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THE MESOSCOPIC GEOMETRY OF

SPARSE RANDOM MAPS

by Nicolas Curien, Igor Kortchemski & Cyril Marzouk

Abstract. — We investigate the structure of large uniform random maps with a given number
of vertices, edges, faces and on a surface of a given genus. We focus on two regimes: the planar
case and the unicellular case, letting the three other parameters tend to infinity in a sparse
regime, in which the ratio between the number of vertices and edges tends to 1. Albeit different
at first sight, these two models can be treated in a unified way, using a probabilistic version
of the classical core–kernel decomposition. In both cases, we identify a mesoscopic scale at
which the scaling limits of these random maps can be obtained by first taking the local limit
of their kernels (or scheme) – which turns out to be the dual of the Uniform Infinite Planar
Triangulation in the planar case and the infinite three-regular tree in the unicellular case –
and then replacing each edge by an independent (mass-biased) Brownian tree with two marked
points.

Résumé (La géométrie mésoscopique des cartes aléatoires clairsemées). — Nous étudions la
structure de grandes cartes aléatoires choisies uniformément au hasard avec un nombre donné
de sommets, d’arêtes et de faces et sur une surface de genre donné. Nous nous concentrons sur
deux cas : le cas planaire et le cas unicellulaire, en faisant tendre les trois autres paramètres
vers l’infini dans un régime clairsemé, dans lequel le rapport entre le nombre de sommets et
d’arêtes tend vers 1. Si les deux cas semblent différents, ils peuvent être traités dans un cadre
unifié en utilisant une version probabiliste de la décomposition classique en cœur-noyau. Dans
les deux cas, nous identifions une échelle mésoscopique à laquelle les limites d’échelles de ces
cartes s’obtiennent en prenant la limite locale de leur noyau (ou schéma) – qui est le dual de
la Triangulation Planaire Infinie Uniforme dans le cas planaire et l’arbre infini 3-régulier dans
le cas unicellulaire – et en remplaçant chaque arête par des arbres browniens indépendants
(biaisés par la taille) avec deux points marqués.
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1306 N. Curien, I. Kortchemski & C. Marzouk

Figure 1. Simulations of random plane maps with n = 10 000 edges
and fn faces, with respectively fn = �n0.3� and fn = �n0.5�. Their
core is represented in red.

1. Introduction

1.1. Random maps with prescribed Euler-parameters. — Sampling uniform ran-
dom maps with a prescribed number of edges, faces, and genus (by Euler’s formula,
this also fixes the numbers of vertices) is a convenient way to probe different ran-
dom geometries under various topological constraints. After the deep and intensive
works devoted to the study of large random plane maps and the Brownian sphere,
recently much attention has been devoted to the study of (classes of) maps with fixed
“Euler-parameters”. See e.g. [FG14, KM21b] for plane maps and [BL21, BL22, Ray15,
ACCR13, Lou21, JL21] for high genus maps.

We shall denote by Mn(f, g) the set of all (rooted, non necessarily bipartite) maps
with n edges, f faces, and genus g, and by Mn(f, g) a map chosen uniformly at random
in this set. In this paper, we propose to study large random maps in the so-called sparse
regime, where the ratio between the number of vertices and edges tends to 1. Precisely,
by Euler’s formula the map Mn(fn, gn) has n + 2 − sn vertices with sn = fn + 2gn,
quantity which will be called below the sparsity parameter, and the sparse regime
consists in sn = o(n). Although we shall not treat here this model in full generality,
the big picture we uncover is that such random maps look like uniform almost trivalent
maps with fn faces in genus gn, and where each edge is replaced by a bipointed plane
tree of size of order n/sn.

J.É.P. — M., 2022, tome 9



The mesoscopic geometry of sparse random maps 1307

Specifically, in the present work, we shall be interested in the two “extreme” cases
namely the planar case gn = 0 and the unicellular case fn = 1. We shall fix in the
rest of this paper a sequence of integers sn so that

(1) sn −→
n→∞

∞ and sn
n

−→
n→∞

0,

and investigate the geometry of Mn(sn, 0) and Mn(1, (sn − 1)/2), which both have the
same sparsity parameter sn = fn + 2gn. Obviously, we implicitly restrict ourselves to
odd integers sn when considering the second case. Let us first review the literature
about those models.

Planar case [FG14, KM21b] Unicellular case [JL21]
Genus 0 (sn − 1)/2

#Faces sn 1

#Edges n n

Uniform map Mn(sn, 0) Mn(1, (sn − 1)/2)

Planar case. — Recently, Fusy and Guitter [FG14] were interested in two- and three-
point functions of biconditioned planar maps Mn(sn, 0) and have predicted that out-
side the so-called “pure gravity” class, typical distances in uniform planar maps with
n edges and nα faces, with α ∈ (0, 1), are of order n(2−α)/4. This has been recently
confirmed in [KM21b] in the case of bipartite planar maps. Precisely, it is shown
there that the scaling limit of such maps, after scaling distances by n(2−α)/4, is the
celebrated Brownian sphere, which was first proved to be the limit of large uniform
random quadrangulations [LG13, Mie13], and then of many different discrete mod-
els of planar maps, as in [ABA21, BJM14, NR18, CLG19, Mar22] and many other
papers. Let us mention that [KM21b] actually deals with the more general model of
Boltzmann maps, with face weights. This was proved by combining a classical bijec-
tive encoding of bipartite maps via labelled trees and the criterion from [Mar22] with
new local limit estimates for random walks.

Unicellular case. — Very recently, Janson & Louf [JL21] have been interested in the
geometry of uniform unicellular maps with moderate high genus, i.e., Mn(1, (sn−1)/2)

with sn satisfying (1). Their main result is that, after rescaling by
�
n/sn, the dis-

tribution of the sequence of the lengths of the shortest cycles in the map asymptot-
ically matches that of the shortest non-contractible loops in Weil–Peteresson ran-
dom surfaces in high genus, which are both given by an inhomogeneous Poisson
process with explicit intensity, see Section 7. Let us mention that unicellular maps
Mn(1, gn) whose genus is proportional to the number of edges have also been investi-
gated [ACCR13, JL22, Ray15]. They also form a toy model of hyperbolic geometry.

In this work, we investigate the combinatorial structure as well as the geometry
of Mn(sn, 0) and Mn(1, (sn − 1)/2) at the mesoscopic scale

�
n/sn. As opposed to

the works cited above, we rely here on a different approach based on the core–kernel
decomposition, diffracted through a probabilistic lens. This casts a new light on the
above results, see Section 7. Let us first review these decompositions.

J.É.P. — M., 2022, tome 9



1308 N. Curien, I. Kortchemski & C. Marzouk

1.2. Core–Kernel decompositions of maps. — Without further notice, all maps con-
sidered in this work will be finite and rooted, i.e., with a distinguished oriented edge.
If m is a map, we write Vertices(m), Edges(m), and Faces(m) for its set of vertices,
edges, and faces respectively. Let us recall the concepts of core and kernel, which
are instrumental in the classical theory of random graphs, see e.g. [JKŁP93, Łu91,
NRR15, NR18, Lou21, CMS09, Cha10]. Starting from m and repeatedly removing
vertices of degree 1, we obtain a map Core(m), called the core of m. We then replace
all maximal paths of vertices of degree 2 in this core by single edges to get another
map Ker(m), called the kernel of m, which only has vertices of degree at least 3.
When m is neither a tree nor a plane map with two faces, the core and its kernel
are nonempty. The root edge is canonically transferred from m to Core(m) and then
to Ker(m), see Figure 2 and Figure 3. Notice that the three maps m, Core(m), and
Ker(m) all have the same number of faces and the same genus.

Figure 2. Decomposition of a planar map (on the left) into its core
after iteratively removing degree one vertices (on the middle), and
then into its kernel by contracting vertices of degree 2 (on the right).
The root edge �e of the map is carried by the thick blue tree on the left
hand side or on the first edge of the core in clockwise order around
the root face. It is transferred to the core and the kernel in a natural
way: the root edge �ec of the core is �ec = �e if it already belongs to
the core, otherwise it is carried by the tree grafted to the right of the
origin of �ec.

Figure 3. Decomposition of a map of the torus (left) into its core
(middle) and kernel (right). Here also, the root edge is carried by the
thick blue tree and is transferred naturally to its core and kernel.

J.É.P. — M., 2022, tome 9



The mesoscopic geometry of sparse random maps 1309

In the above decomposition, the kernel is a map with only vertices of degree at
least 3. If K is such a map, then we denote by Defect(K) � 0 the number defined by

Defect(K) =
�

v∈Vertices(K)

(deg(v)− 3) = 2#Edges(K)− 3#Vertices(K).

We call this number the defect number of K; it quantifies how far K is from being
trivalent, which corresponds to the case Defect(K) = 0. For f � 1, g � 0, and d � 0,
we denote by Td(f, g) the set of all rooted maps with f faces, in genus g, whose vertices
all have degree at least 3, and which have defect number d. Let us note that Euler’s
formula yields for maps in Td(f, g):

(2) #Edges = 3#Faces−Defect+6(Genus− 1),

so controlling the defect number is equivalent to controlling the number of edges (and
thus of vertices). It turns that the laws of the core and kernel of a uniform random
map with fixed number of edges, faces, and genus are explicit, see Proposition 7. This
will be instrumental to all our results. It is interesting to note that the core–kernel
decompositions have been used to study enumerative properties of large maps with
fixed genus [CMS09, Cha10]. Here, we pursue a probabilistic approach in a more
general context.

Volumes of the core and of the kernel. — Recall our standing assumptions (1) and de-
note by Msn

n either Mn(sn, 0) or Mn(1, (sn−1)/2). Our first main results, Theorems 1
and 3, describe the asymptotic behaviour of the size of the core and kernel of Msn

n .
In particular, we identify a phase transition according to whether the sparsity param-
eter sn is at most of the same order as n1/3, or is much larger. A model-dependent
constant λ◦ appears in these results:

(3) λ◦ = 1−
√
3

2
in the planar case and λ◦ = 0 in the unicellular case.

It turns out to be the density of loop-edges in the local limit of the kernel of Msn
n , see

Section 3.
Throughout this work, we use the notation Xn

P−→X and Xn
(d)−→X to refer to

respectively convergence in probability and in distribution of a sequence of random
variables Xn to a limit X. By abuse of notation, we shall also write Xn

(d)−→µ when µ

is a probability measure to refer to the weak convergence of the law of Xn to µ. We
denote by Poi(c) the Poisson law with mean c � 0, which is interpreted as the Dirac
mass at 0 when c = 0.

Theorem 1 (Defect number of the kernel). — Assume that sn satisfies (1) and let λ◦
as in (3).

(1) If n−1/3sn → a for some a ∈ [0,∞), then

Defect(Ker(Msn
n ))

(d)−→
n→∞

Poi

�
3(1− λ◦)

�
3

2
a3
�
.

J.É.P. — M., 2022, tome 9
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In particular if n−1/3sn → 0, then the probability that Ker(Msn
n ) is trivalent tends to 1

as n → ∞.
(2) If n−1/3sn → ∞, then

�
n

s3n
·Defect(Ker(Msn

n ))
P−→

n→∞
3(1− λ◦)

�
3

2
.

Remark 2. — Theorem 1 establishes a phase transition in the appearance of vertices
of degree larger than or equal to 4 in the kernel of Msn

n at order sn ≈ n1/3. This is
consistent with [Cha10, Lem. 3], which shows that for fixed g the kernel of Mn(1, g) is
trivalent with probability tending to 1 as n → ∞. We suspect similar phase transitions
to occur at orders sn ≈ n1−2/(3k) for the appearance of vertices of degree larger than
or equal to 3+k for k = 2, 3, . . . and perhaps similar Poisson statistics for the number
of such vertices when sn ∼ Cst n1−2/(3k).

Since the kernel of a map has the same genus and number of faces as the origi-
nal map, by Euler’s formula (2), Theorem 1 also provides the asymptotic behaviour
of the number of edges (and therefore of vertices) of the kernel of Mn(sn, 0) or
Mn(1, (sn − 1)/2). The main tool to leverage the explicit laws of the core and kernel
of uniform random maps with fixed number of edges, faces, and genus in order to
obtain these limit theorems is a careful analysis of a so-called contraction operation,
which allows to iteratively create defects from a trivalent map; see Section 3.1.

Theorem 3 (Number of edges in the core). — Assume that sn satisfies (1). Then

1√
nsn

·#Edges(Core(Msn
n ))

P−→
n→∞

�
3

2
.

It is interesting to note that for uniform random plane maps with n edges, the
number of edges of the kernel and of the core concentrate around (4− 4

√
6/3)n and√

6n/3 respectively, with Gaussian fluctuations of order
√
n in both cases, see [NR18,

Th. 5]. In this direction, we shall establish (Corollary 10) a Central Limit Theorem
for #Edges(Core(Msn

n )) conditionally given the number of edges of Ker(Msn
n ). This is

sufficient to deduce an unconditioned CLT for the number of edges of the core when
sn = O(

√
n), but we believe this is true in general, see precisely Conjecture 14.

As a side result of independent interest, we obtain explicit asymptotic enumeration
estimates when sn = O(n1/3). Let us mention that such estimates for #Mn(fn, 0)

when fn/n → f ∈ (0,∞) and of #Mn(1, gn) when gn/n → g ∈ (0,∞) are given
respectively in [BCR93, Th. 1] and [ACCR13, Th. 3]. In the sparse regime, to the best
of our knowledge the following ones are new.

