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P=W CONJECTURES FOR CHARACTER VARIETIES
WITH SYMPLECTIC RESOLUTION

BY Camrura FELiseTTt & MrRko MAURT

AsstracT. — We establish P=W and PI=WI conjectures for character varieties with structural
group GL,, and SL,, which admit a symplectic resolution, i.e., for genus 1 and arbitrary rank,
and genus 2 and rank 2. We formulate the P=W conjecture for a resolution, and prove it for
symplectic resolutions. We exploit the topology of birational and quasi-étale modifications of
Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent
interest, like the construction of a relative compactification of the Hodge moduli space for
reductive algebraic groups, and the projectivity of the compactification of the de Rham moduli
space. In particular, we study in detail a Dolbeault moduli space which is a specialization of
the singular irreducible holomorphic symplectic variety of type O’Grady 6.

Résumi: (Les conjectures P=W pour les variétés de caractéres ayant une résolution symplectique)

On établit les conjectures P=W et PI=WI pour les variétés de caractéres avec groupe struc-
turel GL,, et SL,, qui admettent une résolution symplectique, c’est-a-dire pour le genre 1 en
rang arbitraire, et le genre 2 en rang 2. On formule la conjecture P=W pour une résolution et
on la prouve pour les résolutions symplectiques. Pour la démonstration on fait appel a la topo-
logie des modifications birationnelles et quasi-étales des espaces de modules de fibrés de Higgs.
Pour cela, on démontre des résultats auxiliaires d’intérét indépendant, comme la construction
d’une compactification relative de l’espace de modules de Hodge pour les groupes algébriques
réductifs, ou la théorie de I'intersection de certains cycles lagrangiens singuliers. En particulier,
on étudie en détail un espace de modules des fibrés de Higgs qui est une spécialisation de la
variété symplectique holomorphe irréductible singuliére de type O’Grady 6.
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1. INnTRODUCTION

Let X be a compact Riemann surface of genus g, and let G be a complex reductive
algebraic group. The Betti and Dolbeault moduli spaces Mp(X,G) and Mpa (X, G)
are central objects in non-abelian Hodge theory. The Betti moduli space, or G-char-
acter variety of X, is the affine GIT quotient

Mg (X, Q) = Hom(m (X),G) | G
={(A1,B1,..., Ay, Bg) € G* | [I9_1[4;,Bj] = 1c} / G.

It parametrizes isomorphism classes of semistable representations of the fundamental
group of X with value in G.

The Dolbeault moduli space Mp (X, G) instead parametrizes semistable principal
G-Higgs bundles with vanishing Chern classes; see [78]. For example, we have that:

— a GL,,-Higgs bundle is a pair (E, ¢) with E vector bundle of rank n and degree 0,
and ¢ € Hom(E,E ® Kx);

— a GL,,-Higgs bundle is an SL,,-Higgs bundle if in addition the determinant of F
is trivial and the trace of ¢ vanishes;

— a PGL,,-Higgs bundle is an equivalence class of SL,-Higgs bundles under ten-
sorization by an n-torsion line bundle on C.

Despite the different origin of these moduli spaces, there exists a real analytic
isomorphism

v MDOI(X; G) — MB(X, G)

called non-abelian Hodge correspondence; see [79] or Section 3. However, the map ¥
is not an algebraic isomorphism. Indeed, note that the Betti moduli space is an affine
variety, while the Dolbeault moduli space admits a projective morphism with con-
nected fibers

X : Mpoi(X, G) — At Mpa(X.0)/2

called the Hitchin fibration. The purpose of this paper is to study the behaviour in
cohomology of the non-abelian Hodge correspondence in view of the P=W conjec-
ture [11]. In the rest of the paper we will only consider reductive groups of type A,
i.e., G = GL,, SL,, PGL,,, unless stated otherwise, e.g. in the formulation of the P=W
conjectures or in Section 3.1.

One of the main difficulties while studying the cohomology of these moduli spaces
is that they are generally singular. To circumvent this issue, it is customary to slightly

JE.P.— M., 2022, tome g
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change the moduli problem as follows. Given an integer(") d coprime with the rank n
of the group, the twisted Betti moduli space is the GIT quotient

Mg¥(X,G) == {(A1, B1,..., Ag, By) € G* | TII_,[A;, Bj] = ¥™/™1} | G.

On the other hand, the twisted version of Dolbeault moduli, denoted M (X, G),
parametrizes semistable pairs (E, ¢), with E vector bundle of rank n and degree d,®
and ¢ € Hom(E,E ® Kx). The technical advantage of working with these twisted
moduli spaces is that they are smooth varieties and satisfy a non-abelian Hodge
theorem as in the untwisted case; see [44].

While studying the weight filtration on H*(Mg¥ (X, G),Q), Hausel and Rodriguez-
Villegas discovered a surprising symmetry, that they called curious hard Lefschetz
theorem: there exists a class « € H*(ME¥ (X, G), Q) which induces the isomorphisms

2 Uah: Gy HY(MEY(X,G),Q) — Gl HH(ME (X, G), Q).

The theorem holds for G = GLa,SLy and PGLsy by [41], and for G = GL,, by [61].
To explain this phenomenon, de Cataldo, Hausel and Migliorini conjectured that
the non-abelian Hodge correspondence should exchange the weight filtration on the
space H*(ME¥(X,G),Q) with the perverse (Leray) filtration associated to x on the
space H*(M{Y,(X,G),Q); see Definition 2.8. In this way, the curious hard Lefschetz
theorem would correspond to the classical relative hard Lefschetz theorem for y; see
Theorem 2.10.

Consecrure 1.1 (P=W conjecture for twisted moduli spaces)
PoH* (Mpg(X, G),Q) = ¥*Wor H* (Mg" (X, G), Q).

The conjecture holds for g > 2 and G = GLg, SLy and PGLy by [11], and for
g =2 and G = GL,,, SL,, with p prime by [15, 14]. An enumerative approach has been
proposed in [19], and other P=W phenomena have been studied in [74, 75, 27, 89,
82, 81, 66, 48, 37, 38, 59]. However, P=W phenomena for the original moduli spaces
Mg (X, G) and Mpa (X, G) have not been explored yet. This is then the goal of our
paper.

In the singular case, relative and curious hard Lefschetz theorems fail in general
for singular cohomology; see Remark 8.6. Nonetheless, it is known that the relative
hard Lefschetz theorem for x holds for intersection cohomology IH* (Mpo (X, G)); see
Sections 2.2 and 2.4. Moreover, de Cataldo and Maulik proved in [13] that the perverse
filtration on intersection cohomology is independent of the complex structure of the
curve X, exactly as it happens for the weight filtration. Therefore, they conjectured
[13, Quest.4.1.7].

(We omitted the dependence of M (X,G) and MEY (X, G) on the degree d not to burden the
notation too much.

(2)Note that we recover the untwisted Dolbeault moduli space for d = 0.

JIEP. — M., 2022, tome g
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Consecrure 1.2 (PI=WI conjecture). Let G be a complex reductive group. Then
P IH* (Mpo(X,G),Q) = U*Wo IH* (Mp(X, G), Q).

It is also conceivable that one could obtain the P=W conjecture for the singular
moduli spaces Mpo1(X, G) from the previous conjectures.

Consecrure 1.3 (P=W conjecture for singular moduli spaces). — Let G be a complex
reductive group. Then

PkH*(MDol(Xv G)7Q) = \II*WWCH*(MB(Xv G)’Q)

Alternatively, we may also opt for a desingularization of Mpe1(X, @), and continue
to work with singular cohomology. We show that a P=W conjecture for symplectic
resolution does hold, i.e., for resolutions where a holomorphic symplectic form on the
smooth locus of each moduli space extends to a symplectic form on the whole of the
resolution.

To this end, we first show how to lift the non-abelian Hodge correspondence to
resolutions of Mpei(X, G) and Mg (X,G), up to isotopy, according to Theorem 3.8.

Tueorewm 1.4 (Theorem 3.8). Let G be a complex reductive group. Then there exist
resolutions of singularities fpe: MDol(X, G) = Mpo(X,G) and fg: MB(X7 G) —
Mg(X,G), and a diffeomorphism U: Mpo(X,G) — Mg(X,G), such that the follow-
ing square commutes:

*

H (Mpot(X, G), Q)+ g (M(X, G), Q)

foor| o [E
H*(MDOI(Xv G)a Q) D — H*(MB(X’ G))Q)

The resolutions fpor and fg can be taken functorial with respect to smooth algebraic
or analytic morphisms, and symplectic if G=GL,, or SL,, with (g,n)=(1,n) or (2,2).

Convsecrure 1.5 (P=W conjecture for symplectic resolution). Let G be a complex
reductive group. Let U, fpo1 and fg be the diffeomorphism appearing in Theorem 1.4.
If fpol is a symplectic resolution (if it exists!), or equivalently fg is so, then

PoH* (Mpoi(X, G),Q) = U Wy H* (Mg (X, G), Q).

In an earlier version of this paper, we stated the P=W conjecture for resolution
without the assumption of the existence of a symplectic resolution, but later the
second author proved that the hypothesis is indeed essential at least for G = GL,
and SL,,, see [59, §5.6]. Recent results suggest that the existence of a holomorphic
symplectic form should be a key ingredient for P=W phenomena, see [12, §4.4], [61]
and [37, Th.1.7].

In this paper, we provide the first evidence for the P=W conjectures in the singular
context.

JE.P.— M., 2022, tome g
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MAIN THEOREM. Let G = GL,, or SL,,. Suppose that (g,n) = (1,n) or (2,2). Then
the following conjectures hold:

(1) the P=W conjecture;
(2) the PI=WI conjecture;
(3) the P=W conjecture for a symplectic resolution.

Observe that Mpo1 (X, GL,,) and Mpe (X, SL,,) admit a (unique) symplectic resolu-
tion if and only if (g,n) = (1,n) or (2,2); see [5] and [29, Th. 2.2]. Under this assump-
tion, the P=W and PI=WI conjectures for Mp (X, PGL,) hold too; see Remark 4.3.

The expectation is that the PI=WI conjecture holds even in the absence of a

symplectic resolution. The second author has provided first evidence of this fact in
159, §5].

Proof of the main theorem. — We first reduce to G = SL,,; see Theorem 4.1.

For ¢ = 1, the P=W and PI=WI conjectures follow from Theorem 5.3 and
Remark 5.4. Although not presented in these terms, the proof of the P=W conjecture
for the symplectic resolution in g = 1 is due to [12].

The proof of the conjectures for M = Mpy(C,SLs), with C' a curve of genus 2,
takes up most of the paper. We first reduce the P=W conjecture for M and M to
the PI=WI conjecture; see Theorems 7.1, 7.4 and 7.6. Finally, the PI=WI conjecture
follows from Theorems 8.1, 8.8 and 8.17. O

Symplectic resolutions. The Dolbeault moduli spaces which admit a symplectic res-
olution appear as specialization of (a crepant contraction of) of compact hyperkéhler
manifolds as shown in the table.

Special fiber symplectic resolution of the general fiber

Hilbert scheme of n points on a K3 surface

Mpoi(A, GLy) containing the elliptic curve A

generalized Kummer variety of dimension 2(n — 1)

Mpoi(A,SLy) associated to the abelian surface A x A

Mpei(C, GL2) O’Grady 10-dimensional moduli space OG10
M = Mpo(C,SLy) O’Grady 6-dimensional moduli space OG6

TasLe 1. Degenerations of compact hyperkdhler manifolds to the
space Mpoi(X,G); see the appendix. We denote by A and C a com-
pact Riemann surface of genus 1 and 2 respectively.

Even if these degenerations are not strictly used in the proof of the main theo-
rem, they have been our sources of inspiration. For instance, the proof of the P=W
conjecture for g = 1 is inspired by the description of the cohomology of generalized
Kummer varieties in [32], while the alterations in Section 6 are specializations of those
exploited by [62] to determine the Hodge numbers of OG6. We included details about

JIEP. — M., 2022, tome g
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the construction of the degenerations in the appendix for the interested reader. In
the twisted case these degenerations have been exploited in [15, §4] and [14, §4]; see
Proposition A.8 and Remark A.9 for a bizarre difference between the behaviour of
the degenerations in the smooth and singular cases. Analogous degenerations on the
Betti side for g = 1 have been considered in [60, §5.2 and §5.3] for the proof of the
geometric P=W conjecture.

Tivisted vs untwisted moduli spaces. — Let G = GL,, or SL,,. The known proofs [11]
and [15] of the P=W conjecture for twisted moduli spaces crucially rely on the fact
that H*(MEY,(X,Q)) is generated in degree not greater than 4. Further, the genera-
tors are Kiinneth components of the second Chern class of a universal Higgs bundle
on M (X,G) x X, called tautological classes.

In the untwisted case this can fail.

— The cohomology ring of Mpe(X,G) may not be generated in degree < 4. For
instance, Theorem 6.14 and the second paragraph of the proof of Proposition 8.4
imply that

H*(Mv Q) = Q[a77j]/(a37'7]2'7a U’Vj)v
with dega = 2, degy; =6, and j =1,...,16.

— A universal Higgs bundle E on Mpe (X, G)*™xX may not exist. Indeed, if E exists
on M*™ x C, then its restriction to the moduli space of semistable vector bundles of
rank 2 and degree 0 would be a universal vector bundle, which does not exist by [65].

If g = 2, we fix this problem by constructing a tautological class § on a quasi-étale
cover of M, i.e., étale in codimension one; see Section 8.3. However, 5 does not descend
in cohomology, but as an intersection cohomology class. More precisely, IH* (M, Q) is
the H*(M, Q)-module

IH*(M,Q) ~ H*(M,Q)[1,8]/(«U B — Y;2, 75,02 U B,7; U ).

One can avoid constructing a universal bundle on a quasi-étale cover by appealing
to the Dolbeault moduli stack, and the class 5 can be interpreted as a Chern class of
an orbibundle. However, the construction of the universal bundle on the quasi-étale
cover is interesting in itself; cf. [45, §6.1]. Note also that the existence of this cover is
a special feature of M: we show that when g > 2, M is the only Dolbeault moduli
space which admits a non-trivial quasi-étale cover; see Section 6.2.7.

1.1. OUTLINE OF THE PAPER

— In Sections 2 and 4 we recall basic notions and theorems used throughout the
paper.

— In Section 3.1 we lift the non-abelian Hodge correspondence ¥ to a diffeomor-
phism U between the resolutions of the Betti and Dolbeault moduli spaces; see The-
orem 3.8. To this end, we describe an explicit compactification of the Hodge moduli
space in Theorem 3.2. Note that U is the diffeomorphism which appears in the state-
ment of the P=W conjecture for symplectic resolution. As a by-product, we answer
a question by Simpson about the projectivity of the compactification of the de Rham
moduli space, see Corollary 3.3.

