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INTERSECTION COHOMOLOGY OF CHARACTER

VARIETIES FOR PUNCTURED RIEMANN SURFACES

by Mathieu Ballandras

Abstract. — We study intersection cohomology of character varieties for punctured Riemann
surfaces with prescribed monodromies around the punctures. Relying on a previous result from
Mellit [Mel20a] for semisimple monodromies we compute the intersection cohomology of char-
acter varieties with monodromies of any Jordan type. This proves the Poincaré polynomial
specialization of a conjecture from Letellier [Let15].

Résumé (Cohomologie d’intersection des variétés de caractères des surfaces de Riemann époin-
tées)

Nous étudions la cohomologie d’intersection des variétés de caractères des surfaces de Rie-
mann épointées, la monodromie autour des points enlevés étant fixée. En nous appuyant sur un
résultat de Mellit [Mel20a] pour des monodromies semi-simples, nous calculons la cohomologie
d’intersection des variétés de caractères avec des monodromies ayant un type de Jordan quel-
conque. Ceci prouve la spécialisation au polynôme de Poincaré d’une conjecture de Letellier
[Let15].
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1. Introduction

Character varieties studied in this article classify rank n local systems over a genus g
Riemann surface with k-punctures (pj)1⩽j⩽k. The monodromy around the puncture pj
is imposed to lie in the closure Cj of a conjugacy class Cj of GLn(C). The character
variety is an affine variety defined as a geometric invariant theory quotient

MC :=
{
(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GL2g

n ×C1 × · · · × Ck

∣∣
A1B1A

−1
1 B−1

1 · · ·AgBgA
−1
g B−1

g X1 · · ·Xk = Id
}
//GLn,
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142 M. Ballandras

with GLn acting by overall conjugation. A genericity condition is imposed on the
k-tuple of conjugacy classes so that the quotient has good properties (see Defini-
tion 3.2). We study the cohomology of these varieties. Because they are not smooth,
it is convenient to study their intersection cohomology. We compute the Poincaré
polynomial for the compactly supported intersection cohomology of these character
varieties. This Poincaré polynomial encodes the dimensions of the compactly sup-
ported intersection cohomology spaces IH r

c

(
MC,Qℓ

)
as coefficients of a polynomial

Pc

(
MC, v

)
:=

∑
r

dim IH r
c

(
MC,Qℓ

)
vr.

When the conjugacy classes are semisimple, they are closed, and the variety MC is
smooth. Then the intersection cohomology coincides with the usual cohomology. The
cohomology of character varieties has been extensively studied in various contexts.

1.1. Cohomology of character varieties: state of the art

1.1.1. One puncture with a central monodromy. — The simplest case appears when
considering only one puncture with a central monodromy. The genericity condition
implies that the monodromy is e−2iπd/n Id with d and n coprime. Then the character
variety is denoted by Md

B. The index B stands for Betti moduli space. Non-Abelian
Hodge theory relates this Betti moduli space to a Dolbeault moduli space Md

Dol. This
can be seen as a generalization of Narasimhan–Seshadri’s result [NS65] relating uni-
tary representations and holomorphic vector bundles. The moduli space Md

Dol classifies
stable Higgs bundles of rank n and degree d. The non-Abelian Hodge correspondence
was proved in rank n = 2 by Hitchin [Hit87] and Donaldson [Don87]. Corlette [Cor88]
and Simpson [Sim88, Sim92] generalized it to higher ranks and higher dimensions.
Simpson [Sim94a, Sim94b] proved that this correspondence induces a homeomorphism
between moduli spaces.

Many computations of the cohomology are performed from the Dolbeault side. First
Hitchin [Hit87] computed the Poincaré polynomial in rank n = 2. Gothen [Got94]
extended the computation for n = 3. Hausel–Thaddeus [HT03b, HT04] computed the
cohomology ring in rank n = 2. García-Prada, Heinloth and Schmitt [GPHS14] gave
a recursive algorithm to compute the motive of the Dolbeault moduli space. They
computed an explicit expression in rank n = 4. García-Prada and Heinloth [GPH13]
obtained an explicit formula for the y-genus in any rank.

As in the last examples, one can study more precise cohomological information than
the Poincaré polynomial. The character varieties are affine, so, by Deligne [Del71],
their cohomology carries a mixed Hodge structure. The non-Abelian Hodge corre-
spondence does not preserve this mixed Hodge structure. Indeed, the cohomology of
the Dolbeault moduli space is pure contrarily to the cohomology of the affine char-
acter variety. De Cataldo–Hausel–Migliorini [dCHM12] conjectured that under the
non-Abelian Hodge correspondence, the weight filtration coincides with a perverse fil-
tration induced by the Hitchin fibration. This is known as the P = W conjecture, and
they proved it in rank n = 2. Recently, de Cataldo–Maulik–Shen [dCMS22] proved
the conjecture for genus g = 2 and any rank.
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Intersection cohomology of character varieties for punctured Riemann surfaces 143

Another interesting aspect of those moduli spaces is mirror symmetry. Hausel–
Thaddeus [HT01, HT03a] conjectured that the moduli space of PGLn-Higgs bundles
and the moduli space of SLn-Higgs bundles are related by mirror symmetry, see
also [Hau05]. This conjecture was proved by Groechenig–Wyss–Ziegler [GWZ20] and
a motivic version of it by Loeser–Wyss [LW21]. Biswas–Dey [BD12] studied mirror
symmetry in the parabolic case. Gothen–Oliveira [GO19] proved a parabolic version
of the conjecture for particular ranks.

An efficient approach to compute cohomological invariants is to count points of
algebraic varieties over finite fields. On the Betti side, Hausel and Rodriguez-Villegas
[HRV08] gave a conjectural formula for the mixed Hodge polynomial of character va-
rieties with one puncture and a central generic monodromy. They proved the E-poly-
nomial specialization of the conjecture by counting points over finite fields. With a
similar approach, Mereb [Mer15] computed the E-polynomial of SLn-character vari-
eties. Hausel [Hau05] also proposed a conjectural formula for the Hodge polynomial of
the associated Dolbeault moduli space. Mozgovoy [Moz12] extended this conjecture
to the motive of the Dolbeault moduli space.

Schiffmann [Sch16] computed the Poincaré polynomial of the Dolbeault moduli
space by counting Higgs bundles over finite fields. In following articles [MS14, MS20]
Mozgovoy–Schiffmann extended this counting to twisted Higgs bundles. Chaudouard-
Laumon [CL16] counted Higgs bundles using automorphic forms.

Mellit [Mel20b] proved that the formula obtained by Schiffmann [Sch16] is equiva-
lent to the Poincaré polynomial specialization of the conjecture of Hausel–Rodriguez-
Villegas [HRV08].

Fedorov–Soibelman–Soibelman [FSS18] computed the motivic class of the moduli
stack of semistable Higgs bundles.

1.1.2. Any number of punctures and arbitrary monodromies. — Logares–Muñoz–New-
stead [LMN13] computed the E-polynomial of character varieties for SL2 and small
genus g = 1, 2. They considered one puncture with any conjugacy class, without
the genericity assumption. They also obtained the Hodge numbers in genus g = 1.
Logares–Muñoz [LM14] extended these results to genus g = 1 and two punctures.
They computed the E-polynomials and some Hodge numbers. Martínez–Muñoz
[MM16a, MM16b] computed the E-polynomial of SL2-character varieties for any
genus and any conjugacy class at each puncture. Martínez [Mar17] then treated the
case of PGL2-character varieties.

Simpson [Sim90] generalized non-Abelian Hodge theory to character varieties for
punctured surfaces with arbitrary prescribed conjugacy classes. The generalization is
even wider as it concerns filtered local systems. They correspond to parabolic Higgs
bundles on the Dolbeault side. Yokogawa [Yok93] gave an algebraic construction of
the moduli space of semistable parabolic Higgs bundles. The moduli space was con-
structed analytically by Konno [Kon93] for Higgs fields with nilpotent residues and
by Nakajima [Nak96]. These analytic constructions express the non-Abelian Hodge
correspondence as a diffeomorphism. Biquard–Boalch [BB04] proved a more general
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144 M. Ballandras

wild non-Abelian Hodge theory and constructed the associated moduli spaces. Bi-
quard, García-Prada and Mundet i Riera [BGM20] generalized filtered non-Abelian
Hodge theory to a large family of groups.

On the Dolbeault side of this correspondence, Boden–Yokogawa [BY96] computed
the Poincaré polynomial of the moduli space of parabolic Higgs bundles, in rank
n = 2, using Morse theory. García-Prada, Gothen and Muñoz [GPGM07] computed
the Poincaré polynomial in rank n = 3.

Hausel, Letellier and Rodriguez-Villegas [HLRV11] proposed a conjecture for the
mixed Hodge polynomial of character varieties with generic semisimple conjugacy
classes at punctures. By counting points of the character variety over finite fields, they
proved the E-polynomial specialization of the conjecture. Chuang–Diaconescu–Pan
[CDP14] and Chuang–Diaconescu–Donagi–Pantev [CDDP15] proposed a string theo-
retic interpretation of the conjecture. This string theoretic approach was also applied
to wild character varieties by Diaconescu [Dia18] and Diaconescu–Donagi–Pantev
[DDP18]. Another approach uses recursive relations for various genus. It is used by
Mozgovoy [Moz12], Carlsson and Rodriguez-Villegas [CRV18]. With a similar ap-
proach, González-Prieto [GP18] developed a topological quantum field theory associ-
ated to character varieties. Soibelman [Soi16, Soi18] studied emptiness of these spaces
without the genericity assumption. Fedorov–Soibelman–Soibelman [FSS20] computed
the motivic class of the moduli stack of semistable parabolic Higgs bundles.

Mellit [Mel20a] proved the Poincaré polynomial specialization of the conjecture
from [HLRV11] by counting parabolic Higgs bundles over finite fields. This result is
of the utmost importance for the present article. It serves as the starting point for
calculating intersection cohomology of the character variety with the closure of any
generic conjugacy class at each puncture.

1.1.3. No punctures. — In the absence of punctures, the character variety is singular
and corresponds, via the non-Abelian Hodge correspondence, to a moduli space of
Higgs bundles of degree zero. Baraglia–Hekmati [BH17] computed the E–polynomial
of such character varieties in rank 3 by counting points over finite fields. As they
are singular it is also interesting to consider their intersection cohomology. Felisetti
[Fel21] computed the intersection cohomology in rank n = 2 and genus g = 2. Mauri
[Mau21a] generalized the computation to rank n = 2 and arbitrary genus. Felisetti–
Mauri [FM22] proved the P = W conjecture for intersection cohomology in genus
g = 1 and arbitrary rank n, and in genus g = 2 and rank n = 2. Mauri [Mau21b] also
studied topological mirror symmetry for these varieties, in rank n = 2.

1.2. Intersection cohomology of character varieties for punctured Riemann sur-
faces

1.2.1. Poincaré polynomial. — Letellier [Let15] gave a conjectural formula for the
mixed Hodge polynomial of the character variety MC, with any type of generic conju-
gacy classes at the punctures. This conjecture generalizes the one for semisimple con-
jugacy classes [HLRV11]. It also involves the Hausel–Letellier–Villegas kernel HHLV

n .
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This kernel lies in
Sym [X1]⊗ · · · ⊗ Sym [Xk] ,

with Sym [Xj ] being the space of symmetric functions in the infinite set of vari-
ables Xj . The definition of the kernel is recalled in 3.11, it uses modified Macdonald
polynomials. The Poincaré polynomial specialization of Letellier’s conjecture is the
following formula

(1) Pc(MC; v) = vdµ
〈
sµ′ ,HHLV

n (−1, v)
〉
.

The Jordan type of the conjugacy classes is encoded in the index µ (see (14)). The
convention is that the Poincaré polynomial of an empty variety is defined to be 0.
The dimension of the variety MC is denoted by dµ. The symmetric function sµ′ is
a variant of Schur functions, it is defined in (20). A very interesting feature of this
relation is that, no matter the k-tuple of conjugacy classes, the cohomology is encoded
in a single object, the kernel HHLV

n .
Mellit [Mel20a] computed the Poincaré polynomial of character varieties with

semisimple conjugacy classes. Let S = (S1, . . . , Sk) be a generic k-tuple of conjugacy
classes. The Jordan type of this k-tuple is determined by k partitions ν1, . . . , νk. The
parts of the partition νj are the multiplicities of the distinct eigenvalues of Sj . As ex-
plained in Section 3.2.2, Mellit’s result is a particular case of the Poincaré polynomial
specialization of the conjectural formula, it reads

(2) Pc (MS; v) = vdν
〈
hν ,HHLV

n (−1, v)
〉
,

where hν is the symmetric function defined by

hν := hν1 [X1] · · ·hνk [Xk].

The complete symmetric functions (hλ[X])λ∈Pn
form a basis of the space of symmetric

functions of degree n. The set of partitions of an integer n is denoted by Pn. The
transition matrices in the space of symmetric functions are well-known, for instance
they are in Macdonald’s book [Mac15]. Hence we can express sµ′ in terms of hν .
In this article, in order to compute the Poincaré polynomial of a general character
variety MC, the combinatorial relations between the previous symmetric functions are
understood in terms of geometric relations between MC and MS. Letellier obtained
such relations, but between a character variety MC and its resolution.

1.2.2. Springer theory and resolutions of character varieties

Logares–Martens [LM10] constructed Grothendieck–Springer resolutions for mod-
uli spaces of parabolic Higgs bundles. Letellier [Let15] constructed resolutions of sin-
gularities of character varieties

M̃L,P ,σ −→MC.

Symplectic resolutions of character varieties were also studied in details by Schedler–
Tirelli [ST22]. The construction of M̃L,P ,σ is recalled in Definition 3.6, it relies on
Springer theory. Springer [Spr76] proved a correspondence between unipotent conju-
gacy classes and representations of Weyl groups. Following work of Lusztig [Lus81]
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for the general linear group, Borho–MacPherson [BM83] obtained Springer correspon-
dence in terms of intersection cohomology.

Let us briefly recall their result for the Springer resolution of the unipotent locus
in GLn. Let B be the subgroup of upper triangular matrices, let U be the subgroup
of B formed by elements with 1 on the diagonal. The subgroup of diagonal matrices
is denoted by T so that B = TU . Let U be the set of unipotent elements in GLn, i.e.,
the set of matrices with all eigenvalues equal to 1. Then U is stratified by conjugacy
classes (Cλ)λ∈Pn

with λ being the partition of n with parts specifying the size of the
Jordan blocks. Set

Ũ = {(X, gB) ∈ U×GLn /B | g−1Xg ∈ U}.

The projection to the first factor Ũ → U is a resolution of singularities. Borho–
MacPherson approach to Springer theory provides the following relation between
cohomology of the resolution Ũ and intersection cohomology of the closures of the
strata of U:

Hr+dim Ũ
c (Ũ,Qℓ) ∼=

⊕
λ∈Pn

Vλ ⊗ IH r+dimCλ
c (Cλ,Qℓ).

The irreducible representation of the symmetric group indexed by the partition λ is
denoted by Vλ. The indexing is as in Macdonald’s book [Mac15], so that V(n) is the
trivial representation and V(1n) the sign. In terms of Poincaré polynomial the previous
relation becomes

v− dim ŨPc(Ũ, v) =
∑
λ∈Pn

(dimVλ)v
− dimCλPc(Cλ, v).

Interestingly, this relation between v− dim ŨPc(Ũ, v) and v− dimCλPc(Cλ, v) is exactly
the base change relation expressing the symmetric function h1n in terms of Schur
functions (sλ)λ∈Pn

,

h1n =
∑
λ∈Pn

(dimVλ)sλ.

In this simple example, a base change relation between complete symmetric functions
and Schur functions has a geometrical interpretation in terms of Springer resolutions.

For character varieties the idea is similar but a more general theory is necessary.
It is provided by Lusztig’s parabolic induction [Lus84, Lus85, Lus86]. Letellier applied
this theory to obtain relations between cohomology of the resolution M̃L,P ,σ and
intersection cohomology of character varieties MCρ,σ

(see (14) and Notations 2.16 for
the definition of the k-tuple of conjugacy classes Cρ,σ). This was used to prove that
various formulations of the conjecture are equivalent [Let13, Prop. 5.7]. In terms of
Poincaré polynomial the relation becomes

(3) v−dµPc(M̃L,P ,σ, t) =
∑
ρ⪯µ

(dimAµ′,ρ)v
−dρPc(MCρ,σ

, v).
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This geometric relation is discussed in details in Section 5.1, it corresponds to a
combinatorial relation between various basis of symmetric functions

(4) hµ′ =
∑
ρ⪯µ

(
dimAµ′,ρ

)
sρ.

