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HIGHER SYSTOLIC INEQUALITIES FOR

3-DIMENSIONAL CONTACT MANIFOLDS

by Alberto Abbondandolo, Christian Lange
& Marco Mazzucchelli

Abstract. — A contact form is called Besse when the associated Reeb flow is periodic. We prove
that Besse contact forms on closed connected 3-manifolds are the local maximizers of suitable
higher systolic ratios. Our result extends earlier ones for Zoll contact forms, that is, contact
forms whose Reeb flow defines a free circle action.
Résumé (Inégalités systoliques d’ordre supérieur pour les variétés de contact de dimension 3)

Une forme de contact est dite de type Besse si son flot de Reeb est périodique. On prouve
que les formes de contact de type Besse sur les variétés connexes fermées de dimension 3 sont
les maximiseurs locaux de certains rapports systoliques d’ordre supérieur. Notre résultat étend
des théorèmes antérieurs pour les formes de contact de type Zoll, c’est-à-dire les formes de
contact dont le flot de Reeb définit une action libre du cercle.
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1. Introduction

1.1. Background and main result. — The aim of this paper is to prove some sharp
inequalities involving the periods of closed orbits of Reeb flows on 3-manifolds and
the contact volume. Let Y be a closed, connected, orientable 3-manifold. We recall
that a one-form λ on Y is called a contact form when λ ∧ dλ is nowhere vanishing.
The contact form λ induces a vector field Rλ, which is called Reeb vector field of λ, by
the identities Rλ y dλ = 0 and Rλ yλ = 1. The flow of Rλ is called the Reeb flow, and
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808 A. Abbondandolo, C. Lange & M. Mazzucchelli

we will denote it by φtλ. It preserves the contact form λ, and in particular the volume
form λ ∧ dλ. Reeb flows are also called contact flows in the literature. Reeb flows on
3-manifolds constitute a special class of volume preserving flows with the remarkable
feature of always having closed orbits: the Weinstein conjectures postulates that Reeb
flows on arbitrary closed contact manifolds admit closed orbits, and this conjecture
has been confirmed in dimension 3 by Taubes, see [Tau07].

We denote by τ1(λ) the minimum of all periods of closed Reeb orbits and define
the systolic ratio of λ as the quotient

(1.1) ρ1(λ) :=
τ1(λ)2

vol(Y, λ)
,

where the contact volume vol(Y, λ) is defined as the integral of the volume form
λ∧dλ over Y . The choice of the power 2 in the numerator of (1.1) makes ρ1 invariant
under rescaling: ρ1(cλ) = ρ1(λ) for every non-zero constant c. As observed in [CK94,
Lem. 2.1], different contact forms on Y inducing the same Reeb vector field give the
same contact volume. Therefore, the systolic ratio ρ1 is a dynamical invariant of Reeb
flows. It is actually invariant by smooth conjugacies and linear time rescalings.

The term “systolic ratio” is borrowed from metric geometry: the systolic ratio of a
Riemannian metric on a closed surface is the ratio between the square of the length of
the shortest closed geodesic and the Riemannian area. Geodesic flows are particular
Reeb flows, and the metric systolic ratio coincides with 2π-times the contact systolic
ratio defined above. Indeed, the length of any closed geodesic agrees with its period as
closed Reeb orbit, and the contact volume of the unit tangent bundle of a Riemannian
surface is 2π-times the Riemannian area.

Still borrowing the terminology from Riemannian geometry, a contact form λ on Y
is called Zoll if all its Reeb orbits are closed and have the same minimal period. In this
case, the Reeb flow of λ induces a free S1-action on Y , and the systolic ratio of λ has
the value −1/e, where the negative integer e is the Euler number of the S1-bundle
which is induced by this S1-action.

Zoll contact forms are precisely the local maximizers of the systolic ratio ρ1 in
the C3-topology of contact forms: this was proved for arbitrarily closed 3-manifolds
by Benedetti and Kang in [BK21], generalizing a result of the first author together
with Bramham, Hryniewicz and Salomão in [ABHSa18] for the 3-sphere. Recently,
this result has been extended to manifolds of arbitrary dimension by the first author
and Benedetti, see [AB19]. We refer the reader to the latter paper and to [APB14]
for a discussion on some consequences of the local systolic maximality of Zoll contact
forms in metric and systolic geometry.

We denote by σ(λ) the action spectrum (or period spectrum) of the Reeb flow of λ,
i.e., the set

σ(λ) =
{
t > 0 | fix(φtλ) 6= ∅

}
.

Note that every closed Reeb orbit contributes to σ(λ) with all the multiples of its
minimal period. In general, σ(λ) is a non-empty closed set of Lebesgue measure zero,
and for generic contact forms it is discrete.
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Higher systolic inequalities for 3-dimensional contact manifolds 809

The number τ1(λ) is the minimum of σ(λ), and we would like to define τk(λ) as
the k-th element of σ(λ), where the elements of σ(λ) are ordered increasingly and are
counted with multiplicity given by the number of closed orbits having a given period.
Since in general σ(λ) is not discrete, a correct definition of τk(λ) is the following:
τk(λ) is the infimum of all positive real numbers τ such that there exist at least k
closed Reeb orbits with period less than or equal to τ ; here, each iterate of a closed
Reeb orbit contributes to the count. In formulas,

(1.2) τk(λ) := inf

{
τ > 0

∣∣∣∣ ∑
0<t6τ

#
(
fix(φtλ)/ ∼

)
> k

}
,

where ∼ is the equivalence relation on Y identifying points on the same Reeb orbit,
i.e., z0 ∼ z1 if and only if z1 = φtλ(z0) for some t ∈ R. Note that the sequence of values
τk(λ), k > 1, is (not necessarily strictly) increasing and consists of elements of σ(λ).

If σ(λ) is discrete and for any τ ∈ σ(λ) there are finitely many Reeb orbits of
period τ , then k 7→ τk(λ) is a surjective map from N to σ(λ). If instead there are
infinitely many periodic orbits of (not necessarily minimal) period τk(λ) for some k,
or a strictly decreasing sequence in σ(λ) converging to τk(λ), then τh(λ) = τk(λ) for
every h > k.

We now define the k-th systolic ratio of the contact form λ as the positive number

ρk(λ) :=
τk(λ)2

vol(Y, λ)
.

The aim of this paper is to give a complete characterization of local maximizers of
the k-th systolic ratio ρk.

Borrowing once more the terminology from Riemannian geometry, a contact form λ

on Y is called Besse if all its Reeb orbits are closed. Here, different Reeb orbits are
not required to have the same minimal period, and therefore Besse contact forms
constitute a larger class than Zoll forms. Thanks to a theorem of Wadsley [Wad75]
or, in the special case of dimension 3, an earlier theorem of Epstein [Eps72], Besse
Reeb flows are periodic (see also [Sul78]). In our case, since Y has dimension 3,
Epstein’s theorem implies that all Reeb orbits of the Besse contact form λ have the
same minimal period T except for finitely many ones, whose minimal period divides T .
The orbits of the first kind are called regular, whereas the finitely many exceptional
orbits with smaller minimal period are called singular.

In Riemannian geometry, suitable lens spaces have a geodesic flow that is Besse
but not Zoll. Nevertheless, on simply connected manifolds, Besse geodesic flows are
conjectured to be Zoll: this was confirmed for the 2-sphere, thanks to a classical result
of Gromoll and Grove [GG82], and for n-spheres of dimension n > 4, by a recent result
of Radeschi and Wilking [RW17]. In the more general class of Finsler geodesic flows,
and in the even larger class of Reeb flows, there are plenty of examples of flows that are
Besse but not Zoll: the simplest ones are the geodesic flows of rational Katok’s Finsler
metrics on the 2-sphere, see [Kat73, Zil83], and the Reeb flows on rational ellipsoids
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810 A. Abbondandolo, C. Lange & M. Mazzucchelli

in C2; other examples are the geodesic flows on certain Riemannian orbifolds, see
[Bes78, Lan20, LS21].

The theory of Seifert fibrations leads to the construction of many more examples
and to a full classification of Besse Reeb flows in dimension 3, see [KL21] and Sec-
tion 3.2 below. Indeed, the Reeb flow of a Besse contact form λ on Y induces a locally
free S1-action, whose quotient projection π : Y → B is a Seifert fibration over a
2-dimensional orbifold B. The Euler number e of such a Seifert fibration is rational
and negative, see [LM04], and conversely any Seifert fibration with negative Euler
number can be realized in this way. Moreover

(1.3) vol(Y, λ) = −T 2e,

where T is the minimal common period of the Reeb orbits of λ, see [Gei22, Cor. 6.3]
or Lemma 3.2 below.

If λ is a Besse contact form on the closed 3-manifold Y , the sequence τk(λ) which
we introduced above stabilizes: denoting by T the minimal common period of the
Reeb orbits, by γ1, . . . , γh the singular Reeb orbits, and by α1, . . . , αh the integers
greater than 1 such that γi has minimal period T/αi, we find that τk(λ) = T for
every k > k0(λ), where

k0(λ) := α1 + · · ·+ αh − h+ 1,

and k0(λ) is the minimal integer with this property. Indeed, the Reeb flow of λ has
a continuum of orbits of minimal period T and precisely α1 + · · · + αh − h orbits of
period strictly less than T , given by the iterates γji for 1 6 j 6 αi − 1 of the singular
orbits.

Together with (1.3), the above considerations yield the following formula for the
k0(λ)-th systolic ratio of the Besse contact form λ:

ρk0(λ)(λ) = −1

e
,

where e is the Euler number of the Seifert fibration π : Y → B induced by λ.
We now state the main result of this paper, which characterizes Besse contact forms

as local maximizers of the higher systolic ratios.

Theorem A. — Let Y be a closed, connected, orientable 3-manifold and k a positive
integer.

(i) If a contact form λ0 on Y is a local maximizer of the k-th systolic ratio ρk in
the C∞-topology, then λ0 is Besse with k0(λ0) = k.

(ii) Every Besse contact form λ0 on Y such that k0(λ0) = k has a C3-neighbor-
hood U in the space of contact forms on Y such that

ρk(λ) 6 ρk(λ0), ∀λ ∈ U,

with equality if and only if there exists a diffeomorphism θ : Y → Y such that θ∗λ =

cλ0 for some c > 0.

J.É.P. — M., 2022, tome 9
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We remark that Besse contact forms are never global maximizers of ρk on the space
of contact forms inducing a given contact structure ξ on the closed 3-manifold Y :
indeed, ρk > ρ1 and ρ1 is unbounded from above on the space of all contact forms on
(Y, ξ). See [ABHSa19] for the case of 3-dimensional contact manifolds and [Sağ21] for
the general case.

