely in the case
that the Casimir eigenvalue µ is strictly positive. The case µ ⩽ 0 will be treated in
the next section.

4.1. The principal series. — When µ > 1/4, then ν ∈ iR>0 and Pµ(z) has two
complex conjugate roots z± ∈ C with real part equal to −1/2 and imaginary part
ℑν/2 =

√
4µ− 1/2 > 0. The solution of (8) is

(9) J(t) = e−t/2 cos
(ℑν

2
t
)(

− 2

ℑν

∫ t

0

e−ξ/2 sin
(ℑν

2
ξ
)
G(ξ) dξ + J(0)

)
+ e−t/2 sin

(ℑν
2
t
)( 2

ℑν

∫ t

0

e−ξ/2 cos
(ℑν

2
ξ
)
G(ξ) dξ +

1

ℑν
J(0) +

2

ℑν
J ′(0)

)
.

Since the integrals in the expressions above are absolutely convergent for t→ ∞, we
can define

D+
µ f(x) = − 2

ℑν

∫ ∞

0

e−ξ/2 sin
(ℑν

2
ξ
)
G(ξ) dξ +

(∫ 1

0

f ◦ hs(x) ds
)
,

D−
µ f(x) =

2

ℑν

∫ ∞

0

e−ξ/2 cos
(ℑν

2
ξ
)
G(ξ) dξ +

1

ℑν

(∫ 1

0

f ◦ hs(x) ds
)

− 2

ℑν

(∫ 1

0

Xf ◦ hs(x) ds
)
.

In this way, we can rewrite (9) as

(10) Jf (x, t) = e−t/2 cos
(ℑν

2
t
)
D+

µ f(x) + e−t/2 sin
(ℑν

2
t
)
D−

µ f(x) + Rµf(x, t),

where

Rµf(x, t) =
2

ℑν
e−t/2

[
cos
(ℑν

2
t
)∫ ∞

t

e−ξ/2 sin
(ℑν

2
ξ
)
G(ξ) dξ

− sin
(ℑν

2
t
)∫ ∞

t

e−ξ/2 cos
(ℑν

2
ξ
)
G(ξ) dξ

]
.

Using (7), one can easily check that

∥D+
µ f∥∞ ⩽

( 8

ℑν
+1
)
∥f∥C 2 , ∥D−

µ f∥∞ ⩽
11

ℑν
∥f∥C 2 , and |Rµf(x, t)| ⩽

16

ℑν
e−t∥f∥C 2 .

To deduce the expression of Theorem 1(i) for the ergodic average of f , one simply
needs to use (4).
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Applying the trivial estimates | cos(ℑν
2 t)| ⩽ 1 and | sin(ℑν

2 t)| ⩽ ℑν
2 t, from (9)

we also deduce

|Jf (x, t)| ⩽ e−t/2

(
2

∫ t

0

e−ξ/2ξ dξ + 1

)
∥f∥C 2 + te−t/2

(
2

∫ t

0

e−ξ/2 dξ +
3

2

)
∥f∥C 2

⩽ 9e−t/2∥f∥C 2 + 6te−t/2∥f∥C 2 ,

which proves (1), again recalling that t = log T .

4.2. The case µ = 1/4. — If µ = 1/4, then −1/2 is a double root of Pµ(z). In this
case, the solution of (8) is

J(t) = e−t/2

(
−
∫ t

0

ξe−ξ/2G(ξ) dξ+J(0)

)
+te−t/2

(∫ t

0

e−ξ/2G(ξ) dξ+
1

2
J(0)+J ′(0)

)
.

As before, we can define

D+
1/4f(x) = −

∫ ∞

0

ξe−ξ/2G(ξ) dξ +

(∫ 1

0

f ◦ hs(x) ds
)
,

D−
1/4f(x) =

∫ ∞

0

e−ξ/2G(ξ) dξ +
1

2

(∫ 1

0

f ◦ hs(x) ds
)
−
(∫ 1

0

Xf ◦ hs(x) ds
)
,

so that we obtain

(11) Jf (x, t) = e−t/2D+
1/4f(x) + te−t/2D−

1/4f(x) + R1/4f(x, t),

where

R1/4f(x, t) = −te−t/2

∫ ∞

t

e−ξ/2G(ξ) dξ + e−t/2

∫ ∞

t

ξe−ξ/2G(ξ) dξ.

By (4), we deduce the expression of Theorem 1(ii) for Af (x, T ).
One can easily check that

∥D+
1/4f∥∞ ⩽ 9∥f∥C 2 , ∥D−

1/4f∥∞ ⩽ 6∥f∥C 2 , and |R1/4f(x, t)| ⩽ 8∥f∥C 2(t+ 2)e−t.

4.3. The complementary series. — Finally, in the case 0 < µ < 1/4, the character-
istic polynomial Pµ(z) has two distinct real roots z± ∈ (−1, 0). The solution of (8)
is

(12) J(t) = e−(1+ν)t/2

(
−1

ν

∫ t

0

e−(1−ν)ξ/2G(ξ) dξ − 1− ν

2ν
J(0)− 1

ν
J ′(0)

)
+ e−(1−ν)t/2

(
1

ν

∫ t

0

e−(1+ν)ξ/2G(ξ) dξ +
1 + ν

2ν
J(0) +

1

ν
J ′(0)

)
.

Once again, we define

D±
µ f(x) = ∓1

ν

∫ ∞

0

e−(1∓ν)ξ/2G(ξ) dξ ∓ 1∓ ν

2ν

(∫ 1

0

f ◦hs(x) ds
)
± 1

ν

(∫ 1

0

Xf ◦hs(x) ds
)
.

Thus, we rewrite (12) as

(13) Jf (x, t) = e−(1+ν)t/2D+
µ f(x) + e−(1−ν)t/2D−

µ f(x) + Rµf(x, t),
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where

Rµf(x, t) =
1

ν
e−(1+ν)t/2

∫ ∞

t

e−(1−ν)ξ/2G(ξ) dξ − 1

ν
e−(1−ν)t/2

∫ ∞

t

e−(1+ν)ξ/2G(ξ) dξ.