In order to generalize Mellit’s result from semisimple conjugacy classes to any Jor-
dan type, the geometric interpretation of (4) should involve a character variety with
semisimple monodromies MS instead of a resolution M̃L,P ,σ. It will appear that the
Poincaré polynomial of the resolution M̃L,P ,σ is equal to the Poincaré polynomial of a
character variety with semisimple monodromie MS. Together with Mellit’s result (2),
this implies

v−dµPc(M̃L,P ,σ, v) = v−dµPc(MS, v) =
〈
hµ′ ,HHLV

n (−1, v)
〉
.

Relations (3) and (4) can be inverted so that the Poincaré polynomial of a character
variety with any type of monodromy can be expressed with Poincaré polynomials of
character varieties with semisimple monodromies. This is exactly what is necessary
to obtain the general formula (1) from Mellit’s result (2) for semisimple conjugacy
classes.

To summarize, computing the Poincaré polynomial for intersection cohomology of
character varieties requires three elements:

– Mellit’s result for character varieties with semisimple monodromies (2).
– Letellier’s relation (3) between cohomology of the resolution M̃L,P ,σ and inter-

section cohomology of character varieties MC.
– A relation between cohomology of the resolution M̃L,P ,σ and cohomology of a

character variety with semisimple monodromies MS.

The last point is studied in Section 4, where a diffeomorphism between the resolution
M̃L,P ,σ and a character variety with semisimple monodromies MS is exhibited so that
the Poincaré polynomials coincide. Constructing the diffeomorphism requires analyti-
cal techniques. They are detailed in Section 4.4.1, andthey rely on the filtered version
of non-Abelian Hodge and Riemann–Hilbert correspondences. These correspondences
are due to Simpson [Sim90]. The moduli spaces expressing the non-Abelian Hodge
correspondence as a diffeomorphism were constructed by Konno [Kon93], Nakajima
[Nak96] and Biquard–Boalch [BB04] in the more general setting of wild non-Abelian
Hodge theory. The filtered version of the Riemann–Hilbert correspondence is de-
scribed as a diffeomorphism by Yamakawa [Yam08]. A filtered version of non-Abelian
Hodge theory was developed for a large family of groups by Biquard, García-Prada
and Mundet i Riera [BGM20]. In Section 4 this is used to construct a diffeomorphism
between M̃L,P ,σ and MS, see Theorem 4.1. The proof of the Poincaré polynomial spe-
cialization of Letellier’s conjecture is achieved in Section 5.1 and we have the following
theorem (notations are introduced in (14)).
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Theorem 1.1. — Consider a generic k-tuple of conjugacy classes Cµ,σ. The Poincaré
polynomial for compactly supported intersection cohomology of the character vari-
ety MCµ,σ

is
Pc(MCµ,σ

, v) = vdµ
〈
sµ′ ,HHLV

n (−1, v)
〉
.

Remark 1.2 (Emptiness of character varieties). — The previous theorem is valid for
empty character varieties with the convention that the Poincaré polynomial of an
empty variety is zero. Indeed, the formula for the semisimple case (2) is valid for
empty varieties: it was proved by Mellit by counting parabolic Higgs bundles. The
proof of the previous theorem relies on the semisimple case so that it is also true for
empty varieties. More details are given in the end of the proof of Theorem 5.2.

Springer theory and Lusztig’s parabolic induction do not only provide a combina-
torial relation between Poincaré polynomials, they come with Weyl group actions the
cohomology spaces.

1.2.3. Weyl group action on the cohomology of character varieties. — The construction
of resolutions of character varieties relies on Springer resolutions and Lusztig’s par-
abolic induction. Therefore, there is a Weyl group action on the cohomology of res-
olutions of character varieties (see Letellier [Let15]). It is interesting to notice that
the Weyl group only acts on the cohomology and not on the variety itself. Another
Weyl group action on the cohomology of character varieties and their resolutions is
constructed by Mellit [Mel19] when k − 1 among k conjugacy classes are semisimple.
This action is called the monodromic Weyl group action.

As explained in the previous section, in order to compute the intersection cohomol-
ogy of character varieties for any conjugacy classes, we construct a diffeomorphism be-
tween a resolution M̃L,P ,σ and a character variety MS with semisimple monodromies.
This diffeomorphism allows to move the Springer-like Weyl group action on the coho-
mology of the resolution, to a Weyl group action on the cohomology of the character
variety with semisimple monodromies MS. This action is enough for our purpose of
computation of the Poincaré polynomial. Moreover, it also provides the η-twisted
Poincaré polynomials, i.e., the traces of any element of the Weyl group on the co-
homology spaces, see Definition 3.14. Considering a k-tuple of generic semisimple
conjugacy classes S = (S1, . . . , Sk), the relative Weyl group is the group permuting
distinct eigenvalues with the same multiplicity in a given class Sj . The next theorem
is proved in Section 5.3.

Theorem 1.3. — For any conjugacy class η in the relative Weyl group, the η-twisted
Poincaré polynomial of the character variety MS is

Pη
c (MS, v) :=

∑
r

tr
(
η, Hr

c (MS,Qℓ)
)
vr = (−1)r(η)vdµ

〈
h̃η,HHLV

n (−1, v)
〉
.

The integer r(η) and the symmetric functions h̃η are defined in Notations 3.9. How-
ever, a more satisfactory approach would be to directly construct a monodromic Weyl
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Intersection cohomology of character varieties for punctured Riemann surfaces 149

group action on the cohomology of character varieties with semisimple monodromies,
like the one constructed by Mellit for the k-th monodromy [Mel19].

1.3. Plan. — Section 2 contains a reminder and notations about intersection coho-
mology, symmetric functions and Springer theory.

The construction of character varieties and their resolutions is recalled in Section 3.
This section also includes discussions about previous results and conjectures for the
cohomology of character varieties.

In Section 4 we construct a diffeomorphism between a resolution M̃L,P ,σ and a
character variety MS with semisimple monodromies. The construction is first per-
formed for a particularly interesting example (sphere with four punctures and rank 2)
using only algebraic tools. The general case then relies on analytic techniques such as
non-Abelian Hodge theory and the Riemann–Hilbert correspondence.

The Poincaré polynomial for intersection cohomology is computed in Section 5. Its
twisted version, taking into account traces of the Weyl group action, is also given.

Acknowledgements. — This work is part of my PhD thesis. First of all I want to thank
my advisors Emmanuel Letellier and Fernando Rodriguez-Villegas for introducing me
to the study of character varieties. Much of this work relies on previous results from
Anton Mellit. I am very grateful to him for interesting discussions. I want to thank
Philip Boalch, a fundamental idea in this work was hinted by him. He explained me
why non-Abelian Hodge theory could be useful and pointed out the relevant references.
All my gratitude goes to Duiliu-Emanuel Diaconescu and Olivier Schiffmann for their
detailed reading of the thesis. I want to thank Carlos Simpson for pointing out relevant
references. I am grateful to Mirko Mauri for interesting suggestions and references.

2. Geometric and combinatorial background

2.1. Perverse sheaves and intersection cohomology. — In this section classical re-
sults about perverse sheaves and intersection cohomology are stated. The construc-
tions come from Beilinson, Bernstein, Deligne and Gabber [BBDG82].

The field K is either C or an algebraic closure Fq of a finite field Fq with q elements.
Let X be an algebraic variety over K. Let ℓ be a prime different from the characteristic
of K, the constant ℓ-adic sheaf on X with coefficients in Qℓ is denoted by κX or just κ
when the context is clear.

Notations 2.1. — The category of κ-constructible sheaves on X is denoted by Db
c(X).

Its objects are represented by complexes of sheaves K such that the cohomology
sheaves HiK are κ-constructible sheaves on X and finitely many of them are non-
zero. For a variety Y over K and a morphism f : X → Y one has the usual functors

f∗, f ! : Db
c(Y ) −→ Db

c(X),

f∗, f! : D
b
c(X) −→ Db

c(Y ).

For an integer m, the shifted complex K[m] satisfies HiK[m] = Hi+mK. For a point x
in X, the stalk at x of the i-th cohomology sheaf of the complex K is denoted by

J.É.P. — M., 2023, tome 10
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Hi
xK. The structural morphism of X is p : X → SpecK. The k-th cohomology space

of X with coefficients in κ is

Hk(X,κ) := Hkp∗κX ,

and the k-th compactly supported intersection cohomology space of X is

Hk
c (X,κ) := Hkp!κX .

The Verdier dual operator is denoted by DX : Db
c(X)→ Db

c(X).

Definition 2.2 (Perverse sheaf). — A perverse sheaf is an object K in Db
c(X) such

that for all i ∈ N the following inequalities are satisfied

dim
(
SuppHiK

)
⩽ −i,

dim
(
SuppHiDXK

)
⩽ −i.

The category of perverse sheaves on X is denoted by M(X), it is an abelian category.

Definition 2.3 (Intersection complex). — Let Y ↪→ X be a closed embedding and
j : U ↪→ Y an open embedding. Assume U is smooth, irreducible and U = Y . Let ξ be
a local system on U . Let IC•

Y,ξ be the unique perverse sheaf K on Y characterized by

HiK = 0 if i < −dimY,

H− dimY K|U = ξ,

dim(SuppHiK) < −i if i > −dimY,

dim(SuppHiDY K) < −i if i > −dimY.

We also denote by IC•
Y,ξ its extension j∗IC

•
Y,ξ. The intersection complex defined by

Goresky–MacPherson [GM83] and Deligne is obtained by shifting this perverse sheaf

IC
•
Y,ξ := IC

•
Y,ξ[−dimY ].

Remark 2.4. — The intersection complex does not depend on the choice of a smooth
open subset in Y . When the local system ξ is not specified, it is chosen to be the
constant sheaf κU and IC

•
X := IC

•
X,κU

.

Definition 2.5 (Intersection cohomology). — Let p : X → SpecK be the structural
morphism and let k be an integer. The k-th intersection cohomology space of X is

IH k(X,κ) := Hkp∗IC
•
X

and the k-th compactly supported intersection cohomology space of X is

IH k
c (X,κ) := Hkp!IC

•
X .

For K = C, Saito [Sai86] proved that the intersection cohomology spaces carry a
mixed Hodge structure. Thus there exists on IH k

c (X,Q) an increasing finite filtration
called the weight filtration and denoted by W k

• such that the complexified quotient
C ⊗Q W k

r /W
k
r−1 carries a pure Hodge structure of weight r. The Hodge numbers of

this structure are denoted by hi,j,k
c (X).
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Definition 2.6. — The mixed Hodge structure is encoded in the mixed Hodge poly-
nomial

(5) IH c(X;x, y, v) :=
∑
i,j,k

hi,j,k
c (X)xiyjvk.

This polynomial has two important specializations: the Poincaré polynomial

(6) Pc(X; t) := IH c(X; 1, 1, v) =
∑
k

dim IH k
c (X,κ)vk

and the E-polynomial

(7) Ec(X;x, y) := IH c(X;x, y,−1).

2.2. Symmetric functions. — In this section facts about symmetric functions are
recalled. Symmetric functions provide a convenient language to perform computations
of cohomology of character varieties.

2.2.1. General notations

Notations 2.7 (Partitions). — A partition of an integer n ∈ N is a decreasing sequence
of non-negative integers

λ = (λ1, λ2, . . . , λℓ(λ)) with |λ| := λ1 + λ2 + · · ·+ λℓ(λ) = n.

The length of λ is the number ℓ(λ) of non-zero terms. The set of partitions of n is
denoted by Pn and

P :=
⋃

n∈N
Pn.

The dominance ordering on P is defined by λ ⪯ µ if and only if |λ| = |µ| and
k∑

i=1

λi ⩽
k∑

i=1

µi for all k ∈ N.

For a partition λ = (λ1, . . . , λℓ),

Pλ := Pλ1
× · · · × Pλℓ

.

Notations 2.8 (Young diagrams). — The Young diagram of a partition λ is the set

{(i, j) | 1 ⩽ i ⩽ ℓ(λ) and 1 ⩽ j ⩽ λi}.

A partition is often identified with its Young diagram so that (i, j) ∈ λ means that
(i, j) belongs to the Young diagram of λ. The transpose of a Young diagram is obtained
by permuting i and j. The transpose λ′ of a partition λ is the partition with Young
diagram the transpose of the Young diagram of λ. The Young diagram of the partition
λ = (5, 4, 2) has the following form

x

with x being the box (i, j) = (1, 2). The arm length of x is number of box to the right
of x, here a(x) = 3. The leg length is the number of box under x, here ℓ(x) = 2.
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Notations 2.9 (Symmetric functions). — Let X = (x1, x2, . . . ) be an infinite set of
variables and let Sym[X] be the ring of symmetric functions in (x1, x2, . . . ). We use
the usual notations from Macdonald’s book [Mac15]. In particular the usual basis of
symmetric functions indexed by partitions are denoted by mλ, eλ, hλ, pλ and sλ.

The Hall pairing is denoted by ⟨•, •⟩ and satisfies

(8) ⟨pλ, pµ⟩ = δλ,µzλ.

The symbol δλ,µ is 1 if λ = µ and 0 otherwise, zλ is the order of the stabilizer of a
partition of cycle type λ. Namely

zλ =

k∏
ℓ=1

imℓ

ℓ mℓ!

for a partition λ = (i1, . . . , i1︸ ︷︷ ︸
m1

, . . . , ik, . . . , ik︸ ︷︷ ︸
mk

).

Definition 2.10 (Adams operator). — The Adams operators (pn)n∈N>0
are ring mor-

phisms on Sym[X] defined by their values on the power sums

pm [pn[X]] := pmn[X] for m ∈ N>0 and n ∈ N.

The following notation is frequently used for Adams operators

F [Xn] := pn [F [X]] .

2.2.2. Generating series and plethystic operations. — Fix a positive integer k and con-
sider the space of multivariate symmetric functions over Q(q, t):

Sym[X1, . . . , Xk] := Q(q, t)⊗ Sym[X1]⊗ · · · ⊗ Sym[Xk].

Cohomological information about character varieties is naturally encoded by an ele-
ment of the ring Sym[X1, . . . , Xk][[s]] of series with coefficients in Sym[X1, . . . , Xk].
Adams operators extend to ring morphisms of Sym[X1, . . . , Xk][[s]] defined by

pn
[
f(q, t)F1 [X1]⊗ · · · ⊗ Fk [Xk] s

ℓ
]
= f(qn, tn)F1 [X

n
1 ]⊗ · · · ⊗ Fk [X

n
k ] s

nℓ.

Definition 2.11 (Plethystic exponential and logarithm). — The plethystic exponen-
tial Exp : sSym[X1, . . . , Xk][[s]]→ Sym[X1, . . . , Xk][[s]] is defined by

Exp[G] := exp
(∑

n⩾1 pn[G]/n
)
.

The plethystic logarithm Log : 1 + sSym[X1, . . . , Xk][[s]] → Sym[X1, . . . , Xk][[s]] is
defined by

Log[1 +G] :=
∑
n⩾1

µ(n)

n
pn [log(1 +G)] ,

with µ being the usual Möbius function. Contrarily to their ordinary counterparts,
the plethystic exponential and logarithm start with an uppercase character.
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Remark 2.12. — The following relations between plethystic operations hold

Exp[F +G] = Exp[F ] Exp[G],

Log[(1 + F )(1 +G)] = Log[1 + F ] + Log[1 +G],

Log[Exp[G]] = G.

The first two relations come from Adams operators being ring morphisms and the
last one is a consequence of the characterization of the Möbius function.

2.2.3. Symmetric functions and characters of the symmetric group. — Let us recall a
well-known correspondence between symmetric functions and representations of sym-
metric groups (see [Mac15]). Let Rn be the space of characters of Sn. Consider
R =

⊕
n∈N Rn, it is endowed with a pairing ⟨•, •⟩ such that Rm is orthogonal to Rn for

m ̸= n. For Vχ, respectively Vη representations of Sn with characters χ, respectively η,

⟨χ, η⟩ = dimHomSn
(Vχ, Vη).

The space R is endowed with a product called external tensor product. For Vχ, respec-
tively Vη representations of Sm, respectively Sn, the space Vχ⊗Vη is a representation
of Sm ×Sn. The product χ · η ∈ Rm+n is defined to be the character of the repre-
sentation Ind

Sm+n

Sm×Sn
Vχ ⊗ Vη.