Corollary 4. — If g = 0 and fn → ∞ with n−1/3fn → f ∈ [0,∞), then

#Mn(fn, 0) ∼
n→∞

exp(−(2−
√
3)(3f/2)3/2)

4π
· n−3 · 4n ·

�
21/3

en

fn

�3fn/2

.

J.É.P. — M., 2022, tome 9



The mesoscopic geometry of sparse random maps 1311

On the other hand, if fn = 1 and gn → ∞ with n−1/3gn → g ∈ [0,∞), then

#Mn(1, gn) ∼
n→∞

1

2π
· g−1/2

n · n−3/2 · 4n ·
� en3

12gn

�gn
.

1.3. The intermediate scales in biconditioned maps. — In another direction, we are
interested in the asymptotic geometry of Msn

n . First, in addition to our first results
which describe the size of the core and kernel, it will also become clear that con-
ditionally on these parameters, they are uniformly distributed. In particular, when
sn = o(n1/3), by Theorem 1 the kernel is with high probability a uniformly chosen
trivalent map, either with sn faces in the planar case, or with genus (sn − 1)/2 in the
unicellular case. The local limits of those objects are well known:

– In the planar case, by [Ste18] uniform trivalent plane maps converge in distribu-
tion in the local topology to the dual map of the Uniform Infinite Planar Triangulation
(UIPT) of type 1. This result has recently been extended to the case of essentially
trivalent plane maps (i.e., when the defect number is negligible compared to the size
of the map) by Budzinski [Bud21].

– In the unicellular case, we shall prove in Section 3.3 using the configuration model
that an essentially trivalent unicellular map in high genus converges locally towards
the three-regular tree.
Second, let us explain how to reconstruct the original map from its kernel (see
also [Cha10, §3.1]). A chain of vertices with degree two in the core and the trees
grafted on it can be seen as a single plane tree with two distinguished vertices. Note
that some care is needed at the vertices with degree three and higher so that a tree
gets assigned to a unique chain of edges of the core. Our convention is that such a
tree is grafted on the chain immediately to its right when turning around the corner.
Therefore one can directly construct the map from its kernel by replacing each edge
of the kernel by a tree with two distinguished ordered vertices. The bipointed tree
replacing the root edge of the kernel additionally carries an oriented edge on its right
part which is the root of the entire map. See Figure 4 for an illustration.

Since Ker(Msn
n ) has roughly Kn ∼ 3sn edges by Theorem 1 and the collection

of bipointed trees is roughly uniformly distributed amongst those with n edges in
total, we can expect that the bipointed trees have of order n/sn edges each and their
diameter is typically of order

�
n/sn. Although there are other interesting scales

to look at, going from the microscopic scale, or local convergence, to the diameter
scale, see precisely Proposition 18 and Conjecture 19, we focus here on the geometric
structure of Msn

n at the mesoscopic scale
�
n/sn.

Let us construct the limits that appear in the next theorem; we refer to Section 6
for more details and explanations and to Figure 5 for an illustration. Similar con-
structions have been encountered for scaling limits of mean-field random graphs at
criticality [ABBG10] or at the discrete level in high-genus unicellular maps [Lou21].
Start either from the dual of the UIPT (type 1) in the planar case, or from the three-
regular tree in the unicellular case; this will play the role of the kernel. Then in order

J.É.P. — M., 2022, tome 9



1312 N. Curien, I. Kortchemski & C. Marzouk

Figure 4. Reconstructing a map from its kernel by replacing edges
by bipointed trees.

to take into account the root of the full map, let us modify their root edge by insert-
ing a middle vertex and attaching a dangling leaf to it on its right to get a infinite
(and random in the planar case) map denoted by TPlan or TUnic depending on the
model. We then replace each edge by an independent copy of a Brownian Continuum
Random Tree (CRT) with two marked points, whose volume is exponentially biased,
i.e., we glue these trees by their distinguished points according to the graph struc-
ture. Note that in this construction, the edges of the graph become independent real
segments, and their length is simply distributed according to an exponential law of
mean 1/

√
6 (with Brownian CRT’s attached all along). The resulting locally compact

metric space is denoted by FPlan in the planar case and by FUnic in the unicellular
case, and is pointed at the extremity of the CRT grafted on the dangling leaf.

Theorem 5 (Mesoscopic scaling limit). — Under (1) the convergences in distribution
�

sn
n

·Mn(sn, 0)
(d)−→

n→∞
FPlan and

�
sn
n

·Mn

�
1,

sn − 1

2

�
(d)−→

n→∞
FUnic

hold in the local pointed Gromov–Hausdorff topology.

Let us refer the reader to e.g. [BBI01, CLG14, BMR19] for details on the local
pointed Gromov–Hausdorff. Thus, roughly speaking, we can say that the geometry of
Msn

n at the scale
�
n/sn is a mixture of two features: a discrete part, coming from the

local limit of the kernel, and a continuous part coming from the faces which collapse
on trees due to the sparse nature of the maps.

It is likely that a similar result holds in the broader context of random maps
Mn(fn, gn) as soon as 1 � fn + 2gn � n. In the case fn/gn → α > 0, the kernel of
such maps should be essentially trivalent maps (i.e., whose defect number is negligible
compared to the size) with genus proportional to the number of faces. We conjecture

J.É.P. — M., 2022, tome 9



The mesoscopic geometry of sparse random maps 1313

Figure 5. Left: a piece of the UIPT. Middle: the corresponding piece
of its dual after performing the root transformation (in green) to get
TPlan. Right: the pointed metric space FPlan build out from TPlan by
replacing edges with random trees.

that the local limit of such maps is given by the dual of the Planar Stochastic Infi-
nite Triangulation (PSHIT) of [Cur16] with the appropriate parameter, in which the
average vertex degree equals 6 + 12/α, see the work [BL21] for the purely trivalent
case, where θ there equals 1/(2 + α). Denote then by FPSHIT(α) the locally compact
metric space obtained by replacing edges of the dual of these PSHIT’s by the same
bipointed CRT’s as above.

Conjecture 6. — Recall that sn = fn +2gn. We believe the following convergences in
distribution hold in the local pointed Gromov–Hausdorff topology.

(1) Suppose that fn � gn � n and gn → ∞, then
�

sn
n

·Mn(fn, gn)
(d)−→

n→∞
FPlan.

(2) Suppose that gn � fn � n and fn → ∞, then
�

sn
n

·Mn(fn, gn)
(d)−→

n→∞
FUnic.

(3) Suppose that fn/gn → α ∈ (0,∞) and 1 � fn, gn � n, then
�

sn
n

·Mn(fn, gn)
(d)−→

n→∞
FPSHIT(α).

This would require to extend the technical estimates of Section 3. However, besides
this, our proofs are robust enough to handle these regimes and several quantities are
universal, such as the law of the bipointed Brownian CRT’s.

Acknowledgements. — We are grateful to Thomas Budzinski for sharing early stages
of his work [Bud21], Éric Fusy for the reference [BCR93], as well as Charles Bordenave
and Bram Petri for the pointer to [Wor99, Th. 2.19]. Thanks also are due to the two
anonymous referees whose remarks helped to improve this paper. Finally, we thank
the CIRM for its hospitality in January 2021 when this work was first triggered.
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2. Core-Kernel decomposition and enumeration lemmas

In this section, we describe the exact laws of the core and kernel of a uniform
random map Mn(f, g) with n edges, f faces, and genus g. We then prove some technical
estimates on the number of such maps that share a given kernel, which will be used
later to prove our main theorems. Let us stress that the results in this section are
valid for all values of f � 1 and g � 0.

2.1. Law of the kernel. — Let us explain the core–kernel decomposition of a map,
see also the works [CMS09, Cha10]. Fix a (rooted) map K with f faces and genus g,
and whose vertices all have degree at least 3. We let k denote its number of edges.
Then all maps m such that Ker(m) = K are uniquely constructed as follows. We first
fix c � k, which will correspond to the number of edges of the core.

To construct Core(m), the core of the map, from the kernel, each edge e of K

is split into say ne � 1 consecutive edges by inserting vertices of degree 2, with�
e∈Edges(K) ne = c. To count the number of possible cores, since the edges of K can

unambiguously be indexed by {1, 2, . . . , k}, then the number of ways of performing
this splitting step is equal to the number of ways one can split a discrete cycle of c
edges into k parts of length at least 1, see Figure 6. Also, since we are working with
rooted maps, then in order to recover the root edge of the core, we must further
distinguish one of the edges produced when splitting the root edge of K (and we keep
the same orientation). Consequently, the number of ways to get a given core with c

edges from the kernel K with k edges equals

(4)
c−k+1�

i=1

i

�
c− i− 1

k − 2

�
=

�
c

k

�
,

where i represents the length of the segment containing the root edge. Another way
of describing this is as follows. First add a new vertex in the middle of the root
edge of the kernel and declare the new root edge to be the one pointing towards this
new vertex, with the same origin as the previous root edge. Then index the edges of
this modified kernel and represent it as a segment (instead of a cycle). Expand now
the k + 1 edges of this segment into chains with c + 1 edges in total. This amounts
conversely to splitting a segment with c + 1 edges by choosing k vertices amongst
the c inner vertices in total. The expanded kernel is then the core, with the same
modification at the root as the kernel.

Once the core, with c edges, is constructed, in order to recover the entire map m,
it remains to graft a plane rooted tree on each one of its 2c corners. Specifically, given
an enumeration of the corners of the core from 1 to 2c, with 1 being canonically the
corner to the right of the tip of the root edge, we graft on the i’th corner a rooted
plane tree Ti, with say ti � 0 edges. Their size must satisfy t1 + · · · + t2c = n − c.
As above, we also need to keep track of the root edge of the map; we either keep the
root edge of the core, or we choose one oriented edge in the tree T1. This is equivalent
to distinguishing a number in {0, 1, . . . , 2t1}.

J.É.P. — M., 2022, tome 9



The mesoscopic geometry of sparse random maps 1315

bij.

Figure 6. A combinatorial representation of the repartition of the
edges of the core in the kernel explaining the relation (4): Choosing
k points amongst c possibilities splits a discrete cycle of c edges into
k ordered components, the first one being that containing the root
edge (in blue above).

It is classical to encode an ordered forest by a Dyck path, that follows the contour
of each tree successively, with an extra negative step after each tree. Our forest is
thus encoded by a path with increments either +1 or −1, which ends by hitting −2c

for the first time at time 2n, with a distinguished time k ∈ {0, 1, . . . , τ − 1} where τ

is the hitting time of −1 (in order to take into account the rooting). By the classical
cycle lemma, this is equivalent to taking a ±1 path starting at 0 and ending at −2c

at time 2n, and cyclicly shift it at the first time it reaches its overall minimum, see
e.g. [Pit06, Chap. 6] for details and Figure 7 for an illustration. Hence, the number of
maps with n edges that share a given core with c edges is equal to the number of the
latter paths, which is simply �

2n

n+ c

�
.

Observe that a map, its kernel and its core all have the same number f of faces and
the same genus g, hence the same sparsity parameter s = f + 2g. Let us reformulate
the core–kernel decomposition in probabilistic terms. For integers 1 � k � c � n let
us set

(5) ϕn(c, k) :=

�
c

k

��
2n

n+ c

�
and Φn(k) :=

�

c�k

ϕn(c, k).

Let us extend them both by 0 to all values of c and k. Then ϕn(c, k) denotes the
number of maps with n edges, with a core with c edges, which have a given kernel K
with k edges. Further, Φn(k) is the number of maps with n edges which share such a
given kernel.

Recall from the Introduction that Td(f, g) stands for the set of all rooted maps
with f faces, in genus g, whose vertices all have degree at least 3, and d defects, i.e.,
such that

�
v∈Vertices(deg(v) − 3) = d, or equivalently which have 3(f + 2g) − d − 6

edges. We shall let T(f, g) =
�

d�0 Td(f, g). We infer that the number #Mn(f, g) of
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−2𝑐 −2𝑐

𝜏

Figure 7. A ±1 path starting at 0 and ending at −2c at time 2n

(right) is equivalent, after a Vervaat re-rooting at the first hitting
time of the minimum to (left) a first passage bridge starting at 0

and hitting −2c for the first time at 2n together with a distinguished
time k ∈ {0, 1, . . . , τ − 1} where τ is the hitting time of −1. By a
classical bijection, those objects are in bijection with ordered plane
forests with n edges and 2c trees, together with either an oriented
edge in the first tree, or another mark.

maps with n edges, f faces, and genus g equals

#Mn(f, g) =
�

d�0

#Td(f, g)Φn(3(f + 2g)− d− 6).

By Euler’s formula, lower bounding the number of vertices by 1, any map in T(f, g)

has at least f + 2g − 1 edges so Td(f, g) is empty as soon as d > 2(f + 2g)− 5. Recall
that Mn(f, g) denotes a map in Mn(f, g) sampled uniformly at random. The above
discussion can be reformulated as follows.

Proposition 7. — Fix n � 1, f � 1, g � 0, and K ∈ T(f, g); let k denote the number
of edges of K.

(1) We have

P (Ker(Mn(f, g)) = K) =
Φn(k)

#Mn(f, g)
.

Consequently, conditionally given its number of edges, say k, the kernel is uniformly
distributed over Td(f, g) with d = 3(f + 2g)− 6− k.

(2) For any c � k, we have

P (#Edges(Core(Mn(f, g))) = c | Ker(Mn(f, g)) = K) =
ϕn(c, k)

Φn(k)
.

