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DYNAMICAL RESIDUES OF

LORENTZIAN SPECTRAL ZETA FUNCTIONS

by Nguyen Viet Dang & Michał Wrochna

Abstract. —We define a dynamical residue which generalizes the Guillemin–Wodzicki residue
density of pseudo-differential operators. More precisely, given a Schwartz kernel, the definition
refers to Pollicott–Ruelle resonances for the dynamics of scaling towards the diagonal. We apply
this formalism to complex powers of the wave operator and we prove that residues of Lorentzian
spectral zeta functions are dynamical residues. The residues are shown to have local geometric
content as expected from formal analogies with the Riemannian case.

Résumé (Résidus dynamiques des fonctions zêta spectrales lorentziennes)
Nous définissons un résidu dynamique qui généralise la densité de résidus de Guillemin-

Wodzicki des opérateurs pseudo-différentiels. Plus précisément, étant donné un noyau de
Schwartz, la définition fait référence aux résonances de Pollicott-Ruelle pour la dynamique de
l’échelonnement vers la diagonale. Nous appliquons ce formalisme aux puissances complexes
de l’opérateur des ondes et nous prouvons que les résidus des fonctions zêta spectrales
lorentziennes sont des résidus dynamiques. Nous montrons que les résidus ont un contenu
géométrique local, comme prévu par les analogies formelles avec le cas riemannien.
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1. Introduction

1.1. Introduction and main results. — Suppose (M, g) is a compact Riemannian
manifold of dimension n, and let 4g be the Laplace–Beltrami operator. A classical
result in analysis, dating back to Minakshisundaram–Pleijel [47] and Seeley [58], states
that the trace density of (−4g)−α is well-defined for Reα > n/2 and extends to a
density-valued meromorphic function of the complex variable α. The meromorphic
continuation, henceforth denoted by ζg(α), gives after integrating onM the celebrated
spectral zeta function of −4g (or Minakshisundaram–Pleijel zeta function).

A fundamental fact shown independently by Wodzicki [71] and Guillemin [26] is
that each residue of ζg(α) equals an integral of a distinguished term in the polyho-
mogeneous expansion of the symbol of (−4g)−α. The so-defined Guillemin–Wodzicki
residue density is remarkable because it has an intrinsic meaning and involves local
geometric quantities, such as the scalar curvature Rg for even n > 4. It can also be in-
trinsically defined for more general classes of elliptic pseudo-differential operators (see
Section 3.2) and has a deep relationship with the Dixmier trace found by Connes [9]
(cf. Connes–Moscovici [10]).

If now (M, g) is a Lorentzian manifold (not necessarily compact), the corresponding
Laplace–Beltrami operator �g, better known as the wave operator or d’Alembertian,
is far from being elliptic. However, it was recently shown that if (M, g) is well-behaved
at infinity or has special symmetries, �g is essentially self-adjoint in L2(M, g) [14, 68,
50, 15], and consequently complex powers (�g − iε)−α can be defined by functional
calculus for any ε > 0. Furthermore, for large Reα, (�g − iε)−α has a well-defined
trace-density, which extends to a meromorphic function [13], denoted from now on
by ζg,ε(α). The residues of the so-obtained Lorentzian spectral zeta function density
ζg,ε(α) contain interesting geometric information (for instance the Lorentzian scalar
curvature Rg occurs in the residue at α = n/2 − 1 for even n > 4 [13]), so it is
natural to ask if these analytic residues coincide with a suitable generalization of the
Guillemin–Wodzicki residue.

The problem is that the notion of Guillemin–Wodzicki residue relies on the symbolic
calculus of pseudodifferential operators, and even though there is a natural general-
ization to Fourier integral operators due to Guillemin [27] (see also [30]), Lorentzian
complex powers fall outside of that class in view of their on-diagonal behavior. A priori
one needs therefore a more singular calculus, based for instance on paired Lagrangian
distributions [28, 45, 1, 25, 36, 37].

Instead of basing the analysis on a detailed symbolic calculus, the idea pursued in
the present paper (and implicit in the work of Connes–Moscovici [10]) is that regard-
less of how the calculus is obtained, terms of different order should be distinguished
by different scaling behavior as one approaches the diagonal ∆ ⊂ M × M of the
Schwartz kernel. We define the scaling as being generated by an Euler vector field X
(see Section 2.2), the prime example being X =

∑n
i=1 h

i∂hi if (x, h) are local coordi-
nates in which the diagonal is ∆ = {hi = 0, i = 1, . . . , n}. Now if u is a distribution
defined near ∆ ⊂ M ×M and it scales in a log-polyhomogeneous way, the Laplace

J.É.P. — M., 2022, tome 9



Dynamical residues of Lorentzian spectral zeta functions 1247

transform

(1.1) s 7−→
∫ ∞

0

e−ts
(
e−tXu

)
dt

is a meromorphic function with values in distributions, and the poles are called
Pollicott–Ruelle resonances [54, 57]. We define the dynamical residue resX u as the
trace density of XΠ0(u) where Π0(u) is the residue at s = 0 of (1.1).

As a first consistency check, we show that the dynamical residue and the Guillemin–
Wodzicki residue coincide for classical pseudodifferential operators (i.e., with one-step
polyhomogeneous symbol).

Theorem 1.1 (cf. Theorem 3.2). — For any classical A ∈ Ψm(M) with Schwartz ker-
nel KA, the dynamical residue resX KA is well-defined, independent on the choice
of Euler vector field X, and (resX KA) dvolg equals the Guillemin–Wodzicki residue
density of A.

Next, we consider the case of a Lorentzian manifold (M, g) of even dimension n.
The well-definiteness and meromorphic continuation of ζg,ε(α) is proved in [13] in the
setting of globally hyperbolic non-trapping Lorentzian scattering spaces introduced by
Vasy [68]. This class is general enough to contain perturbations of Minkowski space,
one can however expect that it is not the most general possible for which ζg,ε(α)

exists. For this reason, instead of making assumptions on (M, g) directly, we point
out the analytic properties which guarantee that ζg,ε(α) is a well-defined meromorphic
function. Namely, we assume that �g has Feynman resolvent, by which we mean that:
�g acting on C∞c (M) has a self-adjoint extension, and the resolvent (�g − z)−1

of this self-adjoint extension has Feynman wavefront set uniformly in Im z > 0.
The Feynman wavefront set condition roughly says that microlocally, the Schwartz

kernel of (�g − z)−1 has the same singularities as the Feynman propagator on
Minkowski space, i.e., the Fourier multiplier by (−ξ2

0 + ξ2
1 + · · · + ξ2

n−1 − i0)−1 (see
[21, 67, 69, 22, 23, 66] for results in this direction with fixed z). The precise meaning
of uniformity is given in Definition 5.5 and involves decay in z along the integration
contour used to define complex powers. We remark that outside of the class of
Lorentzian scattering spaces, �g is known to have Feynman resolvent for instance on
ultra-static spacetimes with compact Cauchy surface, see Dereziński–Siemssen [14]
for the self-adjointness and [13] for the microlocal estimates.

Our main result can be summarized as follows.

Theorem 1.2 (cf. Theorem 5.7). — Let (M, g) be a Lorentzian manifold of even di-
mension n, and suppose �g has Feynman resolvent. For all α ∈ C and Im z > 0, the
dynamical residue resX(�g − z)−α is well-defined and independent on the choice of
Euler vector field X. Furthermore, for all k = 1, . . . , n/2 and ε > 0,

(1.2) resX (�g − iε)−k = 2 res
α=k

ζg,ε(α),

where ζg,ε(α) is the spectral zeta function density of �g − iε.
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1248 N. V. Dang & M. Wrochna

By Theorem 1.1, the dynamical residue is a generalization of the Guillemin–
Wodzicki residue density. Thus, Theorem 1.2 generalizes to the Lorentzian setting
results known previously only in the elliptic case: the analytic poles of spectral zeta
function densities coincide with a more explicit quantity which refers to the scaling
properties of complex powers. In physicists’ terminology, this gives precise meaning
to the statement that the residues of ζg,ε(α) can be interpreted as scaling anomalies.

We also give a more direct expression for the l.h.s. of (1.2) which allows to make
the relation with local geometric quantities, see (5.4) in the main part of the text.
In particular, we obtain in this way the identity (which also follows from (1.2) and
[13, Th. 1.1]) for n > 4:

(1.3) lim
ε→0+

resX (�g − iε)−n/2+1
=

Rg(x)

3iΓ(n/2− 1) (4π)
n/2

.

This identity implies that the l.h.s. can be interpreted as a spectral action for gravity.

1.2. Summary. — The notion of dynamical residue is introduced in Section 2, pre-
ceded by preliminary results on Euler vector fields. A pedagogical model is given in
Section 2.5 and serves as a motivation for the definition.

The equivalence of the two notions of residue for pseudo-differential operators (The-
orem 1.1) is proved in Section 3. An important role is played by the so-called Kuranishi
trick which allows us to adapt the phase of quantized symbols to the coordinates in
which a given Euler field X has a particularly simple form.

The remaining two sections Sections 4–5 are devoted to the proof of Theorem 1.2.
The main ingredient is the Hadamard parametrix HN (z) for �g − z, the construction
of which we briefly recall in Section 4.1. Strictly speaking, in the Lorentzian case there
are several choices of parametrices: the one relevant here is the Feynman Hadamard
parametrix, which approximates (�g−z)−1 thanks to the Feynman property combined
with uniform estimates for HN (z) shown in [13]. The log-homogeneous expansion of
the Hadamard parametrix HN (z) is shown in Section 4.2 through an oscillatory inte-
gral representation with singular symbols. An important role is played again by the
Kuranishi trick adapted from the elliptic setting. However, there are extra difficul-
ties due to the fact that we do not work with standard symbol classes anymore: the
“symbols” are distribution-valued and special care is required when operating with
expansions and controlling the remainders. The dynamical residue is computed in Sec-
tion 4.3 with the help of extra expansions that exploit the homogeneity of individual
terms and account for the dependence on z.

Next, following [13] we introduce in Section 5.1 a generalization H
(α)
N (z) of the

Hadamard parametrix for complex powers (�g−z)−α, and we adapt the analysis from
Section 4. Together with the fact (discussed in Section 5.2) that H(α)

N (z) approximates
(�g − z)−α, this allows us to conclude the theorem.

As an aside, in the appendix we briefly discuss what happens when (�g − z)−α
is replaced by Q(�g − z)−α for an arbitrary differential operator Q. We show that
in this greater generality, the trace density still exists for large Reα and analytically
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continues to at least CrZ. This can be interpreted as an analogue of the Kontsevich–
Vishik canonical trace density [39] in our setting.

1.3. Bibliographical remarks. — Our approach to the Guillemin–Wodzicki residue
[71, 26] is strongly influenced by works in the pseudodifferential setting by Connes–
Moscovici [10], Kontsevich–Vishik [39], Lesch [40], Lesch–Pflaum [41], Paycha [52, 53]
and Maeda–Manchon–Paycha [43].

It also draws from the theory of Pollicott–Ruelle resonances [54, 57] in the analysis
and spectral theory of hyperbolic dynamics (see Baladi [2] for a review of the sub-
ject and further references), in particular from the work of Dyatlov–Zworski [19] on
dynamical zeta functions.

The Feynman wavefront set condition plays an important role in various develop-
ments connecting the global theory of hyperbolic operators with local geometry, in
particular in works on index theory by Bär–Strohmaier and other authors [3, 4, 59],
and on trace formulas and Weyl laws by Strohmaier–Zelditch [63, 65, 64] (including
a spectral-theoretical formula for the scalar curvature).

The Hadamard parametrix for inverses of the Laplace–Beltrami operator is a clas-
sical tool in analysis, see e.g. [34, 62, 72, 73] for the Riemannian or Lorentzian time-
independent case. For fixed z, the Feynman Hadamard parametrix is constructed
by Zelditch [72] in the ultra-static case and in the general case by Lewandowski [42],
cf. Bär–Strohmaier [4] for a unified treatment of even and odd dimensions. The present
work relies on the construction and the uniform in z estimates from [13], see also Sogge
[61], Dos Santos Ferreira–Kenig–Salo [17] and Bourgain–Shao–Sogge–Yao [6] for uni-
form estimates in the Riemannian case.

In Quantum Field Theory on Lorentzian manifolds, the Hadamard parametrix
plays a fundamental role in renormalization, see e.g. [16, 20, 38, 55, 48, 7, 32]. Other
rigorous renormalization schemes (originated in works by Dowker–Critchley [18] and
Hawking [31]) use a formal, local spectral zeta function or heat kernel, and their rela-
tionships with the Hadamard parametrix were studied by Wald [70], Moretti [48, 49]
and Hack–Moretti [29]. We remark in this context that in Theorem 1.2 we can re-
place globally defined complex powers (�g − z)−α with the local parametrix H(α)

N (z)

and correspondingly we can replace the spectral zeta density ζg,ε(α) by a local ana-
logue ζ loc

g,ε(α) defined using H(α)
N (z). This weaker, local formulation does not use the

Feynman condition and thus holds true generally.

Acknowledgments. — We thank the anonymous reviewers for their useful suggestions
and feedback. The authors are grateful to the MSRI in Berkeley and the Mittag–
Leffler Institute in Djursholm for their kind hospitality during thematic programs
and workshops in 2019–20.

2. Log-polyhomogeneous scaling and dynamical residue

2.1. Notation. — Throughout the paper, given a vector field V ∈ C∞(TM ) and a
smooth function f ∈ C∞(M ) on a smooth manifold M , we denote by etV : M 7→M ,
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1250 N. V. Dang & M. Wrochna

t ∈ R the flow generated by V , and by e−tV f := f(e−tV ·) ∈ C∞(M ) the pull-back
of f by the flow e−tV . Furthermore, when writing V f ∈ C∞(M ) we will mean that
the vector field V acts on f by Lie derivative, i.e., V f =

(
d
dt

(
etV f

))
|t=0.

2.2. Euler vector fields and scaling dynamics. — Let M be a smooth manifold,
and let ∆ = {(x, x) | x ∈ M} be the diagonal in M ×M . Our first objective is to
introduce a class of Schwartz kernels defined in some neighborhood of ∆, which have
prescribed analytical behavior under scaling with respect to ∆.

More precisely, an adequate notion of scaling is provided by the dynamics generated
by the following class of vector fields.

Definition 2.1 (Euler vector fields). — Let I ⊂ C∞(M ×M) be the ideal of smooth
functions vanishing at the diagonal ∆ = {(x, x) | x ∈ M} ⊂ M ×M and I k its
k-th power. A vector field X defined near the diagonal ∆ is called Euler if near ∆,
Xf = f + I 2 for all f ∈ I .

For the sake of simplicity, we will only consider Euler vector fields X scaling with
respect to the diagonal which in addition preserve the fibration π : M ×M 3 (x, y) 7→
x ∈ M projecting on the first factor. We refer to any such X simply as to an Euler
vector field.

In our definition, X only needs to be defined on some neighborhood of ∆ which is
stable by the dynamics. Euler vector fields appear to have been first defined by Mark
Joshi, who called them radial vector fields. They were used in his works [35, 37] for
defining polyhomogeneous Lagrangian and paired Lagrangian distributions by scaling.
Then unaware of Joshi’s work, it appeared in the first author’s thesis [11], see also
[12, Def. 1.1]. They were independently found by Bursztyn–Lima–Meinrenken [8], see
also [5] and the survey [44].

