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P=W CONJECTURES FOR CHARACTER VARIETIES

WITH SYMPLECTIC RESOLUTION

by Camilla Felisetti & Mirko Mauri

Abstract. —We establish P=W and PI=WI conjectures for character varieties with structural
group GLn and SLn which admit a symplectic resolution, i.e., for genus 1 and arbitrary rank,
and genus 2 and rank 2. We formulate the P=W conjecture for a resolution, and prove it for
symplectic resolutions. We exploit the topology of birational and quasi-étale modifications of
Dolbeault moduli spaces of Higgs bundles. To this end, we prove auxiliary results of independent
interest, like the construction of a relative compactification of the Hodge moduli space for
reductive algebraic groups, and the projectivity of the compactification of the de Rham moduli
space. In particular, we study in detail a Dolbeault moduli space which is a specialization of
the singular irreducible holomorphic symplectic variety of type O’Grady 6.

Résumé (Les conjectures P=W pour les variétés de caractères ayant une résolution symplectique)
On établit les conjectures P=W et PI=WI pour les variétés de caractères avec groupe struc-

turel GLn et SLn qui admettent une résolution symplectique, c’est-à-dire pour le genre 1 en
rang arbitraire, et le genre 2 en rang 2. On formule la conjecture P=W pour une résolution et
on la prouve pour les résolutions symplectiques. Pour la démonstration on fait appel à la topo-
logie des modifications birationnelles et quasi-étales des espaces de modules de fibrés de Higgs.
Pour cela, on démontre des résultats auxiliaires d’intérêt indépendant, comme la construction
d’une compactification relative de l’espace de modules de Hodge pour les groupes algébriques
réductifs, ou la théorie de l’intersection de certains cycles lagrangiens singuliers. En particulier,
on étudie en détail un espace de modules des fibrés de Higgs qui est une spécialisation de la
variété symplectique holomorphe irréductible singulière de type O’Grady 6.
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1. Introduction

Let X be a compact Riemann surface of genus g, and let G be a complex reductive
algebraic group. The Betti and Dolbeault moduli spaces MB(X,G) and MDol(X,G)

are central objects in non-abelian Hodge theory. The Betti moduli space, or G-char-
acter variety of X, is the affine GIT quotient

(1)
MB(X,G) := Hom(π1(X), G) �G

=
{

(A1, B1, . . . , Ag, Bg) ∈ G2g |
∏g
j=1[Aj , Bj ] = 1G

}
�G.

It parametrizes isomorphism classes of semistable representations of the fundamental
group of X with value in G.

The Dolbeault moduli space MDol(X,G) instead parametrizes semistable principal
G-Higgs bundles with vanishing Chern classes; see [78]. For example, we have that:

– a GLn-Higgs bundle is a pair (E, φ) with E vector bundle of rank n and degree 0,
and φ ∈ Hom(E,E ⊗KX);

– a GLn-Higgs bundle is an SLn-Higgs bundle if in addition the determinant of E
is trivial and the trace of φ vanishes;

– a PGLn-Higgs bundle is an equivalence class of SLn-Higgs bundles under ten-
sorization by an n-torsion line bundle on C.

Despite the different origin of these moduli spaces, there exists a real analytic
isomorphism

Ψ: MDol(X,G) −→MB(X,G)

called non-abelian Hodge correspondence; see [79] or Section 3. However, the map Ψ

is not an algebraic isomorphism. Indeed, note that the Betti moduli space is an affine
variety, while the Dolbeault moduli space admits a projective morphism with con-
nected fibers

χ : MDol(X,G) −→ AdimMDol(X,G)/2,

called the Hitchin fibration. The purpose of this paper is to study the behaviour in
cohomology of the non-abelian Hodge correspondence in view of the P=W conjec-
ture [11]. In the rest of the paper we will only consider reductive groups of type A,
i.e., G = GLn,SLn,PGLn, unless stated otherwise, e.g. in the formulation of the P=W
conjectures or in Section 3.1.

One of the main difficulties while studying the cohomology of these moduli spaces
is that they are generally singular. To circumvent this issue, it is customary to slightly
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change the moduli problem as follows. Given an integer(1) d coprime with the rank n
of the group, the twisted Betti moduli space is the GIT quotient

M tw
B (X,G) :=

{
(A1, B1, . . . , Ag, Bg) ∈ G2g |

∏g
j=1[Aj , Bj ] = e2πid/n1G

}
�G.

On the other hand, the twisted version of Dolbeault moduli, denoted M tw
Dol(X,G),

parametrizes semistable pairs (E, φ), with E vector bundle of rank n and degree d,(2)

and φ ∈ Hom(E,E ⊗ KX). The technical advantage of working with these twisted
moduli spaces is that they are smooth varieties and satisfy a non-abelian Hodge
theorem as in the untwisted case; see [44].

While studying the weight filtration on H∗(M tw
B (X,G),Q), Hausel and Rodriguez-

Villegas discovered a surprising symmetry, that they called curious hard Lefschetz
theorem: there exists a class α ∈ H2(M tw

B (X,G),Q) which induces the isomorphisms

(2) ∪ αk : GrWn−2kH
∗(M tw

B (X,G),Q)
'−−−→ GrWn+2kH

∗+2k(M tw
B (X,G),Q).

The theorem holds for G = GL2,SL2 and PGL2 by [41], and for G = GLn by [61].
To explain this phenomenon, de Cataldo, Hausel and Migliorini conjectured that
the non-abelian Hodge correspondence should exchange the weight filtration on the
space H∗(M tw

B (X,G),Q) with the perverse (Leray) filtration associated to χ on the
space H∗(M tw

Dol(X,G),Q); see Definition 2.8. In this way, the curious hard Lefschetz
theorem would correspond to the classical relative hard Lefschetz theorem for χ; see
Theorem 2.10.

Conjecture 1.1 (P=W conjecture for twisted moduli spaces)

PkH
∗(M tw

Dol(X,G),Q) = Ψ∗W2kH
∗(M tw

B (X,G),Q).

The conjecture holds for g > 2 and G = GL2, SL2 and PGL2 by [11], and for
g = 2 and G = GLn,SLp with p prime by [15, 14]. An enumerative approach has been
proposed in [19], and other P=W phenomena have been studied in [74, 75, 27, 89,
82, 81, 66, 48, 37, 38, 59]. However, P=W phenomena for the original moduli spaces
MB(X,G) and MDol(X,G) have not been explored yet. This is then the goal of our
paper.

In the singular case, relative and curious hard Lefschetz theorems fail in general
for singular cohomology; see Remark 8.6. Nonetheless, it is known that the relative
hard Lefschetz theorem for χ holds for intersection cohomology IH ∗(MDol(X,G)); see
Sections 2.2 and 2.4. Moreover, de Cataldo and Maulik proved in [13] that the perverse
filtration on intersection cohomology is independent of the complex structure of the
curve X, exactly as it happens for the weight filtration. Therefore, they conjectured
[13, Quest. 4.1.7].

(1)We omitted the dependence of Mtw
B (X,G) and Mtw

Dol(X,G) on the degree d not to burden the
notation too much.

(2)Note that we recover the untwisted Dolbeault moduli space for d = 0.

J.É.P. — M., 2022, tome 9
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Conjecture 1.2 (PI=WI conjecture). — Let G be a complex reductive group. Then

PkIH
∗(MDol(X,G),Q) = Ψ∗W2kIH

∗(MB(X,G),Q).

It is also conceivable that one could obtain the P=W conjecture for the singular
moduli spaces MDol(X,G) from the previous conjectures.

Conjecture 1.3 (P=W conjecture for singular moduli spaces). — Let G be a complex
reductive group. Then

PkH
∗(MDol(X,G),Q) = Ψ∗W2kH

∗(MB(X,G),Q).

Alternatively, we may also opt for a desingularization of MDol(X,G), and continue
to work with singular cohomology. We show that a P=W conjecture for symplectic
resolution does hold, i.e., for resolutions where a holomorphic symplectic form on the
smooth locus of each moduli space extends to a symplectic form on the whole of the
resolution.

To this end, we first show how to lift the non-abelian Hodge correspondence to
resolutions of MDol(X,G) and MB(X,G), up to isotopy, according to Theorem 3.8.

Theorem 1.4 (Theorem 3.8). — Let G be a complex reductive group. Then there exist
resolutions of singularities fDol : M̃Dol(X,G) → MDol(X,G) and fB : M̃B(X,G) →
MB(X,G), and a diffeomorphism Ψ̃ : M̃Dol(X,G)→ M̃B(X,G), such that the follow-
ing square commutes:

H∗(M̃Dol(X,G),Q) H∗(M̃B(X,G),Q)

H∗(MDol(X,G),Q) H∗(MB(X,G),Q).
f∗Dol f∗B

Ψ̃∗

Ψ∗

The resolutions fDol and fB can be taken functorial with respect to smooth algebraic
or analytic morphisms, and symplectic if G=GLn or SLn with (g, n)=(1, n) or (2, 2).

Conjecture 1.5 (P=W conjecture for symplectic resolution). — Let G be a complex
reductive group. Let Ψ̃, fDol and fB be the diffeomorphism appearing in Theorem 1.4.
If fDol is a symplectic resolution (if it exists!), or equivalently fB is so, then

PkH
∗(M̃Dol(X,G),Q) = Ψ̃∗W2kH

∗(M̃B(X,G),Q).

In an earlier version of this paper, we stated the P=W conjecture for resolution
without the assumption of the existence of a symplectic resolution, but later the
second author proved that the hypothesis is indeed essential at least for G = GLn
and SLn, see [59, §5.6]. Recent results suggest that the existence of a holomorphic
symplectic form should be a key ingredient for P=W phenomena, see [12, §4.4], [61]
and [37, Th. 1.7].

In this paper, we provide the first evidence for the P=W conjectures in the singular
context.

J.É.P. — M., 2022, tome 9
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Main theorem. — Let G = GLn or SLn. Suppose that (g, n) = (1, n) or (2, 2). Then
the following conjectures hold:

(1) the P=W conjecture;
(2) the PI=WI conjecture;
(3) the P=W conjecture for a symplectic resolution.

Observe thatMDol(X,GLn) andMDol(X,SLn) admit a (unique) symplectic resolu-
tion if and only if (g, n) = (1, n) or (2, 2); see [5] and [29, Th. 2.2]. Under this assump-
tion, the P=W and PI=WI conjectures forMDol(X,PGLn) hold too; see Remark 4.3.

The expectation is that the PI=WI conjecture holds even in the absence of a
symplectic resolution. The second author has provided first evidence of this fact in
[59, §5].

Proof of the main theorem. — We first reduce to G = SLn; see Theorem 4.1.
For g = 1, the P=W and PI=WI conjectures follow from Theorem 5.3 and

Remark 5.4. Although not presented in these terms, the proof of the P=W conjecture
for the symplectic resolution in g = 1 is due to [12].

The proof of the conjectures for M := MDol(C,SL2), with C a curve of genus 2,
takes up most of the paper. We first reduce the P=W conjecture for M and M̃ to
the PI=WI conjecture; see Theorems 7.1, 7.4 and 7.6. Finally, the PI=WI conjecture
follows from Theorems 8.1, 8.8 and 8.17. �

Symplectic resolutions. — The Dolbeault moduli spaces which admit a symplectic res-
olution appear as specialization of (a crepant contraction of) of compact hyperkähler
manifolds as shown in the table.

Special fiber symplectic resolution of the general fiber

MDol(A,GLn)
Hilbert scheme of n points on a K3 surface
containing the elliptic curve A

MDol(A,SLn)
generalized Kummer variety of dimension 2(n− 1)
associated to the abelian surface A×A

MDol(C,GL2) O’Grady 10-dimensional moduli space OG10

M := MDol(C,SL2) O’Grady 6-dimensional moduli space OG6

Table 1. Degenerations of compact hyperkähler manifolds to the
space MDol(X,G); see the appendix. We denote by A and C a com-
pact Riemann surface of genus 1 and 2 respectively.

Even if these degenerations are not strictly used in the proof of the main theo-
rem, they have been our sources of inspiration. For instance, the proof of the P=W
conjecture for g = 1 is inspired by the description of the cohomology of generalized
Kummer varieties in [32], while the alterations in Section 6 are specializations of those
exploited by [62] to determine the Hodge numbers of OG6. We included details about

J.É.P. — M., 2022, tome 9
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the construction of the degenerations in the appendix for the interested reader. In
the twisted case these degenerations have been exploited in [15, §4] and [14, §4]; see
Proposition A.8 and Remark A.9 for a bizarre difference between the behaviour of
the degenerations in the smooth and singular cases. Analogous degenerations on the
Betti side for g = 1 have been considered in [60, §5.2 and §5.3] for the proof of the
geometric P=W conjecture.

Twisted vs untwisted moduli spaces. — Let G = GLn or SLn. The known proofs [11]
and [15] of the P=W conjecture for twisted moduli spaces crucially rely on the fact
that H∗(M tw

Dol(X,G)) is generated in degree not greater than 4. Further, the genera-
tors are Künneth components of the second Chern class of a universal Higgs bundle
on M tw

Dol(X,G)×X, called tautological classes.
In the untwisted case this can fail.
– The cohomology ring of MDol(X,G) may not be generated in degree 6 4. For

instance, Theorem 6.14 and the second paragraph of the proof of Proposition 8.4
imply that

H∗(M,Q) ' Q[α, γj ]/(α
3, γ2

j , α ∪ γj),
with degα = 2, deg γj = 6, and j = 1, . . . , 16.

– A universal Higgs bundle E onMDol(X,G)sm×X may not exist. Indeed, if E exists
on M sm×C, then its restriction to the moduli space of semistable vector bundles of
rank 2 and degree 0 would be a universal vector bundle, which does not exist by [65].

If g = 2, we fix this problem by constructing a tautological class β on a quasi-étale
cover ofM , i.e., étale in codimension one; see Section 8.3. However, β does not descend
in cohomology, but as an intersection cohomology class. More precisely, IH ∗(M,Q) is
the H∗(M,Q)-module

IH ∗(M,Q) ' H∗(M,Q)[1, β]/
(
α ∪ β −

∑16
j=1 γj , α

2 ∪ β, γj ∪ β
)
.

One can avoid constructing a universal bundle on a quasi-étale cover by appealing
to the Dolbeault moduli stack, and the class β can be interpreted as a Chern class of
an orbibundle. However, the construction of the universal bundle on the quasi-étale
cover is interesting in itself; cf. [45, §6.1]. Note also that the existence of this cover is
a special feature of M : we show that when g > 2, M is the only Dolbeault moduli
space which admits a non-trivial quasi-étale cover; see Section 6.2.7.

1.1. Outline of the paper

– In Sections 2 and 4 we recall basic notions and theorems used throughout the
paper.

– In Section 3.1 we lift the non-abelian Hodge correspondence Ψ to a diffeomor-
phism Ψ̃ between the resolutions of the Betti and Dolbeault moduli spaces; see The-
orem 3.8. To this end, we describe an explicit compactification of the Hodge moduli
space in Theorem 3.2. Note that Ψ̃ is the diffeomorphism which appears in the state-
ment of the P=W conjecture for symplectic resolution. As a by-product, we answer
a question by Simpson about the projectivity of the compactification of the de Rham
moduli space, see Corollary 3.3.

J.É.P. — M., 2022, tome 9
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6 1

5 0 1

4 1 0 16

3 0 6 0 16

2 1 0 16

1 0 1

0 1

0 1 2 3 ∆

p

RHL

Figure 1. The (p,∆)-entry of the table is the dimension of the graded
piece

GrPp H
∆−p(M̃Dol(C, SL2),Q),

of the perverse Leray filtration on H∗(M̃Dol(C, SL2),Q), where C is a
compact Riemann surface of genus 2. The sums along the northwest-
southeast diagonals give the Betti numbers of M̃Dol(C,SL2). Relative
hard Lefschetz accounts for a symmetry of this perverse diamond,
namely a reflection about the horizontal axis placed at middle per-
versity. The P=W conjecture for resolution implies that the sums
along the rows are the coefficients of the E-polynomial of M̃B(C, SL2),
which is computed in (43).

– In Section 4.1 we show that the P=W conjecture for SLn implies the P=W
conjecture for GLn.