Example 1.1. — It is instructive to consider Theorem A in the case Y = S3. Any
Besse contact form on S3 coincides, up to a diffeomorphism and multiplication by a
positive number, with the restriction of the standard Liouville 1-form

λ0 :=
1

2

2∑
j=1

(
xj dyj − yj dxj

)
of R4 to the boundary of the solid ellipsoid

E(p, q) :=

{
z ∈ C2

∣∣∣∣ |z1|2
p

+
|z2|2
q
6

1

π

}
⊂ C2 = R4,

where p 6 q are coprime positive integers, see for instance [GL18, Prop. 5.2] and
[MR20, Th. 1.1]. The Reeb flow of the contact form

λp,q := λ0|∂E(p,q)

has a closed orbit of minimal period p, a closed orbit of minimal period q and all other
orbits have minimal period pq. Therefore,

k0(λp,q) = p+ q − 1,

and, for k0 := k0(λp,q),
ρk0(λp,q) = pq.

In particular, k0(λ1,k) = k and, according to Theorem A, for every k > 1 the contact
form λ1,k is a local maximizer of ρk. For k = 1, 2, 3, 5, this is the only local maximizer
of ρk on S3, but for all the other values of the positive integer k the linear Diophantine
equation p + q − 1 = k is easily seen to have more positive solutions p 6 q that are
coprime. For instance, ρ4 is locally maximized by both λ1,4 and λ2,3, with ρ4(λ1,4) = 4

and ρ4(λ2,3) = 6. The number of local maximizers of ρk on contact forms on S3

diverges for k →∞. �

Example 1.2. — Other natural applications of Theorem A concern geodesic flows on
Riemannian 2-orbifolds. Consider for instance the spindle orbifold S2(m,n) whose
underlying space is S2 and which has two conic singularities of order m and n, re-
spectively. Here, m and n are positive integers and a conic singularity of order m
corresponds to the local model R2/Zm, where the cyclic group Zm acts by rotations.
The case m = n = 1 gives us the standard smooth 2-sphere. Let us assume m+n > 2,
so that we have at least one singular point. The geodesic flow of any Riemannian met-
ric on S2(m,n) can be seen as a smooth Reeb flow on the lens space L(m + n, 1),

J.É.P. — M., 2022, tome 9



812 A. Abbondandolo, C. Lange & M. Mazzucchelli

i.e., the quotient of S3 ⊂ C2 by the free action of Zm+n which is generated by the
diffeomorphism

(z1, z2) 7−→
(
e2πi/(m+n)z1, e

2πi/(m+n)z2

)
,

see [Lan20]. The spindle orbifold S2(m,n) admits a Besse Riemannian metric turning
it into a Tannery surface: the spindle orbifold is realized as a sphere of revolution
having the two cone singularities at the poles, see [Bes78, Chap. 4]. The equator is a
closed geodesic of length 2π and all other geodesics are closed with length 2πa, where
a := m+ n if m+ n is odd and a := (m+ n)/2 if m+ n is even. Here, meridians are
seen as geodesic segments belonging to closed geodesics of length 2πa.

The geodesic flow of this Tannery surface has two periodic orbits of minimal pe-
riod 2π, corresponding to the two orientations of the equator, and all other orbits
are closed with minimal period 2πa. Therefore, the integer k0 associated with the
corresponding Besse contact form on L(m+ n, 1) is

k0 := 2a− 1.

The Tannery surface is a local maximizer in the C3-topology of Riemannian met-
rics on S2(m,n) of the k0-th systolic ratio given by the square of the length of the
k0-th shortest closed geodesic, where closed geodesics are counted with multiplicity as
in (1.2), and the Riemannian area of the orbifold. In other words, if the Riemannian
metric of the Tannery surface is modified by a C3-small perturbation not affecting the
Riemannian area, then the new geodesic flow is either still Besse, and in this case is
smoothly conjugate to the Tannery geodesic flow, or the following holds: if the closed
geodesic which is obtained by continuation from the equator (which is non-degenerate
in the case m + n > 2 we are considering here) is not shorter than 2π, then there
exists a closed geodesic of minimal length close to 2πa and smaller than this number.

An analogous result holds for Finsler perturbations of the Tannery surface, where
now the two closed geodesics which are obtained by continuation from the equator
might be geometrically distinct and have different lengths, if the Finsler perturbation
is not reversible.

Actually, the second author and Soethe [LS21] proved that, within the class of
Riemannian rotationally symmetric spindle 2-orbifolds, the Besse ones are even the
global maximizers of the suitable higher systolic ratio. �

1.2. Sketch of the proof of Theorem A. — We conclude this introduction by giving
an informal sketch of the proof of Theorem A.

The proof of statement (i) is elementary. First we show that all the Reeb orbits
of a contact form λ0 which locally maximize ρk are closed and have minimal period
not exceeding τk(λ0): if there is a point x ∈ Y whose orbit violates this assertion,
we can deform λ0 in a neighborhood of x and make the volume smaller without
introducing closed orbits of period smaller than τk(λ0). This shows that λ0 is Besse
with k0(λ0) 6 k. It remains to show that a Besse contact form λ does not locally
maximize ρk if k > k0(λ0). This can be done by considering explicit perturbations
of λ0 of the form (1 + ε h ◦ π)λ0, where π : Y → B is the quotient projection induced
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Higher systolic inequalities for 3-dimensional contact manifolds 813

by the locally free S1-action given by the Reeb flow of λ0 and h is a suitable smooth
real function on B.

The proof of statement (ii) is based on global surfaces of section and on a quan-
titative fixed point theorem for Hamiltonian diffeomorphisms of compact surfaces
that are close to the identity. This kind of arguments has already been used in
[ABHSa18, BK21] in order to prove that Zoll contact forms are local maximizers
of ρ1 on closed 3-manifolds, but here we need two new ingredients which may be of
independent interest.

We sketch the argument in the case of a Besse contact form λ0 that is not Zoll,
and hence k0 := k0(λ0) > 1, but in the detailed proof we give in Section 4 we shall
recover also the case in which λ0 is Zoll. In this paper, by a global surface of section
for the flow of the Reeb vector field Rλ we mean a smooth map ι : Σ → Y from an
oriented compact surface Σ whose restriction to each component of the boundary ∂Σ

is a positive covering of some periodic orbit of Rλ, whose restriction to the interior
of Σ is an embedding into Y r ι(∂Σ) transversal to Rλ, and such that every orbit
of Rλ intersects ι(Σ) in positive and negative time. The first new ingredient is the
following result.

Theorem B. — If λ0 is a Besse contact form on the closed 3-manifold Y and γ is
any orbit of Rλ0

, then the Reeb flow of λ0 admits a global surface of section (as in
the previous paragraph ) with ι(∂Σ) = γ.

See Theorem 3.1 below for a more detailed statement. We remark that the bound-
ary of Σ may have several components, but they are all mapped onto γ by ι. See
also [AG21] for related results about global surfaces of section for general flows on
3-manifolds defining a Seifert fibration.

We normalize λ0 so that all its regular orbits have minimal period 1, that is,
τk0

(λ0) = 1. We apply Theorem B to some singular orbit γ1 of period 1/α1 of the Reeb
flow of λ0, which we fix once and for all. The embedded surface ι(int(Σ)) intersects
each regular orbit of Rλ0

exactly α times, for some α ∈ N which can be derived from
the invariants of the Seifert fibration induced by λ0.

Now consider a contact form λ which is suitably close to λ0. Since the singular
orbits of Besse Reeb flows are non-degenerate, the Reeb flow of λ has a closed orbit
which is close to γ1. Up to multiplying λ by a constant and applying a diffeomorphism
to it, we can assume that Rλ coincides with Rλ0 on γ1, which is therefore a closed orbit
of both flows, with the same period 1/α1. In this case, we can show that ι : Σ→ Y is
a global surface of section also for the Reeb flow of λ, provided that λ is close enough
to λ0.

We now consider the diffeomorphism

φ : Σ −→ Σ

which is given by the α-th iterate of the first return map of the flow of Rλ to Σ. This
map is actually defined only in the interior of Σ, but we will show that it extends to
a diffeomorphism on Σ. The exact smooth 2-form ω := ι∗(dλ) is symplectic in the
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interior of Σ and vanishes with order 1 on the boundary. The map φ is an exact
symplectomorphism on (Σ, ω) and actually

φ∗λ− λ = dτ,

where τ : Σ→ (0,+∞) is the α-th return time of the flow of Rλ (or, more precisely,
the smooth extension to Σ of this function, which is defined in the interior of Σ). The
volume of (Y, λ) can be recovered by τ thanks to the identity

vol(Y, λ) =
1

α

∫
Σ

τ ω.

The exact symplectomorphism φ lifts to a unique element φ̃ of H̃am0(Σ, ω) which is
C1-close to the identity. Here, H̃am0(Σ, ω) denotes the subgroup of the universal cover
of the group of Hamiltonian diffeomorphisms of (Σ, ω) consisting of isotopy classes
[{φt}] starting at the identity which have vanishing flux on any curve connecting pairs
of points on ∂Σ. The zero flux condition is important here and holds because we are
considering a global surface of section with boundary on just one closed orbit.

Elements ψ̃ of H̃am0(Σ, ω) have a well-defined action

aψ̃,ν : Σ −→ R, ψ∗ν − ν = daψ̃,ν ,

with respect to any primitive ν of ω, where ψ denotes the projection of ψ̃ to the
Hamiltonian group. The action at contractible fixed points is independent of ν, and
so is the integral of the action on (Σ, ω), which defines the normalized Calabi invariant
of ψ̃, i.e., the number

Ĉal(ψ̃) :=
1

area(Σ, ω)

∫
Σ

aψ̃,ν ω.

In the case of the lift φ̃ of the α-th return map φ and of the primitive ν := ι∗λ of ω,
we obtain the identities

(1.4) aφ̃,ν = τ − 1, Ĉal(φ̃) =
vol(Y, λ)

vol(Y, λ0)
− 1.

The second new ingredient of this paper is the following fixed point theorem.

Theorem C. — Let ω be a smooth exact 2-form on the compact surface Σ which is
symplectic in the interior and vanishes with order 1 on the boundary. For every c > 0

there exists a C1-neighborhood U ⊂ H̃am0(Σ, ω) of the identity such that every ψ̃ ∈ U

with Ĉal(ψ̃) 6 0 has a contractible interior fixed point z such that

aψ̃(z) + c aψ̃(z)2 6
1

2
Ĉal(ψ̃),

with the equality holding if and only if ψ̃ is the identity.