A consequence of the definition of Euler vector fields X is that if f ∈ I k then
Xf − kf ∈ I k+1 which is easily proved by induction using Hadamard’s lemma.
Another useful consequence of the definition of X is that we have the equation:

(2.1) (Xdf − df) |∆ = 0

for all smooth functions f defined near ∆, where Xdf means the vector field X acting
on the 1-form df by Lie derivative, and |∆ means the restriction on the diagonal. The
equation (2.1) can be easily checked by an immediate coordinate calculation. We view
df |∆ as a smooth section of T ∗M2, a 1–form, restricted over ∆.

Recall that for t ∈ R, etX is the flow of X at time t.

Example 2.2. — On R4, the dynamics etX :
(
R4
)2 3 (x, y) 7→ (x, et(y−x)+x) ∈

(
R4
)2

preserves the fibers of
(
R4
)2 3 (x, y) 7→ x ∈ R4.

Euler vector fields can be obtained from any torsion-free connection ∇ and the
geodesic exponential exp∇x : TxM → M defined using ∇. Namely, a geodesic Euler
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vector field is obtained by setting

Xf(x, y) =
d

dt
f
(
x, exp∇x (tv)

)
|t=1,

where y = exp∇x (v). Moreover, Euler vector fields form a particular class of the Morse–
Bott vector fields where ∆ is the critical manifold, the Morse index is 0 and all
Lyapunov exponents of X equal 1 or 0.

Let us describe in simple terms the dynamics of Euler vector fields.

Lemma 2.3 (Lyapunov exponents and bundles). — Let X be an Euler vector field.
There exists a unique subbundle N∆ ⊂ T∆ (M ×M) such that detX = et id : N∆ →
N∆.(1)

Proof. — The flow e−tX fixes ∆ hence the differential de−tX : TM2 → TM2 restric-
ted to ∆ defines a family of bundle isomorphisms de−tX : TM2|∆ → TM2|∆, ∀ t ∈ R.
Now using the group property of the flow e−tXe−sX = e−(t+s)X , we deduce that
de−tXde−sX = de−(t+s)X : TM2|∆ → TM2|∆. We define the bundle map LX :

TM2|∆ → TM2|∆ as d
dtde

tX |t=0, which is the linearized action of X localized at ∆.
By uniqueness of solutions to ODE and the group property of detX :TM2|∆→TM2|∆,
we find that detX = etLX : TM2|∆ → TM2|∆,∀ t ∈ R. Recall that for all smooth
germs f near ∆, we have Xdf = df |∆, we view df |∆ as a smooth section of T ∗M2

over ∆. Now we observe the following identity on 1-forms restricted over ∆:

∀ f, df = Xdf =
( d
dt

(
etXdf

) )∣∣
t=0

=
( d
dt
d
(
etXf

) )∣∣
t=0

=
( d
dt

(
df ◦ detX

) )∣∣
t=0

= L∗Xdf,

where L∗X : T ∗M2|∆ → T ∗M2|∆ is the transpose of LX . The above equation implies
that the eigenvalues of the bundle map LX : TM2|∆ 7→ TM2|∆ are 1 or 0. So we
define N∆ ⊂ TM2|∆ as the eigenbundle of LX for the eigenvalue 1. �

Lemma 2.4 (Stable neighborhood). — There exists a neighborhood U of ∆ in M ×M
such that U is stable by the backward flow, i.e., e−tXU ⊂ U for all t ∈ R>0.

The diagonal ∆ ⊂M ×M is a critical manifold of X and is preserved by the flow,
and U is the unstable manifold of ∆ in the terminology of dynamical systems. The
vector field X is hyperbolic in the normal direction N∆ as we will next see.

Proof of Lemma 2.4. — The idea is to observe that by definition of an Euler vector
field V , near any p ∈ ∆ we can choose an arbitrary coordinate frame (xi, hi) such
that ∆ is locally given by the equations {hi = 0} and X = (hi + Ai(x, h))∂hi where
Ai ∈ I 2. The fact that there is no component in the direction ∂xi comes from the
fact that our vector field X preserves the fibration with leaves x = constant.

Fix a compact K ⊂ M and consider the product K × M , which contains
∆K = {(x, x)∈M2 | x∈K} and is preserved by the flow. For the moment we work

(1)In the terminology of dynamical systems, this is a simple instance of a Lyapunov bundle.
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1252 N. V. Dang & M. Wrochna

in K ×M and we conclude a global statement later on. We also choose some
Riemannian metric g onM and consider the smooth function germM2 3 (m1,m2) 7→
d2
g(m1,m2) ∈ R>0 defined near the diagonal ∆K ⊂ K ×M , where dg is the distance

function. In the local coordinate frame (xi, hi)ni=1 defined near p, d2 reads

d2((x, 0), (x, h)) = Aij(x)hihj + O(|h|3),

where Aij(x) is a positive definite matrix. Thus setting f = d2 yields Xf = 2f +

O(|h|3) by definition of X and therefore there exists some ε > 0 such that

∀ (x, h) ∈ K ×M, f 6 ε =⇒ Xf > 0.

Observe that X log f = 2 + O(dg), X log(f)|∆K
= 2 and X log(f) is continuous

near ∆K . By compactness of K, there exists some ε > 0 such that if f 6 ε then
X log(f) > 3/2. We take UK = {f 6 ε} ∩K ×M .

The vector field X vanishes on ∆ therefore the flow e−tX preserves ∆. Assume
there exists (x, h) ∈ UK r ∆K such that e−TX(x, h) /∈ UK for some T > 0. Without
loss of generality, we may even assume that f(x, h) = ε. Then, let us denote

T1 = inf{t | t > 0, f(e−tX(x, h)) = ε},

which is intuitively the first time for which f(e−T1X(x, h)) = f(x, h) = ε. Since
(x, h) /∈ ∆K , we have −Xd2(x, h) 6 −(3/2)d2(x, h) < 0 and setting f = d2 yields

f(e−tX(x, h)) = f(x, h)− tXf(x, h) + O(t2),

which means that f(e−tX(x, h)) is strictly decreasing near t = 0, hence necessarily
T1 > 0. By the fundamental theorem of calculus,

f(e−T1X(x, h))− f(x, h) =

∫ T1

0

−(Xf)(e−sX(x, h))ds,

and since
−(Xf)(e−sX(x, h)) 6 −3

2
f(e−sX(x, h)) < 0

for all s ∈ [0, T1], we conclude that f(e−T1X(x, h)) < f(x, h) which yields a contra-
diction. So for all compact K ⊂ M , we found a neighborhood UK ⊂ K ×M of ∆K

(for the induced topology) which is stable by e−tX , t > 0. Then by paracompactness
of M , we can take a locally finite subcover of ∆ by such sets and we deduce the
existence of a global neighborhood U of ∆ which is stable by e−tX , t > 0. �

In the present section, instead of using charts, we favor a presentation using coor-
dinate frames, which makes notation simpler. The two viewpoints are equivalent since
given a chart κ : U ⊂M → κ(U) ⊂ Rn on some smooth manifold M of dimension n,
the linear coordinates (xi)ni=1 ∈ Rn∗ on Rn can be pulled back on U as a coordinate
frame (κ∗xi)ni=1 ∈ C∞(U ;Rn).

The next proposition gives a normal form for Euler vector fields.

Proposition 2.5 (Normal form for Euler vector fields). — Let X be an Euler vector
field. There exists a unique subbundle N∆ ⊂ T∆ (M ×M), such that detX = et id :

N∆→ N∆.

J.É.P. — M., 2022, tome 9
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For all p ∈ ∆, there exist coordinate functions (xi, hi)ni=1 defined near p such that
in these local coordinates near p, ∆ = {hi = 0} and X =

∑n
i=1 h

i∂hi ∀ i ∈ {1, . . . , n}.

Remark 2.6. — This result was proved in [11] and also later in the paper by Bursztyn–
Lima–Meinrenken [8], cf. the review [44]. Our proof here is different and more in the
spirit of the Sternberg–Chen linearization theorem.

Proof

Step 1. — We prove the dynamics contracts exponentially fast. We use the distance
function f = d2 and note that −X log(f) 6 −3/2 on the open set U constructed
in Lemma 2.4 therefore e−tXf 6 e−(3/2)tf by Gronwall Lemma. Consequently, there
exists a neighborhood U of ∆ such that for any function f ∈ I (f vanishes on
the diagonal ∆) and U is some bounded open subset, we have the exponential decay
‖e−tXf‖L∞(U) 6 Ce−Kt for some C > 0, K > 1/2 due to the hyperbolicity in the
normal direction of e−tX . Moreover, Hadamard’s lemma states that if f ∈ I k which
means f vanishes of order k, then locally we can always write f as

∑
|β|=k h

βgβ(x, h)

where h ∈ I and therefore gluing with a partition of unity yields a decay estimate of
the form

‖e−tXf‖L∞(U) 6 Ce
−Kkt,

where C > 0 and we have better exponential decay. So starting from the coordinates
(xi, hi) from the proof of Lemma 2.4, we will correct the coordinates (hi)ni=1 using
the exponential contractivity of the flow to obtain normal forms coordinates.

Step 2. — We now correct hi so that Xhi = hi modulo an element in I∞. First
observe that Xhi − hi ∈ I 2 by definition, therefore setting hi1 = hi + εi1, εi1 =

−(Xhi − hi)/2, we verify that

Xhi1 − hi1 ∈ I 3.

By recursion, we define a sequence (hik)ni=1, k ∈ N, defined as hik+1 = hik + εik+1 where
εik+1 =−(Xhik − hik)/k + 2 and we verify that for all k∈N, we have Xhik−hik∈I k+2.
By Borel’s lemma, we may find a smooth germ hi∞ ∼ hi +

∑∞
k=1 ε

i
k hence we deduce

that there exists (hi∞)ni=1 such that Xhi∞ − hi∞ ∈ I∞.

Step 3. — We use the flow to make the coordinate functions (hi∞)ni=1 exact solutions
of Xf = f . Set

h̃i = hi∞ −
∫ ∞

0

et
(
e−tX

(
(X − 1)hi∞

))
dt,

where the integrand converges absolutely since (X − 1)hi∞ ∈ I∞, hence

e−tX
(
(X − 1)hi∞

)
= O(e−tNK)

for all N > 0, where K > 1/2. The function h̃i is smooth since the ideal I∞ is stable
by derivatives therefore differentiating under the integral

∫∞
0
et
(
e−tX((X − 1)hi∞)

)
dt

does not affect the decay of the integral. So we obtain that for all i ∈ {1, . . . , n},
Xh̃i = h̃i which solves the problem since (xi, h̃i) is a germ of smooth coordinate
frame near p. �
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2.3. Log-polyhomogeneity. — Let X be an Euler vector field. One says that a dis-
tribution u ∈ D ′(U ) is weakly homogeneous of degree s with respect to scaling with X
if the family (ets(e−tXu))t∈R>0

is bounded in D ′(U ) (cf. Meyer [46]). One can also
introduce a more precise variant of that definition by replacing D ′(U ) with D ′Γ(U )

for some closed conic Γ ⊂ T ∗M2 r o, where D ′Γ(U ) is Hörmander’s space of distri-
butions with wavefront set in Γ (see [33, §8.2] for the precise definition). As shown in
[12, Th. 1.4], in the first situation without the wavefront condition, this defines a class
of distributions that is intrinsic, i.e., which does not depend on the choice of Euler
vector field X.

We consider distributions with the following log-polyhomogenous behaviour under
scaling transversally to the diagonal.

Definition 2.7 (log-polyhomogeneous distributions). — Let Γ be a closed conic set
such that for some X-stable neighborhood U of the diagonal,

∀ t > 0, e−tXΓ|U ⊂ Γ|U ,

Γ ∩ T ∗∆M2 = N∗∆.

We say that u ∈ D ′Γ(U ) is log-polyhomogeneous with respect to X if it admits the fol-
lowing asymptotic expansion under scaling: there exists p ∈ Z, ` ∈ N and distributions
(uk)∞k=p, 1 6 i 6 ` in D ′Γ(U ) such that for all N > 0 and all ε > 0,

(2.2) e−tXu =
∑

p6k6N
06i6`−1

e−tk
(−1)iti

i!
(X − k)

i
uk + OD′Γ(U )(e

−t(N+1−ε)).

A distribution is called polyhomogeneous if ` = 0. In contrast, a non-zero value for `
indicates the occurrence of logarithmic mixing under scaling.

We endow such distributions with a notion of convergence as follows: a sequence
of log-polyhomogeneous distributions un converges un → v in log-polyhomogeneous
distributions if un → v in D ′Γ(M), for every N each term in the asymptotic expan-
sion converge un,k → vk, k 6 N and the remainders un −

∑N
k=p un,k converge to

v −
∑N
k=p vk in the sense that

e−tX
(
un −

N∑
k=p

un,k −
(
v −

N∑
k=p

vk

))
= OD′Γ(U )(e

−t(N+1−ε))

for all ε > 0.

Thus, log-polyhomogeneous distributions have resonance type expansions under
scaling with the vector field X. We stress, however, that each distribution uk in the
expansion (2.2) is not necessarily homogeneous. In fact, it does not necessarily scale
like e−tXuk = e−tkuk, but we may have logarithmic mixing in the sense that:

e−tXuk =

`−1∑
i=0

e−tk
(−1)iti

i!
(X − k)

i
uk.
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This means that restricted to the linear span of (uk, (X − k)uk, . . . , (X − k)`−1uk),
the matrix of X reads

X


uk

(X − k)uk
...

(X − k)`−1uk

 =


k 1 0

k
. . .
. . . 1

0 k




uk
(X − k)uk

...
(X − k)`−1uk

 ,

so it has a Jordan block structure.
In the present paper, we will prove that log-polyhomogeneous distributions which

are Schwartz kernels of pseudodifferential operators with classical symbols as well as
Feynman propagators have no Jordan blocks for the resonance p 6 k < 0 and there
are Jordan blocks of rank 2 for all k > 0. In other words, (uk, (X − k)uk, (X − k)2uk)

are linearly dependent of rank 2 for every k > 0. We introduce special terminology to
emphasize this type of behaviour.

Definition 2.8 (Tame log-polyhomogeneity). — A distribution u ∈ D ′Γ(U ) is tame
log-polyhomogeneous with respect to X if it is log-polyhomogeneous with respect to X
and

e−tXu =
∑

p6k<0

e−tkuk +
∑

06k6N
06i61

e−tk
(−1)iti

i!
(X − k)

i
uk + OD′Γ(U )(e

−t(N+1−ε))

for all ε > 0, i.e., the Jordan blocks only occur for non-negative k and have rank at
most 2.

For both pseudodifferential operators with classical symbols and Feynman powers,
we will prove that the property of being log-polyhomogeneous is intrinsic and does
not depend on the choice of Euler vector field used to define the log-polyhomogeneity.
This generalizes the fact that the class of pseudodifferential operators with polyho-
mogeneous symbol is intrinsic.

2.4. Pollicott–Ruelle resonances of e−tX acting on log-polyhomogeneous distri-
butions. — For every tame log-polyhomogeneous distribution u ∈ D ′(U ) and ev-
ery n ∈ Z, we define a projector Πn which extracts the quasihomogeneous part
Πn(u) ∈ D ′(U ) of the distribution u.

Note that if a distribution u is log-polyhomogenous with respect to X, then for
any test form ϕ ∈ Ω•c(U ),(2) where U is X-stable, we have an asymptotic expansion:

〈
(e−tXu), ϕ

〉
=

N∑
k=p

06i6`−1

e−tk
(−1)iti

i!

〈
(X − k)iuk, ϕ

〉
+ O(e−tN ).

