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SPECTRAL GEOMETRY ON MANIFOLDS WITH

FIBERED BOUNDARY METRICS I:

LOW ENERGY RESOLVENT

by Daniel Grieser, Mohammad Talebi & Boris Vertman

Abstract. —We study the low energy resolvent of the Hodge Laplacian on a manifold equipped
with a fibered boundary metric. We determine the precise asymptotic behavior of the resolvent
as a fibered boundary (aka φ-) pseudodifferential operator when the resolvent parameter tends
to zero. This generalizes previous work by Guillarmou and Sher who considered asymptotically
conic metrics, which correspond to the special case when the fibers are points. The new feature
in the case of non-trivial fibers is that the resolvent has different asymptotic behavior on the
subspace of forms that are fiberwise harmonic and on its orthogonal complement. To deal with
this, we introduce an appropriate ‘split’ pseudodifferential calculus, building on and extending
work by Grieser and Hunsicker. Our work sets the basis for the discussion of spectral invariants
on φ-manifolds.

Résumé (Géométrie spectrale sur les variétés avec métrique fibrée au bord I : Résolvante à basse
énergie)

Nous étudions la résolvante à basse énergie du laplacien de Hodge sur une variété munie
d’une métrique fibrée au bord. Nous déterminons le comportement asymptotique précis de
la résolvante en tant qu’opérateur pseudo-différentiel fibré au bord (aussi appelé φ-opérateur
pseudo-différentiel) lorsque le paramètre de la résolvante tend vers 0. Ceci généralise les travaux
précédents de Guillarmou et Sher qui considéraient les métriques asymptotiquement coniques,
correspondant au cas particulier où les fibres sont des points. Le phénomène nouveau dans le
cas de fibres non triviales est que la résolvante a un comportement asymptotique différent sur
le sous-espace des formes qui sont harmoniques dans la direction des fibres et sur son supplé-
mentaire orthogonal. Pour traiter ce problème, nous introduisons un calcul pseudo-différentiel
« décomposé » approprié, en nous appuyant sur les travaux de Grieser et Hunsicker et en
les étendant. Notre travail jette les bases d’une discussion des invariants spectraux sur les φ-
variétés.
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1. Introduction and statement of the main results

1.1. Setting of manifolds with fibered boundary metrics. — Consider a compact
smooth manifold M with interior M and boundary ∂M (also denoted here by ∂M),
which is the total space of a fibration φ : ∂M → B over a closed manifold B with
fibers given by copies of a closed manifold F . We fix a boundary defining function
x : M → R+ = [0,∞), i.e., x−1(0) = ∂M and dx 6= 0 at ∂M , and a trivialization
U ∼= [0, ε)x × ∂M of an open neighborhood U of ∂M . We consider a φ-metric (also
called fibered boundary metric) on M , i.e., a Riemannian metric gφ which on U ∼=
(0, ε)x × ∂M has the form

(1.1) gφ � U = g0 + h, g0 =
dx2

x4
+
φ∗gB
x2

+ gF ,

where gB is a Riemannian metric on the base B, gF is a symmetric bilinear form
on the total space ∂M , restricting to Riemannian metrics on the fibers F , and the
perturbation h is a two tensor on U satisfying the bound given in Assumption 1.2
below. If h ≡ 0 then gφ is called an exact φ-metric.

Examples 1.1. — There are various examples, where such metrics arise naturally. The
natural metric on the moduli space of non-abelian magnetic monopoles of charge 2 is
a φ-metric, cf. [HHM04, KS15, FKS18]. Other examples include gravitational instan-
tons, i.e., complete hyperkähler 4-manifolds, as well as products of scattering with
closed manifolds.

Recall that the Hodge Laplace operator associated to gφ is ∆φ = (d+d∗)2, where d
denotes the exterior derivative and d∗ its adjoint. This is a self-adjoint and non-
negative operator in L2(M,ΛT ∗M ; dvolφ), where dvolφ is the volume form for gφ,
so the resolvent

(∆φ + k2)−1

is defined for all k 6= 0. We always take k > 0. The objective of this paper is the
precise analysis of the Schwartz kernel of the resolvent, in particular of its asymptotic
behavior as k → 0. More generally, our results apply to the Hodge Laplacian acting
on sections of a vector bundle over M equipped with a flat connection.

If the fibration φ is trivial, ∂M = B × F has the product metric, and h ≡ 0 then
∆φ acting on functions is, over U, given explicitly by

(1.2) ∆φ � U = −x4∂2
x + x2∆B + ∆F − (2− b)x3∂x,

J.É.P. — M., 2022, tome 9



Resolvent at low energy 961

where b = dimB, ∆B is the Laplace-Beltrami operator of (B, gB) and ∆F is the
Laplace-Beltrami operator on (F, gF ). The full Hodge Laplacian admits a similar
structure. In the non-product case we recover under additional assumptions a similar
structure, where ∆F is now replaced by a family of Hodge Laplacians ∆Fy , associated
to the family of Riemannian metrics gF (y) on F , with parameter y ∈ B. We will be
explicit below.

The operator ∆φ + k2 is, for any parameter k > 0, an elliptic element in a general
class of differential operators having a structure similar to (1.2), called φ-differential
operators. Mazzeo and Melrose in [MM98] developed a pseudodifferential calculus,
denoted by Ψ∗φ, which contains parametrices for such operators P . Therein they gave
a stronger condition, called full ellipticity, that is equivalent to P being Fredholm
between naturally associated Sobolev spaces, and is necessary for P to have an inverse
in the calculus. The operator ∆φ + k2 is fully elliptic for k > 0, but not for k = 0

unless ∆Fy is invertible for all y ∈ B, which may happen in the case of the Hodge
Laplacian twisted by a flat vector bundle. In that case, the behavior of the resolvent
can be deduced directly from [MM98]. The contribution of our paper is that we allow
the fiberwise Laplacians to have a non-trivial kernel.

If the fiber F is a point then fibered boundary metrics are called scattering or
asymptotically conic metrics. In this case the low energy resolvent has been stud-
ied before, with application to the boundedness of Riesz transforms: for the scalar
Laplacian this was first done in the asymptotically Euclidean case, i.e., for B = Sb,
by Carron, Coulhon and Hassell [CCH06], then for general base and using a differ-
ent construction of the resolved double space (see below) by Guillarmou and Hassell
[GH08, GH09], who also allow a potential. Guillarmou and Sher [GS15] then used the
calculus of [GH08] to analyze the low energy resolvent of the Hodge Laplacian and
used this to study the behavior of analytic torsion under conic degeneration.

1.2. Assumptions and the main result. — We study the Schwartz kernel of the resol-
vent (∆φ + k2)−1 as k → 0 under additional assumptions that we shall list here.
We shall also explain why we make these assumptions.

Assumption 1.2. — The higher order term h satisfies |h|g0 = O(x3) as x→ 0.

This assumption guarantees that the terms resulting from h do not alter the leading
order behaviour of the Hodge Laplacian, more precisely of the terms Pij in (5.27).

Assumption 1.3. — We assume that φ : (∂M, gF +φ∗gB)→ (B, gB) is a Riemannian
submersion.

This assumption is used in order to obtain the expression (5.4) for the Hodge
de Rham operator.

The next assumption requires some preparation: The spaces Hy = ker ∆Fy of
harmonic forms on the fibers have finite dimension independent of the base point
y ∈ B, since they are isomorphic to the cohomology of F . It is a standard fact
that these spaces then form a vector bundle H over B. The metric g induces a flat

J.É.P. — M., 2022, tome 9



962 D. Grieser, M. Talebi & B. Vertman

connection on the bundle H, see [HHM04, Prop. 15]. We denote the twisted Gauss-
Bonnet operator on B with values in this flat vector bundle by DB = d + d∗. Its
definition will be recalled explicitly in (5.5). Write NB for the number operator on
differential forms Ω∗(B,H), multiplying any ω ∈ Ω`(B,H) by `. We define the family
of operators

Iλ(P00) := −λ2 +

D2
B +

(
b−1

2 −NB
)2

2d

2d∗ D2
B +

(
b+1

2 −NB
)2

(1.3)

acting on Ω∗(B,H)⊕Ω∗−1(B,H). This is the indicial family of a b-operator P00 that
will be introduced in (5.27). Its set of indicial roots is defined as

specb(P00) := {λ ∈ C | Iλ(P00) is not invertible}.(1.4)

Noting that Iλ(P00) is symmetric, we find that specb(P00) ⊂ R is real. We can now
formulate our next assumption.

Assumption 1.4. — Assume that specb(P00)∩[−1, 1] = ∅. Due to symmetry of Iλ(P00)

under the reflection λ 7→ −λ, this is equivalent to specb(P00) ∩ [−1, 0] = ∅.

Note that even if Assumption 1.4 is violated for the (full) Hodge Laplacian but
holds for the Laplacian acting on forms of a fixed degree k, then our results hold for
that degree.(1)

Assumption 1.4 can be reformulated in terms of spectral conditions onDB precisely
as in [GS15, (21)] with dN and ∆N replaced by d and D2

B . It is satisfied if DB

has a sufficiently large spectral gap around zero. As we will see in Corollary 5.8,
Assumption 1.4 implies the non-resonance condition(2)

(1.5) kerx−1L2(M,gφ) ∆φ = kerL2(M,gφ) ∆φ,

imposed also by Guillarmou and Sher [GS15], in addition to asking for 0 /∈ specb(P00).
These conditions are needed in order to construct the Fredholm inverse for the Hodge
Laplacian. Specifically, the assumption 0 /∈ specb(P00) is used to obtain a Fredholm
inverse in (7.14). The no zero-resonances assumption is used in Lemma 7.6, that jointly
with the functional analytic observation of Lemma 7.7 yields the zf parametrix in
(7.20) and (7.21). Now, the full Assumption 1.4 is used to ensure that such constructed
parametrices actually act boundedly on L2(M, gφ).

Assumption 1.5. — The twisted Gauss-Bonnet operator DB, defined in (5.5), com-
mutes with the orthogonal projection Π in (5.15) onto fiber-harmonic forms.

(1)Compare with [KR22], their method does not allow for this conclusion.
(2)It is natural to ask whether the non-resonance condition and 0 /∈ specb(P00) already imply

Assumption 1.4. We conjecture that this is not the case since (1.5) is a global condition on M

while specb(P00) is determined locally at the boundary. However, we do not have an explicit
counterexample.
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Resolvent at low energy 963

This assumption implies that the off-diagonal terms in the decomposition of ∆φ

with respect to the bundles H and its orthogonal complement in C∞(F ), near ∂M ,
vanish quadratically at the boundary as φ-operators. This assumptions is needed to
analyze the structure of the Fredholm inverse of ∆φ, as used by Grieser and Hunsicker
in [GH14, Th. 2], cf. Remark 5.6.

Assumption 1.6. — The base B of the fibration φ : ∂M→B is of dimension dimB>2.

This assumption has also been imposed by Guillarmou and Hassell [GH08] and
[GH09], where in case of trivial fibers F it means dimM > 3. If dimB < 2 then
the resolvent has a different behavior as k → 0. We use the assumption explicitly in
(5.29). Our main result is now as follows.

Theorem 1.7. — Under the Assumptions 1.2, 1.3, 1.4, 1.5 and 1.6, the Schwartz
kernel of the resolvent (∆φ + k2)−1, k > 0, lifts to a polyhomogeneous conormal
distribution on an appropriate manifold with corners, with a conormal singularity
along the diagonal.

We also determine the exponents and the leading terms in the asymptotics of
the resolvent kernel, and make the different asymptotic behavior with respect to
the decomposition into fiberwise harmonic forms and their orthogonal complement
explicit. The precise statement is given in Theorem 7.11.

Remark 1.8. — Our result admits some obvious extensions:
(1) Similar to Assumption 1.2, replacing ∆φ by ∆φ + V , where V = x3W with

a positive(3) W ∈ C∞(M,End(ΛφT ∗M)), does not affect the argument and The-
orem 1.7 still holds. Without the positivity condition on V , the problem is much
more intricate since the potential might lead to non-positive spectrum and affect zero
resonances, cf. [GH09].

(2) As already noted in [She13, Th. 6], the proof of Theorem 1.7 carries over ver-
batim to the case where the resolvent parameter k2 is allowed to vary in the right half
plane <k > 0. Then the resolvent asymptotics is uniform as k → 0 in angular sectors
|arg k| 6 π/2− ε for any ε > 0.

1.3. Key points of the proof. — As in the papers by Guillarmou, Hassell and Sher,
our strategy to prove polyhomogeneity of the resolvent kernel is as follows: first,
we construct an appropriate manifold with corners, which we call M2

k,φ, on which
we expect the resolvent to be polyhomogeneous. The Hodge Laplacian behaves like
a scattering Hodge Laplacian on the space of fiberwise harmonic forms and like a
fully elliptic φ-operator on the orthogonal complement of this space. The low energy
resolvents for these two types of operators are described by two different blowup
spaces, denotedM2

k,sc,φ andM2
φ×R+. Therefore,M2

k,φ is chosen as a common blowup
of these two spaces.

(3)cf. §4.1 for the definition of φT ∗M

J.É.P. — M., 2022, tome 9



964 D. Grieser, M. Talebi & B. Vertman

The boundary hypersurfaces of M2
k,φ then correspond to limiting regimes, so that

the leading asymptotic term(s) of the resolvent kernel at each of them can be deter-
mined by solving a simpler model problem. The model problem at the k = 0 face called
zf involves the Fredholm inverse of ∆φ, so we need to analyze this first. Combining
these solutions and an interior parametrix, obtained by inverting the principal symbol
(which corresponds to the ‘freezing coefficients’ model problem at each interior point),
we obtain an initial parametrix for the resolvent. We then improve this parametrix
using a Neumann series argument and finally show by a standard argument that the
exact resolvent has actually the same structure as the improved parametrix.

The contribution of our paper is that we analyze the low energy resolvent of ∆φ in
the non-fully elliptic case, i.e., allowing the fiberwise Laplacians to have non-trivial
kernel. A parametrix construction for a closely related operator, the Hodge Laplacian
for the cusp metric x2gφ, was given by Grieser and Hunsicker in [GH14], and a similar
construction for the spin Dirac operator (assuming constant dimension for the kernel
of the operators induced on the fibers) was given by Vaillant in [Vai01]. Vaillant also
analyzed the low energy behavior of the resolvent for this operator.

For the construction of the Fredholm inverse of ∆φ we introduce and analyze a
pseudodifferential calculus, the ‘split’ calculus (see Definition 5.3), which contains this
Fredholm inverse, and reflects the fact that this operator exhibits different asymptotic
behavior on the subspaces of fiber-harmonic forms and on its orthogonal complement.
This construction is close to the construction by Grieser and Hunsicker in [GH14],
where the notion of split operator was first introduced. For the proof of our main
theorem we then construct a split resolvent calculus that additionally encodes the
asymptotic behavior of the resolvent as k → 0. This split resolvent calculus combines
the φ-calculus of Mazzeo and Melrose, the resolvent calculus of Guillarmou and Hassell
and the split calculus.

1.4. Structure of the paper. — Our paper is structured as follows. In Section 2
we review fundamental aspects of geometric microlocal analysis that are important in
the present work. Then we review the pseudodifferential b-calculus in [Mel93] and the
pseudodifferential φ-calculus in [MM98] in Sections 3 and 4. We state Fredholm prop-
erty results and the asymptotic description of the parametrices for elliptic elements
in both calculi.

In Section 5 we analyze the structure of the Hodge Laplacian and display its split
structure with respect to the bundle of fiberwise harmonic forms and its orthogonal
complement. We introduce the split pseudodifferential calculus, which is a variant
of the φ-calculus that reflects this splitting. We give an improved version of the
parametrix construction for the Hodge Laplacian in that calculus, building on the
construction by Grieser and Hunsicker [GH14].

In Section 6 we review the low energy resolvent construction of Guillarmou, Hassell
and Sher [GH08], [GS15] on scattering manifolds. In particular, we present the blowup
space M2

k,sc due to Melrose and Sá Barreto [MSB], which is used in those works, and
its slightly more general cousin M2

k,sc,φ that we need.

J.É.P. — M., 2022, tome 9



Resolvent at low energy 965

The proof of our main theorem is given in Section 7. We first construct the blowup
space M2

k,φ and then construct the initial parametrix. The final step towards the
resolvent kernel requires a composition theorem, that we prove in Section 8.

This work will have applications in the construction of renormalized zeta functions
and analytic torsion in the setting of manifolds with φ-metrics. These will the subject
of a separate paper.

Remark 1.9. — The authors wish to acknowledge that in a parallel work by Kottke
and Rochon [KR22], a result similar to Theorem 1.7 was obtained independently and
simultaneously using partly different methods, in particular working with the Dirac
operator, and not relying on a split-pseudodifferential calculus.

Acknowledgements. — The authors are grateful to the anonymous referees for valu-
able comments. The second author would like to thank Colin Guillarmou for helpful
discussions. He is grateful to the Mathematical Institute of University of Oldenburg
for hospitality and financial support.

2. Fundamentals of geometric microlocal analysis

We briefly recall here the main concepts and tools of geometric microlocal analysis
that will later be used for the construction of the resolvent kernel for ∆φ. The main
reference is [Mel93]; see [Gri01] for an introduction.

2.1. Manifolds with corners. — A compact manifold with corners X, of dimen-
sion N , is by definition modeled near each point p ∈ X diffeomorphically by
(R+)k × RN−k for some k ∈ N0, where R+ = [0,∞). If p corresponds to 0 then k

is called the codimension of p. A face of X, of codimension k, is the closure of a
connected component of the set of points of codimension k. A boundary hypersurface
is a face of codimension one, a corner is a face of codimension at least two. We assume
that each boundary hypersurface H is embedded, i.e., it has a defining function ρH ,
that is, a smooth function X → R+ with H = {ρH = 0} and dρH nowhere vanishing
on H. Then ρH can be taken as coordinate of the first component of a tubular
neighborhood X ⊃ U ∼= [0, ε) × H. The set of boundary hypersurfaces of X is
denoted M1(X). In this section, we always work in the category of manifolds with
corners.

2.2. Blowup of p-submanifolds. — Assume P ⊂ X is a p-submanifold of a manifold
with corners X, that is, near any p ∈ P there is a local model for X in which P

is locally a coordinate subspace. The blowup space [X;P ] is constructed by gluing
X r P with the inward spherical normal bundle of P ⊂ X. The latter is called the
front face of the blowup. The resulting space is equipped with a natural topology.
It has a unique minimal differential structure with respect to which smooth functions
with compact support in the interior of X r P and polar coordinates around P in X
are smooth, cf. [Mel93, §4.1].

J.É.P. — M., 2022, tome 9



966 D. Grieser, M. Talebi & B. Vertman

The canonical blowdown map

β : [X;P ] −→ X,

is defined as the identity onXrP and as the bundle projection on the inward spherical
normal bundle of P ⊂ X. Finally, given a p-submanifold Z ⊂ X, we define its lift
under β to a submanifold of [X;P ] as follows:

(1) if Z ⊆ P then β∗(Z) := β−1(Z),

(2) if Z * P then β∗(Z) := closure of β−1(Z r P ).

2.3. b-vector fields, polyhomogeneous functions and conormal distributions

Let X be a manifold with corners.

Definition 2.1 (b-vector fields). — A b-vector field on X is a smooth vector field
which is tangential to all boundary hypersurfaces of X. The space of b-vector fields
on X is denoted Vb(X).

Definition 2.2 (Index sets)
(1) A subset E = {(γ, p)} ⊂ C× N0 is called an index set if

(a) the real parts Re(γ) accumulate only at +∞;
(b) for each γ there exists Pγ such that (γ, p) ∈ E implies p 6 Pγ ;
(c) if (γ, p) ∈ E then (γ + j, p′) ∈ E for all j ∈ N0 and 0 6 p′ 6 p.

If a ∈ R then a also denotes the index set (a + N0) × {0}. Addition of index sets is
addition in C × N0. For example, a + E = {(γ + a, p) | (γ, p) ∈ E}. The extended
union of two index sets E and F is defined as

E ∪F = E ∪ F ∪ {(γ, p+ q + 1) | ∃ (γ, p) ∈ E, and (γ, q) ∈ F}.(2.1)

If E is an index set and a ∈ R then we write

E > a if (γ, k) ∈ E implies <γ > a,

E > a if (γ, k) ∈ E implies <γ > a, and k = 0 if <γ = a.