– In Section 5 we prove the P=W conjectures for g = 1.
– The rest of the paper is devoted to the proof of the P=W conjectures for M :=

MDol(C, SL2), with C a curve of genus 2. We describe the geometry of M in great
detail in Section 6: its singularities and its symplectic resolution M̃ in Section 6.1.1;
the fixed loci of the Gm-action on M and M̃ in Section 6.1.4; the (universal) quasi-
étale cover q : Mι →M in Section 6.2.1; a universal Higgs bundle on the smooth locus
M sm
ι of Mι in Section 6.2.5; the zero fiber of the Hitchin fibration in Section 6.2.6.
– In Section 7 we explain the strategy of the proof of the P=W conjecture for M .

Ultimately, we reduce the proof of the P=W conjectures for M and M̃ to the PI=WI
conjecture for M .

– In Section 8.1 we compute the necessary intersection Poincaré and E-polyno-
mials.

– In Section 8.3 we build a tautological class of perversity 2 and weight 4, out of the
universal bundle on M sm

ι . This allows to conclude the proof of the PI=WI conjecture
for M in Section 8.4.

– In the appendix we collected some information about degenerations of compact
hyperkähler varieties to Dolbeault moduli spaces.

J.É.P. — M., 2022, tome 9



860 C. Felisetti & M. Mauri

Acknowledgements. — We would like to acknowledge useful conversations with
Thorsten Beckmann, Simone Chiarello, Mark de Cataldo, Peter Gothen, Isabell
Hellmann, Daniel Huybrechts, Luca Migliorini, Giovanni Mongardi, Mircea Mustaţă,
André Oliveira, Johannes Schmitt, Junliang Shen, Andras Szenes, Michael Temkin,
Marco Trozzo. In particular, we are grateful to Mark de Cataldo for useful discussions
on the projectivity of the compactifications of de Rham and Dolbeault moduli spaces
in Theorem 3.2, and to Michael Temkin for suggesting Lemma 3.5. Finally, we are
grateful to the anonymous referees for many useful suggestions and comments.

We would like to thank the University of Geneva and Max Planck Institute for
supporting our reciprocal visits during the preparation of this paper.

2. Preliminaries

In this section we introduces preliminary notions and results which will be useful
throughout the paper. For further details we refer to [4, 30, 31, 16].

When omitted, the coefficients of (intersection) cohomology are assumed to be
rational.

2.1. Perverse sheaves. — An algebraic variety X is an irreducible separated scheme
of finite type over C. Denote by Db

c(X) the bounded derived category of Q-construc-
tible complexes on X. Let D : Db

c(X) → Db
c(X) be the Verdier duality functor. The

full subcategories
pDb

60(X) :=
{
K∗ ∈ Db

c(X) | dim Supp(H j(K∗)) 6 −j
}
,

pDb
>0(X) :=

{
K∗ ∈ Db

c(X) | dim Supp(H j(DK∗)) 6 −j
}
,

determine a t-structure on Db
c(X), called perverse t-structure. The heart

Perv(X) := pDb
60(X) ∩ pDb

>0(X)

of the t-structure is the abelian category of perverse sheaves. The truncation functors
are denoted pτ6k : Db

c(X) → pDb
6k(X), pτ>k : Db

c(X) → pDb
>k(X), and the perverse

cohomology functors are
pH k := pτ6k

pτ>k : Db
c(X) −→ Perv(X).

Definition 2.1. — Let K∗ be a complex in Db
c(X). The cohomology Hd(X,K∗) is

endowed with the perverse filtration defined by

PkH
d(X,K∗) = Im{Hd(X, pτ6kK

∗)→ Hd(X,K∗)}.

2.2. Intersection cohomology. — The category Perv(X) is abelian, artinian, and
its simple objects are the intersection cohomology complexes.

Definition 2.2 (Intersection cohomology complex). — Let L be a local system on
a smooth Zariski-dense open subset U ⊆ X. The intersection cohomology complex
ICX(L) is a complex of sheaves in Db

c(X) which is uniquely determined up to iso-
morphism by the following conditions:

– ICX(L)|U ' L[dimX];

J.É.P. — M., 2022, tome 9
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– dim SuppH j(ICX(L)) < −j, for all j > −dimX;
– dim SuppH j(DICX(L)) < −j, for all j > −dimX.

When L = Q
Xsm , i.e., the constant sheaf on the smooth locus of X, we just

write ICX for ICX(Q
Xsm). Further, if X has at worst quotient singularities, then

ICX ' Q
X

[dimX].

Definition 2.3 (Intersection cohomology). — The intersection cohomology of X with
coefficient in L is its (shifted) cohomology

IH ∗(X,L) = H∗−dimX(X, ICX(L)).

Analogously, the intersection cohomology of X with compact support and coefficients
in L is IH ∗c(X,L) = H∗−dimX(X,DICX(L)). For further details, we refer the inter-
ested reader to [50].

There is a natural morphism

H∗(X) −→ IH ∗(X),

which is an isomorphism when X has at worst quotient singularities. This morphism
equips IH ∗(X) with the structure of H∗(X)-module, but in general intersection coho-
mology has no ring structure or cup product.

Moreover, the groups IH ∗(X) are finite dimensional, satisfy Mayer-Vietoris theo-
rem and Künneth formula. Although they are not homotopy invariant, they satisfy
analogues of Poincaré duality, i.e., IH ∗(X) ' IH 2 dimX−∗

c (X)∨ and of the hard Lef-
schetz theorem. They also carry a mixed Hodge structures.

Definition 2.4 (Mixed Hodge structure). — The mixed Hodge structure (V, F ∗,W∗)

is the datum of
– a Q-vector space V ,
– an increasing filtration W∗ on V , called weight filtration,
– a decreasing filtration F ∗ on V ⊗ C, called Hodge filtration,

such that the graded pieces GrWk V := WkV/Wk−1V admit a pure Hodge structure of
weight k, induced by F ∗ on GrWk V ⊗ C.

An element v ∈ V has weight k if v ∈WkV but v 6∈Wk−1V .

Definition 2.5 (E-polynomial). — The E-polynomial of X is an additive function on
the category of separated C-schemes of finite type given by

E(X) =
∑
p,q,d

(−1)d dim(GrWp+qH
d
c (X,C))p,qupvq.

Additivity means that if Z ⊂ X is a closed subscheme, then E(X) = E(Xred) =

E(X r Z) + E(Z).
Analogously, we define the intersection E-polynomial as

IE (X) =
∑
p,q,d

(−1)d dim(GrWp+q IH
d
c(X,C))p,qupvq.

J.É.P. — M., 2022, tome 9
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Note however that the intersection E-polynomial is not an additive function, due
to the fact that in general the restriction to a closed subscheme Z ⊂ X of ICX is not
isomorphic to ICZ .

2.3. Decomposition theorem. — In this section we recall in brief the statement of
the decomposition theorem for semismall maps.

Definition 2.6. — A morphism of algebraic varieties f : X → Y is semismall if
dimX ×Y X 6 dimX.

A stratification of f is a collection of finitely many locally closed subsets Yk such
that f−1(Yk)→ Yk are topologically locally trivial fibrations. A stratum Yk is relevant
if 2 dim f−1(Yk)− dim(Yk) = dimX.

Theorem 2.7 (Decomposition theorem for semismall maps). — Let f : X → Y be a
proper algebraic semismall map from a smooth variety X. Then there exists a canon-
ical isomorphism

Rf∗QX [dimX] '
⊕
Yk

IC Y k

(
RdimX−dimYkf∗Qf−1(Yk)

)
,

where the summation index runs over all the relevant strata of a stratification of f .

2.4. Perverse Leray filtration. — Let χ : X → Y be a projective morphism of
algebraic varieties of relative dimension r. Set r(χ) := dimX ×Y X − dimX.

Definition 2.8. — The perverse Leray filtration associated to χ is the (shifted) per-
verse filtration on the cohomology of the complex Rχ∗ICX

PkIH
∗(X) = PkH

∗−(dimX−r(χ))(Y,Rχ∗ICX [dimX − r(χ)]).

When Y is affine, de Cataldo and Migliorini provided an equivalent geometric
description of the perverse Leray filtration. Assume for simplicity that dimX =

2 dimY = 2r(χ). Let Λk ⊂ Y be a general k-dimensional linear section of Y ⊂ AN .

Theorem 2.9 (Flag filtration [17, Th. 4.1.1])

PkIH
d(X) = Ker

{
IH d(X)→ IH d(χ−1(Λd−k−1))

}
.

This means that the class η ∈ IH d(X) belongs to PkIH
d(X) if and only if its

restriction to χ−1(Λd−p−1) vanishes, i.e., η|χ−1(Λd−p−1) = 0.
Most remarkably, the perverse Leray filtration satisfies the relative hard Lefschetz

theorem.

Theorem 2.10 (Relative hard Lefschetz). — Let χ : X → Y be a proper map of alge-
braic varieties, and let α ∈ H2(X) be the first Chern class of a relatively ample line
bundle. Then there exists an isomorphism

αi : GrPr−k IH
∗(X) −→ GrPr+k IH

∗+2k(X).
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3. Lifting the non-abelian Hodge correspondence

Let X be a compact Riemann surface, and fix a complex reductive algebraic
group G. The first cohomology group H1(X,G) comes in various incarnations (cf. [78]
and [79]):

– the Betti moduli space MB(X,G), also named character variety, parametrizing
semistable representations of the fundamental group of X with value in G;

– the Dolbeault moduli space MDol(X,G) of semistable principal G-Higgs bundles
with vanishing Chern classes;

– the De Rham moduli space MDR(X,G) of semistable principal G-bundles with
an integrable connection.
All these moduli spaces are homeomorphic to each other. The Riemann-Hilbert cor-
respondence yields a complex analytic isomorphism

(3) MDR(X,G)an 'MB(X,G)an.

There exists an algebraic fibration (real analytically trivializable)

(4) λ : MHod(X,G) −→ A1,

whose fibers are moduli spaces of semi-simple principal G-bundles with λ-connections;
see [80]. Hence, the fiber over 0 isMDol(X,G), and the fibers over λ 6= 0 are isomorphic
to MDR(X,G). The space MHod(X,G) is called Hodge moduli space. In particular,
a continuous trivialization MHod(X,G)top ' MDol(X,G) × A1 gives the homeomor-
phism

(5) MDol(X,G)top 'MDR(X,G)top.

The non-abelian Hodge correspondence

Ψ: MDol(X,G)top −→MB(X,G)top

is the composition of the maps (3) and (5) for a choice of a preferred real analytic
trivialization; see [80] for details.

3.1. Compactification of Hodge moduli spaces

The Hodge moduli space MHod(X,G) admits a partial compactification, relative
to the morphism

λ : MHod(X,G) −→ A1.

We obtain it as a Gm-quotient of the total space of the degeneration of MHod(X,G)

to the normal cone of λ−1(0) 'MDol(X,G). The construction is an extension to the
singular case of [43, Lem. 6.1] or [40, Th. 7.2.1].

To this end, we shall use the following results by Simpson.

Proposition 3.1 ([80, Th. 11.2]). — Let Z be a variety over the variety S, endowed
with a Gm-action covering the trivial Gm-action on S. Assume that Z/S carries a
relatively ample line bundle admitting a Gm-linearization. Assume that the fixed point
set Fix(Z) ⊆ Z is proper over S, and that for any z ∈ Z the limit limt→0 t · z exist
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in Z. Let U ⊂ Z be the subset of points z such that the limit limt→∞ t · z does not
exist. Then U is open in Z and there exists a universal geometric quotient Z/Gm.
This quotient is separated and proper over S.

Theorem 3.2 (Partial compactification of the Hodge moduli space). — There exists
a projective morphism

λ : MHod(X,G) −→ A1

which is a relative compactification of the morphism λ.

Proof. — MHod(X,G) is endowed with the Gm-action

t · (E,∇λ) −→ (E, t∇λ)

covering the standard Gm-action on A1, namely t · λ = tλ. Equip A2 with the
Gm-action given by t · (x, y) = (x, ty). The morphism A2 → A1, given by (x, y) 7→ xy,
is Gm-equivariant. Therefore the fiber product MHod(X,G)×A1 A2 is equipped with
a Gm-action. We summarize the maps constructed in a diagram: note that the sub-
scripts indicates the coordinatization chosen for the affine spaces.

MHod(X,G)×A1 A2 MHod(X,G)

A2
x,y A1

λ

A1
x

(x, y) xy

x

λ

λ′

Choose a λ′-ample line bundle L ′ on MHod(X,G) ×A1 A2 admitting a Gm-lin-
earization (which exists since MHod(X,G) ×A1 A2 is normal and because of [63,
Cor. 1.6]). Let χ(X,G) : MDol(X,G)→ AdimMDol(X,G)/2 be the Hitchin’s proper map
for MDol(X,G); see [79, p. 22]. The fixed locus is contained in

χ(X,G)−1(0)× {y = 0} ⊂MDol(X,G)× {y = 0} ⊂MHod(X,G)×A1 A2,

so it is proper over A1
x. By Proposition 3.1, there exists a universal geometric quotient

MHod(X,G) := (MHod(X,G)×A1 A2 r (χ(X,G)−1(0)× A1
x))/Gm

and a proper morphism λ : MHod(X,G)→ A1
x.

MHod(X,G) contains an open subset isomorphic to MHod(X,G), given by the
Gm-quotient of

(MHod(X,G)×A1 A2)×A1
y

(A1
y r {0}) 'MHod(X,G)×Gm.

We show now that the morphism λ is projective. Let ∂MHod := MHod(X,G) r
MHod(X,G) be the Cartier boundary divisor. By [24, Th. 2.3] (or [10, Proof of
Prop. 3.2.2]), a power of the line bundle L ′ descends to a line bundle L on
MHod(X,G). We claim that the line bundle L ⊗O(m · ∂MHod) is ample for m� 0.

To this end, observe that λ−1
(0) =: MDol(X,G) coincides with the projective com-

pactification ofMDol(X,G) constructed in [10, Th. 3.1.1(1)]. Let χ : MDol(X,G)→ A
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be also the projective compactification of the Hitchin morphism constructed in [10,
Th. 3.1.1(2)]. The restriction of L to λ−1

(0) is χ-ample by [10, Prop. 3.2.2], while
the restriction of ∂MHod is the pullback of an ample divisor on A. Therefore, the line
bundle L ⊗O(m ·∂MHod) is ample for m� 0 when restricted toMDol(X,G). By the
openness of ampleness [55, Th. 1.2.17], it is λ-ample in a neighbourhood of λ−1

(0). But
MHod(X,G) r λ

−1
(0) is isomorphic to the trivial product MDR(X,G)× (A1 r {0}),

where the first factor is Simpson’s compactification ofMDR(X,G); see [80, §11]. There-
fore, we conclude that L ⊗ O(m · ∂MHod) is λ-ample for m� 0. �

Incidentally, note that Theorem 3.2 answers the question about the projectivity
of the compactification of the de Rham moduli space risen in [80, p. 268] and [10,
Rem. 3.1.2].

Corollary 3.3. — Simpson’s compactification MDR(X,G) is projective.

We now study the local geometry of the morphism of λ.

Proposition 3.4. — The morphism λ is locally analytically trivial, i.e., for any p ∈
MHod(X,G) over λp ∈ A1 there exist analytic neighborhoods p ∈ Up ⊆ MHod(X,G)

and p ∈ Vp ⊆ MHod(X,G)λ such that Up ' Vp × D, with D a disk in A1, and λ

corresponds to the second projection Vp × D→ D.

Proof. — The Gm-action on MHod(X,G) extends to MHod(X,G), and so

MHod(X,G)|A1
λr{0} 'MDR(X,G)×Gm;

see also [80, p. 232]. By [80, Th. 9.1], λ is locally analytically trivial. Therefore, it is
enough to show that λ is locally analytically trivial at p ∈ λ−1

(0) r λ−1(0).
Let p′ ∈ MHod(X,G) ×A1 A2 be a lift of p. Since λ is locally analytically trivial,

so λ′ is. Following the proof of [10, Lem. 3.5.1], we can choose a transverse slice to
the Gm-orbit though p′, locally isomorphic to an affine variety Np′ × A1

x, such that
MHod(X,G) is locally isomorphic at p to Np′/ Stab(p′)×A1

x, and λ is the projection
onto the second factor. As a result, we obtain that λ is locally analytically trivial. �

In Theorem 3.8 we show that there exists a diffeomorphism Ψ̃ which lifts the
isomorphism

Ψ∗ : H∗(MB(X,G)) −→ H∗(MDol(X,G))

to an isomorphism between the cohomology of the resolution spaces.
To this purpose we recall that for any noetherian quasi-excellent generically reduced

scheme X over Spec(Q) there exists a resolution of singularities R(X)→ X functorial
with respect to regular morphism X ′ → X, in the sense that R(X ′) is isomorphic
to R(X) ×X X ′. See [83] for further details and the definition of quasi-excellent
schemes and regular morphisms. Here we just mention that by definition, if X is
excellent, then the completion morphism X̂x := Spec ÔX,x → X is regular for any
closed point x ∈ X. In [83, Th. 5.2.2], Temkin showed also that quasi-compact analytic
spaces admit functorial resolutions compatible with smooth analytic morphism. The
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following lemma is implicit in [83], and it has been kindly communicated to us by
Temkin. For clarity, we distinguish the complex algebraic variety X from its complex
analytification Xan, but omit the difference elsewhere in the paper.