(2)We consider test forms because Schwartz kernels of operators are not densities and it is appro-
priate to consider them as differential forms of degree 0.
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The l.h.s. is similar to dynamical correlators studied in dynamics and the asymptotic
expansion is similar to expansions of dynamical correlators in hyperbolic dynamics.
So in analogy with dynamical system theory, we can define the Laplace transform
of the dynamical correlators and the Laplace transformed correlators have meromor-
phic continuation to the complex plane with poles along the arithmetic progression
{p, p+ 1, . . .}:∫ ∞

0

e−tz
〈
(e−tXu), ϕ

〉
dt =

N∑
k=p

06i6`−1

(−1)i
〈
(X − k)iuk, ϕ

〉
(z + k)i+1

+ holomorphic on Re z 6 N.

These poles are Pollicott–Ruelle resonances of the flow e−tX acting on log-poly-
homogeneous distributions in D ′(U ).

We can now use the Laplace transform to define the projector Πn which extracts
quasihomogeneous parts of distributions.

Definition 2.9. — Suppose u ∈ D ′(U ) is log-polyhomogeneous. Then for n ∈ Z we
define

Πn(u) :=
1

2iπ

∫
∂D

Lzu dz,

where Lzu =
∫∞

0
e−tz(e−tXu) dt and D ⊂ C is a small disc around n.

2.5. Residues as homological obstructions and scaling anomalies. — Before con-
sidering the general setting, let us explain the concept of residue in the follow-
ing fundamental example (which is closely related to the discussion in the work of
Connes–Moscovici [10, §5], Lesch [40], Lesch–Pflaum [41], Paycha [52, 53] and Maeda–
Manchon–Paycha [43]).

Let V ∈ C∞(TRn) be an Euler vector field with respect to 0 ∈ Rn, i.e., for all
f ∈ C∞(Rn), V f − f vanishes at 0 with order 2. For instance, we can consider
V =

∑n
i=1 ξ

i∂ξi , where (ξ1, . . . , ξn) are the Euclidean coordinates. This simplified
setting is meant to illustrate what happens on the level of symbols or amplitudes
rather than Schwartz kernels near ∆ ⊂ M ×M , but these two points of view are
very closely related. In our toy example, this simply corresponds to the relationship
between momentum variables ξi and position space variables hi by inverse Fourier
transform, see Remark 2.13.

Suppose u ∈ D ′,n(Rn r {0}) is a de Rham current of top degree which solves the
linear PDE:

(2.3) V u = 0 in the sense of D ′,n(Rn r {0}),

which means that the current u is scale invariant on Rn r {0}.

Lemma 2.10. — Under the above assumptions, ιV u is a closed current in the space
D ′,n−1(Rn r {0}), where ιV denotes the contraction with V .
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Proof. — The current ιV u is closed in D ′,n−1(Rn r {0}) by the Lie–Cartan formula
(dιV + ιV d) = V and the fact that u is closed as a top degree current:

dιV u = (dιV + ιV d)u = V u = 0. �

One can ask the question: is there a distributional extension u ∈ D ′,n(Rn) of u
which satisfies the same scale invariance PDE on Rn? The answer is positive unless
there is an obstruction of cohomological nature which we explain in the following
proposition.

Proposition 2.11 (Residue as homological obstruction). — Suppose u∈D ′,n(Rnr{0})
satisfies (2.3). Let χ ∈ C∞c (Rn) be such that χ = 1 near 0. Then dχ is an exact form
and the pairing between the exact form dχ and the closed current ιV u

〈dχ, ιV u〉 =

∫
Rn
dχ ∧ ιV u

does not depend on the choice of χ.
If moreover WF(u) ⊂ {(ξ, τdQ(ξ)) | Q(ξ) = 0, τ < 0} for some non-degenerate

quadratic form Q on Rn, then ∫
Sn−1

ιV u = 〈dχ, ιV u〉.

There is a scale invariant extension u of u if and only if the pairing 〈dχ, ιV u〉 = 0,
which is equivalent to saying that the current ιV u ∈ D ′,n−1(Rn) is closed.

Proof. — Since ιV u is closed and dχ is exact the cohomological pairing 〈dχ, ιV u〉 does
not depend on the choice of χ. In fact, as a de Rham current dχ ∈ D ′,1(Rn) lies in the
same cohomology class as the current [Sn−1] ∈ D ′,1(Rn) of integration on a sphere
Sn−1 enclosing 0.

If there is an extension u that satisfies V u = 0 in D ′,n(Rn), it means that the
current ιV u is closed in D ′,n−1(Rn) since dιV u = (dιV + ιV d)u = V u = 0. Then
by integration by parts (sometimes called the Stokes theorem for de Rham currents),
〈dχ, ιV u〉 = 〈dχ, ιV u〉 = −〈χ, V u〉 = 0 where we used the fact that dχ vanishes near 0

and u = u in a neighborhood of the support of dχ.
Conversely, assume the cohomological pairing vanishes: 〈dχ, ιV u〉 = 0. Let u be any

extension of u. Then 〈χ, V u〉 = 0 by integration by parts. But since u = u outside 0

and V u = 0 outside 0, the current V u is supported at 0 and by a classical theorem
of Schwartz must have the form

V u =

(
c0δ{0}(ξ) +

∑
16|α|6N

cα∂
α
ξ δ{0}(ξ)

)
dξ1 ∧ · · · ∧ dξn,

where all α are multi-indices and N is the distributional order of the current. Since
χ = 1 near 0, it means 〈χ, V u〉 = 0 = c0χ(0) = c0 = 0 hence the constant term
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vanishes. This means that

V u =
∑

16|α|6N

cα∂
α
ξ δ{0}(ξ)dξ

1 ∧ · · · ∧ dξn,

u−
∑

16|α|6N

cα
|α|

∂αξ δ{0}(ξ)dξ
1 ∧ · · · ∧ dξn extends u,

V

(
u−

∑
16|α|6N

cα
|α|

∂αξ δ{0}(ξ)dξ
1 ∧ · · · ∧ dξn

)
= 0.and

When WF(u) ⊂ {(ξ, τdQ(ξ)) | Q(ξ) = 0, τ < 0} then WF(u) does not meet the
conormal of Sn−1 and therefore we can repeat the exact above discussion with the
indicator function 1B of the unit ball B playing the role of χ, since the distributional
product 1Bu is well-defined because WF(1B) + WF(u) never meets the zero section.
Then we obtain the residue from the identity ∂1B = [Sn−1] for currents where [Sn−1]

is the integration current on the sphere Sn−1. �

The quantity 〈dχ, ιV u〉 =
〈
[Sp−1], [ιV u]

〉
, called residue or residue pairing, measures

a cohomological obstruction to extend u as a solution u solving V u = 0. In fact, a slight
modification of the previous proof shows that there is always an extension u which
satisfies the linear PDE

V u = 〈dχ, ιV u〉 δ{0}dξ1 ∧ · · · ∧ dξn.

We show a useful vanishing property of certain residues.

Corollary 2.12 (Residue vanishing). — Let Q be a nondegenerate quadratic form
on Rn. Suppose u ∈ D ′(Rn r {0}) is homogeneous of degree −n+ k > −n and

WF(u) ⊂ {(ξ, τdQ(ξ)) | Q(ξ) = 0, τ < 0}.

Then for every multi-index β such that |β| = k > 0,∫
Sn

(
∂βξ u

)
ιV dξ1 · · · dξn = 0.

Proof. — Let 1B be the indicator function of the unit ball B. We denote by u, the
unique distributional extension of u ∈ D ′(Rnr{0}) in S ′(Rn) which is homogeneous
of degree −n + k by [33, Th. 3.2.3, p. 75]. Therefore using the commutation relation
[V, ∂βξ ] = −|β| = −k yields immediately that ∂βξ u is a distribution homogeneous of
degree −n and thus V (∂βξ u d

nξ) = 0. Then, by Proposition 2.11, the residue equals∫
Sn−1

(
∂βξ u

)
ιV dξ1 · · · dξn =

∫
Rn

(∂1B) ιV ∂
β
ξ u d

nξ = 0,

where the pairing is well-defined since N∗(Sn−1) ∩WF(u) = ∅. �

Remark 2.13 (Residue as scaling anomaly). — Let u ∈ D ′,n(Rn r {0}) be a current
of top degree, homogeneous of degree 0 with respect to scaling and denote by u ∈
D ′,n(Rn) its unique distributional extension of order 0. Denote by

(
F−1u

)
(h) =

1
(2π)n 〈u, e

i〈h,·〉〉 ∈ S ′(Rn) its inverse Fourier transform.
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Then the tempered distribution F−1u satisfies the equations:

F−1u(λ·) = F−1u(·) + c log λ,

XF−1u = c,

where X =
∑n
i=1 h

i∂hi is the Euler vector field in position space and

c =
1

(2π)n

∫
Rn
dχ ∧ ιV u

is the residue. Therefore, residues defined as homological obstructions also arise as
scaling anomalies.

This interpretation of residues as scaling anomalies have appeared in the first au-
thor’s thesis [11, §8] as well as in the physics literature on renormalization in Quantum
Field Theory in the Epstein–Glaser approach [51, 24, 56].

2.6. Dynamical definition of residue. — After this motivation, we come back to
the setting of an Euler vector field X acting on a neighborhood of the diagonal
∆ ⊂M ×M .

As we will explain, our approach to the Wodzicki residue uses scalings with Euler
vector fields and a diagonal restriction. Let ι∆ : x 7→ (x, x) ∈ ∆ ⊂M ×M denote the
diagonal embedding. We are ready to formulate our main definition.

Definition 2.14 (Dynamical residue). — Let K ∈ D ′Γ(U ) be a tame log-polyhomo-
geneous distribution on some neighborhood U of the diagonal ∆ ⊂ M × M and
suppose Γ|∆ ⊂ N∗∆. For any Euler vector field X, let Π0 be the corresponding
spectral projector on the resonance 0, see Definition 2.9. We define the dynamical
residue of K as:

resXK = ι∗∆
(
X(Π0(K ))

)
∈ C∞(M),

provided that the pull-back is well-defined.

A priori, the dynamical residue can depend on the choice of Euler vector field X
and it is not obvious that one can pull-back the distribution X(Π0(K )) by the diag-
onal embedding. We need therefore to examine the definition carefully for classes of
Schwartz kernels that are relevant for complex powers of differential operators.

3. Equivalence of definitions in pseudodifferential case

3.1. Log-polyhomogeneity of pseudodifferential operators. — In this section,
M is a smooth manifold of arbitrary dimension.

We denote by |Λ>M | the space of smooth densities on M . For any operator
A : C∞c (M)→ D ′(M), recall that the corresponding Schwartz kernel is a distribution
on M ×M twisted by some smooth density. More precisely, the kernel of A belongs
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to D ′(M ×M)⊗ π∗2 |Λ>M | where π2 is the projection on the second factor and reads
K (x, y) dvolg(y) where K ∈ D ′(M ×M) and dvolg ∈ |Λ>M |.(3)

In this part, we need to fix a density dvolg ∈ |Λ>M | on our manifold M since given
a linear continuous operator from C∞c (M) → D ′(M), its Schwartz kernel K and
hence its dynamical residue depends on the choice of density. However, we will see in
the sequel that the product: (dynamical residue × density) ∈ |Λ>M | does not depend
on the choice of density.

We first prove that pseudodifferential kernels are tame log-polyhomogeneous with
respect to any Euler vector field X.

Proposition 3.1. — Let K (· , ·)π∗2 dvolg ∈ D ′N∗∆(M ×M) ⊗ π∗2 |Λ>M | be the kernel
of a classical pseudodifferential operator A ∈ Ψα

cl(M), α ∈ C. Then for every Euler
vector field X, there exists an X-stable neighborhood of the diagonal U such that K

is tame log-polyhomogeneous with respect to X.
In particular,

LsK :=

∫ ∞
0

(
e−t(X+s)K

)
dt ∈ D ′N∗∆(U )

is a well-defined conormal distribution and extends as a meromorphic function of
s ∈ C with poles at s ∈ α+ n− N.

If α > −n is an integer, the poles at s = k are simple when k < 0 and of multiplicity
at most 2 when k > 0. If α ∈ C r [−n,+∞[ ∩ Z then all poles are simple and
Π0(K ) = 0.

In the proof, we make a crucial use of the Kuranishi trick, which allows us to
represent a pseudodifferential kernel in normal form coordinates for a given Euler
vector field X. Concretely, in local coordinates, the phase term used to represent the
pseudodifferential kernel as an oscillatory integral reads ei〈ξ,x−y〉, yet we would like
to write it in the form ei〈ξ,h〉 where X =

∑n
i=1 h

i∂hi . We also need to study how
the symbol transforms in these normal form coordinates and to verify that it is still
polyhomogeneous in the momentum variable ξ. Our proof can be essentially seen as a
revisited version of the theorem of change of variables for pseudodifferential operators
combined with scaling of polyhomogeneous symbols.

Proof of Proposition 3.1

Step 1. — Outside the diagonal the Schwartz kernel K is smooth, hence for any test
form χ1 ∈ C∞c (M ×M r ∆) and any smooth function ψ ∈ C∞(M ×M) supported
away from the diagonal, 〈

e−tX(K ψ), χ
〉

= O((e−t)+∞).

This shows we only need to prove the tame log-polyhomogeneity for a localized version
of the kernel near the diagonal ∆ ⊂M ×M .

(3)In fact, Au =
∫
y∈M K (· , y)u(y) dvolg(y) ∀u ∈ C∞c (M). Neither K ∈ D ′(M×M) nor dvolg ∈

|Λ>M | are intrinsic, but their product is.
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Step 2. — Then, by partition of unity, it suffices to prove the claim on sets of the form
U × U ⊂ M ×M . By the results in [40], in a local chart κ2 : U × U → κ(U)× κ(U)

with linear coordinates (x, y) = (xi, yi)ni=1, the pseudodifferential kernel reads:(
κ2
∗K

)
(x, x− y) =

1

(2π)n

∫
ξ∈Rn

ei〈ξ,x−y〉a(x; ξ)dnξ ∈ C∞(κ(U)× Rn r {0}),

where a(x; ξ) ∼
∑+∞
k=0 aα−k(x; ξ) and ak ∈ C∞(κ(U)×Rnr {0}) satisfies ak(x;λξ) =

λka(x; ξ), λ > 0 for |ξ| > 0. The normal form in Proposition 2.5 yields the existence of
coordinate functions (xi, hi)ni=1, where (xi)ni=1 are the initial linear coordinates, such
that κ2

∗X =
∑n
i=1 h

i∂hi . We also view the coordinates (hi)ni=1 as coordinate functions(
hi(x, y)

)n
i=1

on κ2(U × U), we also use the short notation

h(x, y) = (hi(x, y))ni=1 ∈ C∞(κ(U)2,Rn).

By the Kuranishi trick, the kernel κ2
∗K can be rewritten as

κ2
∗K (x, x− y) =

1

(2π)n

∫
ξ∈Rn

ei〈ξ,h(x,y)〉a(x; tM(x, y)−1ξ) |M(x, y)|−1
dnξ

∈ C∞(κ(U)× Rn r {0}),

where |M(x, y)| = detM(x, y), and the matrix M ∈ C∞(κ(U)2,GLn(R)) satisfies
M(x, x) = id, x − y = M(x, y)h(x, y). Since (xi, yi)ni=1 and (xi, hi)ni=1 are both
coordinates systems in κ(U) × κ(U), we can view (x − y) = (xi − yi)ni=1(· , ·) ∈
C∞(κ(U) × Rn,Rn) as a smooth function of (x, h) ∈ κ(U) × Rn and M−1(x, h) can
be expressed as an integral:

M−1(x, h) =

∫ 1

0

d(x− y)|(x,th)dt.