JE.P.— M., 2022, tome g
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p
6 1
5 0 1
4 1 0 16
3 0 6 0 16 RAL
2 1 0 16
1 0 1
0 1

o 1 2 3 A

Ficure 1. The (p, A)-entry of the table is the dimension of the graded
piece
Grl HA?(Mpo(C,SLy), Q),

of the perverse Leray filtration on H*(Mpe (C,SLs), Q), where C is a
compact Riemann surface of genus 2. The sums along the northwest-
southeast diagonals give the Betti numbers of MDOl(C’, SL2). Relative
hard Lefschetz accounts for a symmetry of this perverse diamond,
namely a reflection about the horizontal axis placed at middle per-
versity. The P=W conjecture for resolution implies that the sums
along the rows are the coefficients of the E-polynomial of MB (C,SLy),
which is computed in (43).

— In Section 4.1 we show that the P=W conjecture for SL, implies the P=W
conjecture for GL,,.

— In Section 5 we prove the P=W conjectures for g = 1.

— The rest of the paper is devoted to the proof of the P=W conjectures for M :=
Mpei(C,SLs), with C' a curve of genus 2. We describe the geometry of M in great
detail in Section 6: its singularities and its symplectic resolution M in Section 6.1.1;
the fixed loci of the G,-action on M and M in Section 6.1.4; the (universal) quasi-
étale cover q: M, — M in Section 6.2.1; a universal Higgs bundle on the smooth locus
M™ of M, in Section 6.2.5; the zero fiber of the Hitchin fibration in Section 6.2.6.

— In Section 7 we explain the strategy of the proof of the P=W conjecture for M.
Ultimately, we reduce the proof of the P=W conjectures for M and M to the PI=WI
conjecture for M.

— In Section 8.1 we compute the necessary intersection Poincaré and E-polyno-
mials.

— In Section 8.3 we build a tautological class of perversity 2 and weight 4, out of the
universal bundle on M™. This allows to conclude the proof of the PI=WI conjecture
for M in Section 8.4.

— In the appendix we collected some information about degenerations of compact
hyperkéhler varieties to Dolbeault moduli spaces.

JIEP. — M., 2022, tome g
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2. PRELIMINARIES

In this section we introduces preliminary notions and results which will be useful
throughout the paper. For further details we refer to [4, 30, 31, 16].

When omitted, the coefficients of (intersection) cohomology are assumed to be
rational.

2.1. PervERsE suEaves. — An algebraic variety X is an irreducible separated scheme
of finite type over C. Denote by D%(X) the bounded derived category of Q-construc-
tible complexes on X. Let D: D%(X) — D!(X) be the Verdier duality functor. The
full subcategories

PDYo(X) = {K* € D(X) | dim Supp(#7(K*)) < —j},

pDI;O(X) = {K* € D)(X) | dim Supp(s#7 (DK*)) < —j},
determine a t-structure on D%(X), called perverse t-structure. The heart

Perv(X) = "D%(X) N *D%y(X)

of the t-structure is the abelian category of perverse sheaves. The truncation functors
are denoted Pr¢y: DY(X) — pD%k(X), Prsp: DY(X) — le;k(X), and the perverse
cohomology functors are

P#F = Prep Prsp: DY(X) — Perv(X).

Derinition 2.1. — Let K* be a complex in D?(X). The cohomology H%(X, K*) is
endowed with the perverse filtration defined by

P.HY X, K*) = Im{HY(X,Pr<, . K*) — HY(X, K*)}.

2.2, Intersecrion conomorocy. — The category Perv(X) is abelian, artinian, and
its simple objects are the intersection cohomology complexes.

Derinition 2.2 (Intersection cohomology complex). Let L be a local system on
a smooth Zariski-dense open subset U C X. The intersection cohomology complex
ICx (L) is a complex of sheaves in D?(X) which is uniquely determined up to iso-
morphism by the following conditions:

- ICx(L)|y ~ L|dim X7;

JE.P.— M., 2022, tome g
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— dim Supp##7(IC x (L)) < —j, for all j > —dim X;

— dim Supps#7 (DIC x (L)) < —j, for all j > —dim X.

When L = @Xsm’
write IC'x for ICx(Q
ICx ~ Q, [dim X].

i.e., the constant sheaf on the smooth locus of X, we just

wem ). Further, if X has at worst quotient singularities, then

Derinirion 2.3 (Intersection cohomology). — The intersection cohomology of X with
coefficient in L is its (shifted) cohomology

IH*(X,L) = H*~9mX (X [Cx(L)).

Analogously, the intersection cohomology of X with compact support and coefficients
in Lis IH:(X,L) = H*~4mX(X DICx(L)). For further details, we refer the inter-
ested reader to [50].

There is a natural morphism
H*(X) — IH*(X),

which is an isomorphism when X has at worst quotient singularities. This morphism
equips IH*(X) with the structure of H*(X)-module, but in general intersection coho-
mology has no ring structure or cup product.

Moreover, the groups TH*(X) are finite dimensional, satisfy Mayer-Vietoris theo-
rem and Kiinneth formula. Although they are not homotopy invariant, they satisfy
analogues of Poincaré duality, i.e., TH*(X) ~ IH>¥™*=*(X)V and of the hard Lef-
schetz theorem. They also carry a mixed Hodge structures.

Derinition 2.4 (Mixed Hodge structure). — The mixed Hodge structure (V, F*, W)
is the datum of

— a Q-vector space V,
— an increasing filtration W, on V, called weight filtration,
— a decreasing filtration F* on V ® C, called Hodge filtration,

such that the graded pieces GrZV V = Wi V/Wi_1V admit a pure Hodge structure of
weight k, induced by F* on Gr}’ V & C.
An element v € V' has weight k if v € Wi,V but v € Wy, _,V.

Derinirion 2.5 (E-polynomial). The E-polynomial of X is an additive function on
the category of separated C-schemes of finite type given by

E(X) =Y (-1)*dim(Gr}}}, H}(X,C))»uPv".

p+q
p,q,d

Additivity means that if Z C X is a closed subscheme, then E(X) = E(X*4) =
EX\Z)+ E(Z).
Analogously, we define the intersection E-polynomial as

IE(X) = (-1)dim(Gr}}, IH(X, C))""uPvl.

p,q,d

JIEP. — M., 2022, tome g



862 C. Feriserrt &« M. Maurt

Note however that the intersection F-polynomial is not an additive function, due
to the fact that in general the restriction to a closed subscheme Z C X of IC'x is not
isomorphic to IC 4.

2.3. DecomrosiTiON THEOREM. — In this section we recall in brief the statement of
the decomposition theorem for semismall maps.

DeriNtrion 2.6. A morphism of algebraic varieties f: X — Y is semismall if
dim X xy X < dim X.

A stratification of f is a collection of finitely many locally closed subsets Y; such
that f=1(Yy) — Y} are topologically locally trivial fibrations. A stratum Y}, is relevant
if 2dim f~1(Y) — dim(Y) = dim X.

Tueorem 2.7 (Decomposition theorem for semismall maps). — Let f: X — Y be a
proper algebraic semismall map from a smooth variety X. Then there exists a canon-
ical isomorphism

: ~ . dim X —dim Y}
Rf.Q, [dim X] =~ g?fcyk (R Qi)
where the summation index runs over all the relevant strata of a stratification of f.

2.4. PerversE Leray riLtraTion. — Let x: X — Y be a projective morphism of
algebraic varieties of relative dimension r. Set r(x) = dim X xy X —dim X.

Derinition 2.8. The perverse Leray filtration associated to x is the (shifted) per-
verse filtration on the cohomology of the complex Ry, IC x
P IH*(X) = Py H*~@mX=r0)(y, Ry, IC x [dim X — r(x)]).

When Y is affine, de Cataldo and Migliorini provided an equivalent geometric
description of the perverse Leray filtration. Assume for simplicity that dim X =
2dimY = 2r(x). Let A¥ C Y be a general k-dimensional linear section of Y C AN,
Tueorewm 2.9 (Flag filtration [17, Th. 4.1.1])

P IHY(X) = Ker{ IH*(X) — IH*(x " (A""1))}.

This means that the class n € IHY(X) belongs to P,IH%(X) if and only if its

restriction to x ' (A%"P~1) vanishes, i.e., 7|, -1(ra-p-1) = 0.

Most remarkably, the perverse Leray filtration satisfies the relative hard Lefschetz
theorem.

Turorem 2.10 (Relative hard Lefschetz). Let x: X —Y be a proper map of alge-
braic varieties, and let o € H?(X) be the first Chern class of a relatively ample line
bundle. Then there exists an isomorphism

o' Gl IH*(X) — Grl, IH*T2F(X).
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3. LLIFTING THE NON-ABELIAN HODGE CORRESPONDENCE

Let X be a compact Riemann surface, and fix a complex reductive algebraic
group G. The first cohomology group H!(X, G) comes in various incarnations (cf. [78]
and [79]):

— the Betti moduli space Mg (X, G), also named character variety, parametrizing
semistable representations of the fundamental group of X with value in Gj

— the Dolbeault moduli space Mp (X, G) of semistable principal G-Higgs bundles
with vanishing Chern classes;

— the De Rham moduli space Mpgr(X,G) of semistable principal G-bundles with
an integrable connection.

All these moduli spaces are homeomorphic to each other. The Riemann-Hilbert cor-
respondence yields a complex analytic isomorphism

(3) MDR(X, G)an >~ MB(X, G)an'

There exists an algebraic fibration (real analytically trivializable)

(4) At Mioa(X,G) — Al

whose fibers are moduli spaces of semi-simple principal G-bundles with A-connections;
see [80]. Hence, the fiber over 0 is Mpo (X, G), and the fibers over A # 0 are isomorphic
to Mpr(X,G). The space Myoa(X,G) is called Hodge moduli space. In particular,
a continuous trivialization Moq(X,G)*P ~ Mpe(X,G) x Al gives the homeomor-
phism

(5) MDO](X7 G)t()p ~ MDR(X, G)tOp.

The non-abelian Hodge correspondence

v MDOl(X, G)tOP — MB(X, G)tOp

is the composition of the maps (3) and (5) for a choice of a preferred real analytic
trivialization; see [80] for details.

3.1. ComracriFicatioN oF HODGE MODULI SPACES

The Hodge moduli space Myoq(X,G) admits a partial compactification, relative
to the morphism
A MHod(Xa G) — Al.
We obtain it as a G,,-quotient of the total space of the degeneration of Mpoq(X,G)
to the normal cone of A=1(0) ~ Mp (X, G). The construction is an extension to the
singular case of [43, Lem. 6.1] or [40, Th.7.2.1].
To this end, we shall use the following results by Simpson.

Prorosirion 3.1 ([80, Th.11.2]). — Let Z be a variety over the variety S, endowed
with a G-action covering the trivial G,,-action on S. Assume that Z/S carries a
relatively ample line bundle admitting a G,,-linearization. Assume that the fized point
set Fix(Z) C Z is proper over S, and that for any z € Z the limit lim;_ot - z exist
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in Z. Let U C Z be the subset of points z such that the limit lim;_,t - z does not
exist. Then U is open in Z and there exists a universal geometric quotient Z/G,y,.
This quotient is separated and proper over S.

Turorem 3.2 (Partial compactification of the Hodge moduli space). — There exists
a projective morphism
XZ MHod(Xy G) — Al

which is a relative compactification of the morphism .
Proof. — Mpoa(X, G) is endowed with the G,,-action
t-(E,Vy) — (E,tV))

covering the standard G,,-action on A!, namely t - A\ = tA. Equip A? with the
Gn-action given by t- (z,y) = (x,ty). The morphism A? — Al given by (z,y) — zy,
is G,,-equivariant. Therefore the fiber product Myoq(X,G) x a1 A? is equipped with
a G,,-action. We summarize the maps constructed in a diagram: note that the sub-
scripts indicates the coordinatization chosen for the affine spaces.

MHod(X7 G) XAl AQ — ]\41_10(1()(7 G)

| [

N Ai,y — A} (r,y) ——— 7Y
Al x

Choose a M-ample line bundle . on Mpoq(X,G) x4 A? admitting a G,,-lin-
earization (which exists since Myoq(X,G) x 41 A% is normal and because of [63,
Cor. 1.6]). Let x(X,G): Mpa (X, G) — Adm Mpa(X.G)/2 1o the Hitchin’s proper map
for Mpo(X, G); see [79, p.22]. The fixed locus is contained in

X(X,G)7H0) x {y =0} € Mpoi(X,G) x {y =0} C Muoa(X,G) xu1 A%
so it is proper over Al. By Proposition 3.1, there exists a universal geometric quotient
Mroa(X, G) = (Moa(X, G) X1 A? N (X(X,G)7H(0) % A}))/Grm
and a proper morphism \: Myoq(X,G) — AL
Mi104(X,G) contains an open subset isomorphic to Mpoq(X,G), given by the
G,-quotient of
(MHOd(X, G) XAl Az) XA%/ (A}J AN {0}) ~ MHod(Xa G) X G-

We show now that the morphism X is projective. Let 0Myoq = Mpoa(X,G) ~
Muoa(X,G) be the Cartier boundary divisor. By [24, Th.2.3] (or [10, Proof of
Prop. 3.2.2]), a power of the line bundle .#’ descends to a line bundle £ on
Mpoa(X,G). We claim that the line bundle .Z ® € (m - Myoq) is ample for m > 0.

To this end, observe that X_I(O) =: Mpo1(X,G) coincides with the projective com-
pactification of Mpe1(X, G) constructed in [10, Th.3.1.1(1)]. Let X : Mpo(X,G) — A
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be also the projective compactification of the Hitchin morphism constructed in [10,
Th. 3.1.1(2)]. The restriction of £ to X_l(()) is Y-ample by [10, Prop. 3.2.2], while
the restriction of 9Mioq is the pullback of an ample divisor on A. Therefore, the line
bundle .Z ® € (m-0Mmoq) is ample for m > 0 when restricted to Mpe (X, G). By the
openness of ampleness [55, Th. 1.2.17], it is A-ample in a neighbourhood of 3! (0). But
Mpoa(X,G) ~ Xﬁl(O) is isomorphic to the trivial product Mpr(X,G) x (Al \ {0}),
where the first factor is Simpson’s compactification of Mpgr (X, G); see [80, §11]. There-
fore, we conclude that . ® &'(m - 0Mp,q) is A-ample for m >> 0. O

Incidentally, note that Theorem 3.2 answers the question about the projectivity
of the compactification of the de Rham moduli space risen in [80, p.268] and [10,
Rem. 3.1.2].

CoroLrARY 3.3. Simpson’s compactification Mpgr(X,G) is projective.
We now study the local geometry of the morphism of \.

Prorosition 3.4. — The morphism X is locally analytically trivial, i.e., for any p €
Muoa(X,G) over Ap € Al there exist analytic neighborhoods p € U, C Mpoa(X, G)
and p € V, C Muoa(X,G)y such that U, ~V, xD, with D a disk in Al, and A
corresponds to the second projection V, x D — D.

Proof. — The G,,-action on Mp.q(X, G) extends to Mpoq(X,G), and so
MHOd(Xa G)‘A;\{O} ~ MDR<X, G) X Gm;

see also [80, p.232]. By [80, Th.9.1], A is locally analytically trivial. Therefore, it is
enough to show that X is locally analytically trivial at p € Xﬁl(O) N ATH0).