Lemma 3.5. — If X is a complex algebraic variety, then the analytification of the
algebraic functorial resolution is biholomorphic to the analytic functorial resolutions
of Xan, i.e., R(X)an ' R(Xan).

Proof. — Without loss of generality suppose that X = Spec(B) is affine. We briefly
recall Temkin’s construction of the analytic functorial resolution; see [83, Th. 5.2.2].
Take a covering of Xan =

⋃
iXi by Stein compact domains (e.g. embed locally Xan

in a complex affine space and take intersections of Xan with closed polydiscs). The
ring of functions Ai := Oan

X (Xi) is excellent, and the functorial resolution of SpecAi
glue to the analytic functorial resolution R(Xan). Since B and Ai are excellent, the
completion morphism B → ÔX,x and Ai → Ôan

X,x are regular, so the algebraic and
the functorial resolutions R(X) and R(X)an are compatible with completions. Now,
since ÔX,x ' Ôan

X,x, we have R(X̂x) ' R(X̂an
x ). By functoriality, we obtain that

R(X)×X X̂x ' R(X̂x) ' R(X̂an
x ) ' R(Xan)×X X̂x

for any closed point x ∈ X. Hence, R(X)an ' R(Xan). �

Corollary 3.6. — A biholomorphism f : X ′ → X between complex algebraic vari-
eties (not necessarily algebraizable) lifts to a biholomorphism R(f) : R(X ′)→ R(X)

between their functorial resolutions, which gives a fiber product square.

R(X ′) R(X)

X ′ X

R(f)

f

Proof. — By functoriality in the complex analytic category, R(X)×XX ′ is an analytic
functorial resolution, so biholomorphic to R(X)an by Lemma 3.5. �

Lemma 3.7. — Let X be a normal locally Q-factorial(3) complex variety. Suppose
that X admits a symplectic resolution f : Y → X with an irreducible exceptional
divisor, obtained by blowing-up the singular locus. Then f is functorial.

Proof. — By [29, Th. 2.2], any symplectic resolution of X is isomorphic to f . Let
h : X ′ → X be any smooth morphism. The blow-up Y ′ → X ′ of the singular locus
of X ′ is smooth and symplectic since h is smooth. Then X ′ satisfies all the hypotheses
of Lemma 3.7 with symplectic resolution Y ′′ := Y ×XX ′, so Y ′ = Y ′′ by [29, Th. 2.2],
i.e., the resolution is functorial for smooth morphisms, and also for regular morphism
following [7, Th. 1.2, Cor. 4.6]. �

(3)This means that for any closed point x ∈ X the analytic local ring Oan
X,x are Q-factorial, that

is some multiple of every Weil divisor is Cartier.
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Theorem 3.8 (Lift of the non-abelian Hodge correspondence Ψ). — There exist
resolutions of singularities fDol : M̃Dol(X,G) → MDol(X,G) and fB : M̃B(X,G) →
MB(X,G), and a diffeomorphism

Ψ̃ : M̃Dol(X,G) −→ M̃B(X,G),

such that the square

(6)
M̃Dol(X,G) M̃B(X,G)

MDol(X,G) MB(X,G)

fDol fB

Ψ̃

Ψ

commutes up to an isotopy of MB(X,G). In particular, the following square in coho-
mology commutes

(7)
H∗(M̃Dol(X,G)) H∗(M̃B(X,G))

H∗(MDol(X,G)) H∗(MB(X,G)).
f∗Dol f∗B

Ψ̃∗

Ψ∗

The resolutions fDol and fB can be taken functorial with respect to smooth algebraic
or analytic morphisms, and symplectic if G=GLn or SLn with (g, n)=(1, n) or (2, 2).

Proof. — Let fHod : R(MHod(X,G)) → MHod(X,G) be the functorial resolution of
MHod(X,G), equivalently in the analytic or algebraic category by Lemma 3.5. Since λ
is locally analytically trivial by Proposition 3.4, fHod is a simultaneous resolution of
MHod(X,G)λ; see for instance [33, Lem. 4.2]. Note also that any vector field on the
smooth locus ofMHod(X,G) can be lifted to a vector field on R(MHod(X,G)) by [34,
Cor. 4.7].

For such a resolution, Proposition 5.2 in [1] holds: the family λ◦fHod admits a real
analytic Ehresmann connection such that the corresponding flow of diffeomorphisms
preserves the exceptional locus of fHod, and moreover it does so fiberwise over its
image in MHod(X,G). The same proof as that of [1, Prop. 5.2] shows that we can
further suppose that the flow preserves ∂MHod(X,G) ' ∂MDol(X,G) × A1 and its
inverse image in R(MHod(X,G)). Hence, there exists a resolution of singularities

M̃Hod(X,G) := f−1
Hod(MHod(X,G))

of MHod(X,G) such that the following square commutes

M̃Dol(X,G) := M̃Hod(X,G)0 M̃Hod(X,G)ε =: M̃DR(X,G)

MDol(X,G) := MHod(X,G)0 MHod(X,G)ε =: MDR(X,G),

fDol := fHod,0 fDR =: fHod,ε

where the horizontal arrows are stratified diffeomorphisms, and ε 6= 0.
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Since the Riemann-Hilbert correspondence is a smooth analytic map, the map
fDR is obtained via base change from the functorial resolution fB : M̃B(X,G) :=

R(MB(X,G)) → MB(X,G) by functoriality. Therefore, we obtain the commutative
square

M̃Dol(X,G) M̃B(X,G)

MDol(X,G) MB(X,G).

fDol fB

Ψ̃

Ψ′

Since Ψ′ and the non-abelian Hodge correspondence Ψ are induced by trivialization
of MHod(X,G), the square (6) commutes up to a stratified isotopy of MHod(X,G).
Since stratified isotopy are trivial in cohomology, the square (7) commutes too.

We now show that the functorial resolutions fDol and fB are symplectic if G =

GLn or SLn, with (g, n) = (1, n) or (2, 2). Indeed, in this case MDol(X,G) and
MB(X,G) are normal complex varieties which admit a symplectic resolution ob-
tained by blowing-up the singular locus; see Sections 5.1 and 6.1.1, or [5, Th. 1.8].
Note that the results of [5] are stated for MB(X,G), but they extend to MDol(X,G)

by the isosingularity principle, see [79, Th. 10.6] or [59, §2.4 and the first paragraph
of §3.2]. Further, the analytic neighborhoods of the singularities of these varieties are
Q-factorial. Indeed, the singularities ofMDol(X,G) andMB(X,G) are either quotient
singularities or the nilpotent cone in sp(4), which is a cone over a projective vari-
ety with quotient singularities and Picard number one; see the last paragraph of the
proof of [5, Th. 1.3] and references therein, and [62, Lem. 1.3] or [59, §3.4]. By [53,
Prop. 5.15] and [52, Prop. 7.4] these singularities are analytically Q-factorial. Hence,
the last statement of Theorem 3.8 follows from Lemma 3.7. �

Remark 3.9. — In this paper, functorial resolutions are used only for the following
purposes: to lift vector fields and group actions to resolutions, and for the compati-
bility with respect to the Riemann–Hilbert correspondence; see proof of Theorem 3.8
and Section 4.1. If G = GLn or SLn with (g, n) = (1, n) or (2, 2), the symplectic res-
olutions of MDol(X,G) and MB(X,G) are indeed functorial by Lemma 3.7 but these
properties can be shown more directly. The resolutions are obtained by blowing up
the singular locus, which is invariant with respect to any group action on the vari-
eties and preserved by the Riemann–Hilbert correspondence. Further, the liftability
of vector fields follows easily for instance from [1, Lem. 5.3].

4. Moduli spaces for GLn vs SLn

Let Γ := Pic0(X)[n] ' (Z/nZ)2g be the group of n-torsion line bundles on the
Riemann surface X of genus g and canonical line bundle KX . We review the relation
between the moduli spacesMDol(X,G) andMB(X,G) for G = GLn and SLn; see also
[46, 79, 78].
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Recall that MDol(X,GLn) parametrizes semistable Higgs bundles (E, φ), where E
is a vector bundle on X of rank n and degree 0, and φ ∈ Hom(E,E ⊗KX).

The fiber of the isotrivial morphism

(8)
alb: MDol(X,GLn) −→ Pic0(X)×H0(X,KX)

(E, φ) 7−→ (detE, trφ)

is isomorphic to MDol(X,SLn). In particular, the monodromy of alb is the group Γ.
Indeed, the étale cover

(9)
MDol(X,SLn)× Pic0(X)×H0(X,KX) −→MDol(X,GLn)

((E, φ), L, s) 7−→ (E ⊗ L, φ+ (s/n)idE)

has Galois group Γ, which acts on the domain diagonally by tensorisation

Γ×MDol(X,SLn)× Pic0(X)×H0(K) −→MDol(X,SLn)× Pic0(X)×H0(K)

(Lγ , (E, φ), L, s) 7−→ (Lγ , (E ⊗ Lγ , φ), L⊗ L−1
γ , s).

Therefore, when we take cohomology, we obtain

(10)
H∗(MDol(X,GLn)) ' H∗(MDol(X,SLn)× Pic0(X)×H0(X,KX))Γ

' H∗(MDol(X,SLn))Γ ⊗H∗(Pic0(X)),

where the former equality follows from an observation of Grothendieck in [36], and
the latter from the fact that Γ acts trivially on H∗(Pic0(X)), since it is a restriction
to a subgroup of the action of the connected group Pic0(X).

The Hitchin map

χ(X,GLn) : MDol(X,GLn) −→
n⊕
i=1

H0(X,K⊗iX )

is a projective fibration sending (E, φ) to the characteristic polynomial of φ. It is
Lagrangian with respect to ω, i.e., the holomorphic symplectic form of the canonical
hyperkähler metric on the smooth locus of MDol(X,GLn); see [46, §6]. The map
χ(X,GLn) restricts on MDol(X,SLn) to

χ(X,SLn) : MDol(X,SLn) −→
n⊕
i=2

H0(X,K⊗iX ).

The map χ(X,SLn) is Γ-equivariant, covering the trivial Γ-action of the codomain.
In particular, there exists a commutative diagram

(11)

MDol(X,SLn)× Pic0(X)×H0(X,KX) MDol(X,GLn)

⊕n
i=2H

0(X,K⊗iX )×H0(X,KX)
⊕n

i=1H
0(X,K⊗iX )

(χ(X,SLn), SPic0(X), idH0(X,KX)) χ(X,GLn)

=

with SPic0(X) : Pic0(X)→ pt.
Via the non-abelian Hodge correspondence Ψ, the action of Γ onMDol(X,SLn) cor-

responds to the algebraic action of the group of characters Hom(π1(C),Z/nZ), which
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acts on MB(X,SLn) by multiplication (changing the signs of the matrices Aj , Bj ’s as
in (1)).

The multiplication map SLn×Gm → GLn induces the étale cover

MB(X,SLn)× (C∗)2g −→MDol(X,GLn)

with Galois group Γ. Therefore, the analogue of (10) holds

(12)
H∗(MB(X,GLn)) ' H∗(MB(X,SLn)× (C∗)2g)Γ

' H∗(MDol(X,SLn))Γ ⊗H∗((C∗)2g).

4.1. P=W for SLn implies P=W for GLn. — In this section we show that the P=W
conjectures for SLn imply the corresponding statements for GLn. In the twisted case,
this is proved in [11, §2.4]; see also [14, §1]. In view of Theorem 4.1, starting from
Section 5, we will focus our attention on the SLn case exclusively.

Fix Γ-equivariant resolutions of singularities

fDol(X,SLn) : M̃Dol(X,SLn) −→MDol(X,SLn),

fB(X,SLn) : M̃B(X,SLn) −→MB(X,SLn),

which satisfy Theorem 3.8. Note that the functorial resolutions in the proof of Theo-
rem 3.8 are actually (Γ×Gm)-equivariant; see [51, Prop. 3.9.1]. By the isotriviality of

albHod : MHod(X,GLn) −→MHod(X,Gm)

(E,∇λ) 7−→ (detE, tr ∇λ)

(which extends the morphism alb defined in (8)), the resolutions fDol(X,SLn) and
fB(X,SLn) extend to resolutions

fDol(X,GLn) : M̃Dol(X,GLn) −→MDol(X,GLn),

fB(X,GLn) : M̃B(X,GLn) −→MB(X,GLn),

such that the square

(13)
M̃Dol(X,SLn)× T ∗ Pic0(X) M̃B(X,SLn)× (C∗)2g

M̃Dol(X,GLn) M̃B(X,GLn)

/Γ /Γ

Ψ̃(X,SLn)× Ψ̃(X,Gm)

Ψ̃(X,GLn)

and the diagrams in Theorem 3.8 commute.

Theorem 4.1. — In the notation above, if the P=W conjecture for the resolution
fDol(X,SLn) holds, then it holds for fDol(X,GLn).

Proof. — Cohomologically, the Hitchin fibration

χ(X,GLn) ◦ fDol(X,GLn) : M̃Dol(X,GLn) −→
n⊕
i=1

H0(X,K⊗iX )
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behaves like the product of the fibration χ(X,SLn) ◦ fDol(X,SLn) and SPic0(X) :

Pic0(X) → pt, by lifting (11) to the resolution. Hence, the perverse filtration asso-
ciated to χ(X,GLn) ◦ fDol(X,GLn) is the convolution of the Γ-invariant part of the
perverse filtrations associated to χ(X,SLn) ◦ fDol(X,SLn) and SPic0(X) (the latter
being trivial); compare with [11, §2.4]. In symbols, we write

(14) PkH
d(M̃Dol(X,GLn)) '

⊕
j>0

Pk−jH
d−j(M̃Dol(X,SLn))Γ ⊗Hj(Pic0(C)).

By the Γ-equivariance of fB(X,SLn), the map

MB(X,SLn)× (C∗)2g −→MDol(X,GLn)

lifts to the resolutions, and so there exists an isomorphism of mixed Hodge structures

H∗(M̃B(X,GLn)) ' H∗(M̃B(X,SLn))Γ ⊗H∗((C∗)2g),(15)

as in (12). Explicitly, we write

(16) WkH
d(M̃B(X,GLn)) '

⊕
j>0

Wk−2jH
d−j(M̃B(X,SLn))Γ ⊗Hj((C∗)2g),

since Hj((C∗)2g) has weight 2j.
Assume now that

PkH
∗(M̃Dol(X,SLn)) = Ψ̃(X,SLn)∗W2kH

∗(M̃B(X,SLn)).

Then by the commutativity of (13), together with (14) and (16), we conclude that

PkH
∗(M̃Dol(X,GLn)) = Ψ̃(X,GLn)∗W2kH

∗(M̃B(X,GLn)). �

Remark 4.2. — With obvious change, the analogues of Theorem 4.1 for the PI=WI
and P=W conjectures hold.

Remark 4.3. — Since MDol(X,PGLn) is the quotient of MDol(X,SLn) by the
Γ-action, the PI=WI conjecture for MDol(X,SLn) (or MDol(X,GLn)) implies the
PI=WI conjecture for MDol(X,PGLn).

5. P=W conjectures for genus 1

Let A be a compact Riemann surface of genus 1. The construction of the moduli
spacesMDol(A,SLn) andMB(A,SLn) agrees formally with that of a generalized Kum-
mer variety in [2, §7]. It is possible to make this analogy more precise by showing that
MDol(A,SLn) and MB(A,SLn) are specializations of generalized Kummer varieties;
see Example A.5 and also [60, §5.3].