Step 3. — We need to eliminate the dependence in the h variable in the symbol
A(x, y; ξ) = a(x; tM(x, y)−1ξ) |M(x, y)|−1 keeping in mind this symbol has the poly-
homogeneous expansion in the ξ variable

A(x, y; ξ) ∼
+∞∑
k=0

aα−k(x; tM(x, y)−1ξ) |M(x, y)|−1
.

By [60, Th. 3.1], if we set A(x, y; ξ) = a(x; tM(x, y)−1ξ) |M(x, y)|−1, then:

A(x, y; ξ) ∼
∑
β

i−|β|

β!
∂βξ ∂

β
yA(x, y; ξ)|x=y,

which implies that if we set Aα−k(x, y; ξ) = aα−k(x; tM(x, y)−1ξ) |M(x, y)|−1, we get
the polyhomogeneous asymptotic expansion:

(3.1) A(x, y; ξ) ∼
+∞∑
p=0

∑
|β|+k=p

i−|β|

β!
∂βξ ∂

β
yAα−k(x, y; ξ)|x=y,
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where in the sum over p, each term is homogeneous of degree α − p with respect
to scaling in the variable ξ. At this step, we obtain a representation of the form(

κ2
∗K

)
(x, x− y) =

1

(2π)n

∫
ξ∈Rn

ei〈ξ,h(x,y)〉ã(x; ξ)dnξ ∈ C∞(κ(U)× Rn r {0}),

where ã ∈ C∞(κ(U)× Rn) is a polyhomogeneous symbol.

Step 4. — It is at this particular step that we start to carefully distinguish between
the cases α ∈ C r ([−n,+∞[ ∩ Z)), which is in a certain sense easier to handle, and
the case where α is an integer such that α > −n. Up to a modification of K with a
smoothing operator, we can always assume that ã is smooth in ξ and supported in
|ξ| > 1. For every N , let us decompose

ã(x; ξ) =

N∑
k=0

ãα−k(x; ξ) +Rα−N (x; ξ),

where the behaviour of the summands can be summarized as follows:
(1) Rα−N ∈ C∞ (κ(U)× Rn r {0}) and satisfies the estimate

∀ ξ such that |ξ| > 1, ∀x ∈ κ(U), |∂βξ Rα−N (x; ξ)| 6 Cα−N,β |ξ|α−N−β ,

and Rα−N (x; ·) extends as a distribution in κ(U)×Rn of order N −α−n+ 1 by [12,
Th. 1.8] since Rα−N (x; ·) satisfies the required weak homogeneity assumption.

(2) If α−k > −n, then the symbol ãα−k ∈ C∞ (κ(U)× Rn r {0}) is homogeneous
of degree α− k and extends uniquely as a tempered distribution in ξ homogeneous of
degree α− k by [33, Th. 3.2.3].

(3) If α − k 6 −n and α ∈ C r ([−n,+∞[ ∩ Z), then observe that α − k ∈
C r ([−n,+∞[ ∩ Z) hence ãα−k ∈ C∞ (κ(U)× Rn r {0}) is homogeneous of degree
α − k in ξ and extends uniquely as a tempered distribution in ξ homogeneous of
degree α − k by [33, Th. 3.2.4]. If α − k 6 −n and α > −n is an integer, then
ãα−k ∈ C∞ (κ(U)× Rn r {0}) is homogeneous of degree α−k in ξ and extends non–
uniquely as a tempered distribution in ξ quasihomogeneous of degree α − k by [33,
Th. 3.2.4]. There are Jordan blocks in the scaling (see [33, (3.2.24)′]), in the sense that
we can choose the distributional extension in C∞(κ(U),S ′(Rn)) in such a way that:

(ξi∂ξi − α+ k) ãα−k =
∑

|β|=k−α−n

Cβ(x)∂βξ δ
Rn
{0}(ξ).

Step 5. — We now study the consequences of the above representation in position
space. If α > −n is an integer then we have

1

(2π)n

∫
ξ∈Rn

ei〈ξ,h〉ã(x; ξ)dnξ =

α+n−1∑
k=0

Tn+α−k(x, h) +

N∑
k=α+n

Tn+α−k(x, h)

+
1

(2π)n

∫
ξ∈Rn

ei〈ξ,h〉Rα−N (x; ξ)dnξ,
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where
Tn+α−k(x, h) =

1

(2π)n

∫
ξ∈Rn

ei〈ξ,h〉ãα−k(x; ξ)dnξ.

It follows that by inverse Fourier transform, when α − k > −n, Tn+α−k(x, ·) is tem-
pered in the variable h and is homogeneous in the sense of tempered distributions:

∀λ > 0, Tn+α−k(x, λh) = λk−n−αTn+α−k(x, h).

When α−k 6 −n, the distribution Tn+α−k is quasihomogeneous in the variable h,
i.e., when we scale with any λ > 0 with respect to h there is a log λ which appears in
factor:

〈Tn+α−k(x, λ·), ϕ〉

= λn−α+k 〈Tn+α−k(x, ·), ϕ〉+ λn−α+k log λ〈(X − α+ k)Tn+α−k(x, ·), ϕ〉.

Observe that the remainder term reads:
1

(2π)n

∫
ξ∈Rn

ei〈ξ,h〉Rα−N (x; ξ)dnξ,

which belongs to CN−α−n since for χ ∈ C∞c (Rn), χ = 1 near ξ = 0, we get:

|(1− χ)(ξ)Rα−N (x; ξ)| 6 Cα−N (1 + |ξ|)α−N ,

which implies that∫
ξ∈Rn

ei〈ξ,h〉(1− χ)(ξ)Rα−N (x; ξ)dnξ ∈ CN−α−n

by [13, Lem.D.2] and we can also observe that
∫
ξ∈Rn e

i〈ξ,h〉χ(ξ)Rα−N (x; ξ)dnξ is an-
alytic in h by the Paley–Wiener theorem. If α ∈ Cr ([−n,+∞[ ∩ Z), then we have a
simpler decomposition

1

(2π)n

∫
ξ∈Rn

ei〈ξ,h〉ã(x; ξ)dnξ =

N∑
k=0

Tn+α−k(x, h) +
1

(2π)n

∫
ξ∈Rn

ei〈ξ,h〉Rα−N (x; ξ)dnξ,

where each Tn+α−k(x, h) is smooth in x and a tempered distribution in h homogeneous
of degree n+ α− k (there are no logarithmic terms).

Step 6. — Observe that in the new coordinates (x, h), the scaling with respect to X
takes the simple form

(
e−tXf

)
(x, h) = f(x, e−th) for smooth functions f . So the

provisional conclusion for integer α > −n is that when we scale with respect to the
Euler vector field, we get an asymptotic expansion in terms of conormal distributions:

e−tXK =

α+n−1∑
k=0

e−(n+α−k)tTn+α−k + T0 + t (XT0)

+

N∑
k=α+n

e−(n+α−k)t (Tn+α−k + t(X − (k − α− n))Tn+α−k) +R(x, e−th),
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where C0 = XT0 and the remainder term R is a Hölder function of regularity CN−α−n

so it has a Taylor expansion up to order N −α− n. By taking the Laplace transform
in the variable t, for any test form χ, we find that the dynamical correlator∫ ∞

0

e−ts〈(e−tXK ), χ〉dt

admits an analytic continuation to a meromorphic function on Cr{n−α, . . . , 0,−1, . . .}
with simple poles at {n − α, . . . , 1} and poles of order at most 2 at the points
{0,−1, . . . , }. We have a Laurent series expansion of the form:

∫ ∞
0

e−ts(e−tXK )dt =

α+n−1∑
k=0

Tn+α−k

s+ k − α− n
+
T0

s
+
XT0

s2

+
N∑

k=α+n

Tn+α−k

s+ k − α− n
+

(X − k + α+ n)Tn+α−k

(s+ k − α− n)2
+

∫ ∞
0

e−tsR(x, e−th)dt,

where the term
∫∞

0
e−tsR(x, e−th)dt is holomorphic on the half-plane Re s > 0 and

meromorphic on the half-plane Re s > α + n − N due to the Hölder regularity R ∈
CN−α−n.

If α ∈ C r ([−n,+∞[ ∩ Z), then the above discussion much simplifies because of
the absence of logarithmic mixing and we find that

∫∞
0
e−ts

(
e−tXK

)
dt extends as a

meromorphic function with only simple poles at n−α, n− 1−α, . . . , and therefore 0

is not a pole of LsK . It means that Π0(K ) = 0 when α ∈ Cr ([−n,+∞[ ∩ Z). �

3.2. Dynamical residue equals Wodzicki residue in pseudodifferential case

The log-polyhomogeneity of pseudodifferential Schwartz kernels ensures that their
dynamical residue is well-defined. Our next objective is to show that it coincides with
the Guillemin–Wodzicki residue.

More precisely, if Ψm
cl (M) is the class of classical pseudodifferential operators of

order m, we are interested in the Guillemin–Wodzicki residue density of A ∈ Ψm
cl (M),

which can be defined at any x ∈ M as follows. In a local coordinate chart κ : U 7→
κ(U) ⊂ Rn, the symbol a(x; ξ) is given by

(κ∗A (κ∗u)) (x) =
1

(2π)n

∫
Rn×Rn

ei〈ξ,x−y〉a(x; ξ)u(y) dnξ dny

for all u ∈ C∞c (κ (U)), and one defines the density

W-resA :=
1

(2π)n

(∫
Sn−1

a−n(x; ξ)ιV d
nξ

)
dnx ∈ |Λ>M |,

where V =
∑n
i=1 ξi∂ξi and a−n is the symbol of order −n in the polyhomogeneous

expansion. If for instance M is compact then the Guillemin–Wodzicki residue is ob-
tained by integrating over x. In what follows we will only consider densities as this
allows for greater generality.
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Note that when A ∈ Ψm
cl (M) with m ∈ C r [−n,+∞[ ∩ Z then the above residue

vanishes because in this case there is no term homogeneous of degree −n in the
asymptotic expansion of the symbol.

It is proved in [40, Prop. 4.5] that the residue density is intrinsic. This is related
to the fact that in the local chart, dnx dnξ is the Liouville measure, which is intrinsic
and depends only on the canonical symplectic structure on T ∗M .

Theorem 3.2 (Wodzicki residue, dynamical formulation). — Let M be a smooth man-
ifold and let KA(· , ·)π∗2 dvolg ∈ D ′N∗∆(M ×M)⊗ π∗2 |Λ>M | be the kernel of a classical
pseudodifferential operator A ∈ Ψα

cl(M) of order α ∈ C. Then, for every Euler vector
field X we have the identity

(3.2) W-resA = (resXKA) dvolg,

where W-resA ∈ |Λ>M | is the Guillemin–Wodzicki residue density of A and resXKA =

ι∗∆X(Π0(KA)) is the dynamical residue of KA. If α ∈ C r [−n,+∞[ ∩ Z then both
sides of the above equality vanish.

In particular, (resXKA) dvolg does not depend on X.

Proof of Theorem 3.2. — We use the notation from the proof of Proposition 3.1. Recall
that

Π0(KA)(x, h) = T0(x, h) =
1

(2π)n

∫
ξ∈Rn

ei〈ξ,h〉ã−n(x; ξ)dnξ,

where the oscillatory integral representation uses the homogeneous components of the
symbol denoted by ã ∈ C∞(κ(U)×Rn); this symbol ã was constructed from the initial
symbol a ∈ C∞(κ(U)×Rn) using the Kuranishi trick and is adapted to the coordinate
frame (x, h) ∈ C∞(κ(U) × Rn,R2n) in which X has the normal form κ2

∗X = hi∂hi .
Let us examine the meaning of the term XT0 and relate it to the Wodzicki residue.
By Proposition 2.11, the residue is the homological obstruction for the term ã−n(x; ·)
to admit a scale invariant distributional extension to κ(U) × Rn. By Remark 2.13,
this reads

(ξi∂ξi − n)ã−n(x; ξ) =

(∫
|ξ|=1

ã−n(x; ξ)ι∑n
i=1 ξi∂ξi

dnξ

)
δ{0}(ξ),

where ι∑n
i=1 ξi∂ξi

is the contraction operator by the vector field
∑n
i=1 ξi∂ξi in the

Cartan calculus. By inverse Fourier transform,

XT0 =
1

(2π)n

(∫
|ξ|=1

ã−n(x; ξ)ι∑n
i=1 ξi∂ξi

dnξ

)
,

which is a smooth function of x ∈ κ(U). We are not finished yet since the Wodzicki
residue density is defined in terms of the symbol a(x; ξ) ∈ C∞(κ(U)×Rn) we started
with. Let us recall that a is defined in such a way that

κ2
∗KA(x, x− y) =

1

(2π)n

∫
ξ∈Rn

ei〈ξ,x−y〉a(x; ξ)dnξ,
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and the Wodzicki residue equals

W-res(A)(x) =
1

(2π)n

∫
|ξ|=1

a−n(x; ξ)ι∑n
i=1 ξi∂ξi

dnξ.

We use the identity from equation (3.1):

ã(x; ξ) ∼ A(x, y; ξ) ∼
∞∑
p=0

∑
|β|+k=p

i−|β|

β!

(
∂βξ ∂

β
yAα−k

)
(x, y; ξ)|x=y.

For the residue computation, we need to extract the relevant term ã−n on the
r.h.s. which is homogeneous of degree −n, so we need to set α − p = −n hence
p = n+ α. This term reads

ã−n(x; ξ) =
∑

|β|+k=n+α

i−|β|

β!

(
∂βξ ∂

β
yAα−k)(x, y; ξ

)
|x=y.

We now make the crucial observation that for all x ∈ κ(U),∫
|ξ|=1

ã−n(x; ξ) ι∑n
i=1 ξi∂ξi

dnξ

=
∑

|β|+k=n+α

∫
|ξ|=1

i−|β|

β!
∂βξ ∂

β
yAα−k−β(x, y; ξ)|x=y ι∑n

i=1 ξi∂ξi
dnξ

=

∫
|ξ|=1

A−n(x, y; ξ)|x=y ι∑n
i=1 ξi∂ξi

dnξ =

∫
|ξ|=1

a−n(x; ξ) ι∑n
i=1 ξi∂ξi

dnξ

by the vanishing property (Corollary 2.12), which implies that the integral of all the
terms with derivatives vanish. Therefore by inverse Fourier transform, we find that

C0(x) =
1

(2π)n

∫
|ξ|=1

a−n(x; ξ)ι∑n
i=1 ξi∂ξi

dnξ.

The residue density (∫
|ξ|=1

a−n(x; ξ)ι∑n
i=1 ξi∂ξi

dnξ

)
dnx

is intrinsic as proved by Lesch [40, Prop. 4.5] (it is defined in coordinate charts but
satisfies some compatibility conditions that makes it intrinsic on M). To conclude
observe thatX2T0 = 0,(4) hence by the Cauchy formula, for any small discD around 0:

1

2iπ

∫
∂D

(XKA)(z)dz|U×U = (XT0)(x, y)|U×U =
1

(2π)n

∫
|ξ|=1

a−n(x; ξ) ι∑n
i=1 ξi∂ξi

dnξ,

which in combination with the fact that y 7→ (XT0)(x, y) is locally constant
proves (3.2) on U . The above identity globalizes immediately, which finishes the
proof. �

(4)This is a consequence of the Jordan blocks having only rank 2.
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4. Holonomic singularities of the Hadamard parametrix

4.1. Hadamard parametrix. — We now consider the setting of a time-oriented
Lorentzian manifold (M, g), and we assume it is of even dimension n.