It is immediate to check that

∥D+
µ f∥∞ ⩽

6

ν(1− ν)
∥f∥C 2 , ∥D−

µ f∥∞ ⩽
6

ν
∥f∥C 2 ,

|Rµf(x, t)| ⩽
8

ν(1− ν2)
∥f∥C 2e−t.and

We now show that

(14) |Jf (x, t)| ⩽
6

1− ν
te−(1−ν)t/2∥f∥C 2 +

9

(1− ν)2
e−(1−ν)t/2∥f∥C 2 ,

which implies (2). We rewrite (12) as follows

J(t) =
e−(1−ν)t/2

ν

[
−e−νt

(∫ t

0

e−(1−ν)ξ/2G(ξ) dξ +
1− ν

2
J(0) + J ′(0)

)
+

∫ t

0

e−(1+ν)ξ/2G(ξ) dξ +
1 + ν

2
J(0) + J ′(0)

]
.

By adding and subtracting
∫ t

0
e−(1−ν)ξ/2G(ξ) dξ inside the brackets, we get

|J(t)| ⩽ e−(1−ν)t/2

ν

[
|1− e−νt|

(∫ t

0

e−(1−ν)ξ/2|G(ξ)|dξ + 1

2
|J(0)|+ |J ′(0)|

)
+

∫ t

0

|e−(1+ν)ξ/2 − e−(1−ν)ξ/2| |G(ξ)|dξ + ν|J(0)|
]
,

from which, since |1− e−νt| ⩽ νt, the claim (14) follows.

4.4. The Hölder regularity of D±
µ f . — In order to complete the proof of parts (i),

(ii), and (iii) of Theorem 1, the only thing left to prove is the claim on the regu-
larity of the functions D±

µ f . Let us start with the case µ ̸= 1/4. Fix x ∈ M and
let y be a point at distance r ∈ (0, 1) from x. We can write y = x exp(rW ), where
W = aV V + aXX + aUU with |aV |, |aX |, |aU | ⩽ 1. We now consider the expressions
for D±

µ f we found in Sections 4.1 and 4.3: it is clear that the functions∫ 1

0

f ◦ hs(x) ds and
∫ 1

0

Xf ◦ hs(x) ds

are (at least) of class C 1, thus we deduce that there exists a constant Cf depending
only on f such that

|D±
µ f(y)−D±

µ f(x)| ⩽ Cf

(
r∥f∥C 1 +

∫ ∞

0

e−aξ|Gf (y, ξ)−Gf (x, ξ)|dξ
)
,

where a = (1∓ℜν)/2. In order to prove the claim on the Hölder regularity of D±
µ f ,

it suffices to bound the integral in brackets above by O(ra).

Lemma 9. — With the notation above,

|Gf (y, ξ)−Gf (x, ξ)| ⩽ 6∥f∥C 2 min{1, reξ}.
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Proof. — From the definition of Gf (x, ξ), it follows that

|Gf (y, ξ)−Gf (x, ξ)| ⩽ r(∥[DϕX−ξ(W )]V f∥∞ + ∥[DϕX−ξ ◦Dh1(W )]V f∥∞).

Since we can write Dh1(W ) = ãV V + ãXX + ãUU , for some |ãV |, |ãX |, |ãU | ⩽ 2,
we get the estimate

|Gf (y, ξ)−Gf (x, ξ)| ⩽ 2r∥(e−ξV +X + eξU)V f∥∞ ⩽ 6∥f∥C 2reξ.

This and (7) concludes the proof. □

The conclusion follows from the following elementary lemma, applied to F =

|Gf (y, ·)−Gf (x, ·)|.

Lemma 10. — Let F (ξ) be a continuous and positive function satisfying F (ξ) ⩽
C0 min{1, eξr} for some C0 > 0 and r ∈ (0, 1). Then, for all a ∈ (0, 1) we have∫ ∞

0

e−aξ F (ξ) dξ ⩽ C0 max{(1− a)−1, a−1}ra.

Proof. — Let A = − log r > 0. We have∫ ∞

0

e−aξ F (ξ) dξ =

∫ A

0

e−aξ F (ξ) dξ +

∫ ∞

A

e−aξ F (ξ) dξ

⩽ C0r

∫ A

0

e(1−a)ξ dξ + C0

∫ ∞

A

e−aξ dξ

⩽
C0

1− a
eA(1−a)r +

C0

a
e−Aa ⩽ C0 max{(1− a)−1, a−1}ra. □

In the case µ = 1/4, the only difference is for D+
1/4f , in which case one gets the

bound

|D+
1/4f(y)−D+

1/4f(x)| ⩽ Cf

(
r∥f∥C 1 +

∫ ∞

0

ξe−ξ/2|Gf (y, ξ)−Gf (x, ξ)|dξ
)
.

The integral in the right-hand side above can be estimated by O(−
√
r log r) in the

same way as we did before by using the following easy lemma.

Lemma 11. — Let F (ξ) be a continuous and positive function satisfying F (ξ) ⩽
C0 min{1, eξr} for some C0 > 0 and r ∈ (0, 1). Then, we have∫ ∞

0

ξe−ξ/2 F (ξ) dξ ⩽ −8C0

√
r log r.

5. The discrete series

In this section, we consider the case µ ⩽ 0 and we will prove Theorem 1(iv)
and (v). It is well-known [4] that the only possible non-positive eigenvalues of the
Casimir operator are given by

µ = −n2 + n, for n ∈ Z, n ⩾ 1.
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5.1. Case n = 1. — We consider the case that µ = 0. The solution of (8) is

(15) J(t) =

(
J(0) + J ′(0) +

∫ ∞

0

e−ξG(ξ) dξ

)
−
∫ ∞

t

e−ξG(ξ) dξ − e−tJ ′(0)− e−t

∫ t

0

G(ξ) dξ.

Let us assume that vol(f) = 0. Unique ergodicity of the horocycle flow and equality (4)
imply that ∥J(log T )∥∞ = ∥Af (·, T )∥∞ → 0; thus the constant term in brackets
in (15) is zero. Recalling (7), we deduce that∣∣∣∣Jf (x, t) + e−t

∫ t

0

Gf (x, ξ) dξ

∣∣∣∣ ⩽ 3e−t∥f∥C 2 .