The irreducible characters of the symmetric group Sn are indexed by partitions of
n, they are denoted by (χλ)λ∈Pn

. Define the characteristic map ch : R→ Sym[X] by
ch(χλ) = sλ. In particular the characteristic map sends the sign representation of Sn

to the elementary symmetric function en.

Proposition 2.13. — The characteristic map ch is an isomorphism between R and
Sym[X] compatible with the products and the pairings (Sym[X] being endowed the
Hall pairing).

Proof. — See Macdonald [Mac15, I-7]. □

Remark 2.14. — Let χV ∈ Rn the character of a representation V of Sn. The Schur
functions and the power sums have the following representation theoretic interpreta-
tions:

– ⟨sλ, ch(χV )⟩ is the multiplicity of the irreducible representation Vλ in the repre-
sentation V .

– ⟨pµ, ch(χV )⟩ is the trace of an element in Sn with cycle type µ on the represen-
tation V .

Lemma 2.15. — For a partition ν of n, let εν be the sign representation of

Sν = Sν1 × · · · ×Sνℓ
.

A choice of inclusion Sν ⊂ Sn allows to induce εν to Sn. Then for λ ∈ Pn

dimHomSn

(
IndSn

Sν
εν , Vλ

)
= ⟨eν , sλ⟩ = ⟨hν , sλ′⟩.
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Proof. — The dimension dimHomSn

(
IndSn

Sν
εν , Vλ

)
is the multiplicity of the irre-

ducible representation Vλ in IndSn

Sν
εν . For m ∈ N>0 the symmetric function em is

the characteristic of the sign representation of Sm. Therefore eν is the characteristic
of IndSn

Sν
εν . The first equality now follows from Remark 2.14. To obtain the second

equality, notice that Vλ′ is the representation Vλ twisted by the sign. □

2.3. Conjugacy classes in the general linear group

2.3.1. Notations for conjugacy classes. — For an integer r and for z ∈ C∗, we denote
by Jr(z) the Jordan block of size r with eigenvalue z

Jr(z) :=



z 1

z
. . .
. . . 1

z 1

z


∈ GLr .

Let µ = (µ1, µ2, . . . , µs) be a partition of an integer m and let z ∈ C∗. We denote by
Jµ(z) the matrix with eigenvalue z and Jordan blocks of size µj ,

Jµ(z) :=


Jµ1

(z)

Jµ2(z)
. . .

Jµs
(z)

 ∈ GLm .

Let ν = (ν1, . . . , νℓ) ∈ Pn be a partition of n. We set

Pν := Pν1
× Pν2

× · · · × Pνℓ
.

Consider a diagonal matrix σ

(9) σ =


σ1 Idν1

σ2 Idν2

. . .
σℓ Idνℓ

 ,

with σi ̸= σj for i ̸= j, so that νi is the multiplicity of the eigenvalue σi ∈ C∗. Let
µ =

(
µ1, . . . , µℓ

)
∈ Pν .

Notations 2.16. — We denote by Cµ,σ the conjugacy class of the matrix

Jµ,σ :=


Jµ1(σ1)

Jµ2(σ2)
. . .

Jµℓ(σℓ)

 .

We recall a well-known proposition (the dominance order on partition was recalled
in Notations 2.7).
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Proposition 2.17. — The Zariski closure of the conjugacy class Cµ,σ

Cµ,σ =
⋃
ρ⪯µ

Cρ,σ,

is the union over ℓ-tuples ρ =
(
ρ1, . . . , ρℓ

)
with ρj ⪯ µj whenever 1 ⩽ j ⩽ ℓ.

2.3.2. Resolutions of Zariski closures of conjugacy classes. — In this section the con-
struction of resolutions of closures of conjugacy classes is recalled. This construc-
tion comes from Kraft–Procesi [KP81], Nakajima [Nak98, Nak01], Crawley-Boevey
[CB04, CB03] and Shmelkin [Shm12] (see also Letellier [Let13]).

Consider a conjugacy class Cµ,σ. The notations are introduced in the previous
section, σ in GLn is a diagonal matrix like in (9), we denote by M its centralizer
in GLn,

M =

GLν1 0

0 GLν2

... 0
. . .

 .

Set µ = (µ1, . . . , µℓ) with µi being a partition of νi. The transposed partition is
denoted by µi′ = (µi

1
′
, µi

2
′
, . . . ). Let L be the subgroup of GLn formed by block

diagonal matrices with blocks of size µi
r
′, it is a subgroup of M with the following

form

L =



ν1︷ ︸︸ ︷
GLµ1

1
′ 0

0 GLµ1
2
′

... 0
. . .

ν2︷ ︸︸ ︷
GLµ2

1
′ 0

0 GLµ2
2
′

... 0
. . .

. . .



.

Notations 2.18. — For a partition ν = (ν1, . . . , νℓ) set

Sν = Sν1
× · · · ×Sνℓ

and GLν := GLν1
× · · · ×GLνℓ

.

For ρ = (ρ1, . . . , ρℓ) ∈ Pν set

GLρ := GLρ1 × . . .GLρℓ =
∏
r,s

GLρr
s

and Sρ := Sρ1 × . . .Sρℓ =
∏
r,s

Sρr
s
.

Then the previously introduced Levi subgroups satisfy M ∼= GLν and L ∼= GLµ′ .
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We denote by P the parabolic subgroup of blocks upper triangular matrices hav-
ing L as a Levi factor, then P = LUP with

UP =



ν1︷ ︸︸ ︷
Idµ1

1
′ ∗

0 Idµ1
2
′

... 0
. . .

*

ν2︷ ︸︸ ︷
Idµ2

1
′ ∗

0 Idµ2
2
′

... 0
. . .

. . .



.

Now, we can construct a resolution of singularities of Cµ,σ,

X̃L,P,σ := {(X, gP ) ∈ GLn×GLn /P | g−1Xg ∈ σUP }.

Proposition 2.19 (Resolutions of Zariski closures of conjugacy classes)
The image of the projection to the first factor X̃L,P,σ → GLn is the Zariski closure

of the conjugacy class Cµ,σ. Moreover, the following map is a resolution of singularities

pσ : X̃L,P,σ −→ Cµ,σ

(X, gP ) 7−→ X.

2.4. Resolutions of closures of conjugacy classes and Weyl group actions

2.4.1. Borho–MacPherson approach to Springer theory. — In this section we recall
the approach of Borho–MacPherson [BM83] to Springer theory, it relies on perverse
sheaves. This approach follows the work of Lusztig [Lus81] for the general linear group.
Let G be a reductive group over K and let B be a Borel subgroup of G. There is a
decomposition B = TU with T being a maximal torus and U the unipotent radical
of B. Consider the Grothendieck–Springer resolution

G̃ = {(X, gB) ∈ G×G/B | g−1Xg ∈ B}.

We denote by Greg ⊂ G the subset of regular semisimple elements, then

G̃reg := {(X, gB) ∈ Greg ×G/B | g−1Xg ∈ B}.

Set T reg := Greg ∩ T , one has the following isomorphism

{(X, gT ) ∈ G×G/T | g−1Xg ∈ T reg} −→ G̃reg

(X, gT ) 7−→ (X, gB).

The Weyl group W = NG(T )/T acts on the left hand side by

w · (X, gT ) := (X, gẇ−1T )
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so that it acts on G̃reg. Consider the following map

pG : G̃ −→ G

(X, gB) 7−→ X.

We denote by preg its restriction to G̃reg. Then preg is a Galois cover with group W

so that W acts on preg! κG̃reg . Let U ⊂ G be the subset of unipotent elements and let

Ũ = {(X, gB) ∈ U×G/B | g−1Xg ∈ U}.

Consider the following diagram, where both squares are Cartesian:

Ũ G̃ G̃reg

U G Greg

pU pG

ĩ

preg

i

Proposition 2.20 (Borho–MacPherson [BM83, 2.6]). — There is a natural action of
the Weyl group W on pG! κG̃ and on pU! κŨ

. Moreover,

i∗pG! κG̃
∼= preg! κG̃reg

and this isomorphism is compatible with the W -action.

To study character varieties, this construction appears when G is either GLn or a
Levi subgroup of a parabolic subgroup of GLn.

Example 2.21. — When G = GLn, the Weyl group is isomorphic to the symmetric
group Sn. The irreducible representations of the symmetric group Sn are indexed
by partitions of n. For λ ∈ Pn the associated irreducible representation is Vλ. The
trivial representation is V(n) and V(1n) is the sign representation. Then there is a nice
description of the left W -action on pU! κŨ

:

pU! κŨ
[dim Ũ] =

⊕
λ∈Pn

Vλ ⊗ IC
•

Cλ
,

where Cλ is the unipotent class with Jordan type λ. With the notations from the
previous section, we have Cλ = Cλ,1.

Example 2.22. — Using Notations 2.18, for a Levi subgroup M of a parabolic sub-
group of GLn with

M ∼= GLν ,

the Weyl group WM = NM (T )/T is isomorphic to Sν . Let UM ⊂M be the subset of
unipotent elements in M and let ŨM be its Springer resolution. The result for GLn

generalizes to

(10) pUM

! κ
ŨM

[dim ŨM ] =
⊕

ρ∈Pν

Vρ ⊗ IC
•

CM
ρ
,

where CM
ρ is the unipotent conjugacy class in M defined for ρ =

(
ρ1, . . . , ρℓ

)
by

CM
ρ := Cρ1 × · · · × Cρℓ ⊂ GLν1

× · · · ×GLνℓ
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and where Vρ is the following irreducible representation of WM :

Vρ := Vρ1 ⊗ · · · ⊗ Vρℓ .

2.4.2. Parabolic induction. — In this section, Lusztig’s parabolic induction is recalled
[Lus84, Lus85, Lus86]. Most results hold for any reductive group G. For our purpose,
we assume G is either GLn or a Levi factor of a parabolic subgroup of GLn. Let P be
a parabolic subgroup of G with Levi decomposition P = LUP . The projection to L

with respect to this decomposition is πP : LUP → L. Consider the diagram

(11) L
ρ←−− V1

ρ′−−−→ V2
ρ′′−−−→ G

with

V1 = {(x, g) ∈ G×G | g−1xg ∈ LUP },

V2 = {(x, gP ) ∈ G×G/P | g−1xg ∈ LUP },

ρ(x, g) = πP (g
−1xg), ρ′(x, g) = (x, gP ), ρ′′(x, gP ) = x.

Parabolic induction is a functor IndGL⊂P from the category of L-equivariant perverse
sheaves on L to the derived category of G-equivariant κ-constructible sheaves on G.
Take K an L-equivariant perverse sheaf on L. The morphism ρ is smooth with con-
nected fibers of dimension m = dimG+dimUP , therefore the shifted pull-back ρ∗K[m]

is an L-equivariant perverse sheaf on V1. Hence there exists a perverse sheaf K̃ on V2,
unique up to isomorphism, such that ρ′∗K̃[dimP ] ∼= ρ∗K[m]. Then the parabolic
induction of K is defined by IndGL⊂P K := ρ′′! K̃.

Example 2.23. — The Springer complex pG! κG̃ is nothing but IndGT⊂B κT and the
W -action on this complex is a particular case of a more general situation studied by
Lusztig [Lus86].

Example 2.24. — Parabolic induction also relates to the resolutions of closures of
conjugacy classes from 2.3.2. Consider the following diagram where the first line is
the diagram of parabolic induction:

L V1 V2 GLn

{σ} X̂L,P,σ X̃L,P,σ Cµ,σ,
pσ

with
X̂L,P,σ := {(X, g) ∈ GLn×GLn | g−1Xg ∈ σUP }.

Then
pσ! κX̃L,P,σ

[dim X̃L,P,σ] ∼= IndGLn

L⊂P κ{σ},

where κ{σ) is the constant sheaf with support {σ}.
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Proposition 2.25 (Lusztig [Lus85, I-4.2]). — Let P and Q be parabolic subgroups of G,
with Levi decompositions P = LUP and Q = MUQ. Assume that P ⊂ Q and L ⊂M .
Then P ∩M is a parabolic subgroup of M and L is as a Levi subgroup of P ∩M .
Let K be a L-equivariant perverse sheaf on L such that IndML⊂P∩M K is a perverse
sheaf on M , then

IndGL⊂P K ∼= IndGM⊂Q

(
IndML⊂P∩M K

)
.

Let us detail the implication of this proposition for Springer complexes. As in the
previous section, G = GLn, B is a Borel subgroup of G and T is a maximal torus
in B. Let M be a Levi factor of a parabolic subgroup P of G containing B, it has the
following form for a certain ν ∈ Pn:

M ∼= GLν .

By Proposition 2.25,

(12) IndGT⊂B κT
∼= IndGM⊂P IndMT⊂B∩M κT .

The left hand side is the Springer complex for G so that it carries a W -action,
this action restricts to a WM -action as WM ⊂ W . Similarly, IndMT⊂B∩M κT carries
a WM -action as it is isomorphic to the Springer complex for M . Under the parabolic
induction functor IndGM⊂P , this WM -action on IndMT⊂B∩M κT induces a WM -action
on IndGM⊂P IndMT⊂B∩M κT . Lusztig [Lus86, 2.5] proved that both WM -actions coincide
under the isomorphism (12). With Example 2.24, this implies the next theorem.

Theorem 2.26. — Consider the resolution of the closure of a conjugacy class, pσ :

X̃L,P,σ → Cµ,σ as in Proposition 2.19, then

pσ! κX̃L,P,σ
[dim X̃L,P,σ] ∼=

⊕
ρ∈Pν

HomWM

(
IndWM

WL
ε, Vρ

)
⊗ IC

•

Cρ,σ
,

where ε is the sign representation of WL and Vρ := Vρ1 ⊗ · · · ⊗ Vρℓ is an irreducible
representation of WM .

2.4.3. Relative Weyl group actions on multiplicity spaces. — An interesting feature of
the multiplicity spaces HomWM

(
IndWM

WL
ε, Vρ

)
is that they carry a relative Weyl group

action. Before describing this action, we recall a general result about symmetric
groups, see Letellier [Let13, 6.1, 6.2].

Notations 2.27. — A type is a sequence ω = (d1, ω
1) . . . (dℓ, ω

ℓ), where dj is a positive
integer and ωj is a partition for 1 ⩽ j ⩽ ℓ. The degree of ω is

|ω| :=
ℓ∑

i=1

di|ωi|.

The Schur function associated to a type ω is

sω := sω1 [Xd1 ] · · · sωℓ [Xdℓ ],
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and we set

(13) r(ω) :=

ℓ∑
i=1

(di − 1)|ωi|.

Definition 2.28 (Twisted Littlewood–Richardson coefficients). — As the usual Schur
functions (sρ)ρ∈Pn

form a basis of Symn[X], for a type ω of degree n, there exist
coefficients cρω such that

sω =
∑
ρ∈Pn

cρωsρ.

The coefficients cρω are called the twisted Littlewood–Richardson coefficients.

Lemma 2.29. — Let ω′ be the transpose of ω, i.e., ω′ = (d1, ω
1′) . . . (dℓ, ω

ℓ′), then

cρ
′

ω′ = (−1)r(ω)cρω,

where the integer r(ω) was defined in (13).

Proof. — The result follows from a computation in the ring of symmetric functions
using the basis of power sums, see Letellier [Let13, 6.2.4]. □

Let us recall the interpretation of the Littlewood–Richardson coefficients cρω in
terms of representations of symmetric groups. The type ω defines an irreducible rep-
resentation Vω of the group Sω :=

∏ℓ
i=1 S

di

|ωi|, this representation is defined by

Vω := ⊗ℓ
i=1V

⊗di

ωi ,

where Vωi is the representation of S|ωi| indexed by the partition ωi. Let fω be the
morphism Sω → GL(Vω) induced by the representation Vω. We introduce the relative
Weyl group

WSn(Sω, Vω) := {ν ∈ NSn(Sω) | fω(ν−1 . . . ν) = fω(. . . )}/Sω.

This is the group of permutations of the blocks of Sω corresponding to the same
representation Vωi .

Proposition 2.30 (Letellier [Let13, Prop. 6.2.5]). — For ρ ∈ Pn, let Vρ be the asso-
ciated representation of Sn. For a type ω, the relative Weyl group WSn

(Sω, Vω)

acts on
HomSn

(
IndSn

Sω
Vω, Vρ

)
.

Let w ∈WSn
(Sω, Vω) be acting by cyclic permutation of the di blocks with represen-

tation Vωi for 1 ⩽ i ⩽ ℓ, then

tr
(
w,HomSn

(
IndSn

Sω
Vω, Vρ

))
= cρω.