See Theorem 2.5 below and the discussion preceding it for the precise definition of
all the notions involved in this theorem. The novelty here is the presence of the term
which is quadratic in the action. Indeed, the weaker inequality without that term is
proved in [ABHSa18] when Σ is the disk and in [BK21] when Σ has just one boundary
component, but the case of more boundary components can be taken care of similarly
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thanks to the zero-flux assumption. The constant 1/2 is sharp in the above inequality,
and the presence of the quadratic term is crucial in the conclusion of the argument
that we sketch below.

Since we are assuming that γ1 is a closed orbit of Rλ with minimal period 1/α1,
and since all the other singular orbits of Rλ0

correspond to closed orbits of Rλ of
nearby period, the strict inequality ρk0(λ) < ρk0(λ0) holds trivially when vol(Y, λ) >

vol(Y, λ0). Therefore, we can assume that vol(Y, λ) 6 vol(Y, λ0), which by (1.4) im-
plies Ĉal(φ̃) 6 0. If λ is C3-close to λ0, then φ̃ is C1-close to the identity and from
Theorem C with c = 1/2 we obtain the existence of an interior contractible fixed
point z of φ̃ with

(1.5) aφ̃(z) +
1

2
aφ̃(z)2 6

1

2
Ĉal(φ̃).

By (1.4), the fixed point z corresponds to a closed orbit γ 6= γα1
1 of Rλ with (not

necessarily minimal) period
τ(z) = 1 + aφ̃(z).

Since τ(z) is close to 1, this orbit is either the β-th iterate of the orbit of Rλ corre-
sponding to some singular orbit of Rλ0

of minimal period 1/β other than γ1, or is an
orbit of minimal period τ(z) bifurcating from the set of regular orbits of Rλ0 . In both
cases, its presence implies that τk0

(λ) 6 τ(z) and by (1.5) we find

ρk0
(λ) =

τk0
(λ)2

vol(Y, λ)
6

τ(z)2

vol(Y, λ)
=

(1 + aφ̃(z))2

vol(Y, λ)
=

1 + 2aφ̃(z) + aφ̃(z)2

vol(Y, λ)

6
1 + (vol(Y, λ)/vol(Y, λ0))− 1

vol(Y, λ)
=

1

vol(Y, λ0)
=

τk0
(λ0)2

vol(Y, λ0)
= ρk0

(λ0).

This shows that λ0 is a local maximizer of ρk0
in the C3-topology. Finally, if this

inequality is an equality, then the equality holds in (1.5) and hence φ̃ is the identity.
This implies that λ is Besse with regular orbits having minimal period 1, and from
the local rigidity of Seifert fibrations and Moser’s trick we obtain a diffeomorphism
θ : Y → Y such that θ∗λ = λ0. This concludes the sketch of the proof of Theorem A.

1.3. Organization of the paper. — In Section 2, we review the notions of flux, ac-
tion and Calabi invariant for symplectomorphisms of surfaces and prove Theorem C.
In Section 3, we prove Theorem B and show how the resulting global surface of section
survives to small perturbations of the contact form. In Section 4, we prove Theorem A.

Acknowledgements. — We thank Hansjörg Geiges and Umberto Hryniewicz for dis-
cussions concerning surfaces of section, and Gabriele Benedetti for discussing with us
the fixed point theorem in [BK21].

2. A fixed point theorem

In this section, we prove a refinement of a fixed point theorem due to Benedetti-
Kang [BK21, §4.4]. Our version allows us to deal with compact surfaces with possibly
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disconnected boundary and gives a more precise upper bound on the action of the
fixed point, which will play a crucial role in the proof of Theorem A.

2.1. Preliminaries: action, flux, and Calabi homomorphism. — Before stating the
theorem, we review some facts about the action of exact symplectomorphisms, the
flux and the Calabi homomorphism in a setting which is slightly different than the
one considered in classical references such as [Cal70, Ban78, Ban97, MS17].

Throughout this section, we consider a compact connected surface Σ with non-
empty boundary and an exact two-form ω on Σ which is symplectic (i.e., nowhere
vanishing) in the interior of Σ. In the fixed points theorem below, we will assume
that ω vanishes on the boundary of Σ in a certain precise way, but in order to introduce
the objects this theorem is about we do not need this assumption. As we shall see in
Section 3.3, allowing symplectic forms to vanish on the boundary is important when
dealing with global surfaces of section of Reeb flows, see also [ABHSa18, BK21] and,
for a more general approach in any dimension, the theory of ideal Liouville domains
in [Gir20].

By a symplectomorphism of (Σ, ω) we mean a diffeomorphism φ : Σ→ Σ such that
φ∗ω = ω. In other words, φ is a diffeomorphism of Σ which restricts to a symplecto-
morphism of the open symplectic manifold int(Σ).

Let {φt}t∈[0,1] be an isotopy on Σ starting at the identity; we will always tacitly
require that every φt : Σ → Σ is surjective (i.e., a diffeomorphism, and not sim-
ply an embedding). We denote by Xt the generating vector field, which is uniquely
determined by the equation

d
dt φt = Xt ◦ φt.

The isotopy {φt} consists of symplectomorphisms if and only if the one-form Xtyω
is closed for every t ∈ [0, 1]. When these one-forms are exact, i.e.,

Xtyω = dHt, ∀t ∈ [0, 1],

for some H ∈ C∞([0, 1] × Σ), then Xt is called a Hamiltonian vector field, {φt} a
Hamiltonian isotopy, and H a generating Hamiltonian. Generating Hamiltonians are
uniquely defined up to the addition of a function of t. The fact that Xt is tangent
to the boundary of Σ forces each Ht to be constant on each boundary component.
By adding a suitable function of time, we could assume that Ht vanishes on a chosen
component of the boundary of Σ, but in general Ht will not necessarily vanish on the
other components.

Note that a smooth function H : Σ→ R defines a vector field on the interior of Σ

through the identity Xyω = dH, but in general one needs further assumptions on H
in order to guarantee that X extends smoothly to the boundary of Σ. This will not be
a reason of concern for us here, as we will construct Hamiltonians from vector fields
and not the other way around.

A symplectomorphism φ : Σ → Σ is said to be Hamiltonian if φ = φ1 for some
Hamiltonian isotopy {φt}. If {φt} and {ψt} are Hamiltonian isotopies generated by the
vector fields Xt and Yt with Hamiltonians Ht and Kt, then the composition {ψt ◦φt}
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is generated by the vector field Yt + (ψt)∗Xt, which is Hamiltonian with generating
Hamiltonian

(2.1) Kt +Ht ◦ ψ−1
t .

Therefore, Hamiltonian diffeomorphisms form a group, that we denote by Ham(Σ, ω).
Note that we are not requiring the diffeomorphisms in Ham(Σ, ω) to be supported in
the interior of Σ.

Every Hamiltonian diffeomorphism φ is exact, meaning that the one-form φ∗ν−ν is
exact for one (and hence any) primitive ν of ω. Indeed, every isotopy φt : Σ→ Σ with
φ0 = id is Hamiltonian if and only if it is exact for every t, see [MS17, Prop. 9.3.1].
A function a : Σ→ R satisfying

φ∗ν − ν = da

is called action of the Hamiltonian diffeomorphism φ with respect to the primitive ν
of ω. Once a primitive of ω has been fixed, the action is uniquely determined up to
an additive constant. If φ = φ1 where {φt} is a Hamiltonian isotopy with generating
Hamiltonian Ht, then the formula

(2.2) aH,ν(z) :=

∫
{t 7→φt(z)}

ν +

∫ 1

0

Ht

(
φt(z)

)
dt, ∀z ∈ Σ,

defines an action of φ with respect to ν.
If {φt} is a symplectic isotopy starting at the identity and generated by the vector

field Xt and γ : [0, 1] → Σ a smooth curve, the flux of {φt} through γ is defined as
the symplectic area swept out by the path γ under the isotopy {φt}, i.e., the quantity

Flux({φt})(γ) :=

∫
[0,1]×[0,1]

h∗ω =

∫ 1

0

∫ 1

0

ω
(
Xt(φt(γ(s))), dφt(γ(s))[γ̇(s)]

)
ds dt

=

∫ 1

0

∫
[0,1]

γ∗
(
(φ∗tXt) yω

)
dt,

where h(t, s) := φt(γ(s)) and in the last identity we have used the fact that the
diffeomorphisms φt are symplectic. The fact that the one-forms (φ∗tXt)yω are closed
implies that Flux({φt})(γ) only depends on the homotopy class of γ relative to the
endpoints, or on the free homotopy class of the closed curve γ.

Moreover, if ν is a primitive of ω we find by Stokes theorem

Flux({φt})(γ) =

∫
γ

(φ∗1ν − ν) +

∫
{t 7→φt(γ(0))}

ν −
∫
{t 7→φt(γ(1))}

ν.

The above identity shows that if γ is a curve joining two points on the boundary of Σ,
then Flux({φt})(γ) does not vary under homotopies of {φt} fixing the endpoints.
If γ is a closed curve, then Flux({φt})(γ) depends only on the homology class of
the closed one-form φ∗1ν − ν. In particular, Flux({φt})(γ) vanishes on closed curves
when φ1 is Hamiltonian. Actually, any symplectic isotopy with vanishing flux through
every closed curve is homotopic to a Hamiltonian isotopy, see [MS17, Th. 10.2.5].
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When the isotopy {φt} is Hamiltonian with generating Hamiltonian Ht, we find
the identity

Flux({φt})(γ) =

∫ 1

0

Ht(φt(γ(1))) dt−
∫ 1

0

Ht(φt(γ(0))) dt.

If γ is a curve connecting two boundary points, we have

(2.3) Flux({φt})(γ) =

∫ 1

0

Ht(C1) dt−
∫ 1

0

Ht(C0) dt,

where C0 and C1 are the connected components of ∂Σ containing the points γ(0)

and γ(1), respectively, and Ht(C) denotes the common value of Ht on the component
C ⊂ ∂Σ (recall that each Ht is constant on every boundary component).

We denote by
π : H̃am(Σ, ω) −→ Ham(Σ, ω)

the universal cover of Ham(Σ, ω). The group Ham(Σ, ω) is endowed with the C1

topology which is induced by the inclusion in the space of C1 maps from Σ to itself.
The C1 topology on Ham(Σ, ω) induces a C1 topology on H̃am(Σ, ω) so that, with
respect to these topologies, the covering map π is a local homeomorphism. As usual,
we identify the elements of H̃am(Σ, ω) with homotopy classes with fixed endpoints
of Hamiltonian isotopies {φt} starting at the identity, so that π([{φt}]) = φ1. By the
invariance of the flux under homotopies with fixed endpoints of the isotopy and (2.3),
we deduce that the flux induces a map

F̃lux : H̃am(Σ, ω)×H0(∂Σ)2 −→ R,

F̃lux([{φt}], C0, C1) =

∫ 1

0

Ht(C1) dt−
∫ 1

0

Ht(C0) dt,

which for any pair (C0, C1) restricts to a homomorphism from Ham(Σ, ω) to R, thanks
to the form (2.1) of the Hamiltonian generating the product of two Hamiltonian
isotopies.