By the definition of G(ξ) = Gf (x, ξ) and (4), we conclude∣∣∣∣Af (x, T )−
1

T

∫ log T

0

(
V f ◦ ϕXξ ◦ hT (x)− V f ◦ ϕXξ (x)

)
dξ

∣∣∣∣ ⩽ 3

T
∥f∥C 2 ,

which proves Theorem 1(iv).

Remark 12. — It is easy to see that Theorem 1(iv) implies that if f is not a measur-
able coboundary for U , then V f is not a measurable coboundary for X. Indeed, if this
was not the case, by Livsic’s theorem, V f is a continuous coboundary for X. By The-
orem 1(iv), the horocycle ergodic integrals of f are uniformly bounded. Since ht is
minimal, by the Gottschalk-Hedlund theorem (see, e.g., [22, Th. C]), we deduce that f
is a continuous coboundary for U , which is a contradiction with the assumption.

5.2. Case n ⩾ 2. — As we recalled, if µ < 0, then µ ⩽ −2 and ν ⩾ 3. In this case,
the general solution of (8) is the same as in (12). Rearranging the terms, it is easy to
see that there is a constant Cf = C(n, f, x) (depending on n, f and x) such that

(16)
∣∣∣∣J(t)− e−(1−ν)t/2

(
1

ν

∫ ∞

0

e−(1+ν)ξ/2G(ξ) dξ +
1 + ν

2ν
J(0) +

1

ν
J ′(0)

)∣∣∣∣ ⩽ Cfe
−t.

Note that the second term in the left-hand side in (16) diverges for t→ ∞, unless the
constant in brackets is zero. Indeed, this must be the case, since we have the a priori
estimate

|J(t)| ⩽ ∥Af (x, e
t)∥∞ ⩽ ∥f∥∞.

Therefore, again from (12), we conclude that

(17) |Jf (x, t)| ⩽
∣∣∣∣e−(1+ν)t/2

(
−1

ν

∫ t

0

e−(1−ν)ξ/2G(ξ) dξ − 1− ν

2ν
J(0)− 1

ν
J ′(0)

)∣∣∣∣
+

∣∣∣∣1ν e−(1−ν)t/2

∫ ∞

t

e−(1+ν)ξ/2G(ξ) dξ

∣∣∣∣ ⩽ 5e−t∥f∥C 2 .

We showed that the ergodic integrals of f are uniformly bounded, namely∣∣∣∣∫ T

0

f ◦ ht(x) dt
∣∣∣∣ = |TAf (x, T )| = |TJf (ϕXlog T (x), log T )| ⩽ 5∥f∥C 2 .
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By the Gottschalk-Hedlund theorem (see, e.g., [22, Th. C]), this implies that f is a
continuous coboundary.

6. Flaminio and Forni’s theorem and the invariant distributions

We now prove Theorem 2. As we already pointed out, the proof follows from The-
orem 1 and some basic facts from the harmonic analysis of the Lie group PSL(2,R).

6.1. Preliminaries. — Let U(H) the group of unitary transformations of the Hilbert
space H = L2(M). We denote by ρ : PSL(2,R) → U(H) the right regular representa-
tion defined by

[ρ(g)f ](x) = f(xg),

for all g ∈ PSL(2,R), f ∈ H, and x ∈M .
It is a standard fact that H splits into a direct sum of countably many irreducible

subspaces Hi for i ∈ I, and on each of these subspaces the Casimir operator acts as
a multiple of the identity, namely for all i ∈ I there exists µ ∈ Spec(□) such that

□f = µf for all f ∈ Hi of class C 2.

More precisely, the Casimir eigenvalue µ has the form

µ =
1− ν2

4
,

where ν ∈ iR (a principal series representation), or ν ∈ (−1, 1)∖ {0} (a complemen-
tary series representation), or ν = 2n − 1, n ∈ 2Z>0 (a discrete series representa-
tion). The principal and complementary series representations with parameters ν and
−ν are isomorphic, hence we can restrict ourselves to the case ν ∈ iR⩾0 ∪ (0, 1) ∪
{2n− 1 : n ∈ Z>0}, and write

(18) H =
⊕

µ∈Spec(□)

Hµ,

where Hµ is the orthogonal sum of all the irreducible representations Hi of the same
parameter µ, so that each µ appears only once in the decomposition (18).

We will need the following fact.

Lemma 13. — The infinite sum ∑
µ∈Spec(□)

1

(1 + |µ|)2

converges.

Proof. — As we mentioned above, the eigenvalues µ ⩽ 0 can be written as µ = −n2+n
for n ∈ Z>0, hence the sum of (1 + |µ|)−2 for all µ ⩽ 0 is finite. On the other hand,
the positive part of the spectrum 0 < µ1 < µ2 < . . . of □ coincides with the spectrum
of the Laplace-Beltrami operator on the hyperbolic surface S = Γ\H. By Weyl’s Law,
the number of these eigenvalues µn ∈ Spec(□) ∩ R>0, counted with multiplicity, in
any given interval of the form (0, R) grows asymptotically linearly in R. This implies
that (1 + µn)

−1 = O(n−1), in particular the sequence is square summable. □
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By Lemma 13, we can then define the constant CSpec > 0 by

C2
Spec :=

∑
µ∈Spec(□)

1

(1 + |µ|)2
.

At the level of Sobolev spaces, from (18) we have an induced decomposition

W r(M) =W r(H) =
⊕

µ∈Spec(□)

W r(Hµ) for all r ⩾ 0.

Hence, for all r ⩾ 4 and f ∈W r(M), we can write

f =
∑

µ∈Spec(□)

fµ, with fµ ∈W r(Hµ) ⊂ C 2(M),

and ∥f∥2W r =
∑

µ∈Spec(□)

∥fµ∥2W r .
(19)

Lemma 14. — Let f ∈W r(M) be as above. For any µ ∈ Spec(□), we have

(1 + |µ|)∥fµ∥2W r−1 ⩽ ∥fµ∥2W r .