Furthermore, conditionally given the kernel is the map K and the core has c edges,
the core is obtained by replacing each edge of K by a chain of edges, whose lengths
are given by N0 +N1 − 1 for the root edge and N2, . . . , Nk for the other edges, where
(N0, . . . , Nk) has the uniform distribution on the set of positive integer vectors which
sum up to c+ 1.
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(3) Finally, conditionally given the core, with say c edges, let us sample uniformly
at random a forest (Tn

1 , . . . , T
n
2c) with n − c edges together with �e being either an

oriented edge in the tree Tn
1 or the mark ∗. Then attach the above trees in the corners

of the core, with Tn
1 in the corner to the right of the tip of the root edge, and root this

map at �e if it is different from ∗, and at the root edge of the core otherwise. Then this
map has the law of Mn(f, g).

2.2. Technical estimates. — In this section we gather a few estimates about Φn(k) =�
c�k ϕn(c, k) and locate the values of c which form the main contribution in this sum.

In particular we will prove that when 1 � kn � n, we have

(6) Φn(kn + 1)

Φn(kn)
∼

n→∞

�
n

2kn
.

Combined with the estimates on the number of near-trivalent maps in the next section,
this will provide the basis of the proof of Theorem 1. All these estimates are based
on the exact formulas (5) and rather elementary (but tedious) manipulations using
Stirling’s formula.

Fix 1 � k � n. We start by computing the ratios of consecutive summands ϕn(C, k)

involved in the definition of Φn(k):

(7) Ratn(C, k) :=
ϕn(C, k)

ϕn(C − 1, k)
=

C(1− C + n)

(C + n)(C − k)
,

which we extend to the whole interval [k+1, n]. Then for every C ∈ [k+1, n] we have

(8) ∂

∂C
log Ratn(C, k) = − k

C(C − k)
− 2n+ 1

(n− C + 1)(C + n)
< 0.

Therefore the function C �→ Ratn(C, k) is decreasing on [k, n]. One can check that it
crosses level 1 in the interval [Cn,k, Cn,k + 1), where Cn,k is defined as

(9) Cn,k =
�1
4

�
1 + k +

�
(k + 1)2 + 8nk

��
.

Hence the maximal value of ϕn(C, k) is attained at C = Cn,k and it equals

max
C�k

ϕn(C, k) = ϕn(Cn,k, k) =

�
Cn,k

k

��
2n

n+ Cn,k

�
.

Lemma 8. — When kn → ∞ with kn/n → 0, we have

(10)
�

kn
n

· ϕn(Cn,kn+1, kn + 1)

ϕn(Cn,kn , kn)
−→
n→∞

1√
2

and 1√
n
· Φn(kn)

ϕn(Cn,kn , kn)
−→
n→∞

�
π

2
.

Also, there exist two universal constants, say 0 < a < A < ∞, such that for every
integers n and k � n/32, it holds

(11) a

�
n

k
<

ϕn(Cn,k+1, k + 1)

ϕn(Cn,k, k)
< A

�
n

k
and a

√
n <

Φn(k)

ϕn(Cn,k, k)
< A

√
n.

Consequently, in these respective regimes,
a2

A

�
n

k
<

Φn(k + 1)

Φn(k)
<

A2

a

�
n

k
and

�
kn
n

· Φn(kn + 1)

Φn(kn)
−→
n→∞

1√
2
.
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Proof. — Assume that kn → ∞ with kn/n → 0. By using the explicit expression (9),
we get

(12) Cn,kn
∼

n→∞

�
nkn
2

and Cn,kn+1 − Cn,kn
∼

n→∞

�
n

8kn

Let us first compare ϕn(Cn,kn+1, kn + 1) with ϕn(Cn,kn , kn). By definition, we have

ϕn(Cn,k+1, k)

ϕn(Cn,k, k)
=

�
Cn,k+1

k

�
�
Cn,k

k

�
�

2n
n+Cn,k+1

�
�

2n
n+Cn,k

�

=

Cn,k+1−Cn,k�

j=1

�
1 +

k

Cn,k + j − k

��
1− Cn,k+1 + Cn,k

Cn,k + j + n

�
,

(13)

By taking k = kn and simply bounding each term by taking either j = 1 or j =

Cn,kn+1 − Cn,kn and using the estimates (12) , we get

ln
ϕn(Cn,kn+1, kn)

ϕn(Cn,kn
, kn)

∼
n→∞

�
n

8kn
ln

��
1 +

�
2kn
n

��
1−

�
2kn
n

��
∼

n→∞
−
�

kn
2n

,

which converges to 0. In addition,

ϕn(Cn,kn+1, kn + 1)

ϕn(Cn,kn+1, kn)
=

�
Cn,kn+1

kn+1

�
�
Cn,kn+1

kn

� =
Cn,kn+1 − kn

kn + 1
∼

n→∞

�
n

2kn
.

Therefore
ϕn(Cn,kn+1, kn + 1)

ϕn(Cn,kn
, kn)

=
ϕn(Cn,kn+1, kn + 1)

ϕn(Cn,kn+1, kn)

ϕn(Cn,kn+1, kn)

ϕn(Cn,kn
, kn)

∼
n→∞

�
n

2kn
,

which establishes the first convergence in (10).
In the rest of the proof we assume that n and k are integers with k � n/32. First

note that it holds�
nk

8
� Cn,k � 2

√
nk and 1

6

�
n

k
� Cn,k+1 − Cn,k � 2

�
n

k
.

For the last two bounds, one can use that x/3 �
√
1 + x−1 � x/2 for every x ∈ [0, 1].

The bounds on the left-hand side of (11) are obtained in a similar way as before: by
bounding each term in the product (13) by taking either j = 1 or j = Cn,k+1 −Cn,k,
using the bounds on Cn,k and Cn,k+1 −Cn,k, and then using that exp(−x/(1− x)) �
1−x � exp(−x) for every x ∈ [0, 1], it is straightforward, yet tedious, to show that the
ratios ϕn(Cn,k+1, k)/ϕn(Cn,k, k) are bounded away from 0 and infinity by universal
constants.

To show the second convergence of (10) and the bounds on the right-hand side
of (11), we start by comparing Φn(k) with ϕn(Cn,k, k). Recall the quantity Ratn(C, k)

introduced in (7). Using the bounds on Cn,k above, one can crudely upper bound the
derivative in (8) around Cn,k as follows: For every integers n � k � 1 and for every
real number x such that |x| �

√
nk, we have

∂

∂C
log Ratn(Cn,k + x, k) � − k

(3
√
nk)2

− 2n+ 1

(n+ 3
√
nk)2

� − 1

5n
.
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Moreover, if kn → ∞ with kn = o(n), then one can check that, uniformly for x such
that |x| � √

nk
1/4
n , we have

n · ∂

∂C
log Ratn(Cn,kn

+ x, kn) −→
n→∞

−4.

Writing log Ratn(Cn,k+x, k) =
� x

1
∂
∂C log Ratn(Cn,k+u, k) du+logRatn(Cn,k+1, k)

and using the fact that log Ratn(Cn,k + 1, k) � 0 by definition of Cn,k, this entails
that for any n � k � 1 and any integer j such that |j| �

√
nk,

(14) ϕn(Cn,k + j, k) � ϕn(Cn,k, k) · exp
�
−j(j − 1)

10n

�
,

and uniformly for all integers j such that |j| � √
nk

1/4
n , we have

(15) ϕn(Cn,kn
+ j, kn) ∼

n→∞
ϕn(Cn,kn

, kn) · exp
�
−2j(j − 1)

n

�
.

Recalling that kn → ∞, we infer from (15):
�

|j|�√
nk

1/4
n

ϕn(Cn,kn
+ j, kn)

ϕn(Cn,kn
, kn)

∼
n→∞

�

|j|�√
nk

1/4
n

exp
�
−2j2

n

�
∼

n→∞

�
nπ

2
.

Also for any values n � k � 1 it holds
�

|j|�√
nk1/4

ϕn(Cn,k + j, k)

ϕn(Cn,k, k)
�

√
20nπ.

Recall next that C �→ Ratn(C, k) is decreasing and its value at Cn,k + j is bounded
above by exp(−j/(5n)) as soon as |j| �

√
nk. Therefore, for any |j| � √

n, by apply-
ing (14) at ±√

n we infer that

ϕn(Cn,k + j, k) � ϕn(Cn,k, k) · exp
�
− |j|−√

n

5
√
n

�
.

Consequently, for any n � k � 1,
�

|j|>√
nk1/4

ϕn(Cn,k + j, k)

ϕn(Cn,k, k)
� e1/5

�

|j|>√
nk1/4

exp
�
− |j|
5
√
n

�
� 10 e1/5

√
n exp(−k1/4/5).

In particular, if kn → ∞ with kn = o(n), then we conclude that

Φn(kn)√
nϕn(Cn,kn

, kn)
−→
n→∞

�
π

2
.

In addition, for every n � k � 1 it holds
Φn(k)√

nϕn(Cn,k, k)
�

�

|j|<√
n

ϕn(Cn,k + j, k)√
nϕn(Cn,k, k)

+
�

|j|�√
n

ϕn(Cn,k + j, k)√
nϕn(Cn,k, k)

,

the second sum is bounded by 10 as above and the first one by 3 since we have
ϕn(Cn,k, k) = maxC ϕn(C, k).
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On the other hand we can also lower bound the left hand side of the last display
when k � n/32. Indeed in this case it holds k � Cn,k/4 and Cn,k � n/4 so if
|x| �

√
nk/16 � Cn,k/4, then

∂

∂C
log Ratn(Cn,k + x, k) � − 8k

3C2
n,k

− 2n+ 1

(1 + 11n/16)n
� − 64

3n
− 48

11n
� −26n.

Then as above we infer that
Φn(k)√

nϕn(Cn,k, k)
�

�

|j|�
√
nk/16

ϕn(Cn,k + j, k)√
nϕn(Cn,k, k)

�
�

|j|�
√
nk/16

n−1/2 exp
�
−13j2

n

�
,

and by comparing with an integral, we see that the right hand side is larger than
e.g. 1/20. �

2.3. Two applications. — We gather here two applications of the technical estimates
of Lemma 8. The first one gives an asymptotic on the number Φn(kn) of maps with n

edges which have a given kernel with kn edges, in the regime kn = O(n1/3). This will
be used in Section 4.2 to establish in turn the asymptotic estimates of Corollary 4.

Corollary 9. — Assume that k3n/n → γ ∈ [0,∞). Then

Φn(kn) ∼
n→∞

e−
√

γ/2

2
√
2πkn

· 4n ·
� en

2kn

�kn/2

.

Proof. — Recall from (9) the explicit expression of Cn,kn . Note that k2n/Cn,kn → √
2γ

and that C3
n,kn

/n2 →
�
γ/8. By Lemma 8,

Φn(kn) ∼
n→∞

�
πn

2
· ϕn(Cn,kn

, kn) =

�
πn

2
·
�
Cn,kn

kn

��
2n

n+ Cn,kn

�
.

Using Stirling’s formula, we can write
�
Cn,kn
kn

�
as

1√
2πkn

exp
�
−Cn,kn ln

�
1− kn

Cn,kn

�
+kn lnCn,kn +kn ln

�
1− kn

Cn,kn

�
−kn ln kn+o(1)

�
.

Using a second order asymptotic expansion of ln(1 − kn/Cn,kn
) and the fact that

kn ln(Cn,kn) = (kn/2) ln(nkn/2) +
�
γ/8 + o(1) yields

�
Cn,kn

kn

�
∼

n→∞
1√
2πkn

ekn−
√

γ/8

�
n

2kn

�kn/2

.

Similarly, by Stirling’s formula,
�

2n
n+Cn,kn

�
equals

22n√
2πn

exp
�
−n ln

�
1−

C2
n,kn

n2

�
− Cn,kn ln

�
1 +

Cn,kn

n

�
+ Cn,kn ln

�
1− Cn,kn

n

�
+ o(1)

�

=
4n√
2πn

exp
�
−
C2

n,kn

n
+ o(1)

�
.

Using the fact that C2
n,kn

/n = kn/2 +
�
γ/8 + o(1), we infer that

�
2n

n+ Cn,kn

�
∼

n→∞
1√
2πn

4n e−kn/2−
√

γ/8 .

This completes the proof. �
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The second application, in conjunction with Proposition 7, provides a Central Limit
Theorem for the size of the core conditionally given that of the kernel, as mentioned
in the introduction.

Corollary 10. — Let (kn)n be a sequence of integers such that both kn → ∞ and
n−1kn → 0 and let Cn denote a random variable with distribution given by

P(Cn = c) =
ϕn(c, kn)

Φn(kn)
, c � kn.

Then
2 · Cn − cn√

n

(d)−→
n→∞

N(0, 1), where cn =
kn +

�
k2n + 8nkn
4

,

and where N(0, 1) is the standard Gaussian distribution.

Proof. — Combining Lemma 8 and the estimate (15), which holds uniformly, we get
that for every x ∈ R,

P(Cn = �Cn,kn
+ x

√
n�) ∼

n→∞

�
2

nπ
exp

�
−2x2

�
,

where Cn,k is defined in (9). One easily checks that Cn,kn = cn + o(
√
n), and the

convergence in distribution immediately follows from the previous local estimate. �

3. Near-trivalent maps

We gather in this section some results on near-trivalent maps, i.e., maps with a
small defect. Specifically, echoing (6), we shall control the growth of the ratio

(16) #Td+1(f, g)

#Td(f, g)

in the planar case g = 0 and d � f � n as well as in the unicellular case f = 1 and
d � g � n.

