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QUANTITATIVE HOMOGENIZATION THEORY

FOR RANDOM SUSPENSIONS IN STEADY STOKES FLOW

N N

BY Mitia DueriNckx & ANTOINE GLORIA

Asstract. — This work develops a quantitative homogenization theory for random suspen-
sions of rigid particles in a steady Stokes flow, and completes recent qualitative results. More
precisely, we establish a large-scale regularity theory for this Stokes problem, and we prove
moment bounds for the associated correctors and optimal estimates on the homogenization er-
ror; the latter further requires a quantitative ergodicity assumption on the random suspension.
Compared to the corresponding quantitative homogenization theory for divergence-form linear
elliptic equations, substantial difficulties arise from the analysis of the fluid incompressibility
and the particle rigidity constraints. Our analysis further applies to the problem of stiff inclu-
sions in (compressible or incompressible) linear elasticity and in electrostatics; it is also new in
those cases, even in the periodic setting.

Résumic (Homogénéisation quantitative de suspensions aléatoires de particules dans un fluide
de Stokes stationnaire)

Ce travail développe une théorie quantitative de ’homogénéisation de suspensions aléatoires
de particules rigides dans un fluide de Stokes stationnaire, complétant les résultats qualitatifs
récents. Plus précisément, nous établissons une théorie de régularité aux grandes échelles pour
ce probléme de Stokes et nous montrons des estimations de moments pour les correcteurs asso-
ciés, ainsi que des estimations optimales de convergence de I’erreur d’homogénéisation (sous des
hypotheses quantitatives d’ergodicité de la suspension aléatoire). En comparaison a la théorie
pour les équations elliptiques linéaires sous forme divergence, I'incompressibilité du fluide et la
rigidité des particules soulévent des difficultés analytiques additionnelles. Notre analyse couvre
également le probléme des inclusions rigides en élasticité linéaire (compressible ou incompres-
sible) et en électrostatique ; les résultats sont nouveaux pour ces modeles également, méme dans
le cas périodique.
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1 . IV\'I‘ROI)LCTIO\J

We start with the formulation of the steady Stokes model describing a viscous fluid
in presence of a random suspension of small rigid particles, see e.g. [18]. Throughout,
we denote by d > 2 the space dimension, we consider a given random set . =
U, In C R? where {I,}, stands for the different particles, and we denote by z,
the barycenter of I,,. Ergodicity, hardcore, and regularity assumptions are listed in
Section 2. To model a suspension of small particles, we rescale the random set .
by a small parameter ¢ > 0 and consider ¢.# = |J,, €l,. Next, we view these small
particles {eI,, }, as suspended in a solvent described by the steady Stokes equation: in
a reference domain U C R?, given an internal forcing f € L?(U)4, the fluid velocity u.
satisfies

(1.1) — Au, + VP, = f, div(ues) =0, inU\¢ed,

with u, = 0 on 9U. (Assume for the moment that no particle intersects the bound-
ary OU.) No-slip conditions are imposed at particle boundaries: particles are con-
strained to have rigid motions, which amounts to extending the velocity field w.
inside particles in such a way that

D(us) =0, ined,

where D(u.) denotes the symmetrized gradient of u.; in other words, this condition
entails that the velocity field . is a (linearized) rigid motion V; ,,+©¢ , (z—ex,,) inside
each particle ¢I,, (centered at ex,,), for some V,,, € R? and some skew-symmetric
matrix O, ,, € R4 Finally, assuming that the particles have the same mass density
as the fluid, buoyancy forces vanish, and the force and torque balances on each particle
take the form

(1.2) / o(ue, P-)v =0,
edl,

(1.3) O(x —exy) - o(us, P.)v =0, for all skew-symmetric © € R4,
e0Il,

in terms of the Cauchy stress tensor
(1.4) o(ue, P:) = 2D(u.) — P 1d,

where v stands for the outward unit normal vector at the particle boundaries. In the
physically relevant 3D case, skew-symmetric matrices © € R3*3 are equivalent to
cross products x with 8 € R3, and equations recover their standard form.

JE.P.— M., 2022, tome g



(2[7 ANTITATIVE HOMOGENIZATION OF RANDOM SUSPENSIONS n8s

In the companion article [18], we proved that in the macroscopic limit € | 0 the
velocity and pressure fields (u., P.) converge weakly to (u, P+b : D(u)), where (7, P)
solves the homogenized equation

—div(2BD(@)) + VP = (1 - \)f, inU,
(1.5) div(@) = 0, in U,
u=0, on U,

for some effective viscosity tensor B and some effective matrix b, where A = E[1 4]
denotes the volume fraction of the suspension. The aim of the present contribution is
twofold:

(I) Make this qualitative convergence result quantitative by optimally estimating
the error between (u., P.) and a two-scale expansion based on (@, P + b : D(%)) in
terms of suitable correctors, cf. Theorem 6 below.

(IT) Develop a large-scale regularity theory for the Stokes problem (1.1)—(1.3),
which ensures that on large scales the solution u. has the same regularity properties
as the solution u of the limiting equation (1.5) (both in terms of C*'~ Schauder
theory and in terms of L? regularity), cf. Theorems 3, 4, and 5 below.

On the one hand, part (I) provides the optimal quantitative version of [18] by esti-
mating the error in the homogenization process. This is proved under a strong mixing
assumption on the random suspension .#, which is conveniently formulated in form of
a multiscale variance inequality in the spirit of [15, 16]. On the other hand, part (II)
makes precise the intuitive idea that the Stokes problem (1.1)—(1.3) should inherit the
regularity properties of the limiting equation (1.5) on sufficiently large scales, which
is expressed intrinsically in terms of the growth of correctors. This is qualitatively
established under a mere ergodicity assumption, and further quantified assuming the
same multiscale variance inequality as above.

Our main motivation to develop a large-scale regularity theory for (1.1)—(1.3) stems
from the sedimentation problem for a random suspension in a Stokes flow under a
constant gravity field e € R?, in which case the force balance (1.2) is replaced by

][ o(ue, Po)v +e=0.
e0Il,

Since energy is then pumped into the system, naive energy estimates blow up, and the
analysis crucially relies on stochastic cancellations. Annealed L? regularity in form of
Theorem 5 below constitutes the main technical ingredient of [19] for our analysis
of the sedimentation problem. More precisely, this allows us to prove the celebrated
predictions by Batchelor [9], Caflisch and Luke [11], and Koch and Shagfeh [38] on
the effective sedimentation speed and on individual velocity fluctuations, significantly
improving on [25].

Although the present contribution primarily focuses on random suspensions of rigid
particles in a steady Stokes flow, we point out that our arguments apply more generally
to homogenization problems with stiff inclusions. First note that equation (1.1) can
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186 M. Duerinckx & A. GLORIA

be written in the equivalent form
(1.6) — div(o(ue, P2)) = f, div(ue) =0, inU~\etd,

with u. = 0 on QU, where we recall that o(u., P.) denotes the Cauchy stress ten-
sor (1.4), and the equation is completed by the rigidity constraint D(u:) = 0 inside
the inclusions £.# and by the boundary conditions (1.2)—(1.3). Let us mention a few
physical models that can be obtained as a slight modification of the above:

— Incompressible linear elasticity with stiff inclusions takes the same form, with the
Cauchy stress tensor replaced by o(ue, P-) = K D(u.)— P- Id, in terms of the constant
stiffness tensor K of the background material (satisfying the Legendre-Hadamard
condition). Surprisingly, the qualitative homogenization of this problem is quite recent
and follows from [18].(Y)

— Compressible linear elasticity with stiff inclusions is obtained by dropping the
incompressibility constraint div(u.) = 0 in (1.6), and replacing the Cauchy stress ten-
sor by o(u:) = K D(u.), in terms of the constant stiffness tensor K of the background
material. In this case, qualitative homogenization follows from [36, Chap. 3]; see also
[10] for a compactness result in a corresponding nonlinear setting.

— Linear electrostatics with stiff inclusions amounts to taking wu. scalar-valued,
dropping the incompressibility constraint in (1.6), and replacing the Cauchy stress-
tensor by o(u:) = KVu., in terms of the constant conductivity matrix K of the
background material. We refer to [36, Chap. 3] for the qualitative homogenization of
this problem (under weaker hardcore conditions).

Our present quantitative analysis also applies to these models. Our results are all
new, even in the periodic setting (that is, when .# is a periodic set), in which case
Theorems 2 and 6 below hold with ugs = 1.

Before turning to precise statements of our results, we discuss the context. The
present contribution constitutes a natural extension to the steady Stokes prob-
lem (1.1)—(1.3) of the by-now well-developed quantitative homogenization theory for
the model case of divergence-form linear elliptic equations with random coefficients.
This theory was started in [30, 31, 27, 26, 33, 40], with quantitative statements
close to Theorem 6 below under similar mixing conditions. Large-scale regularity was
initiated in [7, 8] in the periodic setting, and in [6] in the random setting, which led to
a more mature theory of the field. For recent developments, we refer the reader to the
recent monograph [3], based on [5, 1, 2], and to the series of works [28, 29, 32, 20, 37].
In the present contribution, we consider for convenience a strong mixing assumption
in form of a multiscale variance inequality [15, 16], and we establish large-scale
regularity by following the approach of [28, 29, 20] — we believe the approach of [3]
could be used as well (see [17, App.B] for some result in this direction). Since we
focus on the weakly correlated setting, we may, as in [30] in its efficient reformulation

W1n this problem it might make more sense to include the internal forcing f in the boundary
conditions, replacing (1.2) by [.5; o(ue, P-)v + [.; f = 0. In that case, the forcing term in the

homogenized problem (1.5) is f rather than (1 — A)f; this is only a minor change in the analysis.

JE.P.— M., 2022, tome g



(2[7 ANTITATIVE HOMOGENIZATION OF RANDOM SUSPENSIONS IT87‘

of [37], bypass part of the argument in [28, 29] by appealing to deterministic regularity
(in form of Meyers’ perturbative estimates) rather than large-scale regularity, which
makes the proof particularly short and elegant. The strongly correlated setting could
be treated by following [28], but it would substantially increase both the technicality
and the length of the argument.

Compared to the model case of divergence-form linear elliptic equations with ran-
dom coeflicients, we face three additional difficulties in this work:

— the rigidity constraint on the particles makes the canonical structure of fluxes
and flux correctors less obvious: as in [14], fluxes are constructed via a nontrivial
extension procedure, which is crucial to obtain optimal convergence rates;

— naive two-scale expansions are incompatible with the rigidity constraint on the
particles, thus requiring some local surgery;

— the incompressibility of the fluid gives rise to the pressure in the equation and
makes many estimates more involved.

NotraTion

— For vector fields u, v’ and matrix fields T, 7", we set (Vu);; = 0ju;, div(T); =
8jTij7 T:T = TijT’in)
summation convention on repeated indices. We also write dgu = E : Vu for any
matrix E.

— For a vector field u and scalar field P, we denote by (D(u));; = 3(d;u; + 0;u;)
the symmetrized gradient and we recall the notation o(u, P) = 2D(u) — PId for the
Cauchy stress tensor. We also recall that v stands for the outward unit normal vector
at particle boundaries.

— We denote by My C R?*4 the subset of trace-free matrices, by My™ the subset of
symmetric trace-free matrices, and by MV the subset of skew-symmetric matrices.

— We denote by C > 1 any constant that only depends on dimension d, on the
constant § > 0 in Assumption (Hs) below, on the weight 7 in Assumption (Mix™) if
applicable, and on the reference domain U. We use the notation < (resp. ) for < C'x
(resp. = (1/C)x) up to such a multiplicative constant C. We write < (resp. >>) for
< (1/C)x (resp. = C'x) up to a sufficiently large multiplicative constant C. We add
subscripts to C, <, 2, <, > in order to indicate dependence on other parameters.

— The ball centered at x of radius » in R? is denoted by B,(x), and we simply
write B(z) = By(z), B, = B,(0), and B = B1(0).

— For a function f, we write [f]2(z) := (fB(I) |f|>)*/? for local moving quadratic
averages at unit scale.

~ We set (r) = (14+72)Y/2 for r > 0, we set () = (1 + |2|?)"/? for x € R%, and we
similarly write (V) = (1 — A)Y/2.

(u®u')ij = wiuj, where we systematically use Einstein’s

Acknowledgements. — The authors warmly thank Felix Otto for some enlightening
comments on the structure of correctors in connection with Lemma 4.1.
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2. MAIN RESULTS

2.1. Assumptions. — Given an underlying probability space (2, P), let & = {x,,},
be a random point process on R?, and consider a collection of random shapes {I2},,
where each I7 is a connected random Borel subset of the unit ball B and is cen-
tered at 0 in the sense of [ 7o Tdx =0. We then define the corresponding inclusions
I, :=z, + I centered at the Eoints of #, and we consider the random set .% := | J,, I,,.
We also denote by I,F the convex hull of I, hence I,, C I} C B(x,). Throughout, we
make the following general assumptions, for some fixed deterministic constant § > 0.

AssumpTioN (Hg) — GENERAL CONDITIONS

— Stationarity and ergodicity: The random set .# is stationary and ergodic.

~ Uniform C? regularity: The random shapes {I2}, satisfy interior and exterior
ball conditions with radius ¢ almost surely.

— Uniform hardcore condition: There holds (I,7 + dB) N (I} + dB) = @ almost
surely for all n # m.

In view of quantitative homogenization results, we need to further consider quan-
titative ergodicity assumptions, which we make here for convenience in form of the
multiscale variance inequality we introduced in [15, 16].

Assumprion (MixT) — QUANTITATIVE MIXING CONDITION
There exists a non-increasing weight function 7 : RT — RT with superalgebraic

decay (that is, w(£) < Cp(€)~P for all p < 00) such that the random set .# satisfies,
for all o(.#)-measurable random variables Y (.%),

oo 2
(2.1) Var [Y(#)] < E { / / (agngz(x)Y(f)) dz (6)~4n(0) dé}
0 Jre
where the “oscillation” 9°%¢ of the random variable Y (.#) is defined by

0%, ()Y (F) = supess {Y(ﬂ’) L 70 (R~ By(z)) = 7 N (RE~ Bg(x))}
~ infess {Y(/’) . 7' (RN By(z)) = 7 N (RE~ Bg(x))}.
2.2. CorreEcTor ESTIMATES. — We first recall the suitable definitions of correctors

associated with the steady Stokes problem (1.1)—(1.3), as introduced in the companion
work [18, Prop. 2.1].

LLemma 1 (Correctors; [18]). — Under Assumption (Hy), for all E € M, there exists
a unique solution (Y, Xg) to the following infinite-volume corrector problem:

JE.P.— M., 2022, tome g



(2[7 ANTITATIVE HOMOGENIZATION OF RANDOM SUSPENSIONS ”8()

— Almost surely, (Y, Xg) belongs to HL (R x L (R~ .#) and satisfies in the
strong sense,

—A\pp + Vg =0, in RY 7,
div(yg) =0, in R4~ .7,

(2.2) Dy + EBz) =0, in 7,
falno(z/}E—i-E(x—xn),ZE)l/:O, Vn,
faln Oz — ) - 0(Yp + E(x — 2,),Sp)v =0, Vn, VO € M-v,

— The gradient field Vi and the pressure field Yglga s are stationary, they
have vanishing expectation, they have finite second moments, and g satisfies the
anchoring condition fB Yr = 0 almost surely.
loc(Rd)d
almost surely as € | 0. Note that (Y, Xg) = (Ypsym, Lgsym ) where ES™ denotes the
symmetric part of E.

In addition, the corrector ¢ is sublinear at infinity, that is, eYp(Z) — 0 in o}

As a key tool for quantitative homogenization, we establish the following moment
bounds on correctors. Inspired by the corresponding strategy for divergence-form lin-
ear elliptic equations in [37], the proof is based on the analysis of stochastic cancella-
tions for large-scale averages of the corrector gradient, together with perturbative an-
nealed L? regularity and a buckling argument. If the weight 7 in Assumption (Mix™)
has some stretched exponential decay, then the moment bounds below can be up-
graded to corresponding stretched exponential moments.

Turorem 2 (Corrector estimates). — Under Assumptions (Hs) and (Mix™'), for
all E € My and q < oo, we have

‘|[(V¢E7ZEﬂRd\y)bHLq(Q) Sq 1B,

and
1 td > 2,
(2.3) [WEl2@)] Loy Sa 1Blpallz]),  pa(r) = {log(2+ 1)/ :d =2,
<r>1/2 d=1.