Proof. — Let us remark that it is enough to prove the lemma under the assumption
that Hµ is an irreducible subspace. For any given fµ ∈ Hµ, we can write fµ =∑

k∈Iµ
uµ,k, where uµ,k are mutually orthogonal eigenvectors of Θ, namely they satisfy

Θuµ,k = ikuµ,k, and Iµ ⊆ Z if µ > 0 and Iµ ⊆ n+ Z⩾0 if µ = −n2 + n ⩽ 0 (see, e.g.,
[15, §2]).

By the definition (3) of the inner product in W r, we have

∥fµ∥2W r = ⟨(Id+∆)fµ, fµ⟩W r−1 = ∥fµ∥2W r−1 + µ∥fµ∥2W r−1 + ⟨−2Θ2fµ, fµ⟩W r−1 ,

where we used the fact that we can write the Laplacian as ∆ = □− 2Θ2. If µ > 0

⟨−2Θ2fµ, fµ⟩W r−1 =
∑
k∈Iµ

2k2∥uµ,k∥W r−1 ⩾ 0,

otherwise, if µ = −n2 + n ⩽ 0,

⟨−2Θ2fµ, fµ⟩W r−1 =
∑
k∈Iµ

2k2∥uµ,k∥W r−1 ⩾ 2n2∥fµ∥2W r−1 ⩾ −2µ∥fµ∥2W r−1 .

In both cases, we conclude that ∥fµ∥2W r ⩾ (1 + |µ|)∥fµ∥2W r−1 . □

Let f ∈ W 6(M), and let us decompose f as in (19). We now show that we can
bound

∑
µ∈Spec(□) ∥fµ∥C 2 in terms of the W 6 norm of f .

Lemma 15. — Let f ∈W 6(M) and write f =
∑

µ∈Spec(□) fµ as in (19). Then,∑
µ∈Spec(□)

∥fµ∥C 2 ⩽ Cemb CSpec∥f∥W 6 .

Proof. — From the Cauchy-Schwarz inequality and using Lemma 13, we deduce∑
µ∈Spec(□)

∥fµ∥C 2 ⩽ Cemb

∑
µ∈Spec(□)

∥fµ∥W 4 ⩽ Cemb CSpec

( ∑
µ∈Spec(□)

(1 + |µ|)2∥fµ∥2W 4

)1/2

.
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Applying now Lemma 14, we get∑
µ∈Spec(□)

∥fµ∥C 2 ⩽ Cemb CSpec

( ∑
µ∈Spec(□)

∥fµ∥2W 6

)1/2

= Cemb CSpec∥f∥W 6 ,

which completes the proof. □

We are ready to give the proof of our version of Flaminio and Forni’s theorem.

6.2. Proof of Theorem 2. — Let us define the constant CM > 0 by

(20) CM = 20 C̃MCembCSpec,

where C̃M = max
{
|ν|−1, |1− ν|−1 : µ ∈ σcomp ∪ σprinc

}
< ∞. Let f ∈ W 6(M) and

consider the decomposition as in (19). Since, by Lemma 15, for all x ∈M∑
µ∈Spec(□)

|fµ(x)| ⩽
∑

µ∈Spec(□)

∥fµ∥C 2 ⩽ Cemb CSpec∥f∥W 6 ,

we have
1

T

∫ T

0

f ◦ hs(x) ds =
∫
M

f d vol+
∑

µ∈Spec(□)

Aµ(x, T ),(21)

Aµ(x, T ) =
1

T

∫ T

0

fµ ◦ hs(x) ds, and vol(fµ) = 0.where

We can now apply the results of Theorem 1 to each of the components fµ. In partic-
ular, the expression for the ergodic average of f in Theorem 2 is satisfied by defining

Rf(x, T ) =
∑

µ∈Spec(□)∩R>0

Rµ(fµ)(x, T ) +
∑

µ∈Spec(□)∩R⩽0

Afµ(x, T ).

By Theorem 1 and by Lemma 15, we have

|Rf(x, T )| ⩽
∑

µ∈Spec(□)∩R>0

|Rµ(fµ)(x, T )|+
∑

µ∈Spec(□)∩R⩽0

|Afµ(x, T )|

⩽ 16 C̃M
1 + log T

T

∑
µ∈Spec(□)∩R>0

∥fµ∥C 2 + 5
1 + log T

T

∑
µ∈Spec(□)∩R⩽0

∥fµ∥C 2

⩽ CM∥f∥W 6

1 + log T

T
,

and also ∑
µ∈Spec(□)∩R>0

∥D±
µ f∥∞ ⩽ 11C̃M

∑
µ∈Spec(□)∩R>0

∥fµ∥C 2 ⩽ CM∥f∥W 6 .

The proof of Theorem 2 is complete.

Remark 16. — It is not difficult to see that it is possible to obtain a version of The-
orem 2 in which the constant CM does not depend on the maximum of |ν|−1 for
µ ∈ σcomp ∪ σprinc, but only on the spectral gap (i.e., on the maximum of |1− ν|−1),

J.É.P. — M., 2023, tome 10



324 D. Ravotti

at the price of an extra factor log T : to this end, the bounds (1) and (2) in Theo-
rem 1(i), (iii) are needed to estimate the components of f on irreducible subspaces of
eigenvalues close to 1/4.

6.3. The action of the geodesic flow. — We now prove Proposition 3 by computing
D±

µ (Xf) for all fixed µ ∈ Spec(□)∩R>0. In order to do this, we need to replace f = fµ
with Xf = Xfµ in the expressions we found in Section 4.

Note that, by (5) and (6),

JXf (0) =

∫ 1

0

Xf ◦ hs(x) ds = −J ′
f (0),

and J ′
Xf (0) =

∫ 1

0

(−X2f) ◦ hs(x) ds = −J ′′
f (0).

(22)

We start with a simple computation that will become useful later.

Lemma 17. — Let ℓ(ξ) be a smooth function such that ℓ, ℓ′∈L1(R) and limξ→∞ℓ(ξ)=0.
Then,∫ ∞

0

ℓ(ξ)GXf (ξ) dξ =

∫ ∞

0

[ℓ(ξ) + ℓ′(ξ)]Gf (ξ) dξ + ℓ(0)
(
µJf (0) + J ′

f (0) + J ′′
f (0)

)
.