Let P = �g be the wave operator (or d’Alembertian), i.e., it is the Laplace–
Beltrami operator associated to the Lorentzian metric g. Explicitly, using the notation
|g| = |det g|,

P = |g(x)|−1/2
∂xj |g(x)|1/2 gjk(x)∂xk

= ∂xjg
jk(x)∂xk + bk(x)∂xk ,

where we sum over repeated indices, and bk(x) = |g(x)|−1/2
gjk(x)(∂xj |g(x)|1/2). For

Im z > 0 we consider the operator P − z.
The Hadamard parametrix for P−z is constructed in several steps which we briefly

recall following [13].

Step 1. — Let η = dx2
0 − (dx2

1 + · · · + dx2
n−1) be the Minkowski metric on Rn, and

consider the corresponding quadratic form

|ξ|2η = −ξ2
0 +

n−1∑
i=1

ξ2
i ,

defined for convenience with a minus sign. For α ∈ C and Im z > 0, the distribution(
|ξ|2η − z

)−α is well-defined by pull-back from R. More generally, for Im z > 0, the
limit

(
|ξ|2η − z − i0

)−α
= limε→0+

(
|ξ|2η − z − iε

)−α from the upper half-plane is well
defined as a distribution on Rn r {0}. If z 6= 0 it can be extended to a family of
homogeneous distributions on Rn, holomorphic in α ∈ C (and to a meromorphic
family if z = 0). We introduce special notation for its appropriately normalized Fourier
transform,

(4.1) Fα(z, |x|η) :=
Γ(α+ 1)

(2π)n

∫
ei〈x,ξ〉

(
|ξ|2η − i0− z

)−α−1
dnξ,

which defines a family of distributions on Rn, holomorphic in α ∈ C r {−1,−2, . . .}
for Im z > 0, z 6= 0.

Step 2. — Next, one pulls back the distributions Fα(z, |·|η) to a neighborhood of the
diagonal ∆ ⊂M ×M using the exponential map.

More precisely, this can be done as follows. Let expx : TxM →M be the exponential
geodesic map. We consider a neighborhood of the zero section o in TM on which the
map

(4.2) (x; v) 7−→ (x, expx(v)) ∈M2

is a local diffeomorphism onto its image, denoted by U . Let (e1, . . . , en) be a local
time-oriented orthonormal frame defined on an open set and (si)ni=1 the corresponding
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coframe. For (x1, x2) ∈ U (with x1, x2 in that open set), we define the map

G : (x1, x2) 7−→
(
Gi(x1, x2) = six1︸︷︷︸

∈T∗x1
M

(exp−1
x1

(x2))︸ ︷︷ ︸
∈Tx1M

)n
i=1
∈ Rn.

Here, (x1, x2) 7→ (x1; exp−1
x1

(x2)) is a diffeomorphism as it is the inverse of (4.2), and
so G is a submersion.

For any distribution f in D ′(Rn), we can consider the pull-back (x1, x2) 7→
G∗f(x1, x2), and if f is O(1, n − 1)↑+-invariant, then the pull-back does not depend
on the choice of orthonormal frame (eµ)µ. This allows us to canonically define the
pullback G∗f ∈ D ′(U ), of O(1, n − 1)↑+-invariant distributions to distributions
defined on an open set U which is in fact a neighborhood of the diagonal ∆.

Definition 4.1. — For α ∈ C, the distribution Fα(z, ·) = G∗Fα(z, |·|η) ∈ D ′(U ) is
defined by pull-back of the O(1, n − 1)↑+-invariant distribution Fα(z, |·|η) ∈ D ′ (Rn)

introduced in (4.1).

Step 3. — The Hadamard parametrix is constructed in normal charts using the family
Fα(z, ·). Namely, for fixed x0 ∈ M , we express the distribution x 7→ Fα(z, x0, x) in
normal coordinates centered at x0, defined on some U ⊂ Tx0

M . Instead of using the
somewhat heavy notation Fα(z, x0, expx0

(·)) we will simply write Fα(z, |·|g) ∈ D ′(U).
One then looks for a parametrix HN (z) of order N of the form

HN (z) =

N∑
k=0

ukFk(z, |·|g) ∈ D ′(U),

and after computing (P − z)HN (z, ·) one finds that the sequence of functions (uk)∞k=0

in C∞(U) should solve the hierarchy of transport equations

2kuk + bi(x)ηijx
juk + 2xi∂xiuk + 2Puk−1 = 0

with initial condition u0(0) = 1, where by convention uk−1 = 0 for k = 0, and we
sum over repeated indices. The transport equations have indeed a unique solution,
and they imply that on U , HN (z, ·) solves

(P − z)HN (z, ·) = |g|−1/2
δ0 + (PuN )FN .

Step 4. — The final step consists in considering the dependence on x0 to obtain a
parametrix on the neighborhood U of the diagonal. One shows that U 3 (x1, x2) 7→
uk(s(exp−1

x1
(x2))) is smooth in both arguments, and since Fα(z, ·) is already defined

on U ,

HN (z, x1, x2) =

N∑
k=0

uk(s(exp−1
x1

(x2)))Fα(z, x1, x2)

is well defined as a distribution on U . Dropping the exponential map in the nota-
tion from now on for simplicity, the Hadamard parametrix HN (z, ·) of order N is by
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definition the distribution

HN (z, ·) =

N∑
k=0

ukFk(z, ·) ∈ D ′(U ).

Finally, we use an arbitrary cutoff function χ ∈ C∞(M2) supported in U to extend
the definition of HN (z, ·) to M2,

HN (z, ·) =

N∑
k=0

χukFk(z, ·) ∈ D ′(M ×M).

The Hadamard parametrix extended to M2 satisfies

(4.3) (P − z)HN (z, ·) = |g|−1/2
δ∆ + (PuN )FN (z, ·)χ+ rN (z, ·),

where |g|−1/2
δ∆(x1, x2) is the Schwartz kernel of the identity map and rN (z, ·) ∈

D ′(M ×M) is an error term supported in a punctured neighborhood of ∆ which is
due to the presence of the cutoff χ.

4.2. Oscillatory integral representation and log-polyhomogeneity. — Given an
Euler vector field X, our current objective is to study the behaviour of

(
e−tXHN

)
(z)

and in particular to prove that HN (z) is tame log-polyhomogeneous near ∆. The
proof uses an oscillatory integral representation of the Hadamard parametrix involving
symbols with values in distributions whose wave front set in the ξ variable is contained
in the conormal of the cone {Q = 0} ⊂ Rn. This conormal is a non-smooth Lagrangian
in T ∗Rn whose singularity is at the vertex of the cone {Q = 0} ⊂ Rn.

Remark 4.2 (Coordinate frames versus charts). — In the present part, instead of
using charts we favor a presentation using coordinate frames which makes notation
simpler. The two viewpoints are equivalent since given a chart κ : U → κ(U) ⊂ Rn,
the linear coordinates (xi)ni=1 ∈ Rn∗ on Rn can be pulled back on U as a coordinate
frame (κ∗xi)ni=1 ∈ C∞(U ;Rn).

We start by representing the distributions Fα defined in Section 4.1 by oscillatory
integrals using the coordinate frames from Proposition 2.5 adapted to the Euler vector
field X.

Lemma 4.3. — Let (M, g) be a time-oriented Lorentzian manifold and X an Euler
vector field. Let p ∈ ∆, and let (xi, hi)ni=1 be a local coordinate frame defined on a
neighborhood Ω ⊂ M ×M of p such that X =

∑n
i=1 h

i∂hi on Ω. In this coordinate
frame, Fα(z, · , ·) has the representation

Fα(z, x, h) =

∫
Rn
ei〈ξ,h〉Aα(z, x, h; ξ)dnξ,

where Aα depends holomorphically in z ∈ {Im z > 0}, is homogeneous in (z, ξ) of
degree −2(α+ 1) with respect to the scaling (λ2z, λξ), and for µ 6= 0, Aα(i0 +µ, · , · ; ·)
is a distribution in Ω× Rn∗.
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Integrands such as Aα(i0 + µ, · , · ; ·) are sometimes called distribution-valued am-
plitudes in the literature since they are not smooth symbols but distributions, yet
they behave like symbols of oscillatory integrals in the sense they have homogeneity
with respect to scaling and the scaling degree in ξ is responsible for the singularities
of Fα.

Proof of Lemma 4.3. — Our proof uses in an essential way the so-called Kuranishi
trick again. Let s = (si)ni=1 denote the orthonormal moving coframe from Section 4.1.
We denote by expm : TmM → M the geodesic exponential map induced by the
metric g. We claim that

(4.4)
(
si(x,0)︸ ︷︷ ︸
∈T∗

(x,0)
Ω

(
exp−1

(x,0)(x, h)
)︸ ︷︷ ︸

∈T(x,0)Ω

= M(x, h)ijh
j
)n
i=1

,

where M : Ω 3 (x, h) 7→ (M(x, h)ji )16i,j6n ∈ GLn(R) is a smooth map such that
M(x, 0) = id. By the fundamental theorem of calculus,

exp−1
(x,0)(x, h) =

∫ 1

0

d

dt
exp−1

(x,0)(x, th)dt =

(∫ 1

0

d exp−1
(x,0)(x, th)dt

)
(h).

If we set M(x, h) = s(x,0)

(∫ 1

0
d exp−1

(x,0)(x, th)dt
)
then M(x, 0) = id so up to choos-

ing some smaller open set Ω, the matrix M(x, h) is invertible for (x, h) ∈ Ω and
satisfies (4.4).

We now insert (4.4) into the definition of Fα:

Fα(z, x, h) =
Γ(α+ 1)

(2π)n

∫
Rn
e
i〈ξ,s(x,0)(exp−1

(x,0)
(x,h))〉

(Q(ξ)− z)−α−1
dnξ

=
Γ(α+ 1)

(2π)n

∫
Rn
ei〈

tM(x,h)ξ,h〉 (Q(ξ)− z)−α−1
dnξ

=
Γ(α+ 1)

(2π)n

∫
Rn
ei〈ξ,h〉

(
Q((tM(x, h))−1ξ)− z

)−α−1 |M(x, h)|−1
dnξ.

This motivates setting Aα(z, x, h; ξ) =
(
Q((tM(x, h))−1ξ)− z

)−α−1 |M(x, h)|−1 in
Ω × Rn∗, which is homogeneous of degree −2(α + 1) with respect to the scaling
defined as (λ2z, λξ) for λ > 0. If we let Im z → 0+, then we view Aα(−m2 + i0, x, h; ξ)

as a distribution-valued symbol defined by the pull-back of
(
Q(·) +m2 − i0

)−α−1 by
the submersive map Ω× Rn∗ 3 (x, h; ξ) 7→ (tM(x, h))−1ξ ∈ Rn∗, where the fact that
it is a submersion comes from the invertibility of M(x, h) ∈Mn(R) for all (x, h) ∈ Ω.

The formal change of variable can be justified with a dyadic partition of unity
1 = χ(ξ) +

∑∞
j=1 β(2−jξ) as follows. Observe that

1 = χ((tM(x, h))−1ξ) +

∞∑
j=1

β((tM(x, h))−12−jξ).
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We know that (Q(ξ)− z)−α−1 is a distribution of order bReαc+1 hence by the change
of variable formula for distributions:
∞∑
j=1

〈
(Q(·)− z)−α−1, β(2−j ·)ei〈

tM(x,h)· ,h〉〉+
〈
(Q(·)− z)−α−1, χ(·)ei〈

tM(x,h)· ,h〉〉
=

∞∑
j=1

〈
(Q((tM(x, h))−1·)− z)−k−1, β((tM(x, h))−12−j ·)ei〈· ,h〉

〉
|M(x, h)|−1

+
〈
(Q((tM(x, h))−1·)− z)−k−1, χ((tM(x, h))−1·)ei〈· ,h〉

〉
|M(x, h)|−1

=

∞∑
j=1

2j(n−2(α+1))
〈
(Q((tM(x, h))−1·)− 2−2jz)−k−1, β((tM(x, h))−1·)ei〈2

j · ,h〉〉
× |M(x, h)|−1

+
〈
(Q((tM(x, h))−1·)− z)−k−1, χ((tM(x, h))−1·)ei〈2

j · ,h〉〉 |M(x, h)|−1
,

where the series satisfies a bound of the form
∞∑
j=1

∣∣〈(Q− z)−α−1, β(2−j ·)ei〈
tM(x,h)· ,h〉〉∣∣
6 C

∞∑
j=1

2j(n−(Reα+1)) sup
(x,h)∈Ω

‖β((tM(x, h))−1·)‖CbReαc+1 ,

where C does not depend on (x, h) ∈ Ω and the series converges absolutely for Reα

large enough. Then the change of variable is justified for all α ∈ C by analytic con-
tinuation in α ∈ C. �

Given an Euler vector field X, let (x, h) be the local coordinate frame for which
X = hi∂hi . From the proof of Lemma 4.3 it follows that for any sufficiently small
open set Ω, we can represent the Hadamard parametrix in the form

HN (z, x, h)|Ω =

N∑
k=0

∫
Rn
ei〈ξ,h〉B2(k+1)(z, x, h; ξ)dnξ,

where B2(k+1) ∈ D ′(Ω× Rn∗) is given by

B2(k+1)(z, x, h; ξ) =
Γ(k + 1)

(2π)n
χuk(x, h)

(
Q((tM(x, h))−1ξ)− z

)−k−1 |M(x, h)|−1
,

where M(x, h) is the matrix satisfying (4.4). Observe that B2(k+1) is homogeneous of
degree −2k − 2 with respect to the scaling (ξ, z) 7→ (λξ, λ2z).

Since the Euler vector field X reads X = hi∂hi in our local coordinates, the scaling
of the Hadamard parametrix reads

(
e−tXHN

)
(z, x, h) = HN (z, x, e−th) =

N∑
k=1

∫
Rn
ei〈ξ,e

−th〉B2(k+1)(z, x, e
−th; ξ)dnξ

=

N∑
k=1

etn
∫
Rn
ei〈ξ,h〉B2(k+1)(z, x, e

−th; etξ)dnξ.
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In consequence, to capture the t→ +∞ behaviour we need to compute the asymptotic
expansion of each term B2(k+1)(z, x, λh; ξ/λ), and thus of(

Q(tM(x, λh)−1ξ/λ)− z
)−k−1

as λ→ 0+. We will see that this asymptotic expansion occurs in a space of holonomic
distributions singular along the singular Lagrangian (it is the conormal bundle of the
cone {Q = 0} in ξ variables)

{(ξ; τdQ(ξ)) | τ < 0, Q(ξ) = 0}.

4.2.1. Asymptotic expansions of Fk(z) and (Q( ξλ ) − z)−k−1. — As already remarked,
the distribution

(Q(tM−1(x, h)ξ)− z)−α−1

is homogeneous with respect to scaling (x, z) 7→ (λξ, λ2z). We want to give a log-
polyhomogeneous expansion as an asymptotic series of distributions in the ξ vari-
ables even though Im z > 0. This leads us to consider the regularized distributions
fp(Q(ξ)− i0)−k and fp(Q(ξ)− i0)−k(Q(ξ)− z)−1 for all integers k > n/2, defined as
follows.