(2) An index family E = (EH)H∈M1(X) forX is an assignment of an index set EH to
each boundary hypersurface H. Moreover, EH denotes the index family for H which
to any H ∩ H ′ ∈ M1(H), where H ′ ∈ M1(X) has non-trivial intersection with H,
assigns the index set EH′ .

Definition 2.3 (Polyhomogeneous functions). — A smooth function ω on the interior
of X is called polyhomogeneous on X with index family E , we write ω ∈ A E

phg(X),
if the following condition is satisfied: ω has an asymptotic expansion near each
H ∈M1(X) of the form

ω ∼
∑

(γ,p)∈EH

aγ,p · ργH(log ρH)p, ρH −→ 0,

for some tubular neighborhood of H with defining function ρH , where the coef-
ficients aγ,p are polyhomogeneous functions on H with index family EH . Since
dimH < dimX, this defines polyhomogeneity by induction.

J.É.P. — M., 2022, tome 9



Resolvent at low energy 967

The asymptotic expansion above is assumed to be preserved under iterated appli-
cation of b-vector fields. Its precise meaning is that there exists Γ0 ∈ R so that for all
Γ ∈ R and any finite collection of b-vector fields V1, . . . , VN we have(

V1 ◦ · · · ◦ VN
)(
ω −

∑
(γ,p)∈EH
<γ6Γ

aγ,p · ργH(log ρH)p
)

= O
(
ρΓ
H

∏
H′ 6=H ρ

−Γ0

H′

)
.

It is a non-trivial fact that this condition is independent of the choice of tubular
neighborhood, see [Mel92].

Definition 2.4 (Conormal distributions). — Let P ⊂ X be a p-submanifold which is
interior, i.e., not contained in ∂X. A distribution u on X is conormal of order µ ∈ R
with respect to P if it is smooth on X r P and near any point of P , with X locally
modeled by (R+)kx × RN−ky′,y′′ and P = {y′′ = 0} locally,

(2.2) u(x, y′, y′′) =

∫
eiy
′′η′′a(x, y′; η′′) dη′′

for a symbol a of order m = µ+ 1
4 dimX − 1

2 codimP .

If X = M ×M for a closed manifold M and P ⊂ X is the diagonal, then dimX =

2 dimP , hence m = µ, and conormal distributions are precisely the Schwartz kernels
of pseudodifferential operators on M , with m equal to the order of the operator. In
our setting we will need to make the resolvent parameter k into a variable, so X =

M ×M × R+ and P = DiagM ×R+, hence m = µ + 1/4. The order of the operator
still equals the order m of the symbol, so its kernel is conormal of order m− 1/4.

Polyhomogeneous sections of and conormal distributions valued in vector bundles
over X are defined analogously.

2.4. b-maps and b-fibrations. — The contents of this subsection are due to Melrose
[Mel92], [Mel93], see also [Maz91, §2.A].

A smooth map between manifolds with corners is one which locally is the restriction
of a smooth map on a domain of RN . We single out two classes of smooth maps,
such that polyhomogeneous functions behave nicely under the pullback and the push-
forward by these maps. We begin with the definition of a b-map.

Definition 2.5. — Consider two manifolds with corners X and X ′. Let ρH ,
H∈M1(X), and ρH′ , H ′ ∈M1(X ′) be defining functions. A smooth map f : X ′ → X

is called a b-map if for every H ∈M1(X), H ′ ∈M1(X ′) there exists e(H,H ′) ∈ N0

and a smooth non vanishing function hH such that

(2.3) f∗(ρH) = hH
∏

H′∈M1(X′)

ρ
e(H,H′)
H′ .

The crucial property of a b-map f is that the pullback of polyhomogeneous func-
tions under f is again polyhomogeneous, with an explicit control on the transforma-
tion of the index sets.
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Proposition 2.6. — Let f : X ′ → X be a b-map and u ∈ A F
phg(X). Then f∗(u) ∈

A E
phg(X ′) with index set E = f b(F ), where f b(F ) defined as in [Maz91, A12].

In order to obtain a polyhomogeneous function under pushforward by f , one needs
additional conditions on f . On any manifold with corners X, we associate to the space
of b-vector fields Vb(X) the b-tangent bundle bTX, such that Vb(X) forms the space
of its smooth sections. There is a natural bundle map bTX → TX (see Section 3.1 for
details in case X is a manifold with boundary). The differential dxf : TxX

′ → Tf(x)X

of a b-map f lifts under this map to the b-differential db
xf : bTxX

′ → bTf(x)X for
each x ∈ X ′. We can now proceed with the following definition.

Definition 2.7
– A b-map f : X ′ → X is a b-submersion if db

xf is surjective for all x ∈ X ′.
– f is called b-fibration if f is a b-submersion and, in addition, does not map

boundary hypersurfaces of X ′ to corners of X, i.e., for each H there exists at most
one H ′ such that e(H,H ′) 6= 0 in (2.3).

We now formulate the Pushforward theorem due to Melrose [Mel93]. The pushfor-
ward map acts on densities instead of functions, and hence we consider the density
bundle Ω(X) of X, and the corresponding b-density bundle

(2.4) Ωb(X) :=

( ∏
H∈M1(X)

ρ−1
H

)
Ω(X).

Then we write A E
phg(X,Ωb(X)) for polyhomogeneous sections of the b-density bundle

Ωb(X) over X, with index set E . The precise result is now as follows.

Proposition 2.8. — Let f : X ′ → X be a b-fibration. Then for any index family E ′

for X ′, such that for each H ′ with e(H,H ′) = 0 for all H we have(4) E ′H′ > 0, the
pushforward map is well-defined and acts as

f∗ : A E ′

phg(X ′,Ωb(X ′)) −→ A
fb(E ′)

phg (X,Ωb(X)).

Here, fb(E ′) is defined as in [Maz91, A.15].

2.5. Operators acting on half-densities. — We will always identify an operator
with its Schwartz kernel via integration, so it is natural to consider densities. The
most symmetric way to do this is using half-densities: if the Schwartz kernel is a half-
density then the operator it defines maps half-densities to half-densities naturally.
However, differential operators are not typically given as acting on half-densities.

The connection is made by fixing a positive real density ν (in this paper, typically
the volume form associated to gφ or a related density) on X. This defines an isometry

L2(X, ν) −→ L2(X,Ω1/2), u 7−→ u ν1/2,

(4)This condition means that E ′
H′ > 0 for any H′ which maps into interior of X. This condition

simply ensures integrability, so that pushforward is well-defined.
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where L2(X, ν) := {u : X → C |
∫
X
|u|2 ν < ∞} and L2(X,Ω1/2) is the space of

square-integrable half-densities on X.(5)

Then if A is an operator acting in L2(X, ν) (i.e., on functions), the operator on
half-densities induced by this identification is given by

Ã(uν1/2) := (Au)ν1/2.

Note that

A symmetric in L2(X, ν) ⇐⇒ Ã symmetric in L2(X,Ω1/2),

since by definition of Ã we have
∫
X
Au1 · u2 ν =

∫
X
Ã(u1ν

1/2) · u2ν1/2. Also, if A is
given by an integral kernel K with respect to ν, i.e., (Au)(p) =

∫
K(p, p′)u(p′) ν(p′),

then Ã is given by the integral kernel K̃ where K̃ is the half-density

(2.5) K̃(p, p′) = K(p, p′) ν(p)1/2 ν(p′)1/2.

In practice we often write A instead of Ã.

3. Review of the pseudodifferential b-calculus

In this section we review elements of the b-calculus [Mel93]. In this section M is a
compact manifold with boundary ∂M , of dimension n. In contrast to the rest of the
paper, ∂M need not be fibered.

3.1. b-vector fields and b-differential operators. — Recall that the space of
b-vector fields Vb = Vb(M) is defined as the space of smooth vector fields on M

which are tangential to ∂M . Fix local coordinates (x, θ) near a boundary point,
where x defines the boundary, so that θ = {θi}i define local coordinates on ∂M .
Then, Vb is spanned, locally freely over C∞(M), by

(x∂x, ∂θi).

The b-tangent bundle bTM overM is defined by requiring its space of smooth sections
to be Vb. Interpreting an element of Vb as a section of TM rather than of bTM defines
a vector bundle map bTM → TM which is an isomorphism over the interior ofM but
has kernel span{x∂x} over ∂M . The dual bundle of bTM , the b-cotangent bundle, is
denoted by bT ∗M . It has local basis (dx/x, dθi). Let us also consider some Hermitian
vector bundle E over M .

The space of b-differential operators Diffmb (M ;E) of orderm ∈ N0 with values in E,
consists of differential operators of m-th order on M , given locally near the boundary
∂M by the following differential expression (we use the convention Dx = (1/i)∂x etc.)

(3.1) P =
∑

q+|α|6m

Pα,q(x, θ)(xDx)q(Dθ)
α,

(5)Note that L2(X,Ω1/2) is naturally identified with L2(X,Ω
1/2
b ) (if X has corners) – one could

also write any other rescaled density bundle here – since square integrability is intrinsic for half-
densities.
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where the coefficients Pα,q ∈ C∞(U,End(E)) are smooth sections of End(E). Its
b-symbol is given at a base point (x, θ) ∈ U by the homogeneous polynomial in
(ξ, ζ) ∈ R× Rn−1

σb(P )(x, θ; ξ, ζ) =
∑

j+|α|=m

Pα,q(x, θ)ξ
qζα.

Invariantly this is a function on bT ∗M (valued in End(E)) if we identify (ξ, ζ) with
ξdx/x+ζ ·dθ ∈ bT ∗(x,θ)M . An operator P ∈ Diffmb (M ;E) is said to be b-elliptic if σb(P )

is invertible on bT ∗M r {0}. Writing Pm(bT ∗M ;E) for the space of homogeneous
polynomials of degree m on the fibers of bT ∗M with values in End(E), the b-symbol
map defines a short exact sequence

(3.2) 0 −→ Diffm−1
b (M ;E) ↪−→ Diffmb (M ;E)

σb−→ Pm(bT ∗M ;E) −→ 0.

3.2. b-Pseudodifferential operators. — Parametrices to b-elliptic b-differential
operators are polyhomogeneous conormal distributions on the b-double space that
we now define. Consider the double space M ×M and blow up the codimension-two
corner ∂M × ∂M . This defines the b-double space

M2
b = [M ×M ; ∂M × ∂M ].

We may illustrate this blowup as in Figure 1, where θ, θ′ are omitted. As usual, this
blowup can be described in projective local coordinates. If (x, θ), (x′, θ′) are local
coordinates on the two copies of M near the boundary then local coordinates near
the upper corner of the resulting front face bf are given by

(3.3) s =
x

x′
, x′, θ, θ′,

where s defines lb and x′ defines bf locally. Interchanging the roles of x and x′, we get
projective local coordinates near the lower corner of bf. Pullback by the blowdown
map βb is simply a change of coordinates from standard to projective coordinates.
We will always fix a boundary defining function x for ∂M and choose x′ = x as
functions onM . Then s is defined on a full neighborhood of bf r rb, and if in addition
θ′ = θ as (local) functions on M then the b-diagonal,

Diagb := β∗b DiagM , DiagM = {(p, p) | p ∈M} ⊂M ×M,

is locally s = 1, θ = θ′. It is a p-submanifold of M2
b .

We defined b-densities in (2.4). The b-density bundle Ωb(M2) on the double
space M2 has local basis

dx

x

dx′

x′
dθ dθ′.

The b-density bundle on M2
b is, in coordinates (3.3), spanned by

ds

s

dx′

x′
dθ dθ′.

Note that Ωb(M2
b) = β∗bΩb(M2). The corresponding half b-density bundle is denoted

by Ω
1/2
b (M2

b).
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x′

x

lb

rb

bf
βb

x′

x

Figure 1. b-double space M2
b and βb : M2

b →M2.

We can now define the small and full calculus of pseudodifferential b-operators,
following [Mel93]. Note that we identify the operators with the lifts of their Schwartz
kernels to M2

b . Recall from Section 2.5 that operators act on half-densities, so their
Schwartz kernels are half-densities.

Definition 3.1. — Let M be a compact manifold with boundary and E → M a
vector bundle.

(1) The small calculus Ψm
b (M ;E) of b-pseudodifferential operators is the space of

distributions on M2
b taking values in Ω

1/2
b (M2

b) ⊗ End(E) which are conormal with
respect to the b-diagonal, smoothly down to bf, and vanish to infinite order at lb, rb.

(2) The full calculus Ψm,E
b (M ;E) of b-pseudodifferential operators is defined as

Ψm,E
b (M ;E) := Ψm

b (M ;E) + A E
b (M ;E)

where A E
b (M ;E) := A E

phg(M2
b ,Ω

1/2
b (M2

b)⊗ End(E)),

if E is an index family for M2
b with Ebf > 0. We sometimes leave out the bundle E

from the notation if it is clear from the context.(6)

Here, End(E) is the vector bundle overM2
b which is the pullback of the bundle over

M×M that has fiber Hom(Ep′ , Ep) over (p, p′) ∈M×M . Note that Ψ−∞,Eb (M ;E) =

A E
b (M ;E) if 0 ⊂ Ebf .

3.3. Fredholm properties of b-operators. — For any P ∈ Diffmb (M ;E) of the form
(3.1) locally near the boundary, we define the corresponding indicial operator I(P )

(6)This is a coarse version of [Mel93, the Def. 5.51]: there, the index sets are given for lb and rb

only, and then the Aphg term is replaced by A
Elb,0,Erb
phg (M2

b) +A
Elb,Erb
phg (M2). If Elb +Erb > 0, which

is true for all index sets of operators appearing in our paper, this is contained in the given definition
by the pull-back theorem, with Ebf = 0 ∪ (Elb + Erb). Also, this notation, and similar notation
used below for other calculi, is not the same as that, e.g., in [GH09, Def. 26]. Here we assume the
conormal singularity to have smooth coefficients up to bf, while there they have index set Ebf . This
is especially relevant when the index set at the front face is allowed to contain negative exponents,
as in the definition of the (k, sc) calculus.
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and indicial family Iλ(P ) by

I(P ) =
∑

q+|α|6m

Pα,q(0, θ)(xDx)q(Dθ)
α,

Iλ(P ) =
∑

q+|α|6m

Pα,q(0, θ)((1/i)λ)q(Dθ)
α,

where the latter is a family of differential operators on ∂M , acting in L2(∂M ;E � ∂M).
The set of indicial roots specb(P ) is defined as

specb(P ) := {λ ∈ C | Iλ(P ) is not invertible}.
Before we can proceed with stating the Fredholm theory results for b-operators, let us
define weighted b-Sobolev spaces for m ∈ R and ` ∈ R

x`Hm
b (M ;E) := {u = x` · v | ∀P ∈ Ψm

b (M ;E), Pv ∈ L2(M ;E)}.
Note that we define L2(M ;E) ≡ L2(M ;E; dvolb) with respect to the b-density dvolb,
which is a non-vanishing section of the b-density bundle Ωb(M).

Theorem 3.2 (Parametrix in the b-calculus). — Let P ∈ Diffmb (M ;E) be b-elliptic.
Then for each α /∈ <(specb(P )) there is an index family E (α) for M2

b satisfying

E (α)lb > α, E (α)rb > −α, E (α)bf > 0,

and a parametrix Qα ∈ Ψ−m,Eb (M ;E), inverting P up to remainders

P ◦Qα = Id−Rr,α, Qα ◦ P = Id−Rl,α,
where the remainders satisfy

Rr,α ∈ x∞Ψ
−∞,E (α)
b (M ;E), Rl,α ∈ Ψ

−∞,E (α)
b (M ;E)x∞.

The restriction of the Schwartz kernel of Qα to bf is given by the inverse of the
indicial operator I(P ) in xαL2(R+× ∂M,E), with weight α, i.e., having asymptotics
as dictated by E (α) at lb and rb.

The index family E (α) is determined by specb(P ) and satisfies
πE (α)lb = {z + r | z ∈ specb(P ), <z > α, r ∈ N0},
πE (α)rb = {−z + r | z ∈ specb(P ), <z < α, r ∈ N0},

(3.4)

where π : C×N0 → C is the projection onto the first factor, i.e., we neglect logarithms.

Note that x∞Ψ
−∞,E (α)
b (M ;E) = A

E (α)|rb
b (M ;E) where E (α)|rb is the index fam-

ily with index sets equal to E (α) at rb and empty otherwise. Similarly, we have
Ψ
−∞,E (α)
b (M ;E)x∞ = A

E (α)|lb
b (M ;E).

By standard boundedness results this implies (cf. [Mel93, Th. 5.60 and Prop. 5.61])
the following Fredholm and regularity result.

Theorem 3.3 (Fredholmness and regularity of elliptic b-operators)
Let P ∈ Diffmb (M ;E) be b-elliptic. Then P is Fredholm as a map

P : xαHs+m
b (M ;E) −→ xαHs

b(M ;E)
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for any α /∈ <(specb(P )) and any s ∈ R. The Fredholm inverse of P is in
the full b-calculus Ψ

−m,E (α)
b (M ;E) with E (α) as in Theorem 3.2. Moreover, if

u ∈ xαHs
b(M ;E) for some α, s ∈ R and Pu ∈ A I

phg(M ;E) for some index set I
then u ∈ A J

phg(M ;E), where J = I ∪ K for some index set K > α, determined by
specb(P ).

In particular, if u has only Sobolev regularity, but is mapped by a differential
b-operator to a section with an asymptotic expansion at ∂M , for instance if u is in
the kernel of P , then u must also have a full asymptotic expansion at ∂M .

Recall that the Fredholm inverse is defined as follows: ifK = kerP and R = RanP ,
then the Fredholm inverse of P is zero on R⊥ and equals (P|K⊥→R)−1 on R.

4. Review of the pseudodifferential φ-calculus

In this section we review elements of the φ-calculus, following [MM98]. We are
now in the setting of a compact manifold M with a fibration φ : ∂M → B of the
boundary. We also fix a boundary defining function x > 0 and collar neighborhood
U ∼= [0, ε)x × ∂M of ∂M .

4.1. φ-vector fields and φ-differential operators

Definition 4.1. — A b-vector field V on M is called a φ-vector field, V ∈ Vφ ≡
Vφ(M), if at the boundary it is tangent to the fibers of the fibration φ : ∂M → B and
if it satisfies V x ∈ x2C∞(M) for the chosen boundary defining function x. Near a
boundary point we use coordinates {x, yi, zj} with y = {yi}i being local coordinates
on the base B, lifted to ∂M and extended to [0, ε) × ∂M , and z = {zj}j restricting
to local coordinates on the fibers F . Then Vφ is spanned, locally freely over C∞(M),
by the vector fields

x2 ∂

∂x
, x

∂

∂yi
,

∂

∂zj
.

We introduce the so called φ-tangent space by requiring Vφ(M) to be its smooth
sections

C∞(M, φTM) = Vφ = C∞(M)- span
〈
x2 ∂

∂x
, x

∂

∂yi
,
∂

∂zj

〉
,

where the second equality obviously holds only locally near ∂M . Note that the met-
ric gφ extends to a smooth positive definite quadratic form on φTM over all of M .
The dual bundle φT ∗M , the so-called φ-cotangent space, satisfies

C∞(M, φT ∗M) = C∞(M)- span
〈dx
x2
,
dyi
x
, dzj

〉
.

The space of φ-vector fields Vφ is closed under brackets, hence is a Lie alge-
bra, and is a C∞(M)-module. Hence it leads to the definition of φ-differential
operators Diff∗φ(M ;E), where E is some fixed Hermitian vector bundle. Explicitly,
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P ∈ Diffmφ (M ;E) if it is an m-th order differential operator in the open interior M ,
and has the following structure locally near the boundary ∂M

(4.1) P =
∑

|α|+|β|+q6m

Pα,β,q(x, y, z)(x
2Dx)q(xDy)βDα

z ,

with coefficients Pα,β,q ∈ C∞(U,End(E)) smooth up to the boundary. The φ-symbol
σφ(P ) is then locally given over the base point (x, y, z) ∈ U by the homogeneous
polynomial in (ξ, η, ζ) ∈ R× RdimB × RdimF

(4.2) σφ(P )(x, y, z; ξ, η, ζ) =
∑

|α|+|β|+q=m

Pα,β,q(x, y, z)ξ
qηβζα.