In particular, in dimension d > 2, up to relaxing the anchoring condition, the solu-
tion Vg of the infinite-volume problem (2.2) can be uniquely constructed itself as a
stationary field with vanishing expectation.

Remark 2.1, We include the case d = 1 in the statements for completeness, in which
case the problem is scalar without incompressibility constraint.

2.3. LARGE-SCALE REGULARITY. — Given a random forcing g € O°(R4; L™ (Q)4*4),
we consider the unique solution (Vu,, P,) € L=(Q; L*(R%)¥*4 x L*(R? \ .#)) of the

JEP. — M., 2022, tome g



19O M. Duerinckx & A. GLORIA

following steady Stokes problem,

—Au, + VP, = div(g), in RY\ .7,
div(ug) =0, in R? < .7,
(2.4) D(uy) =0, in .7,
faln (g + o(ug, Pg))u =0, Vn,
fmn Oz — zp) - (g +o(ug, Py))v =0, Vn, VO € Mkev,

The energy inequality yields, almost surely,

(2.5) [VugllLzgay < |l9llLzma.s)-

Aside from Meyers’ perturbative improvements of this energy inequality, cf. Section 3,
and aside from local regularity theory, no other regularity estimates are expected to
hold in general in a deterministic form due to the presence of the rigidity constraints
on the random set of particles — except in a dilute regime when particles are suffi-
ciently far apart, cf. Remark 2.2. However, in view of homogenization, the heteroge-
neous Stokes problem (2.4) can be replaced on large scales by a homogenized system
as in (1.5). Since standard elliptic regularity theory is available for this large-scale
approximation, the solution to (2.4) should enjoy improved regularity properties on
large scales. This type of result was pioneered by Avellaneda and Lin [7, 8] in the con-
text of periodic homogenization in the model setting of divergence-form linear elliptic
equations. In the stochastic case, while early contributions in form of annealed Green’s
function estimates appeared in [12, 40], a quenched large-scale regularity theory was
first outlined by Armstrong and Smart [6], and later fully developed in [5, 1, 2, 3] and
in [28, 29, 32]. We also mention the useful reformulation in form of annealed regular-
ity in [20]. Based on these ideas, we develop corresponding quenched large-scale and
annealed regularity theories for the steady Stokes problem (2.4), which constitute the
key technical ingredient in our work [19] on sedimentation.

We start with a quenched large-scale Schauder theory. Holder norms are refor-
mulated a la Campanato in terms of the growth of local integrals, and the latter
are restricted to scales > r, for some (well-controlled) random minimal radius r,.
Note that Holder regularity is naturally measured by replacing Euclidean coordinates
x +— Ex by their heterogeneous versions © — ¥ g(z)+ Ex in terms of the corrector ¢g.

Tueorem 3 (Quenched large-scale Schauder theory). — Under Assumption (Hs),
given o € (0,1), there exists an almost surely finite stationary random field r, > 1
on RY, see (5.5), such that the following holds: For all g € C2°(R%;L>®(Q)%*4) and
R > r,.(0), if Vuy is a solution of the steady Stokes problem (2.4) in Bg, then the
following large-scale Lipschitz estimate holds on scales > r.(0),

R 2
(2.6) sup ][ \Vug|2 57[ |Vug|2 +  sup (—) ][ ‘g —][ g
r.(0)<r<RJ B, Br r(0)<r<r N T B, B,

JE.P.— M., 2022, tome g

2

)




(2[7 ANTITATIVE HOMOGENIZATION OF RANDOM SUSPENSIONS gt

as well as the followz'ng large—scale Che estimate,

2
su Exc(Vug; S Exc(Vugy; B su ][ ‘ ][ ,

r*(0)<1:7)”<R 7"2 ( J Br) 3 RQ ( g R) T (o)<I:<R7" v B,g

where the excess is defined by

(2.7) Exc(h; D) := mf ][ |h— (Ve + E) 2

Under Assumption (Mix"), the so-called minimal radius r.(0) satisfies E [r.(0)4] < oo
for all g < 0.

As in [4], [3, §7], [28, Cor.4], or [20, Prop.6.4], the above large-scale Lipschitz
regularity (2.6) can be exploited together with a Calderén—-Zygmund argument to
deduce the following weighted L? regularity estimate on scales > .

Tueorem 4 (Quenched large-scale LP regularity). — Under Assumption (Hg), there
exists an almost surely finite stationary random field r, > 1 on R? as in Theorem 3
such that the following holds: For all g € C*(R%LL®(Q)4%4), 1 < p < oo, and
wetght (v in the Muckenhoupt class Ay, the solution (Vug, Py) of the steady Stokes
problem (2.4) satisfies

(/Rd (]i*(x) |Vug|2)p/2ﬂ(x) dm)l/p <, (/Rd (]i*(x) ‘9|2)p/2u($) dx)l/p,

where we use the short-hand notation B, (x) := B, (z)(z).

As in [19], we establish the following annealed version of the above quenched large-
scale L? regularity statement. The main merit of this estimate is that a stochas-
tic LI(2) norm appears inside the spatial L”(R?) norm and allows to remove local
quadratic averages on the random minimal scale 7, (up to a tiny loss of stochastic
integrability), which is particularly convenient for applications.

Tueorem 5 (Annealed LP regularity). Under Assumptions (Hs) and (Mix"), for
all g € CX(REGL®(Q)4*4), 1 < p,q < oo, weight pu in the Muckenhoupt class Ay,
and 1 > 0, the solution (Vug, Py) of the steady Stokes problem (2.4) satisfies

(2.8) 1P [Vuglallive @esLe(ey) Spam 18P [9)2]lLe e matn @) -
In addition, under Assumption (Hs) (and in particular without Assumption (Mix™T)),

a Meyers’ perturbative result holds without loss of stochastic integrability: there exists
Co ~ 1 such that (2.8) holds with n =0 provided |p —2|,|¢ — 2| < 1/Cy and p = 1.

Remark 2.2 (Deterministic L? regularity in dilute regime). — In the dilute regime,
the recent work of Hofer [34] on the reflection method easily yields the following
version of the above; the proof is a direct adaptation of [34] and is omitted. This also
constitutes a variant of the dilute Green’s function estimates in [25, Lem. 2.7].
Under assumption (Hs), we denote by 6(.#) = 20 the minimal interparticle distance
in S. For all p,q with 1 < p,q < oo, there exists a constant 6, > 0 (only depending
on d,p) such that, provided % is dilute enough in the sense of (&) = ¢, the following
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1192 M. Duerinckx & A. GLORIA

holds: Given a random forcing g € L™°(€2; C°(R)4* ) the solution (Vug, P,) of the
steady Stokes problem (2.4) satisfies

HvuyHLP(Rd;L‘?(Q)) S ||g||Lp(Rd;Lq(Q)),

as well as the following deterministic estimate, almost surely,
||VUgHLP(1Rd) Sp ||9||LP(Rd)~

2.4. QQUANTITATIVE HOMOGENIZATION RESULT. — We consider a steady Stokes fluid in
a domain U C R? with some internal forcing and with a dense suspension of small
particles, cf. (1.1)—(1.3), and we analyze the fluid velocity in the non-dilute homog-
enization regime with vanishing particle size but fixed volume fraction. Suspended
particles in the fluid act as obstacles and hinder the fluid flow, thus increasing the
flow resistance, that is, the viscosity. The system is then expected to behave approx-
imately like an homogeneous Stokes fluid with some effective viscosity, cf. (1.5). This
was the basis of Perrin’s celebrated experiment to estimate the Avogadro number as
inspired by Einstein’s PhD thesis [21].

Before stating the homogenization result, given a reference domain U, the set of
particles must be modified to avoid particles intersecting the boundary: we consider
the random set AZ(U) of all indices n such that e(I,F +dB) C U, and we define

SWU) = U el
neAN(U)

Particles in this collection are of size O(g) and are at distance at least €d from the
boundary OU and from one another, cf. (Hs). We may now turn to the statement of
the optimal quantification of our qualitative homogenization result of [18].

Tueorem 6 (Quantitative homogenization result). Under Assumptions (Hs) and
(Mix1), given a smooth bounded domain U C R® and a forcing f € Wit®>(U)? for
some a > 0, consider for all € > 0 the unique solution

(ue, P.) € L=( HY(U)Y x LA(U ~ A2(U)))

of the steady Stokes problem

—Au. + VP, = f, in U~ Z(U),
div(ue) =0, in U~ 2.(0),
ue =0, on OU,
(2.9)
D(u:) =0, in S.(U),
fsaln o(ue, P-)v =0, Vn € A (U),
fsaln Oz —z,) - o(ue, P )v =0, V¥n e AH(U), VO € Mskew,
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with fU\]E(U) P. = 0. Also consider the unique solution (@, P) € HA(U)? x L2(U) of
the corresponding homogenized Stokes problem

—div(2BD(@)) + VP = (1-\)f, inU,
(2.10) div(z) = 0, inU,
w =0, on OU,

with fUF =0, where X\ := E[1 #] denotes the volume fraction of the suspension, the
effective viscosity tensor B is positive definite on My"™ and is given by

(2.11) B:= Y (E'®E)E[DWg)+E): (Ds)+E)],
E,E'€&

where the sum runs over an orthonormal basis & of My"™ and the corrector (Yg, XE)
1s defined in Lemma 1. Then, the following quantitative corrector result holds for all
q < o0,

(2.12) |luc—u—c¢ Z Yi(-/e)0su
Fes Le(Q;HY(U))
+inf |P.—P—b:D@)— Y (Splgas)(-/e)0pt — K
KER Li(L2(UNZ(U)))

Eec&
1/2
Sag (ea(1/) 2 [ Fllwrseco ),

where fiq is defined in (2.3) and the effective matriz b € My'™ is given by

(2.13) b:E:= é E {Z |]lI;n\ o (x —zp) - o(YE + Ex, EE)V:| .

n

In addition, if f and w are compactly supported in U, then boundary layers disappear
and the bound (2.12) holds with the optimal convergence rate epgq(1l/e).

3. PERTURBATIVE ANNEALED REGULARITY
This section is devoted to the proof of the Meyers-type perturbative result stated

in Theorem 5.

Turorem 3.1 (Perturbative annealed L regularity). Under Assumption (Hy), there
exists a constant Co ~ 1 such that the following holds: For all g € C2°(R%; L>°(Q)4*4),
the solution (Vug, Py) of the Stokes problem (2.4) satisfies for all p,q with |p — 2|,
lg—2| <1/Co,

IVuglallLr mesa)) S Ilg)2llLe ®aLa@))-

3.1. Previminary. — We start with a number of PDE ingredients that are useful in
the proof.
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3.1.1. Whole-space weak formulations. The steady Stokes problem (2.4) can be
reformulated as an equation on the whole space, where particles generate source terms
concentrated at their boundaries. This reformulation is particularly convenient for our
computations.

Leyya 3.2, — The solution (Vug, Py) of the steady Stokes problem (2.4) satisfies in
the weak sense in the whole space R?,

(3.1) — Dug + V(Pylgay) = div(glpas) = Y dor, (9 + o(ug, Py))v.

Likewise, the corrector (g, Yg) in Lemma 1 satisfies in the weak sense in R?,

(3.2) — Mg+ V(Splgess) ==Y do1, 0t + Ex,Sp)v.

Proof. — We focus on the proof of (3.1), while the argument for (3.2) is similar. Given
¢ € CX(RY)4, testing equation (2.4) with ¢ and integrating by parts on RY~\ .7,
we find

(33) /Rd\ﬂ V¢ VU—/Rd\f div(¢) P
/Rd\]VC:gzn:/ajn(C@w):(ngVuPId).

The claim (3.1) follows provided we prove that

(3.4) /fVC:Vu:—zn:/aIn(vaC):Vu.

Indeed, adding the latter to (3.3) yields the claim (3.1), in view of
/ re(+(®v): Vu= C(®@v:2D(u).
oI, oI,
We turn to the proof of (3.4). Since u is affine in I,,, Stokes’ theorem yields
oI, oI, I I

The relation D(u) = 0 on I,, entails that Vu is skew-symmetric in I,,, so that the
above becomes

/ v®({):Vu=— V¢ -Vu; = — V(¢ : Vu,

oI, I, I

and the claim (3.4) follows. O
3.1.2. Localized pressure estimates. We establish the following localized pressure

estimate for the steady Stokes problem (2.4). It follows from standard pressure esti-
mates in [22], but as in [18, Proof of Prop. 2.1] some additional care is needed to make
it uniform with respect to the size of D although .# consists of an unbounded number
of components; a short proof is included for convenience.
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Levmma 3.3 (][22, 18]). Given a deterministic point set {x,}n, satisfying the hardcore
and regularity conditions in (Hs), for all g € L2 (R and all balls D C RY,

loc
any solution (ug, Py) of the steady Stokes problem (2.4) in D satisfies for all p with
1<p<oo,
P, — P ‘ < (V. »
H ! ][D\y e Dy P [(Vug, 9)llLr(p.s)

Proof. — We split the proof into two steps.

Step 1. Preliminary. — There is a vector field S € Wy? /(D)d such that S|, is con-
stant for all n and such that

div(S) = (Q\QIV2 - ]i)\ﬂ Q|Q|p72> Ip.s, Q:=P;— ]{7\,; Py,

VSl () Sp 1RQIQPllLs () = QU2 p s

where we emphasize that the prefactor in the last estimate is uniformly bounded
independently of D.

By a standard use of the Bogovskii operator in form of [22, Th.III.3.1], there exists
a vector field §° € W (D)? such that

div(S°) = (QIQIP_2 - ][D\j Q|Q|p_2) Ip<s,

||VSO||LP’(D) Sp ||Q|Q|p_2”Lp/(D\ﬂ)'

We need to modify S° to make it constant in [,, while keeping the divergence-free

constraint and controlling the norm. For all n such that I, + (6/2)B C D, choose an

extension SS € W, P (I,, + (6/2) B)? such that S = —S° + f; S°in I, and
e e A

W' (I,,)

So defined, S° + §,‘; is constant on I,, but not divergence-free. By a standard use of
the Bogovskii operator in form of [22, Th.III.3.1], there exists a vector field S™ €
WoP (I, + (6/2)B) ~ I,)* (extended by 0 in I,,) such that

div(S™) = —div(S°), in (I, + (8/2)B) ~ I,
||VSnHLP/(([n+(5/2)B)\[n) S,p ||VS;||LP’(ITL+(5/2)B)'
We then define S" := S + 5" Wol’p/(In + (6/2)B)?, which satisfies S™ = 5 =
—5° + fln S° in I, and in addition, combining the above with Poincaré’s inequality,

div(S™) =0
(3.5) n < o
VS HLp’(szr((S/z)B) Sp VS ”LF'(ITL)‘
For all n such that (I,, + (6/2)B) N 9D # &, we proceed to a similar construction,
replacing I, + (6/2)B by (I, + (6/2)B) N D, and f, S° by zero. Using Poincaré’s
inequality on (I, + 6 B) N D, rather than Poincaré’s inequality with vanishing average
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1196 M. Duerinckx & A. GLORIA

on I, + (6/2)B, this provides a vector field S™ € Wol’p/((ln + (6/2)B) N D)%, which
satisfies S™ = —S° in I,, N D and
div(S™) =0,
||VS"||Lp/((1n+(5/2)3)mp) Sp Hvsolle/((In-i-éB)ﬂD)'

Since the fattened inclusions {(I,, + éB) N D}, are all disjoint, cf. (Hs), implicitly
extending S™ by 0 outside its domain of definition, the vector field S :=S°+ %" S
satisfies all the required properties.

Step 2. Conclusion. — Testing equation (3.1) with S, using that S is constant inside
particles, and recalling the boundary conditions for u,, cf. (2.4), we are led to

/ div(S) P, :/ VS : Vu, —/ VS :g.
N D DN.#

Inserting the definition of div(S), recalling that V.S vanishes in .#, and using Holder’s
inequality, we find

1QUT 2 (pw.sry Sp IVSILe (py (Vg 9)llLr (D5
and the claim follows from the bound on the norm of V.S in Step 1. O
3.1.3. Dual Calderon-Zygmund lemma. — As in [20], we shall appeal to the following
dual version of the Calderon—Zygmund lemma due to Shen; the present statement is
a variant of [41, Th. 3.2] (see also [42, Th.2.4]). For a ball D C R¢, we henceforth set

D = B, (zp) and use the abusive short-hand notation kD := By, (zp) for dilations
centered at the same point.