We shall also prove the local convergence of uniformly distributed near-trivalent
maps in the planar case towards the dual of the UIPT and in the unicellular case
towards the three regular tree. The main technique we develop in order to control the
ratios (16) as a function of d is a contraction operation that, starting from a trivalent
map, builds a map with defects by contracting edges, which we next introduce.

Recall that Td(f, g) denotes the set of all rooted maps with f faces, on a surface
of genus g, whose vertices all have degree at least 3, and d defects, i.e., such that�

v∈Vertices(deg(v)− 3) = d. Also, we denote by Td(f, g) a uniformly chosen element
in this set. Recall the sparsity parameter s = f + 2g; by (2) maps in Td(f, g) have
3s− d− 6 edges and 2s− d− 4 vertices.

3.1. The contraction operation. — Fix f � 1, g � 0, and d � 1, and let t0 ∈ T0(f, g)

be a trivalent map with f faces and genus g. Let (e1, . . . , ed) be an ordered list of edges
of t0 which are all different from one another and all different from the root edge, and
which form a forest in t0; in particular, they contain no loop nor multiple edges.
We henceforth call such a subset (e1, . . . , ed) of edges a “good” subset of edges. Let
Contr(t0; e1, . . . , ed) denote the map obtained from t0 by contracting these d edges,
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i.e., by removing these edges and merging their endpoints. Observe that this map
has the same number f of faces and the same genus g as t0 (so the same sparsity
parameter s as well), but it now has defect number d; it is naturally rooted at the
root edge of t0, see Figure 8 for an example.

1
1

32

Figure 8. Left: A trivalent map with a “good” subset of d = 7 dis-
tinguished edges in blue. Right: the trivalent map with d defects
obtained by contracting these blue edges; the positive defects are in-
dicated next to vertices with degree at least 3.
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87
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1

Figure 9. A vertex with degree 4 or larger (here 9), can be blown up
as a trivalent unrooted plane tree with as many leaves (left), which
is equivalent to a binary tree after planting it at one leaf. Conversely,
in any tree, one contracts the internal edges to recover the original
vertex.

This mapping is clearly surjective since every map in Td(f, g) can be obtained
from a trivalent map by contracting d edges. In general, is not injective since several
trivalent maps with a good subset of edges may yield the same map after contraction,
as seen on Figure 9. More precisely, fix a map td ∈ Td(f, g), consider a vertex v ∈ td
with degree � + 3 with � � 1 and label the edges around v in a canonical order
given td. Then the number of ways to locally “blow-up” the vertex v in a trivalent
tree equals the number of rooted plane binary trees (each vertex has either 0 or 2

children) with � + 2 leaves, and the number of such trees is given by the Catalan
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number Cat(� + 1) = 1
�+2

�
2�+2
�+1

�
. The previous considerations show that the number

of trivalent maps t0 with a distinguished ordered good subset of edges e1, . . . , ed that
give rise to the same map td with d defects is precisely equal to

d!
�

v∈td

Cat(deg v − 2).

This translates into the following relation: For every nonnegative function F on
Td(f, g), it holds that

(17)
�

td∈Td(f,g)

F (td) =
�

t0∈T0(f,g)

�

(e1,...,ed) good

F (Contr(t0; e1, . . . , ed))

d!
�

v∈Contr(t0;e1,...,ed)
Cat(deg v − 2)

.

A few crude estimates. — Let us deduce a few preliminary estimates from the contrac-
tion operation before being more precise in the next sections. The contraction oper-
ation can also be performed on a map with defects: Starting from a map with d − 1

defects and one distinguished edge which is neither its root nor a loop, by contracting
this edge one obtains a map with d defects and two non consecutive distinguished cor-
ners around a vertex. Note that this operation is bijective. Hence, by simply bounding
above the number of edges by 3s on the one hand and bounding below the number of
admissible pairs of corners as

�
vertex v deg(v)(deg(v)− 3)/2 � 2d on the other hand,

we infer that for any (f, g) and d,

(18) 3s ·#Td−1(f, g) � 2d ·#Td(f, g).

If t0 is a trivalent map, we set

Gd(t0) =
�

(e1,...,ed) good

1

d!
�

v∈Contr(t0;e1,...,ed)
Cat(deg v − 2)

.

Note that 2n−1 � Cat(n) � 4n−1 and that
�

v∈Contr(t0;e1,...,ed)
(deg v − 3) = d by

definition of the defect number. Also, on the one hand, the number of ordered good
subsets of d edges in a trivalent map is certainly smaller than the number of d tuples
of edges. On the other hand, the number of such subsets is greater than the number
of ways to distinguish d edges which are not loops and such that none of them is
incident to another one. Since any loop is adjacent to a non-loop edge, then in the
worst case two loops may share a common neighbouring edge so the proportion of
non loop edges is at least 1/3 and each of them is incident to at most 4 other edges.
We infer the following crude bounds for any trivalent map t0:

4−d

��#Edges(t0)/12�
d

�
� Gd(t0) � 2−d

�
#Edges(t0)

d

�
.

Recall from (2) that #Edges(t0) = 3(s−2) where s = f+2g is the sparsity parameter.
Let Td denote a uniform random map in Td(f, g). Then the identity (17) applied

twice, once with F = 1, shows that E[F (Td)] equals
1�

t0∈T0(f,g)
Gd(t0)

�

t0∈T0(f,g)

�

(e1,...,ed) good

F (Contr(t0; e1, . . . , ed))

d!
�

v∈Contr(t0;e1,...,ed)
Cat(deg v − 2)

.
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Using the previous bounds on Gd(t0), we infer that there is a constant C > 0 such
that if conditional on T0, the vector (E1, . . . , Ed) has the uniform distribution on
ordered good sets of edges of T0, then, as long as d � s/100 say,

(19) C−d �
4−d

��(s−2)/4�
d

�

2−d
�
3(s−2)

d

� � E[F (Td)]

E[F (Contr(T0;E1, . . . , Ed))]
�

2−d
�
3(s−2)

d

�

4−d
��(s−2)/4�

d

� � Cd.

This shows that a uniform random map in Td(f, g) is obtained by contracting d random
edges in a random trivalent map in T0(f, g) whose Radon–Nikodym derivative with
respect to the uniform law on T0(f, g) is bounded from below by C−d and above by Cd.

3.2. The planar case. — In the planar case with no defect d = 0, the enumeration
of trivalent plane maps, or by duality, of triangulations, goes back to [MNS70], see
also Krikun [Kri07]. Specifically, trivalent plane maps with f faces are dual to plane
triangulations with f vertices and therefore,

(20) #T0(f, 0) =
22f−3(3f − 6)!!

(f − 1)! f!!
∼

f→∞
1

72
√
6π

· (12
√
3)f · f−5/2.

Furthermore, it is known that the local limit of uniform random plane triangulations
(the dual of trivalent plane maps) is given by the Uniform Infinite Planar Triangula-
tion (of type 1) denoted by UIPT below, see [Ste18, Th. 6.1], as well as [AS03] for the
pioneer works in the case of type 2 or 3 triangulations. This result has recently been
extended to the case of essentially trivalent planar maps (i.e., when the defect num-
ber is negligible in front of the size of the planar map) by Budzinski [Bud21, Cor. 2].
Passing to the dual (denoted below with a † symbol), this implies in our context that,
provided that d = o(f), we have

(21) Td(f, 0)
(d)−→

f→∞
UIPT†,

for the local topology. The next result is a control on the growth of #Td(f, 0).

Lemma 11 (Asymptotic enumeration of plane maps with defects). — Uniformly for
d = o(f), it holds that

2d

3f
· #Td(f, 0)

#Td−1(f, 0)
−→
f→∞

1− λ◦,

where λ◦ = 1−
√
3/2.

The quantity λ◦ is the asymptotic density of self-loops in large uniform trivalent
plane maps, or more precisely the probability that the root vertex of the UIPT is a
leaf, lying inside a single loop; equivalently, in the dual map, the root edge is itself a
single loop. The value of λ◦ can be calculated by peeling, see e.g. [CLG19, §2].

The proof of Lemma 11 is based on the contraction operation described in Sec-
tion 3.1. For this it will be important to count the number of edges that we can
actually contract. A key input estimate is a large deviation estimate on the number
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of loops in a uniform trivalent plane map due to Budzinski [Bud21, Th. 2], namely for
any ε > 0 there is some δ > 0 such that for all f � 1,

P
����#{loops in T0(f, 0)}

3f
− λ◦

��� � ε
�
� e−δf .

Since d = o(f) (and since the contraction of d edges may create at most 4d loops in a
trivalent map), we deduce from (19) that a similar large deviation holds for Td(f, 0).
Equivalently, replacing ε by ε/(3(1− λ◦)) and up to diminishing δ, this reads
(22) # {td∈Td(f, 0) : |#{non loop edges in td}− 3f(1− λ◦)|>ε f} � e−δf#Td(f, 0).

Proof of Lemma 11. — Recall that the contraction operation relates maps with defect
d and trivalent maps with an ordered list (e1, . . . , ed) of “good” (i.e., contractible)
edges and recall precisely the formula (17). Observe that if (e1, . . . , ed) is good,
then so is (e1, . . . , ed−1). Let us denote by e−d and e+d the two extremities of ed in
Contr(t0; e1, . . . , ed−1) and by vd the vertex of Contr(t0; e1, . . . , ed) obtained by con-
tracting ed. Let us set

H(Contr(t0; e1, . . . , ed−1)) :=
�

ed such that
(e1,...,ed) good

Cat(deg e−d − 2)Cat(deg e+d − 2)

d · Cat(deg vd − 2)
.

Then taking F = 1 in (17), the contribution of each given trivalent map t0 to the
right-hand side there equals

�

(e1,...,ed−1) good

H(Contr(t0; e1, . . . , ed−1))

(d− 1)!
�

v∈Contr(t0;e1,...,ed−1)
Cat(deg v − 2)

.

Note that deg vd = deg e−d + deg e+d − 2. Then each ratio in the definition of H is
uniformly bounded above, say by K < ∞, times 1/d; moreover if ed is not incident
to any ei for i � d − 1, then deg e−d = deg e+d = 3 and deg vd = 4, in which case
this ratio equals 1/(2d). The idea is to prove that H(Contr(t0; e1, . . . , ed−1)) actually
concentrates around 3f(1 − λ◦)/(2d). Indeed, given a trivalent map t0 and a subset
(e1, . . . , ed−1) of good edges, letting A denote the set of edges different from the root,
and which are not loops nor are adjacent to any ei for i � d−1, and letting B denote
the set of edges which are incident to at least one ei for i � d− 1, we have that

#A

2d
� H(Contr(t0; e1, . . . , ed−1)) �

#A

2d
+K

#B

d
� #A

2d
+ 4K

d− 1

d
.

Notice that the cardinal #A is actually a function #A(Contr(t0; e1, . . . , ed−1)) of the
map after contractions. Using (17) twice, we then find

#Td(f, 0) =
�

t0∈T0(f,0)

�

(e1,...,ed−1) good

H(Contr(t0; e1, . . . , ed−1))

(d− 1)!
�

v∈Contr(t0;e1,...,ed−1)
Cat(deg v − 2)

=
�

td−1∈Td−1(f,0)

H(td−1) =
�

td−1∈Td−1(f,0)

�#A(td−1)

2d
+O(1)

�
,

uniformly for d � f, in the sense that for any sequence εf → 0 as f → ∞, the O(1)

holds uniformly in d ∈ [0, εf f] as f → ∞. By the large deviation estimate (22) on
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the number of loops in Td(f, 0) we have that #A is strongly concentrated around
3f(1− λ◦) and in particular

#Td(f, 0)

#Td−1(f, 0)
= E

�#A(Td−1(f, 0))

2d
+O(1)

�
∼

f→∞
3(1− λ◦)f

2d
,

as desired. �

3.3. The unicellular case. — Let us now present the analogous results of the last
section in the unicellular case. First, parallel to (20) we have the following exact
formula due to Lehman & Walsh, see [WL72, Eq. (9)]:

(23) #T0(1, g) =
2

12g
(6g − 3)!

g!(3g − 2)!
∼

g→∞
(12g)2g e−2g

12
�
πg3

.

It is well known that the local limit of large uniform trivalent graphs is given by the
three-regular tree A3. We prove below that as soon as d = o(g) we have

(24) Td(1, g)
(d)−→

g→∞
A3,

for the local topology. Finally, we prove the analogue of Lemma 11 where in the
unicellular case we have λ◦ = 0.

Lemma 12. — Uniformly for d = o(g), it holds that
2d

6g
· #Td(1, g)

#Td−1(1, g)
−→
g→∞

1.

Again, the claim means that the ratio tends to 1 as g → ∞ uniformly for d ∈ [0, εg g]

for any sequence εg → 0.
Compared to the planar case (Lemma 11), notice here that the local limit of uniform

essentially trivalent maps is a deterministic object and that the asymptotic density of
loops in the local limit is λ◦ = 0. Note also that the factor 3f is now replaced by 6g;
in both cases, it corresponds (up to 3) to 3s where s = f+2g is the sparsity parameter,
which is (up to O(d)) the number of edges of the maps. The proof of Lemma 12 is
mutatis mutandis the same as in the planar case, we only need to replace appropriately
the large deviation principle (22); this follows from (25) in the proof of (24) below.