Invariantly this is a function (valued in End(E)) if we identify (ξ, η, ζ) with ξdx/x2 +

η · dy/x + ζ · dz ∈ φT ∗(x,y,z)M . We say that P is φ-elliptic if σφ(P ) is invertible
off the zero-section of φT ∗M . Writing Pm(φT ∗M ;E) for the space of homogeneous
polynomials of degree k on the fibers of φT ∗M valued in End(E), the φ-symbol map
defines a short exact sequence

(4.3) 0 −→ Diffm−1
φ (M ;E) ↪−→ Diffmφ (M ;E)

σφ−−−→ Pm(φT ∗M ;E) −→ 0.

4.2. φ-Pseudodifferential operators. — We now recall the notion of φ-pseudodif-
ferential operators Ψ∗φ(M ;E) from Mazzeo and Melrose [MM98]. These will be opera-
tors whose Schwartz kernels lift to polyhomogeneous distributions with conormal
singularity along the lifted diagonal on the φ-double space M2

φ. The space M2
φ is

obtained from the b-double space M2
b by an additional blowup: recall the definition

of the (interior) fiber diagonal

diagφ,int = {(p, p′) ∈ U× U | φ(p) = φ(p′)}.
In coordinates this is the submanifold {x = x′, y = y′}, so the boundary of its lift is
contained in the b-face of M2

b and locally given by

diagφ := ∂(β∗b(diagφ,int)) = {s = 1, y = y′, x′ = 0}.
The φ-double space is now defined by

(4.4) M2
φ := [M2

b ; diagφ], βφ-b : M2
φ −→M2

b .

x′

x

y − y′

y = y′
βφ-b

x

x′

x

lb

rb
bf

φf

Figure 2. φ-double space M2
φ.
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This blowup is illustrated in Figure 2, with the y, z, z′ coordinates omitted. Pro-
jective coordinates near the interior of φf can be given using (3.3) by

(4.5) T =
s− 1

x′
, Y =

y − y′
x′

, z, x′, y′, z′,

where x′ defines φf locally and bf lies in the limit |(T, Y )| → ∞. Here, the roles of x
and x′ can be interchanged freely. Pullback by the blowdown map is again simply
a change of coordinates from standard to e.g. the projective coordinates above. The
total blowdown map is given by

βφ = βb ◦ βφ-b : M2
φ −→M

2
.

We now define the small calculus and the full calculus of pseudodifferential φ-opera-
tors, following [MM98] and [GH09]. As always we identify operators with the lifts of
their Schwartz kernels toM2

φ, and let operators act on half-densities. It is convenient(7)

to normalize to the bφ-density bundle

(4.6) Ωbφ(M2
φ) := ρ

−(b+1)
φf Ωb(M2

φ) = ρ
−2(b+1)
φf β∗φΩb(M2).

The corresponding half bφ-density bundle is denoted by Ω
1/2
bφ (M2

φ).

Definition 4.2. — We define small and full calculi of φ-operators.
(1) The small calculus Ψm

φ (M ;E) of φ-pseudodifferential operators is the space of
Ω

1/2
bφ (M2

φ)⊗ End(E)-valued distributions on M2
φ which are conormal with respect to

the lifted diagonal, smoothly down to φf, and vanish to infinite order at lb, rb and bf.
(2) The full calculus Ψm,E

φ (M ;E) of φ-pseudodifferential operators is defined as

Ψm,E
φ (M ;E) := Ψm

φ (M ;E) + A E
φ (M ;E),

where A E
φ (M ;E) := A E

phg(M2
φ,Ω

1/2
bφ (M2

φ)⊗ End(E)),

if E is an index family for M2
φ with Eφf > 0. Sometimes we leave out the bundle E

from notation if it is clear from the context.

4.3. Fredholm theory of φ-operators. — The normal operator of a φ-differential
operator P ∈ Diffmφ (M) is defined as follows. Write P in coordinates near the bound-
ary as

P =
∑

|α|+|β|+q6m

Pα,β,q(x, y, z)(x
2Dx)q(xDy)βDα

z .

Then we define

(4.7) Nφ(P )y′ :=
∑

|α|+|β|+q6m

Pα,β,q(0, y
′, z)Dq

TD
β
YD

α
z .

(7)This means that at φf we normalize to φ-densities – for the fibration of φf given locally by
projection to the y′ coordinate in (4.5) – and at all other faces to b-densities. In this way kernels of
φ-differential operators, and more generally operators in the small φ-calculus, are conormal to the
diagonal uniformly up to φf (when considered as sections of Ω

1/2
bφ (M2

φ)), and operators in the small
b-calculus are smooth up to bf, away from φf.
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The normal operator Nφ(P )y′ is a family of differential operators acting on R×Rb×F ,
parametrized by y′ ∈ B. The Schwartz kernel of Nφ(P ) can be identified with the
restriction of the Schwartz kernel of P to φf, using coordinates (4.5).

Note that Nφ(P )y′ is translation invariant (constant coefficient) in (T, Y ). Per-
forming Fourier transform in (T, Y ) ∈ R× Rb we define the normal family

(4.8) N̂φ(P )y′ :=
∑

|α|+|β|+q6m

Pα,β,q(0, y
′, z)τ qξβDα

z .

This is a family of differential operators on F , parametrized by (τ, ξ) ∈ R × Rb and
y′ ∈ B.

Definition 4.3 (Full ellipticity). — An elliptic differential φ-operator P ∈ Diffmφ (M)

is said to be fully elliptic if additionally the operator family N̂φ(P )y′(τ, ξ) is invertible
for all (τ, ξ; y′), including (τ, ξ) = 0.

We can now state Fredholm results for fully elliptic φ-differential operators, due to
[MM98].

Theorem 4.4 (Invertibility up to smooth kernel, [MM98, Prop. 8])
If P ∈ Diffmφ (M ;E) is fully elliptic in the sense of Definition 4.3, then there exists

a small calculus parametrix Q ∈ Ψ−mφ (M ;E) satisfying

PQ− Id, QP − Id ∈ x∞Ψ−∞φ (M ;E) = A ∅
φ .

In order to state continuity and Fredholm results we introduce weighted φ-Sobolev
spaces. We write for any m, ` ∈ R

x`Hm
φ (M ;E) := {u = x` · v | ∀P ∈ Ψm

φ (M ;E), Pv ∈ L2(M ;E)}.

Here as before, we define L2(M ;E) ≡ L2(M ;E; dvolb) with respect to the b-density
dvolb. However, as derivatives in the definition of Hm

φ (M ;E), e.g. for m ∈ N, we use
φ-derivatives.

Theorem 4.5 ([MM98, Prop. 9, 10]). — Let P ∈ Diffmφ (M ;E) be fully elliptic. Then
for any α, s ∈ R, P is Fredholm as a map

P : xαHs+m
φ (M ;E) −→ xαHs

φ(M ;E).

The Fredholm inverse lies in Ψ−mφ (M ;E).

We point out that this theorem is simpler than the corresponding Theorem 3.3
for b-operators: no weights α are excluded, and the Fredholm inverse lies in the
same calculus (not a ‘large’ calculus). This is due to the fact that full ellipticity is a
very strong condition: e.g. for the Laplace-Beltrami operator on a φ-manifold, twisted
with some flat vector bundle E, full ellipticity would require twisted zero-cohomology
H0(F,E � F ) on fibers to vanish.
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5. Hodge Laplacian for φ-metrics, split parametrix construction

In this section we analyze the structure of the Hodge Laplacian for a φ-metric
and exhibit its ‘split’ structure with respect to fiber harmonic and perpendicular
forms. We define a pseudodifferential calculus which reflects this structure, carry
out the parametrix construction (building on and extending [GH14]) and show that
the Fredholm inverse of the Hodge Laplacian lies in this calculus. We continue in
the setting of a compact manifold M with fibered boundary ∂M , with a choice of
boundary defining function x > 0 and collar neighborhood U = [0, ε)x × ∂M . In this
section we always consider E = ΛφM := ΛφT ∗M and often omit the vector bundle
from the notation.

5.1. Structure of the Hodge Laplacian ∆φ. — Recall the definition of a Riemann-
ian submersion φ : (∂M, g∂M ) → (B, gB): we split the tangent bundle T∂M into
subbundles V ⊕TH∂M , where at any p ∈ ∂M the vertical subspace Vp is the tangent
space to the fiber of φ through p, and the horizontal subspace THp ∂M is its orthogonal
complement with respect to g∂M . Then φ is a Riemannian submersion if the restric-
tion of the differential dφ : TH∂M → TB is an isometry. In this case, one can write
g∂M = gF + φ∗gB where gF equals g∂M on V and vanishes on TH∂M . We also write
φ∗TB for TH∂M .

With respect to the fibered boundary metric φ we obtain on the collar neighbor-
hood U

(5.1) φTU := φTM �U = span
{
x2∂x

}
⊕ xφ∗TB ⊕ V .

This splitting induces an orthogonal splitting of the φ-cotangent bundle φT ∗M :

(5.2) φT ∗U := φT ∗M �U = span

{
dx

x2

}
⊕ x−1φ∗T ∗B ⊕ V ∗,

where V ∗ is the dual of V , see (5.11). Recall that the φ-tangent bundle φTM is
spanned locally over U by x2∂x, x∂yi , ∂zj . In terms of this basis the metric gφ takes
the form

(5.3) gφ =

1 0 0

0 A00(y) xA01(y, z)

0 xA10(y, z) A11(y, z)

+O(x3),

with Aij smooth and A00 not depending on z because of the Riemannian submersion
condition, Assumption 1.3 on g0. The vanishing order O(x3) of the higher order terms
is due to Assumption 1.2. Note that in local coordinates V ∗ is usually not spanned
by the dzj except at x = 0, unless the off-diagonal terms in (5.3) vanish.

With respect to the corresponding decomposition of ΛφT ∗M over U and assuming
that the higher order term h ≡ 0 is trivially zero for the moment, we compute as
in Hausel, Hunsicker and Mazzeo [HHM04, §5.3.2] for the Hodge Dirac operator Dφ

over the collar neighborhood U

(5.4) Dφ = x2Dx + xA +DF + xDB − x2R,
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where we set A = A+A∗, DF = dF + d∗F , R = R+R∗ and

(5.5) DB = (dB − I) + (dB − I)∗ .

Here, I and R are the second fundamental form and the curvature of the Riemannian
submersion φ, respectively; dB is the sum of the lift of the exterior derivative on B
to ∂M plus the action of the derivative in the B-direction on the V ∗-components of
the form. The term x2Dx acts for any ω ∈ Λ`

(
x−1φ∗T ∗B

)
⊕ ΛV ∗ as follows(

x2Dx

)
ω =

dx

x2
∧
(
x2∂x

)
ω, x2Dx

(dx
x2
∧ ω
)

= −
(
x2∂x

)
ω.

To be precise, x2∂x is the lift of the corresponding differential operator on (0, ε) under
the projection π : (0, ε)×∂M → (0, ε). Finally, A is a 0-th order differential operator,
acting for any ω ∈ Λ`

(
x−1φ∗T ∗B

)
⊕ ΛV ∗ by

Aω = −` · dx
x2
∧ ω, A

(dx
x2
∧ ω
)

= (b− `) · ω.

We can now take the square of Dφ to compute the Hodge Laplacian

∆φ = D2
φ = (x2Dx)2 +D2

F + x2D2
B +Q, Q ∈ x ·Diff

2

φ(M).(5.6)

Since D2
B equals ∆B plus terms in x ·Diff

2

φ(M), we conclude for the normal operator
and normal family, defined in (4.7), (4.8)

Nφ(∆φ)y = ∆T,Y + ∆Fy ,(5.7)

N̂φ(∆φ)y = τ2 + |ξ|2 + ∆Fy ∈ Diff2(Fy).(5.8)

Here ∆T,Y is the Euclidean Laplacian on Rb+1 ∼= R× TyB, where the scalar product
on TyB as well as the norm |ξ| for ξ ∈ T ∗yB are defined by gB . Also, ∆Fy ≡ D2

Fy
.

Thus the normal family of the Hodge Laplacian is invertible for each (τ, ξ) 6= 0, and
hence ∆φ is fully elliptic, only if ker(∆Fy ) = {0}. Note that we do not impose this
restriction in this paper and hence require additional methods for the low energy
resolvent construction.

Remark 5.1. — In case the higher order term h in (1.1) is non-trivial, additional terms
of the form x · Diff

2

φ(M) appear, which do not contribute to the normal operator.
They do, however, contribute non-trivially to the split structure of ∆φ in the next
section, unless Assumption 1.2 is imposed.

5.2. Splitting into fiberwise harmonic and perpendicular forms. — The explicit
form of N̂φ(∆φ) in (5.8) shows that the Hodge Laplacian is not fully elliptic, unless
∆Fy is invertible for one and hence each y ∈ B. Thus, near ∂M we split the differential
forms into forms which are fiberwise harmonic and the perpendicular bundle. In the
former, ∆φ acts as a scattering operator, in the latter ∆φ is fully elliptic, in a sense
made precise below.
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To be precise, let us write V := [0, ε) × B. Then the φ-cotangent bundle (with
trivial fiber) reduces over V to the scattering cotangent bundle, cf. (5.2)

(5.9) scT ∗V = span

{
dx

x2

}
⊕ x−1T ∗B.

Consequently we find from (5.2)

(5.10) φT ∗U = φ∗ (scT ∗V )⊕ V ∗.

If p ∈ U and F is the fiber through p, then pull-back under the inclusion of F into U

is a map (φT ∗U)p → T ∗pF , which restricts to an isomorphism V ∗p → T ∗pF , and this is
an isometry for g∗0 and g∗F since φ is a Riemannian submersion. Hence we have the
isometry

(5.11) V ∗ ∼= T ∗F.

The decomposition (5.10) induces a decomposition for the exterior algebras

(5.12) Λ φT ∗U = Λφ∗ (scT ∗V )⊗ ΛV ∗.

Together with (5.9), this allows us to write

C∞(U,ΛφT ∗U) = C∞(V,ΛscT ∗V ⊗ C∞(F,ΛT ∗F )),

where C∞(F,ΛT ∗F ) is considered as a bundle over B, the fiber over y ∈ B being
C∞(Fy,ΛT

∗Fy). We decompose this bundle as

(5.13) C∞(F,ΛT ∗F ) = H̃ ⊕ C̃,

where for each y ∈ B the space H̃y is the kernel of the Hodge Laplacian ∆Fy on the
fiber (Fy, gF (y)), and C̃y is its orthogonal complement with respect to the L2-scalar
product. Note that dim H̃y = rankH∗(Fy) is finite and independent of y ∈ B by the
Hodge theorem. It is a classical result [BGV04, Cor. 9.11] that H̃ is a smooth vector
bundle over B. For each (x, y) ∈ V let

H(x,y) = Λ(scT ∗V )(x,y) ⊗ H̃y, C(x,y) = Λ(scT ∗V )(x,y) ⊗ C̃y.

We define a smooth section of H to be a smooth differential form on U whose restric-
tion to the fiber over (x, y) ∈ V lies in H(x,y) for each (x, y), and similarly for C.
Summarizing, we get

(5.14) C∞(U,ΛφT ∗U) = C∞(V,H)⊕ C∞(V,C).

Corresponding to this decomposition we have projections

Π : C∞(U,ΛφT ∗U) −→ C∞(V,H),

Π⊥ := Id−Π : C∞(U,ΛφT ∗U) −→ C∞(V,C),
(5.15)

These maps are defined fiberwise from the projections of C∞(Fy,ΛT
∗Fy) to H̃y and

to C̃y, respectively, for each y ∈ B.
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5.3. Split structure of the Hodge Laplacian. — We now turn to the structure of
the Hodge Laplacian with respect to the decomposition above. Recall from (5.4) that
the Hodge Dirac operator Dφ = d+ d∗ over U (still with respect to g0, setting h ≡ 0

for the moment) takes with respect to the decomposition (5.12) the following form

(5.16) Dφ = x2Dx + xA +DF + xDB − x2R.

We consider now as in [HHM04] the decomposition of Dφ with respect to the decom-
position (5.14), which leads to the following matrix representation

(5.17) Dφ =

(
(Dφ)00 (Dφ)01

(Dφ)10 (Dφ)11

)
:=

(
ΠDφΠ ΠDφΠ⊥

Π⊥DφΠ Π⊥DφΠ⊥

)
:

Γ(V,H)

⊕
Γ(V,C)

−→
Γ(V,H)

⊕
Γ(V,C).

The individual terms in the matrix (5.17) are given as follows. We define the operator
ð = Π(dB − I)Π, which in [HHM04, Prop. 15] is shown to act as a differential, i.e.,
ð2 = 0 and (ð∗)2 = 0. Then we find from (5.16)

(Dφ)00 = x2Dx + x(ð + ð∗) + xA− x2ΠRΠ,(5.18)

(Dφ)11 = x2Dx + xΠ⊥DBΠ⊥ + xA− x2Π⊥RΠ⊥ + Π⊥DFΠ⊥,(5.19)

(Dφ)01 = Π
(
xDB − x2R

)
Π⊥,(5.20)

(Dφ)10 = Π⊥
(
xDB − x2R

)
Π.(5.21)

Note that in (5.20) and (5.21) we used that x2Dx and A commute with Π. We can
express the matrix in (5.17) as follows

(5.22) Dφ =

(
(Dφ)00 (Dφ)01

(Dφ)10 (Dφ)11

)
=

(
xA00 xA01

xA10 A11

)
,

where the individual entries are given by
A00 = xDx + (ð + ð∗) + A− xΠRΠ, A01 = Π (DB − xR) Π⊥,

A10 = Π⊥ (DB − xR) Π, A11 = (Dφ)11.
(5.23)

We point out that A00 acts as an elliptic differential b-operator on sections of H.
Similarly, A11 acts as a φ-operator and A01, A10 as b-operators. However, below it is
useful to think of the latter as φ-operators.

For the Hodge Laplacian ∆φ = (Dφ)2 (with respect to g0 in (1.1) with h ≡ 0) one
computes from (5.22) that

(5.24) ∆φ =

(
(∆φ)00 (∆φ)01

(∆φ)10 (∆φ)11

)
,

where the individual entries are given in terms of (5.23) by

(∆φ)00 = (xA00)2 + (xA01)(xA10),

(∆φ)01 = (xA00)(xA01) + xA01A11,

(∆φ)10 = (xA10)(xA00) +A11(xA10),

(∆φ)11 = (xA10)(xA01) +A2
11.
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5.3.1. Unitary transformation of ∆φ to an operator in L2(M ; dvolb). — The Hodge
Laplacian ∆φ is identified with its unique self-adjoint extension in L2(M ; dvolφ),
where dvolφ is the volume form induced by gφ. It is convenient to transform ∆φ to a
self-adjoint operator in L2(M ; dvolb), where

(5.25) dvolb = xb+1dvolφ.

We can pass between L2(M ; dvolb) and L2(M ; dvolφ) by an isometry

(5.26) W : L2(M ; dvolφ) −→ L2(M ; dvolb), ω 7−→ x−(b+1)/2ω.

We use that isometry to define the operator

�φ := W ◦∆φ ◦W−1 ≡ x−(b+1)/2∆φx
(b+1)/2,

which is self-adjoint in L2(M ; dvolb) instead of L2(M ; dvolφ). Below, we will deal only
with �φ, which is unitarily equivalent to the Hodge Laplacian.