Lemva 3.4 ([41]). — Given 1 < pg < p1 < o0, F,G € LP°NLP*(RY), and Cy > 0,
assume that for all balls D C Rd there exist measurable functions Fp o and Fp 1 such
that |F| < < |F| + |Fpo| on D, and such that

(4,1

<]{1/CO)D

Then, for all p with py < p < p1,

(L) S (] 107)"

3.1.4. Gehring’s lemma. — We shall appeal to the following version of Gehring’s
lemma, which is a mild reformulation of [24, Prop. 5.1].

Levvia 3.5 ([23, 24]). — Given 1 < ¢ < s and a reference cube Qo C RY, let G €
LY(Qo) and F € L°(Qq) be nonnegative functions. There exist 6y > 0 (only depending
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on d,q,s) with the following property: Given 6 < 6y, if for some Cy > 1 the following
condition holds for all cubes Q C Qq,

/ / /
o) <ol o) ol f )"

then there exists ng > 0 (only depending on Cy,d, q, s) such that for all ¢ < p < q+no,

1/ ,
(]{I/CO)QU GP) " Scoar ]éo G+ (][0 Fp) »

3.2. Proor or Tueorem 3.1. — The starting point is the following deterministic per-
turbative result, for which an argument is postponed to Section 3.3.

Prorosition 3.6. — Given a deterministic inclusion set & satisfying the hardcore and
reqularity conditions in (Hs), there exists a constant Cy ~ 1 such that the following
hold.

(i) Meyers-type L estimate:
Given g € C(RY)¥4 the solution (Vug, Py) of the steady Stokes problem (2.4)
satisfies for all p with 2 < p <24 1/Cy,

IVuglallLe @y S lllgl2llue @)

(ii) Reverse Jensen’s inequality:
For any ball D C R?, if (w, Q) satisfies the following equations in D,

—Aw+VQ =0, in D~ A,

div(w) = 0, in D\ .7,

D(w) =0, in S,

Jor, 7w, Qv =0, Vn: I, CD,

fajn Oz —z,)-o(w,Qv=0, Vn:I,CD,VO cMskv,

then there holds for all ¢ < p with |p — 2|,|q¢ — 2| < 1/Cy,

(]{I/C)D[Vw]é’)l/p < (]é[vw}g)”q,

We may now proceed with the proof of Theorem 3.1, which follows from the above
together with Shen’s dual version of the Calderén—Zygmund lemma, cf. Lemma 3.4.

Proof of Theorem 3.1. We split the proof into three steps. We start with estimates
outside the particles: first for 2 < ¢ < p, and then for p < ¢ < 2 by a duality
argument, so that the full range of exponents is finally reached by interpolation.
Next, we extend the estimates inside the particles. Let Cy > 1 be fixed as in the
statement of Proposition 3.6.
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Step 1. Proof'that for all p,q with2 < ¢ < p <2+ 1/Cy,

(3.6) ”[vug]QHLP(Rd;L‘I(Q)) N H[g]QHLP(Rd;L‘I(Q))-

Let po, p1 with 2 < pg < p1 < 2+ 1/Cp be fixed. For balls D C R¢, we decompose
Vug = VUD@ + VUD,l,

where Vup o € L>(Q; L*(R?)%*4) denotes the unique solution of

~Aup,o+ VPpyo=div(glp), in R\ .7,
div(up,) =0, in R¢ < .7,
D(up,) =0, in .7,

fé)[n (91p + o(up,0, Ppo))v =0, Vn,

fa]n O(x —xy,) - (ng + o(upo, PDﬁo))l/ =0, VYn, VO € Mskew,

On the one hand, for balls D with radius rp > 1, Proposition 3.6(i) applied to the
above equation yields

[ Evunap <k| [ una| 5| [ o] < [ Ela2.

while for balls D with radius rp < 1 we appeal to the plain energy inequality (2.5)
in form of

| Evunazy < i ( [ 1vunol)™"] < i ( [ 7)™

s [ Elag.

On the other hand, noting that Vup 1 = Vuy — Vup o satisfies

—Aup1+VPp; =0, in D~ .7,

div(up,1) =0, in D\ .7,

D(up,1) =0, in .,

fmn o(upi,Pp1)v =0, Vn: I, C D,

fal” O(z —x,) -o(up1, Pp1)v =0, Vn: I, C D, VO € Mskew,

it follows from the Minkowski inequality and from Proposition 3.6(ii) that

1/p1 po/pr] Y/ Po
(f, . B <e|(f  mupag)™"]
(1/C)D (1/C)D

< E[]{D[Vum]é’”} o = (][DE[[VUDJ]};O])I/Z)O'

In view of these estimates, appealing to Lemma 3.4 with
1
F=E[[Vu 3], G :=E[g]"™,
Fpyo:= ]E[[VuD,o]SO]l/p°7 Fpi:= E[[VUDJ]IQ)O]UPO,
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we deduce for all p with py < p < p1,

([, =lvu1™)" < ([ =ty im)”"

and the claim (3.6) follows (with ¢ replaced by py).
Step 2. Duality and interpolation: proof that for all p,q with2 —1/2Cy < p < ¢ < 2,

(3.7) [Lrew s Vul2|lLe ®eLa)) S gl2llLe @aLa(@))-

Combining this with (3.6), we then deduce by interpolation that the same estimate
holds for all p, ¢ with |p — 2|, |q¢ — 2| < 1/8C.

Given a test function h € C°(R4; L>°(2)4* %), we consider the solution (Vuy, Py)
of the steady Stokes problem (2.4) with g replaced by h. In view of (3.1), there holds
in the weak sense in RY,

7Au9 + V(Pg]]-Rd\ﬂ) =V (gIL]Rd\J) - Z 53171 (g + J(ugv Pg))l/,
7Auh + V(Ph]].Rd\y) =V (h]].Rd\]) — Z(Sa]n (h + O'(Uh, Ph))l/.

Testing the equation for u; with g4, and vice versa, and noting that the boundary
terms all vanish in view of the respective boundary conditions, we find

/ h:Vug =— Vuh:Vugz/ g : Vuy,.
Ri ¥ R4 RN ¥

Combined with a duality argument, this identity yields

[Mra< s VuglallLe ra;La )

= sup {IE[/W jg : Vuh} )2l (g (@)) = 1}

< ”[9]2”Lq(Rd§Lp(Q)) Sup{H[vuh]QHLp/(Rd;Lq’(Q)) : ||[h]2HL1’/(Rd;LQ/(Q)) = 1}~

Given p, q with 2 — 1/2Cy < p < ¢ < 2, we may appeal to (3.6) with 2 < ¢’ < p’ <
2+ 1/Cy, and the claim (3.7) follows.

Step 3. Conclusion. In view of Step 2, it remains to show that for all p,q > 1,
(3.8) 1[1r VuglallLe®are@)) S [I[1riw.s Vugl2llLr®ensa))-
For all n, since u is affine in I,,, we can write for any constant ¢, € RY,

IVuglle(r,) S llug = enllLicar,)-

By a trace estimate and by Poincaré’s inequality with the choice ¢,, := f( I+6B)~T, Ug>
we deduce

[VugllLee 1) S llug = enllwrar,vemy~r.) S IVuglliz,+sB)~1.)-

JIEP. — M., 2022, tlome g



1200 M. DueriNnckx & A. GLORIA

We may then estimate pointwise,

1y |Vug| S Z L1, [Vugllu (1, +6B)~10)

and the claim (3.8) now follows from the hardcore condition in (Hy). O

3.3. Proor or Prorosition 3.6. We split the proof into two steps. We start with a
Meyers-type perturbative argument based on Caccioppoli’s inequality and Gehring’s
lemma, and we conclude in the second step.

Step 1. Meyers-type perturbative argument: there exists Co > 1 (only depending on d, §)
such that for all balls D C R* and 2 < p < 2+ 1/Co,

A\ 1/P ) o) (d+2)/2d A\ 1/P
(3.9) (ﬁwmg 5(ﬁwwmﬂw”) +(£Jm).

Given a ball D C R with radius 7p > 3, choose a cut-off function y p with Xplp =1,
XDlri2p = 0, and |Vxp| < 1/rp, such that xp is constant in I,, for all n. Given
arbitrary constants cp € R? and ¢/, € R, testing the equation (3.1) for u, with
x5 (ug—cp), noting that the boundary terms all vanish, and recalling that div(uy) = 0,
we obtain the following Caccioppoli-type inequality,

1
/|wg\25—2/ |ugch|2+/ g2
D p JobD 2D
1 1/2 1/2
(o [ wa—eol) ([ 1R pP1aes)
2D 2D

™D
Hence, for all K > 1,

K? 1
/ |Vug‘2 S = / ‘ug_cD|2+/ |9|2+ K2 / ‘P.Q_C/DP]I]Rd\ﬂ-
D Tp J2bD 2D 2D

Using the the Poincaré-Sobolev inequality to estimate the first right-hand side term,
with the choice cp := f2 p Ug, and using the localized pressure estimate of Lemma 3.3
to estimate the last right-hand side term, with the choice ¢, := f2 py P we deduce

810 (f 19up) " SK(f o pres) ()"
+ %(]ip |Vug|2)1/2.

While this is proved here for all balls D with radius rp > 3, taking local quadratic
averages allows us to infer for all balls D (with any radius rp > 0) and all K > 1 that

(][D[VUgE)l/Z < K(]éD[vug]gd/(dH))(d+2)/2d+(]iD[gE)ler;{(iD[VugE)l/z-

Choosing K large enough, the claim (3.9) now follows from Gehring’s lemma in form
of Lemma 3.5.
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Step 2. Conclusion. We start with the proof of (i). Applying (3.9) together with
Jensen’s inequality and with the energy inequality (2.5), we find for all p with
2<p<2+1/Cy,

([ )™ <o [ wu) ([ ag)"”
sioprrz( [ gy e ()"

hence the conclusion (i) follows for D 1 R?. Next, item (ii) is a consequence of (3.9)
with ¢ =0 in CD. ]

4. CORRECTOR ESTIMATES

This section is devoted to the proof of Theorem 2. Next to the corrector vg, we
further introduce an associated flux corrector (g, which is key to put the equation for
two-scale expansion errors into a more favorable form, cf. (6.3). As in [14, Th. 4], moti-
vated by the work of Jikov on homogenization problems with stiff inclusions [43, 35]
(see also [36, §3.2]), we start by defining a divergence-free extension Jg of the flux
o(Wg + Ex,Xg)lge_ . Although this extension is not unique, we can choose it as
in [14] to coincide with the flux in the corresponding incompressible linear elasticity
problem in the limit of inclusions with diverging shear modulus. The flux corrector (g
is then defined as a vector potential for this extended flux Jg; more precisely, equa-
tion (4.1) below amounts to choosing the Coulomb gauge. The construction is recalled
for convenience in Section 4.1.

Levmma 4.1 (Extended fluxes and flux correctors; [14]). — Under Assumption (Hs),
for all E € My, there is a stationary random 2-tensor field Jg := {Jg.ij h1<i,j<d with
finite second moment such that almost surely,
Jelpa s = 0(p + Ex,Yg)1lpe s, div(Jg) = 0.

In these terms, there exists a unique random 3-tensor field (g = {Cr.ijk }1<i,j k<a that
satisfies the following infinite-volume problem:

— For alli,j,k, almost surely, Cg.i;1 belongs to Hlloc(]Rd) and satisfies in the weak
sense,
(4.1) — ACEijk = 0;JEB,ik — Ok JE,ij-

— The random field V(g is stationary, has vanishing expectation, has finite second
moment, and (g satisfies the anchoring condition fB (g = 0 almost surely.
In addition, the following properties are automatically satisfied:

(i) Cg is skew-symmetric in its last two indices, that is, Cpijx = —Crk; for all
i, 5, k;

(ii) ¢g is a vector potential for Jg, that is,

diV(CE)i) = JE,i —E [JEJ'} 5

in terms of Cp,i = {Crijkhi<je<a and Jgi = {5 hi<i<as
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(iii) Cg ds sublinear at infinity, that is, eCg(-/e) — 0 in HL_(R?) almost surely as
el 0;

(iv) E[Jg] = 2BE+ (b : E)1d, where we recall that the effective constants B and b
are defined in (2.11) and (2.13).

With the above definition, we shall establish the following version of Theorem 2
for the extended corrector (¢, (g); the proof is postponed to Section 4.2.

Turorem 4.2 (Extended corrector estimate). — Under Assumptions (Hs) and (Mix™),
for all E € My and q < oo,

(42) H[(vwE7ZE]le\,]aVCE)]?”L‘?(Q) Sq |E|7

and

(4.3) I[(Ve, Ce)l2(@) L) Sq [E]pallz]),

where pq is defined in (2.3).

4.1. Proor or LLemma 4.1. — Let E € My. We split the proof into two main steps.

Step 1. Construction of the extended flux Jg. — Given a realization of the set of inclu-
sions, we consider for all n the weak solution (%, ¥%) in H'(I,)% x L*(I,,) of the
following Neumann problem in I,,,

A+ VER =0, in I,
(4.4) div(¢%) =0, in I,
oYy, X% )v =0Wr + Ex,Xg)v, on dI,.

Note that ¢% is defined only up to a rigid motion, which is fixed by choosing fI’ Yp=0
and §, Vi € My'™, and we prove that (¢}, X7,) satisfies

(4.5) (VY E]%)||L2(1n) Slle(e + Ex, EE)||L2((IW+6B)\IH)~

Substep 1.1. Well-posedness of the Neumann problem (4.4) for ¢%. — The weak formu-
lation of (4.4) takes on the following guise: ¥} is divergence-free and satisfies for all
divergence-free test functions ¢ € H'(1,,)?,

(4.6) 2 /1 D(6) : D) = Zin(0),

n

in terms of the linear functional
gE(qﬁ) ::/ (,ZS‘O’(’(/JE+E$,ZE)I/.
oIy,

In view of the boundary conditions for 1z, we can rewrite for any V € R? and
Oc Mskew

ZLr(p) = /61 (p—V —-0(—=z,)) c(¥r + Ez,Xg)v.

Choose an extension map

T, :{¢ € H'(I,)" : div(¢) = 0} — {¢ € Hy(I,, + 6B)* : div(¢) = 0},
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such that T, [¢]|1, = ¢|1, and

1Tl e 1,458y S @M,y

In these terms, using Stokes’ theorem and recalling that o (¢ g + Ex, X g) is symmetric
and divergence-free, we can further rewrite

2o == [ av(olr 4 Br S0 Tlo -V - 0( ~ )

—— [ D@l6—V -6~ w)): olvs + Ex. )
(In+3B)
and thus, since D(T,,[¢p — V — O(- — x,,)]) is trace-free,
@ Zeo)=-2 DT (6~ V — O — )]} : (D(e) + ).
(In+8B)~1I,,
We deduce that ¢ — Zr(¢) is a continuous linear functional on the subspace
{¢ € H'(1,)? : div(¢) = 0}. In addition, for all divergence-free ¢ € H'(I,)?, mini-
mizing over V, © and appealing to Korn’s inequality, we find
|Ze(0)| S Vig}gd ¢ =V —=O( — x|l 1) IDWE) + EllLz((1,+5B)~1.)
@eMskew
SID@O Nz IPD(WE) + Ellvz (1, +58)~1,)-
By the Lax-Milgram theorem, we deduce that there exists a unique trace-free gradient-
like solution D(¢}) € L2(I,,)4%¢ of (4.6), and it satisfies

sym

ID@WENL2r,) S IIDWE) + EllLz (1, +6B)~1,)-

The vector field ¢ is itself defined only up to a rigid motion and is fixed by choos-
ing f, Y% = 0and f, V¢ € My™, in which case the above becomes by Korn’s
inequality,

(4.8) IVYElL2 (1) S IPDWE) + EllLz (1, +6B)~1.)-
Substep 1.2. Construction of the pressure. — Consider the extended deformation
4 = D(¢Yp) + E+ D(Yg)ls,,  inl,+0B.