Proof. — By the commutation relation between X and V , namely [X,V ] = −V ,
we get

GXf (ξ) = V Xf ◦ ϕX−ξ(x)− V Xf ◦ ϕX−ξ ◦ h1(x)

= XV f ◦ ϕX−ξ(x) + V f ◦ ϕX−ξ(x)−XV f ◦ ϕX−ξ ◦ h1(x)− V f ◦ ϕX−ξ ◦ h1(x)
= Gf (ξ)−G′

f (ξ).

Integrating by parts, and using ℓ(ξ) → 0, we obtain∫ ∞

0

ℓ(ξ)GXf (ξ) dξ =

∫ ∞

0

[ℓ(ξ) + ℓ′(ξ)]Gf (ξ) dξ + ℓ(0)Gf (0).

We only need to rewrite Gf (0). Evaluating (8) at 0, we have

Gf (0) = µJf (0) + J ′
f (0) + J ′′

f (0),

which completes the proof. □

Proof of Proposition 3. — Let us assume 0 < µ < 1/4. From the expressions for D±
µ

in Section 4.3, (22), and Lemma 17, we get

D±
µ (Xf) = ∓1

ν

∫ ∞

0

e−(1∓ν)ξ/2GXf (ξ) dξ ∓
1∓ ν

2ν
JXf (0)∓

1

ν
J ′
Xf (0)

= ∓1

ν

(∫ ∞

0

(
1− 1∓ ν

2

)
e−(1∓ν)ξ/2Gf (ξ) dξ + µJf (0) + J ′

f (0) + J ′′
f (0)

)
± 1∓ ν

2ν
J ′
f (0)±

1

ν
J ′′
f (0).
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Using the fact that (1 + ν)(1− ν) = 4µ, we conclude

D±
µ (Xf) =

1± ν

2

(
∓1

ν

∫ ∞

0

e−(1∓ν)ξ/2Gf (ξ) dξ ∓
1∓ ν

2ν
Jf (0)∓

1

ν
J ′
f (0)

)
=

1± ν

2
D±

µ (f).

Let now µ = 1/4. Using the expressions in Section 4.2, by (22) and Lemma 17, we get

D+
1/4(Xf) = −

∫ ∞

0

ξe−ξ/2GXf (ξ) dξ + JXf (0)

= −1

2

∫ ∞

0

ξe−ξ/2Gf (ξ) dξ −
∫ ∞

0

e−ξ/2Gf (ξ) dξ − J ′
f (0)

= −1

2

∫ ∞

0

ξe−ξ/2Gf (ξ) dξ −D−
1/4f +

1

2
Jf (0) + J ′

f (0)− J ′
f (0)

=
1

2
D+

1/4f −D−
1/4f.

Similarly,

D−
1/4(Xf) =

∫ ∞

0

e−ξ/2GXf (ξ) dξ +
1

2
JXf (0) + J ′

Xf (0)

=
1

2

∫ ∞

0

e−ξ/2Gf (ξ) dξ +
1

4
Jf (0) + J ′

f (0) + J ′′
f (0)−

1

2
Jf (0)− J ′′

f (0)

=
1

2
D+

1/4f.

Finally, let µ > 1/4. Lemma 17 gives us∫ ∞

0

e−ξ/2 sin
(ℑν

2
ξ
)
GXf (ξ) dξ =

1

2

∫ ∞

0

e−ξ/2 sin
(ℑν

2
ξ
)
Gf (ξ) dξ

+
ℑν
2

∫ ∞

0

e−ξ/2 cos
(ℑν

2
ξ
)
Gf (ξ) dξ,

and∫ ∞

0

e−ξ/2 cos
(ℑν

2
ξ
)
GXf (ξ) dξ =

1

2

∫ ∞

0

e−ξ/2 cos
(ℑν

2
ξ
)
Gf (ξ) dξ

− ℑν
2

∫ ∞

0

e−ξ/2 cos
(ℑν

2
ξ
)
Gf (ξ) dξ + µJf (0) + J ′

f (0) + J ′′
f (0).

Plugging these and (22) into the expressions in Section 4.1 for D±
µ (Xf), we obtain

D+
µ (Xf) =

1

2
D+

µ f − ℑν
2

D−
µ f, and D−

µ (Xf) =
1

2
D−

µ f +
ℑν
2

D+
µ f,

which concludes the proof. □

6.4. The case of logarithmic growth. — Let us consider the case of a function
f ∈ W 6(M) with zero integral such that D±

µ f ≡ 0 for all µ ∈ Spec(□) ∩ R>0. From
Theorem 2, it follows that the ergodic integral of f up to time t can be bounded by a
constant times log t. One can actually be more precise, since the terms in (21) which
are of order log t are only (possibly) two: the error term corresponding to the Casimir
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parameter 1/4 and the main term corresponding to the Casimir parameter 0 (as in
Theorem 1(ii) and (iv)). With this in mind, we can easily prove the following lemma.

Lemma 18. — Let f ∈W 6(M) be a real-valued function with vol(f) = 0. Assume that
(a) either 1/4 /∈ Spec(□) and D±

µ f ≡ 0 for all µ ∈ Spec(□) ∩ R>0,
(b) or all components fµ of f in (19) corresponding to positive parameters µ > 0

are measurable coboundaries.
Then, for all T ⩾ 1 and for all x ∈M , there exists E(x, T ) ∈ R with

|E(x, T )| ⩽ CM∥f∥W 4 ,

such that∫ T

0

f ◦ hs(x) ds =
∫ log T

0

(
V f0 ◦ ϕXξ ◦ hT (x)− V f0 ◦ ϕXξ (x)

)
dξ + E(x, T ).

Moreover, if f is not a measurable coboundary for U , then V f0 is not a measurable
coboundary for X.

Proof. — In case (a), the proof of the formula is an immediate adaptation of the proof
of Theorem 2. If (b) holds, then it follows from the work of Flaminio and Forni that
the ergodic integrals of the components fµ for positive µ are uniformly bounded, so
that the conclusion follows from Theorem 1(iv).

The proof of the last claim is the same as in Remark 12. □

7. Spatial limit theorems

In this section, we prove the limit theorems for the horocycle integrals. The proof
of Theorem 4 is an easy consequence of Theorem 2. Let us recall some preliminary
notions for the reader’s convenience.