Following [32], we describe a stratification of these Kummer-like varieties in Sec-
tion 5.1, from which we deduce the P=W conjecture in genus 1 (Theorem 5.3).
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5.1. Kummer-like varieties. — Let X be a complex algebraic group of dimension 2.
We denote by X(n) and X [n] the n-fold symmetric product of X and the Hilbert
scheme of n-points on X; see [2, §6] for an overview of their construction. Recall that
the Hilbert-Chow morphism f : X [n] → X(n) is a desingularization of X(n).

Consider the addition map an : X(n) → X, given by an(x1, . . . , xn) =
∑n
i=1 xi. For

any g ∈ Z>0, denote by X(g) the set of g-torsion points in X. Let P (n) be the set of
partitions of n. We write α ∈ P (n) as n = α1 · 1 + · · ·+α` · `, and put |α| =

∑
αi and

g(α) := gcd{ν | αν 6= 0}.
Following [32], we describe a stratification of the fiber of an.

– The varietyK [n] is the fiber f−1◦a−1
n (0) of the compositionX [n] f−→ X(n) an−→ X.

When necessary, we emphasize the dependence on X by writing K [n](X).
– The fiber K(n) := a−1

n (0) can be described as the set of maps from X to Z>0 of
total sum n

K(n) =
{
h ∈ HomSets(X,Z>0) |

∑
x∈X h(x) = n

}
.

We say that K(n) is Kummer-like.
– There exists a stratification

K(n) =
⊔

α∈P (n)

K(n)
α with K(n)

α =
{
h ∈ K(n) | #h−1(x) = αν , ∀ν

}
.

– The normalization of the closure of the stratum K
(n)
α in K(n), denoted K(α),

is the disjoint union
K(α) =

⊔
y∈X(g(α))

K(α)
y ,

where
K(α)
y =

{
h = (h1, . . . , h`) ∈ K(α) |

∑
ν,x(ν/g(α))hν(x) · x = y

}
.

– Let τz : X → X be the translation by z ∈ X. The finite map q(α)
y : X ×K(α)

y →
X(α), given by q(α)

y (z, h1, . . . , h`) = (h1 ◦ τz, . . . , h` ◦ τz), induces the isomorphism of
mixed Hodge structures H∗(X ×K(α)

y ) ' H∗(X(α)); see [32, p. 243].
All these facts implies the following theorem due to Göttsche and Soergel, that we
state without proof.

Theorem 5.1 ([32, Th. 7]). — Denote by f0 the birational map f0 := (idX , f |K[n]) :

X ×K [n] → X ×K(n). Let κ(α)
y : K

(α)
y → K(n) be the composition

K(α)
y ↪−→ K(α) −→ K

(n)
α ↪−→ K(n).

Then there exists a distinguished splitting isomorphism

(17) (f0)∗(QX×K(n) [n]) '
⊕

α∈P (n)

⊕
y∈X(g(α))

(idX × κ(α)
y )∗(QX×K(α)

y
[|α|]).

The splitting induces a canonical isomorphism of mixed Hodge structures (recall that
a Tate twist (−k) increases the weights by 2k):

(18) Hd+2n(X ×K [n])(n) '
⊕

α∈P (n)

⊕
y∈X(g(α))

Hd+2|α|(X(α))(|α|).
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A morphism χ : X → C yields the commutative diagram

X ×K(n) X ×K(α)
y X(α)

C× C(n−1) C× C(|α|−1) C(α).

idX × κ(α)
y q

(α)
y

idC × κ(α)
χ(y) q

(α)
χ(y)

χ0 χ
(α)
y χ(α)

The perverse filtration associated with χ0 := idX × χ(n)|K(n) can be written in terms
of the perverse filtration associated with χ(α).

Theorem 5.2. — The perverse filtration associated with χ0 can be expressed as

PkH
d+2n(X ×K [n])(n) '

⊕
α∈P (n)

⊕
y∈X(g(α))

PkH
d+2|α|(X(α))(|α|),

where PkH∗(X(α)) is the perverse filtration associated with χ(α).

Proof. — By Theorem 5.1 and the t-exactness of finite morphisms, we obtain
pH k((χ0 ◦ f0)∗(QX×K(n) [n])) '

⊕
α∈P (n)

⊕
y∈X(g(α))

(idX × κ(α)
y )∗

pH k(χ
(α)
y,∗QX×K(α)

y
[|α|]),

q
(α)
χ(y),∗

pH k(χ
(α)
y,∗QX×K(α)

y
) = pH k(χ

(α)
∗ q

(α)
y,∗QX×K(α)

y
) ⊃ pH k(χ

(α)
∗ Q

X(α)).

This means that the isomorphism (18) is filtered strict with respect to the perverse
filtration associated with χ0 and χ(α). �

5.2. The proof of the conjecture

Theorem 5.3. — The PI=WI conjectures for MDol(A,SLn) and the P=W conjectures
for its symplectic resolutions hold.

Proof. — The moduli space MDol(A,SLn) parametrizes semistable Higgs bundles
on the elliptic curve A, and it is isomorphic to K(n)(A × C); see for instance [28,
Th. 4.27(v)], which actually holds for any n, not only for n > 4, or [35]. The char-
acter variety MB(A,SLn) instead is isomorphic to K(n)(C∗ × C∗) (cf. [60, Proof of
Th. 5.3.2]), and in suitable coordinates the non-abelian Hodge correspondence is in-
duced by the symmetric product of the exponential map

A× C −→ C∗ × C∗

(θ1, θ2, r1, r2) 7−→ (exp(−2r1 + iθ1), exp(2r2 + iθ2));

see [77, Ex. after Prop. 1.5]. By Theorem 5.1 and 5.2, the P=W conjecture for the
symplectic resolution K [n](A× C) is equivalent to

(19) PkH
∗((A× C)(α)) = W2kH

∗((C∗ × C∗)(α))

for any partition α∈P (n). The identity (19) has already been proved in [12, Lem. 3.1.1
& 3.2.2]. �

Remark 5.4. — Since MDol(A,SLn) has at worst quotient singularities, the P=W
conjecture for MDol(A,SLn) is equivalent to the PI=WI conjecture for MDol(A,SLn).
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6. The moduli space of Higgs bundles M and its alterations

Here and in the following C is a compact Riemann surface of genus 2. We denote
by ι : C → C the hyperelliptic involution, and by KC the canonical bundle of C.

For the sake of notational simplicity, we denote

– the Dolbeault moduli space MDol(C, SL2) simply by M ;
– the desingularization M̃Dol(C, SL2) in Proposition 6.1 by M̃ ;
– the character variety MB(C,SL2) by MB ;
– the resolution fDol(C,SL2) by f : M̃ →M ;
– the Hitchin map χ(C, SL2) by χ : M → H0(C,K⊗2).

6.1. Symplectic resolution of M

6.1.1. Singularities of M and its resolution. — We briefly recall the description of the
singular locus of M and the construction of the resolution. A key aspect is the local
isomorphism between the singularities of M and those of the celebrated O’Grady six
dimensional example of irreducible holomorphic symplectic variety. We refer to [26]
for more details. Via the non-abelian Hodge correspondence, we obtain an analogous
description of the singularities of MB .

There exists a Whitney stratification of M

(20) Ω = Sing(Σ) ⊂ Σ = Sing(M) ⊂M,

where

Σ '
{

(E, φ) ' (L,ϕ)⊕ (L−1,−ϕ) with L ∈ Pic0(C), and ϕ ∈ H0(C,KC)
}
,

Ω '
{

(E, φ) ' (L, 0)⊕ (L, 0) with L ∈ Pic0(C) s.t. L2 ' OC
}
.

Note that Σ is isomorphic to the quotient of Pic0(C)×H0(C,KC) by the involution
(L,ϕ) 7→ (L−1,−ϕ), hence it has dimension 4. The locus Ω instead is the branch locus
of the quotient map Pic0(C) × H0(C,KC) → Σ, and consists of 16 points Ωj , with
j = 1, . . . , 16.

A transverse slice to Σ at a point in Σ r Ω has a quotient surface singularity of
type A1. An analytic neighbourhood of a point of Ω is more complicated, and it was
described in detail in [56]. The singularities are symplectic, and a symplectic resolution
can be constructed simply by blowing-up M along Σ.

Proposition 6.1 ([26, Prop. 4.2]). — Let f : M̃ → M be the blow-up of M along Σ.
Then f is a symplectic resolution, and we have that:

– f is an isomorphism over M r Σ;
– f−1(p) ' P1 for all p ∈ Σ r Ω;
– f−1(Ωj) ' Ω̃j, where Ω̃j is the Grassmannian of Lagrangian planes in a sym-

plectic 4-dimensional vector space, which is isomorphic to a smooth quadric in P4.
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Via the non-abelian Hodge correspondence Ψ, the stratification of M in (20) in-
duces the stratification of MB given by

(21) ΩB = Sing(ΣB) = Ψ(Ω) ⊂ ΣB = Sing(MB) = Ψ(Σ) ⊂MB ,

where

ΣB :=
{

(A1, A2, B1, B2) ∈ (C∗)4 ⊂ SL4
2

}
� SL2 ' (C∗)4/(Z/2Z);(22)

ΩB :=
{

(A1, A2, B1, B2) ∈ (± id)4 ⊂ SL4
2

}
=

16⋃
j=1

ΩB,j .

By Theorem 1.4, MB admits a symplectic resolution, and its fibers can be described
as in Proposition 6.1.

6.1.2. Attracting and repelling sets

Definition 6.2. — Let X be a complex variety with a Gm-action, and F be a subset
of its fixed locus. We denote by

Attr(F ) = {x ∈ X | limλ→0 λ · x ∈ F}

the attracting set of F , and by

Repell(F ) = {x ∈ X | limλ→∞ λ · x ∈ F}

the repelling set of F .

The tangent space of any fixed point p ∈ Fix(X) decomposes into the direct sum
of weights spaces

TpX =
⊕
m∈Z

TpXm,

where TpXm = {v ∈ TpX | λ · v = λmv for all λ ∈ Gm}.

Definition 6.3. — The sequences of integers m1,m2, . . . such that λm1 , λm2 , . . . are
eigenvalues of the linear operator induced by the Gm-action on TpX are called weights
of the Gm-action at the fixed point p.

Let Xsm be the smooth locus of X, and denote a connected component of the fixed
locus Fix(Xsm) simply by F . Note that the function of weights

Fix(Xsm) −→ Z(dimX)

p 7−→ (m1(p),m2(p), . . . )

is locally constant.
In particular, the following identities hold:

Tp Attr(p) =
⊕
m>0

TpXm, Tp Repell(p) =
⊕
m<0

TpXm,(23)

Tp Attr(F ) =
⊕
m>0

TpXm, Tp Repell(F ) =
⊕
m60

TpXm.(24)
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6.1.3. Białynicki–Birula decomposition. — We briefly recall the celebrated Białynicki–
Birula decomposition.

Definition 6.4 ([42, Def. 1.1.1]). — A semiprojective variety is a complex quasi-
projective algebraic variety X with a Gm-action such that:

– the fixed point set Fix(X) is proper;
– for every x ∈ X the limit limλ→0 λ · x exists.

Theorem 6.5 (Białynicki–Birula decomposition). — Let X be a normal semiprojective
variety. Then the following facts hold:

(1) X admits a decomposition into Gm-invariant locally closed subsets

X =
⊔

F∈π0(Fix(X))

Attr(F );

(2) the limit map

Attr(F ) −→ F : x 7−→ lim
x→0

λ · x

is an algebraic map, and it is an affine bundle if F ⊂ Xsm;
(3) the connected components of the fixed locus Fix(Xsm) are smooth.

Proof. — See [6, Th. 4.3] in the smooth projective case; [42, §1.2] and [58, Lem. 3.2.4]
in the smooth semiprojective case; [85, Cor. 4] in the normal complete case. �

The cohomology of a semiprojective variety can be expressed in terms of the coho-
mology of the components of the fixed locus.

Theorem 6.6 (Local-to-global spectral sequence, [86, §4.4]). — Let X be a normal
semiprojective variety. Fix an ordering F0, F1, . . . of the connected components of
Fix(X) such that if Fi < Fj then dim AttrFi > dim AttrFj. Then the following facts
hold.

– The Białynicki–Birula decomposition yields the spectral sequence

(25) Ei,j1 = Hi+j(Attr(Fi), u
!
iQX) =⇒ Hi+j(X,Q),

where ui : Attr(Fi) ↪→ X is the inclusion.
– If X is smooth and Attr(Fi) are smooth subvarieties of codimension cj, then we

can rewrite the spectral sequence (25) as

(26) Ei,j1 = Hi+j−2cj (Fi,Q) =⇒ Hi+j(X,Q)

– The spectral sequence (26) degenerates at the first page, and the Poincaré poly-
nomial Pt(X) :=

∑2 dimX
k=0 (−1)n dimHk(X,Q) can be written

Pt(X) =
∑

Pt(Fi)t
2ci .

J.É.P. — M., 2022, tome 9



P=W conjectures for character varieties with symplectic resolution 877

6.1.4. Torus action onM and M̃ . — The multiplicative group Gm acts onM by rescal-
ing the Higgs field

λ · (E, φ) = (E, λφ).

The Hitchin map χ : M → H0(C,K⊗2
C ) is Gm-equivariant, where Gm acts linearly on

H0(C,K⊗2
C ) with weight (2, 2, 2). In particular, the fixed locus of M is contained in

the nilpotent cone χ−1(0). Therefore, M is semiprojective. Since the singular locus Σ

of M is Gm-invariant, the action lifts to M̃ , and M̃ is semiprojective as well.
The goal of this section is to describe the fixed locus of the Gm-action on M , Ωj

and M̃ , and to compute the weights of the action.

Proposition 6.7 ([46, Ex. 3.13]). — A vector bundle E underlying a semistable Higgs
bundle (E, φ) ∈M satisfies one of the following property:

(1) E is a stable vector bundle;
(2) E ' L⊕ L−1 with L ∈ Pic0(C) and L2 6' OC , i.e., (E, φ) ∈ Σ r Ω;
(3) E ' L⊕ L−1 with L2 ' OC , i.e., (E, φ) ∈ Ω;
(4) E is a non-trivial extension of L by L−1 with L2 ' OC ;
(5) E is an unstable vector bundle isomorphic to θ−1

j ⊕ θj, where θj is a theta-
characteristic, i.e., a line bundle such that θ2

j = KC .

Proposition 6.8 (Fixed locus of M). — The fixed locus of the Gm-action on M is

Fix(M) = N tΘ = N t
16⊔
j∈1

Θj ,

where
(1) N is the moduli space of semistable Higgs bundles (E, φ) with φ = 0, equiva-

lently the moduli space of semistable vector bundles of rank 2 and degree 0, which is
isomorphic to P3;

(2) Θ is the set of 16 points in M corresponding to the Higgs bundles

Θj :=

(
θ−1
j ⊕ θj ,

(
0 1

0 0

))
.

Proof. — It is clear that N and Θ are fixed by the Gm-action. Hence, we just need
to show that they are the only components of Fix(M).

To this end, recall that by Proposition 6.7 the vector bundle E underlying a
semistable Higgs bundle (E, φ) ∈M is:

(1) either a semistable vector bundle,
(2) or an unstable vector bundle, isomorphic to θ−1

j ⊕ θj for some θj .
In the former case, the limit of the one-parameter subgroup (E, λ · φ) is (E, 0)

(or (L ⊕ L−1, 0) in case (4) of Proposition 6.7), and so it lies in N , which is iso-
morphic to P3 by [64]. In the latter case, (E, λ · φ) is isomorphic to

(27)
(
θ−1
j ⊕ θj , λ ·

(
0 1

u 0

))
'
(
θ−1
j ⊕ θj ,

(
0 1

λ2u 0

))
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for some u ∈ Hom(θ−1
j , θj ⊗KC), after normalizing with the group of diagonal auto-

morphisms of E; see [46, §11]. Therefore, the locus of Gm-fixed Higgs bundles with
underlying unstable vector bundles is given by Θ (which corresponds to u = 0). �

In Proposition 6.1 we mentioned that the Gm-invariant fiber f−1(Ωj) ⊂ M̃ over
Ωj ' (L⊕ L, 0), with L2 ' OC , is the Grassmannian of Lagrangian subspaces of the
4-dimensional symplectic vector space (V, ωV ).