In view of (4.7), the weak formulation (4.6) yields for all divergence-free test functions
¢ € C>(I, + 6B),

2 D 1 gk =0.
Ad (¢) 9

Appealing e.g. to [36, Prop. 12.10], we deduce that there exists an associated pressure
field 7, € L} (I, + dB), which is unique up to an additive constant, such that for
all test functions ¢ € C°(I,, + §B)4,

(4.9) / D(¢) : (2q% — X% 1d) = 0.
Since for all ¢ € C°((I,, + dB) \ I,)* we have

/D(¢);(2qg =7 1d) /D D(¢p) + E) — Tp1d) =0,
R4 R4
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we deduce that X7 can be chosen uniquely to coincide with ¥ g on (I, + dB) N\ I,,.
The pair (¢, X%) is then the unique weak solution of the Neumann problem (4.4)
with fln Yk =0 and fln Vi e My™.

It remains to prove (4.5). The estimation of V¢} follows from (4.8) and it remains
to estimate the pressure X’%. For that purpose, using that 3% coincides with ¥ on
(I, + 6B) \ I,, we split

LA gHE”—][ ol ¥ ][ nn
1221, 5] in i, som) e E

< ‘ L ][ o + ][ ZE‘
B I1,4+6B B L2(I,+0B) (In+8B)~Iy

+ ][ (zg - ][ zg)]
(In+8B)~1,, I,+6B

< ‘ s ][ s + ][ EE‘.

I,+6B L2(In+6B) (In+86B)~1Iy,

Starting from (4.9), a standard argument based on the Bogovskii operator yields

=z - f s
I,+6B

so that the above becomes

L2(I+6B) < \\Q%||L2(1n+63),

1XElL2r,) S Nagllve,+sm) + IZElL2(14+6B)~10)5
and the claim (4.5) follows from (4.8).

Substep 1.3. Construction of the extended flux. — We define the extended deformation
and the extended pressure,

gp ==D(p)+ E+Y D@L,  Yp=Splpa s+ Yy Ypls,
n n

as well as the corresponding extended flux

(110)  Jpi=2p —Sp = 0(Yp + Be, Se)lae s + > 0 SHL;, .

In view of (4.9), together with (3.2), the pair (g, Y) satisfies for all test functions
¢ € CF(RY)Y,

(111) [P s~ S) =0,

that is, Jg is divergence-free. The uniqueness of the extensions ensures that ¢g and ¥ E

are both stationary, and we now prove that they have finite second moments. Com-
bining the definition of g with the estimate (4.8) on %, we find for all R > 0,

l3elliz () S ID(WE) + EllL2(Bays)s

and thus, by stationarity, letting R 1 oo, and using the L? estimate on Vg,
cf. Lemma 1,

lgellLz@) S ID(WE) + Elliz@o) S 1E].
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(2[7 ANTITATIVE HOMOGENIZATION OF RANDOM SUSPENSIONS 1205

For the pressure, starting from (4.11), a standard argument based on the Bogovskii
operator yields for all R > 0,

[Be-4, 5
Br
and thus, by stationarity, letting R 1 0o and using the above L? estimate on §z,
12e —EZEllLz@ S lgelliz@) S 1E]-

We conclude that || Jg[|r2(o) S [E]. The identity in item (iv) for the expectation E [Jg]
follows from a direct computation, cf. [14, Lem. 4.2], and is not repeated here.

S llgelleesg);

L?(Br)

Step 2. Construction of the flux corrector (g. In view of standard stationary calculus,
e.g. [36, §7] (see also [28, Proof of Lemma 1]), equation (4.1) admits a unique sta-
tionary gradient solution V(g € L (R% L?(Q)4*¢) with vanishing expectation and
with

IVCelliz) S IVEl20) S |EL
Items (i) and (ii) are easy consequences of the definition of (. As in Lemma 1, the

additional sublinearity statement (iii) is a standard result for random fields having a
stationary gradient with vanishing expectation, cf. e.g. [36, §7]. O

4.2. Proor or Treorem 4.2. — We start with the following estimate on the optimal
CLT decay for large-scale averages of the extended corrector gradient (V¢ g, V(g) and
of the pressure Y. Due to the nonlinearity of the corrector equation with respect to
randomness, local norms of (Vig, X g) also appear in the right-hand side of (4.12),
which is a common difficulty in stochastic homogenization; this will be subsequently
absorbed by a buckling argument, taking advantage of the CLT scaling.

Prorosition 4.3 (CLT scaling). — Under Assumptions (Hs) and (Mix"1), for all g €
Cx®(RY), E€ My, R,s > 1, and 1 < q < 0o, we have

(4.12) "Adg(V¢E,EE1Rd\f7VCE) L2a(0)

2s 1/2s
Sallahoen 181+ ([ (908 Botee )
R

w(ﬂ)) '

(Note that the smaller R and s are, the stronger the estimate.) In order to get
such a control on stochastic moments, we appeal to the following consequence of the
multiscale variance inequality (2.1) in (Mix™), cf. [15, Prop. 1.10(ii)].

Levwva 4.4 (Control of higher moments; [15]). — If the inclusion process & satisfies
the multiscale variance inequality (2.1) with some weight 7, then we have for all q
with 1 < g < oo and all o(.F)-measurable random variables Y () with E[Y ()] = 0,

1/q

(413) V() [ariey < qQE[ I ( /. }ffBe(x)Y(f))deY(@‘dqw(é) de}
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1206 M. DueriNnckx & A. GLORIA

Next, in preparation for the buckling argument, we show how to bound local norms
of (ViYg,Xglga_ ) as appearing in the right-hand side of (4.12) by corresponding
large-scale averages. This statement is inspired by [37] in the context of homogeniza-
tion for divergence-form linear elliptic equations.

Prorosrrion 4.5. Choose x € C°(B) with [ x =1, and set x,(z) :=r~x(z/r).
Under Assumption (Hs), for all E € My, r,R with 1 <, r <, R andr/R 2, 1, and
q,s =1 with |s — 1| < 1,

H (]{BR (Ve ZE]le\f)]gs) -

<\ |E|+ H/ Xo (Vo Splga .
oy S [ e .

(The smaller (resp. larger) R,r (resp. s), the stronger the estimate.) Based on the
above two propositions, we are now in position to proceed with the buckling argument
and the proof of Theorem 4.2.

Proofof Theorem 4.2. — Let E € M be fixed with |E| = 1. We split the proof into
three steps: after some preliminary estimate, we establish the moment bounds (4.2) on
(VYg, Xglge s, V(g) by a buckling argument, before deducing the corresponding
moment bounds (4.3) on (¢, g) by integration.

Step 1. Preliminary: proof that for all R > 1,

(4.14)  [[(VYg, Xplpes)]2llL2e@)

5 (Rd/2)1—1/q

(]é |<V¢E72EﬂRd\ﬂ)|2)1/2

LQ’I(Q).

For R,q > 1, in view of local quadratic averages, the discrete £2 — ¢27 inequality yields

(][B =) (VYp, Xplpad s, VCE)Eq> 1/2q

1/2q
SR X (VenSelu s Vo)
zEBagr(z)N(1/C)Z2
1/2
S f (Vo Spla s, Vo))
Bar(z)

Taking the L?¢() norm and using the stationarity of (V¢g, ¥glga s, VCg), the
claim follows.

Step 2. Moment bounds (4.2). — Combining the results of Propositions 4.5 and 4.3,
we find for all 7, R with 1 <, r <, Rand r/R 2, 1, forall ¢,s > 1 with 1 < ¢ < o0

JE.P.— M., 2022, tome g
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and |s — 1| <« 1,

H (]{BR [(VYE, ZEﬂRd\j)]§s> 1/2s

L?1(Q)

Set+| [ (Ve Selas)]
R

L24(Q)

o L+ (R/r) 2R/

(1+4 (Vomsere )"

L24(Q)
Letting r, R be fixed with 1 <, » <, R and r ~, R, and choosing R >4, 1, we

deduce

1.

~4q,s

L24(Q)

H<]€3R[(V¢E7EEﬂRd\J)]gs>1/25

Inserting this into (4.14) and using Jensen’s inequality, the moment bound (4.2) on
V¢ and X follows.

It remains to prove the corresponding moment bound on the flux corrector gradient
V(g. Starting from equation (4.1) and appealing to localized maximal regularity
theory for the Laplace equation, we find for all ¢ with 1 < ¢ < oo and R > 1,

(f mee) ™ s (o) " (f, )™

hence, by the ergodic theorem, letting R 1 oo,

11V¢El2llLza) Sq IVCElIL2 (@) + [TE]2lL20(0) -

Using an energy estimate for (4.1) to bound the first right-hand side term, we are
led to

IV Celallrza) Sq ll7E]2llee@)-
By definition (4.10) of Jg, combined with (4.5), we deduce

1IV¢El2llLz2aq) Sq 1+ I(VYE, Erlra s)l2llL2aq),

and the moment bound (4.2) on V(g now follows from the result on Vi), Xg.

Step 3. Moment bounds (4.3). We focus on the bound on g, while the argument
for (g is similar. Poincaré’s inequality in B(z) gives

@15) |[oe=fve )] | SUTOsble ] f, e~ f s

and it remains to estimate the second right-hand side term. For that purpose, we

wE—f wE:/ Vg - Vhe,
B(x) B R4

where h, denotes the unique decaying solution in R? of

L24(Q) L29(Q)’

write

1
—Ahy = — (1) — 1B).
‘Bl( B(x) B)
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1208 M. DueriNnckx & A. GLORIA

Appealing to Proposition 4.3 together with the moment bounds (4.2), we find for all
q < 0,

L22(Q) gq ||VthL2(Rd)-

A direct computation with Green’s kernel gives

H Rd

||thHL2(Rd) < pa(lzl)),

H o) Ve — ]in‘

Inserting this into (4.15), together with the moment bounds (4.2), the conclusion (4.3)
for ¥ follows. |

and thus

< .
gy o pallz)

4.3. Proor or Prorosition 4.3. Let E € My be fixed with |E| = 1. Applying the
version (4.13) of the multiscale variance inequality (2.1) to control higher moments,
we find

2

@16) | [ a(F0mZp1en s Vi)

L24(Q)
1/q

Sa E{/Ooo (/Rd (5’??3@(@ /Rd9(V7/1E7ZEle\f,VCE))2d$>q<€>dq w(0) dé} ;

and it remains to estimate the oscillation of f]Rd 9(VYg, Xglpa s, V(g) with respect
to the inclusion process .# on any ball By(z). Given £ > 0 and z € R?, and given
a realization of .#, let .#’ be a locally finite point set satisfying the hardcore and
regularity conditions in (Hs), with %/ N (R%\ By(z)) = .# N(R?\ By(x)), and denote
by (Vi'y, X lga s, V() the corresponding extended corrector with .# replaced
by .#’ (this is obviously well-defined in L (R%) as the perturbation is compactly
supported). We split the proof into nine steps.

Step 1. Preliminary: dual test functions and annealed estimates. — As we shall abun-
dantly appeal to duality arguments in the proof, this first step is devoted to the
construction of a number of useful dual test functions and to the proof of correspond-
ing annealed estimates:

~ Given a test function g € C°(R%L>(Q)4%?), we let Vu, € L(; L*(R?)4x?)
denote the unique solution of the steady Stokes problem (2.4), and we recall that
Theorem 3.1 yields for all ¢ with |¢ — 2| < 1,

(4.17) ||[Vug]||L2(]Rd;Lq(Q)) < ||[g]2||L2(]Rd;L‘I(Q))-

~ Given a test function g € C°(R% L (Q)4), we let Vv, € L°(; L*(R%)?) denote
the unique solution of

(4.18) — Av, = div(g), in RY,
which satisfies for all ¢ with 1 < g < o0,

(4.19) 1[Vvglallz®esna)y Sq llgl2lle@anaa))-
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~ Given g € OX(R?% L>°(Q)), there exists a vector field s, € L>=(Q; H'(R%)?) such
that sg|z, is constant for all n, and such that for all ¢ with 1 < ¢ < o0,
div(sy) = glpa_ s, ian,
(4.20) ( g) glra 7
||W59]2||L2(Rd;m(9)) S “[9]2”L2(R4;L‘1(Q))~
— Given g € C(R% L>(Q)4*4), there exists a 2-tensor field
hg c LOO(Q;Hl(Rd)dXd>
such that h,

I, = fl g for all n, and such that for all ¢ with 1 < ¢ < o0,

div(hy) =0, in R%
(4.21)
IThgl2lliz maLaa)) S glellue®ene@))-

The existence and uniqueness of Vv is clear, and the annealed bound (4.19) follows
from Banach-valued Fourier multiplier theorems, e.g. in form of the extrapolation
result in [39, Th.3.15].

We turn to the construction of s4. First denote by sj := Vw, € L>(; H'(R%)4)
the solution of

Awg = glga_y, in RY.
In view of (4.19), it satisfies for all ¢ with 1 < ¢ < oo,

||[V$§]2||L2(Rd;m(n)) Sq H[g]2||L2(Rd;Lq(Q))~
Next, asin (3.5), by a standard use of the Bogovskii operator in form of [22, Th. I11.3.1],

for all n, we can construct a vector field sy € Hg (I,+6B)? such that Sg = —s;—i—fln Sq
in I,,, and
div(sy) = 0,
IVsglire(r,+s8)~1.) S IVsgllre(z,)-

Since the fattened inclusions {I,, + 0B}, are disjoint, cf. (Hs), the vector field s, :=
sg+ >, sy (where we implicitly extend s by 0 outside I,, +- 3 B) is checked to satisfy
the required properties.

It remains to construct hy. As in (3.5), using the Bogovskii operator in form of [22,
Th.TI1.3.1], for all n, we can construct a 2-tensor field h} € Hg (I, + §B)¥*4 such
that hy|r, = f; g, and

div(hy) =0,
IVhg 21, +o8)~1.) S N9llLz(r,),
and the tensor field hy =3 hg then satisfies the required properties.

Step 2. Preliminary: trace estimate. For later reference, we prove the following gen-
eral trace estimate: given a symmetric 2-tensor field H € L _(R%)%*¢ such that
div(H) =0, in (I, +6B) N I,
/. ol Hyv =0,

faI Oz —x,) - Hv =0, for all © € Mkew,
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1210 M. Duerinckx & A. GLORIA

we have for all g € H! (R%)4,

1/2 1/2
wz | [ gem]s(/f pio)P) ([ aP) "
ol, (In+8B)~1,, (In+8B)~1y,

We start by considering the following auxiliary Neumann problem,

—ANzp, + VR, =0, in I,,
div(z,) =0, in I,,
o(zn, Ry)v = Hy, on 0I,.

Well-posedness for this problem is obtained as for (4.4) thanks to the assumptions
on H, and the solution satisfies

1(Vzn, Ro)llz,y S MH vz, +68)~1,)-

Using the equation for z,, Stokes’ theorem yields

/ g~HV:/ g-o(zn,Rn)V:/ D(g) : o(zn, Rn),
oIy, ar, In
and the claim (4.22) follows.

Step 3. Proof of
(4.23) [oweks [ v,
Byys(z) Beys(x)

(4.24) / Y P lga s < / (14 |VYe]* + |Ze* 1racs).
Byys(z) Beys(x)
Equation (3.2) for ¥p — ¢%; takes the form

(4.25) = A(p —¥p) + V(Eplpa s — Eplpa )
== bor,0(p + Ex,Xp)v+ Y bor,0(Vy + Bz, Sp)v.

Testing this equation with ¢ g — 9, we find

[ 19w — v - Z/ (61 — ) - o(op + Bz, Sp)v

+Z (W5 — ) - o(Us + Bz, S,

ar,
which, by the boundary conditions, turns into
@) [ Vwe-vpP= Y W - (s + Fx, Sa)v
R? n:I,,NBy(z)#2 oI,
+ > Yp - oYy + Bz, Sp)v.

n:I!,NBy(x)#2 or,
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Note that, by Stokes’ theorem, the constraints div(ig) = div(y};) = 0 allow to replace
the pressures X g and ¥/ in this identity by ¥ g — ¢ and ¥ — ¢/, respectively, for any
constants ¢, ¢’ € R. Appealing to the trace estimate (4.22), we are led to

1/2
[vwe-vnPs ([ 0+ TeeP + (S - o laes))
R Beys(o)

1/2
y (/ (14 IV + 19 — ¢ PLaa )
Bets(z)

Choosing ¢ := fBHg(x)\] Yg and ¢ = JCBus(w)\ﬂ’ Y5, and using the pressure esti-
mate of Lemma 3.3, we deduce

o [ vwe-vels ([ owet) () aemin)”

and the claim (4.23) follows from the triangle inequality.