Let p' € Muoa(X,G) xa1 A% be a lift of p. Since ) is locally analytically trivial,
so X is. Following the proof of [10, Lem. 3.5.1], we can choose a transverse slice to
the G,-orbit though p’, locally isomorphic to an affine variety N, x Al such that
Myoa(X, Q) is locally isomorphic at p to N,/ Stab(p’) x AL, and X is the projection
onto the second factor. As a result, we obtain that X is locally analytically trivial. O

In Theorem 3.8 we show that there exists a diffeomorphism U which lifts the

isomorphism
U*: H*(Mp(X,G)) — H*(Mpa (X, G))
to an isomorphism between the cohomology of the resolution spaces.

To this purpose we recall that for any noetherian quasi-excellent generically reduced
scheme X over Spec(Q) there exists a resolution of singularities Z(X) — X functorial
with respect to regular morphism X’ — X, in the sense that Z(X’) is isomorphic
to Z(X) xx X'. See [83] for further details and the definition of quasi-excellent
schemes and regular morphisms. Here we just mention that by definition, if X is
excellent, then the completion morphism )?x = Spec 72 x,o — X is regular for any
closed point z € X. In [83, Th. 5.2.2], Temkin showed also that quasi-compact analytic
spaces admit functorial resolutions compatible with smooth analytic morphism. The
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following lemma is implicit in [83], and it has been kindly communicated to us by
Temkin. For clarity, we distinguish the complex algebraic variety X from its complex
analytification X", but omit the difference elsewhere in the paper.

Lemva 3.5. — If X is a complex algebraic variety, then the analytification of the

algebraic functorial resolution is biholomorphic to the analytic functorial resolutions
of X? i.e., Z#(X)*™ ~ Z(X").

Proof. — Without loss of generality suppose that X = Spec(B) is affine. We briefly
recall Temkin’s construction of the analytic functorial resolution; see [83, Th.5.2.2].
Take a covering of X** = [J, X; by Stein compact domains (e.g. embed locally X"
in a complex affine space and take intersections of X" with closed polydiscs). The
ring of functions A; = 0% (X;) is excellent, and the functorial resolution of Spec A4;
glue to the analytic functorial resolution Z(X?"). Since B and A; are excellent, the
completion morphism B — 7% x,¢ and A; — % <. are regular, so the algebraic and
the functorial resolutions Z(X) and Z(X)*" are compatible with completions. Now,
since ﬁAX’z o~ ﬁA'}“x, we have %()?z) o~ %()/(\';“) By functoriality, we obtain that

B(X) xx Xo ~ B(Xy) ~ R(X™) ~ B(X™) xx X,
for any closed point z € X. Hence, Z(X)*" ~ Z(X?"). O

CoroLrAry 3.6. A biholomorphism f: X' — X between complex algebraic vari-
eties (not necessarily algebraizable) lifts to a biholomorphism Z(f): Z(X') — Z(X)
between their functorial resolutions, which gives a fiber product square.

Z(f
#(X') ) Z(X)
| ; |
X' X
Proof. — By functoriality in the complex analytic category, Z(X) x x X' is an analytic
functorial resolution, so biholomorphic to Z(X)*" by Lemma 3.5. ]
Levva 3.7. — Let X be a normal locally Q-factorial®® complex variety. Suppose

that X admits a symplectic resolution f:Y — X with an irreducible exceptional
divisor, obtained by blowing-up the singular locus. Then f is functorial.

Proof. — By [29, Th.2.2], any symplectic resolution of X is isomorphic to f. Let
h: X' — X be any smooth morphism. The blow-up Y’ — X’ of the singular locus
of X’ is smooth and symplectic since h is smooth. Then X' satisfies all the hypotheses
of Lemma 3.7 with symplectic resolution Y :=Y x x X', so Y/ =Y by [29, Th. 2.2],
i.e., the resolution is functorial for smooth morphisms, and also for regular morphism
following [7, Th. 1.2, Cor. 4.6]. O

(3)This means that for any closed point z € X the analytic local ring ﬁ}r:z are Q-factorial, that

is some multiple of every Weil divisor is Cartier.
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Turorem 3.8 (Lift of the non-abelian Hodge correspondence V). There exist
resolutions of singularities fpor: Mpol(X,G) = Mpei(X,G) and fg: Mp(X,G) —
Mg (X, Q), and a diffeomorphism

U: Mpo(X,G) — Mp(X,G),

such that the square

MDOI(X7 G) v MB(Xv G)
© foor| Lo
Mpa (X, G) L Mg (X, G)

commutes up to an isotopy of Ms(X,G). In particular, the following square in coho-
mology commutes

*

H* (Mo (X, G)) —————— H* (M (X, G))

Q foar] ) Th
H*(Mpoi(X, G)) —Y H*(Mg(X, G)).

The resolutions fpol and fg can be taken functorial with respect to smooth algebraic
or analytic morphisms, and symplectic if G=GL,, or SL,, with (g,n)=(1,n) or (2,2).

Proof. — Let faoda: Z(Muoa(X,G)) — Mpuoa(X,G) be the functorial resolution of
Myoa(X,G), equivalently in the analytic or algebraic category by Lemma 3.5. Since A
is locally analytically trivial by Proposition 3.4, frgoq is a simultaneous resolution of
Mpoa(X,G)y; see for instance [33, Lem. 4.2]. Note also that any vector field on the
smooth locus of Myeq(X, G) can be lifted to a vector field on Z(Muoa(X, G)) by [34,
Cor.4.7].

For such a resolution, Proposition 5.2 in [1] holds: the family Ao fr,q admits a real
analytic Ehresmann connection such that the corresponding flow of diffeomorphisms
preserves the exceptional locus of fyoq, and moreover it does so fiberwise over its
image in Mpoa(X,G). The same proof as that of [1, Prop.5.2] shows that we can
further suppose that the flow preserves dMpoq (X, G) ~ dMpo(X,G) x Al and its
inverse image in Z(Moa(X,G)). Hence, there exists a resolution of singularities

Mioa(X, G) = fraq(Mizoa(X, G))
of Muoa(X,G) such that the following square commutes
Mpoi(X,G) = Myoea(X, G)o — Myoa(X,G). = Mpr(X,G)
fpol == fHod,OJ JfDR = fHod,e
Mpoi(X, Q) = Muoa(X,G)o — Muoa(X,G). = Mpr(X,G),

where the horizontal arrows are stratified diffeomorphisms, and e # 0.
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Since the Riemann-Hilbert correspondence is a smooth analytic map, the map
fpr is obtained via base change from the functorial resolution fg: Mgp(X,G) =
Z(Mp(X,G)) - Mg(X,G) by functoriality. Therefore, we obtain the commutative
square

Mpoi(X,G) v Mg(X,G)
fDoll lfB
Mpor(X, G) v My (X, Q).

Since ¥’ and the non-abelian Hodge correspondence ¥ are induced by trivialization
of Myoa(X,G), the square (6) commutes up to a stratified isotopy of Myeq(X, G).
Since stratified isotopy are trivial in cohomology, the square (7) commutes too.

We now show that the functorial resolutions fp, and fp are symplectic if G =
GL,, or SL,, with (g,n) = (1,n) or (2,2). Indeed, in this case Mpy(X,G) and
Mg(X,G) are normal complex varieties which admit a symplectic resolution ob-
tained by blowing-up the singular locus; see Sections 5.1 and 6.1.1, or [5, Th.1.8].
Note that the results of [5] are stated for Mp (X, G), but they extend to Mpa (X, G)
by the isosingularity principle, see [79, Th. 10.6] or [59, §2.4 and the first paragraph
of §3.2]. Further, the analytic neighborhoods of the singularities of these varieties are
Q-factorial. Indeed, the singularities of Mpe (X, G) and Mg (X, G) are either quotient
singularities or the nilpotent cone in sp(4), which is a cone over a projective vari-
ety with quotient singularities and Picard number one; see the last paragraph of the
proof of [5, Th.1.3] and references therein, and [62, Lem. 1.3] or [59, §3.4]. By [53,
Prop. 5.15] and [52, Prop. 7.4] these singularities are analytically Q-factorial. Hence,
the last statement of Theorem 3.8 follows from Lemma 3.7. |

Remark 3.9. — In this paper, functorial resolutions are used only for the following
purposes: to lift vector fields and group actions to resolutions, and for the compati-
bility with respect to the Riemann—Hilbert correspondence; see proof of Theorem 3.8
and Section 4.1. If G = GL,, or SL,, with (g,n) = (1,n) or (2,2), the symplectic res-
olutions of Mpe(X,G) and Mp(X,G) are indeed functorial by Lemma 3.7 but these
properties can be shown more directly. The resolutions are obtained by blowing up
the singular locus, which is invariant with respect to any group action on the vari-
eties and preserved by the Riemann—-Hilbert correspondence. Further, the liftability
of vector fields follows easily for instance from [1, Lem. 5.3].

4. Mobuwr spaces ror GL,, vs SL,,

Let T' = Pic’(X)[n] ~ (Z/nZ)*? be the group of n-torsion line bundles on the
Riemann surface X of genus g and canonical line bundle Kx. We review the relation
between the moduli spaces Mpo (X, G) and My (X, G) for G = GL,, and SL,; see also
[46, 79, 78].
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Recall that Mpe (X, GL,) parametrizes semistable Higgs bundles (F, ¢), where FE
is a vector bundle on X of rank n and degree 0, and ¢ € Hom(E, F ® Kx).

The fiber of the isotrivial morphism
) alb: Mpe (X, GL,) — Pic’(X) x H*(X, Kx)
(B, ) — (det E, tr 9)

is isomorphic to Mpe (X, SLy,). In particular, the monodromy of alb is the group T'.
Indeed, the étale cover

Mpei(X,SLy,) x Pic®(X) x H(X, Kx) — Mpe(X,GL,)
((E,¢),L,s) — (E® L, ¢ + (s/n)idp)
has Galois group I', which acts on the domain diagonally by tensorisation
' x Mpei(X,SLy,) x Pic®(X) x HY(K) — Mpe (X, SLy) x Pic’(X) x H°(K)
(Ly,(E,¢),L,s) — (Ly, (E® Ly, ¢), L® L3, s).

(9)

Therefore, when we take cohomology, we obtain
H*(Mpei(X,CLy)) ~ H*(Mpe(X,SLy,) x Pic’(X) x H(X, Kx))"

(10) ~ H*(Mpe(X,SL,))" @ H*(Pic’(X)),

where the former equality follows from an observation of Grothendieck in [36], and
the latter from the fact that I' acts trivially on H*(Pic’(X)), since it is a restriction
to a subgroup of the action of the connected group PicO(X).
The Hitchin map
X(X,GL,): Mpo(X,GL,) — @ H(X,KY")
i=1

is a projective fibration sending (F,¢) to the characteristic polynomial of ¢. It is
Lagrangian with respect to w, i.e., the holomorphic symplectic form of the canonical
hyperkdhler metric on the smooth locus of Mpe(X,GL,); see [46, §6]. The map
x (X, GL,,) restricts on Mp (X, SL,) to

X(X,SLy,): Mpo(X,SL,) — @ H°(X,KYY).
=2

The map x(X,SL,,) is I-equivariant, covering the trivial I'-action of the codomain.
In particular, there exists a commutative diagram

Mpei(X,SL,) x Pic®(X) x HY(X,Kx) ——— Mpo(X,GL,,)
(11) J(X(Xv SL), Spico(x)» 1o (X, K x)) JX(Xa GL,)
@i, HO(X, KY') x HO(X, Kx) ——=— @, H'(X, KY)
with Spico(xy: Pic’(X) — pt.

Via the non-abelian Hodge correspondence ¥, the action of T on Mp, (X, SLy,) cor-
responds to the algebraic action of the group of characters Hom(m (C), Z/nZ), which
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acts on Mg(X,SL,) by multiplication (changing the signs of the matrices A;, B;’s as

in (1)).

The multiplication map SL,, xG,, — GL,, induces the étale cover
Mg(X,SL,) x (C*)?9 — Mpe(X,CL,)
with Galois group I'. Therefore, the analogue of (10) holds
H*(Mg(X,GL,)) ~ H*(Mg(X,SL,) x (C*)?9)"

(12) ~ H*(Mpoi(X,SL,))T @ H*((C)%).

4.1. P=W ror SL,, impLIES P=W ror GL,,. In this section we show that the P=W
conjectures for SL,, imply the corresponding statements for GL,,. In the twisted case,
this is proved in [11, §2.4]; see also [14, §1]. In view of Theorem 4.1, starting from
Section 5, we will focus our attention on the SL,, case exclusively.

Fix I'-equivariant resolutions of singularities

fpoi(X,SLy): Mpoi(X,SLy,) — Mpei(X, SLy,),
f5(X,SL,): Mg(X,SL,) — Mg(X,SLy,),

which satisfy Theorem 3.8. Note that the functorial resolutions in the proof of Theo-
rem 3.8 are actually (I'xG,, )-equivariant; see [51, Prop. 3.9.1]. By the isotriviality of

aJleod : MHod (X; GLn) — MHod(Xa Gm)
(E, V) — (det E,tr V)

(which extends the morphism alb defined in (8)), the resolutions fpei(X,SL,) and
fB(X,SL,,) extend to resolutions

fooi(X, GLy,): Mpei(X, GLy,) — Mpai(X, GL,),
f5(X,GL,): Mg(X,GL,) — Mg(X,GL,),

such that the square

U(X,SL,) X U(X,Gp)

Mpoi(X,SLy) x T* Pic®(X) Mg(X,SLy) x (C*)29
(13) /FJ N J/F
N \II(X7 GLn) N
MDOI(X7 GLn) MB(X, GLn)

and the diagrams in Theorem 3.8 commute.

Tueorem 4.1. In the notation above, if the P=W conjecture for the resolution

Jpol(X, SL,,) holds, then it holds for fpo(X,GLy,).
Proof. — Cohomologically, the Hitchin fibration

X(X,GLy) 0 fpol (X, GLy,): Mpe(X,GL,) — @ HO(X, K%Y
=1
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behaves like the product of the fibration x(X,SLy) o fpo(X,SLy) and Spico(x):
Pic’(X) — pt, by lifting (11) to the resolution. Hence, the perverse filtration asso-
ciated to x(X, GL,) o fpo(X, GL,,) is the convolution of the I'-invariant part of the
perverse filtrations associated to x(X,SLy) o fpol(X,SLy) and Spico(x) (the latter
being trivial); compare with [11, §2.4]. In symbols, we write

(14)  PoH*(Mpa(X,GLy)) ~ @ Pe_jHY 7 (Mpo(X,SLy))" @ H’ (Pic’(C)).
j=0

By the I'-equivariance of fp(X,SL,), the map
Mgp(X,SL,) x (C*)* — Mpa(X,GL,)
lifts to the resolutions, and so there exists an isomorphism of mixed Hodge structures
(15) H*(Mg(X,GLy)) ~ H*(Mp(X,SLy,))" @ H*((C*)),
as in (12). Explicitly, we write

(16)  WiHY(Mg(X,GL,)) ~ @ Wi_o; H* 9 (Mg(X,SL,))" ® H((C*)%),
7=0
since H7((C*)29) has weight 2j.
Assume now that

PyH*(Mpei(X,SLy)) = U(X, SLy,)* Wap H* (Mg (X, SL,,)).
Then by the commutativity of (13), together with (14) and (16), we conclude that

Py H*(Mpo(X,GLy)) = U(X, GL, ) Wap H* (Mg (X, GLy,)). O

Remark 4.2. — With obvious change, the analogues of Theorem 4.1 for the PI=WI
and P=W conjectures hold.

