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ORBITAL FUNCTIONS AND HEAT KERNELS OF

KLEINIAN GROUPS

by Adrien Boulanger

Abstract. —We study orbital functions associated to Kleinian groups through the heat kernel
approach developed in [Bou22].

Résumé (Fonctions orbitales et noyaux de la chaleur des groupes kleiniens)
Nous étudions les fonctions orbitales des groupes kleiniens par l’approche du noyau de la

chaleur initiée dans [Bou22].
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1. Introduction

We denote by Hd the hyperbolic space of dimension d > 2. We call Poincaré group
any discrete torsion free subgroup of the group of isometries of Hd preserving the
orientation. Following the historical terminology introduced by Poincaré, a Poincaré
group acting on H3 is called Kleinian and one acting on H2 is called Fuchsian. If Γ is
a Poincaré group, the quotient space Hd/Γ is a hyperbolic manifold that we denote
by MΓ. Given a point p̃ ∈ Hd we denote by p its image in MΓ. Conversely, we will
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1070 A. Boulanger

denote by p̃ ∈ Hd any lift of a point p ∈ MΓ. Given a pair of points x̃, ỹ ∈ Hd and
ρ > 0 we define the orbital function as

NΓ(x̃, ỹ, ρ) : = #{Γ · ỹ ∩B(x̃, ρ)}
= #{γ ∈ Γ, d(x̃, γ · ỹ) 6 ρ},

where the symbol # stands for the cardinality of a set. The function NΓ is Γ-invariant
with respect to both its spatial variables, and therefore descends to a well defined
function on MΓ ×MΓ × R+. We also call the resulting function the orbital function
and, by abuse of notation, we keep denoting it by NΓ(x, y, ρ).

The first work, to the author’s best knowledge, dedicated to understand the be-
haviour when ρ→∞ of orbital functions associated to Poincaré groups goes back to
Delsarte [Del42] in the early 40’s. His approach to counting problems was extensively
developed since. It was considered again with Huber [Hub56] who was the first to
obtain a precise asymptotic of orbital functions associated to co-compact Fuchsian
groups. Namely, in this case he obtained

NΓ(x, y, ρ) ∼
ρ→∞

π eρ

vol(MΓ)
,

where the term π eρ has to be understood as the volume of a hyperbolic disk of
radius ρ. Shortly after, Selberg [Sel56, Sel60] extracted what was essential in order for
this approach to work and laid down the general framework of his celebrated trace
formula. This led to extend Huber’s result to Poincaré groups acting co-compactly.
In the 70’s Patterson [Pat75], relying on the same method, improved Huber’s result
in two directions for Fuchsian groups: he replaced the assumption that the action is
co-compact by the one that the quotient manifold has finite hyperbolic volume and
he gave a precise control of the error term. Using more tools from Analysis, Lax-
Phillips [LP82] and Patterson [Pat88] were able to extend this result to the setting
of fundamental groups of geometrically finite hyperbolic manifolds, a class of groups
encompassing the ones acting co-compactly. The most general theorem of the theory
is due to Roblin [Rob03] who gave a simple asymptotic for the orbital function for
a large class of actions (without estimating the error term though). In the constant
curvature setting, his result specialises as one can replace the geometrically finite
assumption with the assumption that MΓ carries a finite Bowen-Margulis-Sullivan
measure. The latter assumption is weaker since Sullivan showed [Sul84] that if Γ is
geometrically finite then MΓ has a (unique) finite Bowen-Margulis-Sullivan measure.
Let us mention, to conclude this historical overview, that Roblin’s method relies on
Margulis’ dynamical ideas [Mar69] and was precisely initiated by Patterson [Pat76]
and Sullivan [Sul79, Sul84]. We refer to [BFZ02] for a more detailed exposition of the
rich history of the study of orbital functions associated to groups acting on CAT(-1)
spaces.

This article aims at investigating the behaviour of orbital functions associated to
Kleinian groups whose quotients do not carry any finite Bowen-Margulis measures.
There are very few cases where even rough estimates of the orbital function are
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Orbital functions and heat kernels of Kleinian groups 1071

obtained in this case. The only result in this direction, in the setting of Poincaré
groups, is due to Epstein [Eps85, Eps87, Eps89] and deals with Abelian covers of
compact hyperbolic manifolds.

Epstein’s method relies on tools similar to those used in this article, namely the
use of the spectral theory of the manifold MΓ. The method is limited to Abelian
covers of finite volume manifolds. Indeed, the fact that the covering group is Abelian
allows them to use the finite measure of the underlying compact manifold, encoding
totally the Abelian cover in the homology of the latter. It seems therefore hard to
generalise this approach to study Poincaré groups associated to non Abelian covers
of finite volume manifolds, and even harder for hyperbolic manifolds which does not
cover any finite volume hyperbolic manifold at all.

In this article we pursue the investigation of the relation that heat kernels enter-
tain with orbital functions of Poincaré groups. This approach was initiated by the
author in his PhD dissertation [Bou18] which eventually led to [Bou22]. It was in-
spired by Margulis’ dynamical idea to relate geodesic flows and counting problems
and by Sullivan’s idea to relate Brownian motions and geodesic flows (in constant
negative curvature). Therefore, counting problems and heat kernels should be related
somehow. This article quantifies this relation through the following theorem.

We denote by Vd(ρ) the volume of any hyperbolic ball of radius ρ in Hd and by pΓ

the heat kernel of MΓ. We refer to Section 3 for a precise definition of the latter.

Theorem 1.1 (Main theorem). — Let Γ be a Kleinian group. Assume that there exist
x, y ∈ H3, α > 0 such that for t large enough we have

pΓ(x, y, t) > t−α,

then for any x ∈ H3 we have

NΓ(x, x, ρ) ∼
ρ→∞

pΓ (x, x, ρ/2) V3(ρ).

Our main theorem does not require any finite measure assumption, note however
that the lower bound required on the heat kernel implies that the Kleinian group has
maximal critical exponent. The approach taken in this article has the benefit of giving
a precise asymptotic of the orbital function provided that we restrain ourselves to the
on-diagonal study. Compare to the weaker upper bound obtained in [Bou22, Th. 1.2]
which is valid everywhere and for any Poincaré groups. We will give an overview of
the proof of Theorem 1.1 in Section 2. The main benefit of our main theorem is to
reduce orbital function estimates to heat kernel ones. Notice that, contrary to the
orbital function, the heat kernel has the semigroup property which makes its analysis
easier.

In the proof, we only use the dimension 3 to prove Proposition 3.9. The proof of this
proposition relies on the fact that we have an explicit and simple formula for the heat
kernel in this case. Others formulas of the same type exist in all dimensions and one
can most probably adapt the proof proposed here using the same method. However,
the calculations are messy and it would have technically burdened this article a lot.

J.É.P. — M., 2022, tome 9



1072 A. Boulanger

As the main corollary of the above theorem concerns Kleinian groups, the author
decided against it. Moreover, it seems to the author that the following statement,
from which Proposition 3.9 follows should hold. This would give a more satisfying
proof to Proposition 3.9 as it is interesting on its own in the author’s opinion.

Question. — Let M be a complete Riemannian manifold with pinched sectional
curvature. Does there exist, for any compact set K ⊂ M , a constant CK > 0 such
that for any t > 1 and any x, y ∈ K

|∇y ln(pM (x, y, t))| 6 CK?

A historically important class of examples of groups that do not carry any fi-
nite Bowen-Margulis-Sullivan measure are geometrically infinite finitely generated
Kleinian group, also referred as degenerate Kleinian groups. This class of Kleinian
groups was extensively studied since they are the main objects of Thurston’s hyper-
bolisation theorem [McM96, Ota01] and several important problems (all theorems
now) as Marden’s tameness conjecture [CG06] (proved independently by Agol, un-
published), Ahlfors’ conjecture (which follows from Marden’s conjecture and [Can93])
or the ending lamination conjecture [BCM12]. For more details, we recommend the
surveys [Can08, Min02]. The only studies of their orbital functions was toward the
understanding of the critical exponents of the group, which is defined as

δΓ := lim
ρ→∞

ln
(
NΓ(x, y, ρ)

)
ρ

.

Note that it is not clear that the limit is well defined a priori: it was shown to exist in
[Rob02]. Bishop and Jones [BJ97b, BJ97a], following Sullivan [LST81], were able to
show that δΓ = 2 for geometrically tame Kleinian groups. As a corollary of [Can93]
and the tameness theorem, all degenerate Kleinian groups are geometrically tame,
which settles the study of their critical exponents. However, the critical exponent is a
much weaker invariant than a precise asymptotic of the orbital function and none of
the methods developed in the above mentioned work apply. Note that Epstein’s result,
discussed above, encompasses the case of Z-covers associated to compact hyperbolic
3-manifolds which fibre over the circle, which are special cases of degenerate Kleinian
groups. Theorem 1.1 was actually designed to prove the

Corollary 1.2. — Let Γ be a degenerate Kleinian group such that MΓ has positive
injectivity radius. Then the conclusion of Theorem 1.1 holds. Moreover,

– either the limit set of Γ is the entire sphere and there are positive constants
C−, C+, ρ0 such that for every x ∈MΓ there is ρ0 > 0 such that for ρ > ρ0 we have

C− e2ρ

ρ1/2
6 NΓ(x, x, ρ) 6

C+ e2ρ

ρ1/2
;

– or for any x ∈ MΓ there are two positive constants C−(x), C+(x) such that for
ρ > 1

C−(x) e2ρ

ρ3/2
6 NΓ(x, x, ρ) 6

C+(x) e2ρ

ρ3/2
.