Recall that we impose Assumption 1.5 so that [DB ,Π] = 0. This condition implies
that Π⊥ (DB) Π = 0 and Π (DB) Π⊥ = 0, hence xA01 = −x2ΠRΠ⊥ and xA10 =

−x2Π⊥RΠ are x2 times zero-order operators. This implies that

�φ = x−(b+1)/2∆φx
(b+1)/2

can be written

(5.27) �φ =

(
xP00x xP01x

xP10x P11

)
,

where P00 ∈ Diff2
b(M), P11 ∈ Diff2

φ(M) and P01, P10 ∈ Diff2
φ(M) (in fact, P01, P10 ∈

Diff1
φ(M) in the special case where the metric perturbation h ≡ 0), with each Pij

sandwiched by appropriate Π and Π⊥ factors. We call (5.27) the split structure of �φ.
All of the computations above are done for h ≡ 0 a priori. Now, for a non-trivial

higher order term h, the Assumption 1.2 with a stronger decay of |h|g0 = O(x3),
guarantees that (5.27) still holds with O(x3) contributions in each component. Since
e.g. xP00x + O(x3) = x(P00 + O(x))x, we have only higher order contributions to
all Pij .

5.3.2. Normal operator of �φ under the splitting. — Here we in particular explain in
what sense P11 ∈ Diff2

φ(M) is fully elliptic. The normal operator of �φ has the
following form under the splitting above (cf. (5.7))

(5.28) N(�φ)y =

(
N(xP00x)y 0

0 N(P11)y

)
=

(
∆Rb+1 ⊗ Id

H̃y
0

0 ∆Rb+1 ⊕ (∆Fy )|C̃y

)
.

Note that the lower right corner is invertible as a map on sections of C, with inverse a
convolution operator in the (T, Y )-variables on Rb+1, rapidly decaying as |(T, Y )|→∞
(the class of operators with this property is called the suspended calculus). This can
be shown by using a spectral decomposition of ∆F , or directly as in [GH14, Prop. 2.3].
In this sense P11 is fully elliptic on sections of C.
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The upper left corner of (5.28) behaves differently: If b > 2 then the standard
fundamental solution defines a bounded operator (acting by convolution)

(5.29) ∆−1
Rb+1 = c|(T, Y )|1−b∗ : xγ+2L2(Rb+1,dvolb) −→ xγH2

b(Rb+1,dvolb),

if γ ∈ (0, b − 1), where x > 0 is smooth and equals 1/r for large values of the
radial function r on Rb+1. Here, c is a dimensional constant. For b < 2 there are no
values γ for which ∆Rb+1 is invertible between these spaces. See for example [ARS21,
Prop.A.2]. In any case, the convolution only decays polynomially at infinity.

Structure of P00. — On V = [0, ε)×B, using (5.9) we may write any H-valued form
as a sum u = u1 + (dx/x2) ∧ u2 where u1, u2 are sections of Λ`(x−1φ∗T ∗B)⊗H and
Λ`−1(x−1φ∗T ∗B)⊗H, respectively. Computations verbatim to [GS15, (15)] yield

P00 = −(x∂x)2 + L+ x2 ΠRΠ⊥RΠ.(5.30)

where with respect to this splitting u↔ (u1, u2)T the action of L is given by

(5.31) L =

(
ΠD2

BΠ +
(
b−1

2 −NB
)2

2(dB − I)
2(dB − I)∗ ΠD2

BΠ +
(
b+1

2 −NB
)2
)

(do not confuse this matrix representation with the matrix formula under the split-
ting into fiberwise harmonic and perpendicular forms), where NB denotes the number
operator on Λ∗(x−1φ∗T ∗B), multiplying elements in Λ`(x−1φ∗T ∗B) by `. The opera-
tor P00 is a differential b-operator. Its indicial family Iλ(P00), given in (1.3), and the
set of indicial roots specb(P00) are defined in §3.3.

Note that xP00x is, up to O(x4) and modulo the unitary transformation (5.26), the
Hodge Laplace operator on (V, dx2/x4 + φ∗gB/x

2) twisted by the vector bundle H,
equipped with the flat connection ð = Π(dB − I)Π.

5.4. Parametrix construction for the split Hodge Laplacian. — We now review
the parametrix construction for the operator �φ, which is the main result of [GH14].
We begin with the definition of the split φ-calculus.

A section u of ΛφT ∗M can be decomposed over the collar neighborhood U of the
boundary ∂M into fiberwise harmonic and perpendicular forms as in (5.14). With
respect to that decomposition, we can write u over U as Πu+ Π⊥u or as a two-vector

(5.32) u � U =

(
Πu

Π⊥u

)
.

The different parts of the parametrix of �φ with respect to this decomposition have
different index sets in their asymptotics on M2

φ. We introduce notation to describe
this behavior. First we consider sections over M .

Definition 5.2. — For an index set I, we define A I
H(M) to be the space of u ∈

A I
phg(M,ΛφT ∗M), whose decomposition (5.32) has index sets

(
I
I+2

)
. In other words,

the leading terms to two orders in the asymptotics of u at ∂M have values in H.
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We extend this concept to sections on the φ-double space M2
φ. Note that for a

section on M2 we can distinguish its H- and C-parts in both factors near the corner
∂M × ∂M and thus represent it by a 2× 2 matrix. However, near lb = ∂M ×M and
rb = M × ∂M we can do this only in the first (resp. second) factor, so we get a 2× 1

resp. 1 × 2 vector. The boundary hypersurfaces of M2
φ lying over ∂M × ∂M are bf

and φf. Thus we define the split φ-calculus, identifying operators with lifts of their
Schwartz kernels, as follows.

Definition 5.3 (Split φ-calculus). — Let E be an index family for M2
φ and consider

K ∈ A E
φ (M,ΛφM).We write ΠK meaning that Π acts on the first component inM2,

and KΠ meaning that Π acts on the second component – the notation suggested by
interpreting K as an operator. Then

K ∈ A E
φ,H(M)

if the following holds:
(1) at bf, when K is written with respect to the H-C decomposition as a 2 × 2

matrix
(

ΠKΠ ΠKΠ⊥

Π⊥KΠ Π⊥KΠ⊥

)
, it has index sets

(
Ebf Ebf+2

Ebf+2 Ebf+4

)
;

(2) at lb, when K is written as a vector
(

ΠK
Π⊥K

)
, it has index sets

(
Elb

Elb+2

)
;

(3) at rb, when K is written as a vector (KΠ,KΠ⊥), it has index sets
(

Erb Erb+2
)
;

(4) at φf, when K is written as a 2× 2 matrix, it has index sets(
Eφf Eφf + 2

Eφf + 2 Eφf

)
.

The split φ-calculus is then defined in view of Definition 4.2 by

Ψm,E
φ,H (M) = Ψm

φ (M,ΛφM) + A E
φ,H(M).

We call the matrices and vectors of index sets in (1)-(4) the split index family associ-
ated with E .

In short, the definition says that terms with a Π⊥ factor on the left have an extra x2

factor from the left (affecting all faces except rb), and terms with a Π⊥ factor on the
right have an extra x2 on the right (affecting all faces except lb) – except for the
Π⊥KΠ⊥ term at φf, which is no better than the ΠKΠ term. Essentially, this latter
fact says that K is diagonal to two leading orders at φf.

Note that the proof of our Composition Theorem 8.4 also yields a composition
theorem for Ψm,E

φ,H (M), by restriction to zf. However, we do not need it, so we do not
state it explicitly here.

The following result is similar to [GH14, Th. 12], which is the main result therein.
Our statement here is slightly stronger and we write out the proof in detail, since it
will be adapted to the resolvent construction below.

Theorem 5.4. — For each α /∈ specb(P00), �φ has a parametrix Qα such that

�φQα = Id−Rα, Qα�φ = Id−R′α,
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where Qα∈Ψ−2,E
φ,H (M) and remainders Rα∈x∞Ψ−∞,Eφ,H (M) and R′α∈Ψ−∞,Eφ,H (M)x∞.

The index family E is given in terms of E (α) (that is determined by specb(P00) and
satisfies (3.4)) by

Elb = E (α)lb − 1, Erb = E (α)rb − 1, Ebf > −2, Eφf > 0.

Index sets for Qα with respect to the H-C decomposition are illustrated schematically
in Figure 3 (` shall run through elements of E (α)lb and r through elements of E (α)rb).

`− 1

−2 0

r − 1

(H,H)
`− 1

0 2

r + 1

(H,C)

`+ 1

0 2

r − 1

(C,H)
`+ 1

2 0

r + 1

(C,C)

Figure 3. Schematic structure of index sets of Qα.

As preparation for the proof we need two considerations for dealing with the split-
ting of �φ in (5.27). Both arise from the need to compose a parametrix of P00 with
φ-operators coming from the other entries of the matrix. Recall that P00 is a b-operator
in the base V = [0, ε) × B, so its Schwartz kernel, and the Schwartz kernel of its
parametrix Q00, lift to distributions on the b-double space V 2

b , valued in End(H)

(and half-densities). On the other hand, the kernels of φ-operators are distributions
on the φ-double space U2

φ. Thus, in order to analyze the compositions, we first lift
Q00 to V 2

φ and(8) then to U2
φ. To do this we need the following facts.

Fact 1: Lifting from b-double to φ-double space. — Consider the lift of a kernel from V 2
b

to V 2
φ under the blow-down map βφ-b in Figure 2. An elementary calculation (compare

[GH14, Prop. 1]) implies that for any index family F on V 2
b and any m ∈ R (we use

(8)The notation V 2
φ indicates the double space constructed in Section 4.2, with M replaced by V

and with the trivial fibration (whose fibers are points).
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the notation introduced in Definitions 3.1 and 4.2 and omit the vector bundle H from
the notation)

(5.33) β∗φ-b : Ψ−mb (V ) −→ ρmφfΨ
−m
φ (V ) + A Fm

φ (V ), β∗φ-b : A F
b (V ) −→ A F ′

φ (V ),

where Fm,bf = 0, Fm,φf = m ∪ (b + 1), Fm,lb = Fm,rb = ∅ and F ′ has the same
index sets as F at lb, rb and bf, and in addition F ′φf = Fbf + (b + 1) (the shift
arises from the density factor, see (4.6)). We use this to lift the b-parametrix Q00,
where m = 2. Note that, since b > 2 by Assumption 1.6, the leading term in F ′φf

is 2, without logarithm. If b=1, there would be an additional logarithm. If b=0, the
leading term would be 1.

Fact 2: Extended calculus. — The lift β∗φ-bQ00 is a distribution on V 2
φ , valued in

End(H) (and half-densities). Since H⊂C∞(F,ΛT ∗F ) and U is an F -bundle over V ,
this distribution can also be interpreted as a distribution on U2

φ. It is conormal with
respect to the interior submanifold {x = x′, y = y′}, which is the diagonal in V 2

φ , but
is the fiber diagonal (thus larger than the diagonal) in U2

φ. Thus β∗φ-bQ00 does not
define a pseudodifferential operator in Ψ−2,∗

φ (U).(9)

Since in our argument sums of such operators and operators in Ψ−2,∗
φ (U) will be

considered, we define for any pseudodifferential calculus onM or U, the corresponding
extended calculus as the space of operators whose kernels are sums of two terms, one
conormal with respect to the diagonal and one conormal with respect to the fiber
diagonal, the latter term being supported near the corner (∂M)2 of M2. We denote
the extended calculus by Ψ

−2,∗
φ (U).

Note that the fiber diagonal hits the boundary of M2
φ only in the interior of the

φ-face φf, just like the diagonal, because U2 is a fiber bundle with fiber F 2. In par-
ticular, the extension does not affect asymptotic behavior at other faces. In [GH14,
Prop. 2] it is shown that the extended calculus enjoys the same composition properties
as the standard calculus.

The extended calculus is only used in the intermediate steps, the final parametrix
lies in the standard (non-extended) calculus.

Proof of Theorem 5.4. — We follow the parametrix construction given in [GH14].
We explain the main steps since our notation is somewhat different and since we
will generalize the construction to the k-dependent case. We also simplify the con-
struction slightly and give more details of the second step. We construct the right
parametrix, it then turns out to be a left parametrix also, by standard arguments.
The construction proceeds in four steps:

Step 1: We first construct a parametrix Q1, with �φQ1 = Id−R1 where the
remainder R1 vanishes at the boundary faces bf and φf suitably.

Step 2: We improve Q1 to a parametrix Q2 whose remainder also vanishes at lb.

(9)Note that it is the fiber diagonal in the φ-double space, unlike the fiber diagonal in the b-double
space which was used in the definition of M2

φ.
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Step 3: Using a parametrix in the small φ-calculus, obtained by inverting the prin-
cipal symbol, we remove the interior singularity of the remainder.

Step 4: Iteration gives a remainder as in the theorem.

Step 1. — We first work near the boundary, i.e., in U. We use the fact that the diago-
nal terms of �φ in (5.27) are elliptic resp. fully elliptic in the b-calculus and (extended)
φ-calculus sense, and that the product of the off-diagonal terms is higher order com-
pared to the product of the diagonal terms in terms of x. Abstractly, an approximate
right inverse for a block matrix P =

(
A B
C D

)
with this property is given by(10)

(5.34) Q1 =

(
Â −ÂB′
−D̂C ′ D̂

)
,

where Â, D̂ are right parametrices for A,D, say

AÂ = Id−R, DD̂ = Id−S and B′ = BD̂, C ′ = CÂ.

A short calculation gives PQ1 = Id−R1 where

R1 = R′1 +R′′1 , R′1 =

(
R −RB′
−SC ′ S

)
, R′′1 =

(
B′C ′ 0

0 C ′B′

)
.

We apply this with A = xP00x, B = xP01x, C = xP10x, D = P11. Since α 6∈
specb(P00) there is a b-calculus parametrix Q00, obtained from a small calculus
parametrix (near the diagonal) and inversion of the indicial operator I(P00)

(5.35) P00Q00 = Id−R00, Q00 ∈ Ψ
−2,E (α)
b (V,H), R00 ∈ ρbfA

E (α)
b (V,H).

Note that Theorem 3.2 actually yields a better parametrix with remainder in
ρ∞bf ρ

∞
lb A

E (α)
b (V,H). However, an extension of that result to the resolvent is not

straightforward, and in fact the rather crude parametrix Q00 with remainder R00 is
fully sufficient for our purposes.

Also, there is a φ-calculus parametrix for P11, i.e.,

(5.36) P11Q11 = Id−R11, Q11 ∈ Ψ
−2

φ (U), R11 ∈ A ∅
φ (U).

(We leave out the bundle ΛφT ∗M from notation in this proof.) We refer the reader
to [GH14, Prop. 2] for details why this works in the extended calculus, and emphasize
that we removed higher order terms at φf right away.

Then Â = x−1Q00x
−1 lifts to an element of Ψ−2,E

φ (V,H) ⊂ Ψ
−2,E
φ (U) by (5.33),

with E as in the statement. With D̂ = Q11 we get

B′ = (xP01x)Q11 ∈ x2 Ψ
0

φ(U) = Ψ
0

φ(U)x2,

C ′ = (xP10x)Â ∈ x2 Ψ
0,E
φ (U).

The extra x2 factors in B′, C ′ give Q1 ∈ Ψ
−2,E
φ,H (U).

(10)This formula arises from taking leading terms in the Schur complement formula for the inverse
of a block matrix.
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We now analyze the remainder terms R′1 and R′′1 . We shall use the notation for
index families

F = (a, b, l + λ, r + ρ) means:
Fbf > a, Fφf > b, Flb = E (α)lb + λ, Frb = E (α)rb + ρ.

(5.37)

First, R = xR00x
−1 lifts by (5.33) to be in A

(1,4,l+1,r−1)
φ (U). Then by the composition

result [GH14, Th. 9] we find RB′ ∈ A
(3,6,l+1,r+1)
φ (U). Similarly, we conclude with

S = R11 that SC ′ ∈ A
(∅,∅,∅,r−1)
φ (U). The diagonal terms in R′′1 are

B′C ′ ∈ x4Ψ
0,E
φ (U) = ρ4

φfΨ
0,(2,0,l+3,r−1)

φ (U),

C ′B′ ∈ x2Ψ
0,E
φ (U)x2 = ρ4

φfΨ
0,(2,0,l+1,r+1)

φ (U).

In summary we get R1 ∈ ρ4
φfΨ

0,R1

φ (U), where

(5.38) R1 =

(
(1, 0, l + 1, r − 1) (3, 2, l + 1, r + 1)

(∅,∅,∅, r − 1) (2, 0, l + 1, r + 1)

)
.

Note that all terms in R1 vanish at bf and φf. If we had simply inverted the diagonal
terms then we would have got a remainder whose Π⊥RΠ component does not vanish
at bf, which would not be good enough for the iteration argument in the resolvent
construction below.

At this point the Schwartz kernels of Q1 and R1 are defined over U×U only. Using
a cutoff function we modify Q1 to an element of Ψ

−2,E
φ,H (M), without changing it near

bf ∪ φf, so that R1 = Id−PQ1 is in ρ4
φfΨ

0,R1

φ (M) with R1 as above.

Step 2. — We want to refine our parametrix Q1 from Step 1 so that the remainder
vanishes to infinite order at lb. We accomplish this by determining Q′1 supported
near lb so that �φQ′1 agrees with R1 at lb to infinite order. Then

(5.39) �φQ
′
1 = R1 −R2,

where R2 has the same index sets as R1 except for ∅ at lb, and also has order zero.
The construction is essentially the same as that in [Mel93, Lem. 5.44], but we need
to be careful with the correct exponents in the H-C splitting. Finding Q′1 amounts to
solving

(5.40)
(
xP00x xP01x

xP10x P11

)(
q0

q1

)
≡
(
r0

r1

)
as an equation in the (x, y, z) variables, with (x′, y′, z′) as parameters, to infinite order
as x→ 0, with control of the x′ → 0 behavior which corresponds to the asymptotics
at the intersection of lb with bf. Here

–
(
r0
r1

)
runs through the two columns of R1,

–
( q0
q1

)
runs through the corresponding two columns of Q′1.
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By (5.38) the exponents at lb occurring in
(
r0
r1

)
are

(
l+1
l+1

)
for l ∈ πE (α)lb, for either

column of R1 (in fact, slightly better in the first column). Then (5.40) can be solved
to leading order for

( q0
q1

)
having leading exponents

(
l−1
l+1

)
at lb by first choosing(11) q0

satisfying (always to leading order) (xP00x)q0 = r0 (using b-ellipticity of P0). Note
that the term (xP01x)q1 will be of higher order. Then we choose q1 satisfying P11q1 =

r1 − (xP10x)q0 (using full ellipticity of P11). Doing this iteratively removes all orders
step by step.

Uniformity at lb ∩ bf (as x′ → 0) is shown as in [Mel93, Lem. 5.44], we only need
to check the exponents at bf. For the left column of R1, they are (1,∅)T by (5.38),
which implies they are (−1, 1)T for the left column of Q′1 by the explanation above.
For the right column of R1 they are (3, 2)T , which implies similarly (1, 2)T for the
right column of Q′1. In summary, Q′1 has index sets (only listing bf, lb)(

(−1, l − 1) (1, l − 1)

(1, l + 1) (2, l + 1)

)
,

so we get that Q′1 ∈ Ψ−∞,Eφ,H (M) after possibly adjusting E by allowing more log terms
at lb. More precisely, comparing with Figure 3 we see that Q′1 is strictly higher order
at bf than Q1, except in the (C,C) (lower right) component (this information is not
used in this paper).

Step 3. — We now have �φQ2 = Id−R2 with Q2 = Q1 + Q′1 and R2 from (5.39).
Next we remove the interior conormal singularity of the remainder. First, note that
(R2Π, R2Π⊥) has index sets (notation as in (5.37))

(5.41)
(
(1, 4,∅, r − 1), (2, 4,∅, r + 1)

)
.

Since �φ is φ-elliptic, we may find a ‘small’ parametrix Qσ arising from inverting the
φ-symbol, so �φQσ = Id−Rσ, with Qσ ∈ Ψ−mφ (M) and Rσ ∈ Ψ−∞φ (M). Then we
obtain

�φQ3 = Id−R3, with Q3 := Q2 +QσR2, R3 := RσR2

Since QσR2 has the same index sets as R2, see (5.41), it is also Ψ−2,E
φ,H (M) like Q2

and does not contribute to the leading terms of Q3 at bf and φf. Also, R3 has the
same index sets as R2 and in addition is smoothing.