The deformation theory of Higgs bundles gives the identification of (V, ωV ) with
the space of Higgs bundles extensions of (L, 0) by itself, namely

Ext1
Higgs(L,L) ' H0(C,KC)⊕H1(C,OC) ' H1(C,C),

equipped with the symplectic form given by cup product. For further details, we refer
the interested reader to [26, §3.2.2]. We just observe that H0(C,KC) parametrizes
deformations of L with fixed underlying line bundle, while H1(C,OC) parametrizes
deformations of L with fixed underlying Higgs field. Therefore, the rescaling action
of Higgs fields yields the Gm-action on Ext1

Higgs(L,L) defined by λ · (v, v) = (λv, v),
where v ∈ H0(C,KC) and v ∈ H1(C,OC). This in turn induces the Gm-action on Ω̃j ,
whose fixed loci are described in the next Proposition 6.9.

Proposition 6.9 (Fixed locus of Ω̃j). — The fixed locus of the Gm-action on Ω̃j is

Fix(Ω̃j) = tj t s+
j t Tj ,

where
(1) the points tj and Tj correspond to the Lagrangian subspaces H0(C,KC) and

H1(C,OC);
(2) the curve s+

j parametrizes Lagrangian subspaces generated by v1 ∈ H0(C,KC)

and v2 ∈ H1(C,OC), and it is isomorphic to P1.
In particular, tj, s+

j and Tj have weights (1, 1, 1), (−1, 0, 1) and (−1,−1,−1) respec-
tively.

Proof. — The Plücker polarization Hj embeds Ω̃j as a smooth quadric in the linear
system |Hj | = P(W ) ' P4 ⊂ P(∧2V ). The Gm-action on Ω̃j induces an action on W
with weights (0, 1, 1, 1, 2) in suitable coordinates (x0, . . . , x4). In these coordinates,
Ω̃j is defined by the equation x2

1 + x2x3 + x0x4 = 0.
Since the Plücker embedding is Gm-equivariant, the fixed loci of Ω̃j are the inter-

sections of Ω̃j with the isotypic components of the Gm-representation W , i.e.,

tj = [1 : 0 : 0 : 0 : 0],

s+
j = [0 : x1 : x2 : x3 : 0] ∩ Ω̃j = {x2

1 + x2x3 = 0} ' P1,

Tj = [0 : 0 : 0 : 0 : 1].

Moreover, the tangent space

Ttj Ω̃j ' TtjP(W )/NΩ̃j/P(W ),tj
' Hom(tj ,W/〈tj , Tj〉)
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has weight (1, 1, 1). Analogously, if p = [0 : 0 : 1 : 0 : 0] ∈ s+
j , then TpΩ̃j '

Hom(p, 〈tj , ∂x1
, Tj〉) has weight (−1, 0, 1), while TTj Ω̃j ' Hom(Tj ,W/〈tj , Tj〉) has

weight (−1,−1,−1). �

Proposition 6.10 (Fixed locus of M̃). — The fixed locus of the Gm-action on M̃ is

Fix(M̃) = Ñ t S̃+ t Θ̃ t
16⊔
j∈1

Tj ,

where
(1) Ñ := f−1

∗ N is the strict transform of N , isomorphic to P3;
(2) S̃+ is a Kummer surface;
(3) Θ̃ := f−1(Θ);
(4) Tj are points lying on the Lagrangian Grassmannians Ω̃j = f−1(Ωj).

Proof. — First, observe that Fix(M̃) lies over Fix(M), and so

Ñ t Θ̃ = f−1
∗ Fix(M) ⊂ Fix(M̃) ⊂ f−1(Fix(M)).

The component of Fix(M̃) not contained in f−1
∗ Fix(M) lies over Fix(M) ∩ Σ :=

S ⊂ N , which is isomorphic to Pic0(C)/(Z/2Z), i.e., the singular Kummer surface
associated to Pic0(C).

The fiber of f over p ∈ S r Ω is isomorphic to P1, and Gm acts with non-
trivial weight on it by Proposition 6.11. Therefore, the P1-bundle f−1(S r Ω) has
two Gm-fixed sections. We denote their closure by S̃− and S̃+. Since the restriction
of f to Ñ is an isomorphism, one of the two sections, say S̃−, lies in Ñ . The same
holds for one of the two fixed points in each Ω̃j , namely tj because of the weight
considerations in Proposition 6.9 and Proposition 6.11.

The other section S̃+ must be the union of a copy of S r Ω and the rational
curve s+

j , with j = 1, . . . , 16, thus isomorphic to the nonsingular Kummer surface
associated to Pic0(C). Indeed, by construction S̃+ ∩ Ω̃j is a non-empty component
of Fix(Ω̃j) different from a point; otherwise S̃+ would be singular, which is a con-
tradiction since S̃+ is a fixed locus of a Gm-action on a smooth manifold. Therefore,
S̃+ ∩ Ω̃j = s+

j by Proposition 6.9. �

Proposition 6.11 (Weights of M̃)
(1) Ñ has weight (0, 0, 0, 1, 1, 1);
(2) S̃+ has weight (−1, 0, 0, 1, 1, 2);
(3) Θ̃j and Θj have weight (−1,−1,−1, 2, 2, 2);
(4) T̃j has weight (−1,−1,−1, 2, 2, 2).

Proof. — Let ω̃ be the holomorphic symplectic form on the symplectic resolution M̃
extending the canonical holomorphic symplectic form ω on the smooth locus of M .
As in [46, Prop. 7.1], the Gm-action rescales the holomorphic symplectic form ω̃

λ∗ω̃ = λω̃.
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Let p ∈ Fix(M̃), and W be a Lagrangian subspace of TpM̃ with weights (a, b, c).
Then the isotropy condition yields an isomorphism

W ∗ ' TpM̃/W,

and the weights of the action on W become

λ(λ−a, λ−b, λ−c) = (λ−a+1, λ−b+1, λ−c+1)

on W ∗. As a result the torus action at a fixed point has weights

(a, b, c,−a+ 1,−b+ 1,−c+ 1).

In this way, the weights of the Gm-action at Ñ , S̃+ and T̃j follow immediately
from the computations in Proposition 6.9, by observing that tj ∈ Ñ and s+

j ∈ S̃+.
For the weights at Θ̃j , instead, note that the locus of semistable Higgs bundles with
underlying vector bundle θ−1

j ⊕θj is Lagrangian by definition of ω (cf. [46, Lem. 6.8]),
and has weight (2, 2, 2) by (27). �

Corollary 6.12. — Ñ and Ω̃j intersect transversely at the point tj = Ñ ∩ Ω̃j.

Proof. — By Proposition 6.9, the tangent space Ttj Ω̃j has weight one, while Ttj Ñ
has weight zero. �

Corollary 6.13. — The attracting sets Attr(N), Attr(S̃+), Attr(Θ̃j) and Attr(T̃j)

have codimension 0,1,3,3 respectively.

Proof. — It is an immediate corollary of (24) and Proposition 6.11. �

6.1.5. Poincaré polynomials of M and M̃

Theorem 6.14 (Cohomology ofM and M̃). — The Poincaré polynomials ofM and M̃
are

Pt(M) :=
∑
k

(−1)k dimHk(M) tk = 1 + t2 + t4 + 17t6,(28)

Pt(M̃) :=
∑
k

(−1)k dimHk(M̃) tk = 1 + 2t2 + 23t4 + 34t6.(29)

Proof. — Since Attr(N) is an open subset of M , we have H∗(Attr(N), u!Q
M

) =

H∗(Attr(N)) = H∗(P3). The spectral sequence (25) gives

Pt(M) = Pt(N) + Pt(Θ)t6

= 1 + t2 + t4 + 17t6.

See [21, Th. 1.5] for an alternative proof.
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Similarly, by Theorem 6.6, Proposition 6.10 and Corollary 6.13, we obtain

Pt(M̃) = Pt(Ñ) + Pt(S̃
+)t2 + Pt(Θ̃)t6 +

16∑
j=1

Pt(Tj)t
6

= (1 + t2 + t4 + t6) + (1 + 22t2 + t4)t2 + 16t6 + 16t6

= 1 + 2t2 + 23t4 + 34t6. �

6.2. Moduli space of equivariant Higgs bundles Mι

6.2.1. Equivariant Higgs bundle and the forgetful map q. — Recall that ι : C → C is
the hyperelliptic involution of the curve C of genus 2.

Definition 6.15. — A (ι-)equivariant Higgs bundle over C is a triple (E, h, φ) such
that:

(1) E is an ι-invariant vector bundle, i.e., ι∗E ' E;
(2) h : E → ι∗E is a lift of the ι-action on E such that ι∗h ◦ h = idE ;
(3) φ ∈ Hom(E,E ⊗KC) is an ι-invariant Higgs field, i.e., a OC-linear morphism

which makes the following diagram commutative:

E E ⊗KC

ι∗E ι∗E ⊗KC .
h h⊗ idKC

φ

ι∗φ

A morphism between two equivariant Higgs bundles (E1, h1, φ1) and (E2, h2, φ2) is a
homomorphism of vector bundles ψ ∈ Hom(E1, E2) such that the following diagrams
commute:

E1 ι∗E1

E2 ι∗E2,

E1 E1 ⊗KC

E2 E2 ⊗KC .

ψ ψ

h1

h2

ψ ψ ⊗ idKC

φ1

φ2

The slope of a vector bundle E over a curve C is defined by

µ(E) := deg(E)/ rank(E).

Definition 6.16. — An equivariant Higgs bundle (E, h, φ) is semistable or stable if for
any proper equivariant Higgs subbundle F ⊂ E, the inequality µ(F ) 6 µ(E) holds,
respectively µ(F ) < µ(E).

Let W = {w1, . . . , w6} be the set of all Weierstrass points, i.e., the fixed points
of ι. For every w ∈W , hw : Ew → Ew is an involution of the fiber Ew.

Definition 6.17. — The normal quasi-projective variety Mι (respectively Ms
ι ) is the

coarse moduli space of semistable (respectively stable) equivariant Higgs bundle
(E, h, φ) of rank 2 over C with trivial determinant and tr(hw) = 0 for all w ∈W .
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The existence ofMι andMs
ι follows from the work of Seshadri [73] and Nitsure [67].

In Section 6.2.4 we review the construction. Here we first describe Mι as a quasi-étale
cover of M . This cover appears also in [45, §6.3] and references therein.

Definition 6.18 (Quasi-étale morphism). — A morphism f : X → Y between normal
varieties is quasi-étale if f is quasi-finite, surjective and étale in codimension one,
i.e., there exists a closed, subset Z ⊆ X of codimension codimZ > 2 such that
f |XrZ : X r Z → Y is étale.

Remark 6.19. — By the purity of the branch locus, a quasi-étale morphism induces
an étale cover of the smooth locus of the codomain.

Proposition 6.20. — The forgetful map

q : Mι −→M

(E, h, φ) 7−→ (E, φ)

is well-defined, quasi-étale of degree two, and branched along the singular locus Σ

of Mι.

Proof. — The forgetful map q is well-defined, because an equivariant Higgs bundle
(E, h, φ) is semistable if and only if the Higgs bundle (E, φ) is semistable in the usual
sense (the same proof of [8, Lem. 2.7] applies). The map q is also surjective: any
semistable Higgs bundles (E, φ) admits a lift of the ι-action on E conjugating φ and
ι∗φ by [45, Chap. 6, p. 74, & Th. 2.1].

We show now that q is quasi-étale. To this end, we closely follow the proof of [54,
Th. 2.1]. Given two equivariant Higgs bundles (E, h1, φ) and (E, h2, φ), there exists
an automorphism A ∈ Aut(E) such that h2 = h1 ◦A and φ = A−1φA.

If (E, φ) is stable, then the only automorphisms which fix the Higgs field are scalars.
Then h2 = ±h1, and so there are only two non-equivalent equivariant Higgs bundles
(E, h1, φ) and (E,−h1, φ) over (E, φ). Hence, q is generically 2 : 1.

If (E, φ) is strictly semistable, i.e., (E, φ) ∈ Σ, then E ' L⊕L−1 with L ∈ Pic0(C),
and any two lifts are equivalent. Hence, q is quasi-finite and branched along Σ. �

6.2.2. Non-abelian Hodge correspondence. — Let C → P1 be the quotient of C via the
hyperelliptic involution, and let W be the critical divisors on P1, i.e., the projection
of the Weierstrass points.

The moduli space Mι is isomorphic to the moduli space of parabolic Higgs bundle
of rank 2 on P1 with parabolic weight 1/2 at all points of W and parabolic degree
zero; see [9, Th. 3.5].

The topological space underlying Mι parametrizes also representations of the orb-
ifold fundamental group

πorb
1 (C/ι) ' 〈γ1, . . . , γ6 | γ2

1 = · · · = γ2
6 = 1 and γ1 . . . γ6 = 1〉.
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Theorem 6.21 (Non-abelian Hodge correspondence). — There exists a commutative
square

Mι

M

MB(2,SL2, ι) := Hom(πorb
1 (C/ι),SL2) � PGL2

MB(2,SL2) = Hom(π1(C),SL2) � PGL2.

q qtop

Ψι

Ψ

where the horizontal arrows are real analytic isomorphisms, and the vertical arrows
are quasi-étale covers.

Proof. — Identify Mι with a moduli space of parabolic Higgs bundles as above. The
correspondences Ψ and Ψι have been constructed by Hitchin [46] and Simpson [76]
respectively. By construction, the square commutes. �

6.2.3. Singularities of Mι

Notation 6.22. — We fix the following notation:
– Bunss(C/ι) is the moduli space of semistable ι-equivariant vector bundles (E, h).

It is the inverse image of the moduli space of semistable vector bundles N via q;
– the inverse images of Ω via q consists of the 16 points Ωι;
– the inverse images of Θ via q consists of the 32 points Θι.

Proposition 6.23 (Singularities of Mι)
(1) Ωι is the singular locus of Mι.
(2) The smooth locus of Mι, denoted M sm

ι , is the moduli space of stable equivariant
Higgs bundles Ms

ι .

Proof. — The local isomorphism type of the singularities of Mι coincides with the
model described in [62, Lem. 3.1]. This yields the first statement. For the second
statement, it is enough to show that

M sm
ι = q−1(M r Σ) ∪ q−1(Σ r Ω) ⊆Ms

ι .

Any Higgs bundle (E, φ) ∈M r Σ is stable, and so the equivariant Higgs bundles in
q−1(MrΣ) are stable too. If (E, φ) ∈ ΣrΩ with E ' L⊕L−1, then the only line sub-
bundles of E are L and L−1, but since they are not ι-invariant, q−1(ΣrΩ) ⊆Ms

ι . �

6.2.4. Construction of Mι. — The moduli space Mι is constructed in the following
way. All the ingredients have already appeared in [73, 67, 39].

Let (E, h, φ) be a stable equivariant Higgs bundle of rank 2 over C with trivial
determinant and tr(hw) = 0 for all w ∈ W . Fix an equivariant ample line bundle
OC(1) on C. Choose an integer m ∈ Z such that H1(C,E(m)) = 0 and E(m) is
globally generated.

The quot scheme Q parametrizes all quotient sheaves of H0(C,E(m)) ⊗ OC with
the Hilbert polynomial of E(m). Let H0(C,E(m))⊗ p∗COC → EQ ⊗ p∗COC(m) be the
universal quotient bundle on Q × C, with the natural projection pC : Q × C → C.
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Let R ⊂ Q be the subset of all q ∈ Q for which Eq is locally free and the map
H0(C,E(m))→ H0(C,Eq(m)) is an isomorphism.

By [67, Prop. 3.6], there exists a locally universal family of semistable Higgs bundles
Ess

Φss−→ Ess ⊗ p∗CKC on Fss × C, where Fss is an open subset of a linear R-scheme
F → R together with a family of Higgs bundles EF

ΦF−→ EF ⊗ p∗CKC .
The involution ι∗ on H0(C,E(m)) induces a natural lift j0 of the ι-action on the

trivial bundle C ×H0(C,E(m)), and so an ι-action on Fss with fixed locus Fixι(Fss).
In particular, j0 descends to a lift hq of the ι-action on Eq, for any q ∈ Fixι(Fss).
Call Fss,ι the connected component of Fixι(Fss) consisting of the equivariant Higgs
bundles (Eq, hq,Φq) with tr(hq,w) = 0; see [73, Chap. II, Prop. 6(iv)] and [73, Chap. II,
Prop. 5 & Rem. 2].

Let H be the group of automorphisms of the trivial bundle which commute with j0,
and PH := H/Gm the quotient of H modulo scalar matrices. The moduli spaces Mι

andMs
ι are the quotients Fss,ι�PH and Fs,ι/PH respectively, where Fs,ι is the subset

of stable equivariant Higgs bundles in Fss,ι.