J.É.P. — M., 2022, tome 9



Orbital functions and heat kernels of Kleinian groups 1073

The proof of the above corollary is an immediate application of Theorem 1.1 com-
bined with the heat kernel estimates obtained in [Bou22]. Indeed, under the same
assumptions than in Corollary 1.2 we showed [Bou22, Th. 1.10] that

– either the limit set of Γ is the entire sphere and there is two positive constants
C−, C+ such that for every x ∈MΓ and t large enough we have

C−
t1/2

6 pΓ(x, x, t) 6
C+

t1/2
;

– or for any x ∈ MΓ there is two positive constants C−(x), C+(x) such that for
t > 1 we have

C−(x)

t3/2
6 pΓ(x, x, t) 6

C+(x)

t3/2
.

The heat kernel can be interpreted as the transition kernels of the Brownian motion.
This makes it more intuitive than the orbital function: we refer to [Bou22] for a
justification a priori of the exponents 1/2 and 3/2. Note that we do not use the same
terminology in [Bou22]: the ‘fully degenerate’ case corresponds to the case where the
limit set is the entire sphere and the ‘mixed type’ case to the other one.

The next natural step to investigate orbital functions of finitely generated Poincaré
groups is to drop the assumption that MΓ has positive injectivity radius. Since Mc-
Mullen conjecture on polynomial growth of degenerate ends was solved in [BCM12,
Volume growth th., p. 5], a positive answer to the following question implies that
Theorem 1.1 holds for a broader class of degenerate Kleinian groups.

Question. — Given a Riemannian manifoldM with pinched sectional curvature car-
rying at least one infinite volume end of (strictly) polynomial growth, are there a
point x ∈MΓ and α > 0 such that for t large enough we have pM (x, x, t) > t−α ?

About the notation. — We will often change of perspective in this article, going back
and forth from Hd to MΓ. As already mentioned, we will not make any difference,
notation-wise, between kernels of operators acting on functions of MΓ or as Γ × Γ-
invariant kernels defined on Hd × Hd. We shall make clear, when ambiguous, which
space is the source by using the tildes to emphasis that we work on Hd.

Acknowledgement. — I am very grateful to Gilles Courtois, my former PhD advisor,
for his proof checking time as well for his many useful comments about the redaction
of this article. I would also like to thank Sergiu Moroianu for interesting conversations
around Selberg’s trace formula and Alexander Grigor’yan for emails exchange related
to heat kernels.

2. First definitions and overview of the argument.

In order to prove our main Theorem 1.1 we start off introducing orbital operators,
defined bellow. The operator approach is not the novelty of this article. First, we
introduce the average operators, which are the underlying ‘universal’ operators behind
the construction of the orbital ones.

J.É.P. — M., 2022, tome 9



1074 A. Boulanger

We denote by µh the hyperbolic measure of any hyperbolic manifold and byffl
E
fd µh the mean value of the function f over the set E with respect to the mea-

sure µh. We denote by π : Hd →MΓ the universal Riemannian covering.
We call average operator the family of operators indexed by ρ > 0 acting on

bounded functions on H3 defined as

Oρ(f)(x̃) :=

 

B(x̃,ρ)

f dµh.

It is easy to see that if f is Γ-invariant then Oρ(f) is also Γ-invariant. In particular,
if f̃ is the lift of a function f defined onMΓ, the function Oρ(f̃) induces a well defined
function on MΓ that we denote by π∗Oρ(f̃).

Given a Riemannian manifold (M, g), we denote by B+
0 (M) the vector space of

measurable non negative bounded and compactly supported functions. Note that we
did not require the functions of B+

0 (M) to be continuous.
We denote by supp(f) the support of a function f . Note that we have B+

0 (M) ⊂
L2(M), where L2(M) stands for the space of square integrable functions defined onM
with respect to the Riemannian measure. For a pair of functions f, h ∈ L2(M) we
denote by

〈f, h〉L2(M) :=

ˆ

M

f h dµg

the usual scalar product on L2(M).
Note that given a function f ∈ B+

0 (MΓ) and ρ > 0, the support of π∗Oρ(f̃) is
contained in a ρ-neighbourhood of supp(f). In particular π∗Oρ(f) ∈ B+

0 (MΓ).

Definition 2.1. — Given a Poincaré group Γ, we call orbital operator, that we denote
by (Oρ

Γ)ρ>0, the family of operators acting on B+
0 (MΓ) defined as

Oρ
Γ(f) := π∗O

ρ(f̃).

The proof of the following well-known lemma is elementary and left to the reader.
Recall that we denoted by Vd(ρ) the volume of a hyperbolic ball in Hd of radius ρ.

Lemma 2.2. — Let Γ be a Poincaré group. The function
NΓ(·, ·, ρ)

Vd(ρ)

is the kernel of the orbital operator Oρ
Γ. Namely, for any ρ > 0 and any f ∈ B+

0 (MΓ)

we have
Oρ

Γ(f)(x) =

ˆ

MΓ

NΓ(x, y, ρ)

Vd(ρ)
f(y) dµh(y).

In particular, the orbital function being symmetric in x and y, the orbital operator
is also symmetric with respect to the L2-scalar product (in restriction to B+

0 (MΓ)).
We will prove our main theorem thanks to the following proposition. We refer to

Section 3 for all the material and definitions about the heat kernel.

J.É.P. — M., 2022, tome 9
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Proposition 2.3 (Operators comparison). — Let Γ be a Poincaré group such that
there is α > 0, x, y ∈ Hd such that for t large enough we have

pΓ(x, y, t) > t−α.

Then, for any non zero f ∈ B+
0 (MΓ),

〈Oρ
Γ(f), f〉L2(MΓ) ∼

ρ→∞

〈
e−(ρ/2)∆(f), f

〉
L2(MΓ)

.

Roughly, since we know the heat operator and the orbital operator to commute
in the setting of rank one symmetric spaces, the idea behind the proof of the above
proposition is that two commuting operators can be compared only looking at their
spectrum. However, since MΓ is not compact, its spectral theory is not easy to deal
with, which makes hard to readily implement such an approach. In order to fall back
in a simpler spectral setting, we shall approach MΓ with large domains (Ωn)n∈N. The
Dirichlet heat problem for bounded domains also has a unique solution, see Section 3.
In particular, a bounded domain carries a well defined heat kernel as well. We will
recover the information needed about the heat kernel of the entire manifoldMΓ using
a theorem of Dozdiuk (Theorem 3.5 in Section 3) which relates it to those of the
sequence (Ωn)n∈N.

It is well-known that relatively compact domains carries an L2-eigenbasis of smooth
eigenfunctions of the Laplace operator (Theorem 3.6). This will be crucial for us. The
following proposition asserts that the orbital operator and the heat one ‘commute’ for
points far away of the boundary of a given domain. It is a variation of a well-known
fact. However, for comprehensiveness and since the author did not find any ready-
to-use reference for domains, we give its (rather elementary) proof in the appendix
of this article. Recall that the upper half plane model of the hyperbolic space Hd is
given by R2 × R+ endowed with the metric

dx2
1 + · · ·+ dx2

d−1 + dy2

y2
.

Proposition 2.4 (Delsarte’s formula). — Let Γ be a Poincaré group, Ω any open subset
of MΓ and Φ a smooth function of Ω verifying ∆Φ = λΦ. Then for any x ∈ Ω such
that B(x, ρ) ⊂ Ω we have

Oρ
Γ(Φ)(x) = νρ(λ) Φ(x),

with

(2.5) νρ(λ) = Oρ(ys) =

 

B(o,ρ)

ys
dx1 · · · dxd−1dy

yd
,

where o := (0, . . . , 0, 1) ∈ Rd−1 × R∗+ and s satisfies s(d− 1− s) = λ.

The function νρ is usually referred to as a Selberg’s transform. Note that if f ∈
B+

0 (MΓ) then supp(Oρ
Γ(f)) ⊂ Ω if Ω contains a ρ-neighbourhood of supp(f). We fix Ω

with this property. The next step is to expand Oρ
Γ(f) with respect to a L2-eigenbasis

of eigenfunctions (Φλ)λ∈Sp(Ω) associated to the Laplace operator of Ω. Thanks to the

J.É.P. — M., 2022, tome 9



1076 A. Boulanger

above proposition, we will identify the coefficients associated to Φλ of this expansion to
νρ(λ). Informally, for any f ∈ B+

0 (MΓ) and any domain Ω such that supp(Oρ
Γ(f)) ⊂ Ω

Oρ
Γ(f) =

∑
λ∈Sp(Ω)

νρ(λ) 〈Φλ, f〉L2(M) Φλ.

The Selberg’s transform νρ(λ) only depends on λ and not on the underlying eigen-
function Φλ. In particular it does not depend on Ω either (provided that it was taken
large enough). This uniformity is crucial: it is ultimately what is allowing us to use the
exhaustion ofMΓ by relatively compact domains. Note that we do not prove anything
about the spectral theory of the orbital operator itself.