Remark 2.31. — Assume the type ω has the following form

ω = (λ1, (1)) . . . (λℓ, (1)) with λ = (λ1, . . . , λℓ) ∈ Pn.

Then sω = pλ and for ρ ∈ Pn,
cρω = χρ

λ.
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Notice that WSn
(Sn, Vω) ∼= Sn and that the element w associated to ω has cycle

type λ. Therefore the proposition implies that, as a WSn (Sn, Vω) representation,

HomSn

(
IndSn

Sω
Vω, Vρ

) ∼= Vρ.

With this general result about symmetric groups, we go back to the Weyl groups
relative to resolutions of closures of conjugacy classes.

Definition 2.32 (Relative Weyl group). — For a Levi subgroup L ⊂M , the relative
Weyl group is

WM (L) := NM (L)/L.

We take L and M as in Section 2.3.2. We denote by (mi
1, . . . ,m

i
ki
) the multiplicities

of the parts of µi′ so that it has the following form

µi′ =
(
ai1, . . . , a

i
1︸ ︷︷ ︸

mi
1

, ai2, . . . , a
i
2︸ ︷︷ ︸

mi
2

, . . . , aiki
, . . . , aiki︸ ︷︷ ︸
mi

ki

)
.

Then, with Notations 2.18, L ∼= GLµ′ and the relative Weyl group is

WM (L) ∼=
∏

1⩽i⩽ℓ
1⩽r⩽ki

Smi
r
.

When M = GLn, the relative Weyl group is the group of permutations of same-sized
blocks of L.

Notations 2.33. — Conjugacy classes in WM (L) are indexed by elements

η = (ηi,r) 1⩽i⩽ℓ
1⩽r⩽ki

∈
∏

1⩽i⩽ℓ
1⩽r⩽ki

Pmi
r
.

A conjugacy class then determines ℓ types ωηi with parts (ηi,rs , (1a
i
r )) 1⩽r⩽ki

1⩽s⩽ℓ(ηi,r)

.

Note that

sω′
ηi

=

ki∏
r=1

ℓ(ηi,r)∏
s=1

hai
r
[Xηi,r

s ].

The following notations will be convenient to compute Weyl group actions on the
cohomology of character varieties,

h̃η :=

ℓ∏
i=1

sω′
ηi

and r(η) :=

ℓ∑
i=1

r(ωηi),

where r(ωηi) was defined by (13).

These data describe the WM (L) action on the multiplicity spaces, Proposition 2.30
implies the following theorem.

J.É.P. — M., 2023, tome 10



162 M. Ballandras

Theorem 2.34. — Let εµ′ be the sign representation of WL and let ρ ∈ Pν . The
relative Weyl group WM (L) acts on HomWM

(
IndWM

WL
εµ′ , Vρ

)
. The trace of the action

of an element in the conjugacy class indexed by η ∈
∏

1⩽i⩽ℓj
1⩽r⩽ki

Pmi
r

is

tr
(
η,HomWM

(
IndWM

WL
εµ′ , Vρ

))
=

ℓ∏
i=1

cρ
i

wηi
.

3. Background on character varieties for punctured Riemann surfaces

3.1. Character varieties and their resolutions

3.1.1. Construction of character varieties. — Let Σ be a compact Riemann surface of
genus g. Consider the punctured Riemann surface Σ0 = Σ∖{p1, . . . , pk} where pj are
distinct points on Σ called punctures. The field K is either C or an algebraic closure Fq

of a finite field Fq with q elements. Fix a non-negative integer n. We are concerned
by n-dimensional K-representations of the fundamental group of Σ0 with prescribed
monodromies around the punctures.

For each puncture, specify a conjugacy class Cµj ,σj . The notations are the same as
in the previous section, with the addition of an upper index 1 ⩽ j ⩽ k labeling the
punctures. The diagonal matrix σj has diagonal coefficients(

σj
1, . . . , σ

j
1︸ ︷︷ ︸

νj
1

, . . . , σj
ℓj
, . . . , σj

ℓj︸ ︷︷ ︸
νj
ℓj

)

and σj
r ̸= σj

s for r ̸= s. Moreover, µj =
(
µj,1, . . . , µj,ℓj

)
where µj,r ∈ Pνj

r
is the

partition giving the size of the Jordan blocks of the eigenvalue σj
r .

A bold symbol is used to represent k-tuples:
µ := (µ1, . . . , µk),

σ := (σ1, . . . , σk),

Cµ,σ := (Cµ1,σ1 , . . . ,Cµk,σk).

(14)

The representations of the fundamental group of Σ0 with monodromy around pj in
the closure Cµj ,σj form the following affine variety:

RCµ,σ
:=

{
(A1, B1, . . . , Ag, Bg, X1, . . . , Xk) ∈ GL2g

n ×Cµ1,σ1 × · · · × Cµk,σk |

A1B1A
−1
1 B−1

1 . . . AgBgA
−1
g B−1

g X1 . . . Xk = Id
}
.

The group GLn acts by simultaneous conjugation on RCµ,σ
,

g · (A1, . . . , Bg, X1, . . . , Xk) = (gA1g
−1, . . . , gBgg

−1, gX1g
−1, . . . , gXkg

−1).

The center of GLn acts trivially so this action factors through an action of PGLn.

Definition 3.1 (Character variety). — The character variety we are interested in is
the following GIT quotient:

MCµ,σ
:= RCµ,σ

//PGLn := SpecK[RCµ,σ
]PGLn .
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It is an affine variety having as regular functions the PGLn-invariants functions
on RCµ,σ

.

Under some genericity assumptions, the PGLn action is free.

Definition 3.2 (Generic conjugacy classes). — We denote by ∆(σj) the multiset
of eigenvalues of σj repeated according to multiplicities. The eigenvalue σj

r appears
exactly νjr times in the multiset ∆(σj). The k-tuple of conjugacy classes Cµ,σ is generic
if and only if it satisfies the two following conditions:

(1)
k∏

j=1

∏
α∈∆(σj)

α = 1.

(2) For any r ⩽ n− 1, for all (R1, . . . , Rk) with Rj ⊂ ∆(σj) of size r

k∏
j=1

∏
α∈Rj

α ̸= 1.

Throughout the article, every character variety considered is assumed to have generic
conjugacy classes at the punctures. Note that this definition depends only on the
eigenvalues σj

r and their multiplicities νjr but does not depend on the Jordan types µ.

Definition 3.3. — Set RCµ,σ := RCµ,σ
∩
(
GLn(K)2g ×

∏k
j=1 Cµj ,σj

)
and let MCµ,σ

be the image of RCµ,σ in RCµ,σ
.

We recall a proposition from [Let15], and from [HLRV11] for the semisimple case.

Proposition 3.4. — If Cµ,σ is generic then RCµ,σ is non-singular, when non-empty
its dimension is

dimRCµ,σ = 2gn2 − n2 + 1 +

k∑
j=1

dimCµj ,σj .

Proof. — The proof combines the one of Theorem 2.2.5 in [HRV08] and Proposition
5.2.8 in [EOR04]. □

Proposition 3.5 (Stratification of MCµ,σ
, [Let15, Cor. 3.6]). — We assume Cµ,σ is

generic. The stratifications of the Zariski closures of the conjugacy classes induce a
stratification of the character variety

MCµ,σ
=

⊔
ρ⪯µ

MCρ,σ .

The union is over ρ = (ρ1, . . . , ρk), where ρj =
(
ρj,1, . . . , ρj,ℓj

)
is such that

ρj,i ⪯ µj,i, whenever 1 ⩽ j ⩽ k, 1 ⩽ i ⩽ ℓj ,

and ⪯ is the dominance order on Pνj
i
.
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Moreover, if MCµ,σ
is non empty, then MCµ,σ is also non empty. Therefore, when

MCµ,σ
is non empty, its dimension is

(15) dimMCµ,σ
= dµ := n2(2g − 2) + 2 +

k∑
j=1

dimCµj ,σj .

3.1.2. Resolutions of character varieties. — The resolutions of closures of conjugacy
classes introduced in Section 2.3.2 induce resolutions of character varieties. As before,
we consider a generic k-tuple of conjugacy classes

Cµ,σ = (Cµ1,σ1 , . . . ,Cµk,σk),

and the upper indices 1 ⩽ j ⩽ k label the punctures. The diagonal matrix σj has
diagonal coefficients (

σj
1, . . . , σ

j
1︸ ︷︷ ︸

νj
1

, . . . , σj
ℓj
, . . . , σj

ℓj︸ ︷︷ ︸
νj
ℓj

)
.

Let M j := ZGLn(σ
j). Then, with Notations 2.18,

M j ∼= GLνj .

The partition µj,i ∈ Pνj
i

gives the sizes of the Jordan blocks of Cµj ,σj relative to

the eigenvalue σj
i . We denote by µj,i′ = (µj,i

1

′
, µj,i

2

′
, . . . ) the transposed partition. Let

Lj ⊂M j be the subgroup of block-diagonal matrices as in 2.3.2

Lj ∼= GL
µj,1
1

′ ×GL
µj,1
2

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
1

× · · · ×GL
µ
j,ℓj
1

′ ×GL
µ
j,ℓj
2

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
ℓj

.

Let X̃Lj ,P j ,σj be a resolution of Cµj ,σj as constructed in Section 2.3.2, and set

X̃L,P ,σ :=
∏

1⩽j⩽k

X̃Lj ,P j ,σj .

Letellier [Let15] constructed resolutions of singularities for character varieties.

Definition 3.6 (Resolutions of character varieties). — Define

(16) M̃L,P ,σ :=
{
(Ai, Bi)1⩽i⩽g, (Xj , gjP

j)1⩽j⩽k ∈ GL2g
n ×X̃L,P ,σ |

A1B1A
−1
1 B−1

1 . . . B−1
g X1 . . . Xk = Id

}
//PGLn .

The maps pσ
j

: X̃Lj ,P j ,σj → Cµj ,σj induce a map

pσ : M̃L,P ,σ −→MCµ,σ
.

This map is a resolution of singularities.

The description of the resolutions of closures of conjugacy classes from Theo-
rem 2.26 extends to the resolutions of character varieties.
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Notations 3.7. — Notations for resolutions of closures of conjugacy classes are ex-
tended to k-tuple. The Weyl group of M j is WMj = NMj (T )/T , then

WMj
∼= Sνj .

The irreducible representations of this group are labeled by ρj = (ρj,1, . . . , ρj,ℓj )∈Pνj .
The Weyl group of Lj is WLj = NLj (T )/T , it is a subgroup of WMj

WLj
∼= S

µj,1
1

′ ×S
µj,1
2

′ × . . .︸ ︷︷ ︸
⊂S

ν
j
1

× · · · ×S
µ
j,ℓj
1

′ ×S
µ
j,ℓj
2

′ × . . .︸ ︷︷ ︸
⊂S

ν
j
ℓj

.

The sign representation of this Weyl group is denoted by εµj ′ to remind the form of
the Weyl group WLj

∼= Sµj ′ .
Define WL :=

∏k
j=1 WLj and similarly WM :=

∏k
j=1 WMj . The parameter ρ =

(ρ1, . . . , ρk) ∈ Pν1 × · · · × Pνk indexes an irreducible representation of WM given by

Vρ =
k⊗

j=1

Vρj .

Let εµ′ be the sign representation of WL.

The next theorem is a particular case of a result of Letellier [Let15, Th. 5.4].

Theorem 3.8. — There is an isomorphism

pσ! κ[dµ]
∼=

⊕
ρ⪯µ

Aµ′,ρ ⊗ IC
•
M

Cρ,σ

and in terms of cohomology

(17) Hi+dµ
c (M̃L,P ,σ,Qℓ) ∼=

⊕
ρ⪯µ

Aµ′,ρ ⊗ IH i+dρ
c (MCρ,σ

,Qℓ).

The multiplicity space is given by

Aµ′,ρ := HomWM

(
IndWM

WL
εµ′ , Vρ

) ∼= k⊗
j=1

HomWMj

(
Ind

WMj

WLj
εµj ′ , Vρj

)
.

3.1.3. Relative Weyl group actions. — The relative Weyl group actions on the coho-
mology of resolutions of closures of conjugacy classes give rise to relative Weyl group
actions on the cohomology of resolutions of character varieties.

Notations 3.9. — The relative Weyl group is

WM (L) :=

k∏
j=1

WMj (Lj),

the relative Weyl group WMj (Lj) was described in 2.4.3. Conjugacy classes in WM (L)

are labeled by elements
η = (ηj)1⩽j⩽k,
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with ηj as in 2.4.3 and with an additional index j for the puncture,

ηj = (ηj,i,r) 1⩽i⩽ℓj
1⩽r⩽kj,i

∈
∏

1⩽i⩽ℓj
1⩽r⩽kj,i

Pmj,i
r
.

Notations 2.33 extend to k-tuples,

h̃η :=

k∏
j=1

ℓj∏
i=1

sωηj,i
′ [Xj ]

and

r(η) :=

k∑
j=1

ℓj∑
i=1

r(ωηj,i).

Theorem 3.10. — Let Cµ,σ be a generic k-tuple of conjugacy classes and let M̃L,P ,σ

be the resolution of MCµ,σ
. The relative Weyl group WM (L) acts on the cohomology

of M̃L,P ,σ. The trace of an element in the conjugacy class indexed by η is

tr
(
η, Hi+dµ

c (M̃L,P ,σ, κ)
)
=

∑
ρ⪯µ

tr
(
η, Aµ′,ρ

)
Hi+dρ

c

(
MCσ,ρ

, κ
)
,

where

tr
(
η, Aµ′,ρ

)
=

k∏
j=1

ℓj∏
i=1

cρ
j,i

ηj,i .

3.2. Cohomology of character varieties: some results and conjectures. —

3.2.1. Conjectural formula for the mixed Hodge polynomial. — Hausel, Letellier and
Rodriguez-Villegas [HLRV11] introduced a generating function that is conjectured to
encode the mixed Hodge structure on the cohomology of character varieties. As before,
g is a non-negative integer, the genus, and k is a positive integer, the number of
punctures.

Definition 3.11 (Generating function Ω and Hausel–Letellier–Villegas kernel)
The k-points, genus g Cauchy function is defined by

(18) Ωg
k(z, w) :=

∑
λ∈P

Hλ(z, w)

k∏
i=1

H̃λ

[
Xi, z

2, w2
]
s|λ|

with

(19) Hλ(z, w) :=
∏ (

z2a+1 − w2ℓ+1
)2g

(z2a+2 − w2ℓ) (z2a − w2ℓ+2)
.

The product is over the Young diagram of λ, a is the arm length and ℓ the leg
length (see Notations 2.8). The symmetric functions H̃λ are the modified Macdonald
polynomials (see Mellit [Mel20a, Def. 2.5]). The degree n Hausel–Letellier–Villegas
kernel is defined by

HHLV
n (z, w) := (z2 − 1)(1− w2) LogΩg

k(z, w)
∣∣
sn

.
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The generating function Ωg
k belongs to the lambda ring Sym[X1, . . . , Xk][[s]]. This

Cauchy function is known to encode cohomological information about character varie-
ties and quiver varieties, let us recall these various conjectures and theorems.

When the conjugacy classes are semisimple, Hausel, Letellier and Rodriguez-
Villegas [HLRV11] stated a conjecture for the mixed Hodge polynomial of the charac-
ter variety. They proved the specialization corresponding to the E-polynomial. Letel-
lier generalized this conjecture to arbitrary types and intersection cohomology.

Let Cµ,σ be a generic k-tuple of conjugacy classes with µ = (µ1, . . . , µk) and
µj =

(
µj,1, . . . , µj,ℓj

)
. The transpose of the partition µj,i ∈ Pνj

i
is denoted by µj,i′

and

(20) sµ′ :=

k∏
j=1

ℓj∏
i=1

sµj,i′ [Xj ].

Conjecture 3.12 (Letellier [Let15], Conjecture 1.5). — For a generic k-tuple of con-
jugacy classes Cµ,σ, the mixed Hodge polynomial of the character variety MCµ,σ

is

IH c(MCµ,σ
, q, v) = (v

√
q)

dµ
〈
sµ′ ,HHLV

n (−1/√q, v√q)
〉
,

with q = xy. In particular, after specializing to the Poincaré polynomial

(21) Pc(MCµ,σ
, v) = vdµ

〈
sµ′ ,HHLV

n (−1, v)
〉
.