3.3.1. Technical estimates via the configuration model. — Let us recall the classical con-
struction of random trivalent maps with v vertices using the configuration model. We
let v be of the form v = 4g − 2 for some g � 1, which corresponds to the number of
vertices of a unicellular trivalent map with genus g. Start with v tripods, i.e., vertices
having each three half-edges, hereafter called “legs”, which are cyclically ordered, and
list these legs from 1 to 3v. Note that 3v is even since v = 4g−2 is, hence we can pair
the legs using a uniform pairing over {1, 2, . . . , 3v}. Let us denote by Pv the random
labelled multi-graph obtained: it may have loops, multiple edges and may be discon-
nected. Furthermore, this graph has a cyclic orientation of the edges around each
vertex coming from the tripods and so can be seen as a map (when it is connected)
and we can speak of its faces. Moreover it is classical that conditionally on the event
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where Pv is connected, it forms a uniform trivalent map with v vertices, with its half
edges ordered from 1 to 3v, the first one being canonically the root. Note that this
does not induce any bias since there are 3v−1(v− 1)! ways to label such a map whilst
keeping the same cyclic ordering around each vertex.

We shall use the following large deviations result for the number of edges on
small cycles in Pv, which follows by an application of the “switching method” from
Wormald [Wor99, Th. 2.19].

Lemma 13 (Large deviations for the small cycles). — For any A > 0, Let Xv(A) be
the number of edges of Pv that belong to a non-backtracking cycle of length � A. For
any ε > 0, there exists a constant δ > 0 such that for any v large enough we have

P(Xv(A) � εv) � exp(−δv).

Proof. — Recall that the graph is trivalent so the number of cycles of length � A pass-
ing through a given edge is bounded by 2A. Then the variations of Xv(A) are bounded
by some constant depending on A if we switch two edges. By [Wor99, Th. 2.19] this
implies the tail bounds of the claim for the deviations |Xv(A) − E[Xv(A)]|. On the
other hand, the expectation of Xv(A) is converging (see [Wor99, Eq. (8) in §2.3]), so
it is bounded; the claim then follows. �

3.3.2. Proof of the local convergence and the ratios. — Let us start by proving that the
local limit of Td(1, g) is the infinite three-regular tree A3.

Proof of (24). — Recalling that v = 4g − 2, as well as the exact formula (23), the
probability that the random graph Pv is connected and unicellular is

3v−1(v − 1)!#T0(1, g) ·
� (3v)!

(3v/2)!23v/2

�−1

∼
g→∞

2

3v
.

Consequently the large deviation estimates from Lemma 13 for the number of edges
belonging to small cycles also hold for T0(1, g) for v = 4g − 2 up to changing δ > 0.
Now fix A > 0 and observe that any vertex at distance more than A from a cycle of
length � A has the same A-neighbourhood as the origin in the three-regular tree. Since
we are dealing with trivalent graphs, there are at most 2AC vertices within distance A

of a given subset of C vertices. In particular, we deduce the following concentration
inequality in T0(1, g). Let NA(G) be the number of vertices in the graph G whose
A-neighbourhood is tree-like, then for any ε > 0, there exists δ > 0 such that for all g
large enough

P(|NA(T0(1, g))− 4g| � εg) � e−δg .

We aim for the same bound for Td(1, g) when d = o(g) and argue as in the last section.
Recall Td(1, g) is obtained by contracting d edges from a (non-uniform) random map
in T0(1, g) whose law has a Radon–Nikodym derivative bounded above by Cd with
respect to the uniform law. Since d = o(g) and since there are fewer than 2A edges
within distance A of the contracted edges, the above display still holds for Td(1, g),

J.É.P. — M., 2022, tome 9



1328 N. Curien, I. Kortchemski & C. Marzouk

with possibly a smaller δ, which does not depend on d, namely: for any ε > 0, there
exists δ > 0 such that for all g large enough, for d/g small enough,

(25) P(|NA(Td(1, g))− 4g| � εg) � e−δg .

By invariance by re-rooting, the local limit (24) follows. �

We may finally prove Lemma 12.

Proof of Lemma 12. — Taking A = 1 in (25) shows a large deviation principle for
the number of non loop edges in Td(1, g), whose proportion concentrates around
1 − λ◦ = 1. The proof of Lemma 12 is now mutatis mutandis the same as in the
planar case, replacing (22) by this estimate. �

4. On the size of the core and kernel

With the enumerations lemmas in place, we can proceed to the proofs of Theorem 1
and 3.

4.1. Number of defects of the kernel. — Let us begin with the proof of Theorem 1;
recall the notation from the statement.

Proof of Theorem 1. — Let sn = fn + 2gn. Recall from Proposition 7 that,

P (Ker(Mn(fn, gn)) has defect d) =
#Td(fn, gn) · Φn(3sn − d− 6)

#Mn(fn, gn)

for any d ∈ {0, . . . , 2sn−5}, whereas it equals 0 otherwise since in this case Td(fn, gn)

is empty. The idea is to consider the ratios of the numerator evaluated at d+1 and at d
to find the optimal value d which maximise this quantity, and control the deviations
for other values of d. Since 1 � sn � n, then, using Lemmas 8, 11, and 12 at the
second line, uniformly for d � sn,

P (Ker(Msn
n ) has defect d + 1)

P (Ker(Msn
n ) has defect d)

=
Φn(3sn − (d + 1)− 6)

Φn(3sn − d− 6)
× #Td+1(fn, gn)

#Td(fn, gn)

∼
n→∞

�
2(3sn − (d + 1)− 6)

n
× 3sn(1− λ◦)

2(d + 1)

∼
n→∞

�
6sn
n

3sn(1− λ◦)
2(d + 1)

=
Dn

d + 1
,(26)

where we have set Dn = 3(1 − λ◦)
�
3s3n/(2n). It is therefore natural to expect that

the defect number concentrates around Dn and we now make this precise in the two
regimes.

We now turn to the first statement, when n−1/3sn → a ∈ [0,∞). Note that this
implies that Dn → 3(1−λ◦)

�
3a3/2; let us write this limit as c � 0. By induction (26)

implies that for any fixed d � 0, it holds
P(Ker(Msn

n ) has defect d)

P(Ker(Msn
n ) has defect 0)

−→
n→∞

cd

d!
.
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In order to conclude, it remains to show that

(27) P(Ker(Msn
n ) has defect � D)

P(Ker(Msn
n ) has defect 0)

can be made arbitrarily small (uniformly in n and sn) provided that D is large enough.
To see that, note that from (18) we have #Td(f, g) � (3s/2)d

d! #T0(f, g). On the other
hand by Lemma 8 there exists a constant K > 0 such that for every n large enough
(so e.g. 3sn � n/32),

sup
d�3sn−6

�
n

sn
· Φn(3sn − (d + 1)− 6)

Φn(3sn − d− 6)
� K/2.

Therefore for every n large enough, for every d � 3sn − 6 it holds
Φn(3sn − d− 6)

Φn(3sn − 6)
�

�
K

�
sn
n

�d

.

Combining the two bounds yields for every n large enough, for every d � 3sn − 6,

P(Ker(Msn
n ) has defect d)

P(Ker(Msn
n ) has defect 0)

=
#Td(fn, gn) · Φn(3sn − d− 6)

#T0(fn, gn) · Φn(3sn − 6)
� 1

d!

�3K
2

�
s3n
n

�d

.

Recall that we assume that s3n/n has a finite limit, so this sequence is uniformly
bounded. We easily deduce that (27) can be made arbitrary small provided that D is
large enough and this concludes the convergence to a Poisson distribution.

Let us now turn to the second regime, where n−1/3sn → ∞ (but still n−1sn → 0)
and let us replace for convenience Dn by its integer part; note that Dn = o(sn). Recall
the asymptotic behaviour (26) valid uniformly for d � sn. Fix ε > 0 small and let n

be large enough, then for any k ∈ [6εDn, ε
−1Dn], by bounding above the fractions

by 1 for j < k/2 and by 1/(1 + k/(2Dn)) � 1/(1 + 3ε) for j � k/2, we get

P(Ker(Msn
n ) has defect Dn + k)

P(Ker(Msn
n ) has defect Dn)

�
k�

j=1

(1 + ε)
Dn

Dn + j
�

� (1 + ε)2

1 + 3ε

�k/2

= (1− δ)k,

for some δ > 0.
In addition, by (18) and Lemma 8 there exists a constant K > 0 such that for

every n large enough (so e.g. 3sn � n/32) and any d,
P(Ker(Msn

n ) has defect d + 1)

P(Ker(Msn
n ) has defect d)

� K
Dn

d + 1
.

Thus, similarly, for k � ε−1Dn,
P(Ker(Msn

n ) has defect Dn + k)

P(Ker(Msn
n ) has defect Dn)

�
� K

1 + ε−1

�k

.

Taking ε > 0 small enough, we infer that there exists δ > 0 such that for every n

large enough,
P(Ker(Msn

n ) has defect � (1 + 2ε)Dn)

P(Ker(Msn
n ) has defect Dn)

�
�

k�2εDn

(1− δ)k = δ−1(1− δ)2εDn .

The negative deviations are treated similarly and are left to the reader. �
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4.2. Asymptotic enumeration. — In return the probabilistic estimates obtained in
the preceding proof can be turned into enumeration estimates on the number of
trivalent maps with defects. In the regime sn = O(n1/3) we obtain actual asymptotics.

Proof of Corollary 4. — Suppose that n−1/3sn→a�0 and that either (fn, gn)=(sn, 0)

or (fn, gn)=(1, (sn − 1)/2). Then the convergence of P(Ker(Msn
n ) has zero defect) to-

wards the probability that a Poisson law is equal to 0 can be written by Proposi-
tion 7 as

#T0(fn, gn) · Φn(3sn − 6)

#Mn(fn, gn)
−→
n→∞

exp
�
−(1− λ◦)

�
(3a)3/2

�
,

where we recall that λ◦ equals 1 −
√
3/2 when gn = 0 and 0 when fn = 1. The

asymptotic behaviour of #T0(fn, gn) when gn = 0 has been recalled in (20), whereas
when fn = 1 it is given by (23). Also the behaviour of Φn(3sn − 6) follows from
Corollary 9, namely, with γ = (3a)3,

Φn(3sn − 6) ∼
n→∞

e−
√

γ/2

2
�
2π(3sn − 6)

· 4n ·
� en

2(3sn − 6)

�(3sn−6)/2

∼
n→∞

63 e−
√

γ/2

2
√
6π

· 4n ·
� en

6sn

�3sn/2

· s5/2n · n−3.

Combined with (20) we derive the asymptotic formula for the number of plane maps
with n edges, fn faces, and a trivalent kernel: when both gn = 0 and n−1/3fn → f ,
then n−1/3sn → f , so taking γ = (3f)3 we get

#T0(fn, 0) · Φn(3fn − 6) ∼
n→∞

e−
√

γ/2

4π
· n−3 · 4n ·

�
21/3

en

fn

�3fn/2

.

Similarly, using (23) instead, we obtain the asymptotic formula for the number
of unicellular maps with n edges, genus gn faces, and a trivalent kernel: when both
fn = 1 and n−1/3gn → g, then n−1/3sn → 2g, so taking γ = (6g)3 we get

#T0(1, gn) · Φn(6gn − 6) ∼
n→∞

e−
√

γ/2

2π
· g−1/2

n · n−3/2 · 4n ·
� en3

12gn

�gn
.

Our claim then follows from the convergence in the beginning of this proof. �

4.3. Volume of the core. — Theorem 3 now easily follows from our previous results.

Proof of Theorem 3. — Since #Edges(Ker(Msn
n )) = 3sn − Defect(Ker(Msn

n )) − 6, we
infer from Theorem 1 that as n → ∞, the number of edges of Ker(Msn

n ) concentrates
around Kn defined by

Kn = 3sn − 3(1− λ◦)

�
3

2

s3n
n

∼
n→∞

3sn.

Recall from Proposition 7 the conditional law of the number of edges of the core given
the kernel; then Corollary 10 implies that

#Edges(Core(Msn
n ))

Cn

P−→
n→∞

1, where Cn =
Kn +

�
K2

n + 8nKn

4
∼

n→∞

�
3nsn
2

,

from which our claim follows. �
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Let us define C �
n as Cn in the preceding display but using the random number of

edges of the kernel instead of the deterministic quantity Kn. Then one can check that
4(C �

n − Cn) is asymptotically equivalent to #Edges(Ker(Msn
n ))−Kn. By Theorem 1

this is much smaller than Kn, and thus much smaller than sn, therefore, when sn =

O(
√
n), we can deduce an unconditioned CLT from Corollary 10, namely

2√
n
· (#Edges(Core(Msn

n ))− Cn)
(d)−→

n→∞
N(0, 1).

When sn � √
n however, one would need a tighter control on the fluctuations of the

size of the kernel. Although our estimates are not precise enough, we believe that the
following extensions hold.

Conjecture 14. — Assume that n−1/3sn → ∞ and n−1sn → 0 and let λ◦ as in (3).
Define

Dn = 3(1− λ◦)

�
3

2

s3n
n
, Kn = 3sn −Dn, and Cn =

Kn +
�
K2

n + 8nKn

4
.

Then
Defect(Ker(Msn

n ))−Dn√
Dn

(d)−→
n→∞

N(0, 1),

where N(0, 1) is the standard Gaussian distribution. Consequently,
2√
n
· (#Edges(Core(Msn

n ))− Cn)
(d)−→

n→∞
N(0, 1).

5. Scaling limits for the attached trees

In this section we establish the scaling limits for the trees attached to the core of
the random map Mn(fn, gn). We show that this forest converges after normalisation
by the factor

�
n/sn towards a forest coded in the usual way by a Brownian motion

with negative drift for which we review the excursion theory. The results are used in
the next section when proving Theorem 5.