It remains then to relate precisely the coefficients appearing in the expansion of
Oρ

Γ(f) (of the form νρ(λ)) to their expected values for the heat operator (of the
form e−λρ). This is what the following proposition aims at. The proof of this propo-
sition is rather technical (we split it in three steps) and will be carried out through
Section 5. Practically, this is a computation starting off Formula (2.5). Heuristically,
it is a spectrally quantified version of Sullivan’s idea that Green functions associated
to Brownian motion are related with critical exponents in the setting of rank 1 sym-
metric spaces and their quotients. See for example [Sul87]. With this picture in mind,
the term 1/(d−1) is natural and due to the fact that the escape rate of the Brownian
motion is d− 1 in Hd.

Proposition 2.6 (Spectral proposition). — For any β > 0 there is a constant C > 0

such that for all ε > 0 there is ρ0 > 0 such that for all ρ > ρ0 we have
(1) for all λ 6 β ln(ρ)/ρ

|νρ(λ)− e−λρ/(d−1)| 6 ε e−λρ/(d−1);

(2) for all λ > β ln(ρ)/ρ

|νρ(λ)| 6 C ρ−β/(d−1).

The first item quantifies that ‘large’ coefficients appearing in the expansion of
Oρ

Γ(f) are close to those associated to the heat operator. The second item, together
with the lower bound assumption we made on the heat kernel, will imply that ‘small’
coefficients are negligible.

The operators comparison done, it will remain to relate them with their kernels.
For the orbital operator part, we shall circumvent the analytical intricacies one may
encounter with non smooth kernels by using Lemma 4.2, lemma which is inspired by an
argument of Eskin and McMullen proposed in [EM93]. Note that Lemma 4.2 together
with the well-known spectral Theorem 3.6 and the appendix of this article is enough to
recover the asymptotic of orbital functions associated to groups acting by isometries
and co-compactly on rank 1 symmetric spaces (even off diagonal). It simplifies the
existing proofs in these cases but does not seem appropriate to get finer estimates.
For the heat operator part, we rely on an explicit formula for the heat kernel of H3.
The ‘local’ regularity of pΓ will be precisely investigated though in Proposition 3.9.

J.É.P. — M., 2022, tome 9



Orbital functions and heat kernels of Kleinian groups 1077

3. Heat operators and their kernels

3.1. Heat kernels on Riemannian manifolds. — General references for this section
are [Cha84] or [Gri09]. If (M, g) is a Riemannian manifold, we will denote by µg the
Riemannian measure and by ∆ the Laplace operator with the convention so that ∆

is a positive operator on L2(M).

Theorem 3.1 ([Gri09, Cor. 4.11, p. 117]). — Let (M, g) be a complete Riemannian
manifold. For any initial condition u0 ∈ L2(M) the following Cauchy problem

(3.2)

∆u(x, t) + ∂tu(x, t) = 0,

u(·, t) −→
t→0

u0 in L2(M).

has a unique solution u : M × R+ → R given by

u(t, x) = e−t∆(u0)(x, t) =

ˆ

M

pM (x, y, t) f(y) dµg(y),

where pM (x, y, t) is, by definition, the heat kernel of (M, g).

We will denote for short by pΓ(x, y, t) the heat kernel of the hyperbolic mani-
fold MΓ.

There is a similar Cauchy problem for domains on Riemannian manifold. In order
to ensure uniqueness one must require boundary conditions.

Theorem 3.3 ([Cha84, p. 168]). — Let Ω be a bounded domain of a complete Riemann-
ian manifold with smooth boundary and u0 a continuous function on Ω with u0 = 0

on ∂Ω. The following Cauchy problem

(3.4)


∆u(x, t) + ∂tu(x, t) = 0,

u(x, t) −→
t→0

u0(x) for every x ∈ Ω,

u(·, t) = 0 on ∂Ω for t > 0.

has a unique smooth solution u(x, t) : Ω× R∗+ → R given by

u(t, x) = e−t∆Ω(u0)(x, t) =

ˆ

M

pM (x, y, t)u0(y) dµg(y),

where pΩ(x, y, t) is, by definition, the heat kernel of Ω.

Given an exhaustion by relatively compact open subsets (Ωn)n∈N with smooth
boundaries of a manifold M , one can wonder how relate the heat kernel of the whole
manifoldM with those associated to (Ωn)n∈N. The following theorem gives a satisfying
answer to this question.

Theorem 3.5 ([Dod83, Th. 3.6]). — Let M be a complete Riemannian manifold and
let (Ωn)n∈N be an exhaustion of M by open relatively compact subsets with smooth
boundary. Then

pΩn −→
n→∞

pM

uniformly on every compact set of R∗+ ×M ×M .

J.É.P. — M., 2022, tome 9



1078 A. Boulanger

The following well-known theorem will provide us with a crucial tool of our ap-
proach, eigenfunctions of the Laplace operator.

Theorem 3.6 ([Gri09, Th. 10.13], [Cha84, p. 169]). — LetM be a compact Riemannian
manifold (possibly with smooth boundary), then there exists a sequence Sp(M) of posi-
tive numbers going to infinity together with a family of smooth functions (Φλ)λ∈Sp(M)

(vanishing on the boundary if any) in L2(M) of unit norm such that:
– for any λ ∈ Sp(M) we have ∆Φλ = λ Φλ;
– the family (Φλ)λ∈Sp(M) is a Hilbert basis of the space L2(M). Namely, for any

f ∈ L2(M) we have the following convergence in L2(M)

f =
∑

λ∈Sp(M)

〈Φλ, f〉L2(M) Φλ.

3.2. Local control of the heat kernel. — The two following statements address
the regularity of the heat kernel and will be used to recover our main theorem from
Proposition 2.3 ‘Operators comparison’.

Lemma 3.7. — Let M be a complete Riemannian manifold, then for every x ∈M the
function

R∗+ −→ R+

t 7−→ p(x, x, t)

is non-increasing.

Proof. — Given a function f ∈ L2(M) we set

Φf (t) :=
〈
e−t∆(f), f

〉
L2(M)

.

In order to deduce the conclusion of Lemma 3.7 we first show that for any f as above
we have

(3.8) Φ′f (t) 6 0.

We compute the derivative

Φ′f (t) =
〈
∂t
(
e−t∆(f)

)
, f
〉
L2(M)

.

A solution of the heat equation e−t∆(f) satisfies

∂t
(
e−t∆(f)

)
= −∆

(
e−t∆(f)

)
= −e−(t/2)∆∆

(
e−(t/2)∆(f)

)
,

since the Laplace operator and the heat operator commute. Therefore, since the heat
kernel is symmetric, we have

−Φ′f (t) =
〈
e−(t/2)∆∆

(
e−(t/2)∆(f)

)
, f
〉
L2(M)

=
〈
∆
(
e−(t/2)∆(f)

)
, e−(t/2)∆(f)

〉
L2(M)

=
〈
∇
(
e−(t/2)∆(f)

)
,∇
(
e−(t/2)∆(f)

)〉
L2(M)

=
∥∥∇(e−(t/2)∆(f)

)∥∥
L2(M)

> 0.
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We conclude by localising Equation (3.8). For any x ∈MΓ and ε > 0, we set

Xε :=
1B(x,ε)

Vd(ε)
.

though as an L2(MΓ)-approximation of the Dirac mass at x.
Using (3.8) we get for any ε > 0 and any t 6 s

ΦXε(t) > ΦXε(s).

Letting ε→ 0 in the above inequality gives the conclusion using that heat kernels
are continuous. �

The first item of the following statement will be needed in order to control the heat
kernel in a neighbourhood of the diagonal only using the on-diagonal values. This is
one of the two keys (with Lemma 4.2) which allows us to recover our main theorem
from Proposition 2.3 ‘Operator comparison’. The second item will be needed in order
to improve the punctual polynomial lower bound assumed in our main Theorem to
a uniform lower bound on a given compact sets. Practically, we will use it with the
support of a function f ∈ B+

0 (M) along the proof of Proposition 2.3 ‘Operators
comparison’.

Proposition 3.9. — Let Γ be a Kleinian group fort which there exist x, y ∈ MΓ and
α > 0 such that for t large enough

pΓ(x, y, t) > t−α.

Then, for all ε > 0 there is δ > 0 such that
(1) local version: there is a time t(x, y, α) > 0 such that for all z ∈ B(y, δ) and

t > t(x, y, α) we have

(1− ε) pΓ(x, y, t) 6 pΓ(x, z, t) 6 (1 + ε) pΓ(x, y, t);

(2) compact version: for every compact set K ∈ MΓ there is a constant CK > 0

and a time tK > 0 such that for all w, z ∈ K and all t > tK we have

pΓ(w, z, t) > CK t−α.

The next subsection is dedicated to the proof of the above proposition, which is
rather technical.

3.3. Proof of Proposition 3.9. — The main ingredient of the proof is the following
theorem which gives an explicit formula for the heat kernel of H3.

Theorem 3.10 (see for example [GN98]). — Let x, y ∈ H3 and t > 0, then

(3.11) pH3(x, y, t) =
1

(4πt)3/2

ρ

sinh(ρ)
e−t−ρ

2/4t,

where ρ = d(x, y).
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The above formula shows that the heat kernel only depends on the distance be-
tween x and y. This is actually more general since it always holds for rank 1 symmetric
spaces. We denote by p3(ρ, t) the heat kernel on H3 viewed as a function of the dis-
tance.