Revark 4.3. Since Mp(X,PGL,) is the quotient of Mpy(X,SL,) by the
I-action, the PI=WI conjecture for Mpe(X,SLy,) (or Mpe(X,GLy)) implies the
PI=WI conjecture for Mpe (X, PGL,).

5. P=W coONJECTURES FOR GENUS |

Let A be a compact Riemann surface of genus 1. The construction of the moduli
spaces Mpoi(A, SLy,) and Mg (A, SL,,) agrees formally with that of a generalized Kum-
mer variety in [2, §7]. It is possible to make this analogy more precise by showing that
Mpo1(A,SL,) and Mp(A,SL,,) are specializations of generalized Kummer varieties;
see Example A.5 and also [60, §5.3].

Following [32], we describe a stratification of these Kummer-like varieties in Sec-
tion 5.1, from which we deduce the P=W conjecture in genus 1 (Theorem 5.3).
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5.1. KUMMER-LIKE VARIETIES. Let X be a complex algebraic group of dimension 2.
We denote by X and X[ the n-fold symmetric product of X and the Hilbert
scheme of n-points on X; see [2, §6] for an overview of their construction. Recall that
the Hilbert-Chow morphism f: X" — X (") is a desingularization of X ().

Consider the addition map a,,: X™ — X, given by a,(21,...,2,) = > i, z;. For
any g € Zso, denote by X (g) the set of g-torsion points in X. Let P(n) be the set of
partitions of n. We write « € P(n) asn =ai-14---+ag- ¢, and put |a] = > a; and
g(@) = ged{v | o, # O}.

Following [32], we describe a stratification of the fiber of a,,.

— The variety K™ is the fiber f~'oa 1(0) of the composition X" Ly x ) 2 x
When necessary, we emphasize the dependence on X by writing K™ (X).

— The fiber K = a;(0) can be described as the set of maps from X to Zsq of
total sum n

K™ = {h € Homgets(X, Z30) | 2

We say that K™ is Kummer-like.
— There exists a stratification

K™= || K with K" ={he K" |#h ' (2) =, Y}
a€P(n)

h(z) =n}.

reX

— The normalization of the closure of the stratum K,&") in K™ denoted K@,
is the disjoint union

K@ — L Kéa)7
yEX (g9())
where

K ={h=(hi,....he) € K| 32, (v/g(a)hy(z) - & = y}.
— Let 7.: X — X be the translation by z € X. The finite map q?(,a): X x Kf) —
X (@) given by qg(,a)(z, hi,...,he) = (h107s,...,hgoT1,), induces the isomorphism of
mixed Hodge structures H*(X x Kgga)) ~ H*(X(); see [32, p.243].
All these facts implies the following theorem due to Gottsche and Soergel, that we
state without proof.

Tueorem 5.1 ([32, Th.7]). — Denote by fo the birational map fo = (idx, f|xm):
X x KM — X x K| Let Iiéa)l Kz(,a) — K™ be the composition

K e K@ 5 K ey KM,
Then there exists a distinguished splitting isomorphism

(17) (f)sQuy g = @ @ (dx x 5{)(Qy et [lal])-

a€P(n) yeX(g(a))

The splitting induces a canonical isomorphism of mized Hodge structures (recall that
a Tate twist (—k) increases the weights by 2k ):

(18) HPMX x KM~ @ @ HPNX@)(Jal).
«€P(n) yeX(g(a0)
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A morphism x: X — C yields the commutative diagram

(@) (@)

idy x Ky o) qy
XxK(")<—X><Ky X (o)
Xo . (a) (a) (@) J{X(a)
l ide x Fo () le a0\ ()

CxCrn—1) ¢+—CxCle=-l) ——— (o),

The perverse filtration associated with yo = idy X x| g can be written in terms
of the perverse filtration associated with ().

Turorem 5.2. — The perverse filtration associated with xo can be expressed as

PHWX x K'(n)~ @ @ PHTHINX)(|a)),
a€P(n) yeX (g(a))

where PkH*(X(O‘)) is the perverse filtration associated with x(®.

Proof. — By Theorem 5.1 and the t-exactness of finite morphisms, we obtain

V(00 J0)- Qe > B B (dx < )N ollal),

a€P(n) yeX(g9(a))

0 OGN i) = O 42Q o) DAY Q).

This means that the isomorphism (18) is filtered strict with respect to the perverse
filtration associated with yo and y(%). O

5.2. THE PROOF OF THE CONJECTURE

Tueorem 5.3. — The PI=WI conjectures for Mpo1(A, SLy,) and the P=W conjectures
for its symplectic resolutions hold.

Proof. — The moduli space Mpei(A,SL,) parametrizes semistable Higgs bundles
on the elliptic curve A, and it is isomorphic to K™ (A x C); see for instance [28,
Th.4.27(v)], which actually holds for any n, not only for n > 4, or [35]. The char-
acter variety Mg (A, SL,,) instead is isomorphic to K (C* x C*) (cf. [60, Proof of
Th.5.3.2]), and in suitable coordinates the non-abelian Hodge correspondence is in-
duced by the symmetric product of the exponential map
AxC—C"xC*
(01,02,71,72) — (exp(—2r1 +i01), exp(2ry + i6));

see [77, Ex.after Prop.1.5]. By Theorem 5.1 and 5.2, the P=W conjecture for the
symplectic resolution K™ (A x C) is equivalent to

(19) PLH*((A x C)(®) = Wy H*((C* x C*)(@)

for any partition o € P(n). The identity (19) has already been proved in [12, Lem. 3.1.1
& 3.2.2]. O

Remark 5.4. — Since Mpo(A4,SL,) has at worst quotient singularities, the P=W
conjecture for Mpe (A4, SL,,) is equivalent to the PI=WTI conjecture for Mpe (A4, SLy,).
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6. Tue mopuLrt space oF Hices BUNDLES M AND ITS ALTERATIONS

Here and in the following C' is a compact Riemann surface of genus 2. We denote
by ¢: C — C the hyperelliptic involution, and by K¢ the canonical bundle of C.
For the sake of notational simplicity, we denote

— the Dolbeault moduli space Mp(C, SLs) simply by M;

— the desingularization MDOl(C, SLs) in Proposition 6.1 by M;
— the character variety Mg (C,SLs) by Mp;

~ the resolution fpoi(C,SLs) by f: M — M:;

— the Hitchin map x(C,SLy) by x: M — H°(C, K®?).

6.1. SympLECTIC RESOLUTION OF M

6.1.1. Singularities of M and its resolution. — We briefly recall the description of the
singular locus of M and the construction of the resolution. A key aspect is the local
isomorphism between the singularities of M and those of the celebrated O’Grady six
dimensional example of irreducible holomorphic symplectic variety. We refer to [26]
for more details. Via the non-abelian Hodge correspondence, we obtain an analogous
description of the singularities of Mp.

There exists a Whitney stratification of M

(20) Q = Sing(X) C ¥ = Sing(M) C M,
where

Y~ {(E,¢) ~ (L,p)® (L', —¢p) with L € Pic"(C), and ¢ € H(C,K¢)},
Q~ {(E,¢)~ (L,0)® (L,0) with L € Pic’(C) s.t. L? ~ ¢ }.

Note that ¥ is isomorphic to the quotient of Pic’(C) x H°(C, K¢) by the involution
(L, ) — (L™, —p), hence it has dimension 4. The locus 2 instead is the branch locus
of the quotient map Pic’(C) x H°(C, K¢g) — %, and consists of 16 points Q;, with
ji=1,...,16.

A transverse slice to ¥ at a point in ¥ \ Q has a quotient surface singularity of
type Aj. An analytic neighbourhood of a point of € is more complicated, and it was
described in detail in [56]. The singularities are symplectic, and a symplectic resolution
can be constructed simply by blowing-up M along .

Prorosiriox 6.1 ([26, Prop. 4.2]). Let f: M — M be the blow-up of M along X.
Then f is a symplectic resolution, and we have that:

— f is an isomorphism over M \ %;

— fYp) =P forallpe T\ Q;

- HQ)) ~ ﬁj, where ﬁj is the Grassmannian of Lagrangian planes in a sym-
plectic 4-dimensional vector space, which is isomorphic to a smooth quadric in P*.
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Via the non-abelian Hodge correspondence W, the stratification of M in (20) in-
duces the stratification of Mg given by

(21) Qp =Sing(Xp) = ¥(N) C ¥p = Sing(Mp) = ¥(X) C Mp,
where
(22) Yp = {(A1, A2, B1, By) € (C*)* C SL3} J SLy ~ (C*)*/(Z/2Z);
Qp = {(A1, 42, By, By) € (+id)* c SL3} = ileB,j.
j=
By Theorem 1.4, Mp admits a symplectic resolution, and its fibers can be described

as in Proposition 6.1.

6.1.2. Autracting and repelling sets

Derinition 6.2. — Let X be a complex variety with a G,,-action, and F' be a subset
of its fixed locus. We denote by

Attr(F) ={z € X |limy,0 A -z € F}
the attracting set of F', and by
Repell(F) = {z € X |limy0c A -z € F}
the repelling set of F.

The tangent space of any fixed point p € Fix(X) decomposes into the direct sum
of weights spaces

T,X = P T,X,,

me”L
where T, X, ={v € T, X | A-v=A"v for all A € G, }.

Derinition 6.3. — The sequences of integers mq, mso, ... such that \™* A™2 ... are
eigenvalues of the linear operator induced by the G,,-action on 7, X are called weights
of the G,,-action at the fixed point p.

Let X*™ be the smooth locus of X, and denote a connected component of the fixed
locus Fix(X*™) simply by F'. Note that the function of weights
Fix(X5™) —s 7(dimX)
pr (ml(p)7m2(p)7 .. )

is locally constant.
In particular, the following identities hold:

(23) T, Attr(p) = @ TpXm, Ty Repell(p) = @ T, Xm,
m>0 m<0

(24) T, Attr(F) = @ T,Xm, T, Repell(F) = @ TpXm.
m=0 m<0
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6.1.3. Bialynicki-Birula decomposition. We briefly recall the celebrated Bialynicki—
Birula decomposition.

Derinition 6.4 ([42, Def. 1.1.1]). A semiprojective variety is a complex quasi-
projective algebraic variety X with a G,,-action such that:

— the fixed point set Fix(X) is proper;

— for every x € X the limit limy_,o A - x exists.

Turorem 6.5 (Biatynicki-Birula decomposition). — Let X be a normal semiprojective
variety. Then the following facts hold:

(1) X admits a decomposition into G, -invariant locally closed subsets

X = L] Attr(F);
Femy(Fix(X))

(2) the limit map
Attr(F) — F : 2 +— lin}))\-x
z—
is an algebraic map, and it is an affine bundle if FF C X°™;

(3) the connected components of the fized locus Fix(X®™) are smooth.

Proof. — See [6, Th. 4.3] in the smooth projective case; [42, §1.2] and [58, Lem. 3.2.4]
in the smooth semiprojective case; [85, Cor. 4] in the normal complete case. ]

The cohomology of a semiprojective variety can be expressed in terms of the coho-
mology of the components of the fixed locus.

Turorem 6.6 (Local-to-global spectral sequence, [86, §4.4]). Let X be a normal
semiprojective variety. Fiz an ordering Fy, Fy,... of the connected components of
Fix(X) such that if F; < F; then dim Attr F; > dim Attr F;. Then the following facts
hold.

— The Bialynicki-Birula decomposition yields the spectral sequence
(25) Ey) = H™V (Attr(F), Q) = H™(X,Q),

where u;: Attr(F;) — X is the inclusion.
— If X is smooth and Attr(F;) are smooth subvarieties of codimension c;, then we
can rewrite the spectral sequence (25) as

(26) EV = HH72%(F, Q) = H'™(X,Q)

— The spectral sequence (26) degenerates at the first page, and the Poincaré poly-
nomial Py(X) = iilomx(—l)" dim H*(X, Q) can be written

P(X) =Y P(F)t*.
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6.1.4. Torus action on M and M. The multiplicative group G,, acts on M by rescal-
ing the Higgs field
A (B, ¢) = (E, ).

The Hitchin map x: M — H°(C, K&?) is G,,-equivariant, where G,;, acts linearly on
HO(C, K&?) with weight (2,2,2). In particular, the fixed locus of M is contained in
the nilpotent cone x~1(0). Therefore, M is semiprojective. Since the singular locus %
of M is G,,-invariant, the action lifts to M , and M is semiprojective as well.

The goal of this section is to describe the fixed locus of the G,-action on M, €
and M , and to compute the weights of the action.

Provosirion 6.7 ([46, Ex.3.13]). — A wvector bundle E underlying a semistable Higgs
bundle (E,¢) € M satisfies one of the following property:

(1) E is a stable vector bundle;

(2) E~L® L~ with L € Pic’(C) and L? % O¢, i.e., (E,¢) € L\ Q;

(3) E~L® LY with L? ~ O¢, i.e., (E,¢) € Q;

(4) E is a non-trivial extension of L by L~! with L? ~ O¢;

(5) E is an unstable vector bundle isomorphic to 9j_1 @ 0;, where 0; is a theta-
characteristic, i.e., a line bundle such that 0]2- = Kc¢.

Prorosiriox 6.8 (Fixed locus of M). — The fized locus of the Gy, -action on M is
16
Fix(M)=NU©=NU || 6,
jel
where
(1) N is the moduli space of semistable Higgs bundles (E, ¢) with ¢ = 0, equiva-
lently the moduli space of semistable vector bundles of rank 2 and degree 0, which is
isomorphic to P3;
(2) O is the set of 16 points in M corresponding to the Higgs bundles

1
@j = (le @ej, (8 0) )

Proof. It is clear that N and © are fixed by the G,,-action. Hence, we just need
to show that they are the only components of Fix(M).

To this end, recall that by Proposition 6.7 the vector bundle F underlying a
semistable Higgs bundle (E, ¢) € M is:

(1) either a semistable vector bundle,
(2) or an unstable vector bundle, isomorphic to 9;1 ® 6, for some 6;.