5.1. Excursions theory for linear Brownian motion with drift. — Let B denote a
standard Brownian motion started from 0. Fix κ > 0 (in our application below we
shall take κ =

�
3/2) and let us consider the Brownian motion with linear drift −κ

and its running infimum process defined respectively for any t � 0 by

Bκ
t = Bt − κt and Bκ

t = inf
0�s�t

Bκ
s .

Let us now recall the excursion theory of Bκ above its minimum. First, when κ = 0,
it is well know that the excursions of a Brownian motion form a Poisson process
with local time given by B0 and with intensity given by the Itō excursion measure n,
see e.g. [LG10] or [RY99, Chap. XII]. With our normalisation, the measure n can be
disintegrated as

n(·) =
� ∞

0

na(·)
da√
2πa3

,

where na denotes the law of the Brownian excursion with duration a.

J.É.P. — M., 2022, tome 9



1332 N. Curien, I. Kortchemski & C. Marzouk

When κ>0, by Girsanov’s formula, the process Bκ is absolutely continuous with re-
spect to B, with density given by the exponential martingale (exp(−κBt−κ2t/2); t�0).
Using this and the exponential formula for Poisson random measures, we deduce that
the excursions of Bκ above its running infimum Bκ (still using Bκ as local time) are
again distributed as a Poisson process with excursion intensity given by

nκ(·) =
� ∞

0

na(·)
exp(−κ2a/2)√

2πa3
da.

Finally, let us describe the so-called Bismut decomposition for the excursion mea-
sure nκ. For this, we introduce the size-biased excursion measure nκ on excursions e

of duration ζ(e) together with a distinguished time u ∈ [0, ζ(e)] by

(28) nκ(de, du) =

� ∞

0

da
exp(−κ2a/2)√

2πa3
na(de)1[0,a](u) du.

Contrary to nκ, the above measure has finite total mass, so it can be used to define
a probability distribution after normalisation; precisely,

�
nκ(de, du) =

� ∞

0

da
exp(−κ2a/2)√

2πa
=

1

κ
.

For an excursion e = (et; 0 � t � ζ(e)) and a time u ∈ (0, ζ(e)), let

eu,− = (eu−t; 0 � t � u) and eu,+ = (eu+t; 0 � t � ζ(e)− u);

let also B− and B+ be two independent Brownian motions both started from x > 0

under Px and both stopped when hitting 0, at time T− and T+ respectively. Let F

be a continuous and bounded function, the so-called Bismut decomposition [RY99,
Th. 4.7, Chap. XII, p. 502] reads

�
n0(de, ds)F

�
es,−, es,+

�
= 2

� ∞

0

Ex

�
F
�
B−,B+

��
dx.

In the case κ > 0 we can write with obvious notation�
κnκ(de, du)F

�
eu,−,us,+

�
=

�
κn0(de, du) e−κ2ζ(e)/2 F

�
eu,−, eu,+

�
du

=

� ∞

0

2κ · Ex

�
e−κ2(T−+T+)/2 F

�
B−,B+

��
dx

=

� ∞

0

2κ e−2κx Ex

�
F
�
Bκ,−,Bκ,+

��
dx.

In words, if one first samples an excursion e and a time u from the law κnκ, then the
random variable eu follows an exponential law with rate 2κ and conditionally given
this value, the time-reversed past and the future of the excursion are two indepen-
dent Brownian motions with drift −κ started from eu and killed upon hitting 0, see
Figure 10 for a pictorial representation.

Let us now make a connection with another appearance of the exponential law
with rate 2κ. Indeed, recall that (exp(2κBκ

t ); t � 0) is a martingale, so a classical
application of the optional stopping theorem shows that supt�0 B

κ
t follows this very

exponential law. The link can be done via Bismut’s decomposition. Indeed, let us
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Figure 10. The Bismut decomposition of nκ.

extend Bκ to the negative half-line letting (−Bκ
−t)t�0 be an independent copy of Bκ.

Then − inft�0 B
κ follows this exponential law. Let J− < 0 denote the (a.s. unique)

time such that Bκ
J− = inft�0 B

κ and let J+ = inf{t > 0 : Bκ
t = inft�0 B

κ}. It follows
from Bismut’s decomposition that the pair ((Bκ

t )t∈[J−,J+],−J−) has the law κnκ.
Also, notice that conditional on Bκ

J+ , the path after time J+ is then an independent
copy of Bκ starting from this value, so its excursions are described by the infinite
measure nκ. Finally, we define the path Wκ = (Wκ

t )t�0 by
(29) Wκ

t = Bκ
t+J− − Bκ

J− ,

which therefore starts with a size-biased excursion before evolving like Bκ.
Let us mention [Pit06, §7.7.7] and [Jan05] for related discussions with similar ob-

jects.

5.2. Scaling limit of the random forest. — We now aim at showing that Wκ just
defined in (29) is the scaling limit of the contour of the random forest attached to the
core in order to recover the random map Mn(fn, gn). Let us argue conditionally given
the core and its number of edges, say cn, which, in the framework of Theorem 3, is
typically of order √nsn, which is both much larger than

√
n and much smaller than n.

Recall from Section 2.1 and especially Figure 7 that we actually consider a forest
with a mark which is either an oriented edge in the first tree, or an extra symbol to
mean that we keep the root edge of the core. We let W n denote the contour of this
forest, An its first hitting time of −1, which codes the size of the first tree, and let Rn

have the uniform distribution on {0, . . . , An − 1}, which codes for the position of the
root edge of the map. Then the pair (W n, Rn) has the uniform distribution on the
first-passage paths with ±1 increments, which end at time 2n by hitting −2cn for the
first time, together with an instant smaller than their first hitting time of −1. The
main result of this section is the following.

Proposition 15. — If
√
n � cn � n, then for any κ > 0, the convergence in distri-

bution � cn
κn

Wn
(κn/cn)2t

�
t�0

(d)−→
n→∞

(Wκ
t )t�0 ,

holds in the uniform topology on compact intervals, where Wκ is defined in (29).
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Let Bn denote a uniform random ±1 path starting from 0 at time 0 and ending
at −2cn at time 2n and recall that W n is obtained from Bn by a cyclic shift at the
first time the latter reaches its overall minimum. The path Bn is quite simple and
well-known and when cn = o(n) a global convergence of Bn to the Brownian bridge
has been established, see e.g. [Ald85, Th. 20.7]. However here, we are interested in the
behaviour of this path viewed in a smaller time scale, around both the starting point
and the endpoint. To this end, let us set �Bn

i = −2cn−Bn
2n−i for every i ∈ {0, . . . , 2n}.

Note that �Bn has the same law as Bn. On a time-scale which is small compared to
n, the recentred paths do not feel the bridge conditioning and the fluctuations simply
converge to Brownian motions.

Lemma 16. — Suppose that cn = o(n). Let Nn → ∞ be such that Nn = o(n). Let B

and �B be two independent Brownian motions. The convergence in distribution�
1√
Nn

�
Bn

Nnt +
cnNn

n
t, �Bn

Nnt +
cnNn

n
t
��

t�0

(d)−→
n→∞

�
Bt, �Bt

�
t�0

,

holds in the uniform topology on compact intervals.

Proof. — Fix T > 0 and suppose that n is large enough so NnT < n. Let Sn denote
the asymmetric random walk with step distribution

P(Sn
1 = −1) = 1− P(Sn

1 = 1) =
1

2
(1 + cn/n).

Note that Bn has the law of Sn conditioned to Sn
2n = −2cn and further that E[Sn

2n] =

−2cn. Let us denote by �Sn and independent copy of Sn. Let pnk (j) = P(Sn
k = j),

then the Markov property yields the following absolute continuity relation: For any
continuous and bounded function F , we have

E
�
F

��
1√
Nn

�
Bn

Nnt +
cnNn

n
t, �Bn

Nnt +
cnNn

n
t
��

0�t�T

��

= E
�
F

��
1√
Nn

�
Sn
Nnt +

cnNn

n
t, �Sn

Nnt +
cnNn

n
t
��

0�t�T

�

· p
n
2n−2NnT

(Sn
NnT

+ �Sn
NnT

+ 2cn)

pn2n(−2cn)

�
.

We first claim that (N
−1/2
n (Sn

Nnt
+ (cnNn/n)t, �Sn

Nnt
+ (cnNn/n)t); 0 � t � T )

converges in distribution to the pair ((Bt, �Bt); 0 � t � T ). By e.g. [Kal02, Th. 16.14]
it suffices to prove the convergence at time t = 1 and the latter easily follows by
considering the characteristic function. By Skorokhod’s representation, let us assume
that this convergence holds almost surely. We next control the ratio of probabilities
in the absolute continuity relation. By Stirling’s formula, as n → ∞, using also that
cn = o(n) in the last line, we obtain after straightforward calculations:

pn2n(2cn) =
�n+ cn

2n

�n+cn�n− cn
2n

�n−cn (2n)!

(n− cn)!(n+ cn)!

∼ 1√
2π

�
2n

(n− cn)(n+ cn)
∼ 1√

nπ
.
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Similarly, since both Nn, cn = o(n), then

pn2n−2NnT (S
n
NnT + �Sn

NnT + 2cn) ∼
1�

(n−NnT )π
∼ 1√

nπ
.

We conclude by the above absolute continuity relation, together with the convergence
of the unconditioned pair. �

Proposition 15 now easily follows.

Proof of Proposition 15. — In this regime, Lemma 16 reads in the particular case Nn ∼
(κn/cn)

2:

(30)
� cn
κn

�
Bn

(κn/cn)2t
, �Bn

(κn/cn)2t

��
t�0

(d)−→
n→∞

�
Bt − κt, �Bt − κt

�
t�0

.

The claim is then a consequence of the construction of W n and Wκ which is continuous
in Bκ. �

Note that Proposition 15 implies in particular the convergence of (An, Rn) after
rescaling towards the length of the first excursion of Wκ together with a random time,
and this pair has the law κnκ from (28). Let us give a proof by direct calculations for
the reader uncomfortable with excursion theory.

Proposition 17 (Size of the distinguished tree). — If
√
n � cn � n, then for any

κ > 0,
� cn
κn

�2

(An, Rn)
(d)−→

n→∞
(A,R), which has law κ√

2πa3
exp

�
−κ2a

2

�
10�r�a da dr.

Proof. — Let WN,K denote the set of ±1 paths of length N that end by hitting −K

for the first time at time N , where N and K must have the same parity; by the cycle
lemma, its cardinal equals

#WN,K =
K

N

�
N

(N +K)/2

�
.

Then for every k ∈ {0, . . . , n− cn}, under our biased probability measure on W2n,2cn ,

P(An = 2k + 1) =
(2k + 1)#W2k+1,1 ·#W2n−2k−1,2cn−1�

2n
n+cn

� .

Then straightforward calculations involving Stirling’s formula lead to the limit for
every a > 0:

�κn
cn

�2

P(An = 2�a(κn/cn)2�+ 1) −→
n→∞

κ√
πa

exp(−κ2a),

which implies the convergence in distribution of An. The joint convergence of Rn fol-
lows since the latter is conditionally given An uniformly distributed on {0, . . . , An−1}.

�
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6. The mesoscopic scaling limit

In this section we finally prove Theorem 5 involving the continuum tree-decorated
trivalent map FUnic or FPlan for which we first describe two equivalent constructions.
The starting block is the local limit of trivalent maps. In the planar case, this is
the dual of the well-known UIPT of type 1, denoted by UIPT† in Section 3.2. In the
unicellular case, the local limit is the deterministic infinite three-regular tree A3 which
appeared in Section 3.3. In each case, we shall consider a slight modification of those
maps obtained by splitting its root edge in two by inserting a vertex in the middle
and grafting a dangling edge onto this new vertex in the face adjacent on the right of
the root edge. Let us denote by TPlan and TUnic the resulting maps which thus have
a unique vertex of degree 1, and whose root edge is the oriented edge emanating from
this vertex.

Throughout this section, to simplify notation we put

κ =

�
3

2
, so that 2κ =

√
6.

Figure 11. The discrete skeleton underlying the construction of
FPlan. From left to right: a piece of the Uniform Infinite Planar Tri-
angulation (type 1), its dual UIPT†, the version TPlan obtained after
the root-transformation and finally the metric graph obtained after
dilating each edge independently by an exponential variable of mean
1/
√
6.

6.1. Construction of the limit. — Let M∞ denote an infinite, locally finite, map.
Let us construct in two equivalent ways a certain metric space F from M∞. These
constructions applied to M∞ = TPlan and to M∞ = TUnic respectively produce the
limits FPlan and FUnic in Theorem 5. We assume that the reader is familiar with the
background on continuum random trees (CRT’s). We shall denote by e a continuous
excursion with duration ζ(e); it is known (see e.g. Duquesne & Le Gall [DLG05]) that
it encodes a CRT Te by identifying all the pairs of times, say 0 < a < b < ζ(e), which
satisfy ea = eb = min[a,b] e. We let πe denote the canonical projection [0, ζ(e)] → Te.
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6.1.1. Via bipointed trees surgery. — Recall from Section 5.1 the renormalised law κnκ

on pairs (e, u) where e is a size-biased excursion of a Brownian motion with drift −κ

and then u is an independent uniform random instant between 0 and its duration
ζ(e). Consider next the law P• on bipointed CRT’s obtained as the push forward
of κnκ by the projection πe, or more precisely the map

(e, u) �→ (Te,πe(0),πe(u)).