We shall now relate the heat kernel of H3 to the one of MΓ through the following
well-known lemma.

Lemma 3.12. — Let Γ be a Kleinian group. Then for any x, y ∈ MΓ and any t > 0

we have
pΓ(x, y, t) =

∑
γ∈Γ

pH3(x̃, γ · ỹ, t).

The proof is rather straightforward. One shall first verify that the above right
summation is finite which can be done using Formula 3.11. Indeed, it shows that for
any t > 0 the heat kernel pH3 decreases super-exponentially fast in d(x, y). Next,
one must verify that the summation is Γ-invariant with respect to both its spatial
variables. It already holds (by construction) for the y-variable and it extends to the
x-variable by symmetry. To conclude, now that the right member of (3.11) is well
defined on MΓ ×MΓ × R∗+, it remains to verify that it solves the Cauchy problem
(3.2), which is left to the reader.

Let us start the proof of Proposition 3.9 by showing that the local version implies
the compact version.

Proof of (local version⇒ compact version). — Up to enlargingK, we will assume thatK
is a closed ball containing both x and y. We define

Un :=
{

(w, z) ∈ K ×K, lim inf
t→∞

pΓ(w, z, t) tα > 1/n
}
,

and
U :=

⋃
n∈N

Un.

Since we suppose that x, y ∈ K the set U is non empty. Using the local version of
Proposition 3.9 and the symmetry of the heat kernel we get that all the sets Un are
open, so is U .

We shall now see that U is also closed. We fix ε = 1/2. Using again the local version
of Proposition 3.9 and the symmetry we get that there is δ > 0 such that for any
points w1, z1 ∈ H3 and any C,α > 0 such that

pΓ(w1, z1, t) > C t−α,

then there is a time tω1,z1 such that for any (w2, z2) ∈ B(w1, δ) × B(z1, δ) and any
t > tω1,z1 we have

pΓ(w2, z2, t) >
C

4
t−α,

which shows that U is closed.
We conclude by recalling that we supposed that K is a ball and as such connected.

This implies that K×K is connected too and therefore that U = K×K. By definition
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of U (as an union of open sets) and because K ×K is compact we get that there is a
constant CK such that for any w, z ∈ K

lim inf
t→∞

pΓ(w, z, t) tα > CK .

Using again the local version, one knows that for any pairs (w1, z1) ∈ K ×K there
is δ > 0 and a time tw1,z1 > 0 such that for all t > tw1,z1 and for all (z2, w2) ∈
B(w1, δ)×B(z1, δ) we have

pΓ(w2, z2, t) t
α >

CK
4
,

so that we have covered K ×K by open sets on which we have the above inequality
uniformly in time. We conclude using again the compactness of K × K in order to
get only finitely many such times and by taking the maximum of them. �

Proof of the local version of Proposition 3.9. — For what concerns this proof, we shall
omit the tilde convention since we will only work on H3. We start off splitting the
summation appearing in Lemma 3.12 according of how far an element γ ∈ Γ moves y
away from x. Namely, for ρ > 0, we set

BΓ(x, y, ρ) := {γ ∈ Γ, d(x, γ · y) 6 ρ},

so that for any z ∈ K we have

pΓ(x, z, t) =
∑

γ∈BΓ(x,y,3t)

pH3(x, γ · z, t) +
∑

γ /∈BΓ(x,y,3t)

pH3(x, γ · z, t).

We first show that the above right summation is negligible with respect to pΓ(x, y, t)

when t→∞. More precisely, let us show that for every δ > 0 and for all z ∈ B(y, δ)

there is a constant C(δ, x, y) > 0 such that for t > 1,∑
γ /∈BΓ(x,y,3t)

pH3(x, γ · z, t) 6 C(δ, x, y) e−t/4.

Since the ball B(y, δ) is compact, there is a constant η such that for all z ∈ B(y, δ)

the balls of (B(γ · z, η))γ∈Γ are disjoints. Within any such a ball there is a ball of
radius η/2, denoted by B(γ), such that for all w ∈ B(γ) we have d(x, γ · z) > d(x,w)

(see Figure 1).
Formula 3.11 shows that the function ρ 7→ pH3(ρ, t) is decreasing. Therefore,

pH3(x, γ · z, t) 6 1

vol(B(γ))

ˆ

B(γ)

p3
H(x,w, t) dµh(w).

Summing over BΓ(x, y, 3t) we get∑
γ /∈BΓ(x,y,3t)

pH3(x, γ · z, t) ≺
∑

γ /∈BΓ(x,y,3t)

ˆ

B(γ)

pH3(x,w, t) dµh(w),

where the symbol ≺ means that the left member is bounded by the right member up
to a multiplicative constant which does not depend neither on t nor on z ∈ B(y, δ).
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x

γ · z

B(γ · z, η)

B(γ)

p

Figure 1. The black curve represents the unique geodesic having end-
points x and γ ·z. This geodesic intersects the ball B(γ ·z, η) at p. The
centre of the ball B(γ) is chosen to be the midpoint of the geodesic
of endpoints γ · z and p.

Note that all the balls B(γ) are included in {w ∈ H3, d(x,w) > 3t − δ − η} and
disjoints which yields∑

γ /∈BΓ(x,y,3t)

pH3(x, γ · z, t) ≺
ˆ

{d(x,w)>3t−δ−η}

pH3(x,w, t) dµh(w)

≺
ˆ +∞

3t−δ−η

e2ρp3(ρ, t) dρ,

since the volume growth of balls in H3 is bounded from above by C e2ρ for some
C > 0. Formula (3.11) implies that for all ρ > 1 we have

p3(ρ, t) ≺ ρ

t3/2
e−t−(ρ2/4t)−ρ,

and then

e2ρp3(ρ, t) ≺ ρ

t3/2
e−((ρ−2t)/2

√
t)2

.

Therefore, for any a > 1 we have
ˆ

a

∞
e2ρp3(ρ, t) dρ ≺

ˆ

a

∞ ρ

t3/2
e−((ρ−2t)/2

√
t)2

dρ.

With the substitution u = (ρ− 2t)/2
√
t we get

ˆ

a

∞ ρ

t3/2
e((ρ−2t)/2

√
t)2

dρ =

ˆ ∞
(a−2t)/2

√
t

2
√
tu+ 2t

t3/2
e−u

2

2
√
t du.
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Setting a = 3t− δ − η we get for t > 1 and u > (a− 2t)/2
√
t �
√
t

2
√
tu+ 2t

t3/2
≺ u√

t
.

Therefore, ˆ

[3t−δ−η,∞]

ρ

t3/2
e((ρ−2t)/2

√
t)2

dρ ≺
ˆ

[(t−δ−η)/2
√
t,∞]

u e−u
2

du

≺ e−((t−δ−η)/2
√
t)2

≺ e−t/4,

and then ∑
γ /∈BΓ(x,y,3t)

pH3(x, γ · z, t) ≺ e−t/4.

Because we supposed pΓ(x, y, t) > C t−α we have in particular∑
γ /∈BΓ(x,y,3t)

pH3(x, γ · z, t) =
t→∞

o
(
pΓ(x, y, t)

)
,

uniformly on z ∈ B(y, δ). By uniform we mean that the underlying quantifiers of the
above convergence do not depend on z ∈ B(y, δ). To sum up, we have proven so far
that for any z ∈ B(y, δ) we have

pΓ(x, z, t) =
t→∞

∑
γ∈BΓ(x,y,3t)

pH3(x, γ · z, t) + o
(
pΓ(x, y, t)

)
,

uniformly on z ∈ B(y, δ). In particular:

|pΓ(x, z, t)− pΓ(x, y, t)|

=
t→∞

∣∣∣∣ ∑
γ∈BΓ(x,y,3t)

pH3(x, γ · z, t)−
∑

γ∈BΓ(x,y,3t)

pH3(x, γ · y, t)
∣∣∣∣+ o

(
pΓ(x, y, t)

)
.

It remains then to prove that the above absolute value is negligible with respect
to pΓ(x, y, t) when t→∞ uniformly on z ∈ B(y, δ). Namely, we shall see that for all
ε > 0 there is δ > 0 such that for any z ∈ B(y, δ) we have∣∣∣∣ ∑
γ∈BΓ(x,y,3t)

pH3(x, γ · z, t)−
∑

γ∈BΓ(x,y,3t)

pH3(x, γ · y, t)
∣∣∣∣ 6 ε ∑

γ∈BΓ(x,y,3t)

pH3(x, γ · y, t),

which implies in particular∣∣∣∣ ∑
γ∈BΓ(x,y,3t)

pH3(x, γ · z, t)−
∑

γ∈BΓ(x,y,3t)

pH3(x, γ · y, t)
∣∣∣∣ 6 ε pΓ(x, y, t),

concluding the proof.
To do so, we will use again the explicit formula 3.11 to show that for any pairs y, z

with d(y, z) 6 δ and for any γ ∈ BΓ(x, y, 3t) we have for t large enough that

|pH3(x, γ · y, t)− pH3(x, γ · z, t)| 6 ε pH3(x, γ · y, t),

which concludes the proof in summing over BΓ(x, y, 3t).
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In fact, Formula (3.11) readily gives that there is two constants C1, C2 > 0 such
that for all x, y and for all t > 1 we have∣∣∣∇z ln

(
pH3(x, z, t)

)∣∣∣ 6 C1 + C2
ρ

2t
,

with ρ = d(x, z). So that, provided that d(x, z) 6 4t, we get the existence of C3 > 0

such that ∣∣∣∇z ln
(
pH3(x, z, t)

)∣∣∣ 6 2 C3.