Recall that (Q(ξ)−i0)−α (resp. (Q(ξ)−i0)−α(Q(ξ)−z)−1 when Im z > 0) is a mero-
morphic family of tempered distributions with simple poles at α = {n/2, n/2 + 1, . . .}.
The residues are distributions supported at {0} ⊂ Rn.

Definition 4.4. — We define fp(Q(ξ) − i0)−k (resp. fp(Q(ξ) − i0)−k(Q(ξ) − z)−1)
as the value at α = k of the holomorphic part of the Laurent series expansion of
(Q(ξ)− i0)−α (resp (Q(ξ)− i0)−α(Q(ξ)− z)−1) near α = k.

By application of the pull-back theorem, we immediately find that the distribution
fp(Q(ξ) − i0)−k is a tempered distribution whose wavefront set is contained in the
singular Lagrangian

{(x; τdQ(x)) | Q(x) = 0, τ < 0} ∪ T ∗0 Rn.

Let us briefly recall the reason why fp(Q(ξ)− i0)−k is quasihomogeneous and give the
equation it satisfies.

Lemma 4.5 (Quasihomogeneity). — Let V =
∑n
i=1 ξi∂/∂ξi. We have the identities

V fp(Q(ξ)− i0)−k = −2k fp(Q(ξ)− i0)−k + res
α=k

(Q(ξ)− i0)−α

and
V ( res

α=k
(Q(ξ)− i0)−α) = −2k res

α=k
(Q(ξ)− i0)−α.

Moreover, the distribution resα=k(Q(ξ)− i0)−α is supported at {0}.

Proof. — For non-integer α, we always have

(4.5) V (Q(ξ)− i0)−α = −2α(Q(ξ)− i0)−α

since this holds true for large −Reα and extends by analytic continuation in α.
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Now for α near k, we use the Laurent series expansion in α near k and identifying
the regular parts on both sides of (4.5) yields the result. �

We introduce the following notation on the inverse Fourier transform side.

Definition 4.6. — Using Definition 4.4 for the notion of finite part fp, we define

fpFk(+i0, ·) :=
Γ(k + 1)

(2π)n

∫
Rn
ei〈ξ,·〉 fp(Q(ξ)− i0)−k−1dnξ.

We now state the main proposition of the present paragraph, which yields asymp-
totic expansions for the distributions Fk(z, ·).

Proposition 4.7 (log-polyhomogeneity of Fk(z, ·)). — For every N , we have the iden-
tity

(Q(ξ)−z)−k−1 =

N∑
p=0

(
−k − 1

p,−k − 1− p

)
(−1)pzp(Q(ξ)−i0)−(k+p+1)+E>k+N+2+TN (z),

where E>N+2+k denotes the space of all distributions T ∈ S ′(Rn) such that

λ−N−2−kT (λ−1·)λ∈]0,1] is bounded in S ′(Rn),

and TN (z) is a distribution supported at 0 depending holomorphically in z∈{Im z>0}.
It follows by inverse Fourier transform that

(4.6) Fk(z, ·) =

N∑
p=0

(−1)pzp

p!
fpFk+p(+i0, ·) + E>k+N+2−n + PN (z),

where PN (z) is a polynomial function on Rn depending holomorphically on z ∈
{Im z > 0}, hence each distribution Fk(z, ·) is log-polyhomogeneous.

Proof. — We work in Fourier space with the function (Q(ξ)− z)−1 for Im z > 0.
In fact, even though (Q(ξ)− z)−1 is a function, its asymptotic expansion in ξ will in-
volve the quasihomogeneous distributions fp(Q(ξ)−i0)−k because we need to consider
the distributional extension to Rn.

We start from the expression:
N−1∑
k=0

zk fp (Q(ξ)− i0)
−k−1

+ zN fp (Q(ξ)− i0)
−N

(Q(ξ)− z)−1
,

which is a well-defined distribution in S ′(Rn). The product

(Q(ξ)− i0)
−N

(Q(ξ)− z)−1 ∈ D ′(Rn r {0})

is weakly homogeneous of degree 6 −N−1 therefore it admits a distributional exten-
sion fp

(
(Q(ξ)− i0)

−N
(Q(ξ)− z)−1) which is weakly homogeneous of degree< −N−1

and is defined by extending the distribution

(Q(ξ)− i0)
−N

(Q(ξ)− z)−1 ∈ D ′(Rn r {0})

to D ′(Rn), see [12, Th. 1.7] (cf. [46]).
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We easily verify that we have the identity for Im z > 0:

(Q(ξ)− z)
(N−1∑
k=0

zk fp (Q(ξ)− i0)
−k−1

+ zN (Q(ξ)− i0)
−N

(Q(ξ)− z)−1

)
= 1

in the sense of distributions on Rnr{0} (we used the key fact thatQ(ξ)(Q(ξ)−i0)−k =

(Q(ξ)− i0)−k+1 which holds true in the distribution sense in D ′(Rnr {0}). Since the
term inside the large brackets above makes sense as a distribution on Rn, it follows
that we have the identity

(Q(ξ)− z)
(N−1∑
k=0

zk fp (Q(ξ)− i0)
−k−1

+ zN fp (Q(ξ)− i0)
−N

(Q(ξ)− z)−1

)
= 1 + TN (z)

in the sense of tempered distributions in S ′(Rn), where TN (z) is a distribution sup-
ported at {0} depending holomorphically on z ∈ {Im z > 0}. It follows by inverse
Fourier transform that we get:

F0(z, |x|η) =

N−1∑
k=0

zk fpFk(+i0, x) + E>N+1−n + F−1 (TN ) (x),

where the inverse Fourier transform F−1 (TN ) (x) is a polynomial function in x. More
generally, by the same method we find that

(Q(ξ)− z)−k =

N∑
p=0

(
−k

p,−k − p

)
(−1)pzpfp(Q(ξ)− i0)−(k+p) + E>k+N+1 + TN (z)

∈ S ′(Rn),

where the generalized binomial coefficients are defined using the Euler Γ function,
E>N+1+k denotes distributions T ∈ S ′ such that the family λ−N−1−kT (λ−1·)λ∈]0,1] is
bounded in S ′ and TN (z) is a distribution supported at 0 depending holomorphically
in z ∈ {Im z > 0}. Therefore, (4.6) follows by inverse Fourier transform. �

We now prove that HN (z) ∈ D ′Λ(M ×M) is tame log-polyhomogeneous regardless
of the choice of Euler vector field X.

Proposition 4.8. — Let HN (z) be the Hadamard parametrix of order N . Then for
any Euler vector field X, there exists an X-stable neighborhood U of ∆ ⊂ M ×M
such that HN (z) ∈ D ′(U ) is tame log-polyhomogeneous with respect to scaling with X.
In particular,

LsHN (z) =

∫ ∞
0

e−t(X+s)HN (z)dt ∈ D ′(U )

is a well-defined distribution and extends as a meromorphic function of s ∈ C with
poles at s ∈ −2 + n − N. The poles at s = k ∈ Z are simple when k < 0 and of
multiplicity at most 2 when k > 0.

In the proof we will frequently make use of smooth functions with values in tem-
pered distributions in the following sense.
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Definition 4.9. — If Ω ⊂M is an open set, we denote by C∞(Ω)⊗S ′(Rn) the space
of all U ∈ D ′(Ω× Rn) such that for all ϕ1 ∈ C∞c (Ω), ϕ2 ∈ S (Rn),

〈U,ϕ1 ⊗ ϕ2〉Ω×Rn =

∫
Ω

〈U(x, ·), ϕ2〉Rn ϕ1(x) dvolg(x),

where Ω 3 x 7→ 〈U(x, ·), ϕ2〉Rn is C∞.

Proof of Proposition 4.8. — We employ a three steps asymptotic expansion. The first
one comes from the Hadamard expansion, which is of the form

N∑
k=0

∫
Rn
· · · ei〈ξ,h〉(Q(tM(x, h)−1ξ)− z)−k−1 · · · dnξ + highly regular term.

Step 1 (first expansion, in z). — The idea is to study the asymptotics of

(Q(tM(x, λh)−1λ−1ξ)− z)−k−1

when λ→ 0+. We start from the function (Q(tM(x, h)−1ξ)− z)−k−1 where M is the
invertible matrix depending smoothly on (x, h) which was obtained by the Kuranishi
trick. Then each term (Q(tM(x, h)−1ξ)−z)−k−1 appearing in the sum is expanded in
powers of z times homogeneous terms in ξ thanks to Proposition 4.7. The expansion
in powers of z reads:

(Q(tM(x, h)−1ξ)− z)−k−1

=

N∑
p=0

(−1)pzp
(

−k − 1

p,−k − 1− p

)
fp(Q(tM(x, h)−1ξ)− i0)−k−1−p +RN (z, x, h; ξ),

where RN (z, x, h; ξ) ∈ C∞(Ω)⊗S ′(Rn) is weakly homogeneous of degree > −k−1−N
in ξ, i.e.,

λ−N−k−1RN (z, x, h;λ−1·)λ∈]0,1] is bounded in S ′(Rn)

uniformly in (x, h) ∈ K ⊂ Ω where K is a compact set.

Step 2 (second expansion, in h). — The key idea is to note that

fp(Q(tM(x, h)−1ξ)− i0)−k−1−p ∈ C∞(Ω)⊗S ′(Rn)

since it is the pull-back of fp(Q(ξ)− i0)−k−1−p ∈ S ′(Rn) by the submersion

Ω× Rn∗ 3 (x, h; ξ) 7−→ (tM(x, h))−1ξ ∈ Rn∗.

So by the push-forward theorem, for any test function χ∈S (Rn), the wave front set of

(x, h) ∈ Ω 7−→
〈
fp(Q(tM(x, h)−1·)− i0)−k−1−p, χ

〉
is empty which implies fp(Q(tM(x, h)−1ξ) − i0)−k−1−p ∈ C∞(Ω) ⊗ S ′(Rn). The
important subtlety is that when we differentiate (Q(tM(x, h)−1ξ) − i0)−k in (x, h),
we lose distributional order in ξ. This is why we are not in usual spaces of sym-
bols where differentiating in (x, h) does not affect the regularity in ξ. However, all
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the (x, h) derivatives Dβ
x,h(Q(tM(x, h)−1ξ) − i0)−k−1 are quasihomogeneous in ξ of

degree −2k − 2:

Dβ
x,h

(
Q(tM(x, h)−1λ−1ξ)− i0

)−k−1
= λ2k+2Dβ

x,h

(
Q(tM(x, h)−1ξ)− i0

)−k
.

We then expand each term fp(Q(tM(x, h)−1ξ)− i0)−k−p−1 using a Taylor expansion
with remainder in the variable h combined with the Faà di Bruno formula (which
serves to compute higher derivatives of the composition of two functions). Applying
the Faà di Bruno formula in our particular case, we get for all α,

fp(Q(tM(x, h)−1ξ)− i0)−α =
∑

`,|β1|+···+|β`|6N

hβQβ(x, h; ξ)|(x,0) + IN (z, x, h; ξ).

where we denoted

Qβ(x, h; ξ) =
(−α) · · · (−α− `− 1)

(
∂β1

h Q(tM−1(x, h)ξ)
)
· · ·
(
∂β`h Q(tM−1(x, h)ξ)

)
β1! . . . β`!`!

× fp(Q(ξ)− i0)−α−`.

Each hβQβ(x, h; ξ)|(x,0) term is polynomial in h and a distribution in ξ homoge-
neous of degree −2α of order bReαc+ `+ 1. Let us describe the integral remainder,

IN (z, x, h; ξ) =
∑

|β|=N+1

(N + 1)hβ

β!

(∫ 1

0

(1− s)N∂βh fp(Q(tM(x, sh)−1ξ)− i0)−αds

)
,

where the derivative ∂βh fp(Q(tM(x, sh)−1ξ) − i0)−α can be expanded by the Faà di
Bruno formula as above. We deduce that the term ∂βh fp(Q(tM(x, sh)−1ξ)− i0)−α is
continuous in both (s, h) with values in distributions in ξ quasihomogeneous of degree
−2α of order bReαc+N+2 uniformly in (x, sh). Therefore IN (z, x, h; ξ) is continuous
in (x, h) with values in distributions in ξ quasihomogeneous of degree −2α of order
bReαc+N + 2 uniformly in (x, h).

Step 3 (combination of both expansions). — Combining both expansions yields an ex-
pansion of (

Q(tM(x, λh)−1λ−1ξ)− z
)−k−1

in powers of z and of h with remainder that we write shortly as:

(Q(tM(x, h)−1ξ)− z)−k−1

=
∑
`∑`

i=1 |βi|+2k+2+2p6N

Cβ,`,p,k(x, ξ)zphβ fp(Q(tM(x, 0)−1ξ)− i0)−k−1−`−p

+Rk,N (z, x, h; ξ),

where Cβ,`,p,k depends smoothly on x and is a universal polynomial in ξ of degree 2`,
β is a multi-index, the coefficients of Cβ,`,p,k are combinatorially defined from the
above expansions depending on derivatives ofM(x, h) in h at h=0. It is a crucial fact
that the remainder Rk,N (x, h; ξ) is a distribution weakly homogeneous in ξ of degree
>k, and vanishes at order at leastN−k in h. The important fact is thatRk,N (z, x, h; ξ)
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is an element in C∞ (Ω)⊗S ′ (Rn) and
(
λ−N−1Rk,N (z, x, λh; ξ/λ)

)
λ∈]0,1]

is bounded
in C∞ (Ω)⊗S ′ (Rn).

Finally, we get

HN (z) =
∑

2(k+1)+2p+|β|6N

k! (χuk) (x, h)hβ |M(x, h)|−1
(−1)pzp

(2π)nβ!

(
−k − 1

p,−k − 1− p

)

×
∫
Rn
ei〈ξ,h〉∂βh fp(Q(tM(x, h)−1ξ)− i0)−k−1−p|(x,0)d

nξ

+

∫
Rn
ei〈ξ,h〉R1,N (z, x, h; ξ)dnξ +R2,N (z, x, h),

where R2,N (z, x, h) ∈ C s (Ω) is a function of Hölder regularity s which can be
made arbitrarily large by choosing N large enough, the term R1,N (z, x, h; ξ) is an
element in C∞ (Ω)⊗S ′ (Rn), such that the family

(
λ−N−1R1,N (z, x, λh; ξ/λ)

)
λ∈]0,1]

is bounded in C∞ (Ω) ⊗ S ′ (Rn). It follows that Π0 (R1,N ) = XΠ0 (R2,N ) = 0

if N is chosen large enough. It is clear from the construction that the terms∫
Rn e

i〈ξ,h〉∂βh fp(Q(tM(x, h)−1ξ)− i0)−k−1−p|(x,0)d
nξ are quasihomogeneous and mul-

tiplying by smooth functions preserves the tame log-polyhomogeneity. This finishes
the proof. �

4.3. Residue computation and conclusions. — Now that we know HN (z) is tame
log-polyhomogeneous, our next objective is to extract the term XΠ0(HN (z)) and
express it in terms of the Hadamard coefficients (uk)∞k=0.

We first prove a key lemma related to the extraction of the dynamical residues
which shows that the residue of many terms vanishes. Recall that the notion of finite
part fp was introduced in Definition 4.4.