Next, we establish the corresponding bound (4.24) on the perturbed pressure. Using
the Bogovskii operator as in the construction of s, in Step 1, we can construct a vector
field Sp € H'(R?)? such that Sg|; is constant for all n and such that

c+3()

le(SE) = (EE]]-Rd\ﬂ - E/E]]-Rd\,ﬂ’)]]-Rd\f’v
IVSElL2@ey S IEElric s — Dplrec oLz @i sy

Testing equation (4.25) with Sg and using the boundary conditions, we find

/ div(S) (Splaiy — Splpa ) = / VS V(e — o)
Rd Rd

+ Z SE 0(1/1E+E$a EE)Vv
n:I,,NBy(z)£o ” 9In

which yields, by inserting the value of div(Sg) and using again the trace esti-
mate (4.22),

1/2
[ metacs - Spta P 5 ([ 19SeP)
RA~ 7 Rd
12 2 2 1/2
< ([ Vs - R+ (1+ Vs + [B6lnes)) -
R4 Beys(x)
Appealing to the bound on the norm of VSg, this yields
[ el - Sptasl s [ IV0@e - )P
Ri #! R4
L (R PR )
Biys(x)

Combining this with (4.27) and (4.23), the claim (4.24) follows by the triangle in-
equality.
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Step 4. Sensitivity of the corrector gradient outside the inclusions: for all g € C°(R4)3*4,

@) [ givee— [ givip
RiN ¥ R .#/
1/2 1/2
S([ GaPema) ([ @ves)
Beys(x) Beys(z)

Decomposing [ = g s = [ 51— s and noting that (J'\I)U(I\I') C
By(x), we find

(4.29) ]/ g:V?/)E—/ g: Vs
Ria ¥ AN

| [ ovws-up|+ (] » 2)"( / » v

It remains to examine the first right-hand side term, for which we appeal to a duality
argument, in terms of the solution Vu, of (2.4). Testing with g — 9% the equa-
tion (3.1) for Vu,, and subtracting an arbitrary constant ¢; € R to the pressure P,

we obtain

[ o Vwe—v) == | Vi, Vws - i)

_Z (d)E—w}J)-(g—i—a(ug,Pg—Cl))m
n or,
which, in view of the boundary conditions, turns into

@) [ g Vwe—vm) == [ Vu: Vlws - vp)

+ Y Ui (9+ 0(ug, Py — c1)).

n:I,NBy(z)#L Oln

Likewise, testing with u, the equation (4.25) for ¢ g, we get for any constant ¢ €R,

/ Vug: V(g — ) = Z/[ ug-o(Yg + Bz, Xg)v

"'Z/ ug oY + Bz, X — o),

ol

which, in view of the boundary conditions, takes the form

/Rdvug;V(wE—w;f): > /81 Uy - o (Yl + Ex, Xy — ca)v.

n:I!, By (z)£2
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Combining this with (4.30), we obtain

/]Rd ygzv(wE_w/E)_ Z w;;-(g—l—o(ug,Pg—cl))u

n:I,NBy(z)#£S ol

_ Z / ug - oYy + Ex, Xy — co)v.
oI},

n:I!/, NBy(x)#
Appealing to the trace estimate (4.22), we deduce

2 2 2 1/2
[ asvwe—wn] ([ (g +1VugP + 1P - e Plaa )
Rd\ﬂ B

e+3(x)

1/2
X (/ (1+\V%FHZ’E—CQ\QEW\W)) :
Boys(z)

Choosing ¢; = fB[H(I)\ﬂ P, and ¢ = fBua(z)\f’ ¥, and appealing to the pres-
sure estimate of Lemma 3.3, we deduce

[, o)< ([ RCE vul) ([

Combined with (4.29) and with the result (4.23) of Step 3, this yields the claim (4.28).

1/2
(1+ Vo)

e+3(z)

Step 5. Sensitivity of the corrector gradient inside the inclusions: for all g € C2°(R%)?*4,

(4.31) ‘/ﬂgszE—/ﬂ/gsz}; g‘/}Rd\jhgszE_/Rd\yhg:vw%
e GeRem) () aeve) ™

First decompose

‘/yg:Vz/JE*/ﬁg:V% <

X

3 /g V(b — )

n:l,NBy(x)=2&

v 2 [l ¥ \/,gwE

n:l,NBy(z)# n:I/,NBy(x)

Since g and ¢ are both affine inside inclusions I,,’s with I, N By(z) = @, we can
rewrite

‘/g V@bE—/gWJE

‘Z /V¢E—¢E)
(/ @'9'2) ([, (vesvvem)
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and it remains to analyze the first right-hand side term. In terms of the 2-tensor
field hy defined in (4.21), we can write by means of Stokes’ theorem,

znx]ig) :/IWVWE—%):Z(]{WQ) :/mn(z/)E—w’E)eau

:znj/alnhg:wrw;;)@v
_ _/ 8 (hy = (g — V) @ ;)
Re ¥

:_/ hg:v(U’E—?/)};)v
Ra ¥

where in the last identity we used that div(hy) = 0. Combining with the above, and
using the result (4.23) of Step 3, the claim (4.31) follows.

Step 6. Sensitivity of the corrector pressure: for all g € C2°(R?),

(4.32) ‘/ 93E —/ 9¥% < ’/ Vsg: Viog —/ Vsg : Vi
RN .¥ Ri\ 7/ RN ¥ Ri~ #/
2 ay) /2 2 2
+( (Ig* +1955%)) (1+ [V + |Zp P 1ra )
Byis(x) Byts(w)

In terms of the vector field s, defined in (4.20), we can write

/ QZE*/ 9% :/ 9(Zplpe s — Xplpe s) */ 9%%
REANE4 JREANS 24 REANE4 INI!

- / div(s,) (Splpiey — Splpa ) - / 0%,
Rd B2ANS 24

1/2

and thus, using the equation (4.25) for ¥g — ¢, the boundary conditions, and the
fact that s, is constant on the inclusion I,

(4.33) / 9XE —/ g :/ Vsy: V(W —¥%)
RiN ¥ AN R4

- Y [ syt Bezpr- [ g%
ar,

n:I! NBy(x)#D <

As sg4|5, is constant for all n, Vs, = 0 in #, and since & \ &' C By(x) the first
right-hand side term satisfies

‘/R Vs, : V(g — ) — (/}Rd\f Vs, : WE_/W\], Vs, : w/E)

< (/Bm) |ng2)1/g(/m(z) |V%|2)1/2'

Combining this with (4.33), appealing to the trace estimate (4.22), and using (4.23)—
(4.24) in Step 3, the claim (4.32) follows.
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Step 7. Sensitivity of the extended flux: for all g € C° (Rd)g;n‘f,

@) | [ o: =70
S| ovee- [ gvu|e| [ w@ze- [ uz
RN ¥ AN R ¥ R~ ¥/

1/2
+ (/ |9|2) (/ (1+ |Vyp*+ |EE|2]1Rd\y)) .
Boys(z) Byys(x)
The definition (4.10) of Jg yields

[ote-s=2([ o:veern)=[ g (ip+n)

([, w@ze=[ o)
+ Z /g oWEIE) — Y /g o(VF, ),

n:I,NB¢(x n:I!,NBy(x)#2

and the claim (4.34) then follows by using (4.5) to estimate the last two right-hand
side terms.

Step 8. Sensitivity of the flux corrector: for all g € C2°(R%)4,
(4.35) [ 99— )| S| [ Toa @ (e = T3,
R R
In terms of the auxiliary field Vv, defined in (4.18), we can write
/ 9 VQbijk — / g- VCIE;ijk = _/ Vg - VCEiijk +/ Vg - VCJ/E;ijkv

Rd Rd Rd R4
which, in view of the equation (4.1) for (g, takes the form
/ 9 - Veijk — / 9 Viajn = / 0309 (JEsin — Jiar) — / Orvg(JEsij = Th.i5):

R R R R

and the claim (4.35) follows.

Step 9. Conclusion. — Tteratively combining the results (4.28), (4.31), (4.32), (4.34),
and (4.35) of Steps 4-8, we obtain for all g € O (R?),

(4.36)

af)ﬁs,ch(m) /Rdg(vq/}E'azE]le\ﬂaVCE)‘

s o) f

(14lg)® + IvUiAlg)))

e+3()

where we have set for abbreviation

9 9 1/2
Mi(z) = (][ (141995 + [SePlzas))
Buys(x)

Alg] == (g9, Hlg], VS[g], VVg], VSIVVg]]),
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1216 M. Duerinckx & A. GLORIA

in terms of the following linear operators
VUlg] :==Vuy, VV]gl:=Vv,, VSlg]:=Vsy, Hlg]:=hg,

as defined in Step 1. We commit a slight abuse of notation here as we consider a scalar
test function g: the above is understood more precisely as VU([g] := (Vuge, e, )1<i,j<d>
and similarly for VV{[g], VS[g], and H[g]. Inserting (4.36) into (4.16), we find for all
q < o0,

2

4.37 H/ Vg, Splpa s,V
(4.37) Rdg( Ve, Xplri s, V() Lae(@)

1/q

S E[/Ooo ( » Mg(x)Q(]im(z) (lAg]]* + IVU[A[g]]2))dm>q(€>dq7r(€) dé}

Before we estimate the right-hand side of (4.37), we smuggle in a spatial average at
some arbitrary scale R > 1: setting | f|? := |A[g]|*> + |VU[A[g]]|? for shortness,

Rd MZ(x)z(][B/ZH(ﬂf) |f|2)dm % /Rd (;;15) MZZ) (][Be+3(y) (]iR(x) |f|2)dx) W

We then use a duality argument to compute the LY(€2) norm of this expression,

E[( R4 Me<x)2(]iz+3(z) |f2)dx> q:| N
S [1X]| oup 1 " {/Rd <BS;1(11)/) ME) (]ng(y) <]{3R(w) |Xf|2) dm) dy:|7

L2d (@)~

where the supremum runs over random variables X independent of the space variable.
By Holder’s inequality and by stationarity of My, we find

q71/q
(e, )|
Rd Byys(z)
2 / E{(][ (7[ |Xf|2>d )q'r/q,d
sup x Y,
L2(Q) x| =1JR? Buys(y) N/ Br()

124’ (@)

<y
Br

which, by Jensen’s inequality, yields

as) w[( [ aner(f, ie)as)]

2

1/q

S HSUPMe‘

2
ur sup I [Xf]QHL’A’(Rd;LQ‘I'(Q))'

L29(Q) _
(D) IX| 2q7 () =1

Appealing to the annealed estimate in (4.17), we find for ¢ > 1 (hence |2¢' — 2| < 1),

IXVU[A[gN)2ll 2 (oo @)) = IIVUIAIX g]ll2llp2 @a 20 0
S MAX gll2llpe w20 ()
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(2[7 ANTITATIVE HOMOGENIZATION OF RANDOM SUSPENSIONS 1217

while the annealed estimates in (4.19), (4.20), and (4.21) yield for ¢ > 1,

||[XA[Q]]2HLz(Rd;qu’(Q)) S ||[Xg]2HL2(Rd;L2‘I'(Q)) = ||X||L2q'(Q)H9HL2(Rd)-

Using these bounds in combination with (4.37) and (4.38), together with the superal-
gebraic decay of the weight 7 in form of Jensen’s inequality, cf. Assumption (Mix™),
we obtain for all ¢ with 1 < ¢ < oo,

H/Rd vwE,EE]le\ﬂaVCE)’

sup H sup Mg
N(I
L24(Q) 220

L2a(Q) ||g||iZ(Rd)'

Finally, by stationarity and by the discrete £2° — ¢> inequality, the supremum of M,
can be estimated as follows, for all s > 1,

1/2s
supHsup ‘ ‘ (1+/ [(Vz/JE,EE]le\j)]gs) ,
20 L2a(Q) ™ Br L24(Q)
and the conclusion (4.12) follows. O

4.4. Proor or Prorosrrion 4.5. Let E € My be fixed with |E| = 1. We split the
proof into three steps.

Step 1. Meyers-type perturbative argument: for all s = 1 with |s—1| < 1, forall R, K >
and cg € R?,

(439) (]éR[wE]%S)” SK(te g, We-eal)+gmf, VUl

Arguing as in (3.10), with ug replaced by ¥ g + Ez and with g = 0, we obtain the
following Caccioppoli-type inequality: for all balls D ¢ R with radius 7p > 3, for all
K > 1 and ¢p € R? ,

1 1
(4.40) ][ Vs < K2(1 + —2][ Ve — cD|2) + —2][ Vi)
D "D J2pD K= Jap

Using the Poincaré-Sobolev inequality to estimate the first right-hand side term, with
the choice c¢p := JC2D Vg, we deduce

(1 wuel) " S k(1 - ) %t vosl)

While this is proved for all balls D with radius rp > 3, smuggling in local quadratic
averages at scale 1 allows to infer that for all balls D (with any radius rp > 0) and
K>1

)

(fweek) " s x(1+ £ wua @) L(f wup) "

Choosing K large enough and applying Gehring’s lemma in form of Lemma 3.5, we
deduce the following Meyers-type estimate: for all s > 1 with |s—1| < 1,and all R > 0,

(f, tvoelzr) " 514 f, 90z

Ber

Combining this with (4.40), the claim (4.39) follows.

JIEP. — M., 2022, tome g



1218 M. Duerinckx & A. GLORIA

Step 2. Conclusion on Vyg: for all r, R with 1 <r <, Rand q,s > 1 with |s — 1| < 1,
1/2s
(f (7o) S| [ ove
Br R

For 1 < r < R, choosing cp := fBCR Xr * ¥ g, Poincaré’s inequality yields

][ |¢E—CR\2§][ |¢E—Xr*¢E|2+][ IXr * g — cr|?
Bcr Bcr Ber

<\ r2][ Vo +R2f o * Vs
BCR BCR

L24(Q) L29(Q)

Inserting this into (4.39), we find
/s r? 1
2s < K2 K?f ][ \v4 2 KQ][ ” v 2.
(o) 20 (6 ) ot e

Taking the LY(£2) norm, and using that stationarity and Jensen’s inequality yield
| weel|,, . s | £ wosl], < | (£ wesp)™
visl, o S £, et ~H(][ ’)
Bcr Ve La(%) Br iz La() Br iz

2

b

L24(Q)

and
7 ; E H < T ; E 29(0)»

we deduce

2\ 1/2s
|(F, s,

K+ (K42 H(]iR[wE]%S)ws

Choosing K > 1 and R >k, 7, the second right-hand side term can be absorbed
into the left-hand side and the claim follows.

o] [ v

L24(0) L29(Q)

Step 3. Conclusion on the pressure Y. For all R, s > 1, we decompose

1/s 25\ 1/8 2
(f Eets) " s (£ [(Ge-f ze)ts])) +|f  =f
BR BR BR\<7 2 BR\<7

Appealing to the pressure estimate of Lemma 3.3 to estimate the first right-hand side
term, and further decomposing the second term, we obtain for all , R with 1 < r < R,
assuming that [, , Xr ~ [za Xr = 1 (which holds automatically provided r >, 1
in view of the hardcore assumption, cf. (Hy)),

(]iR [EEle\J]gs)l/s S+ (]iR [V?/JEES)US + ‘ /Rd XTEEle\ﬂ‘Q

+‘/ X»,«(EE—][ ZE)]].Rd\']
Rd BR\VJ

2
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(2[7 ANTITATIVE HOMOGENIZATION OF RANDOM SUSPENSIONS 1219

It remains to estimate the last right-hand side term. By the Cauchy—Schwarz inequal-
ity, for r <, R such that x, is supported in Bp, using again the pressure estimate of
Lemma 3.3, we find

‘/Rd XT‘(ZE - ]éR\j 2E> ]le\Jr S (Rd /Rd |X7“|2> ]{BR Yg— ]{BR\] EE‘ZHRd\ﬂ
(w0 [ hoP) (14 f, 1vvek).