Some specializations of this conjecture are already proved. The formula obtained
after specialization to the E-polynomial is proved by Hausel, Letellier and Rodriguez-
Villegas [HLRV11] for semisimple conjugacy classes and by Letellier [Let15] for any
type of conjugacy classes. The proof relies on counting points of character varieties
over finite fields and representation theory of GLn(Fq). The formula obtained after
specialization to the Poincaré polynomial is proved by Schiffmann [Sch16] for one
central conjugacy class and by Mellit [Mel20a] for any k-tuple of semisimple conjugacy
classes. The proof relies on counting point of moduli space of stable parabolic Higgs
bundles over finite field.

3.2.2. Poincaré polynomial of character varieties with semisimple conjugacy classes at
punctures. — Let S = (S1, . . . , Sk) be a generic k-tuple of semisimple conjugacy
classes. Then Sj has the form Cµj ,σj with µj = (1ν

j
1 , . . . , 1

νj
ℓj ) and

sµ′ =

k∏
j=1

ℓj∏
i=1

s(νj
i )
[Xj ] =

k∏
j=1

hνj [Xj ] = hν .

The conjecture from Hausel, Letellier and Rodriguez-Villegas [HLRV11] for the
mixed Hodge structure of the character variety with monodromies specified by S

reads
IH c (MS; q, v) = (v

√
q)dS

〈
hν ,HHLV

n (−1/√q, v√q)
〉
.
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Note that as the conjugacy classes are generic semisimple, the character variety is
smooth and the intersection cohomology coincides with the usual cohomology. Then
the specialization to Poincaré polynomial of the conjecture is

(22) Pc (MS, v) =
∑
i

vi dimHi
c(MS, κ) = vdS

〈
hν ,HHLV

n (−1, v)
〉
.

After a change of variable v = −1/
√
u and applying Poincaré duality, this formula

is equivalent to Mellit’s result [Mel20a, Th. 7.12] and we have the following theorem.

Theorem 3.13. — For a generic k-tuple of semisimple conjugacy classes (S1, . . . , Sk)

with the multiplicities of the eigenvalues of Sj given by a partition νj ∈ Pn for 1 ⩽
j ⩽ k, the Poincaré polynomial of the character variety MS is

(23) Pc (MS; v) = vdS
〈
hν ,HHLV

n (−1, v)
〉
.

3.2.3. Weyl group actions on the cohomology. — In 3.1.3 a Weyl group action on the
cohomology of resolutions of character varieties was introduced. The conjecture about
the mixed Hodge structure also concerns this Weyl group action. We present the
implications in terms of Poincaré polynomial using Notations 2.33 and 3.9.

Definition 3.14 (η-twisted Poincaré polynomial). — Let Cµ,σ be a generic k-tuple
of conjugacy classes and let M̃L,P ,σ be the resolution of MCµ,σ

. For η indexing a
conjugacy class in WM (L), the η-twisted Poincaré polynomial of M̃L,P ,σ is

Pη
c

(
M̃L,P ,σ, v

)
:=

∑
i

tr
(
η, Hi

c

(
M̃L,P ,σ, κ

))
vi.

Letellier proved that the Weyl group action on the cohomology of the resolu-
tion M̃L,P ,σ preserves the weight filtration. Therefore, one can similarly define the
η-twisted mixed Hodge polynomial IH η

c

(
M̃L,P ,σ, q, v

)
.

Conjecture 3.15 (Letellier [Let15, Conj. 1.8]). — Let Cµ,σ be a generic k-tuple of
conjugacy classes, let M̃L,P ,σ be the resolution of a character variety MCµ,σ

and let
η be a conjugacy class in WM (L). The η-twisted mixed Hodge polynomial is

IH η
c

(
M̃L,P ,σ, q, v

)
= (−1)r(η)(v√q)dµ

〈
h̃η,HHLV

n (−1/√q, v√q)
〉
.

4. Diffeomorphism between a resolution of a character variety and
a semisimple character variety

In this section we construct a diffeomorphism between a resolution M̃L,P ,σ and
a character variety with semisimple monodromies MS, thus proving the following
theorem.

Theorem 4.1. — Let Cµ,σ be a generic k-tuple of conjugacy classes and let M̃L,P ,σ

be the resolution of MCµ,σ
. Then M̃L,P ,σ is diffeomorphic to a character variety MS,

where S = (S1, . . . , Sk) and Sj is the class of an element with centralizer in GLn equal
to Lj ∼= GLµj ′ .
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First the example of the sphere with four punctures and rank n = 2 is studied
in Section 4.1. In this case we can obtain the expected diffeomorphism using only
tools from algebraic geometry. This example has been studied for a long time by Vogt
[Vog89] and Fricke–Klein [FK97]. The character varieties are affine cubic surfaces
satisfying Fricke–Klein relation. Cubic surfaces and lines over them have been exten-
sively studied. They are classified for instance by Cayley [Cay69], see also Bruce–Wall
[BW79], Manin [MH74] and Hunt [Hun96]. This rich theory proves that the minimal
resolution is diffeomorphic to a character variety with semisimple monodromies. Both
appear to be diffeomorphic to the projective plane blown up in six points, minus three
lines.

In general, the construction of the diffeomorphism is performed in few steps and
relies on analytic techniques.

The first step is the Riemann–Hilbert correspondencethat gives a diffeomorphism
between the resolution of MCµ,σ

and a de Rham moduli space of parabolic connec-
tions. The Riemann–Hilbert correspondence was developed by Deligne [Del70] and
by Simpson for the filtered case [Sim90]. Yamakawa proved that this correspondence
induces a complex analytic isomorphism between moduli spaces [Yam08].

The second step is the non-Abelian Hodge theorythat gives a diffeomorphism be-
tween the de Rham moduli space and the Dolbeault moduli space. It was established
by Hitchin [Hit87] and Donaldson [Don87] for compact curves. Corlette [Cor88] and
Simpson [Sim88] generalized it for higher dimensions. Simpson [Sim90] proved the
parabolic version over non-compact curves, which is the one we need here. Biquard
[Biq97] generalized it for higher dimension. Konno [Kon93] and Nakajima [Nak96]
introduced the relevant moduli spaces to obtain this correspondence as a diffeomor-
phism. Biquard and Boalch [BB04] generalized further this correspondence to wild
non-Abelian Hodge theory and constructed the associated hyperkähler moduli spaces.
We use their construction of the moduli spaces. Biquard, García-Prada and Mundet
i Riera [BGM20] established a parabolic non-Abelian Hodge correspondence for real
groups, generalizing Simpson construction for GLn.

Together with the diffeomorphism from non-Abelian Hodge theory we use the
method from Nakajima [Nak96] for GL2 and from Biquard, García-Prada and
Mundet i Riera [BGM20] for real groups. The weights defining the moduli space of
parabolic Higgs bundles are changed. This is done before going back to another de
Rham moduli space thanks to the non-Abelian Hodge theory in the other direction.
The change of stability on the Dolbeault side induces a change of eigenvalues of the
residues on the de Rham side.

Finally the Riemann–Hilbert correspondence is applied in the other direction.
It gives a diffeomorphism to a character variety where the eigenvalues σ have been
perturbed, so that the monodromies are now semisimple.

4.1. Example of the sphere with four punctures and rank two. — We study the
particular case n = 2, k = 4. Then the character varieties are affine cubic surfaces.
The defining equation was known by Vogt [Vog89] and Fricke–Klein [FK97]. The
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theory of cubic surfaces allows to obtain the expected diffeomorphism. Cubic surfaces
and lines over them have been extensively studied. They are classified for instance
by Cayley [Cay69], see also Bruce–Wall [BW79], Manin [MH74] and Hunt [Hun96].
This particular example of character varieties also appears in the theory of Painlevé VI
differential equation. In this context, Inaba, Iwasaki and Saito [IIS06a, IIS06b, IIS06c]
studied resolutions of cubic surfaces with the Riemann–Hilbert correspondence. It was
also studied on the Dolbeault side by Hausel [Hau98].

4.1.1. Fricke relation. — We consider representations of the fundamental group of
the sphere with four punctures P1 ∖ {p1, . . . , p4}. First we prescribe no particular
condition on the monodromies around the punctures

R := {(X1, . . . , X4) ∈ SL4
2 | X1 · · ·X4 = Id}.

The group GL2 acts by conjugation on R, its center acts trivially, hence the action
factors through an action of PGL2. The points of the following GIT quotient represent
closed orbits for this action

M := R//PGL2 := SpecC [R]
PGL2 ,

where C [R]
PGL2 are the invariants under the GL2 action in the algebra of functions

of the affine variety R. There is an explicit description of the variety M known by
Vogt [Vog89] and Fricke–Klein [FK97], see also Goldman [Gol09] for a detailed discus-
sion and Boalch–Paluba [BP16] for applications to G2-character varieties. The affine
variety M is given by the Fricke relation

(24) xyz + x2 + y2 + z2 +Ax+By + Cz +D = 0,

with

x = tr(X2X3), y = tr(X1X3), z = tr(X1X2)

and

A = − tr(X1) tr(X1X2X3)− tr(X2) tr(X3),

B = − tr(X2) tr(X1X2X3)− tr(X1) tr(X3),

C = − tr(X3) tr(X1X2X3)− tr(X1) tr(X2),

D = tr(X1) tr(X2) tr(X3) tr(X1X2X3) + tr(X1)
2

+ tr(X2)
2 + tr(X3)

2 + tr(X1X2X3)
2 − 4.

The character varieties we are interested in are obtained by specifying the Zariski
closure of the conjugacy class of each Xi. First we assume that they are all semisimple
regular with determinant 1. For i = 1, . . . , 4; Si is the conjugacy class of

(25)
(
λi 0

0 λ−1
i

)
.
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The 4-tuple S = (S1, . . . , S4) is assumed to be generic. In terms of invariant functions,
Xi ∈ Si for all i if and only if

tr(Xi) = λi + λ−1
i for 1 ⩽ i ⩽ 3,

tr(X1X2X3) = λ4 + λ−1
4 .

Then Fricke relation implies the following proposition.

Proposition 4.2. — The character variety MS is a smooth cubic surface in A3 given
by Fricke relation (24) with coordinates x, y and z and constants A,B,C and D.

Now, we consider non-semisimple conjugacy classes C = (C1,C2,C3,C4). Where C1

is the conjugacy class of (
−1 1

0 −1

)
and C2 = C3 = C4 are the conjugacy classes of(

1 1

0 1

)
.

Note that this 4-tuple of conjugacy classes is generic. The (Xi)1⩽i⩽4 are already
assumed to have determinant 1, then X1 belongs to the closure C1 if and only if

trX1 = −2.

Similarly, the condition (X2, X3, X4) ∈ C2 × C3 × C4 is equivalent to

trX2 = trX3 = tr(X1X2X3) = 2.

Substituting these parameters in Fricke relation, the character variety is again a cubic
surface in A3 with equation

(26) xyz + x2 + y2 + z2 − 4 = 0.

This cubic surface has exactly four singularities at (−2,−2,−2), (−2, 2, 2), (2,−2, 2)
and (2, 2,−2). The classification of cubic surfaces (see Bruce–Wall [BW79]) gives the
following theorem.

Theorem 4.3. — After compactification in P3, the character variety MC is isomorphic
to Cayley’s nodal cubic, the only cubic surface with four singularities.

This particular character variety was studied by Cantat–Loray [CL09] in the con-
text of Painlevé VI.

In this example, using only elementary algebraic geometry, we can prove that the
minimal resolution of MC is diffeomorphic to the character variety with semisimple
monodromies MS. We shall see that both varieties are obtained as the plane blown-up
in six points minus three lines.

J.É.P. — M., 2023, tome 10



172 M. Ballandras

4.1.2. Projective cubic surfaces. — Let us recall an important result in the classifica-
tion of cubic surfaces. Smooth projective cubic surfaces in P3 can be constructed by
a blow-up of P2 in six points.

Let P = (P1, . . . , P6) be six distinct points in the projective plane P2. The blow-up
of P2 with respect to those six points is denoted by YP → P2.

Definition 4.4 (Generic configuration for six points in P2). — Such a configuration P

of 6 points in P2 is called generic if no three of them lie on a line and no five of them
lie on a conic.

The two following theorems are well-known results about cubic surfaces, see for
instance Manin [MH74] and Hunt [Hun96].

Theorem 4.5. — Up to isomorphism, smooth projective cubic surfaces in P3 are ob-
tained as P2 blown-up in six points in generic position.

Theorem 4.6. — If the six points P = (P1, . . . , P6) are the intersections of four lines
(L1, . . . , L4) in P2, then YP is isomorphic to a minimal resolution of singularities of
Cayley’s nodal cubic.

Up to diffeomorphism, the manifold obtained by blowing up P2 in six distinct points
does not depend on the position of the points. This implies the next proposition.

Proposition 4.7. — The minimal resolution of the projective Cayley’s nodal cubic is
diffeomorphic to a smooth projective cubic surface. Both are obtained as the projective
plane P2 blown-up in six points.

4.1.3. Lines on cubic surfaces. — So far we saw that the minimal resolution of the
projective Cayley’s nodal cubic is diffeomorphic to a smooth projective cubic surface.
However the variety we are interested in are not projective, they are affine. By The-
orem 4.3, the variety MC is the projective Cayley’s nodal cubic minus three lines at
infinity. These three lines are given by the equation xyz = 0, they form a triangle.
Similarly, the variety MS is a smooth projective cubic surface minus the triangle at
infinity xyz = 0. This triangle at infinity is a particular case of a general situation
studied by Simpson [Sim16] for n = 2 and any number of punctures k.

The theory of lines on cubic surfaces has been thoroughly studied. See for instance
Cayley [Cay69], Bruce–Wall [BW79], Manin [MH74] and Hunt [Hun96].

Proposition 4.8 (27 lines on a smooth projective cubic surface). — There are 27 lines
on a smooth projective cubic surface. They all have a nice description in terms of P2

blown-up in six points (P1, . . . , P6).
– Six of them are the exceptional divisors Ei over Pi.
– Fifteen of them are the strict transforms L̃i,j of the line through Pi and Pj.
– Six of them are the strict transforms C̃j of the conic through all Pi except Pj.
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The following picture is an example of six generic points in the plan, the line L1,6

as well as the conic C6 are drawn.

P1

•

P2 •

P3

•

P4

•

P5•

P6

•
L1,6

C6

Now, we consider six points not in generic position. Take four lines (L1, . . . , L4) in P2

with exactly six intersections (P1, . . . , P6), those lines are black in the next figure.
Consider the three lines L1,2, L3,4 and L5,6 with Li,j containing Pi and Pj , those lines
are blue in the next figure. Up to relabeling we may assume Li,j ̸= Lk for all i, j, k.
Cayley’s nodal cubic is obtained by blowing up the six points and then blowing down
the strict transforms of the four lines (L1, . . . , L4). The four points image of those
four lines under the blow-down are exactly the four singular points. See Hunt [Hun96,
Chap. 4] for more pictures.

P1

P3 P4

P5

P6

P2

Proposition 4.9 (lines on Cayley’s nodal cubic). — There are 9 lines on Cayley’s
nodal cubic.

– Six of them are the exceptional divisors Ei over Pi.
– Three of them are the strict transforms of L1,2, L3,4 and L5,6.

Proposition 4.10. — The variety MC is Cayley’s nodal cubic minus the images of
L1,2, L3,4 and L5,6.

Proof. — We saw that MC is Cayley’s nodal cubic minus the three lines at infinity
xyz = 0. These three lines do not contain any of the four singularities. Therefore they
are not the image of the exceptional divisors. Then they must be the three remaining
lines, the blue lines on the picture. □
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Theorem 4.11. — The character variety MS with generic semisimple conjugacy
classes at punctures is diffeomorphic to the minimal resolution of singularities of the
character variety MC. Both are obtained as the projective plane P2 blown up in six
points (P1, . . . , P6) minus three lines L̃1,2, L̃3,4, L̃5,6.

Proof. — The statement about the minimal resolution of MC follows from Proposi-
tion 4.9. The variety MS is a smooth projective cubic surface minus three lines forming
a triangle. As those three lines intersect each other they cannot be any triple among
the 27 lines over the surface, there are some restrictions:

– The exceptional divisors Ei do not intersect each other.
– The strict transforms C̃j do not intersect each other.
– The strict transforms of two distinct lines containing a same point Pi do not

intersect.
Therefore the only possible triples of lines forming a triangle on a smooth cubic surface
have the following form:

(1) (L̃1,2, L̃3,4, L̃5,6),
(2) (E1, L̃1,6, C̃6).