Remark 2.1. — The above considerations can be restated slightly more abstractly by
seeing the flux as a homomorphism from the universal cover of the identity component
of the symplectomorphism group of Σ to H1(Σ, ∂Σ). See [MS17, §10.2] for the case
of a closed symplectic manifold. �

We shall be particularly interested in the subgroup H̃am0(Σ, ω) of H̃am(Σ, ω) con-
sisting of Hamiltonian isotopies whose flux through any curve with endpoints on the
boundary of Σ vanishes, i.e.,

H̃am0(Σ, ω) :=
{
φ̃ ∈ H̃am(Σ, ω)

∣∣∣ F̃lux
(
φ̃, C0, C1

)
= 0 ∀C0, C1 ∈ H0(∂Σ)

}
.

This is a normal subgroup of H̃am(Σ, ω) and a proper subgroup whenever ∂Σ has
more than one connected component.
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Remark 2.2. — An element φ̃ of H̃am(Σ, ω) belongs to H̃am0(Σ, ω) if and only if
we can normalize the Hamiltonian Ht generating any isotopy {φt} representing φ̃ by
requiring

(2.4)
∫ 1

0

Ht(z) dt = 0, ∀z ∈ ∂Σ.

Similarly, φ̃ = [{φt}] belongs to H̃am0(Σ, ω) if and only if we can normalize the
action a of φ1 with respect to any primitive ν of ω by requiring

(2.5) a(z) =

∫
{t7→φt(z)}

ν, ∀z ∈ ∂Σ.

Indeed, (2.5) corresponds to the choice a = aH,ν of (2.2), where H is normalized as
in (2.4). �

When φ̃ belongs to H̃am0(Σ, ω) and ν is a primitive of ω, we shall denote by

aφ̃,ν : Σ −→ R

the action of π(φ̃) normalized as in (2.5). As the notation suggests, this action does
not depend on the choice of the Hamiltonian isotopy representing φ̃.

If φ̃ = [{φt}] and ψ̃ = [{ψt}] are in H̃am0(Σ, ω) and ν is any primitive of ω, we have
the identity

(2.6) aψ̃◦φ̃,ν = aφ̃,ψ∗1ν
+ aψ̃,ν .

Indeed, one readily checks that the function a := aφ̃,ψ∗1ν
+ aψ̃,ν satisfies

da = (ψ1 ◦ φ1)∗ν − ν,

a(z) =

∫
{t7→ψt(φt(z))}

ν, ∀z ∈ ∂Σ.

A fixed point z of φ̃ = [{φt}] ∈ H̃am(Σ, ω) is by definition a fixed point of the
map φ1. Such a fixed point is said to be contractible if the loop t 7→ φt(z) is contractible
in Σ. The latter condition is clearly independent on the choice of the Hamiltonian
isotopy representing φ̃.

The normalized action aφ̃,ν(z) of any contractible fixed point z of φ̃ ∈ H̃am0(Σ, ω)

is independent on the choice of the primitive ν. Indeed, if φ̃ = [{φt}] and Ht is the
Hamiltonian normalized by (2.4) generating φt, then the identity aφ̃,ν = aH,ν and
Stokes’ theorem imply

(2.7) aφ̃,ν(z) =

∫
D
u∗ω +

∫ 1

0

Ht(φt(z)) dt,

where u : D→ Σ is a capping of the contractible closed curve t 7→ φt(z). In (2.7), the
dependence on ν disappears. Therefore, we shall denote the normalized action of the
contractible fixed point z of φ̃ simply as aφ̃(z).
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Finally, we define the Calabi homomorphism

Cal : H̃am0(Σ, ω) −→ R, Cal(φ̃) :=

∫
Σ

aφ̃,ν ω = 2

∫ 1

0

(∫
Σ

Ht ω

)
dt.

The equality of the above two expressions is proved in the lemma below. Notice that
the above double representation implies that Cal(φ̃) is independent of the choice of the
primitive of ν defining the normalized action aφ̃,ν and of the choice of the Hamiltonian
isotopy representing φ̃ and defining Ht. The fact that Cal is a homomorphism can be
proved by either using the representation in terms of action together with (2.6), or
the Hamiltonian representation together with (2.1).

Lemma 2.3. — For each φ̃ = [(φt)] ∈ H̃am0(Σ, ω), if Ht is the Hamiltonian normalized
by (2.4) generating the isotopy φt, we have∫

Σ

aφ̃,ν ω = 2

∫ 1

0

(∫
Σ

Ht ω

)
dt.

Proof. — From the identity aφ̃,ν = aH,ν we find∫
Σ

aφ̃,ν ω =

∫
Σ

(∫ 1

0

(
Xty ν +Ht

)
◦ φt dt

)
ω =

∫ 1

0

(∫
Σ

(
Xty ν +Ht

)
◦ φt ω

)
dt

=

∫ 1

0

(∫
Σ

(
Xty ν +Ht

)
ω

)
dt =

∫ 1

0

(∫
Σ

ν ∧ dHt +Ht ω

)
dt,

where we have used the fact that φt preserves ω, and the identity (Xty ν)ω = ν∧dHt.
By Stokes theorem, we find∫ 1

0

(∫
Σ

ν ∧ dHt

)
dt =

∫ 1

0

(∫
Σ

(
Ht dν − d(Htν)

))
dt

=

∫ 1

0

(∫
Σ

Ht ω

)
dt−

∫ 1

0

(∫
∂Σ

Htν

)
dt,

and the latter integral vanishes thanks to the normalization condition (2.4):∫ 1

0

(∫
∂Σ

Htν

)
dt =

∑
C∈π0(∂Σ)

(∫ 1

0

Ht(C) dt

)(∫
C

ν

)
= 0. �

2.2. The fixed point theorem. — We now prescribe the way in which the two-form ω,
which is assumed to be symplectic in the interior of Σ, vanishes on the boundary:

Assumption 2.4. — Every connected component C of the boundary ∂Σ has a collar
neighborhood AC ⊂ Σ and an identification AC ≡ [0, ρ) × S1, for some ρ > 0 such
that

ω|AC
= −r dr ∧ ds.

Here, we are identifying S1 with R/Z, and (r, s) denotes a point in [0, ρ)× S1. Note
that the orientation of ∂Σ as boundary of the oriented surface (Σ, ω) coincides, under
the above identification of each component C ⊂ ∂Σ with {0}×S1, with the orientation
given by ds. �
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The main result of this section is the following fixed point theorem, which is stated
as Theorem C in the Introduction and in which we are denoting by

Ĉal(φ̃) :=
Cal(φ̃)

area(Σ, ω)

the normalized Calabi invariant of φ̃ ∈ H̃am0(Σ, ω).

Theorem 2.5. — Assume that the exact two-form ω on the compact surface Σ is sym-
plectic on int(Σ) and satisfies Assumption 2.4. For every c > 0 there exists a C1-neigh-
borhood U of the identity in H̃am0(Σ, ω) such that every φ̃ in U with Cal(φ̃) 6 0 has
a contractible fixed point z ∈ int(Σ) whose normalized action satisfies

(2.8) aφ̃(z) + c aφ̃(z)2 6
1

2
Ĉal(φ̃),

with equality if and only if φ̃ is the identity.

In particular, Theorem 2.5 implies that any φ̃ ∈ H̃am0(Σ, ω) r {id} which is suf-
ficiently C1-close to the identity and satisfies Cal(φ̃) 6 0 has a contractible interior
fixed point z with negative action satisfying

(2.9) aφ̃(z) <
1

2
Ĉal(φ̃).

For the special case when Σ is the disk, the weaker conclusion (2.9) is deduced in
[ABHSa18, Cor. 5] from a non-perturbative statement. For arbitrary compact sur-
faces Σ having one boundary component, (2.9) is proved in [BK21, Cor. 4.16]. The
more precise bound which we prove here involving the square of the action turns
out to be important in order to prove systolic inequalities for Reeb flows using quite
general global surfaces of section (see Remark 4.1 below for more about this).

Remark 2.6. — The upper bound (2.8) can be restated as

aφ̃(z) 6 fc
(
Ĉal(φ̃)

)
,

where
fc(s) :=

1

2c

(√
1 + 2cs− 1

)
=

1

2
s− c

4
s2 +O(s3) for s −→ 0.

As already observed in [ABHSa18, Rem. 2.21], the constant 1/2 in front of the linear
term in s is optimal, meaning that it cannot be replaced by a larger constant (recall
that the argument of fc is non-positive): the example that is contained there can be
easily modified to produce, for every η > 1/2, an element φ̃ of H̃am0(Σ, ω) which is
arbitrarily close to the identity in any Ck norm, has negative Calabi invariant but no
contractible fixed point z satisfying

aφ̃(z) 6 η · Ĉal(φ̃).

Therefore, (2.9) can be improved only by considering higher order terms in s; the
bound (2.8) is such an improvement. �
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Remark 2.7. — By applying Theorem 2.5 to φ̃−1, we obtain the following statement:
For every c > 0 there exists a C1-neighborhood U of the identity in H̃am0(Σ, ω) such
that every φ̃ in U with Cal(φ̃) > 0 has a contractible fixed point z ∈ int(Σ) whose
normalized action satisfies

aφ̃(z)− c aφ̃(z)2 >
1

2
Ĉal(φ̃),

with equality if and only if φ̃ is the identity. �

The proof of Theorem 2.5 uses quasi-autonomous Hamiltonians: We recall that the
time-dependent Hamiltonian Ht : Σ → R is called quasi-autonomous if there exist
zmin, zmax ∈ Σ such that

Ht(zmin) = min
Σ
Ht, Ht(zmax) = max

Σ
Ht, ∀t ∈ [0, 1].

Note that, if the Hamiltonian isotopy {φt} is generated by a quasi-autonomous Hamil-
tonian Ht as above and zmin and zmax belong to the interior int(Σ), then these points
are contractible fixed points of φ̃ = [{φt}].

Exact symplectomorphisms of Σ that are C1-close to the identity are generated by
a quasi-autonomous Hamiltonian. More precisely, we have the following result.