Since we have R? [0, [x+[* < IIx|12- (ra) Provided r/R 2 1, we conclude

(f Eetast) s+ (£
R

Combined with the results on Vg in Step 2, the conclusion follows. ]

9 1/s 2
[VwE]f) + ‘ /d XTZEﬂRd\ﬂ‘ .
R

R

5. LLARGE-SCALE REGULARITY

This section is devoted to the development of a large-scale regularity theory for
the steady Stokes problem (2.4), and to the proof of Theorems 3, 4, and 5. We take
inspiration from the theory recently developed in the model setting of divergence-form
linear elliptic equations with random coefficients [6, 5, 1, 2, 3, 28, 20, 37], and we focus
more precisely on the formulation in [28, 20].

5.1. Structure oF THE ARGUMENT. — Recall that for harmonic functions, regularity
of the gradient can be proved by controlling the decay of the excess across scales,
where the excess is defined by the local L2-distance of the gradient to a constant. In
the heterogeneous setting of divergence-form operators —V - aV, cf. [28], we rather
define the excess by the local L2-distance of the gradient to the gradient of a-harmonic
coordinates (that is, to a constant plus the associated corrector gradient). The key
ingredient to large-scale regularity theory is then encapsulated in a perturbative es-
timate of excess decay, measured in terms of the growth of an extended corrector,
cf. [28, Prop. 1]. The following proposition is the extension of such a result in the
context of the steady Stokes problem (2.4); the proof is postponed to Section 5.2.
Henceforth, we use the short-hand notation ¢ := (¥g)gecs, where & stands for an
orthonormal basis of My, and similarly for X, ¢.

Prorosition 5.1 (Perturbative excess decay). — There exists an exponent € ~ 1 such
that the following holds: For all R > 1, if Vu is a solution of the following free steady
Stokes problem in Bg,

—Au+ VP =0, in Bp N\ 7,
div(u) =0, in BR,
(5.1) D(u) = 0, in 9 N B,
faln o(u, P)v =0, Vn: I, C Bg,
faln O(x —z,) - o(u, P)v =0, Vn:I, C B, VO € MV,
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1220 M. DueriNnckx & A. GLORIA

then there exists a matriz Ey € Mg such that for all v, R with 4 <r < R,

62 f IVu= (Vi + Bl 5 () + (f)d”(mm)%)]{g Vuf?,

R

where we have set for abbreviation,

(5.3) = sup i<1+]{9L (¥,0) —]iLw,o\Z)

Moreover, the following non-degeneracy property holds for all E € My,

(54) (1-cwiels (f

Br/2

1/2

o\ 1/2
Vibs +EP) S (1+m) B

Although the proof of Proposition 5.1 follows the main steps as the proof of [28,
Prop. 1], it differs in two significant respects. First, the natural two-scale expansion
is not rigid inside the inclusions, which makes energy estimates more involved and
requires some local surgery. Second, a suitable control is needed on the pressure of
the two-scale expansion error, which is made particularly subtle due to the crucial use
of weighted norms. Weighted pressure estimates are obtained based on the following
weighted version of Bogovskii’s standard construction. This statement is a particular
case of [13, Th.5.2], which holds more generally in any John domain.

Levmma 5.2 (Weighted Bogovskii construction; [13]). — Let D C Bg be a domain that
is star-shaped with respect to every point in Bp,, for some 0 < Ry < R. Consider
a weight u € C*(R%[0,1]) that belongs to the Muckenhoupt class Ay. Then, for all
F € L*(D) with [, F =0, there exists S € H}(D)? such that

div(S)=F, in D,

/ HVSP < / HlFI2,
D D

where the multiplicative constant only depends on d, on R/Ry, on the Ay-norm of .

With Proposition 5.1 at hand, we may now turn to the proof of Theorems 3-5, for
which we heavily lean on [28, 20]. First, following [28], we encapsulate a quantitative
(averaged) control on the sublinear growth of the extended corrector by considering
the minimal radius R such that vz in (5.3) is small enough: more precisely, given a
constant Cy > 1 (to be fixed large enough), we define the minimal radius r. as the
following random field,

1
(55)  ru(z) = inf {R >0 7][
t By ()

Stationarity of r, follows from stationarity of (V, V(). Almost sure finiteness of r,
follows from the sublinearity of (¢,() at infinity, cf. Lemmas 1 and 4.1(iii). Under
Assumption (Mix'), moment bounds on r, are a direct consequence of corrector
estimates of Theorem 2 together with a union bound; we omit the details.

:

<= ve>R}.

wo-f wol<g
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Next, still following [28], we consider the excess (2.7) of a trace-free 2-tensor field h
on a ball D, that is,

Exc(h; D) := EiéleA'IO ][D \h— (Ve + B,

which measures the deviation of h from gradients of corrected coordinates. In these
terms, we establish the following consequence of Proposition 5.1, which quantifies the
decay of the excess for solutions of the free steady Stokes problem (5.1) from larger to
smaller balls. The proof relies on Proposition 5.1 together with a standard Campanato
iteration; in particular, since it is oblivious of the underlying PDE, we refer the reader
to the proof of [28, Th. 1] in the context of divergence-form linear elliptic equations,
which applies without changing a iota.

Turorem 5.3 (Excess-decay estimate). Under Assumption (Hg), for any Holder
exponent a € (0,1), there exists a constant Cy, ~4 1 such that the following holds:
Let 1, be defined in (5.5) with constant Cy replaced by C,,. For all R > r.(0), if Vu is
a solution of the free steady Stokes problem (5.1) in Bgr, then the following large-scale
Lipschitz estimate holds for all r.(0) < r < R,

(5.6) ][ |Vul? < ca][ |Vul?,
B, Br

as well as the following large-scale CY* estimate for all r with r,(0) <7 < R,
Exc(Vu; B,) < Co(r/R)** Exc(Vu; Br).

In addition, the correctors enjoy the following non-degeneracy property for all r >
r+(0) and E € My,

1
ol B> < ][ IVyg + EI* < Col EI*.
o B,

As a direct consequence, we may deduce a corresponding result for solutions of
the steady Stokes problem (5.1) with a nontrivial right-hand side, cf. (2.4), as stated
in Theorem 3. The proof, which is identical to that of [28, Cor. 3], is omitted as it
only relies on Theorem 5.3 together with an energy estimate.

Next, as a second consequence of the above, we may further deduce quenched
large-scale LP regularity estimates as stated in Theorem 4. This can be obtained by
combining the large-scale Lipschitz estimate (5.6) together with Shen’s dual Calder6n—
Zygmund lemma, cf. [41, Th.3.2] (see also [42, Th.2.4]), as done in [20, §6.1] in the
context of divergence-form linear elliptic equations: since this argument does not rely
on the specific PDE at hand, the same applies without changing a iota and we do
not reproduce it here. For estimates with Muckenhoupt weights, it suffices to appeal
to [41, Th. 3.4 & Rem. 3.5] instead of [41, Th. 3.2]. Note that this approach requires to
replace the minimal radius 7, in the above by the largest %—Lipschitz lower bound r,,
cf. [28, §3.7]: both satisfy the same boundedness properties and we use the same
notation “r,” in the statement.
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Finally, making a further use of Shen’s dual Calderén-Zygmund lemma, cf. [41,
Th. 3.2 or 3.4], together with the quenched large-scale L? regularity theory of Theo-
rem 4 and with the large-scale Lipschitz estimate (5.6), the annealed regularity esti-
mate of Theorem 5 easily follows as in [20] for 2 < ¢ < p < 00. A duality argument
yields the corresponding conclusion for 1 < p < ¢ < 2, and an interpolation argu-
ment allows to conclude for all p,q with 1 < p,q < co. The additional perturbative
statement in Theorem 5 is already established in Theorem 3.1.

5.2. Proor or Prorosition 5.1. Let R > 1 be large enough and fixed. As the
statement of Proposition 5.1 does not depend on the choice of anchoring of the
correctors, we can assume without loss of generality fBR (¥, ¢, X1gay) = 0. Set
Nr={n: I} +0B C Bg} and A = {n: (I,) + §B) N 0Bg # @}, where we recall
that I;¥ stands for the convex hull of I,,, and define

b
Dp = (335/2 ~ U I+ 5B)> + - B.
neENS 2

In view of Assumption (Hy), we note that

— Dg is a C? domain (uniformly in R);

— any inclusion that intersects Dp is contained in Dg and is at distance at least §
from 0Dg;

— Br_2_5§ C D C Bg.
Given 4 < p < R/4 (the choice of which will be optimized later), we choose a smooth
cut-off function np € C°(R%[0,1]) such that ng = 1 in Br_2,, nr = 0 outside Br_,,
and |Vngr| < p~!, and we further choose ng to be constant in the fattened inclusions
{I, + (0/2) B}nc.#;,- Note in particular that ng is supported inside Dp. We split the
proof into five main steps.

Step 1. Two-scale expansion and representation of the error. We split the proof into
two further substeps.

Substep 1.1. Construction of two-scale expansions. — Given a weak solution (u,P)
to (5.1), let (u, P) denote the unique weak solution of the following corresponding
homogenized equation with Dirichlet data on Dpg,

—div(2BD(@)) + VP =0, in Dg,
(5.7) div(u) =0, in Dpg,

U =u, on 0Dg,
where we recall that the effective viscosity B is defined in (2.11). For definiteness, the

pressures P and P are chosen with fDR Plra_ s = fDR P=o. Reformulating this
homogenized equation as

—div(2BD(@ — u)) + VP = div(2BD(u)),  in Dg,
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testing with @ — u € H}(Dg)?, and combining an energy estimate with the triangle

inequality, we obtain
[ w@rs [ pwr
Dgr Dgr

and, further using that div(@ —u) = 0 implies [}, V(@ —u)[> =2 [, [D(@—u)f?,

(5.8) / |va|25/ V2.
Dr Dr

We now compare u and P to their respective two-scale expansions,
u ~ U+ nrYedsu, P ~~ ﬁ Jr’l]}{E : D(ﬂ) + nrYXplpe sOgU,

where we use Einstein’s convention of implicit summation on repeated indices and
where the index E runs here over an orthonormal basis & of M™. Recall that the
pressure P is only defined up to a global arbitrary constant on R? \ .#, so that we
may choose an arbitrary constant P, € R and consider the pressure P’ = P + P,
on R?~ .. In addition we choose arbitrary constants {P,}, C R and extend the
pressure inside the inclusions by setting P’|;, = P,. We thus define in the whole
domain Dg,

(5.9) P'=(P+P)lga s+ Y Pulp,

neENR

where the constants P, and {P,,}, will be suitably chosen later. We then consider the
following two-scale expansion errors in Dpg,

(510) wi=u—U— UR’L/)E(()EQ/J?, Q = P/ - ﬁ - nRB . D(ﬂ) - nREE]le\yaEﬂ.
Substep 1.2. Proof that (w, Q) satisfies in the weak sense in Dg

(5.11) —Aw+VQ=— " dor,0(u, P+ P. — Py)v — div((ngdgt)Jels)
neENR

+div(2(1 — np) (14 =B) D(@) + (26 @ )V (1005 7) — 145 - V) (1705 1) ).
By definition of w, @, expanding the gradient and reorganizing the terms, we find
—Aw+VQ = —Au+ VP + NG~ VP —V(ngb: D(@)) + div(¢p © V(nrdsa))
+ (nrOEw) div(VwE —Yplpi s Id) + (V?/)E —Yplgpa s Id)V(T}RaEﬂ).
Further using that div(yg) = 0, and using Leibniz’ rule, this can be rewritten as
— Aw+VQ = —Au+ VP + At~ VP — V(npb: D(0))
+div(2¢p ®; V(nrdp)) — V(e - V(nrOET))
+ le((T]RaEa) (2 D(?/}E) - EE]].]Rd\j Id ))
Since div(u) = 0, we may decompose

AT = div(2D(@)) = div(2(1 — nr) D(@)) + div((nrdpt)2E).
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Inserting this into the above, and writing 2(D(¢Yg) + F) — ¥glpe s = Jplpa s in
terms of the extended flux Jg, cf. Lemma 4.1, we obtain

(5.12) —Aw+VQ = —Au+ VP +div(2(1 —ng)D(@)) — VP — V(ngb : D(q))
+ div(2¢p ® V(nr0gt)) — V(ve - V(nrdpt)) + div((nrdpt) Jplra s ).
Since div(Jg) = 0, we have
div((nrOpt)Jelga s) = JEV(nrROEG) — div((nedpt)Jpl.s),
and thus, further recalling E [Jg] = 2BE + (b : E)Id, writing Jg — E[Jg] = div(¢g),
and using the skew-symmetry of (g, cf. Lemma 4.1, we find
div((nrOgt)Jglpi s) = div(2ng BD(2)) + V(nrb : D(1))
— div(¢eV(nrOEu)) — div((nrdpt)Jely).
Inserting this into (5.12), and recalling that equation (5.7) yields
—div(2BD(@)) + VP =0,
we deduce
—Aw+VQ =—-Au+ VP +div(2(1 — ng)(Id —B) D(u))
+div((2¢p ®s —Cr)V(nrOEW)) — V(Y - V(nr0gu)) — div((nrpt)Jel.s).
Finally, since equation (3.1) for (u, P) implies of (u, P’) on D

—Au+ VP =— 3" pr,0(u, P+ P — Py,
neENR

the claim (5.11) follows.

Step 2. Weighted energy estimate for the two-scale expansion error. — Considering the
following weight function as in [2§],

(5.13) pre: Br —[0,1]: o — (1 |z|/R)*/?,

we prove, for all K > 1 and ¢ < K~1/2
1 ~
Gay [ vl [ @k [ -t vap
Dpgr K Dpgr Dgr

+ K (sup |V (e VD)) / (14|, ¢, Vb, Blga_s)2).
Dr

Dr

The main difficulty is that neither @ nor ug . is constant inside the inclusions, which
prohibits us from easily taking advantage of the boundary conditions for v and ¥ g in
the estimate. To circumvent this issue, we use the following truncation maps Ty, T7:
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for all g € C;°(Dg),

Tolg)(x) := (1 — x(x))g(x) + ][
TLEJVR I+ 6/2)3
(5.15)  Tilgl(z) :== (1 = x(2))g(z) + ne/VR <(]£n+(6/2)3 )

" (]iﬂa/z)B Vg) (= xn)) ’

where for all n we have chosen a cut-off function y, € C>(R% [0, 1]) with

Xnl1,+6/498 =1, Xn|ri (1,+(5/2)B) = 0, IVxnl + [V2xnl S 1,

and where we have set for abbreviation x := 3" 7 Xn- In these terms, we consider
the following modification of the weight pr . and of the two-scale expansion error

(w,Q),
ﬁR,s =1 [,LLR,s]a
(5.16) w :=u—Ti[u] = nrppTo[Opul,

Q = P' — Ty[P] — nrb : To[D(@)] — nrEE lgaw s To[0pT).

Note that Ty1[i] = 4 = u on Dg, and thus w € Hg(Dg)?. Testing equation (5.11)
for w with the test function n% . w € Hy (Dg)%, we find

(5.17) Jo=J1+ Ja + Js,
in terms of
o= | V(ik.5): (Vo - Qla),
Dr
-y /“ @ 0w, P4 P Pyt Y /’7maEw (73,.) : Ji,
ney ? 9n nENR

Ty = =2 /D (1= np) V(i) : (1d—B) D(@),

Jsi=— | V(@) (20 @, o)V (r05T) — (Ve - V) (nrds1) ).

Dr

It remains to estimate these terms, and we split the proof of (5.14) into four further
substeps.