6.2.5. Universal bundles. — We show the existence of a universal bundle onM sm
ι ×C

(cf. [39, §5]).

Definition 6.24. — Let Z be a subset of M sm
ι . A universal Higgs bundle on Z×C is

a rank two Higgs bundle (E,Φ) such (E,Φ)|{(E,h,φ)}×C ' (E, φ) for all (E, h, φ) ∈ Z.

Remark 6.25. — Let (E1,Φ1) and (E2,Φ2) be universal Higgs bundles on Z×C. Then
there exists a line bundle L ∈ Pic(Z) such that (E1,Φ1) ' (E2 ⊗ p∗CL ,Φ2), with
pC : Z×C → C the natural projection. In particular, P(E1) ' P(E2) is canonical. See
[44, 4.2].

We adopt the notation of Section 6.2.4. In addition, we define F ◦ι as being the open
subset of Fs,ι parametrizing stable equivariant Higgs bundle whose underlying vector
bundle is either stable or isomorphic to L⊕ ι∗L with L ∈ Pic0(C) with L2 6' OC .

The quotientM◦ι := F ◦ι /PH is the attracting set of Bunss(C/ι)rΩι. Thus, accord-
ing to Proposition 6.7, the complementMιrM◦ι parametrizes stable equivariant Higgs
bundles whose underlying vector bundle is unstable or a non-trivial extension of L
by L with L2 ' OC , and so it has codimension 2 by [46, Ex. 3.13(iv)& (v)]; see also
[49, Lem. 3.4]. In particular, Fs,ι r F ◦ι has codimension 2.

Proposition 6.26. — A universal Higgs bundle on M sm
ι × C does exist.

Proof. — Let E be the restriction of the universal Higgs bundle EF to Fs,ι × C, and
denote by pF : Fs,ι × C → Fs,ι and pC : Fs,ι × C → C the two projections.

The natural lift of the H-action is such that the subgroup of scalar matrices acts by
homotheties. Suppose that there exists an H-equivariant line bundle λ(E ) over Fs,ι
with the same property, i.e., that the center of H acts by homotheties. Then, the
center of H acts trivially on E ⊗ p∗Fλ(E )−1. By Kempf’s descent lemma [24, Th. 2.3],
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the PH -equivariant bundle E ⊗ p∗Fλ(E )−1 descends to a vector bundle on M sm
ι × C,

and since the section Φ is invariant, it also descends.
Here is how to construct λ(E ). For any (E, h, φ) ∈ F ◦ι , h acts on H0(C,E ⊗KC),

and induces a splitting

H0(C,E ⊗KC) = H0(C,E ⊗KC)+ ⊕H0(C,E ⊗KC)−

into one-dimensional eigenspaces (relative to eigenvalues ±1 respectively); see [45,
Prop. 4.1]. The lift j0 induces an involution on pF,∗(E ⊗ p∗CKC). Hence, set

λ(E )◦ := pF,∗(E ⊗ p∗CKC)+

as the j0-invariant subsheaf of pF,∗(E ⊗ p∗CKC). By semicontinuity, λ(E )◦ is a line
bundle on F ◦ι with fiber H0(C,E⊗KC)+. The multiplication by a scalar in E induces
multiplication in H0(C,E ⊗KC)+ too, and so in λ(E )◦. Now let iF◦ι : F ◦ι ↪→ Fι be
the natural inclusion, and define

λ(E ) = iF◦ι ,∗λ(E )◦.

Since Fs,ι is smooth and Fs,ι r F ◦ι has codimension 2, λ(E ) is a line bundle on Fs,ι
with the right H-linearization. �

6.2.6. Nilpotent cone. — In this section we describe the components of the nilpotent
cone of M , i.e., the zero fiber of the Hitchin fibration χ : M → H0(C,K⊗2

C ).
We show that χ−1(0) has 17 irreducible components, one of them being the moduli

space of semistable vector bundle N . By [65, Main Th. , §3] there is no universal
Higgs bundle over any Zariski open set of N . On the other hand, we construct a
universal bundle on the normalization of the other components; see Proposition 6.28
and Lemma 6.29.

Proposition 6.27. — The nilpotent cone of M is a compact union of 3-dimensional
manifolds:

χ−1(0) = N t
16⊔
j=1

Nj ,

where Nj is isomorphic to the vector space Ext1(θj , θ
−1
j ), where θj runs over the 16

theta-characteristics θ2
j = KC .

Proof. — We adapt the proof of [84, Prop. 19]; see also [68, §2]. Since N ⊂M is the
locus of semistable Higgs bundles with trivial Higgs field, we see that N ⊂ χ−1(0).
However, there are also stable Higgs bundles (E, φ) ∈ χ−1(0) with φ 6= 0.

Under this assumption, φ has generically rank one: denote by A the line bundle
Imφ ⊂ E ⊗KC . Then E sits in the following diagram

0 A−1 E A 0

0 A⊗KC E ⊗KC A−1 ⊗KC 0.

φ u
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Since tr(φ) = 0, the composition A → E ⊗KC → A⊗KC is zero, and the inclusion
A→ E⊗KC factors through u : A→ A−1⊗KC . The stability of E implies −degA <

degE = 0, and since u ∈ H0(C,KC ⊗ A⊗(−2)) is non-zero, we conclude that A is a
theta-characteristic.

Therefore, the Higgs bundle (E, φ) is determined by the triple (θj , v, u) given by
– the theta-characteristic θj ,
– the extension class v ∈ Ext1(θj , θ

−1
j ) giving the exact sequence θ−1

j → E → θj ,
– the non-zero scalar u ∈ H0(C,Hom(θj , θ

−1
j ⊗KC)) ' H0(C,OC),

modulo the Gm-action
c · (θj , v, u) = (θj , cv, cu).

The equivalence class (θj , v, u) under rescaling is denoted [θj , v, u], and we identify
the Higgs bundle (E, φ) ∈ Nj with [θj , v, u]. In particular, the irreducible components
of χ−1(0) different from N are

Nj := P(Ext1(θj , θ
−1
j )⊕H0(C,OC)) r {u = 0} ' Ext1(θj , θ

−1
j ). �

Alternative proof. — The nilpotent cone on M is the union of the repelling sets of all
the fixed loci

χ−1(0) = Repell(N) ∪ Repell(Θ) = N ∪
16⋃
j=1

Repell(Θj).

By Theorem 6.5(2), Repell(Θj) is isomorphic to a 3-dimensional vector space. How-
ever, we rely on the previous proof for a modular interpretation of Repell(Θj). �

Let Rj be the total space of the projective bundle P(Ext1(θj , θ
−1
j ) ⊕ H0(C,OC))

with hyperplane bundle ORj (1). As we observed above, there is a natural decompo-
sition Rj = Nj ∪ P(Ext1(θj , θ

−1
j )). The inclusion Nj ↪→ χ−1(0) extends to a bijective

and algebraic morphism

rj : Rj ↪−→ χ−1(0)

[v : u] 7−→ [θj , v, u] = (E, φ),

whose image is the closure N j of Nj in χ−1(0); see Theorem 6.5(2) and also [84,
Prop. 24].

Proposition 6.28. — There exists a universal bundle ERj on Rj × C which sits in
the following exact sequence

0 −→ p∗RjORj (1)⊗ p∗Cθ−1
j −→ ERj −→ p∗Cθj −→ 0,

where pRj : Rj × C → Rj and pC : Rj × C → C are the natural projections.

Proof. — Mutatis mutandis, the same argument as in [84, p. 22] works. �

Consider now the quasi-étale cover q : Mι → M . Since Nj is simply connected,
q−1(Nj) breaks into two irreducible components, say N+

j and N−j . In particular,
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q restricts to an isomorphism between M◦ι ∩ N+
j (equivalently M◦ι ∩ N−j ) and

N j r (Ω ∪Θj). If we set R◦j := Rj r
(
r−1
j (Ω) ∪ r−1

j (Θj)
)
, then the product map

(30) rj := (rj ◦ q−1, id) : R◦j × C −→ (M◦ι ∩N+
j )× C

is an algebraic bijection. Let E be the universal bundle on M◦ι × C.

Lemma 6.29. — The P1-bundles P(r∗jE) and P(ERj ) on R◦j × C are isomorphic.

Proof. — The vector bundles r∗jE and ERj are both universal on R◦j × C. The result
follows from Remark 6.25. �

6.2.7. Quasi-étale covers of MDol(X,SLn). — In this section we show that the quasi-
étale cover ι is a special feature of the moduli space M = MDol(C, SL2), which is not
shared by any other space MDol(X,SLn), g > 2.

Proposition 6.30. — The smooth locus M sm
Dol(X,SLn) of MDol(X,SLn) is simply-

connected for g > 2 and (g, n) 6= (2, 2). In particular,

π1(M sm) = Z/2Z.

Proof. — M sm
Dol(X,SLn) contains a Zariski open subset which can be identified with

the cotangent bundle of the moduli space Buns(X,n) of stable vector bundles of rank r
and trivial determinant over X. Therefore, the fundamental group of M sm

Dol(X,SLn)

is a quotient of π1(Buns(X,n)), which is trivial by [20, Th. 3.2(i)], for g > 2 and
(g, n) 6= (2, 2).

Consider now M . The forgetful map q induces the following exact sequence in
homotopy

(31) 1 −→ π1(M sm
ι ) −→ π1(M sm) −→ Z/2Z −→ 1.

As before, M sm
ι contains a Zariski open subset isomorphic to the cotangent bundle

of the moduli space Buns(C/ι) of stable ι-equivariant bundles of rank 2 over C with
trivial determinant and tr(hw) = 0 for all w ∈W ; see for instance [45, Chap. 6, p. 73].
Thus, we obtain that π1(M sm

ι ) is a quotient of π1(Buns(C/ι)).
The space Buns(C/ι) is the smooth locus of the double cover Bunss(C/ι) of P3

branched along a singular Kummer quartic. The singular locus of Bunss(C/ι) consists
of 16 ordinary double points, which are known to admit a small resolution, i.e., the
exceptional locus has codimension > 2. This implies that π1(Buns(C/ι)) coincides
with the fundamental group of a (small) resolution of Bunss(C/ι). Further, Bunss(C/ι)

is rational by [54, Th. 2.2] or [18, Th. 1.3]; see also [45, §5.4.2 & §5.5], where a small
resolution of Bunss(C/ι) is denoted Bunss

]1/4,1/2[(C/i). Since the fundamental group is
a birational invariant of smooth proper varieties, we observe that Bunss

]1/4,1/2[(C/i) is
simply-connected, since the projective space is so.

To summarize, we have shown that

1 = π1(P3) ' π1(Bunss
]1/4,1/2[(C/ι)) ' π1(Buns(C/ι)) −→−→ π1(M sm

ι ).

By the exact sequence (31), we conclude that π1(M sm) ' Z/2Z. �
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The following corollary is an immediate consequence of Remark 6.19 and Proposi-
tion 6.30.

Corollary 6.31. — There are no non-trivial quasi-étale cover of MDol(X,SLn) for
g > 2 and (g, n) 6= (2, 2). The forgetful map q is the only non-trivial quasi-étale cover
of M .

7. P=W conjectures for M

In this section we reduce the proof of the P=W conjecture for M and M̃ to P=W
phenomena for the summands of the decomposition theorem for f : M̃ → M ; see
Theorem 7.1 and Theorem 7.4. The exchange of the perverse and weight filtrations
for the summands supported on a subvariety strictly contained in M is proved in
Theorem 7.6. Therefore, the ultimate goal of this section is to reduce the proof of the
P=W conjecture for M and M̃ to the PI=WI conjecture.

We first show that the PI=WI conjecture forM implies the P=W conjecture forM .
Actually, this first statement does not require the decomposition theorem.

Theorem 7.1. — If the PI=WI conjecture for M holds, then the P=W conjecture
for M holds.

Proof. — The fixed locus of the Gm-action on M can be identified with the (dis-
joint) union of connected components of the fixed locus of the Gm-action on M̃ ; see
Proposition 6.8 and Proposition 6.10. This induces an injective morphism between
the local-to-global spectral sequences (25) for M and M̃ . Therefore, f∗ : H∗(M) →
H∗(M̃) is an injective map, and so is the natural map H∗(M) → IH ∗(M), since
f∗ : H∗(M)→ H∗(M̃) factors as H∗(M)→ IH ∗(M)→ H∗(M̃). The statement now
follows from the fact that the injective map H∗(M)→ IH ∗(M) preserves the perverse
and weight filtrations. �

With a slight abuse of notation, we denote by f both the symplectic resolutions
fDol(C,SL2) : M̃ → M and fB(C, SL2) : M̃B → MB . By [47, Lem. 2.11], any sym-
plectic resolution is semismall. Therefore, the decomposition theorem (Theorem 2.7)
provides canonical isomorphisms:

Rf∗QM̃ [6] ' ICM ⊕Q
Σ

[4](−1)⊕Q
Ω

(−3),(32)
Rf∗QM̃B

[6] ' ICMB
⊕Q

ΣB
[4](−1)⊕Q

ΩB
(−3).(33)

Thus, in cohomology we have:

H∗(M̃) ' IH ∗(M)⊕H∗−2(Σ)(−1)⊕H∗−6(Ω)(−3),(34)

H∗(M̃B) ' IH ∗(MB)⊕H∗−2(ΣB)(−1)⊕H∗−6(ΩB)(−3).(35)

These decompositions split the perverse and weight filtration, as shown in the follow-
ing lemmas.
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Lemma 7.2. — We have

PkH
∗(M̃) = PkIH

∗(M)⊕ Pk−1H
∗−2(Σ)⊕ Pk−3H

∗−6(Ω),

where PkH∗(M̃), PkIH ∗(M), PkH∗(Σ) and PkH∗(Ω) denote the pieces of the perverse
filtration associated to the maps χ ◦ f , χ, χ|Σ and χ|Ω respectively.

Proof. — Apply χ∗ to the splitting (32) and notice that perverse truncation functors
pτ6i are exact. �

Lemma 7.3

W2kH
∗(M̃B) = W2kIH

∗(MB)⊕W2k−2H
∗−2(ΣB)⊕W2k−6H

∗−6(ΩB).

Proof. — As the decomposition theorem is an isomorphism of mixed Hodge struc-
tures, we have

W2kH
∗(M̃B) = W2kIH

∗(MB)⊕W2kH
∗−2(ΣB)(−1)⊕W2kH

∗−6(ΩB)(−3).

Recalling that Tate shifts (−k) increase weights of 2k, the result follows by including
them in the grading of the weight filtration. �

Theorem 7.4. — The P=W conjecture for M̃ is equivalent to the following two state-
ments:

(1) PI=WI conjecture for M ;
(2) P=W conjecture for Σ and Ω, i.e.,

PkH
∗(Σ) = Ψ|∗ΣW2kH

∗(ΣB), PkH
∗(Ω) = Ψ|∗ΩW2kH

∗(ΩB).

Proof. — Let Ψ:M→MB be the non-abelian Hodge correspondence, and Ψ̃ : M̃→M̃B

be the diffeomorphism lifting Ψ in the sense of Theorem 3.8. By the commutativity of
the diagram (7), and since the map Ψ preserves the stratifications (20) and (21), the
map Ψ̃∗ : H∗(M̃B)→ H∗(M̃) splits on the summands of the decomposition theorem.
More precisely, Ψ̃∗ is given by the product map

(36) (Ψ∗,Ψ|∗−2
Σ ,Ψ|∗−6

Ω ) : IH ∗(MB)⊕H∗−2(ΣB)(−1)⊕H∗−6(ΩB)(−3)

−→ IH ∗(M)⊕H∗−2(Σ)(−1)⊕H∗−6(Ω)(−3).

The statement then follows by Lemma 7.2 and Lemma 7.3. �

Remark 7.5. — The product map (36) suggests that it is possible to define the isomor-
phism in cohomology Ψ̃∗ without constructing the diffeomorphism Ψ̃. This is indeed
the approach of [12]. However, the virtue of Theorem 3.8 is to establish that the iso-
morphism between the cohomology rings of M̃ and M̃B which realizes the exchange
of perverse and weight filtration has a geometric origin.

Theorem 7.6 (P=W for singular loci). — The P=W conjecture for Σ and Ω holds.
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Proof. — Since Ω is a collection of points, the perverse and the weight filtrations are
all concentrated in degree zero, and so the P=W conjecture for Ω trivially holds.