By the rerooting property of Brownian CRT’s (or more precisely, of Brownian excur-
sions), the two triplets (Te,πe(u),πe(0)) and (Te,πe(0),πe(u)) have the same law.
We then consider an i.i.d. sample from P• of bipointed CRT’s indexed by the edges
of M∞ and we glue these CRT’s using their distinguished points according to the
adjacency relations of M∞ to get a random locally compact metric space F, see Fig-
ure 12. Formally, this random compact metric space is obtained by taking the disjoint
union of the bipointed CRT’s indexed by the edges of M∞ and identifying their dis-
tinguished points according to the adjacency relations of the graph M∞, the resulting
quotient F is endowed with the quotient metric, see e.g. [BBI01, Def. 3.1.12] or the
recent paper [Mug19].

Figure 12. The two equivalent constructions of F from the random
metric graph M∞.

6.1.2. Via Poissonian theory. — Let us give an equivalent construction of F which
highlights the connections with the core–kernel decomposition. First, consider the
metric (or cable) graph M∞ obtained by replacing independently each edge of M∞
by a compact segment of length distributed according to an exponential law of rate 2κ

(formally defined in the same way as above). This space has a natural Lebesgue mea-
sure �. We shall now graft random CRT’s on this structure to get our desired space F.
To do this, consider the infinite measure nκ on the space of pointed compact real trees
equipped with the Gromov–Hausdorff topology, obtained by the push forward of the
measure nκ by the application e �→ (Te,πe(0)). Although this is an infinite measure,
the total mass of trees of diameter larger than ε > 0 is finite. We then consider a
Poisson cloud on M∞ with intensity

2 d�⊗ nκ

and “graft” the trees on M∞ according to the atoms of the measure.
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The fact that the two above constructions are equivalent follows from Bismut’s
description of the law nκ recalled in Section 5.1. Indeed, once translated in the terms
of random trees, this decomposition precisely entails that a random bipointed tree
(T, x, y) under P• can be obtained by first sampling a real segment with a random
length with the exponential law with parameter 2κ whose endpoints will be the dis-
tinguished points of the bipointed tree and then grafting on it a Poisson cloud of trees
with intensity 2 d� ⊗ nκ; the factor 2 is here to take into account both sides of the
segment.

6.2. Proof of Theorem 5. — We are now ready to prove Theorem 5. This takes three
main steps: first, since the kernel of the maps are almost trivalent, then as discussed in
Section 3 it converges locally to the corresponding infinite trivalent map M∞. Next,
the core is roughly obtained by expanding uniformly at random the edges of the
kernel, which translates into i.i.d exponential random lengths in the limit. Finally,
the full map is obtained from the core by grafting trees on the corners, and this forest
converges by the results in Section 5.

Proof of Theorem 5. Step 1: convergence of the kernel. — By Theorem 1 the kernel of
both maps are almost trivalent, in the sense that their defect number are small com-
pared to sn with high probability. On this event, the local limits (21) and (24) apply.
By e.g. Skorokhod’s representation theorem, we shall assume that they hold almost
surely and we denote by Msn

n either the random plane map Mn(sn, 0) or the unicel-
lular one Mn(1, (sn − 1)/2), and by M∞ the limit of its kernel, which is UIPT† or A3

respectively. In particular, the kernel is asymptotically locally trivalent. Fix r � 1,
then the ball of radius r (centred at the root vertex) in Ker(Msn

n ) converges almost
surely towards that of M∞. Since the set of possible such balls is finite, then for
every n large enough, the balls coincide and we henceforth assume it is the case. As in
Section 2.1 we henceforth modify the kernel and M∞ by adding a vertex in the middle
of its root edge, the corner on the right of the middle vertex is called hereafter the
root corner. Note that this is not quite the root transform presented in the beginning
of Section 6: here we do not graft a dangling leaf on this new vertex. We let Kern
denote the number of edges of the modified kernel.

Proof of Theorem 5. Step 2: convergence of the core. — Let now Core(Msn
n ) denote the

core of the map, with the same modification at the root as in step 1 and let Coren
denote its number of edges. Recall from Proposition 7 that, conditionally on the kernel
and the size Coren, this core is obtained from the kernel by expanding the Kern edges
using a uniform random vector of positive integers that sum up to Coren. Note that
the root corner of the kernel is transferred to the core. Using the representation of
such a random vector as i.i.d geometric random variables conditioned by their sum,
where the parameter is arbitrary and can conveniently chosen so the mean matches
the average value Coren /Kern, it is easy to check that for any finite subset of edges of
the kernel, Kern /Coren times their lengths in the core jointly converge in distribution
towards i.i.d. exponential random variables with unit mean. Alternatively, in the spirit
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of Section 2.1, for any positive integers �1, . . . , �k, the conditional probability that k

given edges of the kernel have these lengths equals
�
Coren −(�1+···+�k)−1

Kern −k−1

�
�
Coren
Kern

� .

Stirling’s approximation then yields a multivariate local form of the convergence to
i.i.d. exponential random variables. Fix r � 1 and let kr + 1 denote the number of
edges in the ball of radius r of M∞, which we assume equals that in Ker(Msn

n ) for
n large enough. Let further Ln,0, . . . , Ln,kr

denote the lengths of these edges in the
core. Since Kern /Coren ∼

�
2Kern /n ∼

�
6sn/n by Theorems 1 and 3, then

(31)
�

sn
n

· (Ln,0, . . . , Ln,kr )
(d)−→

n→∞
(γ0, . . . , γkr ),

where the γi’s are i.i.d. exponential random variables with mean 1/
√
6. Appealing to

e.g. Lebesgue’s theorem, this convergence for the conditional law given Ker(Msn
n ) and

Coren also holds unconditionally, jointly with Theorem 1 and Theorem 3.

Proof of Theorem 5. Step 3: convergence of the trees. — Next, recall that conditionally
on its core, the map Msn

n is obtained from its core by grafting a rooted plane tree
(possibly with a single vertex) onto each corner of the latter. Moreover, the root edge
of Msn

n is either the root edge of the core, or one oriented edge in the tree grafted onto
the root corner, hereafter call the “root tree”. Let us consider each edge of the kernel,
and the corresponding chain of edges in the core, and, except for the root tree, let us
group together all the trees grafter on the corners on one side of such a chain (say
from one extremity to the other one) and then those on the other side. The root tree
is canonically placed first. Then this forest, together with the root edge, is sampled
uniformly at random amongst all possibilities and it is coded by the first-passage
path Wn studied in Section 5, with one distinguished time Rn smaller than the first
hitting time of −1.

Then a direct consequence of Proposition 15 and Bismut’s decomposition is that,
conditionally on the kernel and the core of the map,

�
sn/n times the root tree and its

mark converge to a bipointed Brownian tree with law P• as defined in Section 6.1.1.
Moreover for every r � 1, jointly with this convergence and that (31) of the lengths
of the chains in the core replacing the edges of the ball of radius r in the kernel, the
forests of the trees grafted on both sides of these chains jointly converge after the
same rescaling by

�
sn/n to independent forests coded by Brownian motions with

drift Bκ killed when first reaching level −γi respectively, where we recall that we
take κ =

�
3/2. Since these γi’s have the exponential law with rate

√
6 = 2κ, then

Bismut’s decomposition (recall the discussion closing Section 6.1.2) entails that the
bipointed trees obtained by grafting all the trees, except the root tree, in the corners
of each chain in the core converge after rescaling by

�
sn/n to i.i.d bipointed Brownian

trees with law P•. Recall from Section 6.1 and especially Figure 11 that there when
constructing the limit F, we not only added a middle vertex on the root edge of M∞,
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but also attached to it a dangling leaf on the root corner and this edge was eventually
replaced by a bipointed CRT in F. This CRT is the limit of the root tree and its mark
here and again Bismut’s decomposition shows the equivalence of the two points of
views.

Proof of Theorem 5. Step 4: convergence of the map. — Again, the previous conditional
invariance principle is extended unconditionally by Lebesgue’s theorem so we conclude
that for any r � 1, the subset Bsn

n,r of Msn
n obtained by taking the ball of radius r of its

kernel and replacing its edges by their corresponding bipointed trees in Msn
n converges

in distribution, once rescaled by
�
sn/n to the ball of radius r in M∞ where each edges

is replaced by i.i.d. bipointed CRT’s with law P•, with the extra twist for the root. In
order to conclude with the local Gromov–Hausdorff convergence of the map Msn

n to F,
it still remains to argue that for any fixed real value R > 0, the ball of radius R

�
n/sn

of this map is contained in Bsn
n,r for some r. Indeed, it could a priori happen that,

thanks to very short lengths, points which lie at a large graph distance from the root
in the kernel get very close to the root in the core and then in the map. Now recall
that with high probability, the kernel of Msn

n is locally trivalent so for every r � 1,
its ball of radius r contains at most 3r distinct non self-intersecting paths. Then a
crude large deviation argument shows that, if δ > 0 is small enough, then a.s. for
all sufficiently large r’s, none of these rescaled paths can have a total random length
smaller than δr. Consequently with high probability, the ball of radius R

�
n/sn in

Msn
n is indeed entirely contained in Bsn

n,r for r � δ−1R. �

6.3. The tree regimes. — Let us end this section with the behaviour of the random
map Msn

n when seen at a smaller scale than
�

n/sn, which complements Theorem 5.
As we have seen in the previous subsection, the tree grafted onto the core which
carries the root edge of Msn

n grows like
�

n/sn and so does the distance between the
root vertex of the map and the core. Therefore, if one looks in a ball centred at the
root vertex with a much smaller radius, then one does not escape this tree so we
expect the maps to converge to trees at such scales. Let us describe more precisely
these limits before stating the result.

Analogously to the compact Brownian CRT coded by a Brownian excursion, one
can consider a Self-Similar Continuum Random Tree T∞, coded by a two sided Brow-
nian motion (Bt)t∈R, i.e., a random path such that (Bt)t�0 and (B−t)t�0 are two
independent standard Brownian motions, see [Ald91, §2.5]. This tree is naturally
pointed at the image of 0 and it possesses a unique infinite line, corresponding to the
first hitting time of a negative level by both Brownian motions; the excursions above
their infimum of each of these paths code the subtrees grafted along this spine, on each
side. Another, “upward”, way of constructing T∞ is to take instead two independent
three-dimensional Bessel processes. The fact that this defines the same object in law
comes from the so-called Pitman transform, which shows that such a Bessel process
has the same law as (Bt−2 inf [0,t] B)t�0, and the fact that the tree coded by the latter
is the same as that coded by (Bt)t�0 since one can easily show that the corresponding
pseudo-distances are equal. See also [Pit06, §7.7.6].
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Finally, a discrete analogue, the Uniform Infinite Random Plane Tree A∞, can be
described as the discrete tree coded similarly by a two-sided simple random walk,
or equivalently two independent such random walks conditioned to stay nonnegative.
This infinite tree appears as local limit of large uniform random plane trees; it has
one end and is sometimes referred to as Kesten’s tree conditioned to survive (with
the critical geometric distribution), see e.g. [Jan12, §5].

Proposition 18. — Let sn satisfy (1).
(1) Both Mn(sn, 0) and Mn(1, (sn − 1)/2) converge in distribution to A∞ for the

local topology.
(2) For any sequence an → ∞ such that an = o(

�
n/sn), the two convergences in

distribution

a−1
n Mn(sn, 0)

(d)−→
n→∞

T∞ and a−1
n Mn

�
1,

sn − 1

2

�
(d)−→

n→∞
T∞

hold in the local pointed Gromov–Hausdorff topology.

See [KM21a] for related results on local limits of planar graphs. Let us mention
that T∞ also appears in the scaling limit of uniform random quadrangulations with n

internal faces and with a boundary with length much larger than
√
n, see [BMR19,

Th. 3.4].

Proof. — For a short proof, one can note from the proof of Proposition 17 that,
conditional on the number of edges of the tree grafted onto the core which carries
the root edge of the map, this tree has the uniform distribution on plane trees with
such a size, and further the oriented edge is independently sampled uniformly at
random. Then re-root this tree at this oriented edge: the resulting tree has again the
uniform distribution and the latter is known to converge when its size tends to infinity,
see [Jan12, Th. 7.1] for the local convergence and [Ald91, §2.5], with the formalism
from [DLG05] for the local Gromov–Hausdorff one. �

The claim can alternatively be proved along the same lines as previously, we
keep the same notation. Indeed, instead of Equation (30) which was used previously,
Lemma 16 shows that if

√
n � cn � n and if Nn → ∞ is such that Nn = o((n/cn)

2),
then the drift disappears and we simply obtain,

� 1√
Nn

�
Bn

Nnt,
�Bn
Nnt

��
t�0

(d)−→
n→∞

�
Bt, �Bt

�
t�0

,

where B and −�B are independent standard Brownian motions. For r > 0 fixed, the
concatenation of these paths stopped when first reaching level r encodes a tree in
which 0 is a distinguished time. The convergence of paths then implies the convergence
of the corresponding bipointed trees; in particular, the ball of radius r in N

−1/2
n Msn

n

converges to that of the image of 0 in the preceding excursion, which is the ball of
radius r in T∞. We then applies this result to the random number of edges of the core,
which by Theorem 3 grows like √

nsn, so Nn can be any sequence with Nn = o(n/sn).
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Similarly, the proof of Lemma 16 is easily adapted to show that for any fixed
N ∈ N,

�
Bn

i , �Bn
i

�
0�i�N

(d)−→
n→∞

�
Si, �Si

�
0�i�N

,

in RN+1, where S and �S are two independent simple random walks. This similarly
implies the convergence in distribution of the map in the local topology towards A∞.

7. Comments and questions

Let us finish this paper by raising a few problems and open questions.