In particular, for any z ∈ B(y, δ) and for any γ ∈ BΓ(x, y, 3t) we get∣∣∣ ln(pH3(x, γ · z, t)
pH3(x, γ · y, t)

)∣∣∣ 6 2 C3 δ.

Therefore, for δ small enough ∣∣∣pH3(x, γ · z, t)
pH3(x, γ · y, t)

− 1
∣∣∣ 6 ε,

which is the desired conclusion. �

4. Proof of Theorem 1.1: reduction to the spectral proposition 2.6

This Section is devoted to the reduction of the proof of our main theorem to
Proposition 2.6 ‘Spectral proposition’. We postpone the proof of the latter to the last
section of this article. This section itself is split into two steps. We, most of the time,
work in dimension 3 since we will use Proposition 3.9 which requires it.

We shall first see how to deduce our main theorem from Proposition 2.3. This part
of the proof may be seen as how to recover the behaviour of the kernels from those
of the operators. Afterwards, we will reduce the proof of Proposition 2.3 ‘Operators
comparison’ to the proof of Proposition 2.6 ‘Spectral proposition’. In order to soften
the notations, we denote by 〈·, ·〉 the scalar product 〈·, ·〉L2(MΓ). Let us recall here the
statement of Proposition 2.3 for the reader’s convenience.

Proposition 4.1 (Operators comparison). — Let Γ be a Poincaré group such that
there exist x, y ∈ H3 and α > 0 such that for t large enough we have

pΓ(x, y, t) > t−α.

Then, for any non zero f ∈ B+
0 (MΓ)

〈Oρ
Γ(f), f〉 ∼

ρ→∞

〈
e−(ρ/2)∆(f), f

〉
.

Proof of (Proposition 2.3⇒ Theorem 1.1). — The following lemma, valid in any dimen-
sion d, is the geometric key of the proof. It is a variation around an argument of
[EM93]. We set for any x, y ∈MΓ and δ > 0

Xδ :=
1B(x,δ)

Vd(δ)
, Yδ :=

1B(y,δ)

Vd(δ)
.

Recall that there is a constant Vd such that Vd(ρ) ∼
ρ→∞

Vd e
2ρ.
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Lemma 4.2. — Let Γ be a Poincaré group, x, y ∈ Hd. If there is a decreasing function
g : R+ → R+ such that for all ε > 0 there is δε > 0 such that for every 0 < δ 6 δε
and for ρ large enough

(1− ε) g(ρ) 6 〈Oρ
Γ(Xδ),Yδ〉 6 (1 + ε) g(ρ),

then
NΓ(x, y, ρ) ∼

ρ→∞
g(ρ) Vd(ρ) ∼

ρ→∞
Vd g(ρ) e(d−1)ρ.

Proof of Lemma 4.2. — Given ε > 0 we shall prove under the assumptions of Lem-
ma 4.2 that for ρ large enough we have

(1− ε)2 g(ρ) 6
NΓ(x, y, ρ)

Vd(ρ)
6 (1 + ε)2 g(ρ).

We start by working on Hd. The proof relies on the following key remark [EM93, §2],
see Figure 2: for any δ > 0 and any x̃0, w̃, z̃ ∈ Hd such that d(w̃, z̃) 6 δ we have

(4.3) NΓ(x̃0, z̃, ρ− δ) 6 NΓ(x̃0, w̃, ρ) 6 NΓ(x̃0, z̃, ρ+ δ).

x̃

z̃

w̃δ

ρ+ δ

ρ

Figure 2. The red dots correspond to the w̃-orbit and the green ones
to the z̃-orbit. Any red point can be paired with a green one by taking
its closest neighbour (which are δ-close from one another). Inequality
(4.3) corresponds to the fact that if a red point is in B(x̃, ρ) its green-
mate must be in B(x̃, ρ+ δ).

In particular, fixing x̃, ỹ ∈ Hd, ω̃ ∈ B(x̃, ε) and z̃ ∈ B(ỹ, ε) one has

NΓ(w̃, z̃, ρ− 2δ) 6 NΓ(x̃, ỹ, ρ) 6 NΓ(w̃, z̃, ρ+ 2δ),
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using twice (4.3). Averaging the above formula with respect to z̃ and w̃ on B(ỹ, δ)×
B(x̃, δ) and projecting to MΓ yields

Vd(ρ− 2δ)
〈
OΓ
ρ−2δ(Xδ),Yδ

〉
6 NΓ(x, y, ρ) 6 Vd(ρ+ 2δ)

〈
OΓ
ρ+2δ(Xδ),Yδ

〉
,

and then
Vd(ρ− 2δ)

Vd(ρ)

〈
OΓ
ρ−2δ(Xδ),Yδ

〉
6
NΓ(x, y, ρ)

Vd(ρ)
6

Vd(ρ+ 2δ)

Vd(ρ)

〈
OΓ
ρ+2δ(Xδ),Yδ

〉
.

Using the assumption of Lemma 4.2, there is δε > 0 such that for all δε > δ > 0

we have for ρ large enough
Vd(ρ− 2δ)

Vd(ρ)
(1− ε)g(ρ− 2δ) 6

NΓ(x, y, ρ)

Vd(ρ)
6

Vd(ρ+ 2δ)

Vd(ρ)
(1 + ε)g(ρ+ 2δ).

Since we assume g to be decreasing we also have
Vd(ρ− 2δ)

Vd(ρ)
(1− ε)g(ρ) 6

NΓ(x, y, ρ)

Vd(ρ)
6

Vd(ρ+ 2δ)

Vd(ρ)
(1 + ε)g(ρ).

Moreover, since we know that there is a constant Vd such that Vd(ρ) ∼
ρ→∞

Vd e
(d−1)ρ,

one gets that there is δ0 such that for δ 6 δ0 and ρ large enough

1− ε 6 Vd(ρ+ 2δ)

Vd(ρ)
6 1 + ε.

Therefore, up to reducing δε such that δε 6 δ0, one gets that for all ε > 0 and for ρ
large enough

(1− ε)2g(ρ) 6
NΓ(x, y, ρ)

Vd(ρ)
6 (1 + ε)2g(ρ),

concluding the proof. �

We now work with d = 3. We want to use Lemma 4.2 with g(ρ) = pΓ (x, x, ρ/2)

together with Proposition 2.3. To do so, we fix ε > 0 and we use the local version of
Proposition 3.9 which gives that there is δ0 > 0 such that for δ 6 δ0 we have for ρ
large enough

(1− ε) pΓ (x, x, ρ/2) 6
〈
e−(ρ/2)∆(Xδ),Xδ

〉
6 (1 + ε) pΓ(x, x, ρ/2).

We now use Proposition 2.3 with f = Xδ. Combined with the above inequality it
yields: for δ 6 δ0 we have for ρ large enough

(1− ε)2 pΓ (x, x, ρ/2) 6 〈Oρ
Γ(Xδ),Xδ〉 6 (1 + ε)2 pΓ(x, x, ρ/2).

Lemma 3.7 asserts that pΓ (x, x, ρ/2) decreases as a function of ρ. Therefore, we
have all the assumptions required to use Lemma 4.2 which conclusion leads to the
desired result. �

It remains then to prove Proposition 2.3 which will occupy the rest of this article.
We split the proof in two main steps. The first step we address is how to deduce
Proposition 2.3 from the spectral proposition 2.6. We recall it here for the reader’s
convenience.
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Proposition 4.4 (Spectral proposition). — For any β > 0 there is a constant C > 0

such that for all ε > 0 there is ρ0 > 0 such that for all ρ > ρ0 we have
(1) for all λ 6 β ln(ρ)/ρ

|νρ(λ)− e−λρ/(d−1)| 6 ε e−λρ/(d−1);

(2) for all λ > β ln(ρ)/ρ

|νρ(λ)| 6 C ρ−β/(d−1).

We will prove the spectral proposition 4.4 in the last section of this article. Recall
that we gave an overview of the proof of Proposition 2.3 in the introduction.

Proof of (Proposition 4.4⇒ Proposition 2.3). — We fix a non zero f ∈ B+
0 (MΓ) and

ε > 0.
We want to show that there is ρ0 such that for any ρ > ρ0 we have

(4.5)
∣∣〈Oρ

Γ(f), f
〉
−
〈
e−(ρ/2)∆(f), f

〉∣∣ 6 ε〈e−(ρ/2)∆(f), f
〉
.

Let us start by showing that there is ρ0 > 0 such that for any ρ > ρ0 the two
following requirements are fulfilled. Recall that α > 0 is the exponent given by the
lower bound required on the heat kernel.

– the conclusion of Proposition 4.4 with β = 2(α+ 1);
– and

C ′ ‖f‖2L2

ρα+1
6 ε
〈
e−(ρ/2)∆(f), f

〉
,

where C ′ = max(1, C) with C = C(β) = C(α, d), the same constant than the one
given by the second item of Proposition 4.4.