The first case is exactly the expected result. The second case is illustrated by the
picture below Proposition 4.8, where the conic C6 and the line L1,6 are drawn. To
relate the second case to the first, proceed in two steps. First P2 is blown-up in the
three points P1, P2 and P3. The resulting variety is blown-down along L̃1,2, L̃1,3 and
L̃2,3 (three lines with self-intersection −1). The variety obtained is again isomorphic
to P2. We consider this copy of the projective plane as the starting point. This plane
is blown up in six points (P ′

1, . . . , P
′
6) with

– P ′
1 the blow-down of L̃2,3,

– P ′
2 the blow-down of L̃1,3,

– P ′
3 the blow-down of L̃1,2,

– P ′
j the image of Pj for j = 4, 5, 6.

The construction obtained from the new copy of P2 and the points (P ′
1, . . . , P

′
6) are

labeled with a prime. Then the triple (E1, L̃1,6, C̃6) becomes (L̃′
2,3, L̃

′
1,6, L̃

′
4,5). In any

case the triangle of lines removed at infinity has the expected form. □

Remark 4.12. — There is an action of the Weyl group of E6 on the configuration of
the 27 lines on a smooth cubic surface. The Dynkin diagram of E6 is

•

• • • • •

The generator of the upper vertex corresponds to the transformation previously
described sending (E1, L̃1,6, C̃6) to (L̃′

2,3, L̃
′
1,6, L̃

′
4,5), see Hartshorne [Har77, V,

Exer. 4.11].
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4.2. Moduli spaces. — In general the construction of the diffeomorphism relies on
analytical techniques and go through various moduli spaces. Let Σ be a compact
Riemann surface endowed with a complex structure, then Σ is seen as a smooth
complex projective curve. Let D be the divisor D = p1+ · · ·+ pk for k distinct points
p1, . . . , pk.

4.2.1. De Rham moduli space. — Parabolic holomorphic bundles were introduced by
Mehta and Seshadri [MS80], they generalized Narasimhan–Seshadri [NS65] result to
the parabolic case. Parabolic bundles appear in various area of mathematics and
physics, for instance Pauly [Pau96] related those parabolic bundles with conformal
field theory. In this section some definitions are recalled.

Definition 4.13 (Filtered holomorphic bundles). — A filtered holomorphic bundle
consists of the data of a holomorphic vector bundle E together with filtrations of Ej

the fiber of E at pj for j = 1, . . . , k

{0} = Ej
0 ⊂ Ej

1 ⊂ · · · ⊂ Ej
mj

= Ej .

The type τ of the filtration is defined by

τ ji = dimEj
i /E

j
i−1

for j = 1, . . . , k and i = 1, . . . ,mj .

Definition 4.14 (parabolic degree). — Let E be a filtered holomorphic bundle of
type τ . Consider a stability parameter β = (βj

i ) 1⩽j⩽k
1⩽i⩽mj

with βj
i ∈ R. The parabolic

degree of E is
p-degβ E = degE +

∑
i,j

βj
i dim(Ej

i /E
j
i−1).

Let E be a holomorphic vector bundle on Σ. A logarithmic connection on E is a
map of sheaves D : E → E ⊗ Ω1

Σ(logD) satisfying Leibniz rule

D(fs) = df ⊗ s+ fD(s)

for all holomorphic functions f and for all sections s of E.
For a coordinate z vanishing at a point pj , in a trivialization of E in a neighborhood

of this point the connection reads

D = d+A(z)
dz

z
.

The residue of D at pj is A(0), we denote it by Respj
D.

Fix some parabolic weights βj
i ∈ [0, 1[ satisfying βj

i < βj
i−1. For j = 1, . . . , k and

i = 1, . . . ,mj , fix Aj
i ∈ C to specify a polar part. A logarithmic connection (E,D) is

compatible with the parabolic structure if the endomorphism

Respj
D : Ej −→ Ej

satisfies
(
Respj

D
)
Ej

i ⊂ Ej
i . A logarithmic connection compatible with the parabolic

structure is called a parabolic connection. It is compatible with the specified polar
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part if in addition the map induced by Respj
D on the graded spaces Ej

i /E
j
i−1 is Aj

i Id.
A logarithmic connection compatible with the parabolic structure is β-semistable if
and only if, for all subbundles F ⊊ E preserved by D

p-degβ F

rankF
⩽

p-degβ E

rankE
,

it is stable if the inequality is strict unless F = 0. Two pairs of filtered holomorphic
bundles and parabolic connections (E,D) and (E′, D′) are isomorphic if there is an
isomorphism of holomorphic bundle f : E → E′ compatible with the filtrations and
such that (f ⊗ Id) ◦D = D′ ◦ f . A connection is flat if its curvature vanishes, this is
automatically the case here as we consider logarithmic connections on holomorphic
bundles on a Riemann surface.

Notations 4.15 (de Rham moduli space). — The de Rham moduli space MdR
A,β clas-

sifies isomorphism classes of β-stable parabolic connections with prescribed polar
parts A and parabolic degree 0.

4.2.2. Filtered local systems and resolutions of character varieties

Definition 4.16 (Filtered local system). — A filtered local system is a local system L

over Σ∖ {p1, . . . , pk} together with a filtration of the restrictions L|Uj
to some punc-

tured neighborhood Uj of pj . Namely for all j = 1, . . . , k there are local systems L
j
i

such that
0 = L

j
0 ⊊ L

j
1 ⊊ · · · ⊊ Lj

mj
= L|Uj

.

The type τ of the filtered local system is defined by

τ ji := rankLj
i/L

j
i−1.

Definition 4.17 (Parabolic degree of a filtered local system). — Let γ = (γj
i ) 1⩽j⩽k

1⩽i⩽mj

be a stability parameter. The parabolic degree of the filtered local system is defined by

p-degγ L =
∑
i,j

γj
i rankL

j
i/L

j
i−1.

A filtered local system L is γ-semistable if and only if for all sub local systems
0 ⊊ L′ ⊊ L,

p-degγ L
′

rankL′ ⩽
p-degγ L

rankL
,

it is γ-stable if the inequality is strict.
Consider a character variety MCµ,σ

with a resolution of singularities M̃L,P ,σ.
By the usual equivalence of category between local systems and representations of the
fundamental group, the character variety MCµ,σ

is the moduli space of local systems
with monodromy around pj in Cµj ,σj . This correspondence extends to the resolution
M̃L,P ,σ and the moduli space of filtered local system.
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Proposition 4.18. — The resolution M̃L,P ,σ is the moduli space of filtered local sys-
tems with filtration around pj of type µj ′ and such that the endomorphism induced by
the monodromy on L

j
i/L

j
i−1 is σj

i Id.

Proof. — An element gjP
j ∈ GLn /P

j is identified with a partial flag of type µj ′.
The condition g−1

j Xjgj ∈ σjUP j is exactly that the partial flag is preserved by Xj

and that the induced endomorphism on the graded spaces are σj
i Id. Note that we

study only character varieties for generic choices of conjugacy classes at punctures.
For such a generic choice, the stability parameter is irrelevant as the local system does
not admit any sub local system. □

4.2.3. Dolbeault moduli space. — A parabolic Higgs bundle is a pair (E, ϕ) with E

being a filtered holomorphic vector bundle on Σ and a Higgs field ϕ : E → E ⊗
Ω1(logD) such that Respj

ϕ(Ej
i ) ⊂ Ej

i . Let α = (αj
i ) 1⩽j⩽k

1⩽i⩽nj

be a stability parameter.

A parabolic Higgs bundle (E, ϕ) is α-semistable if and only if for all subbundles
0 ⊊ F ⊊ E preserved by ϕ

p-degα F

rankF
⩽

p-degα E

rankE
.

It is α-stable if the inequality is strict. Similarly to the case of parabolic connections,
it is interesting to specify the residue of the Higgs field. For all i, j, fix a semisimple
adjoint orbit Bj

i in glνj
i
. The parabolic Higgs bundle has the prescribed residues if,

in a holomorphic trivialization, the map induced on Ej
i /E

j
i−1 by the residue lies in

the adjoint orbit Bj
i . Note that contrarily to the parabolic connections, the prescribed

adjoint orbits on the graded spaces are not necessarily central. In fact much more
general polar parts are considered by Biquard–Boalch [BB04], we restrict here to
what is necessary for our purpose.

Notations 4.19 (Dolbeault moduli space). — The Dolbeault moduli space MDol
B,α

classifies isomorphism classes of α-stable parabolic Higgs bundles with prescribed
residues B and parabolic degree 0.

4.2.4. Various steps of the diffeomorphism. — In the remaining of the section, analytic
constructions of the moduli spaces are recalled. These spaces are endowed with a
manifold structure. They will be used to obtain a diffeomorphism from a resolution
M̃L,P ,σ to a character variety MS with semisimple conjugacy classes at punctures.
The picture is the following:

(27)

M̃L,P ,σ
R.H // MdR

A,β
N.A.H // MDol

B,α

α 7→ α̃
��

MS MdR
Ã,β̃

R.Hoo MDol
B,α̃.

N.A.Hoo

All the arrows are diffeomorphisms, R.H stands for the Riemann–Hilbert correspon-
dence and N.A.H for non-Abelian Hodge theory. The vertical arrow accounts for a
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change of stability parameter α 7→ α̃. This is similar to a construction from Biquard,
García-Prada and Mundet i Riera [BGM20, Th. 7.10]. It is detailed in the remaining
of the section for this particular application.

4.3. Local model. — In this section the local model used by Biquard–Boalch [BB04]
to construct moduli spaces is recalled.

4.3.1. Local model for the Riemann–Hilbert correspondence. — Before constructing the
moduli spaces, let us present what happens locally, near a puncture, and how the
parameters of the moduli spaces are related. Consider a rank n filtered local system L

on a punctured disk D0 = {z ∈ C | 0 < |z| < 1}. We assume that the monodromy
induces a central endomorphism on the successive quotients of the filtration. The
monodromy X has eigenvalues σi with multiplicity νi for 1 ⩽ i ⩽ ℓ. We assume
the filtration of the local system is finer than a filtration spanned by generalized
eigenspaces of M . Then in a trivialization (ℓj)1⩽j⩽n compatible with the filtration,
the monodromy reads

X =

Xσ1
∗

0 Xσ2
∗

... 0
. . .


with Xσi being a block of size νi with further decomposition

Xσi =


σi Idµi

1
′ ∗

0 σi Idµi
2
′ ∗

... 0
. . .

 .

The type of the filtration is µ′ = (µ1
1
′
, µ1

2
′
, . . . , µ2

1
′
, µ2

2
′
, . . . ). Let Ai ∈ C be such that

exp(−2iπAi) = σi

and 0 ⩽ ReAi < 1. Then A is the diagonal matrix with diagonal entries(
A1, . . . , A1︸ ︷︷ ︸

ν1

, . . . , Aℓ, . . . , Aℓ︸ ︷︷ ︸
νℓ

)
.

Let a be a block strictly upper triangular matrix such that exp (−2iπ(A+ a)) = X.
Define E a rank n holomorphic bundle on the disk D = {z ∈ C | |z| < 1} spanned by
τj = e(A+a) log zℓj for 1 ⩽ j ⩽ n. Let D be the parabolic connection on E defined in
the holomorphic trivialization (τj)1⩽j⩽n by

D = d+
A+ a

z
dz = D0 +

a

z
dz.

Then the filtered local system L is nothing but the local system of flat sections of the
parabolic connection (E,D). This describes locally the Riemann–Hilbert correspon-
dence between a resolution of a character variety and a de Rham moduli space.

J.É.P. — M., 2023, tome 10



Intersection cohomology of character varieties for punctured Riemann surfaces 179

4.3.2. Metric and parabolic structure. — The connection D0 will be the local model
for parabolic connections

D0 = d+
A

z
dz,

with A diagonal. In order to continue the path presented in Diagram (27), we need
to introduce a Hermitian metric. It will be related to a choice of stability parameters.
Chose some stability parameters βr,s ∈ [0, 1[ for each graded space of the filtration of
type µ. We introduce a diagonal matrix β with diagonal coefficients

(β1, β2, . . . , βn :=
( ν1︷ ︸︸ ︷
β1,1, . . . , β1,1︸ ︷︷ ︸

µ1
1
′

, β1,2, . . . , β1,2︸ ︷︷ ︸
µ1
2
′

, . . ., . . . ,

νℓ︷ ︸︸ ︷
βℓ,1, . . . , βℓ,1︸ ︷︷ ︸

µℓ
1
′

, . . .
)

so that the βi are the βr,s repeated according to the multiplicities µr
s
′. Moreover,

assume that βi ⩾ βi+1 and βr,s ̸= βu,v if (r, s) ̸= (u, v).

Remark 4.20. — In this local model there is just one puncture p1, therefore the sta-
bility parameters introduced in 4.2.1 are (β1

i )1⩽i⩽m1 . They are related to the stability
parameters introduced in this section by

(β1
1 , β

1
2 , . . . , β

1
m1

) = (β1,1, β1,2, . . . , β2,1, β2,2, . . . ).

We apologize for the multiplication of similar notations. The parameters (β1
i )1⩽i⩽m1

are adapted to the algebraic definition of stability whereas (βr,s) 1⩽r⩽ℓ
1⩽s⩽µr

1

are adapted

to the description of the connections and (β1, β2, . . . , βn) is adapted to explicit con-
structions of trivializations.

Define a Hermitian metric h on E such that |τj | = |z|βj . This metric determines
the filtration of E:

Ei =
{
s ∈ E | |s(z)|h = O

(
|z|β

1
i
)}

.

with |•|h being the norm with respect to the metric h. We obtain a Hermitian vector
bundle E on the disk D with an orthonormal trivialization (τj/|z|βj )1⩽j⩽n.

Notations 4.21. — The symbol E represents a vector bundle in the sense of differen-
tial geometry, with smooth transition functions; whereas the symbol E represents a
holomorphic bundle.

The parabolic connection D0 on the holomorphic bundle E induces a connection
on E, in the orthonormal trivialization (τj/|z|βj )1⩽j⩽n it reads

D0 = d+
(
A− β

2

)dz
z
− β

2

dz

z
.
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4.3.3. Local behaviour for non-Abelian Hodge theory. — The connection D0 decom-
poses as a unitary connection plus a self-adjoint term

D0 = Dh
0 +Φ0.

In the orthonormal trivialization (τj/|z|βj )1⩽j⩽n,

Dh
0 = d+

A

2

dz

z
− A†

2

dz

z

and
Φ0 =

1

2

(
A
dz

z
+A† dz

z
− β

dz

z
− β

dz

z

)
.

Consider the basis (ej)1⩽j⩽n defined by

ej :=
τj

|z|βj−i ImAj
,

with ImAj being the imaginary part of the j-th diagonal term of the matrix A.

Notations 4.22 (Canonical form). — The expression of D0 in the orthonormal trivi-
alization (ej)1⩽j⩽n is

D0 = Dh
0 +Φ0,

Dh
0 = d+

1

2
Re(A)

(dz
z
− dz

z

)
,

Φ0 =
1

2

(
A
dz

z
+A† dz

z
− β

dz

z
− β

dz

z

)
.

Such expressions will be referred to as canonical forms.

Let ∂
F be the (0, 1)-part of Dh

0 and let θ0 be the (1, 0)-part of Φ0. In the basis
(ej)1⩽j⩽n one has

∂
F
= ∂ − 1

2
Re(A)

dz

z
.

This operator defines a holomorphic bundle over the punctured disk with holomorphic
sections killed by ∂

F . This holomorphic bundle can be extended over the puncture
to a holomorphic bundle F , by taking as a basis of holomorphic sections (fj)1⩽j⩽n

defined by
fj = |z|αjej ,

where αj is the real part of the j-th diagonal term of the matrix A. Then

|fj |h = |z|αj .

As in Remark 4.20, we associate a stability parameter (α1
i )1⩽i⩽n1

to (α1, . . . , αn).
This stability parameter provides a parabolic structure

Fi = {s ∈ F | |s|h = O(|s(z)|α
1
i )}.

Note that the holomorphic bundle F is different from the holomorphic bundle E. Even
the types of the parabolic structures differ, E is of type µ′ whereas F is of type ν.
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Note that θ0, the (1, 0) part of Φ0, provides a Higgs field

θ0 =
1

2
(A− β)

dz

z
.