We show now that the P=W conjecture for Σ holds. To this end, note that the
map χ|Σ factors as follows:

χ|Σ : Σ ' (Pic0(C)×H0(KC))/(Z/2Z) −→−→ H0(KC)/(Z/2Z) ⊂ H0(K⊗2
C ).

Equivalently, χ|Σ can be identified with the quotient of the projection

Pic0(C)×H0(C,KC) −→ H0(C,KC)

via the involution (L, s) 7→ (L−1,−s). Therefore, the general fiber χ|−1
Σ (s), with

s ∈ H0(KC)/(Z/2Z), is isomorphic to Pic0(C). The zero fiber χ|−1
Σ (0) instead is

isomorphic to the singular Kummer surface associated to Pic0(C), denoted by S as in
the proof of Proposition 6.10. Since Σ is attracted by S via the flow of the Gm-action,
Σ retracts on S. In particular, we obtain that

H∗(Σ) ' H∗(S) ' H∗(χ|−1
Σ (s))Z/2Z,

and the restriction H∗(Σ) → H∗(χ|−1
Σ (s)) is injective. Hence, by Theorem 2.9, we

conclude that Hd(Σ) has top perversity d.
On the Betti side, ΣB is isomorphic to (C∗)4/(Z/2Z) (cf. (22)). This means that

H∗(ΣB) ' H∗((C∗)4)Z/2Z ⊂ H∗((C∗)4).

In particular, Hd(ΣB) has only even cohomology of top weight 2d, since Hd((C∗)4)

does. Since both the perverse and the weight filtrations are supported in top degree,
the P=W conjecture for Σ holds. �

Having proved the second item in Theorem 7.4, Section 8 will be devoted to the
proof of the PI=WI conjecture.

8. PI=WI conjecture for M

8.1. Action of the 2-torsion of the Jacobian. — The action of Γ = Pic0(C)[2]

induces the splitting

(37) IH ∗(M) = IH ∗(M)Γ ⊕ IH ∗var(M),

where IH ∗(M)Γ is fixed by the action of Γ, and IH ∗var(M) is the variant part, i.e., the
unique Γ-invariant complement of IH ∗(M)Γ in IH ∗(M). Note that the decomposition
(37) induces a splitting of the perverse filtration. This follows from the exactness of
the perverse truncation functors pτ6i applied to the character decomposition χ∗QM '
χ∗QΓ

M
⊕ χ∗QM,var

.
In a similar way there exists an isomorphism of mixed Hodge structures

IH ∗(MB) = IH ∗(MB)Γ ⊕ IH ∗var(MB).

This implies the following theorem.
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Theorem 8.1. — The PI=WI conjecture for M is equivalent to the following two
statements:

(1) (PI = WI conjecture for the invariant intersection cohomology)

(38) PkIH
∗(M)Γ = Ψ∗W2kIH

∗(MB)Γ, k > 0.

(2) (PI = WI conjecture for the variant intersection cohomology)

(39) PkIH
∗(M)var = Ψ∗W2kIH

∗(MB)var, k > 0.

We continue with the computation of the intersection Poincaré polynomial of M
and the intersection E-polynomial of MB .

Proposition 8.2. — The intersection Poincaré polynomials are

IP t(M) :=
∑
k

dim IH k(M) tk = 1 + t2 + 17t4 + 17t6,

IP t(M)Γ :=
∑
k

dim IH k(M)Γ tk = 1 + t2 + 2t4 + 2t6,

IP t,var(M) :=
∑
k

dim IH k
var(M) tk = 15t4 + 15t6.

Proof. — By (29) and (35) we have

IP t(M) = Pt(M̃)− Pt(Σ)t2 − Pt(Ω)t6

= (1 + 2t2 + 23t4 + 34t6)− (1 + 6t2 + 1)t2 − 16t6

= 1 + t2 + 17t4 + 17t6;

see also [26, Th. 6.1].
Since the differentials of the local-to-global spectral sequence (26) are Γ-equiva-

riant, we obtain

Pt,var(M̃) = Pt,var(Ñ) + Pt,var(S̃
+)t2 + Pt,var(Θ̃)t6 + Pt,var(

⋃16
j=1 Tj)t

6,

in the notation of Theorem 6.14. The group Γ acts trivially on H∗(Ñ) and H∗(Σ) '
H∗(S) ⊂ H∗(S

+
), and as the regular representation on the 16-dimensional vector

spaces
16⊕
j=1

Q[s+
j ] ⊂ H∗(S+

), H0(Θ̃),
16⊕
j=1

Q[Tj ], H0(Ω).

Again by (35), we get

IP t,var(M) =Pt,var(M̃)− Pt,var(Σ)t2 − Pt,var(Ω)t6

=(dim(
⊕16

j=1 Q[s+
j ])− 1)t4 + (dimH0(

⋃16
j=1 Tj)− 1)t6

+ (dimH0(Θ̃)− 1)t6 − (dimH0(Ω))− 1)t6

=15t4 + 15t6.

Finally, IP t(M)Γ = IP t(M)− IP t,var(M) = 1 + t2 + 2t4 + 2t6. �
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Proposition 8.3. — The intersection E-polynomial of MB is

IE (MB) :=
∑
p,q,d

(−1)d dim(GrWp+q IH
d
c(MB ,C))p,qupvq

=
∑
k,d

dim GrW2k IH
d(MB)qk = 1 + 17q2 + 17q4 + q6,

with q = uv. In particular, dim GrW2k+1 IH
d(MB) = 0 for all k, d ∈ N.

Proof. — The analogue of Lemma 7.3 for compactly supported cohomology yields

(40) IE (MB) = E(M̃B)− E(ΣB)q − E(ΩB)q3.

In order to compute E(M̃B), consider the stratification of M̃B :

M̃B = M sm
B t Σ̃B r Ω̃B t Ω̃B ,

where Σ̃B r Ω̃B := f−1(ΣB r ΩB) and Ω̃B := f−1(ΩB). It is proved in [57, §8.2.3]
that the E-polynomial of MB is E(MB) = 1 + q2 + 17q4 + q6. This implies that

(41)
E(M sm

B ) = E(MB)− E(ΣB)

= (1 + q2 + 17q4 + q6)− (1 + 6q2 + q4) = −5q2 + 16q4 + q6,

where the second equality follows from the fact that the weight filtration on H∗c (ΣB)

is concentrated in top degree; see Theorem 7.6. Since Σ̃B r Ω̃B is a P1-bundle over
ΣB r ΩB , we obtain

E(Σ̃B r Ω̃B) = E(P1) · E(ΣB r ΩB) = (q + 1)(1 + 6q2 + q4 − 16).

Observe that Ω̃B is the disjoint union of 16 smooth quadric 3-folds Ω̃B,j , so that

(42) E(Ω̃B) =

16∑
j=1

E(Ω̃B,j) = 16(1 + q + q2 + q3).

Adding up the E-polynomials (41), (8.1) and (42), we get

(43) E(M̃B) = 1 + q + 17q2 + 22q3 + 17q4 + q5 + q6.

Finally, from (43) and (40) we obtain

(44) IE (MB) = 1 + 17q2 + 17q4 + q6.

By the vanishing of the odd intersection cohomology (cf. Proposition 8.2), every
non-trivial component (GrWp+q IH

d
c(MB ,C))p,q will contribute with non-negative coef-

ficient to IE (MB). Therefore, there is no cancellation and by (44) any non-trivial
(GrWp+q IH

d
c(MB ,C))p,q has type (p, p), i.e., the mixed Hodge structure on IH d

c(MB ,C)

is of Hodge-Tate type. In symbols, we write

IE (MB) =
∑
p,q,d

dim(GrWp+q IH
d
c(MB ,C))p,qupvq

=
∑
k,d

dim(GrW2k IH
d
c(MB ,C))k,kqk =

∑
k,d

dim GrW2k IH
d(MB ,C)qk,
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where the last equality follows from Poincaré duality and the fact that the polynomial
in (44) is palindromic. �

Proposition 8.4. — The intersection E-polynomials are

IE (MB)Γ :=
∑
k,d

dim GrW2k IH
d(MB)Γqk = 1 + 2q2 + 2q4 + q6

IEvar(MB) :=
∑
k,d

dim GrW2k IH
d
var(MB)qk = 15q2 + 15q4.

Proof. — The solution of the linear system
dim GrWk IH d(MB) 6 dim GrWk Hd(M̃B) = 0 for k < d [71, Prop. 4.20]
dim GrW2k+1 IH

d(MB) = 0 Proposition 8.3∑
k,d dim GrW2k IH

d(MB) qk = 1 + 17q2 + 17q4 + q6 Proposition 8.3∑
k dim IH k(MB) tk = 1 + t2 + 17t4 + 17t6 Proposition 8.2

is given by

dim GrW4d IH
2d(MB) = 1 for d = 0, 1, 2, 3,(45)

dim GrW4 IH 4(MB) = dim GrW8 IH 6(MB) = 16.(46)

The terms in this list are all the non-zero graded pieces of the mixed Hodge structure
on IH ∗(MB).

Note that the top graded pieces GrW2d IH
d(MB) are generated by αd, where α is

a (Γ-invariant) generator of IH 2(MB). The class α corresponds via the non-abelian
Hodge correspondence to the first Chern class of a χ-ample (or χ-anti-ample) divisor
on M . In particular, α2 and α3 are non-zero and Γ-invariant. This implies that

IH 4
var(MB) ⊂W4IH

4(MB) ' GrW4 IH 4(MB),

IH 6
var(MB) ⊂W8IH

6(MB)) ' GrW8 IH 6(MB).

Together with Proposition 8.2 and Proposition 8.3, we conclude that

IEvar(MB) = dim GrW4 IH 4
var(MB)q2 + dim GrW8 IH 6

var(MB)q4

= dim IH 4
var(MB)q2 + dim IH 6

var(MB)q4 = 15q2 + 15q4

IE (MB)Γ = IE (MB)− IEvar(MB)

= (1 + 17q2 + 17q4 + q6)− (15q2 + 15q4) = 1 + 2q2 + 2q4 + q6. �

As a result, an analogue of [41, Cor. 4.5.1] holds for MB .

Corollary 8.5. — The intersection form on H6
c (MB) = IH 6

c(MB) is trivial. Equiv-
alently, the forgetful map H6

c (MB)→ H6(MB) is zero.

Proof. — By (45), (46) and Poincaré duality, the weight filtrations on IH 6(MB) and
IH 6

c(MB) are concentrated in degree [8, 12] and [0, 4]. Since the forgetful map is a
morphism of mixed Hodge structures, it has to vanish. �
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Remark 8.6 (Failure of curious hard Lefschetz). — By (28) and the proof of Propo-
sition 8.4, we have
(47)

∑
k,d

dim GrW2k H
d(MB)qk = 1 + q2 + 17q4 + q6.

The fact that the polynomial (47) is not palindromic implies that curious hard Lef-
schetz (2) fails for H∗(MB). Analogously, one can show that relative hard Lefschetz
fails for H∗(M).

8.2. The variant part of IH ∗(M). — The goal of this section is to show that the
PI = WI conjecture for the variant part of IH ∗(M) holds. As we will explain in the
proof of Theorem 8.8, it is enough to prove it in degree 4 and 6.

Proposition 8.7. — IH 4
var(M) ⊂ P2IH

4(M).

Proof. — The argument of [11, §4.4] and [14, Prop. 1.4] works with few changes.
The endoscopic locus Ae ⊂ H0(C,K⊗2

C ) is the subset of sections s′ ∈ H0(C,K⊗2
C )

such that the Prym variety associated to the corresponding spectral curve Cs′ is not
connected (cf. [11, §4.4]). It is the union of 15 lines, obtained as images of the squaring
map

iL : H0(C,KC ⊗ L) −→ H0(C,K⊗2
C ), iL(a) = a⊗ a,

where L ∈ Γ r {0}. In particular, a general affine line Λ1 in H0(C,K⊗2
C ) does not

intersect Ae. It is important to remark that Γ acts trivially on H∗(χ−1(s)) for any
s ∈ Λ1: the proof in [11, §4.4] is independent of the choice of the degree of the Higgs
bundles, and so it holds also in the untwisted case. This implies

H∗(χ−1(Λ1))Γ = H∗(χ−1(Λ1)) = IH ∗(χ−1(Λ1)),

where the last equality follows from the fact that χ−1(Λ1) has quotient singularities.
We conclude by Theorem 2.9 that

IH 4
var(M) ⊂ Ker{IH 4(M)→ IH 4(χ−1(Λ1)) = IH 4(χ−1(Λ1))Γ}

= P2IH
4(M),

because the restriction map is Γ-equivariant. �

Theorem 8.8. — The PI = WI conjecture for the variant intersection cohomology
of M (39) holds.

Proof. — The variant Poincaré polynomial in Proposition 8.2 shows that IH ∗var(M)

is concentrated in degree 4 and 6.
By relative hard Lefschetz, we can write

GrP0 IH 4(M) ' GrP6 IH 10(M), GrP1 IH 4(M) ' GrP5 IH 8(M),

which both vanish by Proposition 8.2. Together with Proposition 8.7 and the proof
of Proposition 8.4, this implies

P2IH
4
var(M) = IH 4

var(M) = Ψ∗IH 4
var(MB) = Ψ∗W4IH

4
var(MB).

This proves the PI=WI conjecture for the variant part in degree 4.
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Again by relative hard Lefschetz, there exists a χ-ample α ∈ H2(M) such that the
cup product ∪α induces the isomorphism

∪α : IH 4
var(M) ' GrP2 IH 4

var(M) −→ GrP4 IH 6
var(M).

By Proposition 8.2 we obtain that

15 = dim IH 4
var(M) = dim GrP4 IH 6

var(M) 6 dim IH 6
var(M) = 15.

This implies that the cup product

∪α : IH 4
var(M) −→ IH 6

var(M)

is an isomorphism, which preserves the perverse and weight filtrations; see [11,
Lem. 1.4.4]. Therefore, the PI=WI conjecture for the variant part holds in degree 6

as well. �

8.3. A tautological class. — We show now that IH 4(M)Γ is generated by the
square of the relatively ample class α, and a class of perversity 2 and weight 4. As
usual, we adopt the notation of the previous sections, and in particular of Section 6.2.

Consider the forgetful map q : Mι →M . The action of Γ onM lifts toMι, and toge-
ther with the deck transformation of q, we obtain a group of symmetries of order 32,
denoted Γι.

Proposition 8.9. — IH 4(M)Γ = H4(M sm
ι )Γι .

Proof. — Since Mι has isolated singularities by Proposition 6.23, we have that
IH 4(Mι) = H4(M sm

ι ); see [31, §1.7] or [25, Lem. 1]. The proof of [32, Prop. 3] implies
that

IH 4(M)Γ = IH 4(Mι)
Γι = H4(M sm

ι )Γι . �

Fix a base point c ∈ C. Recall that E is a universal bundle on M sm
ι × C; see

Section 6.2.5.

Definition 8.10. — The space R is the total space of the projective bundle
P(E|Msm

ι ×{c}). Its associated principal PGL2-bundle parametrizes equivariant Higgs
bundles (E, h, φ) together with a frame for the fiber Ec, up to rescaling.

The second Chern class of a P1-bundle is the pull-back of a generator of
H4(BPGL2) ' Q via the classifying map. In particular, if the P1-bundle is a
projectivization of the rank-two vector bundle E, then

c2(P(E)) = c21(E)− 4c2(E).

Proposition 8.11. — The second Chern class c2(R) of the projective bundle R and
the square of the χ-ample class α generate IH 4(M)Γ

IH 4(M)Γ = Qα2 ⊕ Q c2(R).

Proof. — The proposition is a consequence of the following facts:
(1) c2(R) ∈ H4(M sm

ι )Γι = IH 4(M)Γ, since the Γι-action lifts to R.
(2) α2 ∈ H4(M)Γ ⊂ IH 4(M)Γ.
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(3) c2(R) 6= 0 by Lemma 8.12.
(4) α2 and c2(R) are linearly independent, because α2 has top perversity by The-

orem 2.9, while c2(R) ∈ P2IH
4(M); see Lemma 8.14.

(5) dim IH 4(M)Γ = 2 by Proposition 8.2. �

We now prove the lemmas used in the proof above.

Lemma 8.12. — c2(R) 6= 0.