Theorem 2.8. — Assume that the exact two-form ω on the compact surface Σ is sym-
plectic on int(Σ) and satisfies Assumption 2.4. Let φ : Σ→ Σ be an exact symplecto-
morphism that is sufficiently C1-close to the identity. Then there exists a Hamilton-
ian isotopy {φt} from id to φ whose generating Hamiltonian Ht is quasi-autonomous.
Moreover, for every ε > 0 there exists δ > 0 such that, if distC1(φ, id) < δ, then:

(i) ‖Ht‖C1 < ε and distC1(φt, id) < ε for every t ∈ [0, 1];
(ii) in the collar neighborhood AC ≡ [0, ρ)×S1 of each boundary component C of Σ

as in Assumption 2.4, the Hamiltonian Ht has the form

Ht(r, s) = bC + r2hC(t, r, s)

for some real number bC and some smooth function hC : [0, 1] × A → R such that
|bC | < ε and ‖hC‖C0 < ε.

In statements (i) and (ii), the C1 distances and norm are measured with respect
to an arbitrary Riemannian metric on Σ.

Remark 2.9. — Theorem 2.8 has other interesting applications. For instance, it im-
plies that the identity in Ham(Σ, ω) has a C1-neighborhood on which the Hofer met-
ric is flat. See [BP94] for more about this in the setting of compactly supported
Hamiltonian diffeomorphisms of R2n and [LM95] for the case of compactly supported
Hamiltonian diffeomorphisms of more general symplectic manifolds. �

This theorem is proved in the next section. Here we will show how the fixed point
theorem can be deduced from it.
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Proof of Theorem 2.5. — If φ̃ is the identity, then any point z ∈ int(Σ) is a contractible
fixed point of φ̃ and aφ̃(z) = Cal(φ̃) = 0. Therefore, we must prove that if U is
a sufficiently small C1-neighborhood of the identity in H̃am0(Σ, ω) then any φ̃ ∈
Ur{id} with Cal(φ̃) 6 0 has a contractible fixed point z ∈ int(Σ) satisfying the strict
inequality in (2.8).

We fix

(2.10) ε :=
N

4 area(Σ, ω) c
> 0,

where N > 1 is the number of connected components of ∂Σ and c is the arbitrary
positive number which appears in the statement we are proving. By Theorem 2.8, if U
is sufficiently small then any φ̃ ∈ Ur{id} is represented by a Hamiltonian isotopy {φt}
which is generated by a quasi-autonomous Hamiltonian Ht satisfying the bounds (i)
and (ii) for the ε given by (2.10).

Since φ̃ belongs to H̃am0(Σ, ω) and H is constant on [0, 1]×C for every connected
component C of ∂Σ, up to adding a suitable constant we may assume that Ht vanishes
on ∂Σ for every t ∈ [0, 1]. By Theorem 2.8(ii), on the collar neighborhood AC ≡
[0, ρ)× S1 of every connected component C of ∂Σ the Hamiltonian Ht has the form

(2.11) Ht(r, s) = r2hC(t, r, s), where ‖hC‖C0 < ε.

Since Ht is quasi-autonomous, there exists zmin ∈ Σ which minimizes Ht for every
t ∈ [0, 1]. Since Ht vanishes on ∂Σ, we have Ht(zmin) 6 0 for every t ∈ [0, 1]. Since∫ 1

0

(∫
Σ

Ht ω

)
dt =

1

2
Cal(φ̃) 6 0,

and since H does not vanish identically, because φ̃ 6= id, Ht(zmin) is strictly negative
for some t ∈ [0, 1]. In particular, zmin belongs to the interior of Σ and hence is a
contractible fixed point of φ̃ of action

aφ̃(zmin) =

∫ 1

0

Ht(zmin) dt < 0.

In order to estimate this action, we introduce the function

K : Σ −→ R, K(z) :=

∫ 1

0

Ht(z) dt.

The point zmin minimizes K, and

−m := K(zmin) = aφ̃(zmin) < 0.

Consider the collar neighborhood AC ≡ [0, ρ) × S1 of some connected component C
of ∂Σ. By (2.11), we have

|K(r, s)| 6 εr2, ∀(r, s) ∈ AC .
Together with the fact that K > −m on Σ, we deduce that

(2.12) K(r, s) > max{−εr2,−m}, ∀(r, s) ∈ AC .
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Up to reducing if necessary the neighborhood U, we can make the C0-norm of H as
small as we wish and hence we may assume that m < ερ2. Therefore,

max{−εr2,−m} =

−εr
2, ∀r ∈

[
0,
√
m/ε

]
,

−m, ∀r ∈
[√

m/ε, ρ
)
.

By integrating (2.12) over AC , we infer∫
AC

K ω >

∫
[0,ρ)×S1

max{−εr2,−m}r dr ∧ ds =

∫ ρ

0

max{−εr2,−m}r dr

= −ε
∫ √m/ε

0

r3 dr −m
∫ ρ

√
m/ε

r dr = −m
2
ρ2 +

m2

4ε

= −m area(AC , ω) +
m2

4ε
.

Note that we have written a strict inequality here because the inequality in (2.12)
cannot be everywhere an equality, as the right-hand side is not a differentiable function
of r at r =

√
m/ε ∈ (0, ρ). On the other hand, on Σ rU , where U denotes the union

of the collar neighborhoods AC of the N components of ∂Σ we have∫
ΣrU

K ω > −m area(Σ r U, ω).

Putting these inequalities together, we find

(2.13)
∫

Σ

K ω > −m area(Σ, ω) +N
m2

4ε
.

Since −m = aφ̃(zmin) and the integral of K on Σ is 1
2 Cal(φ̃), the inequality (2.13)

and our choice of ε in (2.10) give us the desired conclusion:

aφ̃(zmin) + c aφ̃(zmin)2 <
Cal(φ̃)

2 area(Σ, ω)
=

1

2
Ĉal(φ̃). �

2.3. Construction of a generating quasi-autonomous Hamiltonian

The aim of this section is to prove Theorem 2.8. The proof closely follows the
argument of [BK21, §4], but for sake of completeness we work out the details.

By Assumption 2.4 and up to reducing the positive number ρ appearing there,
we can find a primitive ν0 of ω which on the collar neighborhood AC ≡ [0, ρ)× S1 of
each component C of the boundary of Σ has the form

(2.14) ν0|AC
=
(
aC − 1

2r
2
)
ds,

for some aC ∈ R. Indeed, if ν is any primitive of ω and aC is its integral on the
boundary component C = {0} × S1, then the one-form above differs from ν|AC

by
the differential of a function gC . By adding to ν the differential of a function on Σ

that agrees with gC on a slightly reduced collar neighborhood of every component C
of ∂Σ, we obtain the desired primitive ν0.
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For i = 1, 2, we consider the one-forms νi := pr∗i ν0 on Σ× Σ, where

pri : Σ× Σ −→ Σ, pri(z1, z2) = zi,

and the standard Liouville form λstd on the cotangent bundle T∗Σ, which is uniquely
defined by the equation α∗λstd = α for all one-forms α on Σ.

If z1 and z2 are points on the same connected component C of ∂Σ, then they
are identified with pairs (0, s1), (0, s2) in AC = [0, ρ) × S1. When s2 and s1 are not
antipodal in S1 = R/Z, meaning that |s2−s1| < 1/2 for suitable lifts to R, we denote
by [z1, z2] the unique shortest oriented arc in C from z1 to z2, so that∫

[z1,z2]

ds <
1

2
.

The next result is a version of Weinstein tubular neighborhood theorem in our
setting.

Lemma 2.10 (Weinstein tubular neighborhood). — There exists an open neighborhood
U ⊂ Σ× Σ of the diagonal ∆Σ = {(z, z) | z ∈ Σ}, an open neighborhood V ⊂ T∗Σ of
the 0-section 0Σ ⊂ T∗Σ, and a smooth map ψ : U → V that restricts to a diffeomor-
phism ψ : U ∩ int(Σ× Σ)→ V ∩ T∗int(Σ), and satisfies

ψ(∆Σ) = 0Σ, ψ∗λstd = ν2 − ν1 + df,

where f : Σ× Σ→ R is a smooth function such that f |∆Σ
≡ 0 and

df(z1, z2) = (ν1 − ν2)(z1,z2), f(z1, z2) = −
∫

[z1,z2]

ν0,

for every pair (z1, z2) ∈ U ∩ (∂Σ× ∂Σ). If AC ≡ [0, ρ)×S1 is the collar neighborhood
of a connected component C of ∂Σ on which ν0 has the form (2.14), the restriction
ψ|U∩(AC×AC) has the form

ψ(r, s, R, S) =
(
R, s, R (S − s), 1

2 (r2 −R2)
)
,

∀(r, s, R, S) ∈ U ∩ (AC ×AC).
(2.15)

Proof. — We first provide the construction within the collar neighborhood A = AC
of each connected component C of ∂Σ. We consider a small enough neighborhood
W ⊂ A × A of the diagonal ∆A = {(z, z) | z ∈ A} so that, for each (r, s, R, S) ∈ W ,
the points s, S ∈ S1 are not antipodal. We define the map

κ0 : W −→ T∗A︸︷︷︸
A×R2

, κ0(r, s, R, S) =
(
R, s, R (S − s), 1

2 (r2 −R2)
)
.

This map restricts to a diffeomorphism onto its image

κ0 : W ∩ int(A×A) −→ int(T∗A),
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and satisfies κ0(∆A) = 0A and

κ∗0λstd = R (S − s) dR+ 1
2 (r2 −R2) ds

= − 1
2 R

2 dS + 1
2 r

2 ds+ d
(

1
2 (S − s)R2

)
= −ν1 + ν2 + d

(
(aC − 1

2R
2)(s− S)

)
= −ν1 + ν2 + df0,

where
f0 : W −→ R, f0(r, s, R, S) = (aC − 1

2R
2)(s− S).

Notice that f0|∆A
≡ 0 and

f0(0, s, 0, S) = aC(s− S) = −
∫

[z1,z2]

ν0,

df0(0, s, 0, S) = aC ds− aC dS = ν1 − ν2,

where z1 = (0, s) and z2 = (0, S).
For some sufficiently small neighborhood U ⊂ Σ×Σ of the diagonal ∆Σ, we choose

an arbitrary smooth function f1 : U → R that coincides with f0 on a neighborhood
of U ∩ (∂Σ × ∂Σ) and satisfies f1|∆Σ

≡ 0 and df1 = ν1 − ν2 at all points of the
diagonal ∆Σ. Up to further shrinking the neighborhood U , we also choose a smooth
map κ1 : U → T∗Σ that coincides with κ0 on a neighborhood of W ∩ (∂Σ × ∂Σ),
restricts to a diffeomorphism onto its image κ1 : U ∩ int(Σ × Σ) → T∗(int(Σ)), and
such that κ1(∆Σ) = 0Σ.