Substep 2.1. Lower bound on Jo: for all K > 1and 0 < e < K~1/2,

1 -
.18 doz g [ IVl
Dr

1 ~ . ~ ~ .~
R e A S
Dr Dr Dr
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Expanding the gradient in the definition of Jy yields
Jo :/ [i% VW : Vw+/ 26ir: (W@ Viige) : Vw
Dr Dr

- / (ﬂ%,adiv({[}) + 20pR, W - VﬁR,e)Q-
Dr

Adding and subtracting Vw to Vw, we deduce by Young’s inequality, for all K > 1,

1 1
(519) JO 2 (1 - E) AR /’[/Re K %,EQQ
~ — K — K ~ e
Ak [ (Vi Plf - / o S0 — )~ o i@y,
Dpgr Dr Dgr
Since fig . satisfies for all © € Bp,
_ - € x|\ (e/2)-1
(@) = punela),  (Viige(@)] S [Vin o) ~ 5 (1 2) 07

the following estimate follows from Hardy’s inequality in form of e.g. [28, Esti-
mate (88)]: given 0 < ¢ < 1/2, there holds for all g € Hi(Bg),

(5.20) /B VinelloP <& / 72, |Vgl?.
R

Br

Extending w by 0 outside Dg and applying this inequality, we find

| WinePiae s [ mavar
DR DR

Inserting this into (5.19), the claim (5.18) follows for K > 3 and Ke? < 1.
Substep 2.2. Upper bound on Jy: for all K > 1

1 1 ~
21) |J 2 w|? 7/ Il 2
(5 ) | 1| ~ K /J‘R,E‘vw| + K Dy :U’R,€|Q|

+K(sgp|V<nRva>|2) [ Qe St D 4K [0V
R

DR DR

We examine separately the two terms in the definition of J; = J1 1 + J1 2,

Jig=— Z / ,uZR,EiD -o(u, P+ P, — P,)v,
neENRr oI,
Jig = Z/ (nrOpU) D(i% @) : Jp,
neENRr

and we start with J; ;. Since fir - and ng are constant in the inclusions, and since for
all n € AR we have

(5.22) D(@) = —(1 — "R)(]{ s D(a)), in I,
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we may use the boundary conditions for u to the effect of
ha= 3 (i) @) (f D@): [ owPrP-Pve(e—,).
neENg In+(6/2)B oI,

Using Stokes’ theorem in the form [, v ® (z — x,) = |I,|1d, together with the

constraint div () = 0 that we use in the form (f, 435 D)) : Id = 0, we can subtract
nT3

any constant to the pressure in the above expression, so that in particular

629 ha= 3 (i )e)(f - p@)

neENRr
:/BI U(u,P—l—P*—TO[P] nrb : To[D@)])v @ (z — xy,).

We turn to Jq,2. Decomposing 0gt = (95t — To[0ru]) + To[0r], using that Tp[0gu],
IiRr,e, and nr are constant in the inclusions, that w is affine in the inclusions, and
using (5.22) again, we find

Jig= Z / NI - (05U — To[0p1]) D(w) : Jg

neNr
- X (O Dlos) e (f - D@): e

neNgr
Writing Jg|r, = oYk, %) with (%, %) defined in (4.4), cf. (4.10), using Stokes’
theorem, and recalling that o(¢%, X% )v = o(Yg + Ez,Xg)v on 01, cf. (4.4), we
deduce

Ja= Y / nh . (05T — Tol0pa)) D(@) : o, )

neENr

D(a))

_ Z (1 = nr)ri% eTO[aEU])(x”)(][

et I.+(5/2)B
| ots+ B e e - o).
oI,

Combining this with (5.23), and reorganizing the terms, we obtain

Ju=Jia+ i,

in terms of
Jl 1= Z / nRMRg(aEu - TO[aEu]) ( ) : 0(%%, E%‘)v
neENR
Ho= 3 (- mih @) (f - D@
1)2 neZ/:VR( R7 ) ( I7z+(6/2)B )

: /M (o(u, P+ P. = T[P] = nb : To[D(@)

— nrTo[0rtlo (s + Ex, zE))y ® (& — zn).
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We separately estimate Ji ; and Jj 5, and we start with the former. Using (4.5) and
noting that |Vu — Tp[Vu]| = |Vu — fln+(5/2)B V| < supy, 45/2)8 |V24| on I, and
that ng is constant in I,,, we find

=R N _ 1/2
G20 171,15 (sup v 0mva) ) ([ helval?)
Dpr Dr

1/2
([ a+iws.cionp)
Dr
We turn to Jj ,. Writing for abbreviation
H:= U(u, P — To[ﬁ] —ngb: TO[D(Q)]) —nrTo[0rt]o(VE + Ex, EE),
and noting that div(H) = 0 in (I, + (6/4)B) \ I,

Hv =0, and Oz —x,)-Hr=20
oI, oI,

for all n € A% and © € MV the trace estimate (4.22) leads to

1/2

D(@)?)

1/2
(/ )
(In+(5/4)B)~1I,

For all n € A%, we can write in the annulus (I, + (6/4)B) \ I, (where P’ = P+ P,),
recalling the definition (5.16) of the modified two-scale expansion error (w, Q) and
the definition of truncations,

H =2D(u — T[] — nrveTo[0p1])
— (P' = Ty[P] — nrb : To[D(@)] — nrEpTo[0x1u]) Id
= o(@, Q) + 2(1 — ng)To[D(@)).

Inserting this into (5.25), using that SUPp(y) R, = Infp(s) fir,e holds for all x € Dg,
and using that ng is constant in fattened inclusions, we deduce

Tl 5 ([ - nef ik ID@P)

Dr

6:25) 1ol S X (- ne)ifh ) ( f

netn I.+(6/2)B

1/2

< ( /D i (D@ +1Q) + (1 - )i D@)

Combined with the bound (5.24) on Jj y, the claim (5.21) follows by Young’s inequal-
ity.
Substep 2.3. Upper bound on Jo, J: for all K > 1,

1 ~ ~ ~ ~
(5:26) |2l +|Js| S 2= | R VOP+E | (1= nr)* iR |Vl
DR DR

K (s V) [ 1w.0F,

Dr
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Expanding the gradients and using Young’s inequality, we find for all K > 1

~ A 1 - . 1
BISK [ 0 vaP g [ vt [ v
Dr

Tl <K [ Bl ORIV (e va)? + /uRE\VwP /|w35| ).
Dgr Dr

and Hardy’s inequality (5.20) yields the claim (5.26).

Substep 2.4. Control of truncation errors

620 [ V- S [ 0l va?
Dgr

Dr

+ (S];lglV(nRva)P)/ (1+ 1w, VO)P?),

Dr

(5.28) /D 2.(Q-QP < / (1 - )R, Va2

Dr

+ (s [VaVDP) [ (14 L),
Dr

Dgr

We start with the proof of (5.27). The definition (5.16) of w yields
V(w—w) = =V(a—Ti[a]) —nr(0et — To[0pu]) Vior —r @ V (nr (9t — To[0p1)])),
and thus
629 [ B Vw-0Ps [ BIv@E-n@)e
DR DR
+ (suplna(Va ~ T[VaDP + sup [V ((V7 - TolVaA)P) [ |0 V)P
R R Dr

The definition (5.15) of the truncation maps Ty, 17 gives

Vi - T[Vil = Y x (V- ][m(a/z)B Vi),

neNg
Va-na)= Y x (va - ][ va)
nen 1,+(5/2)B

: ”g/:VR o <a . (]iﬁ(fs/?)B ﬂ) - (]fn+(5/2)B Vﬁ) (@= xn)>.

Using the properties of [ig., nr, and of the cut-off functions {x}n», and appealing
to Poincaré’s inequality on the fattened inclusions (on which we recall that ng is
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1230 M. DueriNnckx & A. GLORIA

constant), we find
| mvi@-na@p
Dpr

<Y ()
e In+(6/2)B

(5.30) x / iy (TRIV@=TAEDE + (1= ) V(@ = i) )

Y ( sw o) f (I + (1 - na)? Vi)
nevn Int(6/2)B I,+(5/2)B

< /D IV (V) + / (1 — )% Va2,
R

Dr

and similarly,

(5.31) sup Inr(Vi — To[Va])| + sup IV (nr(Va — To[Va)))|

S swp (nalen) sup [VEil) S sup [V (na V).
nENR I.+(5/2)B Dr

Inserting these bounds into (5.29), the claim (5.27) follows.
We turn to the proof of (5.28). The definition (5.16) of Q yields

Q- Q=—(P—Ty[P)) — nrb : (D(@) — Tp[D(@))) — nrSplra s (960 — To[dpa)),

and thus

(5.32) /D 2.(Q-Q) < / 72, (P — Ty[P])?

Dr
+ (sup Ina(Va - Ty[va)) 1) / (1+ °1pay).
Dgr Dpgr

We start by analyzing the first right-hand side term. By definition of Tj, using the
properties of fip . and appealing to Poincaré’s inequality on the fattened inclusions
(on which we recall that ng is constant), we find

~ ~ B N N2
63) [ wP-nipys Y( sw o) [ (P-f P)
Dr ne g Int(6/2)B I.+(6/2)B 1,+(6/2)B

~ —~ A\ 2
<3 (swo k) [ (VP a-mr(P-f  P))
1,+(5/2)B 1,+(5/2)B 1,+(5/2)B

neNRr

We now appeal to a classical pressure estimates on P. On the one hand, since (u, 13)
satisfies a steady Stokes equation (5.7) without forcing in Dg, a direct use of the
Bogovskii operator in form of e.g. [22, Th.I11.3.1] yields for all n € Ag,

~ N\ 2
(5.34) / (P—][ P) 5/ V|2,
I.+(5/2)B I.+(5/2)B I.+(5/2)B
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On the other hand, since (0;u, 3213) satisfies the same equation in Dg, the same
argument yields

~ 12
/ ‘vp—][ VP’ 5/ V22,
I,+(5/2)B I,+(6/2)B I,+(8/2)B

Further noting that equation (5.7) yields

/ vP div(2BD(7))

I,+(5/2)B I,+(5/2)B

2 / (BD(@))v
o(I,+(8/2)B)

2/ BD(®a) _][ ED(a))u,
(In+(5/2)B) I,+(6/2)B

and thus

A

j/ vﬁ‘w sup  |V2l,
I,+(5/2)B I,+(5/2)B

we deduce

/ VP> < sup |V
I,4+(5/2)B I,+(5/2)B

Inserting this together with (5.34) into (5.33), we obtain

| (P~ TalP)? £ IDil(s0p [V aVD)P) + [ (1 VA
DR DR DR

Combining this with (5.32) and (5.31), the claim (5.28) follows.

Substep 2.5. Control of the divergence

(5.35) / [if, - div(w)?
Dgr

S [P VAR + (s Vv DR) [ (1 o)
Dg Dr Dr
As div(u) = div(@) = div(¢g) = 0, the definition (5.16) of w yields
div(w) = div(u — Th [u]) — ¥E - V(nrTo|0rul),
and the claim (5.35) follows from the estimates (5.30) and (5.31).

Substep 2.6. Proofof (5.14). — Combining (5.17), (5.18), (5.21), and (5.26), we obtain
forall K> 1and 0 <e < K~1/2

~ 1 ~ - 1 ~ ~
| Bovel s [ mever e [ mQr @)
DR DR
+K(sgp\V<nRva>|2) / (141, ¢, Vo, Blga o)) + K | (1= nr)*i% [Vl

DR DR

+K | fiR V- @)+ K [ Ji div(o)?.
Dgr Dgr
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Decomposing Vi = Vw + V(@ — w) and Q = Q + (Q — Q), using the bounds (5.27)
and (5.28) on the truncation errors V(w — w) and @ — @, and using the bound (5.35)
on div(w), we find

1 1
~ v 2<7 ~ \v4 2 7/ ~2 2
[, Fdvur s g [ mwaver g [ e

+ K (sup V@V [ (10,6, 96, 1m )P)
Dgr

Dr
K [ =) VAL,
Dr
Choosing K > 1 large enough to absorb the first right-hand side term, and noting
that firc ~ pr on Dg, the conclusion (5.14) follows.

Step 3. Weighted pressure estimate for the two-scale expansion error: for all € with
0<e<l,

630 | 1he@ s [ iVl [ 0= VP
R

Dgr Dr
*(gpivnvar) [ 041065t P)

Combining this with the bound (5.14) on Vw, and choosing K > 1 large enough, we
deduce for all € with 0 < e < 1,

630 [ Vel + Q) s [ 0wt vap
Dgr

Dr

+ (s [VaVDR) [ (14 16,6 Vo Se )P
Dr Dr

We turn to the proof of (5.36). For that purpose, we shall again appeal to the truncated

version @ of @ as in Step 2, cf. (5.16). We also recall the notation (5.9) for P’, where

we choose the constants P, and {P,}, such that

P Pt ne(n)b: f p@. [ m.a-o
1,+(5/2)B I,+(6/2)B Dr

Note that this choice entails in particular @ = 0 inside inclusions {I,}ne. s, With
these definitions, we may turn to the proof of (5.36), which we split into three further
substeps.

Substep 3.1. Weighted Bogovskii construction: given 0 < e < 1, there exists a vector field
S € H(Dr)4 such that S|y, is constant for all n € Ng and such that

div(S) = —i%.Q,  in Dg,
(5.38) . o~
[ mvses [ .
Dr Dr
Since fDR ﬁ%ﬁ@ = 0, and since the weight ﬁEQE ~ ,ul_z?s on Dg can be extended to
x> |1 — |z|/R|~¢ on R?, which belongs to the Muckenhoupt class A, uniformly in R
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provided that € < 1, we may appeal to the weighted Bogovskii construction in form
of Lemma 5.2. Note that by definition the set Dy is star-shaped with respect to every
point in Br/, as soon as R > 1. Hence, there exists a vector field S° € H(Dg)?
such that

div(S°) = —ji%, .Q, in Dpg,

/P‘R5|VSO|2</ NREQQ
Dgr Dr

It remains to modify S° to make it constant inside the inclusions {I,, }nc s, without
changing its divergence and the bound on its norm. For that purpose, we essentially
follow the argument of [18, Proof of Prop. 2.1]; see also the proof of Lemma 3.3. More
precisely, for all n € A%, recalling that dist(l,,0Dgr) > 0 and that Q = 0 in I,,
a standard use of the Bogovskii operator allows to construct as in (3.5) a vector field
S™ € Hy(I, + (6/2)B)? such that S™ = —S5° + f, S°in I,, and
div(S™) =0, inI,+(6/2)B
IVS™ L2 (1,4 5/2)B)~1.) S IVSllL2(1,.)

Smuggling in the weight ﬁ;bls (which is constant on the fattened inclusions), this yields

18RV S™ L2 ((rat /2By~ 1) S 1R VS llLa(r,)

Since the fattened inclusions are all dlsJ01nt7 cf. (Hg), extending S™ by 0 in Dg ~
(In + (6/2)B) for all n € AR, the vector field S := S° + 3 _ ,. S" satisfies all the
required properties.

Substep 3.2. Proof of (5.36). Testing equation (5.11) with the test function S €
H(Dg)? constructed in the previous substep yields

Lo=1Ly+ Lo+ Ls,

in terms of

Ly = VS :Vuw —/ div(S) @,
DR DR
Ly=- Y S-o(u,P+ P, — P,)v+ Z/ (nrOEU)VS : Tk,
neNy Y 0In nENR
Ly := —2/ (1 —-ngr)VS: (Id—-B)D(u),
Dr
Ly=—| VS: ((sz ®s —Cp)V(nrdpt) — (Vg - v>(nRaEa>).

Dr
We start by giving a lower bound on Lg. Using the defining property (5.38) of the
test function S in form of

— div(S)Q = / ,uRE

Dr
> [ ﬁ%,EQQ—( | m@) ([ me@-a2)"
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|

and using the bound (5.38) on the weighted norm of VS in form of

’/DR VS:Vw’ < (/DR ﬁ}_%?5|VS|2)1/2(/DR ﬁR76|Vw|2)1/2
S(f, #e@) ([ lwur)

we deduce for all K > 1,

1 ~2 A2
? D /’LR,EQ

~K | [%.Q-Q?-CK | @} |Vu
DR DR

69 1> [
Dr

Next, recalling that S|;, is constant for all n € A%, and using the boundary conditions
for u, we find Ly = 0. It remains to estimate Lo and Ls. Smuggling in the weight
IR, we find for all K > 1,

1 — -~ —~
Lot Ls S 4 IrelVSP+ K | (1—ngr)in.|Val?
Dgr Dgr

+ K (s [Ve9D)?) [ (1+10.0P).