Let X,Y : Ω → R be two random variables defined on the same probability space
(Ω,B,P) with associated probability measures νX and νY respectively. The Lévy-
Prokhorov distance dLP between νX and νY is defined by

dLP(νX , νY ) := inf{ε > 0 : νX(B) ⩽ νY (Bε) + ε and νY (B) ⩽ νX(Bε) + ε

for all Borel sets B ⊂ R},

where Bε denotes the ε-neighbourhood of B. The Lévy distance is a metrization of
the topology of weak convergence of measures. We will use the following simple fact.

Lemma 19. — Let T : Ω → Ω be a probability preserving map. If |X(ω)−Y ◦T (ω)| ⩽ ε

for P-almost every ω ∈ Ω, then dLP(νX , νY ) ⩽ ε.

We now turn to our case (Ω,P) = (M, vol). Let f ∈W 6(M) be as in the assumption
of the theorem, namely such that

µf = min{µ ∈ Spec(□) ∩ R>0 : D−
µ f ̸≡ 0}
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is finite. Let us first assume that µf < 1/4, and recall that we defined νf =√
1− 4µf ∈ (0, 1). Let A be the random variable

A = T−(1+νf )/2

∫ T

0

f ◦ ht(x) dt,

with x ∼ vol. Let

η0 = min{νf − ν : µ ∈ Spec(□) ∩ (µf ,∞)} > 0, and η =
1

2
min{η0, 1− νf , νf}.

By Theorem 2,∣∣∣A−D−
µf
f ◦ ϕXlog T

∣∣∣ ⩽ T−νf ∥D+
µf
f∥∞ + T−η0/2

( ∑
µ∈σcomp

∥D±
µ f∥∞

)

+ T−νf/2 log T

( ∑
µ∈Spec(□)∩[1/4,∞)

∥D±
µ f∥∞

)
+ T 1−(1−νf )/2∥Rf(·, T )∥∞

⩽ T−η(1 + log T )

( ∑
µ∈Spec(□)∩R>0

∥D±
µ f∥∞

)
+ CM∥f∥W 6T−η(1 + log T )

⩽ 2CM∥f∥W 6T−η(1 + log T ).

Lemma 19 completes the proof for the case µf < 1/4.
If µf = 1/4, let A be the random variable

A = (T 1/2 log T )−1

∫ T

0

f ◦ ht(x) dt.

Then, again by Theorem 2,∣∣∣A−D−
µf
f ◦ ϕXlog T

∣∣∣
⩽ (log T )−1

(
∥D+

1/4∥∞ +
∑

µ∈σprinc

∥D±
µ f∥∞

)
+ T 1/2(log T )−1∥Rf(·, T )∥∞

⩽ 2CM∥f∥W 6(log T )−1,

and Lemma 19 allows once more to conclude.
In the last case, when µf > 1/4, we have σcomp = ∅ and ε0 = 0. Let A be the

random variable

A = T−1/2

∫ T

0

f ◦ ht(x) dt,

with x ∼ vol. From Theorem 1 we get the estimate∣∣∣∣A−
( ∑

µ∈σprinc

cos
(ℑν

2
log T

)
D+

µ f + sin
(ℑν

2
log T

)
D−

µ f

)
◦ ϕXlog T

∣∣∣∣
⩽ T 1/2∥Rf(·, T )∥∞
⩽ CM∥f∥W 6T−1/2(1 + log T ).

Thus, the last part of Theorem 4 follows again from Lemma 19.
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Appendix. A temporal limit theorem, by Emilio Corso(*)

For any bounded measurable f : M → R, we denote the ergodic integral of f up to
time T ∈ R>0 along the horocycle orbit of a point x ∈M as

If (x, T ) :=

∫ T

0

f ◦ ht(x) dt.

Let us recall that, for any σ ∈ R, N(0, σ2) indicates the Gaussian distribution
on R with mean 0 and variance σ2, and, for any T ∈ R>0, U[0,T ] denotes the uniform
probability measure on [0, T ]. We prove the following version of Theorem 5.

Theorem 20. — Let f ∈ W 6(M) be a real-valued function with vol(f) = 0. Assume
that

(a) either 1/4 /∈ Spec(□) and D±
µ f ≡ 0 for all µ ∈ Spec(□) ∩ R>0,

(b) or all components fµ of f in (19) corresponding to positive parameters µ > 0

are measurable coboundaries.

If f is not a measurable coboundary for U , then there is a real number σ > 0 such
that, for every x ∈M ,

(23)
If (x, t) +

∫ log T

0
V f0 ◦ ϕXs (x) ds

√
log T

T→+∞−−−−−−→ N(0, σ2), t ∼ U[0,T ]

in distribution. Therefore, the ergodic integrals of f satisfy a temporal distributional
limit theorem on any horocycle orbit.

The proof of Theorem 20, which follows the lines of the proof of [12, Th. 5.1], com-
bines the asymptotic expansion of ergodic averages provided by Theorem 1 together
with the Central Limit Theorem for ergodic integrals along geodesic orbits proved by
Ratner in [25].

Lemma 18 yields the asymptotic expansion

(24) If (x, t) =

∫ log t

0

(
V f0 ◦ ϕXs ◦ ht(x)− V f0 ◦ ϕXs (x)

)
ds+ E(x, t) for any t > 0,

where E(x, t) ⩽ CM ∥f∥W 6 is uniformly bounded and hence doesn’t affect the distri-
butional limit of (23).

Observe that the dependence on t of the integral in (24) occurs both in the starting
point ht(x) of the geodesic orbit and in the upper bound log t of the domain of
integration. The following lemma provides a first reduction, in that it removes the
latter dependence.

(*)Emilio Corso, ETH Zürich, Department of Mathematics, Rämistrasse 101, CH-8092 Zürich,
Switzerland & University of British Columbia, Department of Mathematics, 1984 Mathematics Road,
V6T1Z2 Vancouver, BC, Canada. E-mail: corsoemilio2@gmail.com.
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Lemma 21. — Let f be as in Theorem 20. If∫ log T

0

(
V f0 ◦ ϕXs ◦ ht(x)− V f0 ◦ ϕXs (x)

)
ds+

∫ log T

0
V f0 ◦ ϕXs (x) ds

√
log T

T→+∞−−−−−−→ N(0, σ2), t ∼ U[0,T ]

in distribution, then (23) holds.