This is the local behaviour of the non-Abelian Hodge theory for the model connection.
To summarize, starting from a flat parabolic connection D0 with polar part A, a met-
ric h and a parabolic structure β we obtain a parabolic Higgs bundle with residue of
the Higgs field B and parabolic structure α. The relations between those parameters
are as described by Simpson [Sim90]

B =
1

2
(A− β),

α = ReA.
(28)

4.3.4. Local description of weighted Sobolev spaces

Definition 4.23 (Weighted L2 spaces). — The radial coordinate on the disk is r = |z|.
For δ real, let L2

δ be the space of functions f on the disk such that f/rδ+1 is L2.

The Hermitian metric h on the vector bundle E induces a metric on End(E) and
End(E)⊗Ω1. The definition of the spaces L2

δ extends to sections of such bundles using
the induced metric. There is an orthogonal decomposition

(29) End(E) = End(E)0 ⊕ End(E)1,

with End(E)0 being the space of endomorphism commuting with A. It induces an
orthogonal decomposition

Ω1 ⊗ End(E) = (Ω1 ⊗ End(E)0)⊕ (Ω1 ⊗ End(E)1).

For f ∈ Ω1 ⊗ End(E) this orthogonal decomposition reads

f = f0 + f1.

Definition 4.24 (Sobolev spaces Lk,2
δ ). — The weighted Sobolev space is defined by

Lk,2
δ (Ω1 ⊗ End(E)) :=

{
f ∈ L2

δ | ∇jf0, ∇jf1/r
k−j ∈ L2

δ for 0 ⩽ j ⩽ k
}
,

with ∇ being the covariant derivative with respect to the unitary connection Dh
0 .

Definition 4.25 (Space of admissible connections). — The space of admissible con-
nections is

A = {D0 + a | a ∈ L1,2
−2+δ(Ω

1 ⊗ End(E))}.

Remark 4.26. — Note that the space of admissible connections is chosen so that the
connection D = D0 + a introduced at the beginning of this section is admissible. In-
deed, in the orthonormal trivialization (ej)1⩽j⩽n, the matrix a is strictly block upper
triangular. The non zero coefficients strictly above the diagonal have the following
form

|z|βi−βj
ai,j
z

,

with βi > βj and ai,j constant. Thus a ∈ L1,2
−2+δ for a small enough parameter:

0 < δ < βi − βj .
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4.3.5. Variation of the stability parameter and the metric. — In order to pursue the
path announced in Diagram (27), we slightly modify the stability parameter α to a
parameter α̃, it is identified with a diagonal matrix with coefficients

(α̃1, α̃2, . . . ) =
(
α̃1,1, . . . , α̃1,1︸ ︷︷ ︸

µ1
1
′

, α̃1,2, . . . , α̃1,2︸ ︷︷ ︸
µ1
2
′

, . . .
)
.

The associated metric h̃ is defined such that the holomorphic trivialization (fj)1⩽j⩽n

of the holomorphic bundle F is orthogonal and

|fj |h̃ = |z|α̃j .

This provides a Hermitian bundle with orthonormal trivialization (ẽj)1⩽j⩽n defined by

ẽj =
fj
|z|α̃j

.

We follow the same process as before in the opposite direction. The connection Dh̃
0 is

the h̃-unitary connection with (0, 1)-part ∂
F , and

Φ̃0 := θ0 + θ†̃0,

where the adjoint is taken with respect to the metric h̃. Then

D̃0 := Dh̃
0 + Φ̃0.

In the trivialization (ẽj)1⩽j⩽n it reads

Φ̃0 =
1

2
(A− β)

dz

z
+

1

2
(A†̃ − β)

dz

z
,

Dh̃
0 = d+

1

2
α̃
(dz
z
− dz

z

)
.

Setting Ã = α̃ + i ImA and β̃ = β + α̃ − α we obtain a canonical form as in Nota-
tions 4.22

Dh̃
0 = d+

1

2
Re(Ã)

(dz
z
− dz

z

)
,

Φ̃0 =
1

2

(
Ã
dz

z
+ Ã†̃ dz

z
− β̃

dz

z
− β̃

dz

z

)
.

Continuing in the opposite direction, the (0, 1)-part of D̃0 defines a holomorphic
bundle Ẽ with holomorphic trivialization (τ̃j)1⩽j⩽n such that

τ̃j := |z|β̃j−i Im Ãj ẽj .

The operator D̃0 defines a logarithmic connection on Ẽ, in the trivialization (τ̃j)1⩽j⩽n

it reads
D̃0 = d+ Ã

dz

z

and Ã has distinct eigenvalues on each graded of the filtration of type ν and so does
the monodromy of the local system of flat sections.
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Let us summarize the local behaviour for Diagram (27) in terms of residue. We look
at a particular block of size νj . The stability parameter associated to the graded of the
filtration is specified with over-brace. N.A.H stands for non-Abelian Hodge theory.



βj,1︷ ︸︸ ︷
Aj Idµj

1

′ ∗

0

βj,2︷ ︸︸ ︷
Aj Idµj

2

′ ∗
... 0

. . .


N.A.H //

1

2



α1
j︷ ︸︸ ︷

(Aj − βj,1) Idµj
1

′ ∗
0 (Aj − βj,2) Idµj

2

′ ∗
... 0

. . .


α 7→ α̃
��

β̃j,1︷ ︸︸ ︷
Ãj,1 Idµj

1

′ ∗

0

β̃j,2︷ ︸︸ ︷
Ãj,2 Idµj

2

′ ∗
... 0

. . .


1

2



α̃j,1︷ ︸︸ ︷
(Aj − βj,1) Idµj

1

′ ∗

0

α̃j,2︷ ︸︸ ︷
(Aj − βj,2) Idµj

2

′ ∗
... 0

. . .


N.A.Hoo

With Ãj,i = α̃j,i + i ImAj and β̃j,i = βj,i + α̃j,i − α1
j .

4.4. Diffeomorphism between moduli spaces

4.4.1. Analytic construction of the moduli spaces. — The local study on the disk ac-
tually extends to global moduli spaces for objects defined over punctured Riemann
surfaces. The analytic construction of moduli spaces relies on methods from Kuran-
ishi [Kur65], Atiyah–Hitchin–Singer [AHS78] and Atiyah–Bott [AB83]. In this section
we recall the analytic construction of the moduli spaces involved in the parabolic
version of non-Abelian Hodge theory. Some particular cases of those moduli spaces
were constructed by Konno [Kon93] and Nakajima [Nak96]. However we need a more
general construction in order to allow not necessarily central action of the residues of
the Higgs fields on the graded of the filtration. The construction we follow is the one
from Biquard–Boalch [BB04]. Note that a larger family of groups was considered by
Biquard, García-Prada and Mundet i Riera [BGM20].

The local canonical model introduced in 4.22 is used to represent behaviour of
connections near the punctures pj . Let E be a vector bundle on Σ endowed with a
Hermitian metric h. The notation E refers to a vector bundle from the differential
geometry point of view whereas E refers to a holomorphic bundle. Let D0 be a model
connection such that on the neighborhood of the punctures it coincides with the local
model connection of the previous subsection. The connection decomposes as

D0 = Dh
0 +Φ,
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with Dh
0 unitary and Φ self-adjoint with respect to the metric h. We assume for

this model connection that in an orthonormal trivialization (ei)1⩽i⩽n of E near the
puncture pj ,

Dh
0 = d+

1

2
Re(Aj)

(dz
z
− dz

z

)
and

Φ =
1

2

(
Aj dz

z
+ (Aj)†

dz

z
− βj dz

z
− βj dz

z

)
,

where Aj and βj are the residue and the stability parameter for the de Rham moduli
space at the puncture pj . They correspond to the local parameter A and β from Sec-
tion 4.3, they are constant diagonal matrices. The parameter of the de Rham moduli
space is chosen so that it corresponds under the Riemann–Hilbert correspondence
to a resolution of a character variety with generic monodromies M̃L,P ,σ. Therefore
connections with such polar parts are necessarily irreducible.

Take r a function strictly positive on the punctured Riemann surface Σ0 such
that it coincides with the radial coordinate near each punctures. The global weighted
Sobolev space is defined as the local one from 4.3.4 with this positive function r. It is
still denoted by Lk,2

δ (Ω1 ⊗ End (E)). The space of admissible connections is

A = {D0 + a | a ∈ L1,2
−2+δ(Ω

1 ⊗ End(E))}.

This affine space is actually endowed with various complex structures. Decomposing
according to (1, 0)-part and (0, 1)-part, a = a1,0 + a0,1. The complex structure I is
defined by

I · a = ia

and the complex structure J is defined by

J · a = i(a0,1)† − i(a1,0)†.

The curvature of an admissible connection D = D0 + a is denoted by FD. Consider
the complex gauge group

GI = {g ∈ Aut(E) | (Dh
0 g)g

−1, gΦ0g
−1 ∈ L1,2

−2+δ},

it acts on A by
g ·D := gDg−1 = D − (Dg)g−1.

The next theorem gives an analytic construction of the set of isomorphism classes
of parabolic flat connections with prescribed polar parts. Later on, this set will be
endowed with a manifold structure.

Theorem 4.27 (Biquard–Boalch [BB04, §8]). — The de Rham moduli space of sta-
ble flat connections with prescribed polar parts on the graded part of the filtration
introduced in 4.2.1 is the following set

MdR
A,β = {D0 + a ∈ A | FD = 0}/GI ,

where FD is the curvature of D = D0 + a. The stability condition does not appear as
it is imposed by the generic choice of eigenvalues of the residue of D0.
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Now, starting from D = D0 + a ∈ A there is a natural candidate to produce a
parabolic Higgs bundle, like in the local model. First decompose D in a unitary part
and a self-adjoint part

D = Dh +Φ = Dh
0 +

a− a†

2
+ Φ0 +

a+ a†

2
.

The natural candidate for the underlying holomorphic structure of the parabolic Higgs
bundle is, in the orthonormal trivialization (ej)1⩽j⩽k,

∂
E
= ∂ − 1

2
Re(A)

dz

z
+

a0,1 − (a1,0)†

2
.

And the Higgs field is

θ = θ0 +
a1,0 + (a0,1)†

2
.

These data provide a Higgs bundle if ∂E
θ = 0, equivalently if the pseudo curvature GD

vanishes. Note that the complex structure J is compatible with the Higgs bundles
point of view. Indeed, if θ is the Higgs field associated to D then iθ is the Higgs field
associated to J ·D. The complex gauge group acts on the Higgs bundles structures by

g · (∂E
, θ) := (g∂

E
g−1, gθg−1).

The next theorem gives an analytic construction of the set of isomorphism classes
of parabolic Higgs bundles with prescribed residues. Later on, this set will be endowed
with a manifold structure.

Theorem 4.28 (Biquard–Boalch [BB04, §7]). — The Dolbeault moduli space of stable
parabolic Higgs bundles with prescribed polar parts on the graded parts of the filtration
introduced in 4.2.3 is the following set

MDol
B,α = {D0 + a ∈ A | ∂E

θ = 0}/GJ .

The stability condition does not appear as it is imposed by the generic choice of eigen-
values of the residue. As a group, GJ is just GI , we change the upper index to precise
which action is considered, the I-linear action or the J-linear action.

The non-Abelian Hodge theory gives a correspondence between the Dolbeault mod-
uli space and the de Rham moduli space. The parameters are intertwined as in the
local model. A nice way to state this correspondence is with hyperkähler geometry.
We introduce the unitary gauge group

G = {g ∈ U(E) | (D0g)g
−1 ∈ L1,2

−2+δ}.

Consider the moduli space

M = {D ∈ A | ∂E
θ = 0, FD = 0}/G.

The equations defining M can be interpreted as the vanishing of a hyperkähler moment
map. Then the moduli space M is an hyperkähler reduction as in [HKLR87].

Theorem 4.29 (Biquard–Boalch [BB04] Theorem 5.4). — The moduli space M carries
a hyperkähler manifold structure.
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Proof. — The deformation theory for the moduli space M at a point [D] is encoded
in the following complex

L2,2
−2+δ(u(E))

D−−−→ L1,2
−2+δ(Ω

1 ⊗ EndE) D +D∗
−−−−−−−→ L2

−2+δ

(
(Ω2 ⊗ EndE)⊕ iu(E)

)
.

The operator D∗ is the formal adjoint of D with respect to the L2 inner product
and the metric h. The analytic study of this complex is detailed in [BB04]. Its first
cohomology group is represented by the harmonic space H1 ⊂ L1,2

−2+δ

(
Ω1 ⊗ EndE

)
.

The Kuranishi slice at [D] is defined by

(30) SD := {D + a | Im(D∗a) = 0, GD+a = 0, FD+a = 0}.

Taking a small enough neighborhood of D in the Kuranishi slice, one obtains a fi-
nite dimensional manifold transverse to the G-orbits. The Kuranishi map provides an
isomorphism between a neighborhood of 0 in H1 and a neighborhood of D in the
Kuranishi slice, see Konno [Kon93, Lem. 3.8, Th. 3.9]. This provides a hyperkähler
manifold structure on the moduli space. □

Now, the non-Abelian Hodge theory can be described the following way.

Theorem 4.30 (Biquard–Boalch [BB04] Theorem 6.1). — The manifold M endowed
with the complex structure I is the moduli space MdR

A,β. The manifold M endowed with
the complex structure J is the moduli space MDol

B,α.

4.4.2. Construction of the diffeomorphisms

Theorem 4.31 (The Riemann–Hilbert correspondence). — The moduli space MdR
A,β is

complex analytically isomorphic to a resolution of character varieties M̃L,P ,σ.

Proof. — As explained in 4.18, the variety M̃L,P ,σ is nothing but the moduli space
of filtered local systems with prescribed graded parts of the monodromies around the
punctures. A filtered version of the Riemann–Hilbert correspondence is established as
an equivalence of category by Simpson [Sim90]. Yamakawa [Yam08] proved that it is
a diffeomorphism using a particular construction of the de Rham moduli space from
Inaba [Ina13]. The same argument holds with the de Rham moduli space endowed with
the manifold structure from M. Starting from a flat connection, the associated local
system is obtained by taking flat sections, i.e., by solving a differential equation. When
the parameters of the equation vary complex analytically, so does the solution. □

The moduli spaces MdR
A,β and MDol

B,α are diffeomorphic as both are M with a par-
ticular complex structure. The first line in the path announced in Diagram 27 is now
constructed. The second line is obtained exactly like the first, but in the other direc-
tion. It remains to describe the vertical arrow between two Dolbeault moduli spaces
MDol

B,α and MDol
B,α̃. This is given by Biquard, García-Prada and Mundet i Riera [BGM20,

Th. 7.10]. The construction of the diffeomorphism is detailed in the remaining of the
section.
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Because of genericity of the eigenvalues of the residue, the stability parameter α

is irrelevant. The parameter α can be changed to a stability parameter α̃ with dif-
ferent values for each graded of the filtration. Namely one can chose α̃ such that the
associated matrix satisfies ZGLn

(α̃i) = ZGLn
(Bi) and such that the parabolic degree

remains 0. The local behaviour near each puncture is described by the right hand side
of the diagram at the end of Section 4.3.5.

We introduce the following notation

εi := α̃i − αi.

For the construction of the diffeomorphism in Theorem 4.33, it will be convenient to
assume

max
i,j
|εi − εj | < δ,

with δ being the parameter appearing in the weighted Sobolev space L1,2
−2+δ.

Proposition 4.32. — For such a choice of parameters there is a natural bijection
between MDol

B,α and MDol
B,α̃.

Proof. — The moduli space MDol
B,α classifies isomorphism classes of parabolic Higgs

bundles with parabolic structure at pj

0 = F j
0 ⊊ F j

1 ⊊ · · · ⊊ F j
nj

= F j ,

and with the residue of the Higgs fields preserving this filtration and acting as a
semisimple endomorphism Bj

i on the graded spaces

F j
i /F

j
i−1.

Such spaces decompose as direct sum of eigenspaces for Bj
i . After ordering the eigen-

values, we obtain a uniquely determined refinement of the initial parabolic structure

0 = F̃ j
0 ⊊ F̃ j

1 ⊊ · · · ⊊ F̃ j
mj

= F j .

Then the residue of the Higgs field acts as a central endomorphism on the graded
F̃ j
i /F̃

j
i−1. This gives a map f : MDol

B,α → MDol
B,α̃. Stability is not an issue as the polar

part of the residue is generic. The map forgetting part of the filtration is an inverse
so that there is a natural bijection between both moduli spaces. □

Before proving that this bijection is a diffeomorphism, we detail the manifold struc-
ture on MDol

B,α̃. It is constructed just like MDol
B,α but with different parameters.