In the former case, the limit of the one-parameter subgroup (E,\ - ¢) is (E,0)
(or (L @® L™1,0) in case (4) of Proposition 6.7), and so it lies in N, which is iso-
morphic to P? by [64]. In the latter case, (E,\ - ¢) is isomorphic to

(27) (o002 (00)) = (o7 @0 (0,0))
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for some u € Hom(ﬁj_l, 0; ® K¢), after normalizing with the group of diagonal auto-
morphisms of E; see [46, §11]. Therefore, the locus of G,,-fixed Higgs bundles with
underlying unstable vector bundles is given by © (which corresponds to u =0). O

In Proposition 6.1 we mentioned that the G,,-invariant fiber f~1(;) C M over
Q; ~ (L& L,0), with L? ~ 0¢, is the Grassmannian of Lagrangian subspaces of the
4-dimensional symplectic vector space (V,wy ).

The deformation theory of Higgs bundles gives the identification of (V,wy) with
the space of Higgs bundles extensions of (L, 0) by itself, namely

Extiigee (L, L) ~ H(C,Kc) @ H'(C, 0¢) ~ H'(C,C),

equipped with the symplectic form given by cup product. For further details, we refer
the interested reader to [26, §3.2.2]. We just observe that H°(C, Ko) parametrizes
deformations of L with fixed underlying line bundle, while H'(C, 0¢) parametrizes
deformations of L with fixed underlying Higgs field. Therefore, the rescaling action
of Higgs fields yields the G,-action on Ext%{iggs(L, L) defined by X - (v,7) = (Mv, ),
where v € HY(C, K¢) and v € H*(C, O¢). This in turn induces the G,,-action on ﬁj,
whose fixed loci are described in the next Proposition 6.9.

Prorosition 6.9 (Fixed locus of SNIJ) — The fized locus of the Gp,-action on ﬁj is

FIX(QJ) = tj U S;_ ] Tj,
where

(1) the points t; and T; correspond to the Lagrangian subspaces H(C, Kc) and
I{1 (C, ﬁc),‘

(2) the curve sj parametrizes Lagrangian subspaces generated by vi € H°(C, K¢)
and vy € HY(C, O¢), and it is isomorphic to PL.
In particular, t;, sj and T} have weights (1,1,1), (—=1,0,1) and (—1,—1,—1) respec-
tively.

Proof. — The Plicker polarization H; embeds ﬁj as a smooth quadric in the linear
system |H;| = P(W) ~ P* € P(A2V). The G,,-action on Q; induces an action on W
with weights (0,1,1,1,2) in suitable coordinates (zg,...,z4). In these coordinates,
Q; is defined by the equation 2 + zyx3 + zoz4 = 0.

Since the Pliicker embedding is G,,-equivariant, the fixed loci of ﬁj are the inter-
sections of ﬁj with the isotypic components of the G,,-representation W i.e.,

t;=[1:0:0:0:0],
S%:[O:{L‘l:{EQZZE3ZO]mﬁj:{x%+x2m3:O}:P17
T; =[0:0:0:0:1].

<

Moreover, the tangent space

T3,y = T, (W) /Ng sy, = Hom(t;, W/ (t;,T))
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has weight (1,1,1). Analogously, if p = [0 : 0 : 1 :0: 0] € s;r, then Tpﬁj ~
Hom(p, (tj, 0z,,T;)) has weight (—1,0,1), while TT]{N)]- ~ Hom(T};, W/(t;,T;)) has
weight (—1,—1,—1). O

Prorosirion 6.10 (Fixed locus of M) — The fized locus of the G, -action on M is

Fix(M)=NUStUOu [1_6| T
jel
where
(1) N = frIN s the strict transform of N, isomorphic to P3;
(2) .5”r is a Kummer surface;
(3) ©:=f"1(©);
(4) T; are pomts lying on the Lagrangian Grassmannians Q = f7HQ,).

Proof. — First, observe that Fix(M) lies over Fix(M), and so
NU® = f'Fix(M) C Fix(M) C f~(Fix(M)).

The component of FiX(M) not contained in f ! Fix(M) lies over Fix(M) NY =
S C N, which is isomorphic to Pic’(C)/(Z/27Z), i.e., the singular Kummer surface
associated to Pic’(C).

The fiber of f over p € S~ Q is isomorphic to P!, and G,, acts with non-
trivial weight on it by Proposition 6.11. Therefore, the P-bundle f~(S \ ) has
two G,,-fixed sections. We denote their closure by S~ and S*. Since the restriction
of f to N is an isomorphism, one of the two sections, say S~ lies in N. The same
holds for one of the two fixed points in each QJ, namely t; because of the weight
considerations in Proposition 6.9 and Proposition 6.11.

The other section ST must be the union of a copy of S~ Q and the rational
curve s , with 5 = 1,...,16, thus isomorphic to the nonsingular Kummer surface
assomated to Pic? (). Indeed, by construction Stn ﬁj is a non-empty component
of Fix(ﬁj) different from a point; otherwise St would be singular, which is a con-
tradiction since St is a fixed locus of a G,-action on a smooth manifold. Therefore,
StNQ; = s by Proposition 6.9. O

Prorosirion 6.11 (Weights of M)
(1) N has weight (0,0,0,1,1,1);
(2) St has weight (—1,0, 0,1,1,2);
(3) @ and ©; have weight (—1,-1,-1,2,2,2);
(4) T has wezght( -1,— 1,2,2,2).

Proof. Let w be the holomorphic symplectic form on the symplectic resolution M
extending the canonical holomorphic symplectic form w on the smooth locus of M.
As in [46, Prop. 7.1], the G,,-action rescales the holomorphic symplectic form @

A0 = A\w.
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Let p € FiX(M), and W be a Lagrangian subspace of Tp]Tj with weights (a, b, c).
Then the isotropy condition yields an isomorphism

W* ~ T,M /W,
and the weights of the action on W become
ANTE, AP A7) = (AT, A b \met)
on W*. As a result the torus action at a fixed point has weights
(a,b,c,—a+1,-b+1,—c+1).

In this way, the weights of the G,,-action at N, St and YN’] follow immediately
from the computations in Proposition 6.9, by observing that ¢; € N and s;r e ST,

For the weights at (:)j, instead, note that the locus of semistable Higgs bundles with
underlying vector bundle Hj_l @6, is Lagrangian by definition of w (cf. [46, Lem. 6.8]),
and has weight (2,2,2) by (27). O

Corortary 6.12. — N and (NZJ- intersect transversely at the point t; = NN §~2j.

Proof. — By Proposition 6.9, the tangent space T}, (Nlj has weight one, while thN
has weight zero. O

Cororrary 6.13. The attracting sets Attr(N), Attr(ST), Attr(6;) and Attr(T;)
have codimension 0,1,3,3 respectively.

Proof. — Tt is an immediate corollary of (24) and Proposition 6.11. O

6.1.5. Poincaré polynomials of M and M

Turorem 6.14 (Cohomology of M and M) — The Poincaré polynomials of M and M
are

(28) Pi(M) = (=1)F dim H*(M) ¥ = 1 + > +* + 17¢5,
k

(29) Py(M) =" (=1)" dim H* (M) t* =1+ 2¢% + 231" + 345,
k

Proof. — Since Attr(N) is an open subset of M, we have H*(Attr(N),u!@M) =
H*(Attr(N)) = H*(P?). The spectral sequence (25) gives

P,(M) = P(N) + P,(©)t°
=1+t2+t* 4+ 175,

See [21, Th. 1.5] for an alternative proof.
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Similarly, by Theorem 6.6, Proposition 6.10 and Corollary 6.13, we obtain

16
Pi(M) = Pi(N) + P(ST)E? + Py(O)t° + ) P(T))t°
j=1
=1+ 2 +t" +1%) + (1 + 2262 + )¢ 4 16t° + 16¢°
=1+ 2t% + 23t* + 3415, O

6.2. MobuL1 sPACE oF EQUIVARIANT HiGces BuNDLES M,

6.2.1. Equivariant Higgs bundle and the forgetful map q. — Recall that ¢ : C' — C'is
the hyperelliptic involution of the curve C of genus 2.

Derinition 6.15. — A (i) equivariant Higgs bundle over C' is a triple (E,h, ¢) such
that:

(1) E is an (-invariant vector bundle, i.e., :*F ~ E;

(2) h: E — *FE is a lift of the t-action on E such that (*h o h = idg;

(3) ¢ € Hom(E, F ® K¢) is an t-invariant Higgs field, i.e., a O¢-linear morphism
which makes the following diagram commutative:

ELE@)KC

hl lh@ich
A0
FE -5 P E@ Ko

A morphism between two equivariant Higgs bundles (E1, h1,¢1) and (Ea, ha, ¢2) is a
homomorphism of vector bundles ¢ € Hom(FE, F5) such that the following diagrams
commute:

hi o1
El E— L*El E1 —_— El X KC
I A
Ey — 2 s "y, By —4 By @ Ke.

The slope of a vector bundle E over a curve C is defined by
w(E) = deg(E)/rank(E).
Derinition 6.16. — An equivariant Higgs bundle (E, h, ¢) is semistable or stable if for

any proper equivariant Higgs subbundle F C FE, the inequality u(F) < p(FE) holds,
respectively pu(F) < u(E).

Let W = {wy,...,wg} be the set of all Weierstrass points, i.e., the fixed points
of v. For every w € W, hy,: E,, — E,, is an involution of the fiber E,,.

Derinition 6.17. — The normal quasi-projective variety M, (respectively M?) is the
coarse moduli space of semistable (respectively stable) equivariant Higgs bundle
(E, h, ¢) of rank 2 over C with trivial determinant and tr(h,,) = 0 for all w € W.
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The existence of M, and M} follows from the work of Seshadri [73] and Nitsure [67].
In Section 6.2.4 we review the construction. Here we first describe M, as a quasi-étale
cover of M. This cover appears also in [45, §6.3] and references therein.

Derinirion 6.18 (Quasi-étale morphism). A morphism f: X — Y between normal
varieties is quasi-étale if f is quasi-finite, surjective and étale in codimension one,
i.e., there exists a closed, subset Z C X of codimension codimZ > 2 such that
flx<z: X NZ =Y is étale.

Remark 6.19. By the purity of the branch locus, a quasi-étale morphism induces
an étale cover of the smooth locus of the codomain.

Prorosition 6.20. — The forgetful map

q M, — M
(E,h,¢) — (E, ¢)

is well-defined, quasi-étale of degree two, and branched along the singular locus X
of M,.

Proof. The forgetful map ¢ is well-defined, because an equivariant Higgs bundle
(E, h, ¢) is semistable if and only if the Higgs bundle (E, ¢) is semistable in the usual
sense (the same proof of [8, Lem.2.7] applies). The map ¢ is also surjective: any
semistable Higgs bundles (F, ¢) admits a lift of the t-action on F conjugating ¢ and
t*¢ by [45, Chap. 6,p. 74, & Th. 2.1].

We show now that ¢ is quasi-étale. To this end, we closely follow the proof of [54,
Th. 2.1]. Given two equivariant Higgs bundles (E, hy, ¢) and (E, he, ¢), there exists
an automorphism A € Aut(E) such that ho = h; 0 A and ¢ = A~1pA.

If (E, ¢) is stable, then the only automorphisms which fix the Higgs field are scalars.
Then hy = +hq, and so there are only two non-equivalent equivariant Higgs bundles
(E,h1,¢) and (E, —hy, ¢) over (E, $). Hence, ¢ is generically 2 : 1.

If (E, ¢) is strictly semistable, i.e., (E, ¢) € &, then E ~ L& L~! with L € Pic’(C),
and any two lifts are equivalent. Hence, ¢ is quasi-finite and branched along X. O

6.2.2. Non-abelian Hodge correspondence. — Let C — P! be the quotient of C' via the
hyperelliptic involution, and let W be the critical divisors on P!, i.e., the projection
of the Weierstrass points.

The moduli space M, is isomorphic to the moduli space of parabolic Higgs bundle
of rank 2 on P! with parabolic weight 1/2 at all points of W and parabolic degree
zero; see [9, Th. 3.5].

The topological space underlying M, parametrizes also representations of the orb-
ifold fundamental group

P(C/) =, v i = = =1and 11 ...7% = 1).
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Turorem 6.21 (Non-abelian Hodge correspondence). There exists a commutative
square

v,
M, —— Mp(2,SLy,t) :== Hom(7$**(C/1),SLy) /) PGLs

ql lq'ﬂop

M —Y My (2,SLy) = Hom(m (C), SLy) J PGL,.

where the horizontal arrows are real analytic isomorphisms, and the vertical arrows
are quasi-étale covers.

Proof. — Identify M, with a moduli space of parabolic Higgs bundles as above. The
correspondences ¥ and ¥, have been constructed by Hitchin [46] and Simpson [76]
respectively. By construction, the square commutes. O

6.2.3. Singularities of M,
Norarion 6.22. — We fix the following notation:

— Bun®(C/+) is the moduli space of semistable t-equivariant vector bundles (E, h).
It is the inverse image of the moduli space of semistable vector bundles N via g;

— the inverse images of {2 via ¢ consists of the 16 points €,;

— the inverse images of © via ¢ consists of the 32 points O,.

Prorosirion 6.23 (Singularities of M,)

(1) Q, is the singular locus of M,.

(2) The smooth locus of M,, denoted MF™, is the moduli space of stable equivariant
Higgs bundles M.

Proof. — The local isomorphism type of the singularities of M, coincides with the
model described in [62, Lem. 3.1]. This yields the first statement. For the second
statement, it is enough to show that

M™ =g (M\X)Uqg H(ZNQ) C M.

Any Higgs bundle (F, ¢) € M \ X is stable, and so the equivariant Higgs bundles in
g 1(M \X) are stable too. If (E, ¢) € L\ Q with E ~ L& L1, then the only line sub-
bundles of E are L and L1, but since they are not t-invariant, ¢~ 1 (X~ Q) C M?. O

6.2.4. Construction of M,. — The moduli space M, is constructed in the following
way. All the ingredients have already appeared in [73, 67, 39].

Let (E,h,¢) be a stable equivariant Higgs bundle of rank 2 over C' with trivial
determinant and tr(h,) = 0 for all w € W. Fix an equivariant ample line bundle
Oc(1) on C. Choose an integer m € Z such that H'(C, E(m)) = 0 and E(m) is
globally generated.

The quot scheme @ parametrizes all quotient sheaves of H(C, E(m)) ® O¢ with
the Hilbert polynomial of E(m). Let H°(C, E(m)) @ p§Oc — &g @ piOc(m) be the
universal quotient bundle on @ x C, with the natural projection pc: @ x C — C.
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Let R C @ be the subset of all ¢ € @ for which & is locally free and the map
HY(C,E(m)) — H°(C, &,(m)) is an isomorphism.

By [67, Prop. 3.6], there exists a locally universal family of semistable Higgs bundles
Eus & s @ pe Ko on Fg x C, where Fy is an open subset of a linear R-scheme
F — R together with a family of Higgs bundles &r RN Er R paKc.

The involution ¢* on HY(C, E(m)) induces a natural lift jo of the t-action on the
trivial bundle C' x H°(C, E(m)), and so an t-action on Fy with fixed locus Fix, (Fy).
In particular, jo descends to a lift h, of the t-action on &, for any ¢ € Fix,(Fgs).
Call Fy, the connected component of Fix,(Fys) consisting of the equivariant Higgs
bundles (&, hy, ®4) with tr(hg.) = 0; see [73, Chap.II, Prop. 6(iv)] and [73, Chap.II,
Prop.5 & Rem. 2].