We now conclude the proof by means of a typical application of Moser’s trick.
We set

µt := tκ∗1(λstd) + (1− t)(ν2 − ν1),

and we look for an isotopy φt : U → Σ × Σ, defined after possibly further shrinking
the neighborhood U , such that φ0 = id and φ∗tµt − µ0 is exact. We denote by Xt the
time-dependent vector field generating φt and compute

d
dtφ
∗
tµt = φ∗t (LXt

µt + d
dtµt) = φ∗t

(
Xt y dµt + d(µt(Xt)) + µ1 − µ0

)
= φ∗t

(
Xt y dµt + κ∗1λstd − ν2 + ν1 − df1 + d(µt(Xt) + f1)

)
.

Notice that the symplectic forms κ∗1dλstd and −dν1 +dν2 define the same orientation,
since they coincide on a neighborhood of U ∩ (∂Σ× ∂Σ). Therefore dµt is symplectic
away from ∂(Σ× Σ) for every t ∈ [0, 1]. We choose the vector field Xt so that

Xt y dµt + κ∗1λstd − ν2 + ν1 − df1 = 0.

Notice that Xt vanishes on the diagonal ∆Σ and on a neighborhood of U ∩ (∂Σ×∂Σ).
Moreover

d
dtφ
∗
tµt = φ∗t d(µt(Xt) + f1).

Up to shrinking the neighborhood U , we obtain a well defined isotopy φt : U → T∗Σ

that coincides with κ0 on a neighborhood of U ∩ (∂Σ× ∂Σ) and satisfies

φ∗1κ
∗
1(λstd) = −ν1 + ν2 + df,
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where

f(w) =

∫ 1

0

(
µt(Xt) + f1

)
◦ φt(w) dt.

The desired map is ψ := κ1 ◦ φ1. �

Proof of Theorem 2.8. — We still work with the special primitive ν0 of ω satisfying
(2.14). By assumption, the diffeomorphism φ : Σ→ Σ satisfies

φ∗ν0 − ν0 = da

for some smooth function a on Σ. Note that a is C1-small when φ is C1-close to the
identity. We consider the associated map

Φ : Σ −→ Σ× Σ, Φ(z) = (z, φ(z)).

We require φ to be sufficiently C1-close to the identity so that the image of Φ is
contained in the domain of the map ψ : U → T∗Σ provided by Lemma 2.10, and the
image of ψ ◦ Φ is a section of the cotangent bundle T∗Σ. Namely, if we denote by
π : T∗Σ→ Σ the projection onto the base of the cotangent bundle, the map

φ̃ : Σ −→ Σ, φ̃(z) = π ◦ ψ ◦ Φ(z)

is a diffeomorphism. We consider the smooth function f : Σ × Σ → R provided by
Lemma 2.10. Since

(ψ ◦ Φ)∗λstd = Φ∗(ν2 − ν1 + df) = φ∗ν − ν + d(f ◦ Φ) = d(a+ f ◦ Φ),

we have that

(2.16) ψ ◦ Φ(z) = (φ̃(z), dF (φ̃(z))),

where F : Σ→ R is the smooth generating function

F (w) = (a+ f ◦ Φ) ◦ φ̃−1(w).

Identity (2.16) implies that F is C2-small when φ is C1-close to the identity.
Consider now the collar neighborhood A = AC ≡ [0, ρ) × S1 of a connected com-

ponent C of ∂Σ as in (2.14). For all (r, s) ∈ A ∩ φ−1(A), if we set (R,S) = φ(r, s),
we have φ̃(r, s) = (R, s) and

(2.17) R (S − s) = ∂RF (R, s), 1
2 (r2 −R2) = ∂sF (R, s).

This implies that dF = 0 at all points of ∂Σ. In particular, F is constant on each
component C of ∂Σ and in a neighborhood of this component we can write F as

(2.18) F (R, s) = b+R2G(R, s),

where b = bC is a real number and G = GC is a smooth function. More precisely,

b = lim
R→0

∂RF (R, s)

R
= S(0, s)− s

and the Taylor theorem with integral remainder gives us the formula

F (R, s) = b+R2

∫ 1

0

∂2
RF (tR, s)(1− t) dt.
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By differentiating the first identity in (2.17) with respect to R, we find

G(R, s) =

∫ 1

0

∂2
RF (tR, s)(1− t) dt =

∫ 1

0

(
−s+ S(tR, s) + tR ∂RS(tR, s)

)
(1− t) dt.

The above formulas for b and G imply that |b| and ‖G‖C0 are both small if φ is
C1-close to the identity.

We now consider the isotopy

φt : int(Σ) −→ int(Σ), t ∈ [0, 1],

with the associated map Φt : int(Σ) → int(Σ × Σ), Φt(z) = (z, φt(z)), whose image
ψ◦Φt(int(Σ)) is the graph of t dF . Notice that φt defines an associated diffeomorphism

φ̃t := π ◦ ψ ◦ Φt : int(Σ) −→ int(Σ),

and

(2.19) ψ ◦ Φt(z) = (φ̃t(z), t dF (φ̃t(z))).

The endpoints of the isotopy are φ0 = id and φ1 = φ. We claim that φt extends as
a smooth isotopy φt : Σ → Σ that is C1-close to the identity. In order to prove this,
let us focus on the collar neighborhood AC ≡ [0, ρ)×S1 of a connected component C
of ∂Σ. If we write (Rt, St) := φt(r, s), then Equation (2.19) in the annulus int(AC)

becomes

Rt (St − s) = t ∂RF (Rt, s),
1
2 (r2 −R2

t ) = t ∂sF (Rt, s),

that is, using (2.18),

St = s+
(
2G(Rt, s) +Rt ∂RG(Rt, s)

)
t︸ ︷︷ ︸

(∗)

, r = Rt
√

1 + 2t ∂sG(Rt, s)︸ ︷︷ ︸
(∗∗)

.

The term (∗) is C1-small and the term (∗∗) is C1-close to 1 as functions of (Rt, s).
This shows that the isotopy (Rt, s) 7→ (r, St) is C1-close to the identity and extends
smoothly to the boundary C by (0, s) 7→ (0, s + 2tG(0, s)). Therefore, we obtain a
C1-close to the identity smooth extension φt : Σ→ Σ as well.

Let Xt be the time dependent vector field generating the isotopy φt. We claim
that Xt is Hamiltonian with Hamiltonian function

(2.20) Ht : Σ −→ R, Ht(z) := F ◦ π ◦ ψ(φ−1
t (z), z).

Indeed, consider an arbitrary v ∈ TzΣ and set

w := dφ̃t(z)v, qt := φ̃t(z), yt := d
dt φ̃t(z).
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In Darboux coordinates, we locally see T∗Σ as Σ× R2, and compute

dν
(
Xt(φt(z)), dφt(z)v

)
= ψ∗dλstd

(
(0, Xt(φt(z))), (v, dφt(z)v)

)
= dλstd

(
(yt, dF (qt) + t d2F (qt)yt), (w, t d

2F (qt)w)
)

= dF (qt)w + t d2F (qt)[yt, w]− t d2F (qt)[w, yt]

= dF (qt)w = d(F ◦ φ̃t)(z)v
= d(F ◦ φ̃t ◦ φ−1

t )(φt(z))dφt(z)v

= dHt(φt(z))dφt(z)v,

proving our claim.
Note that for every t ∈ [0, 1], the maximum and minimum of Ht on Σ coincide

with those of F . Note also that by (2.18) we have

(2.21) Ht(z) = F (z) = bC ∀z ∈ C,

for every connected component C of ∂Σ. Moreover, the previous considerations on F ,
bC and GC imply that if φ is C1-close to the identity, then Ht is C1-small and on AC
has the form

Ht(r, s) = bC + r2hC(t, r, s),

where both |bC | and ‖hC‖C0 are small. Indeed, the above identity and the C0-
smallness of hC follow from (2.15) and (2.20), which give us the identity

Ht(r, s) = F (r, St(r, s)) = bC + r2GC(r, St(r, s)),

where φ−1
t (r, s)) = (Rt(r, s), St(r, s)). Together with the already mentioned C1-close-

ness of φt to the identity, this proves statements (i) and (ii) in Theorem 2.8.
Let us check that for every t ∈ [0, 1] the function Ht achieves its minimum at

some point zmin ∈ Σ which is independent of t. If F achieves its minimum on ∂Σ, this
follows from the identity minHt = minF and (2.21). So let us assume that F achieves
its minimum at an interior point qmin. Then dF (qmin) = 0 and, since the inverse image
of the zero-section in T ∗int(Σ) is the diagonal in int(Σ)× int(Σ), we have

ψ(zmin, zmin) = (qmin, 0)

for some zmin ∈ int(Σ). Since ψ maps the graph of φt to the graph of t dF , we have

φt(zmin) = zmin ∀t ∈ [0, 1],

and hence

Ht(zmin) = F ◦ π ◦ ψ(zmin, zmin) = F ◦ π(qmin, 0) = F (qmin).

This shows that
Ht(zmin) = min

Σ
Ht ∀t ∈ [0, 1].

The argument for the maximum is analogous, and we conclude that Ht is quasi-
autonomous. �
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3. Global surfaces of section for nearly Besse contact forms
on 3-manifolds

3.1. Global surfaces of section. — In this paper, a global surface of section for a
contact form λ on a 3-manifold Y is a smooth map ι : Σ→ Y , where Σ is an oriented
connected compact surface with non-empty and possibly disconnected boundary, with
the following properties:

– (Boundary ) The restriction ι|∂Σ is an immersion positively tangent to the Reeb
vector field Rλ. Namely, with the orientation on the boundary ∂Σ induced by the
one of Σ, the restriction of ι to any connected component of ∂Σ is an orientation
preserving covering map of a closed Reeb orbit of (Y, λ).

– (Transversality ) The restriction ι|int(Σ) is an embedding into Y rι(∂Σ) transverse
to the Reeb vector field Rλ. In particular, the 2-form ι∗dλ is nowhere vanishing on
int(Σ), and we assume that it is a positive area form on the oriented surface int(Σ).

– (Globality ) For each point z ∈ Y , the Reeb orbit t 7→ φtλ(z) intersects Σ in both
positive and negative time.
We stress that, in the literature, the notion of global surface of section may be slightly
different than the one given here: for instance, the map ι : Σ → Y may be required
to be an embedding, or the restriction of ι to some connected component of Σ may
be allowed to be an orientation reversing covering map of a closed Reeb orbit.