A priori, our construction only yields that Q3 lies in the extended φ-calculus. The
following standard regularity argument shows that Q3 actually lies in the φ-calculus:
since Qσ is also a small left parametrix, Qσ�φ = Id−R′σ with R′σ ∈ Ψ−∞φ , we have

Qσ −QσR3 = Qσ�φQ3 = Q3 −R′σQ3

and since both remainders are smoothing, Q3 has the same singularity as Qσ.

(11)If l is an indicial root of P00 then q0 gets extra logarithmic terms.
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Step 4. — The remainder term R3 is smoothing and vanishes at lb,bf, φf, so that the
Neumann series Id +R3 +R2

3 + · · · can be summed asymptotically by the composition
theorem for the full φ-calculus. Denote the sum by Id +S. Multiplying this from the
right gives Qα = Q3(Id +S) and Rα = R3(Id +S) as required.

Finally, we note that Qα has the same leading terms as Q1, to two orders at bf

and φf. This concludes the proof of the theorem. �

Remark 5.5. — Note that, as in [GH14], we first constructed the boundary parametrix
and then combined it with the interior parametrix arising from inverting the φ-symbol.
This is the opposite order from what is done, e.g., by Vaillant [Vai01] in the same
context. Our approach has the advantage of giving control of theH-C decomposition of
the parametrix both on the domain and range side (the opposite order would give only
control on the range side of the right parametrix). This gives more precise information
on the parametrix and is needed, for example, for the proof of the Fredholm property
stated below.

Remark 5.6. — The fact that the off-diagonal terms of �φ in (5.27) are higher order
in terms of x→ 0 is the reason that we impose the assumption [Π, DB ] = 0. Without
this assumption the off-diagonal terms would only be in Diff2

φ(M)∩xDiff2
b(M) (rather

than x2 Diff2
φ(M)), and it is not clear what the result would be in this case.

5.5. Mapping properties and absence of resonances. — By standard arguments the
existence of a parametrix allows to deduce mapping, in particular Fredholm, results
for �φ, as well as asymptotic information on elements in its kernel. In our context
we obtain different regularity for the H and the C components.

The split Sobolev space is the Sobolev space analogue of Definition 5.2

(5.42) H2
H(M) = x−2H2

b,0(V ;H) +H2
φ(M ; ΛφM),

where H2
b,0(V,H) is the space of H2

b sections of H compactly supported in V =

[0, ε)×B.(12) Recall that we always use the measure dvolb. This space has a natural
Hilbert space topology, see [GH14, §6.1, Def. 7]. Note that

H2
H(M) 6⊆ L2(M ; ΛφM),

x2H2
H(M) ⊆ L2(M ; ΛφM).

(5.43)

There are also higher regularity versions of (5.42), defined as x−2H2+k
b,0 (V ;H) +

H2;k
φ;b(M ; ΛφM) where in the second summand up to two φ-derivatives in addition to

up to k b-derivatives are required to lie in L2.(13) We only formulate the following
result for the case k = 0 since this is all that we need here.

(12)Note that H2
b ⊂ H2

φ ⊂ x−2H2
b .

(13)It would not be natural in our context to define higher split spaces by replacing 2 by k

everywhere in (5.42), since these would not form a scale of spaces.
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Corollary 5.7. — The operator �φ is bounded
(5.44) �φ : xα+1H2

H(M) −→ xα+1L2(M ; ΛφM)

for all α ∈ R and Fredholm if α 6∈ specb(P00). Its Fredholm inverse Gφ,α lies in
Ψ−2,E
φ,H (M) with the same index family E as in Theorem 5.4. The leading asymptotic

terms of the (lift of the) Schwartz kernel of Gφ,α are as follows.
(1) At bf: it is (xx′)−1 times the inverse of I(P00), acting on xαL2, pulled back

from the b-face of M2
b to the bf-face of M2

φ. In particular, only the HH component of
the Fredholm inverse Gφ,α is non-zero at bf.

(2) At φf: it is the inverse of the normal operator of �φ, where the H part of the
inverse is given by (5.29).

The Fredholm inverse was defined after Theorem 3.3. We now continue with the
proof of Corollary 5.7.

Proof. — Boundedness follows easily from (5.27) and the Fredholm property follows
from boundedness and compactness of the parametrix and remainder on the appro-
priate spaces, see [GH14, Th. 13]. The shift in weight arises since Q00 in (5.35) is
bounded xαL2 → xαH2

b , so x−1Q00x
−1 : xα+1L2 → xα−1H2

b . The statement on the
Fredholm inverse then follows by standard arguments as in [Mel93, Prop. 5.42 & 5.64].

The leading terms at bf and φf only arise from the first parametrix Q1 constructed
in Step 1 of the proof of Theorem 5.4. The leading (i.e., order −2) contribution at bf

occurs only in the HH-component and is x−1Q00x
−1, which implies the claim for bf.

The leading (i.e., order 0) term at φf is the direct sum of the pull-back of x−1Q00x
−1

to φf and of the inverse of the normal operator of P11. Since b > 2 by Assumption 1.6,
the singularity of Q00 at the diagonal is of the type (|s − 1|2 + |y − y′|2)−(b−1)/2

where s = x/x′ (recall projective coordinates (3.3)). Thus x−1Q00x
−1 is given by the

half-density (for the same constant c as in (5.29))

c · (xx′)−1
(
|s− 1|2 + |y − y′|2

)−(b−1)/2

√
dx

x
ds dy dy′.

Pulling back this half-density to M2
φ gives in projective coordinates (4.5)

c ·
(
|T |2 + |Y |2

)−(b−1)/2

√
dT dY

dx

x2

dy′

xb
,

which shows that the standard fundamental solution on Rb+1 indeed appears at φf

as in (5.29). �

We now obtain information on the kernel of �φ.

Corollary 5.8. — Under the Assumption 1.4 the following holds: for any solution
u ∈ x−1L2(M ; ΛφM) to �φu = 0, we have that u ∈ A

E (1)−1
φ,H (M). In particular,

u ∈ L2(M ; ΛφM) and thus there are no resonances, i.e.,
kerx−1L2(M ;ΛφM)�φ = kerL2(M ;ΛφM)�φ.

Equivalently, we have for the unitarily equivalent Hodge Laplacian ∆φ

kerx−1L2(M ;ΛφM ;dvolφ) ∆φ = kerL2(M ;ΛφM ;dvolφ) ∆φ.
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Proof. — Taking the dual spaces of (5.44) with respect to L2 we get �φ : xα−1L2 →
xα−1H−2

H (compare [GH14, Th. 13]) if α 6∈ specb(P00). We take α = 0 and use the left
parametrix Q0 from Theorem 5.4. Applying Q0 to �φu = 0 we get u = R′0u. Since
R′0 has index sets (

E (0)lb − 1

E (0)lb + 1

)
,

at lb and ∅ at all other faces, and since E (0)lb = Elb(1) by Assumption 1.4, we con-
clude u ∈ A

E (1)−1
φ,H (M). The claim on no resonances follows. �

6. Review of the resolvent construction on scattering manifolds

The operator (∆φ + k2) and its unitary transformation (�φ + k2) are fully elliptic
φ-differential operators and invertible for k > 0, so the Schwartz kernels of their
inverses are polyhomogeneous distributions on M2

φ × (0,∞)k, where the φ-double
space M2

φ is defined in (4.4), with a conormal singularity at Diagφ×(0,∞) where
Diagφ is the lifted diagonal in M2

φ. However, that description is not uniform up to
k = 0. In case of dimF = 0 (scattering manifolds), the behavior of the resolvent
(�φ + k2)−1 as k → 0 was analyzed by Guillarmou-Hassell [GH08, GH09], as well
as Guillarmou-Sher [GS15], who define a blowup M2

k,sc of M2 × R+, R+ = [0,∞),
on which the resolvent is polyhomogeneous and conormal.

In this section we review this construction and generalize it slightly to obtain a
space M2

k,sc,φ, which in case of point fibers reduces to M2
k,sc and in the general case

serves as intermediate step in our construction of the resolvent space M2
k,φ for �φ,

which is carried out in Section 7. In Section 6.4 we review the results of Guillarmou,
Hassell and Sher in the case of point fibers.

In this section M is a manifold with fibered boundary, and local coordinates near
the boundary are as in Definition 4.1.

6.1. Blowup of the codimension 3 corner. — We consider M2 × R+ with copies
of local coordinates (x, y, z) and (x′, y′, z′) on the two factors M near ∂M . We use
the following notation for the corners of M2 × R+. For any i1, i2 ∈ {0, 1} we define
Ci1i2 := {xj = 0 for all j with ij = 1} ⊂M2 and

C
•
i1i2 = Ci1i2 × {0}, C+

i1i2
= Ci1i2 × R+.

For example, the highest codimension corner of M2 × R+ is given by

C
•
11 = {x = x′ = k = 0}.

The blowup of the corner C•11 and blow-down map are denoted by

β1 : [M2 × R+, C
•
11] −→M2 × R+.

This leads to a new boundary hypersurface that we call bf0, as illustrated in Figure 4,
where all other variables are omitted. We may introduce local projective coordinates
near each corner of bf0.
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x′

lb rb

zf x

k

bf0

x′ x

k

β1

Figure 4. Blowup of C•11.

Near top corner. — Away from zf we may introduce,

(6.1) ξ =
x

k
, ξ′ =

x′

k
, y, z, y′, z′, k.

Here, ξ′ is a local boundary defining function of the right boundary face rb (we write
ρrb = ξ′), ξ of the left boundary face lb (we write ρlb = ξ), and k of the new boundary
face bf0 (we write ρbf0 = k).

Near right corner. — In a similar way, away from lb we may introduce,

(6.2) s′ =
x′

x
, κ =

k

x
, x, y, z, y′, z′.

Here, local boundary defining functions are given by ρbf0 = x, ρrb = s′, ρzf = κ.
Projective coordinates near the left corner are obtained by interchanging the roles
of x and x′, and replacing rb by lb.

6.2. Blowup of the codimension 2 corners. — The next step is to blow up the
codimension 2 corners that are given by

C
•
01 = M × ∂M × {0}, C

•
10 = ∂M ×M × {0}, C+

11 = ∂M × ∂M × R+.

More precisely we blow up their lifts to [M2 × R+, C•11], which we still denote by
C•01, C

•
10, C

+
11. This defines

(6.3) M2
k,b :=

[[
M2 × R+, C

•
11

]
, C
•
01, C

•
10, C

+
11

]
with blow-down map β2 and new front faces lb0, rb0 and bf. This blowup is illustrated
in Figure 5. We keep the notation bf0 for the lift of the face bf0.

The associated (full) blowdown map to M2 × R+ is given by

βb = β2 ◦ β1 : M2
k,b −→M2 × R+.

We now describe the blowup in terms of projective coordinates that are valid near
some of the intersections of the various boundary hypersurfaces in M2

k,b.
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bf0

zf

bf

rblb

rb0lb0 x′ x

k

bf0

β2

Figure 5. Blow up of C•01, C
•
10, C+

11.

Projective coordinates near bf0 ∩ bf. — We use the projective coordinates (6.1). The
new projective coordinates near the left corner on the top are now given by

(6.4) ζ =
ξ

ξ′
=

x

x′
, ξ′ =

x′

k
, y, z, y′, z′, k.

where ρlb = ζ, ρbf = ξ′, ρbf0 = k. Interchanging the roles of x and x′ gives a set of
coordinates near the left top corner, i.e., near bf0 ∩ bf, valid away from rb.

Projective coordinates near bf0 ∩ rb0. — We use the projective coordinates (6.2). The
new projective coordinates in the lower right corner, where bf0, rb0 and zf meet, are
now given by

(6.5) s′ =
x′

x
, τ =

κ

s′
=

k

x′
, x, y, z, y′, z′.

where ρzf = τ , ρrb0 = s′, ρbf0 = x. Projective coordinates near the left lower corner,
where bf0, lb0 and zf meet, are obtained by interchanging the roles of x and x′.
Projective coordinates near the other corners are obtained similarly.

6.3. Blowup of the fiber diagonal. — The final step is to blow up the intersection
of the lifted (interior) fiber diagonal, which is locally given by x = x′, y = y′, with the
face bf:

(6.6) diagk,sc,φ := β∗b(diagφ,int×R+) ∩ bf = {ζ = 1, y = y′, ξ′ = 0}
in projective coordinates (6.4). The new front face is denoted sc and the resulting
space

M2
k,sc,φ := [M2

k,b; diagk,sc,φ]

with blow-down map β3 is illustrated in Figure 6.
The associated (full) blowdown map to M2 × R+ is given by

βk,sc,φ = β3 ◦ β2 ◦ β1 : M2
k,sc,φ −→M2 × R+.

In the same pattern as before, we may introduce projective coordinates near the
intersection bf0 ∩ sc. Using the coordinate system (6.4), we define new projective
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lb0 rb0

sc
bf

rblb

zf

bf0

bf0

zf

bf

rblb

rb0lb0

β3

Figure 6. Final blowup M2
k,sc,φ := [M2

k,b,diagk,sc,φ].

coordinates as follows

(6.7) X :=
ζ − 1

ξ′
= kT, U :=

y − y′
ξ′

= kY, ξ′ =
x′

k
, y′, z, z′, k,

with (T, Y ) as in (4.5). Here, the boundary defining functions are as follows: ρbf0 = k,
ρsc = ξ′ and the boundary face bf lies in the limit |(X,U)| → ∞. We illustrate these
coordinates in Figure 7.

The lifted diagonal in M2
k,sc,φ is, by definition, the set

Diagk,sc,φ := β∗k,sc,φ(DiagM ×R+).

sc

zf

bf0

k

Xξ′

bf

Figure 7. Illustration of projective coordinates in M2
k,sc,φ.

Remark 6.1. — For each fixed k0 > 0 the level set {k = k0} in the blowup manifold
M2
k,sc,φ is simply the φ-space M2

φ, introduced in (4.4). The face zf is diffeomorphic to
the b-space M2

b , and in fact in case of trivial fibers F , the Hodge Laplacian ∆φ can
be reduced to a b-operator zf, see (6.9) below. That observation has been crucial in
the resolvent constructions by Guillarmou, Hassell and Sher.

If the fibers of φ are points then we generally write sc instead of φ, e.g. ∆sc, scTM ,
M2
k,sc, βk,sc instead of ∆φ, φTM , M2

k,sc,φ, βk,sc,φ, respectively. This notation is used
e.g. in Definition 6.2 below.
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Note that, ifM is a general φ-manifold with trivialization U ∼= [0, ε)×∂M near the
boundary then φ defines a fibration U→ V = [0, ε)×B, and this induces a fibration

(6.8) U2
k,sc,φ −→ V 2

k,sc

with fibers F 2. Therefore, a distribution on V 2
k,sc valued in End(H) for a subbundle

H ⊂ C∞(F,E) and some bundle E → U can instead be considered as a distribution
on U2

k,sc,φ valued in E.

6.4. Asymptotics of the resolvent on scattering manifolds. — We close the section
with a short review of the main result by Guillarmou-Hassell [GH08], as well as
Guillarmou-Sher [GS15] on the resolvent kernel of the Hodge Laplacian in the special
case where fibers are points, usually referred to as scattering manifolds.

Note that, in the case of point fibers, ∆sc reduces to the top left corner of ∆φ

in (5.27). Conjugating ∆sc by W as in (5.26) we obtain �sc, the top left corner of �φ.
Thus, if we define (identify x with the corresponding multiplication operator)

(6.9) P := x−1 ◦�sc ◦ x−1.

then P is precisely the operator P00 in (5.27). This is an elliptic b-differential operator
on M . By [GS15, (15)], parallel to the formulas in (5.30) and (5.31), we have up to
higher order terms coming from the higher order terms in the metric

(6.10) P = −(x∂x)2 + Lsc,

where the action of Lsc on Λ∗(x−1T ∗B)⊕ x−2dx ∧ Λ∗−1(x−1T ∗B) is given by

(6.11) Lsc =

(
∆B +

(
b−1

2 −NB
)2

2dB

2d∗B ∆B +
(
b+1

2 −NB
)2
)
,

where ∆B is the Hodge Laplacian of B, and dB denotes here the exterior differen-
tial on B. NB denotes as before the number operator on Λ∗(x−1T ∗B), multiplying
elements in Λ`(x−1T ∗B) by `. The indicial family Iλ(P ) and the set of indicial roots
specb(P ) are defined as in Section 3.3.

Before we can state the main theorem of Guillarmou and Sher [GS15], let us intro-
duce the (k, sc)-calculus of pseudodifferential operators with Schwartz kernels lifting
to M2

k,sc. As usual we identify the operators with the lifts of their Schwartz kernels.

Definition 6.2. — Let M be a compact manifold with boundary and let E → M

be a vector bundle. We define small and full (k, sc)-calculi as follows. Consider the
following density bundle (compare to (4.6))

(6.12) Ωbφ(M2
k,sc) := ρ−(b+1)

sc Ωb(M2
k,sc) = ρ−2(b+1)

sc β∗k,scΩb(M2 × R+).

The corresponding half-density bundle is denoted by(14) Ω
1/2
bφ (M2

k,sc).

(14)This is precisely the half-density bundle Ω̃1/2(M2
k,sc) introduced in [GH08, §2.2.2].
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(1) The small (k, sc)-calculus, denoted Ψm
k,sc(M ;E) for m ∈ R, is the space of

distributions on M2
k,sc, valued in Ω

1/2
bφ (M2

k,sc)⊗End(E), which are conormal of order
m − 1/4 with respect to the lifted diagonal and which vanish to infinite order at all
boundary hypersurfaces except bf0, zf and sc.

(2) Consider (abf0 , azf , asc) ∈ R3 and an index family E for M2
k,sc such that

Ebf ,Elb,Erb = ∅. The full (k, sc)-calculus is then defined by

Ψ
m,(abf0

,azf ,asc),E

k,sc (M ;E) := ρ
abf0
bf0

ρazfzf ρ
asc
sc Ψm

k,sc(M ;E) + A E
k,sc(M ;E),(6.13)

where we simplified notation by setting

A E
k,sc(M ;E) := A E

phg

(
M2
k,sc,Ω

1/2
bφ (M2

k,sc)⊗ End(E)
)
.(6.14)

See the remark after Definition 2.4 concerning the order shift by 1/4.

Theorem 6.3 ([GS15, Th. 18]). — Let (M, g) be a scattering (asymptotically conic)
manifold, satisfying Assumption 1.2, 1.4 and 1.6, where

(1) Assumption 1.4 can be replaced with (1.5) and 0 /∈ specb(P ).
(2) Assumption 1.6 is equivalent to dimM > 3.

Then (�sc + k2)−1 lies in the full (k, sc)-calculus Ψ
−2, (−2,0,0),E
k,sc (M,ΛscM), where

Ezf > −2, Ebf0 > −2, Esc > 0, Elb0
= Erb0

> 0.

Moreover, the leading terms of the resolvent at all boundary hypersurfaces of M2
k,sc

are given by solutions of explicit model problems.

7. Low energy resolvent for φ-metrics, proof of main theorem

Recall that our aim is the construction of the inverse for ∆φ + k2, which is a
self-adjoint operator in L2(M ; ΛφM ; dvolφ). We equivalently describe the parametrix
construction for

x−(b+1)/2 ◦ (∆φ + k2) ◦ x(b+1)/2 = �φ + k2,

which is a self-adjoint operator in L2(M ; ΛφM) := L2(M ; ΛφM ; dvolb). In the collar
neighborhood U of the boundary, �φ acts with respect to the splitting into fiber
harmonic forms H and the perpendicular bundle C by a 2× 2 matrix (see (5.27))

�φ =

(
xP00x xP01x

xP10x P11

)
.

As in the parametrix construction for �φ in Section 5.4, we will start the construc-
tion of a resolvent parametrix for �φ by taking parametrices for the diagonal terms
xP00x+k2 and P11+k2. These are well-behaved (i.e., polyhomogeneous and conormal)
on two different spaces:

– Recall from Section 5.3 that xP00x is, up to higher order terms, a Hodge Lapla-
cian on V = B × [0, ε) for a scattering metric, twisted by the bundle H. Therefore
it has a resolvent parametrix which is well-behaved on the space V 2

k,sc and valued
in End(H). By (6.8) and the subsequent explanation it is therefore a well-behaved
distribution on U2

k,sc,φ ⊂M2
k,sc,φ.
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– For operators like P11, i.e., fully elliptic φ-Laplacians, the resolvent is well-
behaved on U2

φ × R+ ⊂M2
φ × R+.