Let H be the group of automorphisms of the trivial bundle which commute with jq,
and PH = H/G,, the quotient of H modulo scalar matrices. The moduli spaces M,
and M} are the quotients Fys, / PH and F ,/PH respectively, where Fj , is the subset
of stable equivariant Higgs bundles in Fi ,.

6.2.5. Universal bundles. — We show the existence of a universal bundle on M*™ x C
(ct. [39, §5)).

Derintrion 6.24. Let Z be a subset of M ™. A universal Higgs bundle on Z x C'is
a rank two Higgs bundle (E, @) such (E, ®)[{(g.n,¢)}xc = (E,¢) for all (E,h,¢) € Z.

Remark 6.25. — Let (Eq, 1) and (Eq, ®3) be universal Higgs bundles on Z x C. Then
there exists a line bundle . € Pic(Z) such that (Ei, ®1) ~ (Ee ® p 2, ®2), with
pc: Z x C'— C the natural projection. In particular, P(E;) ~ P(E,) is canonical. See
44, 4.2].

We adopt the notation of Section 6.2.4. In addition, we define F,° as being the open
subset of Fy , parametrizing stable equivariant Higgs bundle whose underlying vector
bundle is either stable or isomorphic to L @ +*L with L € Pic’(C) with L? 2 0.

The quotient M := F?/PH is the attracting set of Bun®(C/:) \ Q,. Thus, accord-
ing to Proposition 6.7, the complement M, \ M,” parametrizes stable equivariant Higgs
bundles whose underlying vector bundle is unstable or a non-trivial extension of L
by L with L? ~ O¢, and so it has codimension 2 by [46, Ex. 3.13(iv) & (v)]; see also
[49, Lem. 3.4]. In particular, F, \ F? has codimension 2.

Prorosition 6.26. A universal Higgs bundle on M™ x C does exist.

Proof. — Let & be the restriction of the universal Higgs bundle & to Fs, x C, and
denote by pr: Fs, x C — F,, and pc: Fy, x C — C the two projections.

The natural lift of the H-action is such that the subgroup of scalar matrices acts by
homotheties. Suppose that there exists an H-equivariant line bundle A(&) over F,
with the same property, i.e., that the center of H acts by homotheties. Then, the
center of H acts trivially on & @ piA(&)~!. By Kempf’s descent lemma [24, Th. 2.3],
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the PH-equivariant bundle & ® piA(&) ™! descends to a vector bundle on M*™ x C,
and since the section ® is invariant, it also descends.

Here is how to construct A(&). For any (E, h,¢) € F°, h acts on H*(C, E ® K¢),
and induces a splitting

H(C,E® Kg) = H'(C,E® K¢)"™ @ H'(C,E® K¢)~

into one-dimensional eigenspaces (relative to eigenvalues +1 respectively); see [45,
Prop.4.1]. The lift j, induces an involution on pg (& ® p5K¢). Hence, set

AN&)° = pra(6 @ peKe)™

as the jo-invariant subsheaf of pp.(& @ p&Kc). By semicontinuity, A(&£)° is a line
bundle on F? with fiber H°(C, E® K¢)T. The multiplication by a scalar in E induces
multiplication in H°(C, E ® K¢)t too, and so in A(&£)°. Now let ipo : FY < F, be
the natural inclusion, and define

ME) = ipo A(E)°.

Since Fy, is smooth and F,, . F° has codimension 2, A(&) is a line bundle on Fj,
with the right H-linearization. O

6.2.6. Nilpotent cone. — In this section we describe the components of the nilpotent
cone of M, i.e., the zero fiber of the Hitchin fibration y: M — H°(C, K&?).

We show that x~1(0) has 17 irreducible components, one of them being the moduli
space of semistable vector bundle N. By [65, Main Th., §3] there is no universal
Higgs bundle over any Zariski open set of N. On the other hand, we construct a
universal bundle on the normalization of the other components; see Proposition 6.28
and Lemma 6.29.

Prorosition 6.27. The nilpotent cone of M is a compact union of 3-dimensional
manifolds:
. 16
X (0)=NU LI N,
j=1
where N; is isomorphic to the vector space Extl(ﬁj,ﬂ_l), where 0; runs over the 16

J
theta-characteristics 9?- = K¢.

Proof. We adapt the proof of [84, Prop. 19]; see also [68, §2]. Since N C M is the
locus of semistable Higgs bundles with trivial Higgs field, we see that N C x~1(0).
However, there are also stable Higgs bundles (E, ¢) € x~1(0) with ¢ # 0.

Under this assumption, ¢ has generically rank one: denote by A the line bundle
Im¢ C E® K¢. Then F sits in the following diagram

|

0—— AQKe — EQ®Ke > A '@ Ko —— 0.

0 A1

A 0
} U
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Since tr(¢) = 0, the composition A -+ F ® K¢ — A ® K¢ is zero, and the inclusion
A — E® K¢ factors through u: A — A~1® K¢. The stability of E implies — deg A <
deg E = 0, and since u € H°(C, K¢ ® A®(_2)) is non-zero, we conclude that A is a
theta-characteristic.

Therefore, the Higgs bundle (E, ¢) is determined by the triple (6;,v,u) given by

— the theta-characteristic 6,

~ the extension class v € Ext'(6;, 9;1) giving the exact sequence 9]71 — E — 0,

— the non-zero scalar v € H°(C, Hom(Oj,Oj_l ® K¢)) ~ H(C, 0¢),
modulo the G,,-action

c-(05,v,u) = (8, cv, cu).

The equivalence class (6;,v,u) under rescaling is denoted [6;,v,u], and we identify
the Higgs bundle (E, ¢) € N; with [#;, v, u]. In particular, the irreducible components
of x71(0) different from N are

N; = P(Ext'(0;,0:") ® H(C, 0c)) ~ {u =0} ~ Ext'(6;,0;"). O

J273 VRR]

Alternative proof. — The nilpotent cone on M is the union of the repelling sets of all
the fixed loci

16
X *(0) = Repell(N) URepell(©) = N U |J Repell(6,).
j=1

By Theorem 6.5(2), Repell(©;) is isomorphic to a 3-dimensional vector space. How-
ever, we rely on the previous proof for a modular interpretation of Repell(©;). |

Let R; be the total space of the projective bundle P(Ext' (6}, 9;1) @ HY(C, 0¢))

with hyperplane bundle O, (1). As we observed above, there is a natural decompo-

sition R; = N; UP(Ext'(6;, 9;1)). The inclusion N; < x~!(0) extends to a bijective

and algebraic morphism
Ty Rj —> X_l(O)
[v:u] — [0;,v,u] = (E, ¢),

whose image is the closure N; of N; in x~!(0); see Theorem 6.5(2) and also [84,
Prop. 24].

Prorosition 6.28. — There exists a universal bundle Eg; on R; x C which sits in
the following exact sequence

0— p}j Or,(1) ®p*09j_1 — Eg, — pe; — 0,
where pr,: Rj x C'— R; and pc: Rj x C — C are the natural projections.

Proof. — Mutatis mutandis, the same argument as in [84, p. 22] works. O

Consider now the quasi-étale cover gq: M, — M. Since IV; is simply connected,
q_l(Nj) breaks into two irreducible components, say N;r and N, . In particular,
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g restricts to an isomorphism between M. N N j‘ (equivalently M7 N N.7) and
N; ~ (U ;). If we set R} = R;j \ (rj_l(Q) U rj_l(@j)), then the product map

(30) tj = (rjoq 'id): RS x C — (M7 N N;") x C
is an algebraic bijection. Let E be the universal bundle on M7 x C.
Lemwa 6.29. — The P'-bundles P(t7E) and P(Eg,) on RS x C are isomorphic.

Proof. The vector bundles t7E and Eg; are both universal on R; x C'. The result
follows from Remark 6.25. O

6.2.7. Quasi-étale covers of Mpo1(X,SLy,). — In this section we show that the quasi-
étale cover ¢ is a special feature of the moduli space M = Mp(C, SLs), which is not
shared by any other space Mpoi(X,SL,), g = 2.

Prorositiox 6.30. — The smooth locus ME%(X,SLy) of Mpoi(X,SL,) is simply-
connected for g = 2 and (g,n) # (2,2). In particular,

T (M™) = 7).

Proof. — M3*(X,SL,) contains a Zariski open subset which can be identified with
the cotangent bundle of the moduli space Bun®(X, n) of stable vector bundles of rank r
and trivial determinant over X. Therefore, the fundamental group of M5 (X, SL,,)
is a quotient of m(Bun®(X,n)), which is trivial by [20, Th.3.2(i)], for g > 2 and
(g:m) # (2,2).

Consider now M. The forgetful map ¢ induces the following exact sequence in
homotopy

(31) 1 — m(M™) — m (M) — Z/2Z — 1.

As before, M?™ contains a Zariski open subset isomorphic to the cotangent bundle
of the moduli space Bun®(C/¢) of stable t-equivariant bundles of rank 2 over C' with
trivial determinant and tr(h,,) = 0 for all w € W; see for instance [45, Chap. 6, p. 73].
Thus, we obtain that m (M™) is a quotient of w1 (Bun®(C/.)).

The space Bun®(C/1) is the smooth locus of the double cover Bun®(C/¢) of P3
branched along a singular Kummer quartic. The singular locus of Bun®(C/¢) consists
of 16 ordinary double points, which are known to admit a small resolution, i.e., the
exceptional locus has codimension > 2. This implies that 71 (Bun®(C/¢)) coincides
with the fundamental group of a (small) resolution of Bun®(C'/¢). Further, Bun®(C/+)
is rational by [54, Th.2.2] or [18, Th. 1.3]; see also [45, §5.4.2 & §5.5], where a small
resolution of Bun™(C'/¢) is denoted Bunjy 4  /o(C/i). Since the fundamental group is
a birational invariant of smooth proper varieties, we observe that Bunjy 4 1 o/(C/i) is
simply-connected, since the projective space is so.

To summarize, we have shown that

1=m(P?) ~ T1(Bumy g 1 /9(C/1)) = m1(Bun®(C/1)) —» mi (M;™).
By the exact sequence (31), we conclude that m (M) ~ Z/27Z. O
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The following corollary is an immediate consequence of Remark 6.19 and Proposi-
tion 6.30.

Cororrary 6.31. — There are no non-trivial quasi-étale cover of Mpe(X,SLy,) for
g =2 and (g,n) # (2,2). The forgetful map q is the only non-trivial quasi-étale cover
of M.

7. P=W conNJECTURES FOR M

In this section we reduce the proof of the P=W conjecture for M and M to P=W
phenomena for the summands of the decomposition theorem for f: M - M ; see
Theorem 7.1 and Theorem 7.4. The exchange of the perverse and weight filtrations
for the summands supported on a subvariety strictly contained in M is proved in
Theorem 7.6. Therefore, the ultimate goal of this section is to reduce the proof of the
P=W conjecture for M and M to the PI=WI conjecture.

We first show that the PI=WI conjecture for M implies the P=W conjecture for M.
Actually, this first statement does not require the decomposition theorem.

Turorem 7.1. — If the PI=WI conjecture for M holds, then the P=W conjecture
for M holds.

Proof. — The fixed locus of the G,,-action on M can be identified with the (dis-
joint) union of connected components of the fixed locus of the G,,-action on M ; see
Proposition 6.8 and Proposition 6.10. This induces an injective morphism between
the local-to-global spectral sequences (25) for M and M. Therefore, f*: H*(M) —
H*(M) is an injective map, and so is the natural map H*(M) — IH*(M), since
f*1 H*(M) — H*(M) factors as H*(M) — IH*(M) — H*(M). The statement now
follows from the fact that the injective map H*(M) — IH* (M) preserves the perverse
and weight filtrations. O

With a slight abuse of notation, we denote by f both the symplectic resolutions
fo1(C,SLa): M — M and fg(C,SLy): Mg — Mp. By [47, Lem.2.11], any sym-
plectic resolution is semismall. Therefore, the decomposition theorem (Theorem 2.7)
provides canonical isomorphisms:

(32) Rf:Q7(6] ~ ICx & Qg [4](—1) & Qq,(—3),

(33) RfQgr, (6] >~ 10w, © @ [](-1) @ Q, (=3).
Thus, in cohomology we have:

(34) H*(M) ~ IH*(M) ® H*2(S)(-1) ® H*%(Q)(-3),
(35) H*(Mp) ~ IH*(Mg) ® H*2(Sp)(-1) & H*5(Qp)(-3).

These decompositions split the perverse and weight filtration, as shown in the follow-
ing lemmas.
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LeEmma 7.2. We have
P H*(M) = PoIH* (M) @ Py H* 2(2) @ Po_sH*%(Q),

where P H* (M), PoIH* (M), P.H*(S) and P.H*(Q) denote the pieces of the perverse
filtration associated to the maps x o f, X, x|z and x|q respectively.

Proof. — Apply x. to the splitting (32) and notice that perverse truncation functors
Pr¢; are exact. O

Lemma 7.3
Wap H*(Mp) = Wo IH* (Mp) & Way_oH* "2(25) ® War_6 H* (Qp).

Proof. — As the decomposition theorem is an isomorphism of mixed Hodge struc-
tures, we have

Wo H*(Mp) = Wor IH*(Mp) & Wo, H* " 2(S5)(=1) & War H* 5 (Q5)(—3).

Recalling that Tate shifts (—k) increase weights of 2k, the result follows by including

them in the grading of the weight filtration. O
Turorem 7.4. — The P=W conjecture for M is equivalent to the following two state-
ments:

(1) PI=WI conjecture for M;
(2) P=W conjecture for ¥ and Q, i.e.,

P.H*(X) = U|5;Wa  H* (Xp), P.H*(Q2) = U|gWar H* (2p).

Proof. Let W: M — Mp be the non-abelian Hodge correspondence, and UM — MB
be the diffeomorphism lifting ¥ in the sense of Theorem 3.8. By the commutativity of
the diagram (7), and since the map ¥ preserves the stratifications (20) and (21), the
map U*: H*(]\A/fB) — H* (M) splits on the summands of the decomposition theorem.
More precisely, U™ is given by the product map

(36) (U*, W[5 Ul %) IH (Mp) @ H*2(Sp)(~1) © H°(25)(-3)
— IH*(M) @ H*3(2)(~1) @ H*%(Q)(-3).
The statement then follows by Lemma 7.2 and Lemma 7.3. ]

Remark 7.5. The product map (36) suggests that it is possible to define the isomor-
phism in cohomology U* without constructing the diffeomorphism . This is indeed
the approach of [12]. However, the virtue of Theorem 3.8 is to establish that the iso-
morphism between the cohomology rings of M and M, B which realizes the exchange
of perverse and weight filtration has a geometric origin.

Tueorem 7.6 (P=W for singular loci). The P=W conjecture for ¥ and 2 holds.
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Proof. Since 2 is a collection of points, the perverse and the weight filtrations are
all concentrated in degree zero, and so the P=W conjecture for Q trivially holds.