We construct a moduli space Mh̃ similar to M. Instead of the initial metric h,
we use a metric h̃, similar to the local model from 4.3.5. Namely, we chose it so that
near each puncture it admits as an orthonormal trivialization (ẽi)1⩽i⩽n with

ẽi = rεiei,

where (ei)1⩽i⩽n is the orthonormal trivialization with respect to h near the puncture
and εi = α̃i − αi.
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First we construct D̃0, a starting point to construct an affine space of admissible
connections. Recall that

D0 = Dh
0 +Φ0,

where Dh
0 is a h-unitary connection and Φ0 is self-adjoint with respect to h. Take

Dh
0
′′ the (0, 1)-part of Dh

0 and Φ1,0
0 the (1, 0)-part of Φ0. There exists a unique Dh̃

0
′

such that Dh̃
0
′+Dh

0
′′ is h̃-unitary. Let Φ1,0

0

†̃ be the adjoint of Φ1,0
0 with respect to the

metric h̃. Then D̃0 is defined by

D̃0 := Dh̃
0
′ +Dh

0
′′ +Φ1,0

0 +Φ1,0
0

†̃
.

Near the puncture, in the trivialization (ẽi)1⩽i⩽n, the connection D̃0 behaves exactly
like the local model with the same name introduced in Section 4.3.5. Define the affine
space of admissible connections with respect to D̃0 and the metric h̃,

Ah̃ := {D̃0 + ã | ã ∈ L1,2

−2+δ̃
(Ω1 ⊗ End(E))}.

The weighted Sobolev space L1,2

−2+δ̃
(Ω1 ⊗ End(E)) is also defined using the metric h̃.

Moreover, notice that we do not chose the same parameter δ for A and for Ah̃.
It will be convenient to chose δ̃ such that

(31) 0 < δ̃ < δ −max
i,j
|εi − εj |.

With this set up, we are ready to prove that the bijection from the previous proposition
is a diffeomorphism.

Theorem 4.33. — The natural bijection between MDol
B,α and MDol

B,α̃ is a diffeomorphism.

Proof. — The moduli space MDol
B,α is identified with the manifold M with the complex

structure J .
Take an element in MDol

B,α identified with an element [D] ∈ M. Consider a repre-
sentative D = D0 + a of the class [D], it is an admissible connection with vanishing
curvature and pseudo-curvature. By construction of the manifold structure, a neigh-
borhood of [D] in M is diffeomorphic to a neighborhood of D in the Kuranishi slice SD

defined in (30). We shall prove that the bijection from Proposition 4.32 induces a
smooth map from a neighborhood of D in SD to Ah̃.

First we describe the image of the connection D. It is obtained exactly the same way
as D̃0 is obtained from D0. It decomposes as a connection h-unitary plus a Hermitian
part

D = Dh
0 +

a− a†

2
+ Φ0 +

a+ a†

2
.

It can be decomposed further in components of type (1, 0) and (0, 1). Then the (0, 1)-
part of the h-unitary part is

∂
F
= Dh

0
′′ +

a0,1 − a1,0
†

2
,
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and the (1, 0)-part of the self-adjoint part is

θ = Φ1,0 +
a1,0 + a0,1

†

2
.

The parabolic Higgs bundle associated to D is (∂F
, θ). Now, we switch to the metric h̃.

Near each puncture, in the h̃-orthonormal trivialization (ẽi)1⩽i⩽n,

∂
F
= Dh

0
′′ +

( α̃− α

2

)dz
z

+ H̃
a0,1 − a1,0

†

2
H̃−1

and

θ = ϕ1,0 + H̃
a1,0 + a0,1

†

2
H̃−1.

with H̃ being a diagonal matrix with coefficients rεi . Using the metric h̃ we con-
struct D′

h̃
such that D′

h̃
+ ∂

F is h̃-unitary and we also construct the adjoint θ†̃ of θ
with respect to h̃. We want to prove that

D′
h̃
+ ∂

F
+ θ + θ†̃

belongs to the space of admissible connections Ah̃. Let

ã := D′
h̃
+ ∂

F
+ θ + θ†̃ − D̃0.

The components of ã are obtained from components of a by multiplication by rεi−εj .
Thus for δ̃ small enough as in (31), ã belongs to L1,2

−2+δ̃
. Therefore, the bijection from

MDol
B,α to MDol

B,α̃ comes from a map

{D0 + a ∈ A | FD0+a = GD0+a = 0} −→ {D̃0 + ã ∈ Ah̃ | GD̃0+ã = 0}

D0 + a 7−→ D̃0 + ã.

This restricts to a diffeomorphism from a neighborhood of D in the Kuranishi slice SD

to a manifold transverse to the GJ -orbits in a neighborhood of D. Therefore the map
MDol

B,α →MDol
B,α̃ is a diffeomorphism. □

To finish, let us detail the last step at the bottom left corner of Diagram (27).
Applying successively non-Abelian Hodge theory and the Riemann–Hilbert corre-
spondence, the moduli space MDol

B,α̃ is diffeomorphic to a moduli space of filtered local
systems M̃L,P ,σ̃. The parameters are such that ZGLn

(σ̃j) = Lj for 1 ⩽ j ⩽ k. The
map pσ̃ from Definition 3.6 is an isomorphism between the resolution M̃L,P ,σ̃ and
the character variety MS with monodromy at the puncture pj in the conjugacy class
of σ̃j . Theorem 4.1 is proved. □

5. Computation of the intersection cohomology of character varieties

In this section we compute the Poincaré polynomial for intersection cohomology of
character varieties with the closure of a conjugacy class of any Jordan type at each
puncture,

Pc(MCµ,σ
, v) = vdµ

〈
sµ′ ,HHLV

n (−1, v)
〉
.
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This proves the Poincaré polynomial specialization of a conjecture from Letellier
[Let15]. The idea is to express the intersection cohomology of character varieties in
terms of usual cohomology of resolutions of character varieties. We proved in the previ-
ous section that such resolutions are diffeomorphic to semisimple character varieties.
We conclude using Mellit’s computation [Mel20a] of the cohomology of semisimple
character varieties.

5.1. Computation of the Poincaré polynomial. — Consider a generic k-tuple of con-
jugacy classes Cµ,σ = (Cµ1,σ1 , . . . ,Cµk,σk). As usual, the class Cµj ,σj is characterized
by its eigenvalues

σj
1, . . . , σ

j
1︸ ︷︷ ︸

νj
1

, . . . , σj
ℓj
, . . . , σj

ℓj︸ ︷︷ ︸
νj
ℓj

and by µj,i ∈ Pνj
i

the Jordan type of the eigenvalue σj
i . We denote by µj,i′ the

transposed partition. For each of these conjugacy classes, consider the resolution of
the closure (see Section 2.3.2)

X̃Lj ,P j ,σj −→ Cµj ,σj .

The group Lj used to construct the resolution is

Lj ∼= GL
µj,1
1

′ ×GL
µj,1
2

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
1

× · · · ×GL
µ
j,ℓj
1

′ ×GL
µ
j,ℓj
2

′ × . . .︸ ︷︷ ︸
⊂GL

ν
j
ℓj

.

As explained in Section 3.1.2, the resolutions of the closures of the conjugacy classes
fit together in a resolution M̃L,P ,σ of the character variety MCµ,σ

.
Springer theory provides a combinatorial relation between the cohomology of the

resolution M̃L,P ,σ and intersection cohomology of character varieties MCρ,σ
(see The-

orem 3.8),

(32) Hi+dµ
c (M̃L,P ,σ, κ) ∼=

⊕
ρ∈Pν1×···×P

νk

Aµ′,ρ ⊗ IH i+dρ
c (MCσ,ρ

, κ).

This relation is the main tool allowing to go from usual cohomology of smooth varieties
to intersection cohomology of singular varieties. In the previous section (Theorem 4.1)
we saw that the resolution M̃L,P ,σ is diffeomorphic to a character variety MS with
generic semisimple conjugacy classes at punctures. Precisely, S = (S1, . . . , Sk) and Sj

is the class of an element with centralizer in GLn equal to Lj ∼= GLµj ′ .
As the Poincaré polynomial is a topological invariant, we have

Pc(M̃L,P ,σ, t) = Pc(MS, t).

Let us translate (32) in terms of Poincaré polynomial:

(33) t−dµPc (MS, t) =
∑
ρ⪯µ

(dimAµ′,ρ)t
−dρPc(MCρ,σ

, t).

The idea is now to invert this relation. First we compute the dimension of the multi-
plicity spaces dimAµ′,ρ.
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Lemma 5.1. — The dimension of the multiplicity space is given by

dimAµ′,ρ =
∏

1⩽j⩽k
1⩽i⩽ℓj

〈
hµj,i′ , sρj,i′

〉
.

Proof. — By definition

Aµ′,ρ = HomWM

(
IndWM

WL
εµ′ , Vρ

)
=

⊗
1⩽j⩽k

( ⊗
1⩽i⩽ℓj

HomS
ν
j
i

(εµj,i′ , Vρj,i)
)
.

We conclude with Lemma 2.15. □

Theorem 5.2. — For a generic k-tuple of conjugacy classes Cµ,σ, the Poincaré polyno-
mial for compactly supported intersection cohomology of the character variety MCµ,σ

is

Pc(MCµ,σ
, v) = vdµ

〈
sµ′ ,HHLV

n (−1, v)
〉
.

Proof. — The complete symmetric functions (hµ)µ∈Pm and the Schur functions
(sρ)ρ∈Pm are two basis of the space of degree m symmetric functions. Let (Mµ,ρ)µ,ρ∈Pm

be the transition matrix between those basis, then

hµ =
∑

ρ∈Pm

Mµ,ρsρ.

As the Schur functions form an orthonormal basis, the transition matrix is given
explicitly by

Mµ,ρ = ⟨hµ, sρ⟩ .
It is invertible and we denote by (Nµ,ρ)µ,ρ∈Pm

its inverse. Combining Equation (33),
Lemma 5.1 and the formula for the Poincaré polynomial of character varieties with
semisimple conjugacy classes (Theorem 3.13), we obtain〈 ∏

1⩽j⩽k
1⩽i⩽ℓj

hµj,i′ [Xj ],HHLV
n (−1, v)

〉
=

∑
ρ⪯µ

∏
1⩽j⩽k
1⩽i⩽ℓj

〈
hµj,i′ , sρj,i′

〉
v−dρPc(MCρ,σ

, v).

This relation can now be inverted. Fix λ ∈ Pν1 × · · · × Pνk , multiply the previous
equation by Nλ1,1′,µ1,1′ and sum over partitions µ1,1 in Pν1

1
. Repeating this process

gives the expected result〈
sλ′ ,HHLV

n (−1, v)
〉
= v−dλPc(MCλ,σ

, v).

Notice that the proof gives zero for the Poincaré polynomial of an empty character
variety. Indeed, we have the following equivalences

MCµ,σ
= ∅ ⇐⇒ M̃L,P ,σ = ∅ ⇐⇒ MS = ∅

⇐⇒
〈 ∏
1⩽j⩽k
1⩽i⩽ℓj

hµj,i′ [Xj ],HHLV
n (−1, v)

〉
= 0.

The first one follows from the construction of the resolution of singularities, the second
one from the diffeomorphism of Section 4 and the last one from the semisimple case (2).
Indeed, Mellit proved the formula for the semisimple case by counting parabolic Higgs
bundles so that it gives zero if the character variety is empty.
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Now, considering the stratification from Proposition 3.5, the character variety
MCλ,σ

is empty if and only if for all µ ⪯ λ the character variety MCµ,σ
is empty. Note

that Nλ1,1′,µ1,1′ = 0 unless µ1,1 ⪯ λ1,1 (see [Mac15, I-6]). So that in the last step of
the proof when summing over µ1,1′ all the terms vanish. Therefore if MCλ,σ

is empty
then

〈
sλ′ ,HHLV

n (−1, v)
〉
= 0. □

5.2. Some remarks on emptiness of character varieties. — For certain values of the
parameters, the character variety MCµ,σ

might be empty. The question of emptiness
of MCµ,σ

is known as the Deligne–Simpson problem. Kostov [Kos04] gave a survey
about this problem. An essential ingredient is Katz’s middle convolution algorithm
[Kat96], see also Simpson [Sim09]. In genus g = 0, for certain semisimple character
varieties MS, the middle convolution gives an isomorphism with certain other semisim-
ple character varieties MS′ . If S is a k-tuple of semisimple classes in GLn, then S′ is a
k-tuple of GLn+δ semisimple classes for some particular integer δ. For 1 ⩽ j ⩽ k the
Jordan type of the class S′j is the type of a class obtained from Sj either by increasing
the multiplicity of one eigenvalue by δ or by adding a new distinct eigenvalue with
multiplicity δ (see Simpson [Sim09, §4]). From the isomorphism MS′ ∼= MS and the
formula for Poincaré polynomial (2) we deduce non-trivial combinatorial identities:〈

hν ,HHLV
n (−1, v)

〉
=

〈
hν′ ,HHLV

n+δ (−1, v)
〉
,

where ν′ is the type of the class S′.
The middle convolution algorithm can also be interpreted in terms of quivers.

Crawley-Boevey [CB03] gives a solution to the additive Deligne–Simpson problem,
in the generic case, in terms of roots of an associated quiver. This solution was ex-
tended to the multiplicative case, for generic conjugacy classes, by Crawley-Boevey
[CB04, Th. 8.3] and Crawley-Boevey–Shaw [CBS06]. Using powerful geometric tools,
Soibelman [Soi16, Soi18] gives a solution in the non-generic case. The generic case
for any genus was reformulated by Letellier [Let13, Th. 4.1.7] [Let15, Cor. 3.15], it is
summarized in the following theorem.

Theorem 5.3. — Let Cµ,σ be a generic k-tuple of conjugacy classes, together with the
genus g they determined a comet-shaped quiver ΓCµ,σ with a dimension vector vCµ,σ

(see [Let15, §3.2]). The variety MCµ,σ
is not empty if and only if MCµ,σ is not empty.

This happens if and only if the the dimension vector vCµ,σ is a root of the quiver
ΓCµ,σ . This is always the case for g > 0.

Remark 5.4. — The quiver ΓCµ,σ and the dimension vector vCµ,σ are the same as the
ones associated to the semisimple character variety MS which is diffeomorphic to the
resolution. This gives another proof of the equivalence MCµ,σ

= ∅ ⇔ MS = ∅ used
in the proof of Theorem 5.2 in the empty case.

5.3. Weyl group action and twisted Poincaré polynomial

As in [Let15, Prop. 1.9], the twisted Poincaré polynomial can be computed thanks
to Theorem 5.2. Using the notations from 3.1.3 and Definition 3.14 for η-twisted
Poincaré polynomial we have the following theorem.
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Theorem 5.5. — Let Cµ,σ be a generic k-tuple of conjugacy classes and let M̃L,P ,σ be
the resolution of MCµ,σ

. For η indexing a conjugacy class in WM (L), the η-twisted
Poincaré polynomial of M̃L,P ,σ is

Pη
c (M̃L,P ,σ, v) = (−1)r(η)vdµ

〈
h̃η,HHLV

n (−1, v)
〉
.

Proof. — Theorem 3.10 implies

v−dµPη
c (M̃L,P ,σ, v) =

∑
ρ⪯µ

( k∏
j=1

ℓj∏
i=1

cρ
j,i

ηj,i

)
v−dρPc(MCρ,σ

, v).

Apply Theorem 5.2,

v−dµPη
c (M̃L,P ,σ, v) =

∑
ρ⪯µ

( k∏
j=1

ℓj∏
i=1

cρ
j,i

ηj,i

)〈
sρ′ ,HHLV

n (−1, v)
〉
.

Then, using the relation cµω = (−1)r(ω)cµ
′

ω′ (see Lemma 2.29) and Notations 3.9,

v−dµPη
c (M̃L,P ,σ, v) = (−1)r(η)

〈
h̃η,HHLV

n (−1, v)
〉
. □

Theorem 4.1 gives a diffeomorphism between M̃L,P ,σ and a character variety MS

with semisimple monodromies. The diffeomorphism transports the action on the co-
homology of M̃L,P ,σ to an action on the cohomology of MS and we have the following
corollary.

Corollary 5.6. — The relative Weyl group WM (L) acts on the cohomology of MS

and the η-twisted Poincaré polynomial is

Pη
c (MS, v) = (−1)r(η)vdµ

〈
h̃η,HHLV

n (−1, v)
〉
.
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