Lemma 4.10. — Let X = hi∂hi , ϕ ∈ C∞(Ω), β = (β1, . . . , β`) ∈ N`, k ∈ N and let P
be a homogeneous polynomial on Rn of even degree. Then the residue

XΠ0

(
hβϕ

∫
Rn
P (ξ)ei〈ξ,h〉 fp(Q(ξ)− i0)−kdnξ

)
vanishes if −2k + deg(P ) 6= −n or |β| > 0. On the other hand, in the special case
−2k = −n,

XΠ0

(
ϕ

∫
Rn
ei〈ξ,h〉 fp(Q(ξ)− i0)−kdnξ

)
= ϕ(x, 0)

∫
Sn−1

(Q(ξ)− i0)−kιXd
nξ.

Remark 4.11. — Note that the projector Π0 has the effect of evaluating the test
function ϕ at h = 0.

Proof. — The important fact is that P (ξ) fp(Q(ξ) − i0)−k is a quasihomogeneous
distribution in the ξ variable. By Taylor expansion of ϕ in the h variable, we get for
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any N :

hβϕ

∫
Rn
P (ξ)ei〈ξ,h〉 fp(Q(ξ)− i0)−kdnξ

=
∑
|β2|6N

hβ+β2

β2!
∂β2

h ϕ(x, 0)

∫
Rn
ei〈ξ,h〉P (ξ) fp(Q(ξ)− i0)−kdnξ

+
∑

|β2|=N+1

hβ+β2Rβ2(x, h)

∫
Rn
ei〈ξ,h〉P (ξ) fp(Q(ξ)− i0)−kdnξ.

By scaling, if |β2| = N + 1 then〈
e−tX

(
hβ+β2Rβ2

(x, h)

∫
Rn
ei〈ξ,h〉 fp(Q(ξ)− i0)−kdnξ

)
, ψ

〉
= O(e−t((N+1)−2k+n−ε))

for all ε > 0 which accounts for the corrective behaviors of polynomials in t pro-
duced by the Jordan blocks. Then choosing N large enough, we can take the Laplace
transform∫ ∞

0

e−tz
〈
e−tX

(
hβ+β2Rβ2(x, h)

∫
Rn
ei〈ξ,h〉 fp(Q(ξ)− i0)−kdnξ

)
, ψ

〉
dt

holomorphic for z near 0. Therefore since the projector Π0 is defined by contour
integration using Cauchy’s formula, we get that

Π0

(
hβ+β2Rβ2

(x, h)

∫
Rn
ei〈ξ,h〉 fp(Q(ξ)− i0)−kdnξ

)
= 0.

The provisional conclusion is that we need to inspect the expression

Π0

(
hβ
∫
Rn
ei〈ξ,h〉P (ξ) fp(Q(ξ)− i0)−kdnξ

)
= Π0

(
i−|β|

∫
Rn
ei〈ξ,h〉∂βξ P (ξ) fp(Q(ξ)− i0)−kdnξ

)
.

If −|β| − 2k + deg(P ) 6= −n, the current ∂βξ P (ξ) fp(Q(ξ) − i0)−kdnξ is quasihomo-
geneous of degree −|β| − 2k + n+ deg(P ) hence its inverse Fourier transform is also
quasihomogeneous of degree p 6= 0 and therefore its image under the projector Π0

vanishes.
If |β|+ 2k = n, |β| > 0, then Corollary 2.12 together with Lemma 2.13 imply that

XΠ0

(
i−|β|

∫
Rn
ei〈ξ,h〉∂βξ fp(Q(ξ)− i0)−kdnξ

)
=

∫
|ξ|=1

∂βξ fp(Q(ξ)− i0)−kιV d
nξ = 0.

Finally, when 2k = n and |β| = 0 Lemma 2.13 implies that the residue equals

XΠ0

(∫
Rn
ei〈ξ,h〉 fp(Q(ξ)− i0)−kdnξ

)
=

∫
Sn−1

(Q(ξ)− i0)−kιV d
nξ,

as claimed. �
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Now, Lemma 4.10 applied to HN (z) gives first

XΠ0

(
HN (z)

)
=

∑
2k+2+2p+|β|6N

(
−k − 1

p,−k − 1− p

)
k!(−1)pzpXΠ0

(
(χuk) (x, h)hβ |M(x, h)|−1

(2π)nβ!

×
∫
Rn
ei〈ξ,h〉∂βh fp(Q(tM(x, h)−1ξ)− i0)−k−1−p|(x,0)d

nξ

)
=

∑
2k+2+2p=n

XΠ0

(
k! (χuk) (x, h) |M(x, h)|−1

(−1)pzp

(2π)n

(
−k − 1

p,−k − 1− p

)

×
∫
Rn
ei〈ξ,h〉 fp(Q(ξ)− i0)−k−1−p|(x,0)d

nξ

)
,

where we used the fact that the projector Π0 evaluates (χuk) (x, h) |M(x, h)|−1 at
h = 0 by Remark 4.11 and that M(x, 0) = id, χ(x, 0) = 1, and then we obtain the
shorter expression:(5)

XΠ0

(
HN (z)

)
=

∑
2k+2p+2=n

(
−k − 1

p,−k − 1− p

)
k!uk(x, 0)(−1)pzp

(2π)n

∫
Sn−1

(Q(ξ)− i0)−n/2ιV d
nξ(4.7)

=
∑

2k+2p+2=n

(k + p)!uk(x, 0)zp

p!(2π)n

∫
Sn−1

(Q(ξ)− i0)−n/2ιV d
nξ.

Finally, to get a more direct expression for XΠ0

(
HN (z)

)
we need to compute the

integral on the r.h.s.

Lemma 4.12 (Evaluation of the residue by Stokes theorem). — We have the identity:

(4.8)
∫
Sn−1

(−ξ2
1 + ξ2

2 + · · ·+ ξ2
n − i0)−n/2ιV d

nξ =
2iπn/2

Γ(n/2)
.

Proof. — The proof follows by a Wick rotation argument as in [13, §8.3]. We com-
plexify the whole setting and define the holomorphic (n− 1, 0)-form:

ω =
(
z2

1 + · · ·+ z2
n

)−n/2
ι∑n

i=1 zi∂zi
dz1 ∧ · · · ∧ dzn ∈ Ωn−1,0(U),

where U is the Zariski open subset {z ∈ Cn | Q(z) 6= 0}. By the Lie–Cartan formula

L∑n
i=1 zi∂zi

= dι∑n
i=1 zi∂zi

+ ι∑n
i=1 zi∂zi

d,

and
d
(
z2

1 + · · ·+ z2
n

)−n/2
dz1 ∧ · · · ∧ dzn = 0 ∈ Ωn,1(U),

(5)We used here the identity
(

−k − 1

p,−k − 1− p

)
k! =

(−k − 1) . . . (−k − p)
p!

k! = (−1)p(k + p)!/p!.
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hence

L∑n
i=1 zi∂zi

(
z2

1 + · · ·+ z2
n

)−n/2
dz1 ∧ · · · ∧ dzn

= d
(
z2

1 + · · ·+ z2
n

)−n/2
ι∑n

i=1 zi∂zi
dz1 ∧ · · · ∧ dzn = 0,

so the differential form ω is closed in Ωn−1,0(U). For every θ ∈ [0,−π/2[, we define
the n-chain

Eθ = {(eiuz1, z2, . . . , zn) | (z1, . . . , zn) ∈ Sn−1 ⊂ Rn, u ∈ [θ, 0]},

which is contained in S2n−1. We denote by ∂ the boundary operator acting on de
Rham currents, under some choice of orientation on Eθ, we have the equation

∂Eθ = [Pθ]− [P0],

where [Pθ] denotes the current of integration on the (n− 1)-chain

Pθ = {(eiθz1, z2, . . . , zn) | (z1, . . . , zn) ∈ Sn−1 ⊂ Rn}.

By Stokes theorem,

0 =

∫
Eθ

dω =

∫
∂Eθ

ω =

∫
Pθ

ω −
∫
P0

ω,

where the integration by parts is well-defined since for θ ∈ [0,−π/2[, the zero locus
of
∑n
i=1 z

2
i never meets Pθ so we are integrating well-defined smooth forms.(6)

We define the linear automorphism Tθ : (z1, . . . , zn) 7→ (eiθz1, . . . , zn) and note
that ∫

Pθ

ω =

∫
P0

T ∗θ ω = eiθ
∫
Sn−1

(ei2θξ2
1 + ξ2

2 + · · ·+ ξ2
n)−n/2ιV d

nξ

=

∫
Sn−1

(ξ2
1 + ξ2

2 + · · ·+ ξ2
n)−n/2ιV d

nξ = Vol(Sn−1).

By [13, Lem.D.1],

(ei2θξ2
1 + ξ2

2 + · · ·+ ξ2
n)−n/2 −→ (Q(ξ)− i0)−n/2 in D ′Γ(Rn r {0})

as θ → −π/2, where Γ = {(ξ; τdQ(ξ)) | Q(ξ) = 0, τ < 0} is the half-conormal of the
cone {Q = 0}. Since Γ ∩N∗Sn−1 = ∅, in the limit we obtain

lim
θ→−(π/2)+

∫
Sn−1

(ei2θξ2
1 + ξ2

2 + · · ·+ ξ2
n)−n/2ιV d

nξ =
〈
[Sn−1], (Q(ξ)− i0)−n/2ιV d

nξ
〉
,

where the distribution pairing is well-defined by transversality of wavefront sets. From
this we conclude (4.8). �

(6)Indeed, if θ ∈ ]0,−π/2[ and e2iθz21 + z22 + · · · + z2n = 0 then sin(2θ)z21 = 0, hence z1 = 0 and∑n
i=1 z

2
i = 0, which contradicts the fact that (z1, . . . , zn) ∈ Sn−1.
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Combining (4.7) with Lemma 4.12 gives us

XΠ0

(
HN (z)

)
=

∑
2k+2p+2=n

(k + p)!uk(x, 0)zp

p!(2π)n

∫
Sn−1

(Q(ξ)− i0)−n/2ιV d
nξ

=
2iπn/2

Γ(n/2)

∑
2k+2p+2=n

(k + p)!uk(x, 0)zp

p!(2π)n
,

from which we obtain the following result.

Proposition 4.13. — Let HN (z) be the Hadamard parametrix of order N . Then for
any Euler vector field X, the dynamical residue satisfies

resX
(
HN (z)

)
= i

n/2−1∑
p=0

zpun/2−p−1(x, 0)

p!2n−1πn/2
.

In particular, resX
(
HN (z)

)
is independent on the choice of Euler vector field X.

5. Residues of local and spectral Lorentzian zeta functions

5.1. Hadamard parametrix for complex powers. — As previously, we consider the
wave operator P = �g on a time-oriented Lorentzian manifold (M, g) of even dimen-
sion n. Just as the Hadamard parametrix HN (z) is designed to approximate Feyn-
man inverses of P − z near the diagonal, we can construct a more general parametrix
H

(α)
N (z) for α ∈ C which is meant as an approximation (at least formally) of complex

powers (P − z)−α.
To motivate the definition ofH(α)

N (z), let us recall that if A is a self-adjoint operator
in a Hilbert space then for all z = µ+ iε with µ ∈ R and ε > 0,

(A− z)−α =
1

2πi

∫
γε

(λ− iε)−α(A− µ− λ)−1dλ

in the strong operator topology (see e.g. [13, App.B]). The contour of integration γε
is represented in Figure 5.1 and can be written as γε = γ̃ε + iε, where

γ̃ε = ei(π−θ)]−∞, ε/2] ∪ {(ε/2)eiω | π − θ < ω < θ} ∪ eiθ[ε/2,+∞[

goes from Reλ� 0 to Reλ� 0 in the upper half-plane (for some fixed θ ∈ ]0, π/2[).
This suggests immediately to set

H
(α)
N (z; ·) :=

1

2πi

∫
γε

(λ− iε)−αHN (µ+ λ, ·)dλ

=

N∑
k=0

χuk
1

2πi

∫
γε

(λ− iε)−αFk(µ+ λ, ·)dλ,

provided that the r.h.s. makes sense. For Reα > 0 the integral converges by the
estimate in [13, Lem. 6.1]. More generally, we can evaluate the integral thanks to the
identity

1

2πi

∫
γε

(λ− iε)−αFk(µ+ λ, ·)dλ =
(−1)kΓ(−α+ 1)

Γ(−α− k + 1)Γ(α+ k)
Fk+α−1(µ+ iε, ·)
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γε

ε
ε/2

Reλ

i Imλ

Figure 5.1. The contour γε used to write (A − iε)−α as an integral
of the resolvent (A− λ)−1 for A self-adjoint.

shown in [13, §7.1], and use it to analytically continue H(α)
N (z) = H

(α)
N (µ+ iε). This

gives

H
(α)
N (z, ·) =

N∑
k=0

uk(·) (−1)kΓ(−α+ 1)

Γ(−α− k + 1)Γ(α+ k)
Fk+α−1(z, ·)

as a distribution in a neighborhood of ∆ ⊂M ×M .
From now on the analysis in Sections 4.2–4.3 can be applied with merely minor

changes. For the sake of brevity we write ‘∼’ to denote identities which hold true
modulo remainders as those discussed in Sections 4.2–4.3, which do not contribute to
residues. In particular we can write

H
(α)
N (z) ∼

N∑
k=0

uk
α · · · (α+ k − 1)

(2π)n

∫
Rn
ei〈ξ,h〉(Q(tM−1(x, h)ξ)−i0)−k−α |M(x, h)|−1

dnξ.

Expanding in z yields

H
(α)
N (z) ∼

N∑
k=0

∞∑
p=0

uk(−1)pzp
(
−k − α

p

)
α · · · (α+ k − 1)

(2π)n

×
∫
Rn
ei〈ξ,h〉(Q(tM−1(x, h)ξ)− i0)−k−α−p |M(x, h)|−1

dnξ

∼
∞∑
k=0

∞∑
p=0

zpuk
α · · · (α+ k + p− 1)

p!(2π)n

×
∫
Rn
ei〈ξ,h〉(Q(tM−1(x, h)ξ)− i0)−k−α−p |M(x, h)|−1

dnξ.

We take the dynamical residue and in view of Lemma 4.10, only the terms with
α + k + p = n/2 survive. We find that for α = 0, . . . , n/2, the dynamical residue
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resX
(
H

(α)
N (z)

)
equals∑

k+p+α=n/2

zp
α · · · (n/2− 1)

p!(2π)n

× resX

(
uk

∫
Rn
ei〈ξ,h〉(Q(tM−1(x, h)ξ)− i0)−k−α−p |M(x, h)|−1

dnξ

)

=

n/2−α∑
p=0

zp
α · · · (n/2− 1)

p!(2π)n

× resX

(
un/2−p−α

∫
Rn
ei〈ξ,h〉(Q(tM−1(x, h)ξ)− i0)−n/2 |M(x, h)|−1

dnξ

)

=
2iπn/2

Γ(n/2)

n/2−α∑
p=0

zp

p!

α · · · (n/2− 1)

(2π)n
un/2−p−α(x, x).

In consequence, we obtain

(5.1) resX
(
H

(α)
N (z)

)
= i

n/2−α∑
p=0

zpun/2−p−α(x, x)

p!(α− 1)!2n−1πn/2
.

On the other hand, from [13, §8.3.1] we know that for N sufficiently large

res
α′=α

(
ι∗∆H

(α′)
N (z)

)
= i

n/2−α∑
p=0

zpun/2−p−α(x, x)

p!(α− 1)!2nπn/2
,

where the residue is understood in the sense of complex analysis. We summarize this
as a proposition.