Proof. — From (24), and since f0 ∈W 4(H0) ⊂ C 2(M), it is enough to show that∣∣∣∣∫ log T

0

(
V f0 ◦ ϕXs ◦ ht(x)− V f0 ◦ ϕXs (x)

)
ds

−
∫ log t

0

(
V f0 ◦ ϕXs ◦ ht(x)− V f0 ◦ ϕXs (x)

)
ds

∣∣∣∣ ⩽ ∥f0∥C 2 .

We rewrite the left hand-side above as∣∣∣∣∫ log (T/t)

0

(
V f0 ◦ ϕXs+log t ◦ ht(x)− V f0 ◦ ϕXs+log t(x)

)
ds

∣∣∣∣
=

∣∣∣∣∫ log (T/t)

0

(
V f0 ◦ he−s − V f0

)
◦ ϕXs+log t(x) ds

∣∣∣∣
⩽
∫ log (T/t)

0

∥V f0 ◦ he−s − V f0∥∞ ds

⩽
∫ ∞

0

e−s ∥UV f0∥∞ ds ⩽ ∥f0∥C 2 ,

which proves the lemma. □

We are thus left with the study of the distributional limit of the random variables

t 7→
∫ log T

0
V f0 ◦ ϕXs ◦ ht(x) ds√

log T
, t ∼ U[0,T ].

For later convenience, we shall interpret the integral in the numerator as an ergodic
integral along the backward geodesic orbit of ϕXlog T ◦ ht(x) = ht/T ◦ ϕXlog T (x), that is,∫ log T

0

V f0 ◦ ϕXs ◦ ht(x) ds =
∫ 0

− log T

V f0 ◦ ϕXs (ht/T (xT )) ds,

where we recall xT = ϕXlog T (x).
From now on, the proof is an articulation of the argument outlined in [12]. Recall

that, by Lemma 18, V f0 is not a measurable coboundary for X. In view of the main
result of [25], we know that, for some σ > 0,∫ 0

− log T
V f0 ◦ ϕXs (y) ds
√
log T

T→+∞−−−−−−→ N(0, σ2)

in distribution, when y is sampled according to the Haar measure vol on M . This value
of σ, explicitly computable as in [25, Th. 3.1], will be fixed until the end. Observe
that σ > 0, since V f0 is not a measurable coboundary for X, and the rescaling
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factor
√
log T is the one predicted by the classical Central Limit Theorem. Eagleson’s

theorem [13] ensures that the same convergence in distribution takes place if y is
sampled according to any probability measure which is absolutely continuous with
respect to vol. In our case, for each T > 0, the distribution of y = ht/T (xT ) is
given by the uniform probability measure νlog T on the unit-length horocycle arc
γlog T = {ht/T (xT ) : 0 ⩽ t ⩽ T}, which is singular with respect to vol. The rest of the
argument is devoted to explicate how it is possible to replace νlog T by an appropriate
thickening, which is absolutely continuous with respect to vol, without altering the
distributional limit.

For simplicity, we adopt the notation IϕV f0
(y, T ) =

∫ 0

−T
V f0 ◦ ϕXs (y) ds, for any

T > 0.

Proposition 22. — For any strictly increasing sequence (Tn)n∈N ∈ (R>0)
N, there is

a subsequence (Tnk
)k∈N such that

IϕV f0
(y, log Tnk

)√
log Tnk

k→∞−−−−−→ N(0, σ2), y ∼ νlog Tnk
,

in distribution.

By virtue of the previous considerations, Theorem 20 follows at once from Propo-
sition 22.

Proof. — The set of all non-empty, compact subsets of the compact space M is a com-
pact metric space for the Hausdorff distance(1). It follows that there is a subsequence
γlog Tnk

converging to a compact set K ⊂M . It is straightforward to check that K = γ

is the unit-length horocycle arc {hu(x∗) : 0 ⩽ u ⩽ 1}, where x∗ = limk→∞ ϕXlog Tnk
(x).

We now thicken the arc γ in the directions of the geodesic and the unstable horocycle
flow, so as to obtain a parallelepiped (compact, with non-empty interior)

(25) P = {hur ◦ ϕXs (y) : −1/2 ⩽ r, s ⩽ 1/2, y ∈ γ},

and denote by ν the normalized restriction of vol to P , which is clearly absolutely
continuous with respect to vol. We claim that the distribution of

IϕV f0
(z, log Tnk

)√
log Tnk

, z ∼ νlog Tnk
,

is uniformly close, for all k sufficiently large and in the topology of weak convergence
for Borel probability measures on R, to the distribution of the same random vari-
able when z is sampled according to ν. In light of the already mentioned Eagleson’s
theorem, this achieves the proof of the proposition.

(1)Recall that the Hausdorff distance is defined by

dH(C,K) := inf{ε > 0 : C ⊂ Kε and K ⊂ Cε}

for any non-empty compact subsets C,K ⊂ M , where Aε denotes the closed ε-neighborhood of a set
A ⊂ M with respect to a fixed Riemannian distance on M .
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More precisely, let us fix a bounded Lipschitz-continuous function φ : R → R; for
any k ∈ N, we aim to show that

(26)
∣∣∣∣∫

M

φ ◦ (log Tnk
)−1/2IϕV f0

(·, log Tnk
) dνlog Tnk

−
∫
R
φdN(0, σ2)

∣∣∣∣ k→∞−−−−−→ 0.

For notational simplicity, we let ψk : M → R denote the function

y 7−→ (log Tnk
)−1/2IϕV f0

(y, log Tnk
).