Proof. — Let rj : R◦j × C → (M◦ι ∩ N+
j ) × C be the algebraic bijection defined in

6.2.6(30). Lemma 6.29 and Proposition 6.28 give

r∗jc2(R) = c2(P(E|R◦j×{c}))

= (c1(p∗RjORj (1)⊗ p∗Cθ−1
j )− c1(p∗Cθj))

2|R◦j×{c} = c1(OR◦j (1))2.

In particular, 0 6= c1(OR◦j (1))2 ∈ H4(R◦j ) ' H4(P3). �

Lemma 8.13. — c2(R) ∈ P3IH
4(M).

Proof. — Fix s a generic point in H0(C,K⊗2
C ), and let ps : Cs → C the corresponding

spectral curve, i.e., the double cover of C ramified along the zeroes of s; see for instance
[3, §3]. We denote the product map ps × id : Cs × Pic0(Cs) → C × Pic0(Cs) simply
by ps. A universal bundle on χ−1(s)×C ' C×Pic0(Cs) does exist, and it is isomorphic
to ps,∗P, where P is the Poincaré line bundle over Cs × Pic0(Cs).

The abelian variety (χ ◦ q)−1(s) parametrizes line bundles of Cs decorated with a
lift of the hyperelliptic involution ι : C → C. This implies that the restriction of E to
(χ ◦ q)−1(s) × C is isomorphic to q∗(ps, id)∗P, up to tensorization by a line bundle
in Pic((χ ◦ q)−1(s)).

As a result, we have that

c2(R)|χ−1(s) = c21(E|(χ◦q)−1(s)×{c})− 4c2(E|(χ◦q)−1(s)×{c})

= q∗
(
c21
(
(ps,∗P)|χ−1(s)×{c}

)
− 4c2

(
(ps,∗P)|χ−1(s)×{c}

))
= 0,

where the last equality follows from [84, §4] or [11, Eq. (5.1.10) & (5.1.11)]. This
implies that c2(R) does not have top perversity by Theorem 2.9. �

Lemma 8.14. — c2(R) ∈ P2IH
4(M).

Proof. — By Lemma 8.13, it is enough to show that the projection [c2(R)] in the
graded piece GrP3 IH 4(M)Γ vanishes. Suppose on the contrary that [c2(R)] 6= 0. Then
Proposition 8.2 would imply

dim GrP2 IH 4(M)Γ 6 dim IH 4(M)Γ − dim(Qα2 ⊕ Q c2(R)) = 2− 2 = 0.

By relative hard Lefschetz, GrP4 IH 6(M)Γ would be trivial. Analogously,

GrP5 IH 6(M)Γ ' GrP1 IH 2(M)Γ = 0.
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Again by Proposition 8.2 we would conclude that

dim GrP3 IH 6(M)Γ = dim IH 6(M)Γ −
6∑
k=4

dim GrPk IH 6(M)Γ

= dim IH 6(M)Γ − dimQα3 = 2− 1 = 1.

However, this is a contradiction by Corollary 8.5. �

Lemma 8.15. — P3IH
6(M)Γ = 0.

Proof. — Lemma 7.2 gives the splitting

P3H
6(M̃)Γ = P3IH

6(M̃)Γ ⊕ P2H
4(Σ)Γ ⊕H0(Ω)Γ.

The P=W conjecture for Σ gives P2H
4(Σ) = 0. Moreover, we have that H0(Ω)Γ '

Q[Ω]; see the proof of Proposition 8.2. Therefore, we get

P3H
6(M̃)Γ = P3IH

6(M̃)Γ ⊕Q[Ω].

Up to a different numbering convention, [16, Th. 2.1.10] says that the dimension of
P3H

6(M̃)Γ is not greater than the rank of the intersection form on H6(M̃)Γ. There-
fore, Corollary 8.5 implies

dimP3H
6(M̃)Γ 6 1.

We conclude that dimP3IH
6(M)Γ = 0. �

We conclude the section by showing that the class c2(R) has weight 4.

Lemma 8.16. — c2(R) ∈W4IH
4(MB).

Proof. — The principal PGL2-bundle S →M sm
B,ι := Ψι(M

sm
ι ) is the restriction of the

quotient Hom(πorb
1 (C/ι),SL2) → MB(2,SL2, ι). It parametrizes ι-equivariant local

systems E′ on C together with a frame for the fiber E′c over c ∈ C, i.e., the base point
of πorb

1 (C/ι) = πorb
1 (C/ι, c), up to rescaling.

By construction, the non-abelian Hodge correspondence Ψι : M
sm
ι →M sm

B,ι (Theo-
rem 6.21) extends to a diffeomorphism between the principal PGL2-bundle associate
to R and S . This implies that c2(R) = (Ψ−1

ι )∗c2(S ), and c2(S ) has weight 4 by
[22, Th. 9.1.1, Prop. 9.1.2]. �

8.4. The invariant part of IH ∗(M)

Theorem 8.17. — The invariant PI=WI conjecture (38) holds for M .

Proof. — The statement is obvious in degree 0 and 2, because IH 0(M)Γ and IH 2(M)Γ

have dimension one by Proposition 8.2 and Proposition 8.4.
Now we have

P2IH
4(M)Γ 'W4IH

4(MB)Γ,

GrP3 IH 4(M)Γ ' GrW6 IH 4(MB)Γ = 0,

P4IH
4(M)Γ = IH 4(M)Γ ' IH 4(MB)Γ = W8IH

4(MB)Γ,
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due to Proposition 8.11, Lemma 8.16 and Proposition 8.4. This proves the invariant
PI=WI conjecture in degree 4.

By relative hard Lefschetz, the cup product with the χ-ample α ∈ H2(M) induces
the isomorphisms

∪α : GrP2 IH 4(M)Γ −→ GrP4 IH 6(M)Γ,

∪α : GrP4 IH 4(M) ' Q[α2] −→ GrP6 IH 6(M) ' Q[α3].

Note that GrP2 IH 4(M)Γ and GrP4 IH 4(M) are the only non-trivial pieces of the per-
verse filtration on IH 4(M)Γ, and by Proposition 8.2 we have that dim IH 4

var(M)Γ =

dim IH 6
var(M)Γ. This implies that the cup product

∪α : IH 4(M)Γ −→ IH 6(M)Γ

is an isomorphism which preserves both perverse and weight filtration (cf. [11,
Lem. 1.4.4]). Therefore, the invariant PI=WI conjecture holds in degree 6, as well. �

Appendix. Degenerations of hyperkähler varieties

In this appendix we describe degenerations of compact hyperkähler manifolds to
(non-compact) symplectic resolutions of Dolbeault moduli spaces. Instances of these
constructions can be found in [23], [15], [14]. Here a degeneration is a flat (not neces-
sarily proper) morphism of normal algebraic varieties, typically over a curve.

The compact hyperkähler manifolds appearing in these degenerations are Mukai
moduli spaces of sheaves on a K3 surface or an abelian surface S. Given an effective
Mukai vector(4) v ∈ H∗alg(S,Z), we denote by M(S, v) the moduli space of Gieseker
semistable sheaves on S with Mukai vector v for a sufficiently general polariza-
tion H (which we will typically omit in the notation); see [78, §1]. Further, if S
is an abelian variety with dual Ŝ, and dimM(S, v) > 6, then the Albanese morphism
albS : M(S, v)→ Ŝ×S is isotrivial, and we set K(S, v) := alb−1

S (0S ,OS). By [70], the
moduli space M(S, v) of sheaves on the K3 surface S and the moduli space K(S, v)

of sheaves on the abelian surface S are irreducible holomorphic symplectic varieties,
in brief IHSv.

A.1. Deformation to the normal cone: GLn case. — Let j : X ↪→ S be the embed-
ding of a smooth projective curve(5) of genus g into a K3 surface S. The degeneration
to the normal cone of j : X ↪→ S is the family

S =
(
BlX×0S × A1

)
r (S × 0) −→ A1.

The central fiber S0 is isomorphic to T ∗X, while the restriction to A1 r {0} is a
trivial fibration S × (A1 r {0})→ A1 r {0}.

(4)i.e., there exists a coherent sheaf F on S such that v = (rk(F ), c1(F ), χ(F ) − ε(S) rk(F )),
with ε(S) := 1 if S is K3, and 0 if S is abelian.

(5)In [23] X is a very ample divisor, but this assumption can be dropped.
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For all t ∈ A1, let βt = n[X] ∈ H2(St,Z) with n > 0. Take a relative compactifi-
cation S ⊂ S over A1. Then

M −→ A1

is the coarse relative moduli space of one-dimensional Gieseker semistable sheaves F

whose support is proper and contained in St ⊆ S t with χ(F ) = n(1 − g) and
[SuppF ] = βt; see [78, Th. 1.21]. The central fiber recovers the Dolbeault moduli
space

M0 'MDol(X,GLn).

Indeed, the moduli space of Higgs bundles on X of rank n and degree 0 can be realized
as the moduli space of one-dimensional Gieseker-semistable sheaves F on T ∗X with
χ(F ) = n(1 − g) and [SuppF ] = β0, via the BNR-correspondence [3]. The general
fiber is isomorphic to

Mt 'M(S, v)

with Mukai vector v = (0, nX, n(g − 1)).

Example A.1 (genus one: K3[n]). — If g = 1, then the degeneration M → A1 is
the relative n-fold symmetric product of S . The relative Hilbert-Chow morphism
M̃ → M is a desingularization of M . The composition M̃ → M → A1 is a family
whose general fiber is the compact hyperkähler manifold S[n] and whose central fiber
is (T ∗X)[n], i.e., the symplectic resolution of MDol(X,GLn) ' (T ∗X)(n).

Example A.2 (genus two and rank two: O’Grady 10). — If (g, n) = (2, 2), then the
blow-up M̃t of the singular locus of Mt 'M(S, v) is a smooth compact hyperkähler
manifold deformation equivalent to OG10; see for instance [69]. Analogously, the blow-
up M̃0 of the singular locus of M0 ' MDol(X,GL2) gives the symplectic resolution
of M0. Note that the proof of [69, Prop. 2.16] shows that the degeneration M → T

is locally analytically trivial. Therefore, the blow-up M̃ of the singular locus of M is
a smooth family over A1 whose general member is deformation equivalent to OG10
and whose central fiber is the symplectic resolution of MDol(X,GL2).

Remark A.3. — Taking schematic supports via Fitting ideals defines a Lagrangian
morphism M(S, v)→ |nX|, called the Mukai system. It is classically known that the
Mukai system degenerates to the Hitchin fibration, see [23].

Remark A.4. — If the Mukai vector (0, X, g − 1) is primitive (e.g. if Pic(S) = ZX),
then the second author observed in [59, Rem. 2.5] that the degeneration M → A1 is
locally analytically trivial. Therefore, the functorial resolution R(M ) → M of M

gives a simultaneous resolution of Mt for any t ∈ A1; see for instance [33, Lem. 4.2].

A.2. Deformation to the normal cone: SLn case. — Suppose now that X is a
smooth projective curve embedded in an abelian surface S. To avoid confusion, we re-
label S by A.(6) As in the previous section, there exists a degeneration M → A1

(6)In this section we denote by A an abelian surface, and not a curve of genus one as in the rest
of the paper.
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from the moduli space M(A, v) to MDol(X,GLn). In this case, however, M(A, v) is
no longer an IHSv because of the Albanese morphism albS : M(A, v)→ Â×A.

In genus one and two it is possible to slice M to obtain a degeneration of the IHSv
K(A, v) to MDol(X,SLn).

Example A.5 (genus one: K [n](A)). — If g = 1, then the family

A =
(
BlC×0A× A1

)
r (A× 0) −→ A1

is a group scheme, and the degeneration M → A1 is the relative n-fold symmetric
product A (n) → A1 whose general fiber is A(n), and whose central fiber is (T ∗C)(n).

Consider now the relative addition map an : A (n) → A , given by an(x1, . . . , xn) =∑n
i=1 xi. The inverse image of the identity section of A → A1 under the addition

map is a degeneration
K −→ A1

whose general fiber is the singular generalized Kummer variety K(A, v) ' K(n)(A)

and whose central fiber isMDol(X,SLn) ' K(n)(T ∗C). The inverse image of the iden-
tity section of A → A1 under the composition A [n] → A (n) → A is a degeneration

K̃ −→ K −→ A1

whose general fiber is the generalized Kummer manifold K [n](A) and whose central
fiber is the symplectic resolution of MDol(X,SLn).

Example A.6 (genus two). — If g = 2, the Albanese map [88]

albS : M(A, v) −→ Â×A

degenerates to the map

alb: MDol(X,GLn) −→ Pic0(X)×H0(X,KX) ' Â× Ag,

defined in (8); see [14, §4]. Taking fibers over the identity, one obtains a family K →A1

such that the central fiber is MDol(X,SLn) and the general fiber is the IHSv K(A, v).

Example A.7 (genus two and rank two: O’Grady 6). — The symplectic resolution
fA : K̃(A, v) → K(A, v), with v = (0, 2X, 2) and g = 2, is a compact hyperkäher
manifold of OG6 type. Let K̃ be the blow-up of the singular locus of the variety K

obtained in Example A.6, with (g, n) = (2, 2). Then K → A1 is a degeneration of
K(A, v) to the Dolbeault moduli space M in §6. Further, as in Example A.2, K̃ is
a smooth family over A1 whose general member is the compact hyperkäher manifold
K̃(A, v) of OG6 type and whose central fiber is the symplectic resolution M̃ of M .

We observe that the cohomology of K̃(A, v) governs the cohomology of M̃ in the
following sense.

Proposition A.8. — The specialization morphism [15, (86)]

sp! : H∗(K̃(A, v)) −→ H∗(M̃)

is a surjection.
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Proof. — The following facts hold:
– The Mukai system χA : K̃(A, v) → |2X| specializes to the Hitchin fibration

χ◦f : M̃ → H0(X,K⊗2
X ). In particular, a χA-ample line bundle on K̃(A, v) specializes

to a generator of H2(M̃).
– The fiber χ−1

A (2X) consists of 34 irreducible components which specialize to the
irreducible components of the nilpotent cone of M̃ that generate H6(M̃); see [87,
Prop. 3.0.3].

– Denote by ΣA and Σ the singular locus of K(A, v) and M , isomorphic to
(A× Â)/± 1 and (A2 × Â)/ ± 1 respectively. As in (35), H∗−2(ΣA) is a direct
summand of H∗(K(A, v)). By definition of sp! in [15, (86)], the restriction of the
specialization map to H∗−2(ΣA) is the pullback

(A2 × Â)/± 1 ↪−→ P(T ∗Â⊕ OÂ)/± 1 ↪−→ (Bl0×Â×0A× Â× A1)/± 1

−→ (A× Â× A1)/± 1 −→ (A× Â)/± 1.

So, given the inclusion j : (0× Â)/± 1 ↪→ (A× Â)/± 1, we have

sp!(γ) = j∗γ ∈ H∗(Â/± 1) ' H∗((A2 × Â)/± 1)

for γ ∈ H∗((A× Â)/± 1), which is a surjection.
We conclude that

Im(sp!) ⊃ H2(M̃)⊕H6(M̃)⊕H∗−2(ΣA).

By the description of H∗(M̃) (cf. Fig. 1) and relative hard Lefschetz, this suffices to
show that Im(sp!) equals the whole H∗(M̃). �

Remark A.9. — Recall that for any odd number d the twisted Dolbeault moduli
space M tw(X,SL2, d) parametrizes semistable SL2-Higgs bundles of degree d on the
curveX. It is curious that the analogue of Proposition A.8 fails forM tw(X,SL2, d) and
g = 2: there is no degeneration of compact hyperkähler manifolds to M tw(X,SL2, d)

such that the specialization map sp! is surjective; see [14, Prop. 4.3].

Example A.10 (genus > 2). — There is no degeneration from K(A, v) with Mukai
vector v = (0, nX, n(g − 1)) with g > 2 to MDol(X,SLn) for dimensional reason.
However, K(A, v) and MDol(X,SLn) have the same type of singularities: they are
stably isosingular in the sense of [59, Def. 2.6 & Th. 2.11]. Therefore, it is natural to
ask the following.

Question. — Does there exist a degeneration of compact symplectic varieties equipped
with a Lagrangian fibration in Prym varieties to the Hitchin fibration

χ(X,SLn) : MDol(X,SLn) −→
n⊕
i=2

H0(X,K⊗iX )

for g > 2?

Note that the question is answered positively in [72] if we replace the special linear
group SLn with the symplectic group Spn.
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