Proposition 5.1. — For any Euler vector field X, there exists an X-stable neighbor-
hood U of ∆ ⊂M×M such that H(α)

N (z) ∈ D ′(U ) is tame log-polyhomogeneous with
respect to X. The dynamical residue resX

(
H

(α)
N (z)

)
is independent of X and satisfies

resX
(
H

(α)
N (z)

)
= 2 res

α′=α

(
ι∗∆H

(α′)
N (z)

)
,

where the residue on the r.h.s. is understood in the sense of complex analysis. For
α = 0, . . . , n/2 it has the explicit expression (5.1).

Remark 5.2. — The parametrixH(α)
N (iε) is interpreted as a local (and for the moment

purely formal) approximation of (�g − iε)−α, and similarly if we define

ζ loc
g,ε(α) = ι∗∆H

(α)
N(α)(iε),

where N(α) is taken sufficiently large, ζ loc
g,ε(α) can be seen as a local approximation

of the Lorentzian spectral zeta function density ζg,ε(α) studied in the next section.
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5.2. From local to spectral zeta functions. — Let us now analyze what happens
in situations when P = �g (or strictly speaking, P − iε) has a well-defined spectral
zeta function density ζg,ε(α) in the following sense.

Definition 5.3. — Suppose P is a self-adjoint extension of �g acting on C∞c (M).
Then, the spectral zeta function density of P − iε is the meromorphic continuation of

α 7−→ ζg,ε(α) = ι∗∆
(
(P − iε)−α

)
,

defined initially for Reα sufficiently large, where ι∗∆ is the pull-back of the Schwartz
kernel to the diagonal ∆ ⊂M ×M .

It is a priori not clear whether the definition is useful at all because even if a
self-adjoint extension P exists, it is by far not evident whether the Schwartz kernel of
(P −iε)−α has a well-defined restriction to the diagonal for large Reα, not to mention
the analyticity aspects.

We can however formulate a natural sufficient condition in the present context.
We start by stating a definition of the uniform wavefront set (which is equivalent to
[13, Def. 3.2]). Below, o is the zero section of T ∗M and 〈z〉 = (1 + |z|2)1/2.

Definition 5.4. — The uniform operator wavefront set of order s ∈ R and weight
〈z〉−1/2 of (P − z)−1 is the set

(5.2) WF
′ (s)
〈z〉−1/2((P − z)−1) ⊂ (T ∗M r o)× (T ∗M r o)

defined as follows: ((x1; ξ1), (x2; ξ2)) does not belong to (5.2) if and only if for all
ε > 0 and all properly supported Bi ∈ Ψ0(M) elliptic at (xi, ξi) and all r ∈ R,

〈z〉1/2B1(P − z)−1B∗2 is bounded in B(Hr
c (M), Hr+s

loc (M)) along z ∈ γε.

The key property which we require of �g is that it has a self-adjoint extension P ,
and that self-adjoint has Feynman wavefront set in the sense of the uniform operator
wavefront set. More precisely, we formalize this as follows.

Definition 5.5. — Suppose P is a self-adjoint extension of �g acting on C∞c (M) ⊂
L2(M). We say that �g has Feynman resolvent if for any s ∈ R, the family
{(P − z)−1}z∈γε satisfies

WF
′ (s)
〈z〉−1/2

(
(P − z)−1

)
⊂ {((x1; ξ1), (x2; ξ2)) | (x1; ξ1) � (x2; ξ2) or x1 = x2}.

Above, (x1; ξ1) � (x2; ξ2) means that (x1; ξ1) lies in the characteristic set of P and
(x1; ξ1) can be joined from (x2; ξ2) by a forward(7) bicharacteristic.

(7)We remark that the opposite convention for the Feynman wavefront set is often used in the
literature on Quantum Field Theory on curved spacetimes. Note also that the notion of forward
vs. backward bicharacteristic depends on the sign convention for P (or rather its principal symbol).
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This type of precise information on the microlocal structure of (P−z)−1 allows one
to solve away the singular error term rN (z) which appears in (4.3) when computing
(P − z)HN (z). In consequence, the Hadamard parametrix approximates (P − z)−1

in the following uniform sense.

Proposition 5.6 ([13, Prop. 6.3]). — If �g has Feynman resolvent then for every s, ` ∈
R>0, there exists N such that

(5.3) (P − z)−1 = HN (z) + EN,1(z) + EN,2(z),

where for z along γε, 〈z〉kχ̃EN,1(z) is bounded in D ′(M × M) for some χ̃ ∈
C∞(M × M) supported near ∆ and all k ∈ Z>0, and 〈z〉`EN,2(z) is bounded in
B(Hr

c (M), Hr+s
loc (M)) for all r ∈ R.

Then, by integrating (z − iε)−α times both sides of (5.3) along the contour γε,
we obtain for all z,

(P − z)−α = H
(α)
N (z) +R

(α)
N (z),

where for each s ∈ R and p ∈ N there exists N ∈ N such that R(α)
N (z) is holomorphic

in {Reα > −p} with values in Csloc(U ). Thus, the error term does not contribute
to neither analytical nor dynamical residues. By combining all the above information
with Proposition 5.6 we obtain the following final result.

Theorem 5.7. — Let (M, g) be a time-oriented Lorentzian manifold of even dimension
n, and suppose �g has Feynman resolvent (P−z)−1. Then for any Euler vector field X
there exists an X-stable neighborhood U of ∆ ⊂M ×M such that for all α ∈ C and
Im z > 0 the Schwartz kernel Kα ∈ D ′(U ) of (P − z)−α is tame log-polyhomogeneous
with respect to scaling with X. The dynamical residue of (P − z)−α is independent
of X and equals

(5.4) resX
(

(P − z)−α
)

= i

n/2−α∑
p=0

zpun/2−p−α(x, x)

p!(α− 1)!2n−1πn/2

if α = 1, . . . , n/2, and zero otherwise, where (uj(x, x))j are the Hadamard coefficients.
Furthermore, for k = 1, . . . , n/2 and ε > 0, the dynamical residue satisfies

resX (P − iε)−k = 2 res
α=k

ζg,ε(α),

where ζg,ε(α) is the spectral zeta function density of P − iε.

In particular, using the fact that u1(x, x) = −Rg(x)/6 (see e.g. [13, §8.6]), setting
k = n/2 − 1 and taking the limit ε → 0+, we find the relation (1.3) between the
dynamical residue and the Einstein–Hilbert action stated in the introduction.
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Appendix. Lorentzian canonical trace density

A.1. Summary. — A classical result due to Kontsevich–Vishik [39] says that if A > 0

is an elliptic operator on a compact manifold M and Q is (for instance) a differential
operator, then the trace of QA−α exists for large Reα and analytically continues
to C r Z. In greater generality, the same is true for the trace density, defined by
on-diagonal restriction of the Schwartz kernel. The analytic continuation is called
the Kontsevich–Vishik canonical trace density and it plays a fundamental role in the
definition of weighted traces or renormalized traces, see e.g. [53] and references therein.

A very natural question(8) is whether elliptic complex powers A−α can be replaced
by Lorentzian complex powers (P − iε)−α in the setting of the wave operator P = �g
introduced in Section 4. In this appendix we provide an affirmative answer.

A.2. Lorentzian canonical trace. — We prove the following result, assuming for
the sake of simplicity that Q is a differential operator. We leave for further studies
the case when Q is a properly supported pseudodifferential with polyhomogeneous
symbol of integer order.

Theorem A.1. — Let (M, g) be a time-oriented Lorentzian manifold of even dimension
n, and suppose �g has Feynman resolvent (P −z)−1. For any α ∈ CrZ and Im z > 0

and for any differential operator Q of degree q, denote by Kα the Schwartz kernel of
Q(P − z)−α. Then the on-diagonal restriction

ι∗∆ (Kα) ∈ C∞(M)

is well-defined for Reα large enough and analytically continues to α ∈ Cr Z.

Proof. — We start from the decomposition (P − z)−α = H
(α)
N (z) + R

(α)
N (z) for N

large enough so that the remainder term R
(α)
N (z) belongs to C s

loc for s > q. Then,
QR

(α)
N (z) has a continuous Schwartz kernel which has a well-defined restriction to the

diagonal.
We use the asymptotic expansion

H
(α)
N (z, ·) =

N∑
k=0

uk(·) (−1)kΓ(−α+ 1)

Γ(−α− k + 1)Γ(α+ k)
Fk+α−1(z, ·).

We study QH
(α)
N (z, ·), which can be expressed as a finite sum of smooth functions

(these have a well-defined on-diagonal restriction) times derivatives of distributions
of the form ∂β1

x ∂β2

h Fk+α−1(z, ·) where |β1| + |β2| 6 q. Without loss of generality we
can reduce the problem to the case when Q = ∂β1

x ∂β2

h in local coordinates (x, h).
We use the notation from Lemma 4.3. We start again from the oscillatory integral

representation

Fα(z, x, h) =
Γ(α+ 1)

(2π)n

∫
Rn
ei〈ξ,h〉

(
Q((tM(x, h))−1ξ)− z

)−α−1 |M(x, h)|−1dnξ.

(8)This was kindly suggested to us by an anonymous referee, whom we would like to thank
heartily.

J.É.P. — M., 2022, tome 9



Dynamical residues of Lorentzian spectral zeta functions 1287

Let ψ ∈ C∞c (Rn) with ψ = 1 near 0. Then we use ψ as a frequency cutoff. We expand
the integrand in both variables z and then smoothly in the parameters (x, h). Namely,(
Q((tM(x, h))−1ξ)− z

)−α−1
(1− ψ)(ξ)

= (1− ψ)(ξ)

N∑
p=0

(−1)pzp
Γ(−α)

Γ(p+ 1)Γ(−α− p)
(
Q((tM(x, h))−1ξ)− i0

)−α−1−p

+ remainder,

where the omitted remainder terms are weakly homogeneous of degree > −Re(α)

− 1 − N in ξ, hence by inverse Fourier transform they have high Hölder regularity
ifN is chosen large enough so that the inverse Fourier can be restricted to the diagonal.
Then the second step is to Taylor expand the distribution(

Q((tM(x, h))−1ξ)− i0
)−α−1−p

(1− ψ)(ξ)

in the variable h. For all α,

(Q(tM(x, h)−1ξ)− i0)−α(1− ψ)(ξ)

= (1− ψ)(ξ)
∑

`,|β1|+···+|β`|6N

hβQβ(x, h; ξ)|(x,0) + IN (z, x, h; ξ),

where we denoted

Qβ(x, h; ξ) =
(−α) · · · (−α− `− 1)

(
∂β1

h Q(tM−1(x, h)ξ)
)
· · ·
(
∂β`h Q(tM−1(x, h)ξ)

)
β1! · · ·β`!`!

× (Q(ξ)− i0)−α−`.

Note that in the present situation we do not need to take the finite part since
Reα is large enough and we have the 1 − ψ cutoff, which vanishes near ξ = 0. Each
hβQβ(x, h; ξ)|(x,0) term is polynomial in h and is a distribution in ξ, homogeneous of
degree −2α, of order bReαc+ `+ 1. The integral remainder IN (z, x, h; ξ) is continu-
ous in (x, h) with values in distributions in ξ, homogeneous of degree −2α, of order
bReαc+N + 2 uniformly in (x, h).

From now on the analysis in Sections 4.2–4.3 can be applied with merely minor
changes. For the sake of brevity we write ‘∼’ to denote identities which hold true
modulo remainders as those discussed in Sections 4.2–4.3, which are Hölder regular
enough to be restricted on the diagonal. In particular, we can write

H
(α)
N (z) ∼

N∑
k=0

uk
α · · · (α+ k − 1)

(2π)n

×
∫
Rn

(1− ψ)ei〈ξ,h〉(Q(tM−1(x, h)ξ)− i0)−k−α |M(x, h)|−1
dnξ.
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Expanding in z yields

H
(α)
N (z) ∼

N∑
k=0

∞∑
p=0

uk(−1)pzp
(
−k − α

p

)
α · · · (α+ k − 1)

(2π)n

×
∫
Rn

(1− ψ)ei〈ξ,h〉(Q(tM−1(x, h)ξ)− i0)−k−α−p |M(x, h)|−1
dnξ

∼
∞∑
k=0

∞∑
p=0

zpuk
α · · · (α+ k + p− 1)

p!(2π)n

×
∫
Rn

(1− ψ)ei〈ξ,h〉(Q(tM−1(x, h)ξ)− i0)−k−α−p |M(x, h)|−1
dnξ.

∼
∞∑
k=0

∞∑
p=0

zp |M(x, h)|−1
uk
α · · · (α+ k + p− 1)hβ

p!(2π)nβ!

×
∫
Rn

(1− ψ)ei〈ξ,h〉∂βh (Q(tM−1(x, h)ξ)− i0)−k−α−p|(x,0)d
nξ.

Above, the omitted remainders are Hölder regular enough to be restricted on the
diagonal. Indeed, we can truncate the above series to some finite sum if we expand
in k + p large enough since ∂βh (Q(tM−1(x, h)ξ) − i0)−k−α−p|(x,0) is a tempered dis-
tribution homogeneous of degree −k − α − p in ξ, and therefore the inverse Fourier
transform is sufficiently Hölder regular in (x, h) and can be restricted to the diago-
nal. Note that we do not need to use finite parts anymore since all distributions are
homogeneous on the support of 1− ψ, which avoids ξ = 0.

When we differentiate each term

zp |M(x, h)|−1
uk
α · · · (α+ k + p− 1)hβ

p!(2π)nβ!

×
∫
Rn
ei〈ξ,h〉∂βh (Q(tM−1(x, h)ξ)− i0)−k−α−p|(x,0)d

nξ

on the r.h.s. of the previous equality with the operator ∂β1
x ∂β2

h , we get some finite
combinations of terms of the form∫
Rn
ξδ∂βh (Q(tM−1(x, h)ξ)− i0)−k−α−p|(x,0)d

nξ × (smooth function ∈ C∞(M ×M)).

Each term ∂βh (Q(tM−1(x, h)ξ)− i0)−k−α−p|(x,0) reads as the sum:

β!
∑

`,β1+···+β`=β

(−k − α− p)!
(
∂β1

h Q(tM−1(x, h)ξ)
)
· · ·
(
∂β`h Q(tM−1(x, h)ξ)

)
(−k − α− p− `− 1)!β1! · · ·β`!`!

|h=0

× (Q(ξ)− i0)−k−α−p−` =
∑
`

smooth function × (Q(ξ)− i0)−k−α−p−`,
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where the term is homogeneous of degree −k − α − p in the ξ variable. Then we are
reduced to prove that the general term∫

Rn
(1− ψ)ξδ(Q(ξ)− i0)−k−α−p−`dnξ, |δ| 6 q + 2`,

for δ a multi-index, is well-defined for Reα large enough and has an analytic contin-
uation to α ∈ C r Z. The idea is again to use a Littlewood–Paley decomposition in
momentum

1 = ψ +

∞∑
j=1

β(2−j ·)

and the homogeneity of the distribution:∫
Rn

(1− ψ)ξδ(Q(ξ)− i0)−α−k−p−`dnξ

=

∞∑
j=1

∫
Rn
ξδβ(2−jξ)(Q(ξ)− i0)−α−k−p−`dnξ

=

∞∑
j=1

2j(n+|δ|)
∫
Rn
ξδβ(ξ)(Q(2jξ)− i0)−α−k−p−`dnξ

= 2(1− 2n+|δ|−2(α+k+p+`))−1

∫
Rn
ξδβ(ξ)(Q(ξ)− i0)−α−k−p−`dnξ,

where the last term admits a unique holomorphic continuation to

α ∈ Cr {Z∩ ]−∞, n/2 + q]},

where we used the inequality |δ| 6 q + 2`. This concludes the proof. �
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