We show now that the P=W conjecture for ¥ holds. To this end, note that the
map x|x factors as follows:

Xls: X~ (Pic’(C) x HY(K¢))/(Z/27) — H°(K¢)/(Z/2Z) ¢ H (KS?).
Equivalently, x|s can be identified with the quotient of the projection
Pic’(C) x H*(C, K¢) — H°(C, K¢)

via the involution (L,s) + (L~', —s). Therefore, the general fiber x|5'(s), with
s € H'(Kc)/(Z/2Z), is isomorphic to Pic’(C). The zero fiber x|5'(0) instead is
isomorphic to the singular Kummer surface associated to PicO(C), denoted by S as in
the proof of Proposition 6.10. Since X is attracted by S via the flow of the G,,-action,
¥ retracts on S. In particular, we obtain that

H*(S) = H*(S) = H*(x|5" (s))"/*%,

and the restriction H*(X) — H*(x|5'(s)) is injective. Hence, by Theorem 2.9, we
conclude that H¢(X) has top perversity d.
On the Betti side, X5 is isomorphic to (C*)*/(Z/2Z) (cf. (22)). This means that

H*(Sp) = H*((C)"?* c H*((C)*).

In particular, H%(Xpg) has only even cohomology of top weight 2d, since H¢((C*)*)
does. Since both the perverse and the weight filtrations are supported in top degree,
the P=W conjecture for ¥ holds. |

Having proved the second item in Theorem 7.4, Section 8 will be devoted to the
proof of the PI=WI conjecture.

8. PI=WI coNsecTURE FOR M

8.1. Action oF THE 2-TORsION OF THE Jacosiax. — The action of I' = Pic’(C)[2]
induces the splitting

(37) IH*(M) = IH* (M) & IH

var

(M),

where TH*(M)' is fixed by the action of T, and IH, (M) is the variant part, i.e., the
unique T-invariant complement of TH*(M)' in IH*(M). Note that the decomposition
(37) induces a splitting of the perverse filtration. This follows from the exactness of
the perverse truncation functors P7<; applied to the character decomposition x.Q =
X*@g\‘/f ® X*@M,Var'

In a similar way there exists an isomorphism of mixed Hodge structures

IH*(Mp) = IH*(Mp)" @ IH?, . (Mp).

This implies the following theorem.
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Tueorem 8.1. The PI=WI conjecture for M is equivalent to the following two
statements:

(1) (PI = WI conjecture for the invariant intersection cohomology)
(38) PLIH* (M) = U* Wy IH* (Mp)", k> 0.
(2) (PI = WI conjecture for the variant intersection cohomology)
)

(39 P IH* (M) yar = V*Wor IH* (MB)var, k> 0.

We continue with the computation of the intersection Poincaré polynomial of M
and the intersection E-polynomial of Mp.

Prorosition 8.2. — The intersection Poincaré polynomials are

IPy(M) = dim IH*(M) " = 1+ >+ 17t* + 171",
k

IP,(M)" =Y dim IHM(M)T % =1+ ¢% 4 2t* 4 21°,
k

var

IPy yor (M) =Y dim IHY, (M)t = 15t + 15¢°.
k

Proof. — By (29) and (35) we have
IP{(M) = Py(M) — P,(S)* — P(Q)t°
= (1 + 2t% + 23t* 4 34¢5) — (1 + 6t% + 1)t? — 16t°
=14+t 4+17t* + 17¢5;

see also [26, Th.6.1].
Since the differentials of the local-to-global spectral sequence (26) are I'-equiva-
riant, we obtain

Pt,var(]/\z) = Pt,var([\i) + Pt,var(§+)t2 + ]Dt,var(é)t6 + Pt,var(U;il Tj)t67

in the notation of Theorem 6.14. The group I" acts trivially on H*(N) and H*(X) ~
H*(S) C H* (?Jr), and as the regular representation on the 16-dimensional vector
spaces

@ Qisflc H(SY), H°®), QL] H®).
Again by (35), we get
IP4 as(M) =Py e (M) — Pr e ()12 — P s (2)1°
=(dim(;2, Qls}]) — Dt* + (dim HO(U;2, Tj) — 1)t°
+ (dim H°(©) — 1)t% — (dim H°(Q)) — 1)¢°
=15t* 4 15¢°.
Finally, IP;(M)"' = IP;(M) — IP} var (M) = 1 4 % + 2t* + 2¢6. O
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Prorosition 8.3. The intersection E-polynomial of Mp is
IE(Mp) =Y (~1)*dim(Gr})} , IH!(Mp, C))P9ulr!
P,q,d

= Zdim Gr2W,C ]Hd(MB)qk =14+17¢> +17¢* + ¢°,
k,d

with ¢ = wv. In particular, dim GrgZ_H IHd(MB) =0 for all k,d € N.
Proof. — The analogue of Lemma 7.3 for compactly supported cohomology yields
(40) IE(Mp) = E(Mg) — E(Sp)q — E(Qp)q".
In order to compute E(M B), consider the stratification of Mp:
Mg :Mgmuig < QpUQg,

where Y5 < Qp = 1B~ Qp) and Qp = f71(Qp). 1t is proved in [57, §8.2.3]

that the E-polynomial of Mp is E(Mpg) = 1+ ¢ 4+ 17¢* + ¢5. This implies that
E(Mg") = E(Mp) — E(XB)

(41) _ 2 4, 6 2, 4y _ 2 4, 6

=(1+q¢ +17¢" +¢") — (1 +6¢” +¢*) = —5¢° + 16¢" + ¢°,

where the second equality follows from the fact that the weight filtration on H¥(Xp)
is concentrated in top degree; see Theorem 7.6. Since Y5 \ Qp is a P!'-bundle over
Y5 \ Qp, we obtain

E(Sp~Qp) =E[P')- E(Sp ~ Qp) = (¢+1)(1 +6¢° + ¢* — 16).

Observe that (25 is the disjoint union of 16 smooth quadric 3-folds Q B,j, SO that

16

(42) E(Qp) =Y EQp;)=16(1+q+¢ +q°).
j=1

Adding up the E-polynomials (41), (8.1) and (42), we get

(43) E(Mp) =1+ q+17¢* + 22¢° + 17¢* + ¢* + ¢°.

Finally, from (43) and (40) we obtain

(44) IE(Mp) =1+ 17¢* + 17¢* + ¢°.

By the vanishing of the odd intersection cohomology (cf. Proposition 8.2), every

. w
non-trivial component (Grp +q

ficient to IE(Mp). Therefore, there is no cancellation and by (44) any non-trivial

(Grgz_q IHf(MB7 C))?1 has type (p, p), i.e., the mixed Hodge structure on IHf:‘l(MB7 C)

is of Hodge-Tate type. In symbols, we write
IE(Mp) =Y _ dim(Gr),, IHI(Mp, C))""uPv?

p+q

IHY(Mp,C))P4 will contribute with non-negative coef-

p,q,d

= dim(Gryy, IH{(Mp,C))"*¢* =Y " dim Gry}, IHY (M, C)q",
k,d k,d
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where the last equality follows from Poincaré duality and the fact that the polynomial
in (44) is palindromic. O

Prorosition 8.4. — The intersection E-polynomials are

IE(Mp)* Zdlm Cryy IHY M) ¢ =1+ 2¢° +2¢* + ¢°
Evar(Mp) Zdlm Griy IHS (Mp)q* = 15¢% + 15¢*.

Proof. — The solution of the linear system

dim Gr}/ IH*(Mp) < dim Gr)Y H¥(Mp) =0 for k < d [71, Prop. 4.20]

dim Gry, ,, IH*(Mp) =0 Proposition 8.3
> k.qdim Griy IHYMp) ¢" =1+ 17¢% + 17¢* + ¢° Proposition 8.3
S dim THP(Mp) th =1+ 2 + 17t4 4 1745 Proposition 8.2

is given by

(45) dim GrlY, IH*(Mp) =1 ford=0,1,2,3,

(46) dim Gr¥ IH*(Mp) = dim Gry IH®(Mp) = 16.

The terms in this list are all the non-zero graded pieces of the mixed Hodge structure
on IH*(Mpg).

Note that the top graded pieces Gr% IHd(MB) are generated by a¢, where « is
a ([-invariant) generator of TH?*(Mg). The class o corresponds via the non-abelian
Hodge correspondence to the first Chern class of a x-ample (or y-anti-ample) divisor
on M. In particular, a? and a® are non-zero and I'-invariant. This implies that

IH®, (Mp) C W4IH*(Mp) ~ Gry IH*(Mp),

var
IHS, (Mp) C WIH®(Mp)) ~ Gry IH®(Mp).

var
Together with Proposition 8.2 and Proposition 8.3, we conclude that
IEyar(Mp) = dim Gr} IH}, (Mp)q® + dim Gry TH?, (Mp)q"
=dim IH?, (Mp)¢* + dim IHS, (Mp)q* = 15¢* + 15¢*
IE(Mp)" = IE(Mp) — IEar(Mp)
= (1417 +17¢* + ¢5) — (15¢°> + 15¢*) =1+ 2¢> + 2¢* +¢°. O
As a result, an analogue of [41, Cor. 4.5.1] holds for Mp.

CoroLrary 8.5. — The intersection form on HS(Mp) = IHS(Mp) is trivial. Equiv-
alently, the forgetful map HS(Mp) — H(Mp) is zero.

Proof. — By (45), (46) and Poincaré duality, the weight filtrations on IH°(Mpg) and
THS(M3p) are concentrated in degree [8,12] and [0,4]. Since the forgetful map is a
morphism of mixed Hodge structures, it has to vanish. O
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Remark 8.6 (Failure of curious hard Lefschetz). By (28) and the proof of Propo-
sition 8.4, we have

(47) > dimGryy HY(Mp)q* =1+ ¢* +17¢"* + ¢°.
k,d

The fact that the polynomial (47) is not palindromic implies that curious hard Lef-
schetz (2) fails for H*(Mp). Analogously, one can show that relative hard Lefschetz
fails for H*(M).

8.2. Tne variant part oF TH*(M). — The goal of this section is to show that the
PI = WI conjecture for the variant part of IH*(M) holds. As we will explain in the
proof of Theorem 8.8, it is enough to prove it in degree 4 and 6.

Prorosirion 8.7. — IHL, (M) C PoIH*(M).

Proof. — The argument of [11, §4.4] and [14, Prop. 1.4] works with few changes.

The endoscopic locus o7 C H°(C, K&?) is the subset of sections s’ € H(C, K&?)
such that the Prym variety associated to the corresponding spectral curve Cy is not
connected (cf. [11, §4.4]). It is the union of 15 lines, obtained as images of the squaring
map

ip: H(C,Kc ® L) — H°(C,K&?),  ipla) =a®a,
where L € T'\ {0}. In particular, a general affine line A in H°(C, K&?) does not
intersect <7,. It is important to remark that T' acts trivially on H*(x~*(s)) for any
s € Al: the proof in [11, §4.4] is independent of the choice of the degree of the Higgs
bundles, and so it holds also in the untwisted case. This implies
H*(x YA = H* (x'(AY) = IH" (x ' (AY)),

where the last equality follows from the fact that x~!(A!) has quotient singularities.
We conclude by Theorem 2.9 that

IHY,, (M) € Ker{ IH*(M) — TH*(x"*(AY)) = TH* (x " (A))"}
= P, IH*(M),
because the restriction map is I'-equivariant. O
Turorem 8.8. — The PI = WI conjecture for the variant intersection cohomology

of M (39) holds.

Proof. — The variant Poincaré polynomial in Proposition 8.2 shows that IH}, (M)
is concentrated in degree 4 and 6.
By relative hard Lefschetz, we can write
Cry IH* (M) ~ Grf THY (M),  Gr¥ IH*(M) ~ Grl IH® (M),

which both vanish by Proposition 8.2. Together with Proposition 8.7 and the proof
of Proposition 8.4, this implies
PyIH? (M) = IH? (M) = U*IH? (Mp)=U*W,IH? (Mp).

var var var

This proves the PI=WI conjecture for the variant part in degree 4.
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Again by relative hard Lefschetz, there exists a y-ample o € H?(M) such that the
cup product U induces the isomorphism

Ua: IHY (M) ~ Gry 10, (M) — Gr¥ IHS, (M).
By Proposition 8.2 we obtain that
15 = dim IHY, (M) = dim Gr} IHS, (M) < dim [HS, (M) = 15.

This implies that the cup product
Ua: IH?

var

(M) — IH®

var (M)
is an isomorphism, which preserves the perverse and weight filtrations; see [11,
Lem. 1.4.4]. Therefore, the PI=WI conjecture for the variant part holds in degree 6

as well. O

8.3. A taurorocicaL crass. — We show now that IH*(M)' is generated by the
square of the relatively ample class «, and a class of perversity 2 and weight 4. As
usual, we adopt the notation of the previous sections, and in particular of Section 6.2.

Consider the forgetful map ¢q: M, — M. The action of I" on M lifts to M,, and toge-
ther with the deck transformation of g, we obtain a group of symmetries of order 32,
denoted T',.

Prorosrrion 8.9. IH*(M)T = HA (M),
Proof. — Since M, has isolated singularities by Proposition 6.23, we have that
TH*(M,) = H*(M®™); see [31, §1.7] or [25, Lem. 1]. The proof of [32, Prop. 3] implies
that

IHY(M)" = 1HY (M) = B (M) O

Fix a base point ¢ € C. Recall that E is a universal bundle on M;™ x C; see
Section 6.2.5.

Derinition 8.10. — The space R is the total space of the projective bundle
P(E| foxlx{c}). Its associated principal PGLo-bundle parametrizes equivariant Higgs
bundles (E, h, ¢) together with a frame for the fiber E., up to rescaling.

The second Chern class of a Pl-bundle is the pull-back of a generator of
H*(BPGL;) ~ Q via the classifying map. In particular, if the P!'-bundle is a
projectivization of the rank-two vector bundle E, then

e2(P(E)) = ¢i(E) — 4ca(E).

Prorosition 8.11. The second Chern class co(R) of the projective bundle R and

the square of the x-ample class o generate IH4(M)F

IH* (M) =Qa? @ Qca(R).

Proof. — The proposition is a consequence of the following facts:
(1) co(R) € HY(M™)T = TH*(M)", since the T',-action lifts to R.
(2) o € HY(M)' c TH*(M)T.
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(3) c2(R) # 0 by Lemma 8.12.

(4) o2 and c3(R) are linearly independent, because a? has top perversity by The-
orem 2.9, while co(R) € P,IH*(M); see Lemma 8.14.

(5) dim IH*(M)" = 2 by Proposition 8.2. O

We now prove the lemmas used in the proof above.
Levmma 8.12. — ¢3(R) # 0.

Proof. — Let vj: R} x C — (M7 N N;‘) x C' be the algebraic bijection defined in
6.2.6(30). Lemma 6.29 and Proposition 6.28 give
tiea(R) = 02(P(E|Rgx{c}))
= (c1(pk, Or, (1) ®p50; 1) — c1(007))? | Re ey = €1(ORe (1))

In particular, 0 # cl(ﬁR;(l))2 € H*(R3) ~ H*(P?). O
Levma 8.13. co(R) € PsIH*(M).