There is nothing to prove (yet) for the first item since we postpone the proof of
Proposition 4.4 to the next section. Let us clarify the second item. We will use the
lower bound on the heat kernel together with the compact version of Proposition 3.9.
In fact, we start off〈

e−(ρ/2)∆(f), f
〉

=

ˆ

MΓ×MΓ

pΓ(x, y, ρ/2) f(x) f(y) dµh(x) dµh(y)

=

ˆ

supp(f)×supp(f)

pΓ(x, y, ρ/2) f(x) f(y) dµh(x) dµh(y).

The compact version of Proposition 3.9 with K := supp(f) gives that there is a
constant C(f) > 0 such that for any x, y ∈ supp(f) and any ρ large enough we have

pΓ (x, y, ρ/2) > C(f) ρ−α.

Therefore, because f is non-negative, one has〈
e−(ρ/2)∆(f), f

〉
> C(f) ρ−α

ˆ

K×K

f(x) f(y) dµh(x) dµh(y)

> C(f) ρ−α||f ||2L1 .
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In particular, 〈
e−(ρ/2)∆(f), f

〉
ρ

>
C2(f)

ρα+1

for some constant C2(f). This is equivalent to
C ′ ‖f‖L2

ρα+1
6
C3(f)

ρ

〈
e−(ρ/2)∆(f), f

〉
,

for some constant C3(f). It concludes letting ρ0 such that C3(f)/ρ0 6 ε.
We fix ρ > ρ0 as above. We now show that for all domains Ω with smooth boundary

which contains a ρ-neighbourhood of supp(f) we have

(4.6)
∣∣〈Oρ

Γ(f), f
〉
−
〈
e−(ρ/2)∆Ω(f), f

〉∣∣ 6 ε〈e−(ρ/2)∆Ω(f), f
〉
.

This readily leads to (4.5) by taking an exhaustion (Ωn)n∈N ofM by such domains,
letting n → ∞ and recalling the conclusion of Theorem 3.5 for the compact set
{ρ/2} × supp(f)× supp(f).

The support of f being included in Ω, one can expand it with respect to the
L2(Ω)-eigenbasis given by Theorem 3.6:

f =
∑

λ∈Sp(Ω)

〈
ΦΩ
λ , f

〉
ΦΩ
λ .

Since we assumed moreover that a ρ-neighbourhood of supp(f) is included in Ω,
one can also expand the function Oρ

Γ(f):

Oρ
Γ(f) =

∑
λ∈Sp(Ω)

〈
ΦΩ
λ ,O

ρ
Γ(f)

〉
ΦΩ
λ .

Because orbital operators are symmetric we have〈
ΦΩ
λ ,O

ρ
Γ(f)

〉
=
〈
Oρ

Γ(ΦΩ
λ ), f

〉
.

We now use Proposition 2.4 to get for any x ∈ supp(f)

Oρ
Γ

(
ΦΩ
λ

)
(x) = νρ(λ) ΦΩ

λ (x),

and then 〈
ΦΩ
λ ,O

ρ
Γ(f)

〉
= νρ(λ)

〈
ΦΩ
λ , f

〉
.

We use Plancherel’s formula and expand the scalar product 〈Oρ
Γ(f), f〉 with respect

to (ΦΩ
λ )λ∈Sp(Ω) which yields

〈Oρ
Γ(f), f〉 =

∑
λ∈Sp(Ω)

νρ(λ)
〈
ΦΩ
λ , f

〉2
.

We now split the above right summation at low frequencies according to β ln(ρ)/ρ:

(4.7)
∑

λ∈Sp(Ω)

νρ(λ)
〈
ΦΩ
λ , f

〉2
=

∑
λ6β ln(ρ)/ρ

νρ(λ)
〈
ΦΩ
λ , f

〉2
+

∑
λ>β ln(ρ)/ρ

νρ(λ)
〈
ΦΩ
λ , f

〉2
.

We will deal with these two summations independently. We start by showing that
the right one is negligible. We set ρ0 in a way to have access to Proposition 4.4 with
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β = 2(α + 1) for ρ > ρ0. Therefore, using the second item of Proposition 4.4 gives a
constant C (which depends only on β) such that for λ > β ln(ρ)/ρ

|νρ(λ)| 6 C ρ−β/2 6
C

ρα+1
.

Therefore∣∣∣∣ ∑
λ>β ln(ρ)/ρ

νρ(λ)
〈
ΦΩ
λ , f

〉2∣∣∣∣ 6 C

ρα+1

∑
λ>β ln(ρ)/ρ

〈
ΦΩ
λ , f

〉2
6

C

ρα+1
‖f‖2L2 .

Because of the way we set ρ0 and since ρ > ρ0 we get

(4.8)
∣∣∣∣ ∑
λ>β ln(ρ)/ρ

νρ(λ)
〈
ΦΩ
λ , f

〉2∣∣∣∣ 6 ε〈e−(ρ/2)∆Ω(f), f
〉
.

We are now going to compare the first summation appearing in Equation (4.7)
to e−(ρ/2)∆Ω(f) through the use of the first item of Proposition 4.4. In fact, since〈
ΦΩ
λ , f

〉2
> 0 we have∣∣∣∣ ∑

λ6β ln(ρ)/ρ

νρ(λ)
〈
ΦΩ
λ , f

〉2 − ∑
λ6β ln(ρ)/ρ

e−λρ/2
〈
ΦΩ
λ , f

〉2∣∣∣∣
6

∑
λ6β ln(ρ)/ρ

|e−λρ/2 − νρ(λ)|
〈
ΦΩ
λ , f

〉2
.

Using the first item of Proposition 4.4 we get∑
λ6β ln(ρ)/ρ

|e−λρ/2 − νρ(λ)|
〈
ΦΩ
λ , f

〉2
6 ε

∑
λ6β ln(ρ)/ρ

e−λρ/2
〈
ΦΩ
λ , f

〉2
6 ε
〈
e−(ρ/2)∆Ω(f), f

〉
,

since

(4.9)
〈
e−(ρ/2)∆Ω(f), f

〉
=

∑
λ∈Sp(Ω)

e−λρ/2
〈
ΦΩ
λ , f

〉2
.

Combined with the upper bound (4.8) obtained for the second summation we get

(4.10)
∣∣∣∣〈Oρ

Γ(f), f
〉
−

∑
λ6β ln(ρ)/ρ

e−λρ/2
〈
ΦΩ
λ , f

〉2∣∣∣∣ 6 2 ε
〈
e−(ρ/2)∆Ω(f), f

〉
.

It remains then to relate the above summation with the heat operator onMΓ. This
will be handle using again the choices made on β and ρ0. Indeed, since β = 2(α+ 1)

we have for all λ > β ln(ρ)/ρ

e−λρ/2 6
1

ρα+1
.

Therefore, summing over λ > β ln(ρ)/ρ gives∑
λ>β ln(ρ)/ρ

e−λρ/2
〈
ΦΩ
λ , f

〉2
6
‖f‖2L2

ρα+1
6 ε
〈
e−(ρ/2)∆Ω(f), f

〉
,

because of how we set ρ0. Therefore, using (4.9) and the above inequality, we get∣∣∣∣〈e−(ρ/2)∆Ω(f), f
〉
−

∑
λ6β ln(ρ)/ρ

e−λρ/2
〈
ΦΩ
λ , f

〉2∣∣∣∣ 6 ε 〈e−(ρ/2)∆Ω(f), f
〉
,
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which, combined with (4.10) yields∣∣〈Oρ
Γ(f), f

〉
−
〈
e−(ρ/2)∆Ω(f), f

〉∣∣ 6 3 ε
〈
e−(ρ/2)∆Ω(f), f

〉
,

concluding the proof. �

5. Proof of the spectral proposition 4.4

This section is devoted to the proof of Proposition 4.4. It is quite technical and to
ease the exposition we split it in three parts. We shall use a lot that s is a solution of
the equation s(d − 1 − s) = λ with real part less that (d − 1)/2. Since we shall also
think of s as a function of λ, we will often denote s by s(λ) when we think it clarifies
the exposition (especially in Step 2). Note that

[0, (d− 1)2/4] −→ [0, (d− 1)/2]

λ 7−→ s(λ)

is an increasing diffeomorphism.

5.1. Proof of the spectral proposition 4.4: step 1. — In order to state our first
step, we set for ρ > |r|.

θ(ρ, r) :=
(2(cosh(ρ)− cosh(r))

eρ

)(d−1)/2

.

Note that for all ρ > |r|
0 6 θ(ρ, r) 6 2(d−1)/2.

Lemma 5.1. — For any λ, ρ > 0 we have :

(5.2) Vd(ρ) νρ(λ) = cd−1e
−ρse(d−1)ρ

ˆ

0

2ρ

eu(s−(d−1)/2)θ(ρ, u− ρ) du,

where s = s(λ) is the unique complex number satisfying s(d− 1− s) = λ with <(s) 6
(d− 1)/2 and cd−1 is volume of an Euclidean ball in Rd−1 of radius 1.