3.2. The surgery description of a Besse contact form on a 3-manifold

The proof of Theorem A will require suitable surfaces of section for the Reeb flows
of contact forms sufficiently C3-close to a Besse one. As a preliminary step, in the
next subsection we shall construct global surfaces of sections for the Reeb flow of
Besse contact 3-manifolds. It will be useful to employ the surgery description of Besse
contact 3-manifolds as Seifert fibered spaces, which we now recall. We refer the reader
to, e.g., [Orl72, JN83] for more details.

A Seifert fibration π : Y → B, in the generality that we need for the study of Besse
contact 3-manifolds, is defined up to a suitable notion of isomorphism by a genus and
k > 1 pairs of coprime integers (α1, β1), . . . , (αk, βk) ∈ N×Z. Here, N denotes the set
of positive integers and the coprimeness assumption implies that αj = 1 if βj = 0.
We denote by B0 an oriented compact connected surface of the given genus with k

boundary components. We write its oriented boundary as ∂B0 = ∂1B0 ∪ · · · ∪ ∂kB0,
where each ∂jB0 is a connected component oriented as the boundary of B0. Over B0,
we consider the trivial S1-bundle

π : Y0 := B0 × S1 −→ B0, π(z, t) = z,

with its associated free S1-action

t · (z, s) = (z, s+ t), ∀t ∈ S1, (z, s) ∈ Y0.

Here and elsewhere in the paper, S1 = R/Z. Next, we consider k disjoint copies
Bj ⊂ C, j = 1, . . . , k of the disk of some radius ρ > 0 centered at the origin, and the
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solid tori together with their base projections

π : Yj := Bi × S1 −→ Bj , π(z, t) = z.

By the Bézout identity, we can find pairs of coprime integers (α′j , β
′
j) ∈ Z × Z such

that

(3.1) det

(
αj α

′
j

βj β
′
j

)
= 1, ∀j = 1, . . . , k.

The pair (α′j , β
′
j) is not uniquely determined by (αj , βj) (except if (αj , βj) = (1, 0),

in which we necessarily have (α′j , β
′
j) = (0, 1)). We introduce the oriented curves

mj = ∂Bj × {∗} ⊂ ∂Yj , `j = {∗} × S1 ⊂ ∂Yj ,
hj = {∗} × S1 ⊂ ∂jB0 × S1 ⊂ ∂Y0, fj = −∂jB0 × {∗} ⊂ ∂Y0.

Here, we used the symbol ∗ to denote an arbitrary point of a space. We glue
Y0, Y1, . . . , Yk along their boundaries by identifying

mj ≡ αjfj + βjhj , `j ≡ α′jfj + β′jhj , ∀j = 1, . . . , k

and denote by Y the resulting closed 3-manifold. Here, we mean that mj ⊂ ∂Yj is
identified with an oriented embedded circle in ∂jY0 that is homologous to αj [fj ] +

βj [hj ], and analogously for `j . The free S1-action on Y0 extends to an S1-action on
the whole Y , which on the solid tori Yj has the form

t · (z, s) =
(
ze−2πα′jti, s+ αjt

)
, ∀t ∈ S1, (z, s) ∈ Yj .

If αj > 1, the S1-action is not free on the orbit

γj := {0} × S1 ⊂ Yj ,
and in this case we call such an orbit singular. All those S1-orbits that are not singular
are called regular. The surfaces Bj are glued accordingly to form a closed surface B.
The maps π are glued as well, and the obtained π : Y → B is the quotient projection
of the S1-action on Y . We can always assume without loss of generality that the
number of Seifert pairs (αj , βj) is k > 2; indeed, adding the trivial Seifert pair (1, 0)

does not affect the Seifert fibration.
The locally free S1-action that is induced by a Besse Reeb flow on Y can be seen

as the S1-action on the total space of a Seifert fibration π : Y → B as above. In this
case, the Euler number

e(Y ) := −β1

α1
− · · · − βk

αk
is negative, as shown in [LM04] (see also [KL21, Th. 1.4]).

3.3. A Global surface of section for a Besse contact form on a 3-manifold

The existence of global surfaces of section in Seifert spaces was thoroughly investi-
gated by Albach-Geiges [AG21]. In this subsection, we prove a statement which may
be of independent interest (Theorem 3.1) asserting that on a Besse contact 3-manifold
any given closed Reeb orbit is the (multiply covered) boundary of a surface of section
as defined in Section 3.1
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Let (Y, λ0) be a Besse contact 3-manifold whose Reeb orbits have minimal common
period 1, and γ1 be an arbitrary closed Reeb orbit. The Reeb flow φtλ0

defines a locally
free S1-action on Y . We can see this action as the S1-action of a Seifert fibered
structure which we describe with the same notation of the previous subsection: in
particular, for each j = 1, . . . , k, we denote by γj the closed Reeb orbit corresponding
to the Seifert pair (αj , βj). Notice in particular that we are assuming without loss of
generality that our given γ1 is the closed Reeb orbit corresponding to the Seifert pair
(α1, β1). We recall that γ1 has minimal period 1/α1, and therefore it is a singular
orbit if and only if α1 > 1.

We consider the tubular neighborhood Y1 ⊂ Y of γ1, which was realized as Y1 ≡
B1×S1, and under this identification we have γ1 = {0}×S1 ⊂ Y1. We equip Y1 with
the contact form

λ′0 =
1

α1
r2dθ +

1

α1

(
1 + 2π(α′1/α1)r2

)
ds,

where (r, θ) are polar coordinates on the disk B1, and s ∈ S1 = R/Z. The associated
Reeb vector field is given by

Rλ′0 = −2πα′1∂θ + α1∂s = Rλ0 |Y1 ,

and therefore the associated Reeb flow agrees with the Seifert S1-action

φtλ′0(z, s) = φtλ0
(z, s) = t · (z, s) =

(
ze−2πα′1ti, s+ α1t

)
.

Up to pulling back λ0 by an S1-equivariant diffeomorphism, we can assume that

λ0|Y1
= λ′0 =

1

α1
r2dθ +

1

α1

(
1 + 2π(α′1/α1)r2

)
ds.

This can be obtained by means of a Moser’s trick, see [CGM20, Lem. 4.5]. Notice
that every orbit of the Reeb flow φtλ0

on Y1 has minimal period 1, except possibly
γ1 = {0}×S1 that has minimal period 1/α1 (the case in which γ1 is regular is allowed,
and corresponds to the Seifert invariants (α1, β1) = (1, 0)).

For any pair of coprime integers p0 6= 0 and q0 such that

(3.2) q0

p0
< −α

′
1

α1
,

and for any s0 ∈ S1, we introduce the map

ι : [0, ρ)× S1 −→ B1 × S1, ι(r, s) =
(
re2π(s0+q0s)i, p0s

)
,

which satisfies the following properties:
– (Transversality ) The restriction ι|(0,ρ)×S1 is an embedding transverse to the Reeb

vector field Rλ0 , and the image ι((0, ρ)×S1) intersects −α1q0−p0α
′
1 > 0 times every

Reeb orbit in Y1 other than γ1. Therefore, the 2-form ι∗dλ0 is nowhere vanishing on
the interior (0, ρ)× S1, and we employ it to orient the annulus [0, ρ)× S1.

– (Boundary ) The restriction ι|{0}×S1 is an orientation preserving p0-th fold cov-
ering map of the closed Reeb orbit γ1. Here, the boundary circle {0}× S1 is oriented
by means of the 1-form ι∗λ0.
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We call ι : [0, ρ)× S1 → B2 × S1 a (p0, q0)-local surface of section with boundary on
the orbit γ1.

We now provide the construction of a suitable global surface of section for the Besse
contact 3-manifold (Y, λ) with boundary on the orbit γ1. An alternative construction
in the special case of a regular orbit in S3 was provided by Albach-Geiges [AG21,
Ex. 5.6]. The next result is a more precise version of Theorem B from the introduction.

Theorem 3.1. — Let (Y, λ0) be a Besse contact 3-manifold with minimal common
Reeb period 1, and γ1 be any of its closed Reeb orbits. We denote by α1 > 0 the
integer whose reciprocal 1/α1 is the minimal period of γ1. Then, there exist integers
b > 0, p0 > 0, and q0 with gcd(p0, q0) = 1, a compact connected oriented surface Σ

with b boundary components and a global surface of section ι : Σ → Y for (Y, λ0)

satisfying the following properties:
(i) Any connected component C of the boundary ∂Σ has a collar neighborhood

AC ∼= [0, ρ) × S1 such that the restriction ι|AC
is a (p0, q0)-local surface of section

with boundary on the orbit γ1. In particular, all boundary components are positively
oriented.

(ii) Any regular closed Reeb orbit in Y r γ1 intersects the image ι(int(Σ)) in α

points, where

α := − b p0

e(Y )α1
> 0.

Here, e(Y ) is the Euler number of (Y, λ0).
(iii) The restriction ι|∂Σ is a covering map of γ1 of degree b p0.

Proof. — Let (α1, β1), . . . ., (αk, βk) be the Seifert invariants of (Y, λ0). Here, we as-
sume without loss of generality that γ1 is the Reeb orbit corresponding to the Seifert
pair (α1, β1) (as we already pointed out, γ1 is allowed to be a regular orbit, and in
that case we have (α1, β1) = (1, 0)). For every Seifert pair (αj , βj), we denote by
(α′j , β

′
j) the dual pair satisfying (3.1). We set

α := lcm(α2, . . . , αk) > 0,

β :=
(
β2

α2
+ · · ·+ βk

αk

)
α,

p := β1α+ α1β = −e(Y )α1α > 0,(3.3)
q := −β′1α− α′1β,(3.4)
b := gcd(p, q),

p0 := p/b,

q0 := q/b.

By inverting the linear Equations (3.3) and (3.4), we have

−α = α1q + α′1p,

β = β1q + β′1p.
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Figure 3.1. Construction of a global surface of section.

Notice that (3.2) is satisfied, for
q0

p0
+
α′1
α1

=
q

p
+
α′1
α1

=
α1q + α′1p

α1p
= − α

α1p
< 0.

Moreover,

α = − b p0

e(Y )α1
.

With the notation of Section 3.2, we consider the small disks Bi ⊂ B containing
π ◦γi in their interior. We connect B1 with every other Bi by means of a rectangle Ri
as shown in Figure 3.1(a). We first define the intersection of our desired surface of
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section with the solid torus Y1 = π−1(B1) as b-many (p0, q0)-local surfaces of section
with boundary on γ1; of course, away from their boundary on γ1, such local surfaces
of section are disjoint. We shall extend these b-many components outside Y1 in such
a way to create a (connected) global surface of section.