Proof. — Fix s a generic point in H°(C, KQCM), and let ps: Cs — C the corresponding
spectral curve, i.e., the double cover of C' ramified along the zeroes of s; see for instance
[3, §3]. We denote the product map p, x id: Cy x Pic’(Cy,) — C x Pic’(C;) simply
by ps. A universal bundle on x~*(s) x C' ~ C'x Pic?(Cy) does exist, and it is isomorphic
to ps.« P, where & is the Poincaré line bundle over Cy x PicO(C’s).

The abelian variety (x o ¢)~!(s) parametrizes line bundles of Cs decorated with a
lift of the hyperelliptic involution +: C' — C'. This implies that the restriction of E to
(x 0 q)~(s) x C is isomorphic to ¢*(ps,id)«Z, up to tensorization by a line bundle

in Pic((x 0 q)~'(s)).
As a result, we have that

c2(R)|-1(s) = A (El(xoq)-1(s)x{e}) — 4¢2(El(xoq)~1(s) x{e})
= 0" (A (Pss D1 9x161) — de2(perP) 1 0x11) ) = 0,

where the last equality follows from [84, §4] or [11, Eq. (5.1.10) & (5.1.11)]. This
implies that co(R) does not have top perversity by Theorem 2.9. ]

Leviva 8.14. — co(R) € PyIHY(M).

Proof. — By Lemma 8.13, it is enough to show that the projection [c2(R)] in the
graded piece Gry’ TH*(M)" vanishes. Suppose on the contrary that [ca(R)] # 0. Then
Proposition 8.2 would imply

dim Grl’ TH*(M)' < dim TH*(M)' — dim(Qa? @ Qe(R)) =2 —2=0.
By relative hard Lefschetz, Gry TH® (M) would be trivial. Analogously,
Crf IHS(M)F ~ Gr?” TH*(M)T = 0.
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Again by Proposition 8.2 we would conclude that

dim Gl TH®(M)T = dim IH®(M)T — 26: dim Gry, TH®(M)T
k=4
=dim IHS(M)F —dimQa® =2 —-1=1.
However, this is a contradiction by Corollary 8.5. ]
Lemwva 8.15. — Py IHS(M)T = 0.
Proof. — Lemma 7.2 gives the splitting
PsHS(M)T = PyIHS (M) @ P,HY(S)T @ HO(Q)T.
The P=W conjecture for ¥ gives P,H*(X) = 0. Moreover, we have that H°(Q)l' ~
Q[€]; see the proof of Proposition 8.2. Therefore, we get
PsHS (M) = PyIHS (M)T @ Q[€).

Up to a different numbering convention, [16, Th.2.1.10] says that the dimension of

P3HS(M)T is not greater than the rank of the intersection form on H®(M)''. There-
fore, Corollary 8.5 implies
dim PyHS(M)" < 1.
We conclude that dim PsTH®(M)' = 0. O
We conclude the section by showing that the class co(R) has weight 4.
Levyia 8.16. — co(R) € Wy IH*(Mp).

Proof. — The principal PGLo-bundle . — Mg, == W, (M ™) is the restriction of the
quotient Hom(7$™®(C/1),SLy) — Mp(2,SLa, ). It parametrizes t-equivariant local
systems E’ on C together with a frame for the fiber E. over ¢ € C, i.e., the base point
of m*™®(C/1) = m*™®(C /1, ¢), up to rescaling.

By construction, the non-abelian Hodge correspondence W, : M;™ — Mpg" (Theo-
rem 6.21) extends to a diffeomorphism between the principal PGLa-bundle associate
to R and .#. This implies that ca(R) = (¥ })*ca(7), and c2(%) has weight 4 by
22, Th.9.1.1, Prop.9.1.2)]. O

8.4. Tur iNnvARIANT PART OF TH* (M)

Tueorem 8.17. — The invariant PI=WI conjecture (38) holds for M.

Proof. — The statement is obvious in degree 0 and 2, because IH°(M)" and TH?*(M)"
have dimension one by Proposition 8.2 and Proposition 8.4.
Now we have

Py IH*(M)F ~ W, IH*(Mp)T,
Gl IHY(M)F ~ Gry TH*(Mp)' =0,
PIH*(M)Y = IHY (M) ~ IH*(Mp)" = WsIH*(Mp)",
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due to Proposition 8.11, Lemma 8.16 and Proposition 8.4. This proves the invariant
PI=WTI conjecture in degree 4.

By relative hard Lefschetz, the cup product with the y-ample oo € H?(M) induces
the isomorphisms

Ua: Grd IH*(M)T — Grf IH®(M)T,
Ua: Gry IH*(M) ~ Q[o?] — Grf IH® (M) ~ Q[a?].

Note that Gry TH*(M)" and Gr IH*(M) are the only non-trivial pieces of the per-
verse filtration on IH*(M)", and by Proposition 8.2 we have that dim IH?, (M) =
dim IHS, (M)". This implies that the cup product

var
Ua: IHH(M)T — THS(M)T

is an isomorphism which preserves both perverse and weight filtration (cf. [11,
Lem. 1.4.4]). Therefore, the invariant PI=WI conjecture holds in degree 6, as well. O

APrpPENDIX. DEGENERATIONS OF HYPERKAHLER VARIETIES

In this appendix we describe degenerations of compact hyperkéhler manifolds to
(non-compact) symplectic resolutions of Dolbeault moduli spaces. Instances of these
constructions can be found in [23], [15], [14]. Here a degeneration is a flat (not neces-
sarily proper) morphism of normal algebraic varieties, typically over a curve.

The compact hyperkdhler manifolds appearing in these degenerations are Mukai
moduli spaces of sheaves on a K3 surface or an abelian surface S. Given an effective
Mukai vector™® v € H},(S,Z), we denote by M(S,v) the moduli space of Gieseker
semistable sheaves on S with Mukai vector v for a sufficiently general polariza-
tion H (which we will typically omit in the notation); see [78, §1]. Further, if S
is an abelian variety with dual S, and dim M (S,v) > 6, then the Albanese morphism
albg: M(S,v) — S x § is isotrivial, and we set K(S,v) = albg'(0s, Os). By [70], the
moduli space M (S,v) of sheaves on the K3 surface S and the moduli space K (.S, v)
of sheaves on the abelian surface S are irreducible holomorphic symplectic varieties,
in brief IHSv.

A.1. DerormMATION TO THE NORMAL CONE: GL,, case. — Let j: X < S be the embed-
ding of a smooth projective curve® of genus g into a K3 surface S. The degeneration
to the normal cone of j: X — S is the family

7 = (Blx xS x AY) \ (S x 0) — AL

The central fiber .%; is isomorphic to 7*X, while the restriction to A! \ {0} is a
trivial fibration S x (A! < {0}) — A! < {0}.

(4ie., there exists a coherent sheaf .# on S such that v = (tk(F), c1(F), x(F) — e(S) tk(F)),
with £(S) :== 1 if S is K3, and 0 if S is abelian.
(®)n [23] X is a very ample divisor, but this assumption can be dropped.
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For all t € Al let 3, = n[X] € Ha(,Z) with n > 0. Take a relative compactifi-

cation . C . over Al. Then
M — Al
is the coarse relative moduli space of one-dimensional Gieseker semistable sheaves %
whose support is proper and contained in .% C .%; with x(#) = n(1 — g) and
[Supp#] = B¢; see [78, Th.1.21]. The central fiber recovers the Dolbeault moduli
space
-ﬁo ~ ]\4[)01()(7 GLn)
Indeed, the moduli space of Higgs bundles on X of rank n and degree 0 can be realized
as the moduli space of one-dimensional Gieseker-semistable sheaves % on T*X with
X(:Z) = n(1l — g) and [Supp.#| = Py, via the BNR-correspondence [3]. The general
fiber is isomorphic to
My~ M(S,v)

with Mukai vector v = (0,nX,n(g — 1)).

Examere A.1 (genus one: K3M). If g = 1, then the degeneration .# — Al is
the relative n-fold symmetric product of .. The relative Hilbert-Chow morphism
M — M s a desingularization of .#. The composition M — M — A is a family
whose general fiber is the compact hyperkéihler manifold S[™ and whose central fiber
is (T* X)), i.e., the symplectic resolution of Mpe (X, GL,) =~ (T*X)™.

ExamrrLe A.2 (genus two and rank two: O’Grady 10). If (g,n) = (2,2), then the
blow-up /Z of the singular locus of .#; ~ M(S,v) is a smooth compact hyperkéhler
manifold deformation equivalent to OG10; see for instance [69]. Analogously, the blow-
up /Z/E of the singular locus of .#y ~ Mpe (X, GLy) gives the symplectic resolution
of .#,. Note that the proof of [69, Prop. 2.16] shows that the degeneration .# — T
is locally analytically trivial. Therefore, the blow-up M of the singular locus of .# is
a smooth family over A! whose general member is deformation equivalent to OG10
and whose central fiber is the symplectic resolution of Mpe (X, GLs).

Remark A.3. — Taking schematic supports via Fitting ideals defines a Lagrangian
morphism M (S,v) — [nX|, called the Mukai system. It is classically known that the
Mukai system degenerates to the Hitchin fibration, see [23].

Remark A4, — If the Mukai vector (0, X, g — 1) is primitive (e.g. if Pic(S) = ZX),
then the second author observed in [59, Rem. 2.5] that the degeneration .#Z — Al is
locally analytically trivial. Therefore, the functorial resolution Z(.#) — A of A
gives a simultaneous resolution of .#; for any t € A'; see for instance [33, Lem. 4.2].

A.2. DEFORMATION TO THE NORMAL CONE: SL, case. — Suppose now that X is a
smooth projective curve embedded in an abelian surface S. To avoid confusion, we re-
label S by A.(®) As in the previous section, there exists a degeneration .# — Al

(6)1n this section we denote by A an abelian surface, and not a curve of genus one as in the rest
of the paper.
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from the moduli space M (A,v) to Mpei(X, GL,,). In this case, however, M(A,v) is
no longer an IHSv because of the Albanese morphism albg: M(A,v) — A x A.

In genus one and two it is possible to slice .Z to obtain a degeneration of the IHSv
K(A, ’U) to MDol(X7 SLn)
Examrpre A5 (genus one: K["(A)). If g = 1, then the family

o = (BloxoA x A") \ (A x 0) — A'

is a group scheme, and the degeneration .# — A! is the relative n-fold symmetric
product &7 (") — A! whose general fiber is A and whose central fiber is (T*C)™,

Consider now the relative addition map a,: &™) — &, given by a,(z1,...,Tn) =
Z?zl x;. The inverse image of the identity section of &/ — A! under the addition

map is a degeneration
H — A

whose general fiber is the singular generalized Kummer variety K (A,v) ~ K™ (A)

and whose central fiber is Mpe (X, SL,,) ~ K™ (T*C). The inverse image of the iden-

tity section of @&/ — A! under the composition 7" — &7(") — o7 is a degeneration
H —s A — A

whose general fiber is the generalized Kummer manifold K[ (A) and whose central

fiber is the symplectic resolution of Mpe (X, SL,,).

[Exampre A.6 (genus two). — If g = 2, the Albanese map [88]
albg: M(A,v) — Ax A
degenerates to the map
alb: Mpo (X, GL,) — Pic®(X) x HO(X,Kx) ~ A x AY,
defined in (8); see [14, §4]. Taking fibers over the identity, one obtains a family .# — A!
such that the central fiber is Mpe (X, SL,) and the general fiber is the THSv K (A4, v).

Exampre A.7 (genus two and rank two: O’Grady 6). — The symplectic resolution
fa: I?(A,v) — K(A,v), with v = (0,2X,2) and g = 2, is a compact hyperkéher
manifold of OG6 type. Let  be the blow-up of the singular locus of the variety 2
obtained in Example A.6, with (g,n) = (2,2). Then .# — A! is a degeneration of
K(A,v) to the Dolbeault moduli space M in §6. Further, as in Example A.2, A s
a smooth family over A' whose general member is the compact hyperkéher manifold
K (A,v) of OG6 type and whose central fiber is the symplectic resolution M of M.

We observe that the cohomology of K (A, v) governs the cohomology of M in the
following sense.

Prorosition A.8. — The specialization morphism [15, (86)]
sp': H*(K(A,v)) — H*(M)

18 a surjection.
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Proof. — The following facts hold:

— The Mukai system y4: K(A,v) — |2X| specializes to the Hitchin fibration
yof: M — H(X, K$?). In particular, a x 4-ample line bundle on l~((A, v) specializes
to a generator of H2(M).

— The fiber X;1(2X ) consists of 34 irreducible components which specialize to the
irreducible components of the nilpotent cone of M that generate H G(M ); see [87,
Prop. 3.0.3].

— Denote by ¥4 and ¥ the singular locus of K(A,v) and M, isomorphic to
(Ax A)/£1 and (A2 x A)/ + 1 respectively. As in (35), H*"2($,) is a direct
summand of H*(K(A,v)). By definition of sp' in [15, (86)], the restriction of the
specialization map to H*~2(34) is the pullback

(A2x A)/+1 = P(T*A® O;)/ £1— (Bl 5,,4Ax Ax A/ +1
— (Ax AxAY)/+1— (Ax A)/ £1.
So, given the inclusion j: (0 x A)/ +1 < (A x A)/ £ 1, we have
$p(y) = j*y € H*(A/ £ 1) = H((A2 x A)/ £ 1)
for v € H*((A x 21\)/ £ 1), which is a surjection.
We conclude that
Im(sp') D H2(M) ® HS (M) ® H*2(3,4).

By the description of H*(M) (cf. Fig. 1) and relative hard Lefschetz, this suffices to

show that Im(sp') equals the whole H*(M). O

Remark AL9. Recall that for any odd number d the twisted Dolbeault moduli
space MW (X, SLa,d) parametrizes semistable SLy-Higgs bundles of degree d on the
curve X. It is curious that the analogue of Proposition A.8 fails for M (X, SLy, d) and
g = 2: there is no degeneration of compact hyperkéihler manifolds to M*W (X, SLs, d)
such that the specialization map sp' is surjective; see [14, Prop. 4.3].

Examrre A.10 (genus > 2). — There is no degeneration from K(A,v) with Mukai
vector v = (0,nX,n(g — 1)) with ¢ > 2 to Mpe(X,SL,) for dimensional reason.
However, K(A,v) and Mpq(X,SL,) have the same type of singularities: they are
stably isosingular in the sense of [59, Def.2.6 & Th.2.11]. Therefore, it is natural to
ask the following.

Question. — Does there exist a degeneration of compact symplectic varieties equipped
with a Lagrangian fibration in Prym varieties to the Hitchin fibration

X(X,SLy): Mpol(X,SL,) — @ H (X, KY')

1=2
forg>2?
Note that the question is answered positively in [72] if we replace the special linear

group SL,, with the symplectic group Sp,,.
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