Using the weighted estimate (5.38) on V.S to estimate the first right-hand side term,
and combining with the lower bound (5.39) on Ly, we deduce for all K > 1,

= 1 = ~ =~ ~
| m@si [ m@@ir | ma@-@Pax [ whiver
Dg Dgr Dgr Dpgr

+ K (sup VD) [ (1@ OP) K [ (1 eIVl
Dgr

Dr Dr

Choosing K > 1 large enough to absorb the first right-hand side term, and decom-
posing Q@ = Q + (Q — @), we obtain

/ 2. QP < / 2 (Q- Q) + / 2 |Vl
Dgr Dgr Dr

+ (%1113|V(77RV17)\2> /DR (1 4 |(¢’<)|2) _|_/ (1- 77R)2,l~l?%75|Vﬂ|2.

Dr
Using the bound (5.28) on the truncation error @ — @, and recalling that fir . ~ pypr

on Dpg, the conclusion (5.36) follows.

Step 4. Conclusion: proofof (5.2). — We split the proof into five further substeps.

Substep 4.1. Caccioppoli-type inequality for homogeneous steady Stokes equation

Given a solution (v, T) of

(5.40) —div(2BD(v)) + VT = 0, div(v) = 0, in Bg,
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we have for all » with 0 <r < Rand K > 1,

1 K
(5.41) / Vo)? < — Vo2 + 7/ [o]2.
B, K Jpg (R=7)%Jp,
Consider a cut-off function x, g € C°(R?) such that X, r|p, = 1, X"vR’]Rd\BR =0,

and |Vx,g| < (R —17)~!. Testing the equation (5.40) with the test function X%,Pﬁ’
we find

/ XE,RD@) :2BD(7) = 72/ XrD®Vxrpr: (2BD®) - T),
R4 Rd

and thus

s b g (o) (), )

R

Since div(7) = 0, integration by parts yields
[ xalvel =2 [ @ ap@F - | ¢ pomo
R R R
= 2/ X; rID@)* + 2/ Xr.RVXr.r ®7T : VT,
Rd R

and thus

1
2 12 2 2 _2

IVl 5/ D@ + —/ o2,

/Rd ’R‘ R * (R—1)? Br
Combining this with (5.42), we deduce for all K > 1,
1 ) K

|w|2s—/ (D@ + T >+—/ o2,

/B,. K /s, ®—1° /s,

As the pressure T in (5.40) is only defined up to an additive constant, we may choose
without loss of generality [ B T = 0, and we then appeal to a standard pressure
estimate: a standard use of the Bogovskii operator in form of e.g. [22, Th.II1.3.1]

[ T [ v
Br Br

Substep 4.2. [nterior regularity estimate for homogeneous steady Stokes equation (5.7): for

yields

and the claim (5.41) follows.

any boundary layer 4 < p < R,

—d
(5.43) P2 sup VG2 <, (ﬁ) ][ ol
Br-p R Dr

First consider a solution (v, T) of the following homogeneous steady Stokes equation,
—div(2BD(v)) + VT =0, div(v) =0, in B.
In view of the standard interior regularity theory for this equation, see [22, Th.1V.4.1],

we find for all n > 0,
[ iwrver s, [ (vor+ ).
(1/2)B B
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We then appeal to a pressure estimate for T: assuming without loss of generality
fBT = 0, a standard use of the Bogovskii operator in form of e.g. [22, Th.II1.3.1]

yields
/ (Vv <, / vl
(1/2)B B

By Sobolev’s embedding, this entails for all n > 1,
sup [V <, / Vo,
(1/2)B B
Upon rescaling and translation, this implies for all p <1, z € B1_,, and n > 1,
PN S f Ve,
By (x)
hence, for all n > 1,
p2(n—1) sup |Vn5|2 Sn p—d/ ‘V6|2.
1—p B
Turning back to equation (5.7) and recalling that Br_3 C Dg, the claim (5.43) follows
after rescaling.

Substep 4.3. Reduction to the two-scale expansion error: for all v with 4 < r < iR,

r

Gaat) o |vu-va0) - @OFeel < (5) T uhelvul

N ((;)QfBR e+ (5) “mf, ) f, o
Consider the following local two-scale expansion error centered at the origin,
Wo = u — u(0) — Vu(0)x — yYgogu(0), Qo := P — Xgogu(0),
and note that equations (3.1) and (3.2) yield the following on Dpg,
—Awo + V(Qolga y) = — Z(Smna(wo, Qo).

We appeal to a Caccioppoli-type argument: as in the proof of (5.41), choosing a cut-off
function that is constant in the inclusions, and using the boundary conditions for w
and g, we find for all » with 4 < r < iR and K > 1,

1 K
5.45 NP 2 f][ 2
(5.45) f, el s g f vl Gl

and it remains to examine the last right-hand side term. Comparing the local error w,
to its global version w = u — @ — nrYEdgu, cf. (5.10), and recalling that ng = 1
on Br_s,, we obtain from the triangle inequality, for all r,p < R/4 (which entails
B2r C BR*Qp)a

F ol sf P (suwfa-a0) - var) + (sup(va- vaoR) £ o
Bz, Bz, By

2r B2r
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Using Taylor’s formula, the interior regularity estimate (5.43) with p = R/4, and the
energy estimate (5.8), we find for all r < iR,

sup |u — u(0) — Va(0)z|* 4+ r? sup |Va — Va(0)[?

B, Bz,

R 2 N 2
§r4sup\v2u|2 §r2(—> ][ \VU\Q §r2<—) ][ |Vu|27
B R Dpr R Dr
so that the above becomes

(5.46) fBl|wo|2§][B l|w2+<r2<;>2+(;)2_d]{3 |w|2)][D V2.

It remains to analyze the first right-hand side term in this estimate. By definition
of the weight ppr. in (5.13), appealing to Hardy’s inequality (5.20), we find for all
r< iR

X 4 )

]i% Jwl? < ]i (1- %l)gﬂwl2 <(5)" 7@3 (1- %')sfz\wﬁ

Combined with (5.45) and (5.46), this yields the following, for all r with 4 < r <
and K > 1,

1
5.47 ][ Vwo|? < 7][ Vw,|?
(5.47) T\ | % Bwl |

+1((7) + (R) e, WO A, I K (), vl

In order to absorb the first right-hand side term, we proceed by iteration. Let us first
rewrite (5.47) as follows: for any K > 1,

1 .
f(r) < o f(2r)+ CKg(r), for all 7 with 4 < r < IR,

where we have set for abbreviation,

1) = f [Vul,

"

o= ((7) +(F) e f, WE) £, el (5) " f uhelvul

Iterating this estimate yields for all r > 4 and n > 1 with 2"r < %R7
n—1
fr) <CK Y Kmg(2™r)+ K "f(2"r).
m=0

Noting that g(2™r) < 4™g(r) and choosing K = 8, this entails
fr) S g(r) +87"f(2"r).
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Choosing n large enough such that 2"r ~ R, with 2"r < iR, we deduce

(5.49) 1) S 9t + (=) 1A,

It remains to estimate the second right-hand side term. By definition of f and of w,,
we find

FOR) < f Vuol? < f |Vu|2+|va<o>\2f 1+ VP,
Dr Dgr Dgr

Using the interior regularity estimate (5.43) with p ~ R and using the energy esti-
mate (5.8), we note that

vao)? < f

vl s][ IV,
DR DR

so that the above becomes

GRS (f, (+1voP) £ v

Combining this with (5.48), and inserting the definition of f, g, and w,, the
claim (5.44) follows.

Substep 4.4. Estimate on the two-scale expansion error: for all € with 0 < e < 1,

(5.49) / 12 |Vul?
Dgr

(B +5) TR 0w ®) [

R

Starting point is (5.37): for all ¢ with 0 < e < 1,

| vl s [0 i v
Dr

Dr

+ (%lflvmwa)lz) /D (14 (%, ¢, Vib, Slgay)?).

Noting that the definition of nr and pg. entails (1 —ngr)’uy . < (p/R)*, recalling

that ng is supported in Bg_, and satisfies [Vngr| < p~*

estimate (5.43), and using the energy estimate (5.8), the claim (5.49) follows.

, using the interior regularity

Substep 4.5. Proofof (5.2). — Inserting the error bound (5.49) into (5.44), we find for
all r, p with 4 < r,p < %R,

r

(5.50) ]{B |Vu — V() — (8Ea)(0)VwE!2 S ((Rf]i (1+[VeP)

+ (%)7%2((%)6 + (%)%72% ]iR (1+ I(w,c,vw,mw\y>|2))> ]{BR V2,
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Next, we slightly reformulate this estimate by removing the dependence on V. For
that purpose, we appeal to a Caccioppoli-type argument for : arguing as in (5.45),
now starting from equation (3.2), we find for all K, R > 1,
2
-1 of).
Bar

1 1
VYIP S = vw2+K(1+][
][BR| ‘ K BgRl ‘ R2 B2R

Iterating this estimate for some K >> 1 large enough, and recalling that the ergodic
theorem yields fy V|2 — E[|VY]?] < 1 almost surely as R 1 oo, we deduce for all
R>1,

(5.51) ][ VP <1442,
Br

where we recall that v is defined in (5.3). Recalling the choice fBR (¥, ¢, X1ga_y) =0
in this proof, and appealing to the pressure estimate of Lemma 3.3 to further remove
the dependence on ¥ in (5.50), we obtain for all r, p with 4 < r,p < iR,

][ IV — V(0) — (95)(0) Vb
B,
r2 r\=d=2//p\© py-d-2 )
<((L L £ £
~ <(R) +(R) ((R) +(R) ) ]{BRW“' '
It remains to optimize in p. If vz < 1, the choice (p/R)?+2+¢ ~ 4% yields the conclu-

sion (5.2) with Ey = V4(0) up to renaming e. If vz > 1 or if 1R < r < R, then the
conclusion (5.2) trivially holds with Ey = 0.

Step 5. Proof of the non-degeneracy property (5.4). — The upper bound in (5.4) follows
from the Caccioppoli-type inequality (5.51), and it remains to establish the lower
bound. Poincaré’s inequality and the triangle inequality yield

(]im VY + E\Q)m 2 12(7{33/2 ’WE + Ex) — ]im(wE + Ex)‘2>1/2

/ 1/2
> ;(me Eaf?) " - 11“?(7;/2 [ ]im wf)

Z (1—Cyr)|E],

and the conclusion (5.4) follows. O

6. QUANTITATIVE HOMOGENIZATION
This section is devoted to the proof of Theorem 6.

Proofof Theorem 6. — First consider a cut-off function 1. € C°(R%; [0, 1]) supported
in U such that 7. is constant inside the inclusions {eI,},, and n.|c;, = 0 for all
n ¢ A(U). In particular, .Z.(U) coincides with €. in the support of 7.. In ad-
dition, given R with 5 < R < 1/e (to be later optimized depending on ¢), we as-
sume that . = 1 in U \ 9.gU and |Vn.| < (eR)™!, where we use the notation
0:rU :={z € U : dist(z,0U) < eR} for the fattened boundary.
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Step 1. Tivo-scale expansion and representation of the error. Let (ue, P-) denote the
solution of the heterogeneous Stokes equation (2.9), and let (@, P) be the solution of
the corresponding homogenized equation (2.10). The pressures P. and P are chosen
such that fU P ga g () = fUﬁ = 0. In terms of the corrector (¢,Y), we consider
the two-scale expansions
Ue ~ U+ enWp(-/e)0rT, P. ~ P+n.b:D@) + 0. (Xplgas)(-/€)0pT.
Given arbitrary constants P. ., € R and {P:,,}, C R (that will be made explicit later
in the proof), we modify the pressure P into
Pl:=(Pe+ P )y )+ Y. Penle,,
neAN(U)

and we then consider the following two-scale expansion errors in U,
We == u. — U — enWYp(-/e)0ru,
Qe = Ps/ - P- 7755 : D(ﬂ) - na(zE]le\])('/E)aEﬂ~

Arguing as in Substep 1.2 of the proof of Proposition 5.1, cf. (5.11), we find that
(we, Q) satisfies the following equation in the weak sense in U,

(6.1) — Awg + VQE == ()\ — ]lJE(U))f
- Z 5581710(ueapa + P — Pe,n)’/ - div((neaEﬂ)JE('/g)]laﬂ)
neN(U)
+div(2(1 = 1) (1d = B) D(@) + 22(4 @ —Cp)(-/2)V (1.057)
~ 1AW (/) - V) (.05T) ).

In order to quantify the almost sure weak convergence 14 () — A in LZ(U) in the
first right-hand side term, we define a new corrector 6 := V-~ as the unique solution
of the following infinite-volume problem:

— Almost surely, § = Vv belongs to L .(R)? and satisfies
div(d) = Ay=1,—-2),  inR%L
— The field V6 = V2 is stationary, has vanishing expectation, has finite second
moment, and 6 satisfies the anchoring condition f, 6 = 0 almost surely.

Under the mixing condition (Mix™), along the lines of the proof of Theorem 4.2 (but
noting that no buckling is needed here as the corrector problem is linear with respect
to randomness), the following moment bounds are easily checked to hold for all ¢ < oo,

(6.2) IVOllLay Sq 1, 10(2) |lLa ) Sq pallz])-

In terms of this corrector, recalling that .. (U) coincides with e.# in the support
of 1., the first right-hand side term in (6.1) can be decomposed as

A=1p@)f=A=1gw)d=n)f+\=T1es)nf
=N =1g @) —n)f —div(nef @eb(-/e)) + V(n-f) b(:/¢).
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Inserting this into (6.1), we are led to the following equation for (w., Q) on U,

(6.3) —Aw.+VQ.= (A~ ]lJE(U))(l —ne)f +V(n.f)eb(-/e)

- Z 5681710—(’“’67 Pa + Pe,* - Pe,n)y - le((neaEﬂ)JE(/E)]]-a])
n€AN(U)

+div(2(1 = n)(1d=B) D(@) — 1. f @ £0(-/2) + 2¢(bpp @, (i) (/) ¥ (0:05T)
— 1AW (/) - V) (0:057) ).

Step 2. Conclusion. We repeat the argument for (5.37) in Step 2 of the proof of
Proposition 5.1, now without weight, starting from equation (6.3) instead of (5.11).
More precisely, we truncate w. to make it affine in the inclusions, we test (6.3) with this
truncated version of w., we take advantage of boundary conditions, and we estimate
the different terms. Compared to equation (5.11), the only new part here stems from
the first two right-hand side terms in (6.3), for which we simply appeal to Poincaré’s
inequality: as w. € H}(U)? d

, we can estimate for any test function g € L?(U)9,

1/2 1/2 1/2 1/2

[ < (L) ([ Py s ([ 1) ([ wwp)
U U U U U

In this way, for a suitable choice of the constants P. , and {P: ,},, we arrive at the

following estimate,
(6.4) / Ve, Qo) < / (1= 5 )?I(f, VD + €2 / 6/ (V2 + Ve l21£1)
U U U

i 62/U (1106 V9, D1ra ) (@/0)P) (sup (1920 + Ve[ VEP) ) dor

B45 T

Taking the L?(Q) norm, using corrector estimates of Theorem 2, as well as (6.2),
recalling that 1 — 7. and V7. are supported on the fattened boundary d.grU, noting
that the latter has volume |0.gU| < R, and recalling that V.| < (eR) ™!, we deduce
for all g < oo,

q11/4

63) B |( [ 1902 QaP)"] " 54 R+ uat /PRI VDR w0

Next, decomposing

W, 1= (uE —u— gwE(-/g)aEﬂ) +e(1 = n)Yg(-/¢)0rT,
Qelyw s ) = (Pe + Pep = P = b: D(@) — (Zplpe »)(-/€)050) L. ()

+ (1 =) (b:D(@) + (Zplra »)(-/€)1) Ly s ),

we deduce for all ¢ < oo,

_ 2
(6.6) HuE —u— €¢E(~/5)6Eu|}Lq(Q;H1(U))
. = = _ _ 2
+ ;relﬂfg |P- =P -b:D@) — (Splpaeys)(-/e)0pT — /<;HLQ(Q;L2(U\%(U)))
Sq (ER+2pa(1/e)*(1/eR)|(f, V)i 1r)-
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Choosing eR = epuq(1/¢), and using the regularity theory for the steady Stokes equa-
tion (2.10), cf. [22, §IV], this yields the conclusion (2.12).

Finally, if f and w are compactly supported in U, the cut-off function 7. is equal to 1
identically in the support of (f, Vu) for € small enough. Hence, the terms involving
1—n. and V1. drop in (6.4), and the bounds (6.5) and (6.6) are replaced by e2pu4(1/¢)2.

O
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