These two spaces are illustrated along each other for comparison in Figure 8. In order
to construct the resolvent of �φ we therefore need to find a blowup of M2 ×R+ that
blows down to both M2

k,sc,φ and M2
φ ×R+. We now construct such a space, which we

call M2
k,φ.

M2
k,sc,φ

M2
φ × R+

Figure 8. Comparison of the blowup spaces M2
k,sc,φ and M2

φ × R+.

7.1. Construction of the blowup space M2
k,φ. — The space M2

k,φ is constructed
from M2

k,sc,φ by one additional blow-up. Let diagk,φ be the intersection of the lifted
interior fiber diagonal with bf0:

(7.1) diagk,φ := β∗k,sc,φ(diagφ,int×R+) ∩ bf0 = {X = 0, U = 0, k = 0}
in projective coordinates (6.7). Then we define

(7.2) M2
k,φ := [M2

k,sc,φ; diagk,φ],

with the blowdown map βφ-sc : M2
k,φ →M2

k,sc,φ, and total blowdown map

βk,φ = βk,sc,φ ◦ βφ-sc : M2
k,φ −→M2 × R+.

The resulting blowup space is illustrated in Figure 9.

lb0 rb0

lb rb

zf

bf0 φf0

scbf

lb0 rb0

lb rb

zf

bf0

scbf
βφ-sc

Figure 9. Blowup space M2
k,φ.
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By construction, the blowup spaceM2
k,φ blows down toM2

k,sc,φ. However, existence
of a blowdown map toM2

φ×R+ is non-trivial and is the subject of the following lemma.

Lemma 7.1. — The identity in the interior extends to a b-map

β′k,φ : M2
k,φ −→M2

φ × R+.

More precisely, β′k,φ is the composition of the blow-down maps for the blow-up of
M2
φ × R+ in the faces f × {0}, where f runs through the faces bf, φf, lb, rb of M2

φ,
with bf blown up first. The face φf0 of M2

k,φ is the lift of the front face of the blow-up
of φf × {0}.

For the proof we use the following result on interchanging the order of blowups.

Lemma 7.2. — Let Z be a manifold with corners and A,B ⊂ Z be two p-submanifolds
which intersect cleanly.(15) We shall blow up both submanifolds in different order and
write e.g. [Z;A,B] := [[Z,A], B̃], where B̃ is the lift of B under the blow-down map
[Z,A]→ Z. Then there are natural diffeomorphisms as follows.

(a) If A,B are transversal or disjoint, or one is contained in the other, then inter-
changing the order of blowups of A and B yields diffeomorphic manifolds with corners

[Z;A,B] ∼= [Z;B,A].

(b) In general, interchanging the order of blowups of A and B yields diffeomorphic
results if additionally the intersection A ∩B is blown up:

[Z;A,B,A ∩B] ∼= [Z;B,A,A ∩B].

In both cases diffeomorphy holds in the sense that the identity on Z r (A ∪ B)

extends smoothly to a b-map between the two spaces with smooth inverse.

Proof. — For the proof of statement (a) we refer to [HMM95, Lem. 2.1]. For the proof
of statement (b), that is stated without proof in [Mel08, Prop. 5], we shall illustrate
the idea on a specific example that models the blowup of diagk,φ in M2

k,sc,φ. Consider
Z := Ry×R+

x ×R+
z with coordinates (x, y, z) as indicated in the lower indices. We set

A := {x = z = 0} and B := {x = y = 0}.

Their intersection is A ∩ B = {x = 0, y = 0, z = 0}. We shall consider projective
coordinates on the blowups [Z;A,B,A ∩B] and [Z;B,A,A ∩B].

Blowup [Z;A,B,A∩B]. — The blowup is obtained in three steps, blowing up A first,
then the lift of B second, and finally the lift of the intersection A ∩ B as the third
step. This is illustrated in Figure 10.

(15)This means that near any p ∈ A∩B one can find coordinates adapted to the corners of Z so
that both A and B are coordinate subspaces locally. This implies that the lift of B under the blow-up
of A is again a p-submanifold, and similarly with A,B interchanged. See [Mel96, Prop. 5.7.2].
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y

z

x

•

Figure 10. [Z;A,B,A ∩B].

Blowup [Z;B,A,A∩B]. — The blowup is obtained in three steps, blowing up B first,
then the lift of A second, and finally the lift of the intersection A ∩ B as the third
step. This is illustrated in Figure 11.

y

z

x

•

Figure 11. [Z;B,A,A ∩B].

There is an obvious isomorphism between the face lattices(16) of the two spaces.
We shall write out explicitly the projective coordinates near the corners indicated
by a bullet in Figures 10 and 11. Straightforward computations show that projective
coordinates in both blowups are the same and given by

(7.3) s1 =
zy

x
, s2 =

x

y
, s3 =

x

z
.

These projective coordinates are illustrated in Figure 12.

[Z;A,B,A ∩B]

s1

s2

s3

[Z;B,A,A ∩B]

s3

s1

s2

Figure 12. Coordinates in corners of [Z;A,B,A ∩B] and [Z;B,A,A ∩B].

Similarly we may check that projective coordinates near any pair of corresponding
corners of [Z;A,B,A∩B] and [Z;B,A,A∩B] coincide, proving the statement in this
model case. The general case is studied along the same lines. �

We can now prove Lemma 7.1.

(16)i.e., the ordered sets whose elements are the faces of the space, ordered by inclusion.
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Proof of Lemma 7.1. — We proceed in the notation of Section 6 and denote for exam-
ple by C•11 the highest codimension corner in M2 × R+, and C+

11 = ∂M × ∂M × R+;
we will use the same notation for the lifts. We will apply Lemma 7.2 with

Z = [M2 × R+;C+
11] = M2

b × R+, A = C
•
11, B = diagφ×R+,

where diagφ is the fiber diagonal in the b-face of M2
b , see (4.4). In local projective

coordinates (s = x/x′, x′, y, y′, z, z′, k) near the resulting front face in Z, we have
A = {x′ = k = 0} and B = {x′ = 0, s = 1, y = y′}, which shows that A,B intersect
cleanly (but not transversally). Now [Z;A, ∗] = M2

k,b (where ∗ denotes the left and
right edges C•10, C

•
01) and the lift of B to this space is diagk,sc,φ and disjoint from ∗,

so [Z;A,B, ∗] = M2
k,sc,φ. The lift of A ∩B to this space is diagφ and disjoint from ∗,

so we obtain [
[Z;A,B,A ∩B];C

•
10, C

•
01

]
= M2

k,φ.(7.4)

On the other hand, [Z;B] = M2
φ × R+, so we also have

(7.5)
[
[Z;B,A,A ∩B];C

•
10, C

•
01

]
=
[
[M2

φ × R+, A,A ∩B];C
•
10, C

•
01

]
.

By Lemma 7.2 the spaces in (7.4), (7.5) coincide so the claim follows since the lifts
of A, A ∩B, C•10, C

•
01 are f × {0} with f = bf, φf, lb, rb. �

We can apply the construction of the (k, φ) double space to the boundary neighbor-
hood U ∼= [0, ε)× ∂M instead of M . We can also apply it to the space V = [0, ε)×B,
with the trivial fibration that has point fibers. Then, similar to (6.8), the fibration
U→ V = [0, ε)×B induces a fibration

(7.6) U2
k,φ −→ V 2

k,φ

with fibers F 2. Therefore, a distribution on V 2
k,φ valued in End(H) for a subbundle

H ⊂ C∞(F,E) and some bundle E → U can instead be considered as a distribution
on U2

k,φ valued in E.

7.2. Definition of the (k, φ)-calculus. — The lifted diagonal Diagk,φ, i.e., the clo-
sure of the preimage of {(p, p, k) | p ∈ M, k > 0} ⊂ M2 × R+ under the map
βk,φ : M2

k,φ → M2 × R+, is a p-submanifold of M2
k,φ and hits its boundary only in

the faces sc, φf0 and zf. The Schwartz kernel of the operator �φ + k2 lifts to M2
k,φ to

be conormal to Diagk,φ, uniformly to the boundary with a non-vanishing delta type
singularity, when written as a section of the half-density bundle

(7.7) Ω
1/2
bφ (M2

k,φ) := ρ−(b+1)/2
sc ρ

−(b+1)/2
φf0

Ω
1/2
b (M2

k,φ).

This is because the same is true for �φ on M2
φ, hence on M2

φ×R+, with respect to its
diagonal diagφ×R+, and this diagonal hits bf ×{0} transversally, so blowing up that
face (which results in φf0 away from bf0) does not affect conormality. Equivalently,
in local coordinates we blow up {x′ = k = 0}, and this does not affect conormality
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with respect to {(T, Y ) = 0, z = z′}. We also use here that the half-density bundles
are compatible in the sense that

Ω
1/2
bφ (M2

k,φ) = (β′φ)∗
(

Ω
1/2
bφ (M2

φ)⊗ Ω
1/2
b (R+)

)
.

This motivates the following definition. As usual we define operators (in our case,
families of operators on M depending on the parameter k > 0) by their Schwartz
kernels and identify kernels on M2 × (0,∞) with those lifted to the interior of M2

k,φ.

Definition 7.3. — LetM be a compact manifold with fibered boundary and E →M

a vector bundle. We define small and full (k, φ)-calculi as follows.

(1) The small (k, φ)-calculus, denoted by Ψm
k,φ(M ;E) for m ∈ R, is the set of

distributions onM2
k,φ, valued in Ω

1/2
bφ (M2

k,φ)⊗End(E), which are conormal of order(17)

m − 1/4 with respect to the lifted diagonal and which vanish to infinite order at all
boundary hypersurfaces except φf0, zf and sc.

(2) Consider (aφf0 , azf , asc) ∈ R3, and an index family E for M2
k,φ satisfying Ebf =

Elb = Erb = ∅. The full (k, φ)-calculus is defined by

(7.8) Ψ
m,(aφf0 ,azf ,asc),E

k,φ (M ;E) = ρ
aφf0
φf0

ρazfzf ρ
asc
sc Ψm

k,φ(M ;E) + A E
k,φ(M ;E),

where we simplified notation by setting

A E
k,φ(M ;E) := A E

phg

(
M2
k,φ,Ω

1/2
bφ (M2

k,φ)⊗ End(E)
)
.

If the triple (aφf0 , azf , asc) = (0, 0, 0), we simply write Ψm,E
k,φ (M ;E).

Note that, as in Definition 6.2, the numbers aφf0 , azf , asc refer to the behavior of
the conormal singularity at the boundary faces, while the index family E describes
the boundary behavior of the smooth part. These two behaviors are allowed to, and in
general will, be different. If E = ΛφM then we also need a split version of the (k, φ)-
calculus, analogous to Definition 5.3, because of the different behavior of H- and
C-valued sections.

Definition 7.4 (Split (k, φ)-calculus). — Let E be an index family forM2
k,φ as above.

Let A E
k,φ,H(M) be the space of sections K ∈ A E

k,φ(M ; ΛφM) which satisfy the con-
ditions in Definition 5.3, with bf, lb, rb and φf replaced by bf0, lb0, rb0 and φf0,
respectively. The split (k, φ)-calculus is defined as

Ψm,E
k,φ,H(M) = Ψm

k,φ(M ; ΛφM) + A E
k,φ,H(M).

The space Ψ
m,(aφf0 ,azf ,asc),E

k,φ,H (M) is defined in an analogous way.

(17)See the remark after Definition 2.4 concerning the order shift by 1/4.
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7.3. Initial parametrix construction on M2
k,φ

Theorem 7.5. — There exists a resolvent parametrix G(k) ∈ Ψ−2,E
k,φ,H(M), such that

(�φ + k2)G(k) = Id−R(k),

with remainder R(k) ∈ Ψ
−∞,(1,1,1),R
k,φ,H (M) where the index set E satisfies

Elb0 = E (−1)lb − 1, Erb0 = E (−1)rb − 1,

Ebf0 > −2, Eφf0 > 0, Esc = 0, Ezf = −2,
(7.9)

with E (−1) determined by specb(P00) and satisfying (3.4) with P = P00, α = −1, and
an index set R positive at all faces. Moreover, Ef and Rf are empty at f = bf, lb, rb.
Note that by Assumption 1.4, E (−1)lb = E (1)lb > 1 and similarly at rb. Hence

(7.10) Elb0 > 0, Erb0 > 0.

The proof of this result occupies this subsection. Constructing G(k) requires solv-
ing model problems at the various boundary hypersurfaces of M2

k,φ, leading to the
construction of the leading terms at these faces. We first find the leading terms at zf

and then at the faces sc, bf0, φf0 lying over ∂M × ∂M . Along the way we check that
the constructions match near all intersections, and also with a small parametrix at
the diagonal.

The construction at zf is global onM×M and uses Corollary 5.7. The construction
at the faces sc, bf0, φf0 closely follows the route taken in Step 1 in the proof of
Theorem 5.4, with �φ replaced by �φ+k2 andM2

φ byM2
k,φ. In the intermediate steps

of the construction we need the extended calculus as explained after Theorem 5.4.
The definition given there carries over to the (k, φ) because U2

k,φ → V 2
k,φ is a bundle

with fibers F 2, see (7.6). The lifting property (5.33) also carries over and now reads
(leaving out bundles)

(7.11) β∗φ-sc : Ψ−mk,sc(V ) −→ ρmφf0
Ψ−mk,φ (V ) + A Fm

k,φ (V ), A F
k,sc(V ) −→ A F ′

k,φ (V )

for any index set F forM2
k,sc, where Fm,bf0 = 0, Fm,φf0 = m∪(b+1), and Fm,f = ∅

at all other faces f , and where F ′ has the same index sets as F at all faces that already
exist on V 2

k,sc, and in addition F ′φf0
= Fbf0 + (b+ 1). Note that, since the boundary

fibration for V has point fibers, we have V 2
k,sc = V 2

k,sc,φ.
We also need to pull back via β′k,φ : M2

k,φ →M2
φ × R+:

(7.12) (β′k,φ)∗ : C∞(R+
k ,Ψ

−m
φ (M)) −→ Ψ−mk,φ (M).

This follows from the fact that φf0 arises as front face of the blow-up of the corner
φf × {0} ⊂M2

φ × R+
k (see Figure 11) and the fact that this face is transversal to the

diagonal in M2
φ × R+.

In the following construction we denote the leading term of order m at a face f by
Gm(f). That is, the resolvent behaves like ρmf Gm(f) + o(ρmf ) near the interior of f ,
and similarly if there are several leading terms. Here ρf is a defining function for the
interior of f . We use k as interior defining function for all faces ‘at k = 0’ i.e., zf, lb0,
bf0, φf0. At zf we need to construct two leading terms, G−2(zf) and G0(zf).

J.É.P. — M., 2022, tome 9



Resolvent at low energy 1003

7.3.1. Leading terms at zf. — We shall define (a fibered cusp operator)

�cφ := x−1�φx
−1.

From Corollary 5.7 it follows that the following operators are Fredholm:

�φ : H2
H(M) −→ L2(M ; ΛφM), if − 1 /∈ specb(P00)

�cφ : x2H2
H(M) −→ L2(M ; ΛφM), if 0 /∈ specb(P00).

(7.13)

We abbreviate L2 = L2(M ; ΛφM) and H2
H = H2

H(M). Assume 0 6∈ specb(P00).(18)

Recall that by (5.43) only the second map in (7.13) is an operator in L2. Let Gcφ be
the Fredholm inverse of �cφ in L2. Because �cφ is self-adjoint in L2 we have

(7.14) �cφGcφ = Id−Πcφ,

where Πcφ is the orthogonal projection in L2 onto the L2-kernel of�cφ, which has finite
dimension. Conjugating by x and inserting x · x−1 between �cφ and Gcφ we obtain

(7.15) �φx
−1Gcφx

−1 = Id−xΠcφx
−1.

This is an identity in xL2, since the operators on the left hand side in (7.15) map

xL2
x−1Gcφx

−1

−−−−−−−−−−→ xH2
H

�φ−−−→ xL2.

We now show that (7.15) is also an identity in L2 (without weight x!). First, we con-
sider the right hand side of (7.15).

Lemma 7.6. — If Assumption 1.4 is satisfied, then xΠcφx
−1 extends to a projection(19)

in L2, and the orthogonal projection Πφ of L2 onto the L2-kernel of �φ satisfies

ker Πφ = ker
(
xΠcφx

−1
)
.

Proof. — We have by Assumption 1.4

(7.16) kerL2 �cφ = kerL2 �φx
−1 = x kerx−1L2 �φ = x kerL2 �φ,

where the last equality is by Corollary 5.8 that follows from Assumption 1.4. In par-
ticular, kerL2 �cφ ⊂ xL2. Writing the Schwartz kernel of Πcφ as

∑N
j=1 φj ⊗ φj for

an orthonormal basis (φj) of kerL2 �cφ, we see that the Schwartz kernel of xΠcφx
−1

equals
∑N
j=1(xφj)⊗ (x−1φj), and from x−1φj ∈ L2 we conclude that this extends to

an operator on L2, and that (for u ∈ L2)

u ∈ ker
(
xΠcφx

−1
)
⇐⇒ u ⊥ x−1 kerL2 �cφ.

Now (7.16) gives x−1 kerL2 �cφ = kerL2 �φ, and the claim follows from kerL2 �φ =

Ran Πφ = (ker Πφ)⊥ by the following sequence of identities

ker Πφ = (kerL2 �φ)
⊥

=
(
x−1 kerL2 �cφ

)⊥
= ker

(
xΠcφx

−1
)
. �

(18)This is of course a consequence of Assumption 1.4.
(19)Note that the projection xΠcφx

−1 is not orthogonal.
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Next, we consider the left hand side of (7.15). Since x−1Gcφx
−1 is a parametrix

of �φ in xL2 with finite rank remainder, the argument in Corollary 5.7, with α = 0,
shows that its index set at rb is E (0)rb − 1. Now x−1Gcφx

−1 extends to L2 iff its
index set at rb is positive, and by (3.4) this is equivalent to

(7.17) [−1, 0] ∩ specb(P00) = ∅.

Thus by Assumption 1.4, (7.15) is indeed an identity on L2. In view of (7.15) as
an identity on L2 and Lemma 7.6 we can obtain a formula for a Fredholm inverse
of �φ, using the following simple functional analytic result, relating projections and
orthogonal projections.

Lemma 7.7. — Let H1 and H2 be Hilbert spaces, P : H1 → H2 and G : H2 → H1

be operators such that P ◦G = Id−Π for a continuous projection Π in H2. Then the
operator Id−Π + Π∗ in H2 is invertible, and the orthogonal projection Πo in H2 with
ker Π = ker Πo is given by

(7.18) Πo = Π∗ ◦ (Id−Π + Π∗)−1.

Moreover, setting Go := G ◦ (Id−Π + Π∗)−1, we have

(7.19) P ◦Go = Id−Πo.

Proof. — Since Π is a projection, ker Π = Ran(Id−Π). The property ker Π = ker Πo

implies that Πo also vanishes on Ran(Id−Π), so

Πo ◦ (Id−Π) = 0.

Next, Πo is the identity on the orthogonal complement (ker Πo)
⊥ = (ker Π)⊥ =

Ran Π∗. Thus Πo ◦ Π∗ = Π∗. Adding this to the property Πo ◦ (Id−Π) = 0 above,
we conclude

Πo ◦ (Id−Π + Π∗) = Π∗.

The operator Π − Π∗ is skew-adjoint, thus has purely imaginary spectrum. Con-
sequently, Id−Π + Π∗ is invertible and (7.18) follows. Finally, (7.19) follows by a
straightforward computation with S = Id−Π + Π∗:

P ◦Go = P ◦G ◦ S−1 = (Id−Π) ◦ S−1 = (S −Π∗) ◦ S−1 = Id−Π∗ ◦ S−1. �

We apply Lemma 7.7 by setting (in the notation therein)

P = �φ, G = x−1Gcφx
−1, Π = xΠcφx

−1, H1 = H2
H, H2 = L2.