7.1. Short cycles and diameter in the unicellular case. — As mentioned in the
introduction, Janson & Louf [JL21] very recently proved that the statistics of the
length of short cycles in Mn(0, gn) converge when 1 � gn � n after normalisation by�
n/(12gn) towards an inhomogeneous Poisson process on R+ with intensity

(32) cosh(t)− 1

t
,

and this matches the statistics of the lengths of short non-contractible curves in Weil–
Petersson random surfaces [MP19]. Let us shed some light on these results using ours.
We do not however claim to give a full proof. Heuristically we saw that

�
12gn/n ·

Core(Mn(1, gn)) is given by first taking an essentially unicellular trivalent map whose
edges have been replaced by independent real segments of length distributed according
to an exponential law of mean 1. It is classical that the statistics of cycles of length
k � 1 in a random three-regular multi-graphs (where loops and multiple edges are
allowed) are given by independent Poisson variables with parameters

2k

2k
= 1, 1,

8

6
, . . .

see [Wor99, Th. 2.5]. Taking the image of the above Poisson process on the number
of discrete cycles, after replacing each cycle of length k by an independent sum of k
random exponential variables, we get a point process on R+ with intensity given
by t−1 sinh t. In the case of unicellular trivalent maps, we expect that the statistics
of discrete cycles of length k � 1 are given by independent Poisson variables with
parameters

2k − 2

2k
= 0,

1

2
, 1,

7

4
, . . .

In particular, those maps have no loops. After decoration by independent exponential
lengths as above, we recover a Poisson process with intensity (32). However, we expect
that the large scale properties of unicellular trivalent maps (such as the diameter) are
close to those of trivalent maps.
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7.2. Global limits in the planar case. — Let us here focus on the random plane
maps Mn(fn, 0). Theorem 5 and Proposition 18 study their asymptotic behaviour at
the scales

�
n/fn and smaller. In another direction, one can be interested in their

asymptotic geometry at larger scales.
At least when fn = o(n1/3), we know from Theorem 1 that Ker(Mn(fn, 0)) is triva-

lent with probability tending to 1, so by [CLG19, Cor. 23], once rescaled by a factor
of order f

1/4
n , it converges to the Brownian sphere. Combined with our previous ar-

gument (e.g. in the proof of Theorem 5), this indicates that f
1/4
n

�
n/fn = (n2/fn)

1/4

is the correct scale of the core and we believe that it also converges to the Brownian
sphere by arguments similar to [CLG19]. Finally, the original map Mn(fn, 0) is ob-
tained by grafting trees on the core, with n edges in total, so the maximal diameter of
such a tree grows like

�
n/fn = o((n2/fn)

1/4) and therefore the rescaled map and its
core should be close to each other. We refrain to make this precise here for we believe
that this holds in a more general setting.

Conjecture 19. — If fn → ∞ and n−1fn → 0, then the rescaled maps
√
6 · 31/4

1 + 2
√
3
·
� fn
n2

�1/4

Mn(fn, 0)

converge in distribution to the Brownian sphere in the Gromov–Hausdorff topology.

Similarly, for any sequence σn such that
�
n/fn � σn � (n2/fn)

1/4, we expect the
rescaled random map σ−1

n Mn(fn, 0) to converge in distribution for the pointed local
Gromov–Hausdorff topology towards the Brownian plane, which is a non-compact
analogue of the Brownian sphere introduced in [CLG14].

The first step towards a proof of Conjecture 19 would be to prove the convergence of
random trivalent maps with a small defect number compared to the number of edges
to the Brownian sphere, once rescaled by the fourth root of the number of edges. This
would complement the local point of view of [Bud21]. Let us mention that, because
we were especially interested in the mesoscopic behaviour of the maps, we assumed
throughout this work that fn = o(n), whereas in [KM21b], convergence of uniformly
chosen bipartite maps to the Brownian sphere is shown whenever fn, n−fn → ∞. More
generally, establishing the scaling and local limits of planar maps with prescribed
degrees is still open in the non-bipartite case. See [Mar22] for the scaling limit point
of view and [BL22] for the local limit point of view, both in the bipartite case. Let
us mention that the case of local limit of Boltzmann non-bipartite maps is treated
in [Ste18].

References
[ABA21] L. Addario-Berry & M. Albenque – “Convergence of non-bipartite maps via symmetriza-

tion of labeled trees”, Ann. H. Lebesgue 4 (2021), p. 653–683.
[ABBG10] L. Addario-Berry, N. Broutin & C. Goldschmidt – “Critical random graphs: limiting con-

structions and distributional properties”, Electron. J. Probab. 15 (2010), p. 741–775.
[Ald85] D. Aldous – “Exchangeability and related topics”, in École d’été de probabilités de Saint-

Flour, XIII – 1983, Lect. Notes in Math., vol. 1117, Springer, Berlin, 1985, p. 1–198.

J.É.P. — M., 2022, tome 9



1344 N. Curien, I. Kortchemski & C. Marzouk

[Ald91] , “The continuum random tree II: An overview”, in Stochastic analysis (Durham,
1990), London Math. Soc. Lecture Note Ser., vol. 167, Cambridge University Press, Cam-
bridge, 1991, p. 23–70.

[ACCR13] O. Angel, G. Chapuy, N. Curien & G. Ray – “The local limit of unicellular maps in high
genus”, Electron. Comm. Probab. 18 (2013), article no. 86 (8 pages).

[AS03] O. Angel & O. Schramm – “Uniform infinite planar triangulations”, Comm. Math. Phys.
241 (2003), no. 2-3, p. 191–213.

[BMR19] E. Baur, G. Miermont & G. Ray – “Classification of scaling limits of uniform quadrangula-
tions with a boundary”, Ann. Probab. 47 (2019), no. 6, p. 3397–3477.

[BCR93] E. Bender, R. Canfield & B. Richmond – “The asymptotic number of rooted maps on a
surface. II: Enumeration by vertices and faces”, J. Combin. Theory Ser. A 63 (1993),
no. 2, p. 318–329.

[BJM14] J. Bettinelli, E. Jacob & G. Miermont – “The scaling limit of uniform random plane
maps, via the Ambjørn-Budd bijection”, Electron. J. Probab. 19 (2014), article no. 74
(16 pages).

[Bud21] T. Budzinski – “Multi-ended Markovian triangulations and robust convergence to the
UIPT”, 2021, arXiv:2110.15185.

[BL21] T. Budzinski & B. Louf – “Local limits of uniform triangulations in high genus”, Invent.
Math. 223 (2021), no. 1, p. 1–47.

[BL22] , “Local limits of bipartite maps with prescribed face degrees in high genus”, Ann.
Probab. 50 (2022), no. 3, p. 1059–1126.

[BBI01] D. Burago, Y. Burago & S. Ivanov – A course in metric geometry, Graduate Studies in
Math., vol. 33, American Mathematical Society, Providence, RI, 2001.

[Cha10] G. Chapuy – “The structure of unicellular maps, and a connection between maps of positive
genus and planar labelled trees”, Probab. Theory Related Fields 147 (2010), no. 3-4,
p. 415–447.

[CMS09] G. Chapuy, M. Marcus & G. Schaeffer – “A bijection for rooted maps on orientable sur-
faces”, SIAM J. Discrete Math. 23 (2009), no. 3, p. 1587–1611.

[Cur16] N. Curien – “Planar stochastic hyperbolic triangulations”, Probab. Theory Related Fields
165 (2016), no. 3-4, p. 509–540.

[CLG14] N. Curien & J.-F. Le Gall – “The Brownian plane”, J. Theoret. Probab. 27 (2014), no. 4,
p. 1249–1291.

[CLG19] , “First-passage percolation and local modifications of distances in random trian-
gulations”, Ann. Sci. École Norm. Sup. (4) 52 (2019), no. 3, p. 631–701.

[DLG05] T. Duquesne & J.-F. Le Gall – “Probabilistic and fractal aspects of Lévy trees”, Probab.
Theory Related Fields 131 (2005), no. 4, p. 553–603.

[FG14] E. Fusy & E. Guitter – “The three-point function of general planar maps”, J. Stat. Mech.
Theory Exp. 2014 (2014), no. 9, p. 39.

[Jan12] S. Janson – “Simply generated trees, conditioned Galton–Watson trees, random alloca-
tions and condensation”, Probab. Surv. 9 (2012), p. 103–252.

[JKŁP93] S. Janson, D. E. Knuth, T. Łuczak & B. Pittel – “The birth of the giant component”,
Random Structures Algorithms 4 (1993), no. 3, p. 233–358.

[JL21] S. Janson & B. Louf – “Unicellular maps vs hyperbolic surfaces in large genus: simple
closed curves”, 2021, arXiv:2111.11903.

[JL22] , “Short cycles in high genus unicellular maps”, Ann. Inst. H. Poincaré Probab.
Statist. 58 (2022), no. 3, p. 1547–1564.

[Jan05] K. M. Jansons – “Brownian excursion with a single mark”, Proc. Roy. Soc. London Ser. A
461 (2005), no. 2064, p. 3705–3709.

[Kal02] O. Kallenberg – Foundations of modern probability, second ed., Probability and its Appl.,
Springer-Verlag, New York, 2002.

[KM21a] M. Kang & M. Missethan – “Local limit of sparse random planar graphs”, 2021, arXiv:
2101.11910.

[KM21b] I. Kortchemski & C. Marzouk – “Large deviation local limit theorems and limits of bicon-
ditioned trees and maps”, 2021, arXiv:2101.01682.

J.É.P. — M., 2022, tome 9



The mesoscopic geometry of sparse random maps 1345

[Kri07] M. Krikun – “Explicit enumeration of triangulations with multiple boundaries”, Elec-
tron. J. Combin. 14 (2007), no. 1, article no. 61 (14 pages).

[LG10] J.-F. Le Gall – “Itô’s excursion theory and random trees”, Stochastic Processes Appl. 120
(2010), no. 5, p. 721–749.

[LG13] , “Uniqueness and universality of the Brownian map”, Ann. Probab. 41 (2013),
no. 4, p. 2880–2960.

[Lou21] B. Louf – “Large expanders in high genus unicellular maps”, 2021, arXiv:2102.11680.
[Łu91] T. Łuczak – “Cycles in a random graph near the critical point”, Random Structures

Algorithms 2 (1991), no. 4, p. 421–439.
[Mar22] C. Marzouk – “Scaling limits of random looptrees and bipartite plane maps with pre-

scribed large faces”, 2022, arXiv:2202.08666.
[Mie13] G. Miermont – “The Brownian map is the scaling limit of uniform random plane quad-

rangulations”, Acta Math. 210 (2013), no. 2, p. 319–401.
[MP19] M. Mirzakhani & B. Petri – “Lengths of closed geodesics on random surfaces of large

genus”, Comment. Math. Helv. 94 (2019), no. 4, p. 869–889.
[Mug19] D. Mugnolo – “What is actually a metric graph?”, 2019, arXiv:1912.07549.
[MNS70] R. C. Mullin, E. Nemeth & P. J. Schellenberg – “The enumeration of almost cubic maps”,

in Proc. Louisiana Conf. on Combinatorics, Graph Theory and Computing, Louisiana
State Univ., Baton Rouge, La., 1970, p. 281–295.

[NR18] M. Noy & L. Ramos – “Random planar maps and graphs with minimum degree two and
three”, Electron. J. Combin. 25 (2018), no. 4, article no. P4.5 (38 pages).

[NRR15] M. Noy, V. Ravelomanana & J. Rué – “On the probability of planarity of a random graph
near the critical point”, Proc. Amer. Math. Soc. 143 (2015), no. 3, p. 925–936.

[Pit06] J. Pitman – “Combinatorial stochastic processes”, in École d’été de probabilités de Saint-
Flour, XXXII – 2002, Lect. Notes in Math., vol. 1875, Springer-Verlag, Berlin, 2006,
p. 1–251.

[Ray15] G. Ray – “Large unicellular maps in high genus”, Ann. Inst. H. Poincaré Probab. Statist.
51 (2015), no. 4, p. 1432–1456.

[RY99] D. Revuz & M. Yor – Continuous martingales and Brownian motion, third ed., Grund-
lehren Math. Wiss., vol. 293, Springer-Verlag, Berlin, 1999.

[Ste18] R. Stephenson – “Local convergence of large critical multi-type Galton-Watson trees and
applications to random maps”, J. Theoret. Probab. 31 (2018), no. 1, p. 159–205.

[WL72] T. R. S. Walsh & A. B. Lehman – “Counting rooted maps by genus. I”, J. Combin. Theory
Ser. B 13 (1972), p. 192–218.

[Wor99] N. C. Wormald – “Models of random regular graphs”, in Surveys in combinatorics, 1999,
Cambridge University Press, 1999, p. 239–298.

Manuscript received 11th February 2022
accepted 13th August 2022

Nicolas Curien, Département de Mathématique, Université Paris-Saclay, Faculté des Sciences
d’Orsay
Orsay, France
E-mail : nicolas.curien@gmail.com
Url : https://www.imo.universite-paris-saclay.fr/~curien/

Igor Kortchemski, CNRS et Centre de Mathématiques Appliquées, École Polytechnique
Palaiseau, France
E-mail : igor.kortchemski@math.cnrs.fr
Url : https://igor-kortchemski.perso.math.cnrs.fr/

Cyril Marzouk, CNRS et Centre de Mathématiques Appliquées, École Polytechnique
Palaiseau, France
E-mail : cyril.marzouk@polytechnique.edu
Url : http://cmarzouk.perso.math.cnrs.fr/

J.É.P. — M., 2022, tome 9