Proof. — Let us denote by I the left member of Equation (5.2) which, using Propo-
sition 2.4, satisfies

(5.3) I =

ˆ

B(o,ρ)

ys
dx1 · · · dxd−1dy

yd
,

using the upper half model of the hyperbolic space Hd. In this model, an hyperbolic
ball of radius ρ centred at (0, . . . , 0, 1) corresponds to an Euclidean ball centred at
(0, . . . , 0, cosh(ρ)) of radius sinh(ρ). Using Fubini’s theorem we integrate first with
respect to the d − 1 first coordinates and then with respect to the last one (see
Figure 3) to get

I =

ˆ

e−ρ

eρ

ys voleuc

(
B
(√

sinh(ρ)2 − (y − cosh(ρ))2
)) dy

yd
,

where we denoted by voleuc(B(r)) the Euclidean volume of any ball of Rd−1 of radius r.
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i

i cosh(ρ)

Bhyp(i, ρ)

sinh(ρ)

y = cst

|y−cosh(ρ)|

Figure 3. The red part corresponds to an Euclidean ball of dimension
d − 1. The Euclidean radius of such a ball is obtained by using the
Pythagorean theorem.

Recall that there is a constant cd−1 such that
voleuc (B(r)) = cd−1r

d−1.

Which, combined with the identity sinh(ρ)2 − cosh(ρ)2 = −1 gives

I =

ˆ

e−ρ

eρ

ys cd−1

(
2 cosh(ρ)y − y2 − 1

)(d−1)/2 dy

yd
.

With the substitution y = er we obtain

I = cd−1

ˆ

−ρ

ρ

ers
(
2 cosh(ρ)er − e2r − 1

)(d−1)/2 erdr

erd
.

We shall prefer the following writing
er

erd
= e−(d−1)r = e−((d−1)r)/2 · e−((d−1)r)/2

in order to get

I = cd−1

ˆ

−ρ

ρ

erse−((d−1)r)/2
(
2 cosh(ρ)− (er + e−r)

)(d−1)/2
dr

= cd−1

ˆ

−ρ

ρ

er(s−(d−1)/2) (2(cosh(ρ)− cosh r))
(d−1)/2

dr

= cd−1

ˆ

−ρ

ρ

er(s−(d−1)/2) θ(ρ, r) eρ((d−1)/2) dr

= cd−1

ˆ

−ρ

ρ

e(−ρ)(s−(d−1)/2)e(r+ρ)(s−(d−1)/2) θ(ρ, r) eρ((d−1)/2) dr

= cd−1e
(d−1)ρe−sρ

ˆ

−ρ

ρ

e(r+ρ)(s−(d−1)/2) θ(ρ, r) dr,

which concludes the proof, substituting r + ρ by u in the above integral. �
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5.2. Proof of the spectral proposition 4.4: step 2. — We will now use the explicit
formula given by Lemma 5.1 to make our second step toward the spectral proposi-
tion 4.4. Recall that s(λ) is such as s(λ)(d− 1− s(λ)) = λ.

Lemma 5.4. — Given any 0 < λ0 < ((d− 1)/2)
2 there is a constant C = C(λ0) > 0

such that for ρ > 1 we have:
(1) If λ 6 λ0 then

|νρ(λ)es(λ)ρ − 1| 6 C s(λ).

(2) If λ > λ0 then
|νρ(λ)| 6 C ρ e−ρs(λ0).

Proof. — First, we set

I (s, ρ) :=

ˆ

0

2ρ

eu(s−(d−1)/2) θ(ρ, u− ρ) du

in such a way that (5.2) gives

es(λ)ρνρ(λ) =
cd−1e

(d−1)ρ

Vd(ρ)
I (s(λ), ρ).

We start by working the second item of Lemma 5.4 which is the easier to obtain.
Let 0 < λ0 < ((d− 1)/2)

2 and λ > λ0. We compute

|νρ(λ)| 6 cd−1e
(d−1)ρ

Vd(ρ)
|e−s(λ)ρ I (s(λ), ρ)|

6
cd−1e

(d−1)ρ

Vd(ρ)
e−<(s(λ))ρ |I (s(λ), ρ)|.

Recall that s(λ) is a solution of s(d− 1− s) = λ of real part less that 1/2.
Since cd−1e

(d−1)ρ/Vd(ρ) is bounded from above by a constant C2 we have for ρ > 1

|νρ(λ)| 6 C2 e
−<(s(λ))ρ |I (s(λ), ρ)|.

The function λ 7→ <(s(λ)) being increasing on the interval [0, ((d− 1)/2)
2
] and con-

stant equal to (d− 1)/2 on [((d− 1)/2)
2
,∞), we have

|νρ(λ)| 6 C2 e
−<(s(λ0))ρ |I (s(λ), ρ)|.

Moreover, since λ0 < ((d− 1)/2)
2 we actually have <(s(λ0)) = s(λ0), which gives

|νρ(λ)| 6 C2 e
−s(λ0)ρ |I (s(λ), ρ)|.

We conclude for what concerns the second item by recalling that the function θ is
bounded from above by 2(d−1)/2. Therefore

|I (s(λ), ρ)| 6 2(d−1)/2

ˆ

0

2ρ

|eu(s−(d−1)/2)| du

6 2(d−1)/2

ˆ

0

2ρ

eu(<(s(λ))−(d−1)/2) du 6 2(d+1)/2ρ,
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since <(s(λ)) 6 (d− 1)/2. Which yields

|νρ(λ)| 6 2(d+1)/2ρC2 e
−s(λ0)ρ,

the desired upper bound.
In order to prove that the first item of Lemma 5.4 holds note that for any ρ > 0

we have νρ(0) = 1, indeed:

νρ(0) =

 

B(o,ρ)

ys(0) dx1 · · · dxd−1dy

yd
=

 

B(o,ρ)

1
dx1 · · · dxd−1dy

yd
= 1,

since s(0) = 0. Therefore νρ(0)es(0)ρ = 1 and for any ρ > 1 and any λ 6 λ0 we have∣∣νρ(λ)es(λ)ρ − 1
∣∣ =

cd−1e
(d−1)ρ

Vd(ρ)

∣∣I (s(λ), ρ)−I (0, ρ)
∣∣

6 C2

∣∣I (s(λ), ρ)−I (0, ρ)
∣∣ 6 C2

ˆ

0

s(λ)∣∣∂1I (w, ρ)
∣∣ dw,

since the function I is smooth and because s(λ) ∈ R+ (since λ0 < (d − 1)/2).
Differentiating under the integral and using again that the function θ is bounded we
get that for any 0 6 w 6 s(λ0)∣∣∂1I (w, ρ)

∣∣ 6 2(d−1)/2

ˆ

R+

u eu(w−(d−1)/2) du

6 2(d−1)/2

ˆ

R+

u eu(s(λ0)−(d−1)/2) du,

using again that the function λ 7→ s(λ) is increasing on [0, λ0]. Therefore, since we
chose λ0 such that s(λ0) < (d− 1)/2, we get a constant C3 = C3(λ0) such that for
all ρ > 1 and all ω 6 s(λ0) we have∣∣∂1I (w, ρ)

∣∣ 6 C3,

and then ∣∣νρ(λ)es(λ)ρ − 1
∣∣ 6 C2 C3 s(λ),

which is the desired conclusion. �

5.3. Proof of the spectral proposition 4.4: step 3. — We conclude by showing how
Lemma 5.4 implies the spectral proposition 4.4. We shall start with the first point of
Proposition 4.4. Let ρ > 1 and set

ϕ(λ, ρ) :=
∣∣νρ(λ)− e−λρ/(d−1)

∣∣.
Multiplying both sides by esρ gives

esρϕ(λ, ρ) =
∣∣νρ(λ)esρ − e(s−λ/(d−1))ρ

∣∣.
Using the triangular identity and Lemma 5.4 we get

(5.5) esρϕ(λ, ρ) 6 Cs+
∣∣1− e(s−λ/(d−1))ρ

∣∣.
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Recall that s is defined as solving s(d−1−s) = λ with <(s) 6 d− 1/(2). In particular
we have

(5.6) λ− (d− 1)s = −s2,

from which we deduce (d − 1)s ∼
λ→0

λ. Therefore, for ρ large enough we have for all
λ 6 β ln(ρ)/ρ

(d− 1) s 6 2λ 6 2
β ln(ρ)

ρ
,

which gives

(5.7) s 6
2

d− 1

β ln(ρ)

ρ
.

Looking backward to Equation (5.6), we get a constant C2 > 0 such that

0 6
(
s− λ

d− 1

)
ρ =

s2

d− 1
6 C2

ln2(ρ)

ρ
.

The above identity combined with (5.5) and the upper bound (5.7) gives for ρ large
enough

esρϕ(λ, ρ) 6 C2 ·
2β

d− 1

ln(ρ)

ρ
+ eC2ln2(ρ)/ρ − 1.

Because of ln2(ρ)/ρ −→
ρ→∞

0, one has for ρ large enough that

eC2ln2(ρ)/ρ − 1 6 2C3
ln2(ρ)

ρ
.

Therefore, there are two constants C3, C4 such that for ρ large enough

esρϕ(λ, ρ) 6 C3 ·
( ln(ρ)

ρ
+

ln2(ρ)

ρ

)
6 C4

ln2(ρ)

ρ

and

ϕ(λ, ρ) 6 C4
ln2(ρ)

ρ
e−sρ.

Recall also that s > λ/(d− 1) which yields

ϕ(λ, ρ) 6 C4
ln2(ρ)

ρ
e−λρ/(d−1).