We then obtain a Fredholm inverse Go, which we denote Gφ, to �φ by setting (note
Π∗cφ = Πcφ)

(7.20) Gφ := x−1Gcφx
−1 ◦ (Id−xΠcφx

−1 + x−1Πcφx)−1.

Remark 7.8. — Formulas like (7.18) have appeared in the literature before, e.g. in
[BBLZ09, Lem. 3.5]. Our functional analytic approach is different from the approach
by [GS15] and [GH08], where the Fredholm parametrix is obtained by algebraic com-
putation with bases of kerL2 �φ.
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We can now define the two leading terms of the resolvent parametrix at zf as

(7.21) G−2(zf) = Πφ, G0(zf) = Gφ.

Note that �φGφ = Id−Πφ and �φΠφ = 0 imply that this defines indeed a parametrix
near zf:

(7.22) (�φ + k2)(k−2Πφ +Gφ) = Id +O(k2).

7.3.2. Leading terms at sc, bf0, φf0. — In this step we will construct a parametrix

(7.23) Q1 ∈ Ψ
−2,E ′

k,φ,H(M),

by defining it near the boundary faces sc, bf0, φf0 of M2
k,φ and extending it to M2

k,φ

using a cutoff function, with remainder term vanishing at the boundary, see (7.26)
below for the precise statement. Here E ′ coincides with the index set E in (7.9) except
at zf, where E ′zf = 0. We follow Step 1 in the proof of Theorem 5.4, replacing �φ by
�φ + k2 and taking the weight α = −1. That is, with �φ written as in (5.27) and in
the notation of the proof of that theorem we now set

A = xP00x+ k2, B = xP01x, C = xP10x, D = P11 + k2.

Diagonal terms in (5.34). — Comparing (6.10), (6.11) with (5.30), (5.31) shows in
view of (6.9) that we can apply the resolvent construction of Guillarmou and Hassell
to find a parametrix Q00,k for A = xP00x + k2, but only near the boundary, i.e., on
V 2
k,sc. That is, we use the solutions of the model problems at the diagonal, at sc and

bf0 (but not at zf) to obtain

(7.24)
(xP00x+ k2)Q00,k = Id−R00,k,

Q00,k ∈ Ψ
−2,(−2,0,0),E0

k,sc (V,H), R00,k ∈ ρbf0ρscA
E0

k,sc(V,H),

where E0 is the index set E but without the φf0 part. By (7.11) Q00,k lifts to an
element of Ψ−2,E

k,φ (V,H) ⊂ Ψ
−2,E
k,φ (U) (we leave out the bundle ΛφM from notation in

this proof). In the notation of (5.34) we set Â = Q00,k and R = R00,k.
Next we construct a parametrix for D = P11 + k2. As discussed after (5.28), the

normal operator of P11 = Π⊥�φΠ⊥ is invertible, and by [GH14, Prop. 2.3] its inverse
lies in the extended suspended calculus of M2

φ. The argument given there shows that
the same holds for P11 + k2, with smooth dependence on k > 0. So the arguments of
loc. cit. apply to give Q11,k ∈ C∞(R+

k ,Ψ
−2

φ (U)), R11,k ∈ C∞(R+
k ,A

∅
φ (U)), satisfying

(P11 + k2)Q11,k = Id−R11,k as an identity in C∞(V × (0,∞),C). Pulling these oper-
ators back under the map β′φ : U2

k,φ → U2
φ × R+ we obtain by the extended analogue

of (7.12)

Q11,k ∈ Ψ
−2

k,φ(U), R11,k ∈ A F
k,φ(U),

where Fzf = 0 and Ff = ∅ at all other faces f .
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Off-diagonal terms in (5.34). — With Â = Q00,k and D̂ = Q11,k we get

B′ = xP01xQ11,k ∈ x2Ψ
0

k,φ(U) = Ψ
0

k,φ(U)x2 and C ′ = xP10xQ00,k ∈ x2Ψ
0,E
k,φ(U).

The extra x2 factors in B′, C ′ give Q1 ∈ Ψ
−2,E
k,φ,H(U).

Remainder. — The analysis of the remainders is analogous to the proof of Theo-
rem 5.4. For index families we use a notation analogous to (5.37):

(7.25) F = (a, b, c, l + λ, r + ρ)

⇐⇒ Fbf0 > a, Fφf0 > b, Fsc > c,Flb0
= E (0)lb + λ, Frb0

= E (0)rb + ρ

and Fzf = 0, and all other index sets empty. By (7.11)R00,k lifts to A
(1,4,1,l+1,r−1)
k,φ (U).

Then R00,kB
′ ∈ A

(3,6,3,l+1,r+1)
k,φ (U) and R11,kC

′ ∈ A
(∅,∅,∅,∅,r−1)
k,φ (U). Also,

B′C ′ ∈ x4Ψ
0,E
k,φ(U) = ρ4

φf0
ρ4

scΨ
0,(2,0,0,l+3,r−1)

k,φ (U),

C ′B′ ∈ x2Ψ
0,E
k,φ(U)x2 = ρ4

φf0
ρ4

scΨ
0,(2,0,0,l+1,r+1)

k,φ (U).

In summary we get (�φ + k2)Q1 = Id−R1 where R1 ∈ ρ4
φf0
ρ4

scΨ
0,R1

k,φ (U) with

(7.26) R1 =

(
(1, 0, 0, l + 1, r − 1) (3, 2,−1, l + 1, r + 1)

(∅,∅,∅,∅, r − 1) (2, 0, 0, l + 1, r + 1)

)
.

This has positive index sets at bf0, sc, φf0.

Matching at the intersections of boundary faces. — The terms at sc,bf0, φf0 match
between each other and the faces bf, lb, rb by construction. We now show that the
terms at bf0 and φf0 also match with the leading terms at zf.

First, the coefficient of the k−2 term is the orthogonal projection Πφ to K =

kerL2 �φ, whose integral kernel is
∑N
i=1 ψi ⊗ ψi (times b-half densities) for an or-

thonormal basis (ψi) of K. By Corollary 5.8, ψi ∈ A F
H (M) for an index set F > 0,

and this implies Πφ ∈ A F
φ,H(M) with F positive at all faces (and even with an in-

dex set > b + 1 at φf by (4.6)). Since the leading orders at bf0 and φf0 in E are
−2, 0 respectively, it follows that k−2Πφ = (κ′)−2(x′)−2Πφ (recall from (6.2) that
κ′ = k/x′) is lower order than the leading terms of G1(k) at these faces, in each of
the components of the H-C decomposition.

Next, the k0 coefficient at zf is Gφ in (7.20). The fact that Gcφ is a Fredholm
inverse of �cφ implies as in the proof of Corollary 5.7 that Gcφ is pseudodifferential,
and more precisely that x−1Gcφx

−1 ∈ Ψ−2,E0

φ,H (M) with E0 the index set for zf induced
by E in (7.9), and has the same leading terms at the intersection with bf0 and φf0

as Q1(k) restricted to k = 0, in each component of the H-C decomposition. Also, the
terms S = xΠcφx

−1 + x−1Πcφx vanish at the boundary as in the argument above
for Πφ, so (Id +S)−1 = Id +S′ where S′ has the same vanishing orders by standard
arguments, so the factor (Id +S)−1 does not change the leading term.
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7.3.3. Singularity at the diagonal. — The fact that the distribution kernel of �φ + k2

has a delta type singularity on diagk,φ, uniformly and non-vanishing at the boundary,
means that its (k, φ)-principal symbol, which is an endomorphism of N∗ diagk,φ, is
uniformly invertible. By inverting this symbol and applying the standard parametrix
construction one obtains a ‘small’ parametrix Q4 satisfying

(�φ + k2)Q4 = Id−R4, Q4 ∈ Ψ−2
k,φ(M), R4 ∈ Ψ−∞k,φ (M).

The same argument as in the proof of Theorem 5.4 shows two things: that the
parametrix constructed so far, which was only in the extended φ-calculus near the
boundary, is actually in the φ-calculus itself, and that Q∆ can be adjusted to match
with the parametrices at the faces hit by the diagonal.

7.3.4. Remainder term of the initial parametrix. — We choose our initial parametrix
G(k) to be an element of Ψ−2,E

k,φ,H(M) which matches the models at zf, sc, bf0, φf0 as
explained above. We now analyze the term R(k) in (�φ + k2)G(k) = Id−R(k) and
in particular track the different terms in the H-C decomposition.

First, consider lb0 near its intersection with zf, away from bf0. Here

G(k) = k−2G−2(zf) +G0(zf) + G̃,

where G̃ has index sets L , 1 at lb0, zf, respectively, with L =
( Elb0

Elb0
+2

)
. Since κ

(recall κ = k/x as defined in (6.2)) defines zf near zf ∩ lb0, this means G̃ = κG′

with G′ having index sets L , 1 at lb0, zf, respectively. Then by (7.22)

(�φ + k2)G(k) = Id +k2G0(zf) + (�φ + k2)(κG′).

The main term here is �φκG′ = k�φk−1κG′ = κx�φx−1G′. Now x�φx−1 has the
same structure (5.27) as �φ, and x defines lb0, so applying it to G′ yields index set

(7.27)
(

2 2

2 0

)
⊗
(

Elb0

Elb0
+ 2

)
=

(
Elb0

+ 2

Elb0
+ 2

)
,

where ⊗ is the tropical matrix product, which is the usual matrix product with +

replaced by ∪ (respectively replacing + by ‘min’ for lower bounds on index sets) and ·
by +.

The index set of κG′, and hence of R(k), at rb0 is the same as that of G′ since P
does not act on the local defining function x′ of rb0, so it is

(
Erb0

Erb0
+ 2
)
. Now (7.10)

implies that R(k) ∈ A R
k,φ,H(M) near (lb0 ∪ rb0) ∩ zf with Rlb,Rrb positive. Similar

arguments and (7.26) show that R(k) ∈ Ψ
−∞,(1,1,1),R
k,φ,H (M) with R positive at all faces.

This finished the proof of Theorem 7.5.

Remark 7.9. — Our Assumption 1.4 implies that the remainder term, after construct-
ing model solutions at zf, sc, bf0, φf0, is positive at all faces, including lb0 and rb0.
For this reason, and since we do not require finer information for the Riesz transform,
we do not need a construction of leading terms at these side faces as in the works by
Guillarmou, Hassell and Sher.
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7.4. Statement and proof of the main result. — Now we have all tools in place
to finish our microlocal construction of the resolvent for the Hodge Laplacian ∆φ

on φ-manifolds at low energy. Recall that we work under the rescaling (5.26) and
thus ∆φ is replaced with the unitarily equivalent operator �φ acting in L2(M ; ΛφM).
We recall the initial parametrix Q(k) for (�φ + k2), constructed in Theorem 7.5

(�φ + k2)Q(k) = Id−R(k).

In order to invert the right hand side we begin with a lemma that is parallel to [GH08,
Cor. 2.11].

Lemma 7.10. — For N > dimM , R(k)N is Hilbert-Schmidt for each k > 0, with
Hilbert-Schmidt norm

‖R(k)N‖HS −→ 0, as k −→ 0.

Proof. — Since the Schwartz kernel for the error term R(k) is a polyhomogeneous
conormal distribution when lifted toM2

k,φ, vanishing to positive order at all boundary
faces, there exists a positive lower bound ε > 0 for all its index sets. Then the
composition theorem 8.4 implies that R(k)N has index sets that are bounded below
by Nε > 0. Since the order of R(k) as a pseudodifferential operator is (−1), the order
of the conormal singularity of R(k)N is (−N) < −dimM , so its Schwartz kernel
is continuous across the lifted diagonal. Thus R(k)N is a Hilbert Schmidt operator
in L2(M ; ΛφM). Finally, its Hilbert-Schmidt norm tends to zero as k → 0 since its
Schwartz kernel vanishes at the k = 0 faces zf, lb0 and rb0. �

Thus Id−R(k) is invertible as an operator in L2(M ; ΛφM) for k > 0 sufficiently
small. We can now state and prove our main theorem.

Theorem 7.11 (Main theorem). — The resolvent (�φ + k2)−1 is an element of the
split (k, φ)-calculus Ψ−2,E

k,φ,H(M), defined in Definition 7.4, where the individual index
sets satisfy
(7.28) Esc > 0, Eφf0 > 0, Ebf0 > −2, Elb0 ,Erb0 > 0, Ezf > −2.

The leading terms at sc, φf0, bf0 and zf are of orders 0, 0,−2,−2, respectively, and
are given by the constructions in Section 7.3.

Proof. — Fix N > dimM . By Lemma 7.10 there is k0 > 0 so that R(k)N has operator
norm less than one for k ∈ (0, k0]. Therefore, Id−R(k)N and hence Id−R(k) is
invertible for these k, with inverse given by the Neumann series

∑∞
j=0R(k)j . As in the

proof of Lemma 7.10, all index sets of R(k)j are bounded below by jε, and since this
tends to∞ as j →∞, it follows by standard arguments that (Id−R(k))−1 = Id +S(k)

where S(k) lies in the calculus with the same lower bounds for the index sets as R(k).
By Proposition 7.5 the initial parametrix Q(k) satisfies the claims of the theorem.

Hence the same holds for (�φ + k2)−1 = Q(k)(Id +S(k)). Since S(k) has positive
index sets everywhere, the leading terms of (�φ + k2)−1 are the same as those of
Q(k). This proves the statement when k is restricted to k 6 k0. Since (�φ + k2) is
fully elliptic for all k > 0, with smooth dependence on k, the statement holds for
all k. �
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8. Triple space construction and composition theorems

The following results hold for any vector bundle E. We applied these composition
results above for the particular case where E = ΛφT ∗M .

Theorem 8.1. — Consider operators A and B with integral kernels lifting to

β∗k,φKA ∈ A E
phg(M2

k,φ,Ω
1/2
bφ ⊗ End(E)) = A E

k,φ,

β∗k,φKB ∈ A F
phg(M2

k,φ,Ω
1/2
bφ ⊗ End(E)) = A F

k,φ.
(8.1)

Assume that both lifts vanish to infinite order at bf, lb and rb. Then the composition
of operators A ◦B is well-defined and has integral kernel lifting to

(8.2) β∗k,φKA◦B ∈ A C
phg(M2

k,φ,Ω
1/2
bφ ⊗ End(E)) = A C

k,φ.

Furthermore, the analogous statement holds for the split spaces:

(8.3) β∗k,φKA ∈ A E
k,φ,H, β

∗
k,φKB ∈ A F

k,φ,H =⇒ β∗k,φKA◦B ∈ A C
k,φ,H.

The index family C is given by

Cφf0 = (Ebf0 + Fbf0 + (b+ 1))∪ (Elb0
+ Frb0

+ (b+ 1))∪
(
Eφf0 + Fφf0

)
,

Cbf0 = (Ebf0 + Fbf0)∪(Elb0
+ Frb0

)∪(Eφf0 + Fbf0)∪(Ebf0 + Fφf0),

Crb0
= (Ezf + Frb0

)∪(Erb0
+ Fbf0)∪(Erb0

+ Fφf0),

Clb0
= (Elb0

+ Fzf)∪(Ebf0 + Flb0
)∪(Eφf0 + Flb0

),

Czf = (Ezf + Fzf)∪(Erb0 + Flb0),

Cbf = Clb = Crb = ∅,
Csc = (Esc + Fsc).

(8.4)

Note that no integrability condition on the index sets at the left and right boundary
faces is needed since composition, hence integration, is done only for fixed k > 0, and
Schwartz kernels are assumed to vanish to infinite order at the side faces for k > 0.

Proof. — The Schwartz kernel KA◦B may be expressed using projections

πL : M3 × R+ −→M2 × R+, (p, p′, p′′, k) 7−→ (p′, p′′, k),

πC : M3 × R+ −→M2 × R+, (p, p′, p′′, k) 7−→ (p, p′′, k),

πR : M3 × R+ −→M2 × R+, (p, p′, p′′, k) 7−→ (p, p′, k).

With this notation we can write, provided the pushforward is well-defined,

KA◦B = (πC)∗
(
π∗RKA ⊗ π∗LKB

)
.

To prove the theorem, we need to define a triple space M3
k,φ given by a blowup of

M3 × R+, such that the projections πL, πC , πR lift to b-fibrations ΠL,ΠC ,ΠR on
the triple space M3

k,φ. More precisely, writing β2
k,φ ≡ βk,φ : M2

k,φ → M2 × R+ for
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the blowdown map on M2
k,φ, we are looking for a space M3

k,φ and a smooth map
β3
k,φ : M3

k,φ →M3×R+, such that the following diagram commutes for ∗ ∈ {L,C,R}.

M3
k,φ M2

k,φ

M3 × R+ M2 × R+

Π∗

β3
k,φ β2

k,φ

π∗

Once we know that the projections lift to b-fibrations, we deduce that

(8.5) β∗k,φKA◦B = (ΠC)∗

(
Π∗R
(
β∗k,φKA

)
·Π∗L

(
β∗k,φKB

))
,

is polyhomogeneous on M3
k,φ by the pullback and pushforward theorems of Melrose.

We proceed in four steps.
– Step 1: Construct the triple space M3

k,φ.
– Step 2: Show that projections πL, πR, πC lift to b-fibrations ΠL,ΠR,ΠC .
– Step 3: Compute the index sets (8.4).
– Step 4: Prove (8.3).

Step 1: Construction of the triple space M3
k,φ. — We constructed the double space

M2
k,φ from M2×R+ by first doing a b- (or total boundary) blow-up, then blowing up

the fiber diagonal in k > 0, denoted diagk,sc,φ, and finally the fiber diagonal at k = 0,
denoted diagk,φ. (Here fiber diagonal always means the boundary of the interior fiber
diagonal, lifted to the b-space.) Similarly, we will construct the triple space M3

k,φ by
first doing a b-blow-up, then blowing up the preimages of the fiber diagonal in k > 0

under the three projections, and finally blowing up the preimages of the fiber diagonal
at k = 0. In both cases the three preimages intersect, so their intersection is blown
up first.

We now provide the details. We first set up a notation for the various corners in
M3 × R+, similar to the notation for the double space. We write (x, x′, x′′) for the
defining functions on the three copies of M . As before, k > 0 is the coordinate on
the R+-component. Now for any triple of binary indices i1, i2, i3 ∈ {0, 1} we define
Ci1i2i3 := {xj = 0 for all j with ij = 1} ⊂M3 and

C
•
i1i2i3 = Ci1i2i3 × {0}, C+

i1i2i3
= Ci1i2i3 × R+.

For example the highest codimension corner in M3 × R+ is given by

C
•
111 = {x = x′ = x′′ = k = 0}.

We will slightly abuse notation below by denoting the lifts of C∗i1i2i3 as C∗i1i2i3 again
for ∗ ∈ {•,+} and i1, i2, i3 ∈ {0, 1}.

We will also sometimes use this systematic notation for the boundary hypersurfaces
of the double spaces M2

k,sc,φ and M2
k,φ. Thus, for example, bf = C+

11 and bf0 = C•11.
For the fiber diagonals we also write diagk,sc,φ = C+

φφ and diagk,φ = C•φφ.

J.É.P. — M., 2022, tome 9



Resolvent at low energy 1011

Construction of the b-triple space. — The space M3 ×R+ has boundary faces of codi-
mensions 4, 3, 2 and 1. We do the total boundary blow-up, i.e., we first blow up the
codimension 4 corner, then the codimension 3 corners, and then the codimension 2
corners.

The result of blowing up the codimension 4 corner, C•111, is shown schematically
in Figure 13, left. Note that, as before, for the figures we pretend that M = R+, i.e.,
we leave out the y-variables inM , and we only depict the boundary faces. For the four-
dimensional space R4

+ and its blow-ups this boundary is a union of three-dimensional
polyhedra (which are the boundary hypersurfaces), just as for the three-dimensional
space R3

+ it is a union of polygons, as in Figure 9, for example.

x

x′

x′′

k

C+
011

C�
001

C�
100

C+
110

C�
111

C+
101

x

x′

C�
011

C�
101

C�
110

k
C+

111

C�
111

x′′

C+
110

C�
111

x

x′

x′′

k

Figure 13. Construction ofM3
k,b: In the left picture, only the highest

codimension corner [M3×R+;C•111] is blown up. In the middle picture
the codimension three corners are also blown up. In the last picture
the codimension two corner C+

110 is also blown-up.