By the triangle inequality, we can bound the quantity in (26) from the above by∣∣∣∣∫
M

φ ◦ ψk dνlog Tnk
−
∫
M

φ ◦ ψk dν

∣∣∣∣+ ∣∣∣∣∫
M

φ ◦ ψk dν −
∫
R
φdN(0, σ2)

∣∣∣∣,
where we already argued that the second term of the sum converges to 0 as k → ∞.
We may thus focus on the first term. Consider the thickening Pk of γlog T

k
, defined as

in (25), and let νk be the normalized restriction of vol to Pk. We estimate, again via
the triangle inequality,∣∣∣∣∫

M

φ ◦ ψk dνlog Tnk
−
∫
M

φ ◦ ψk dν

∣∣∣∣ ⩽ ∣∣∣∣∫
M

φ ◦ ψk dνlog Tnk
−
∫
M

φ ◦ ψk dνk

∣∣∣∣
+

∣∣∣∣∫
M

φ ◦ ψk dνk −
∫
M

φ ◦ ψk dν

∣∣∣∣.
Since there are constants Cϕ, Ch > 0 such that d(ϕXs (y), ϕXs (y)′) ⩽ Cϕe

|s|d(y, y′) and
d(hury, h

u
ry

′) ⩽ Ch(1 + |r| + r2)d(y, y′) for any y, y′ ∈ M and any s, r ∈ R, it follows
easily that the Pk converge to P in the Hausdorff distance. This implies that∣∣∣∣∫

M

φ ◦ ψk dνk −
∫
M

φ ◦ ψk dν

∣∣∣∣ = 1

volP

∣∣∣∣ volPvolPk

∫
Pk

φ ◦ ψk d vol−
∫
P

φ ◦ ψk d vol

∣∣∣∣
=

1

volP

∣∣∣∣( volP

volPk
− 1
)∫

Pk

φ ◦ ψk d vol+

∫
Pk

φ ◦ ψk d vol−
∫
P

φ ◦ ψk d vol

∣∣∣∣
⩽

∥φ∥∞
volP

(( volP

volPk
− 1
)
+ vol(Pk △ P )

)
k→∞−−−−−→ 0.

In order to show that the difference |
∫
M
φ◦ψk dνlog Tnk

−
∫
M
φ◦ψk dνk| is infinitesimal

as well, we start by applying Fubini’s theorem:

(27)
∫
M

φ ◦ ψk dνk =

∫ 1/2

−1/2

∫ 1/2

−1/2

∫ 1

0

φ ◦ ψk(h
u
r (ϕ

X
s (hu(xTnk

)))) dudr ds.

Secondly, we compare the two quantities∫
M

φ ◦ψk dνlog Tnk
=

∫ 1

0

φ ◦ψk(hu(xTnk
)) du and

∫ 1

0

φ ◦ψk(h
u
r (ϕ

X
s (hu(xTnk

)))) du

J.É.P. — M., 2023, tome 10



332 D. Ravotti

for each fixed r, s ∈ (−1/2, 1/2). To simplify notation, we let pu = p
(k)
u = hu(xTnk

)

for any u ∈ [0, 1] and any k ∈ N. We have, for any u ∈ [0, 1],

|ψk(h
u
r (ϕ

X
s (pu)))− ψk(pu)| = |ψk(ϕ

X
s (hure−s(pu)))− ψk(pu)|

= (log Tnk
)−1/2

∣∣∣∣∫ 0

− log Tnk

V f0 ◦ ϕXt+s(h
u
re−s(pu)) dt−

∫ 0

− log Tnk

V f0 ◦ ϕXt (pu) dt

∣∣∣∣
⩽ (log Tnk

)−1/2

(∣∣∣∣∫ 0

− log Tnk

V f0 ◦ ϕXt+s(h
u
re−s(pu)) dt−

∫ 0

− log Tnk

V f0 ◦ ϕXt (hure−s(pu)) dt

∣∣∣∣
+

∣∣∣∣∫ 0

− log Tnk

V f0 ◦ ϕXt (hure−s(pu)) dt−
∫ 0

− log Tnk

V f0 ◦ ϕXt (pu) dt

∣∣∣∣).
For the first addend, we estimate∣∣∣∣∫ 0

− log Tnk

V f0 ◦ ϕXt+s(h
u
re−s(pu)) dt−

∫ 0

− log Tnk

V f0 ◦ ϕXt (hure−s(pu)) dt

∣∣∣∣
=

∣∣∣∣∫ s

0

V f0 ◦ ϕXt+s(h
u
re−s(pu)) dt−

∫ − log Tnk
+s

− log Tnk

V f0 ◦ ϕXt (hure−s(pu)) dt
∣∣∣∣

⩽ 2|s| ∥V f0∥∞ ⩽ ∥V f0∥∞.

As to the second addend, we exploit the fact that

d(ϕXt (hure−s(pu)), ϕ
X
t (pu)) ⩽ Cϕe

td(hure−s(pu), pu) ⩽ Cϕe
t

√
e

2
,

and obtain a bound∣∣∣∣∫ 0

− log Tnk

V f0 ◦ ϕXt (hure−s(pu)) dt−
∫ 0

− log Tnk

V f0 ◦ ϕXt (pu) dt

∣∣∣∣
⩽ Cϕ

√
e

2
Lip(V f0)

∫ 0

− log Tnk

et dt

⩽ Cϕ

√
e

2
Lip(V f0).

Combining the two upper bounds yields

|ψk(h
u
r (ϕ

X
s (pu)))− ψk(pu)| ⩽ (log Tnk

)−1/2
(
∥V f0∥∞ + Cϕ

√
e

2
Lip(V f0)

)
for any u ∈ [0, 1], r, s ∈ [−1/2, 1/2]. Integrating over u we get∣∣∣∣∫ 1

0

φ ◦ ψk(p
(k)
u ) du−

∫ 1

0

φ ◦ ψk(h
u
r (ϕ

X
s (p(k)u ))) du

∣∣∣∣
⩽

Lip(φ)√
log Tnk

(
∥V f0∥∞ + Cϕ

√
e

2
Lip(V f0)

)
;
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finally, using (27), we conclude∣∣∣∣∫
M

φ ◦ ψk dνlog Tnk
−
∫
M

φ ◦ ψk dνk

∣∣∣∣
⩽

∣∣∣∣∫ 1/2

−1/2

∫ 1/2

−1/2

Lip(φ)√
log Tnk

(
∥V f0∥∞ + Cϕ

√
e

2
Lip(V f0)

)
dr ds

∣∣∣∣
=

Lip(φ)√
log Tnk

(
∥V f0∥∞ + Cϕ

√
e

2
Lip(V f0)

)
k→∞−−−−−→ 0.

This finishes the proof. □
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