This concludes the first point by setting ρ large enough in order for

C4
ln2(ρ)

ρ
6 ε

to hold.
We now deal with the second item of Proposition 4.4. Let any λ0 such that

0 < λ0 < (d− 1)/2 and ρ0 as in Lemma 5.4 for this given λ0. We split the proof
depending on whether λ 6 λ0 or not. Lemma 5.4 asserts that for all ρ > ρ0 and for
any λ such that β ln ρ/ρ 6 λ 6 λ0 we have

νρ(λ)esρ 6 1 + C s 6 C6,
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with C6 := supλ6λ0
{1 + Cs(λ)}. Hence,

νρ(λ) 6 C6 e
−sρ.

Thus, using again λ/(d− 1) 6 s, we get

νρ(λ) 6 C6 e
−(λ/(d−1))ρ.

But, since we assumed λ > β ln(ρ)/ρ, we also have

νρ(λ) 6 C6 e
−(β/(d−1)) ln(ρ),

which gives the expected result for λ 6 λ0. If λ > λ0 we use the second part of
Lemma 5.4 which implies that the function |νρ(λ)| decreases exponentially fast to 0.
In particular, faster than ρ−β/(d−1). �

Appendix. Eigenvectors of radial operators

This appendix aims at proving Proposition 2.4 which is the first key observation
toward Selberg’s trace formula. It takes its root back to Delsarte’s note [Del42]. It is
classical, but we decided to prove it in this appendix since there is no ready-to-use
statement in the literature for open domains (to the author’s best knowledge). Note
that the following discussion is valid for any symmetric space of rank 1 and any radial
operators, meaning any operator whose kernel κ(x, y) is given by a function of d(x, y),
see [Cha84, Chap. 11] for more details. Let us recall Proposition 2.4 for the reader’s
convenience. We use the upper half plane model of the hyperbolic space Hd which is
given by Rd−1 × R+ endowed with the metric

dx2
1 + · · ·+ dx2

d−1 + dy2

y2
.

Proposition A.1 (Delsarte’s formula). — Let Γ be a Poincaré group and Ω any open
subset of MΓ and Φ a smooth function of Ω verifying ∆Φ = λΦ. Then for any x ∈ Ω

and any ρ > 0 such that B(x, ρ) ⊂ Ω we have

Oρ
Γ(Φ)(x) = νρ(λ) Φ(x),

with
νρ(λ) = Oρ(ys) =

 

B(o,ρ)

ys
dx1 · · · dxd−1dy

yd

where o := (0, . . . , 0, 1) ∈ Rd−1 × R∗+ and s satisfies s(d− 1− s) = λ.

Let Ω,Φ, x and ρ as in the above proposition. By definition

Oρ
Γ(Φ)(x) :=

1

Vd(ρ)

ˆ

B(x̃,ρ)

Φ̃(y) dµh(y),

where Φ̃ is the lift of the function Φ on π−1(Ω) ⊂ Hd. Because π is a local isometry,
the function Φ̃ solves ∆ = λ Id on π−1(Ω) which is also an open domain of Hd.
Therefore, Proposition 2.4 follows from the following proposition (which corresponds
to the special case Γ = {Id}).
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Proposition A.2. — Let Φ be a smooth function of an open set Ω ⊂ Hd verifying
∆Φ = λΦ. Then for any x ∈ Ω and any ρ such that B(x, ρ) ⊂ Ω we have

Oρ(Φ)(x) = νρ(λ) Φ(x),

with
νρ(λ) = Oρ(ys) =

 

B(o,ρ)

ys
dx1 · · · dxd−1dy

yd
,

where o := (0, . . . , 0, 1) ∈ Rd−1 × R∗+ and s satisfying s(d− 1− s) = λ.

The end of this appendix is devoted to the proof of the above statement. The
key property used in order to establish Proposition A.2 is that radial functions of
symmetric spaces of rank 1 satisfying the partial differential equation ∆ = λ Id are
solutions of an ordinary differential equation (abbreviated ODE).

The following lemma is the intermediate key. We denote by S(x, ρ) the sphere
centred at x of radius ρ and by dµS(x,ρ) the measure on S(x, ρ) induced by the
hyperbolic metric.

Lemma A.3. — There is an ‘universal’ function S : R+ × R∗+ → R with the property
that that for any ρ > 0, λ > 0, any open set Ω ⊂ Hd and any smooth function
Φ : Ω→ C satisfying ∆Φ = λΦ we have for all x ∈ Ω with B(x, ρ) ⊂ Ω 

S(x,ρ)

Φ dµS(x,ρ) = S(λ, ρ) Φ(x).

Before proving the above lemma, let us show how it implies Proposition A.2.

Proof of (Lemma A.3⇒ Proposition A.2). — We start by showing that the function νρ
are well defined, which corresponds to the first part of Proposition A.2. Let Ω,Φ, x

and ρ as above. Since the volume of S(x, ρ) is given by ρ 7→ V ′d (ρ), one has 

B(x,ρ)

Φ dµh =
1

Vd(ρ)

ˆ

0

ρ

V ′d (t)

(  

S(x,t)

Φ dµS(x,t)

)
dt.

Using Lemma A.3 we get

(A.4)
 

B(x,ρ)

Φ dµh =

(
1

Vd(ρ)

ˆ

0

ρ

V ′d (t) S(λ, t) dt

)
Φ(x),

which concludes the first part by setting

νρ(λ) :=
1

Vd(ρ)

ˆ

0

ρ

V ′d (t) S(λ, t) dt.

We now prove the second part of Proposition A.2 which gives an explicit formula
for the Selberg transform. It is an easy consequence of the existence of νρ.

Given λ > 0 let s be a solution of

λ = s(d− 1− s).
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Using the following general expression of the Laplace operator in coordinates (we use
Einstein’s summation convention),

∆ =
1√

det(gij)
∂i

(√
det(gij)g

ij∂j

)
,

one easily computes that for any s ∈ C the functions

Ψs : Rd−1 × R+ −→ C
(x1, . . . , xd−1, y) 7−→ ys

satisfies ∆Ψs = λ Ψs with λ = s(d−1−s) and values 1 at the point o := (0, . . . , 0, 1).
Because of Equation A.4 and because of our definition of νρ we have

νρ(λ) = νρ(λ) Ψs(o) =

 

B(o,ρ)

Ψs dµh =

 

B(o,ρ)

ys
dx1 · · · dxd−1dy

yd
,

concluding the proof. �

Proof of Lemma A.3. — The first step toward the proof is to reduce the study to radial
functions. Given a point x ∈ Ω, we say that a smooth function Φ : Ω → R is radial
at x if there is a function Φrad : R+ → R, called the radial part of Φ, such that for
any y ∈ Ω we have Φ(y) = Φrad(ρ) where ρ = d(x, y). Note that the function Φrad is
differentiable at 0 and such that Φrad(0) = Φ(x).

Let Ω,Φ, ρ, λ and x as in Lemma A.3. We denote by Kx the compact group of
isometries of Hd fixing x and by µKx(g) its Haar measure of unit mass. Because Hd

is a symmetric space of rank 1, Kx acts transitively on the unit tangent sphere at x.
If y ∈ Hd and letting ρ := d(x, y) we thus have

Φ̂x(y) :=

ˆ

Kx

Φ ◦ g dµKx(g) =

 

S(x,ρ)

Φ dµS(x,ρ).

In particular the function Φ̂x is radial at x and

(Φ̂x)rad(ρ) =

 

S(x,ρ)

Φ dµS(x,ρ).

Moreover, since Kx acts by isometries, we also have ∆Φ̂x = λΦ̂x. Therefore, Lem-
ma A.3 reduces to the study of the radial parts of radial at x solution of ∆ = λ Id. The
following lemma characterises these functions with an ODE. Recall that we denoted
by Vd(ρ) the volume of any ball of radius ρ.

Lemma A.5. — Let x ∈ Hd, λ > 0 and Ω an open set of Hd containing a ρ0-neigh-
bourhood of x. Let Φ be a radial at x function satisfying ∆Φ = λΦ. Then its radial
part solves the following ODE on the interval (0, ρ).

(A.6) y′′ +
V ′′d
V ′d

y′ = −λy.
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The proof consists in computing the Laplace operator in polar coordinates and is
left to the reader.

The second order ODE (A.6) has a unique solution smooth at 0.

Lemma A.7. — For any ρ, λ > 0 and y0 > 0 there is at most one solution of the ODE
(A.6) defined on (0, ρ) which can be extended by y0 at 0 as a C 1 function.

Proof. — The ODE (A.6) being of order 2, we now that it admits at most a space
of dimension 2 of solutions defined on (0, ρ0). Let y1 and y2 be a basis of the vector
space of the solution of the ODE (A.6). It is classical that the associated Wronskian

W := det

(
y1 y2

y′1 y
′
2

)
satisfies the first order ODE

W ′ =
V ′′d
V ′d

W.

But the Wronskian cannot be smooth at 0 since the function V ′′d /V
′
d is not continuous

at 0. This prevents two independent solutions of (A.6) to have C 1 extensions at 0. �

We set Sλ as the unique solution of (A.6) defined on R∗+ which extends as a C 1

function on R+ with Sλ(0) = 1.
We have shown that the following function (which is C 1 at 0 and values Φ(x))

ρ 7−→
 

S(x,ρ)

Φ dµS(x,ρ)

satisfies the ODE (A.6) on ]0, ρ[. By uniqueness, one must have 

S(x,ρ)

Φ dµS(x,ρ) = Sλ(ρ) Φ(x),

which is the desired conclusion. �
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