After blowing up C•111 the lifts of the codimension 3 corners C•011, C
•
101, C

•
110 and

C+
111 are pairwise disjoint, so we can blow them up in any order. The result is illus-

trated in Figure 13, center. After this, the lifts of the six codimension 2 corners are
pairwise disjoint, so we can blow them up in any order. To get an intuitive under-
standing of the blowups of the codimension 2 corners, we illustrate schematically the
blowup of C+

110 in Figure 13, right. This defines the b-triple space M3
k,b, with the

blowdown map
β3
k,b : M3

k,b −→M3 × R+.

As shown in [GH08], the projections πL, πC , πR lift to b-fibrations M3
k,b → M2

k,b

(the latter space is constructed in Figure 5), which are denoted by πb,L, πb,C , πb,R,
respectively.

Blow up of fiber diagonals diagk,sc,φ in bf faces. — The preimage of the interior
int(C∗i2i3) under the projection πL : M3 × R+ →M2 × R+ is int(C∗0i2i3) ∪ int(C∗1i2i3)

for any i2i3 and ∗ ∈ {•,+}, so if i2i3∗ 6= 00+ we have for the lifted projection

J.É.P. — M., 2022, tome 9



1012 D. Grieser, M. Talebi & B. Vertman

(by abuse of notation, we denote the lifted corners by the same symbol again)

(8.6) π−1
b,L(C∗i2i3) = C∗0 i2i3 ∪ C∗1 i2i3 ,

and the latter two hypersurfaces intersect. Now consider diagk,sc,φ = C+
φφ ⊂M2

k,b, the
part of the fiber diagonal contained in C+

11 = bf, see (6.6). By (8.6) and its analogues
at C and R, its preimage under each of the projections πb,∗ is given by the union of
two fiber diagonals:

π−1
b,L(diagk,sc,φ) = C+

0φφ ∪ C+
1φφ,

π−1
b,C(diagk,sc,φ) = C+

φ0φ ∪ C+
φ1φ,

π−1
b,R(diagk,sc,φ) = C+

φφ0 ∪ C+
φφ1.

(8.7)

Here, e.g. C+
φφ0 ⊂ M3

k,b denotes the intersection of the lift of the fiber diagonal
{x = x′, y = y′} with (β3

k,b)∗(C+
110). Similarly, C+

φφ1 ⊂ M3
k,b denotes the intersection

of the lift of the fiber diagonal {x = x′, y = y′} with (β3
k,b)∗(C+

111). This notation is
illustrated in Figure 14.

C+
φφ

πb,R C+
φφ0

(β3
k,b)

∗C+
110

C+
φφ1

M2
k,b M3

k,b

k

Figure 14. Lifted diagonals C+
φφ0, C

+
φφ1 in M3

k,b.

Let us check which of the six submanifolds on the right in (8.7) intersect non-
trivially. First, the first and second term in each line intersect. Also, any two of the
second terms intersect in the triple fiber diagonal

O+ = C+
1φφ ∩ C+

φ1φ ∩ C+
φφ1.

We refrain from writing C+
φφφ instead of O+ for better readability.

We define the triple scattering space by

M3
k,sc :=

[
M3
k,b; O+, C+

1φφ, C
+
φ1φ, C

+
φφ1, C

+
0φφ, C

+
φ0φ, C

+
φφ0

]
,

with total blow down map β3
k,sc : M3

k,sc → M3 × R+. Note that we blow up the
fiber diagonals in C+

111 first.(20) As shown in [GH08, Lem. 6.1], the lifted projections
πb,L, πb,C , πb,R lift to b-fibrations πsc,L, πsc,C , πsc,R : M3

k,sc → M2
k,sc, respectively.

This also follows by the argument in the proof of Theorem 8.2 below.

(20)This is in fact immaterial, the other order would work just as well.
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Blow up of fiber diagonals φf0 in bf0 faces. — This step is analogous to the previous
one, with k > 0 fiber diagonals replaced by k = 0 fiber diagonals. Consider the
fiber diagonal diagk,φ = C•φφ ⊂ M2

k,sc,φ, which is contained in the (lifted) boundary
hypersurface C•11 = bf0. Again by (8.6) its preimage under each of the projections
πsc,∗ is given by the union of two fiber diagonals:

π−1
sc,L(diagk,φ) = C

•
0φφ ∪ C•1φφ,

π−1
sc,C(diagk,φ) = C

•
φ0φ ∪ C•φ1φ,

π−1
sc,R(diagk,φ) = C

•
φφ0 ∪ C•φφ1,

with notation analogous to before. The hypersurfaces in the third line are illustrated
(on the level of M3

k,b) in Figure 15.

M2
k,b M3

k,b

πb,R

k

C�
φφ

C�
φφ1

C�
φφ0

Figure 15. Lifted diagonals C•φφ0, C
•
φφ1 in M3

k,b.

Again, intersections are non-trivial only in each line and among second terms on
the right, and the latter intersect pairwise in the triple fiber diagonal at k = 0,

O• = C
•
1φφ ∩ C•φ1φ ∩ C•φφ1.

The blowup of O• (and of O+) and the various lifted diagonals are illustrated schemat-
ically in Figure 16.

We can now define the final (phi) triple space as follows

M3
k,φ :=

[
M3
k,sc; O•, C•1φφ, C

•
φ1φ, C

•
φφ1, C

•
0φφ, C

•
φ0φ, C

•
φφ0

]
,(8.8)

with total blow down map, β3
k,φ : M3

k,φ →M3 × R+.

Step 2: lifts ΠL,ΠC ,ΠR exist and are b-fibrations

Theorem 8.2. — The projections πL, πC , πR lift to b-fibrations

(8.9) ΠL,ΠC ,ΠR : M3
k,φ −→M2

k,φ.

Proof. — Since the spacesM3
k,φ andM2

k,φ are symmetric under permutations of theM
factors, it suffices to prove the statement only for one of the projections, e.g. for ΠR.

As noted above, πR lifts to a b-fibration πsc,R : M3
k,sc → M2

k,sc. We now use two
standard lemmas about lifting b-fibrations. The first, Lemma 2.5 in [HMM95], states
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C�
0φφ

C+
1φφ

C+
φ1φ C+

φφ1

C�
111

C�
φφ1

C+
110O+

O�

k

Figure 16. Various lifted diagonals after blowup of O and O•.

that πsc,R lifts if we blow up a closed p-submanifold Z in the range M2
k,sc and also all

the maximal p-submanifolds of the domainM3
k,sc which are contained in the preimage

π−1
sc,R(Z). We apply this to Z = diagk,φ, with preimage C•φφ0 ∪C•φφ1, to conclude that
πsc,R lifts to a b-fibration

(8.10) [M3
k,sc;C

•
φφ1, C

•
φφ0] −→ [M2

k,sc,diagk,φ] = M2
k,φ.

Thus it remains to blow up the space on the left to obtain M3
k,φ, and to check that

the composed map remains a b-fibration. For this we use Lemma 2.7 in [HMM95]
repeatedly. This lemma states that if f : X → Y is a b-fibration and S ⊂ X a closed
p-submanifold then the composition with the blow-down map, [X,S] → X

f−→ Y ,
is a b-fibration again if f(S) is not contained in a boundary face of Y of codimension
two, and if f is b-transversal to S. These conditions can also be restated as follows:
f(S) is all of Y or a boundary hypersurface of Y , and f restricted to S is a b-fibration
S → f(S). This is easily seen to be satisfied for all blow-up centers in the sequel.

Recall from (8.8) that, to obtain M3
k,φ, we need to blow-up O• first in M3

k,sc. Now
the three p-submanifolds C•φφ1, C

•
φφ0, O• of M3

k,sc satisfy the following relations:

C
•
φφ1 ⊂ O•, C

•
φφ0 ∩ O• = ∅.

The former holds by definition of O•, the latter holds since after blow-up of C111

in M3 the triple fiber diagonal (on which x = x′ = x′′ holds) hits the boundary only
in the interior of the C111 front face, while Cφφ0 is contained in the C110 front face;

J.É.P. — M., 2022, tome 9



Resolvent at low energy 1015

compare Figure 16. Therefore, Lemma 7.2(a) implies[
M3
k,sc;C

•
φφ1, C

•
φφ0,O

•]
=
[
M3
k,sc; O•, C•φφ1, C

•
φφ0

]
.

Finally, we blow up C•φ1φ, C
•
1φφ, C

•
φ0φ, C

•
0φφ to obtain M3

k,φ (using that the former
two are disjoint from C•φφ0), and the proof is complete. �

Step 3: Compute the index sets (8.4). — In order to compute the index sets for the
composition we first need to determine the exponent matrices (see (2.3)) of the lifted
projections ΠL, ΠC , ΠR : M3

k,φ → M2
k,φ. That is, for each of these maps and for

each boundary hypersurface H ′ of the target space M2
k,φ we need to determine which

hypersurfaces H of M3
k,φ are mapped to H ′. For these the exponent e(H,H ′) equals

one, for all others it is zero. That only the exponents zero and one occur follows from
the proof in step 2 and Lemmas 2.5 and 2.7 in [HMM95] (our maps are simple in their
terminology).

As an example, we determine the preimage of H ′ = bf0 = C•11 under the map ΠL.
First, the preimage of bf0 ⊂M2

k,b under the map πb,L is the union of C•011 and C•111,
see (8.6). When passing to the scattering spaces this remains unchanged since only
fiber diagonals in k > 0 are blown up. Now consider the blow-ups leading from M3

k,sc

to M3
k,φ. A new front face arising from such a blow-up, say of the submanifold Z, will

be in the preimage of bf0 under ΠL if and only if Z maps onto bf0. This is the case
precisely for the fiber diagonals C•φ1φ and C•φφ1. Summarizing, we obtain

(ΠL)−1(bf0) = C
•
011 ∪ C•111 ∪ C•φ1φ ∪ C•φφ1.

By similar arguments we obtain preimages as listed in Table 1.
From Table 1 we can read off the index family C, using (8.5) and the index set

formulas in the push-forward and the pull-back theorem. We write out the argu-
ment for Cφf0 : The entry for φf0 in the ΠC column shows that the asymptotics of
Π∗R(β∗k,φKA) ·Π∗L(β∗k,φKB) at the faces C•φ0φ, C

•
φ1φ and O• contribute to Cφf0 . To find

the asymptotics of Π∗R(β∗k,φKA) at C•φ0φ we note that the entry C•φ0φ appears in col-
umn ΠR only in the line lb0, so the asymptotics is given by Elb0

. Arguing similarly
for the other factor and the other faces we find that the product has index sets

(1) Ebf0 + Fbf0 at C•φ1φ,
(2) Elb0

+ Frb0
at C•φ0φ,

(3) Eφf0 + Fφf0 at O•.

From there we conclude (taking into account the lifting properties of Ω
1/2
bφ as in [GH14,

Th. 9])

Cφf0 = (Ebf0 + Fbf0 + (b+ 1))∪ (Elb0
+ Frb0

+ (b+ 1))∪(Eφf0 + Fφf0).

Proceeding similarly at other boundary faces we conclude the rest of (8.4).

Step 4: Composition of split operators. — We now prove (8.3). It is useful to intro-
duce the ‘tropical’ notation for operations on index sets, E ⊕ F := E ∪ F and
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H ′ ⊂M2
k,φ

Preimage of H ′ under the map

ΠL ΠC ΠR

zf = C•00 C•∗00 C•0∗0 C•00∗

bf0 = C•11 C•∗11 C
•
φ1φ C

•
φφ1 C•1∗1 C

•
1φφ C

•
φφ1 C•11∗ C

•
φ1φ C

•
1φφ

φf0 = C•φφ C•∗φφ O• C•φ∗φ O• C•φφ∗ O•

lb0 = C•10 C•∗10 C
•
φφ0 C•1∗0 C

•
φφ0 C•10∗ C

•
φ0φ

rb0 = C•01 C•∗01 C
•
φ0φ C•0∗1 C

•
0φφ C•01∗ C

•
0φφ

bf = C+
11 C+

∗11 C
+
φ1φ C

+
φφ1 C+

1∗1 C
+
1φφ C

+
φφ1 C+

11∗ C
+
φ1φ C

+
1φφ

sc = C+
φφ C+

∗φφ O+ C+
φ∗φ O+ C+

φφ∗ O+

lb = C+
10 C+

∗10 C
+
φφ0 C+

1∗0 C
+
φφ0 C+

10∗ C
+
φ0φ

rb = C+
01 C+

∗01 C
+
φ0φ C+

0∗1 C
+
0φφ C+

01∗ C
+
0φφ

Table 1. Relations of boundary hypersurfaces of M3
k,φ and M2

k,φ un-
der the maps ΠL, ΠC and ΠR; a ∗ means that both faces with ∗ = 0

and ∗ = 1 occur. The bottom four lines are a copy of the middle four
lines, with • replaced by +.

E � F := E + F . Then we have for any u ∈ A E
phg(M) and v ∈ A F

phg(M)

u+ v ∈ A E⊕F
phg (M), u · v ∈ A E�F

phg (M).

This implies a similar rule for 2×2 matrices of functions û = (uij) onM and of index
sets Ê = (Eij) where i, j ∈ {0, 1}: if we define û ∈ A Ê

phg(M) to mean uij ∈ A
Eij

phg (M)

for all i, j then for any û ∈ A Ê
phg(M) and v̂ ∈ A F̂

phg(M)

û+ v̂ ∈ A Ê⊕F̂
phg (M), û · v̂ ∈ A Ê⊗F̂

phg (M),

where ⊗ denotes the tropical matrix product, which is the usual matrix product with
+, · replaced by ⊕,�, respectively.

We now turn to index families E , F for M2
k,φ and integral kernels KA ∈ A E

k,φ and
KB ∈ A F

k,φ, omitting β∗k,φ for simplicity. Define the tropical sum E ⊕F face by face
and the φ-tropical product as

(8.11) E �φ F := C

if C is defined from E , F as in (8.4). Then linearity and (8.2) imply

KA ∈ A E
k,φ, KB ∈ A F

k,φ =⇒ KA+B ∈ A E⊕F
k,φ , KA◦B ∈ A

E�φF
k,φ .

Again, this implies for 2 × 2 matrices of kernels and index families, with notation
analogous to above,

(8.12) K̂A ∈ A Ê
k,φ, K̂B ∈ A F̂

k,φ =⇒ K̂A+B ∈ A Ê⊕F̂
k,φ , K̂A◦B ∈ A

Ê⊗φF̂
k,φ .
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Recall the definition of the split (k, φ)-calculus, Definitions 5.3 and 7.4. Given an
index family E for M2

φ, let Ê be the associated split index family, considering it as
2× 2 matrix at each face. Consider kernels KA,KB supported over U×U (see below
for the general case), and let K̂A, K̂B be the associated 2 × 2 matrices of kernels as
in Definition 5.3. Now if KA ∈ A E

k,φ,H, KB ∈ A F
k,φ,H then

K̂A ∈ A Ê
k,φ, K̂B ∈ A F̂

k,φ.

Thus (8.12) implies K̂A◦B ∈ A
Ê⊗φF̂
k,φ . So (8.3) will follow if we prove the

(8.13) Claim: Ê ⊗φ F̂ ⊂ (E �φ F )̂ .

This is to be understood as inclusion of index sets at each face and in each matrix
component. We prove (8.13) at the face bf0, the proof at the other faces is analogous.
We abbreviate bf0, φf0, lb0, rb0 by b, φ, l, r respectively. For example, Ê01,b denotes
the 01 component of Ê at bf0 (which is Ebf0 + 2).

For any i, j ∈ {0, 1} we have by definition of C in (8.4), with sums over k ∈ {0, 1},
(Ê⊗φF̂ )ij,b =

⊕
k

(Êik �φ F̂kj)b

=
⊕
k

[
(Êik,b � F̂kj,b) ∪ (Êik,l � F̂kj,r) ∪ (Êik,φ � F̂kj,b) ∪ (Êik,b � F̂kj,φ)

]
(8.14)

⊂
[⊕
k

(Êik,b � F̂kj,b)
]
∪
[⊕
k

(Êik,l � F̂kj,r)
]
∪ · · ·

where in the last line we used part (a) of the following lemma (recall that ⊕ = ∪).
For an index set E denote

Eb =

(
E E + 2

E + 2 E + 4

)
.

Lemma 8.3
(a) If E1, . . . , EN and F1, . . . , FN are index sets then

(E1 ∪ · · · ∪ EN ) ∪ (F1 ∪ · · · ∪ FN ) ⊂ (E1 ∪ F1) ∪ · · · ∪ (EN ∪ FN ).

(b) If E , F are index families for M2
k,φ then, with notation as introduced above,

Êb ⊗ F̂b = (Eb + Fb)b, Êl ⊗ F̂r = (El + Fr)
b,

Êφ ⊗ F̂b = (Eφ + Fb)b, Êb ⊗ F̂φ = (Eb + Fφ)b.

The identities in (b) are the core of the proof of (8.3).

Proof. — (a) follows immediately from the definition of the extended union. For (b)
we calculate

Êb ⊗ F̂b =

(
Eb Eb + 2

Eb + 2 Eb + 4

)
⊗
(

Fb Fb + 2

Fb + 2 Fb + 4

)
=

(
Eb + Fb Eb + Fb + 2

Eb + Fb + 2 Eb + Fb + 4

)
= (Eb + Fb)b,

where, for example, the upper left entry arises as (Eb�Fb)⊕ ((Eb + 2)� (Fb + 2)) =

(Eb + Fb)∪ ((Eb + 2) + (Fb + 2)) = Eb + Fb. The other calculations are similar. �
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We can now finish the proof of the claim (8.13), continuing from (8.14). By the def-
inition of ⊗ and by part (b) of the lemma we have

⊕
k(Êik,b�F̂kj,b) = (Êb⊗F̂b)ij =

(Eb + Fb)bij . Rewriting the other terms of (8.14) similarly using the other identities
in part (b) of the lemma we get

(Ê ⊗φ F̂ )b ⊂ (Eb + Fb)b ∪ (El + Fr)
b ∪ (Eφ + Fb)b ∪ (Eb + Fφ)b.

Since this last expression equals (E �φ F )̂ b, we obtain the bf0 part of the claim
(8.13). The proof at the other boundary faces is analogous.

Finally, the restriction that KA was supported over U × U was only made
to simplify the notation. One way to remove it is to write M = U ∪ U′, where
U′ = M r [(0, ε/2)× ∂M ], then any KA is a sum of four terms, supported over
U × U, U × U′, U′ × U and U′ × U′ respectively. We have dealt with the first term;
the others are treated similarly. �

We can now prove the general composition formula, where the operators have
a conormal singularity along the diagonal. Note that the lifted diagonal in M2

k,φ

intersects only the boundary faces φf0, zf and sc.

Theorem 8.4. — Consider operators
A ∈ Ψ

m,(aφf0 ,azf ,asc),E

k,φ (M ;E),

B ∈ Ψ
m′,(a′φf0

,a′zf ,a
′
sc),F

k,φ (M ;E).

Assume that Eφf0 ,Ezf ,Esc contains the index sets aφf0 , azf , asc, respectively. Similarly,
assume that Fφf0 ,Fzf ,Fsc contains the index sets a′φf0

, a′zf , a
′
sc, respectively. Then,

provided Erb0
+ Flb0

> 0, the composition of operators A ◦B is well-defined with

A ◦B ∈ Ψ
m+m′,(aφf0+a′φf0

,azf+a
′
zf ,asc+a′sc),C

k,φ (M ;E).

Furthermore, the analogous statement holds for the split calculi:
A ∈ Ψ

m,(a),E
k,φ,H (M ;E), B ∈ Ψ

m′,(a′),F
k,φ,H (M ;E) =⇒ A ◦B ∈ Ψ

m+m′,(a+a′),C
k,φ,H (M ;E).

The index family C is given by (8.4).

Proof. — The statement follows from Theorem 8.1 exactly as in [GH08, §6]. �
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