On the torus π−1(∂1B0) = π−1(∂B1), our defined surface of section winds−α-times
around f1 and β-times around h1. We distribute the windings around h1 into k − 1

groups as in the example of Figure 3.1(b), where the shaded regions are the annuli
π−1(∂1B0 ∩ Ri), i = 2, . . . , k. We set B′0 := B0 r (R2 ∪ · · · ∪ Rk), and extend the
surface of section to π−1(B′0) ∼= B′0 × S1 as α distinct constant sections

B′0 × {t1}, . . . , B′0 × {tα};

On π−1(Ri), we extend the section in π−1(∂1B0 ∩ Ri) by taking the product with
an interval. As a result, in each torus π−1(∂Bi), i = 2, . . . , k, our surface of section
winds α times around fi, and αβi/αi times around hi (Figure 3.1(c)); this means
that the surface of section winds α/αi times around mi, and zero times around `i.
Therefore, we can extend it to π−1(Bi) ∼= Bi × S1 as α/αi many distinct constant
sections

Bi × {ti,1}, . . . , Bi × {ti,α/αi
}.

It remains to show that the resulting surface of section is connected. For each
i = 2, . . . , k, in π−1(∂Bi) as in the left of Figure 3.1(c) outside the shaded region,
the j-th horizontal line is connected with the (j + βiα/αi)-th one modulo α. Hence,
in order the prove the claim, it suffices to remark that

gcd
(
α, β2α/α2, . . . , βkα/αk

)
= 1.

This latter equality follows from the fact that αi and βi are coprime and α =

lcm(α2, . . . , αk). �

Now, we consider the global surface of section ι : Σ → Y given by Theorem 3.1,
and the differential forms

ν0 := ι∗λ0, ω0 := dν0.

Since the Reeb vector field Rλ0
is transverse to ι(int(Σ)), we readily infer that ω0

is symplectic on int(Σ). A simple computation shows that ω0 vanishes at all points
of ∂Σ, and indeed satisfies Assumption 2.4 from Section 2.2. This is a consequence
of the fact that our surface of section restricts to a (p0, q0)-local surface of section
near any connected component C of ∂Σ (Theorem 3.1(i)). Indeed, consider a collar
neighborhood AC ⊂ Σ of C, and the solid cylinder neighborhood Y1 ⊂ Y of γ1. Under
suitable identifications

AC ≡ [0, ρ)× S1, Y1 ≡ B1 × S1,

the restriction ι|AC
: AC → Y has the form

ι|AC
(r, s) =

(
re2πq0si, p0s

)
,
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and ω0|AC
can be written as

(3.5) ω0|AC
=

4π

α1

(
q0 + (α′1/α1)p0

)
︸ ︷︷ ︸

(∗)

r dr ∧ ds.

The constant (∗) is strictly negative, and up to rescaling in the r variable, it can be
replaced by −1, as in Assumption 2.4.

The global surface of section ι : Σ→ Y induces a surjective map

ι̃ : Σ× S1 −→ Y, ι̃(z, t) = φtλ0
(ι(z)),

which restricts to an α-th fold branched covering map

(3.6) ι̃|int(Σ)×S1 : int(Σ)× S1 −→ Y r γ1.

Here,

α = − b p0

e(Y )α1
> 0

is the number of intersections of any regular Reeb orbit in Y r γ1 with ι(int(Σ)),
according to Theorem 3.1(ii). The branch set has the form Σsing × S1, where Σsing is
the finite set of points in int(Σ) which are mapped by ι to points on singular orbits.
The map ι̃ is a local diffeomorphism also at the branch points.

We denote by pr1 : Σ× S1 → Σ the projection onto the first factor. The one-form

(3.7) λ̃0 := ι̃∗λ0 = dt+ pr∗1ν0

is a contact form on the interior int(Σ)× S1, with associated Reeb vector field

Rλ̃0
= ∂t.

Notice in particular that Rλ̃0
is well-defined and smooth up to the boundary ∂Σ×S1

as well.
The global surface of section allows to compute the volume of our Besse contact

manifold. This was pointed out by Geiges [Gei22], and we provide the details here for
the reader’s convenience.

Lemma 3.2. — If (Y, λ0) is a Besse contact 3-manifold whose closed Reeb orbits have
minimal common period 1, its volume is equal to the negative of its Euler number.
More precisely, if ι : Σ→ Y is a global surface of section as above, we have:

vol(Y, λ0) =
1

α
area(Σ, ω0) = −e(Y ).

Proof. — The contact volume form λ0 ∧ dλ0 is pulled back to

ι̃∗(λ0 ∧ λ0) = λ̃0 ∧ dλ̃0 = dt ∧ pr∗1dν0.

We recall that ι̃ restricts to an α-th fold branched covering map (3.6). Therefore

α vol(Y, λ0) = α

∫
Y

λ0 ∧ dλ0 =

∫
Σ×S1̃

ι∗(λ0 ∧ dλ0) =

∫
Σ×S1

dt ∧ pr∗1ω0 =

∫
Σ

ω0,
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and the latter term is precisely area(Σ, ω0). Moreover, since ι|∂Σ is an orientation pre-
serving b p0-th fold covering map of the 1/α1-periodic Reeb orbit γ1, Stokes’ theorem
implies ∫

Σ

ω0 =

∫
∂Σ

ν0 = b p0

∫
γ1

λ0 =
b p0

α1
= −α e(Y ). �

3.4. From Besse to nearly Besse contact forms. — Once the existence of a global
surface of section for Besse contact 3-manifolds established, the construction of global
surfaces of section for nearly-Besse contact 3-manifolds will be a generalization of the
one of nearly-Zoll contact 3-manifolds provided in [ABHSa18, BK21]. We work out
the details in this section.

We consider the global surface of section ι : Σ→ Y of the Besse contact manifold
(Y, λ0) with boundary on γ1, and its related objects from the previous subsection.
Let λ be a contact form on Y such that

(3.8) Rλ|γ1 = Rλ0 |γ1 .

We set
λ̃ := ι̃∗λ, ν := ι∗λ, ω := dν = ι∗dλ.

We recall that the analogous differential forms for the Besse contact form λ0 are
denoted by λ̃0, ν0, and ω0. Since ι̃ is a local diffeomorphism on int(Σ) × S1, λ̃ is a
contact form on this open manifold.

The next lemma is analogous to [ABHSa18, Prop. 3.6] and [BK21, Prop. 3.10].

Lemma 3.3
(i) The pull-back of ν via the inclusion ∂Σ ↪→ Σ satisfies

ν|∂Σ = ν0|∂Σ.

(ii) The 2-form ω vanishes at all points of ∂Σ, i.e.,

ωz = 0, ∀z ∈ ∂Σ.

(iii) The Reeb vector field Rλ̃, a priori only defined on the interior of Σ × S1,
admits a smooth extension to Σ× S1 that is tangent to the boundary ∂Σ× S1.

(iv) For all ε > 0 there exists δ > 0 such that, if the above contact form λ further
satisfies ‖Rλ − Rλ0

‖C2 < δ, then ‖Rλ̃ − ∂t‖C1 < ε. Here, the norms are associated
with arbitrary fixed Riemannian metrics.

Proof. — Let us consider a collar neighborhood AC × S1 of a connected component
C × S1 of ∂Σ × S1, and the solid cylinder neighborhood Y1 ⊂ Y of γ1. With the
identifications AC ≡ [0, ρ)× S1, Y1 ≡ B1 × S1, and γ1 ≡ {0} × S1, as in the previous
subsection, the restriction of the map ι̃ can be written as

ι̃|AC×S1 : AC × S1 −→ Y1 ≡ B1 × S1, ι̃(r, s, t) =
(
re2π(q0s−α′1t)i, p0s+ α1t

)
,

and λ̃0|AC×S1 can be written as

(3.9) λ̃0|AC×S1 := dt+
( p0

α1
+

2π

α1

(
q0 + (α′1/α1)p0

)
r2
)
ds.
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The computations

ι̃∗∂t|C×S1 = Rλ0 = Rλ, ι̃∗∂s|C×S1 = p0∂s =
p0

α1
Rλ0 =

p0

α1
Rλ,

imply

λ̃(∂t)|C×S1 = λ̃0(∂t)|C×S1 ≡ 1, λ̃(∂s)|C×S1 = λ̃0(∂s)|C×S1 ≡ p0

α1
,

and

(∂t y dλ̃)z = ι̃∗(Rλ0
y dλ)z = ι̃∗(Rλ y dλ)z ≡ 0,

(∂s y dλ̃)z =
p0

α1
ι̃∗(Rλ0 y dλ)z =

p0

α1
ι̃∗(Rλ y dλ)z ≡ 0,

∀z ∈ C × S1.

These identities, together with ν0 = λ̃0|Σ×{0} and ν = λ̃|Σ×{0}, readily imply points (i)
and (ii)

As for point (iii), let us write Rλ|Y1
in coordinates (x+ iy, s) = (reiθ, s) as

Rλ|Y1 = F1∂x + F2∂y + ∂s

= (F1 cos(θ) + F2 sin(θ)) ∂r +
1

r
(F2 cos(θ)− F1 sin(θ))∂θ + F3 ∂s,

for some smooth functions Fj : Y1 → R. Since Rλ and Rλ0 coincide along the closed
Reeb orbit γ1, we have

F1(0) = F2(0) = 0, F3(0) = α1.

Since

ι̃∗∂r = ∂r, ι̃∗∂s = 2πq0 ∂θ + p0 ∂s, ι∗∂t = −2πα′1 ∂θ + α1 ∂s,

the Reeb vector fields Rλ̃ on the interior int(AC)× S1 is given by

Rλ̃ = f1 ∂r + f2 ∂s + f3 ∂t,

where, if we set

θ(s, t) := q0s− α′1t, Gj(r, s, t) :=
Fj ◦ ι(r, s, t)

r
, j = 1, 2,

the functions fj : int(AC)× S1 → R are given by

f1 = cos(θ)F1 ◦ ι̃+ sin(θ)F2 ◦ ι̃,(3.10)

f2 =
(
2π
(
q0 + (α′1/α1)p0

))−1(− sin(θ)G1 + cos(θ)G2 + 2π(α′1/α1)F3 ◦ ι̃
)
,(3.11)

f3 =
1

α1

(
F3 ◦ ι̃− p0 f2

)
.(3.12)

Since F1 ◦ ι̃|C×S1 = F2 ◦ ι̃|C×S1 ≡ 0, the functions G1 and G2 extend smoothly to
the whole AC × S1, and so do the functions f1, f2, f3. Moreover, f1|C×S1 ≡ 0. This
proves that Rλ̃ extends smoothly to a vector field on Σ × S1 that is tangent to the
boundary ∂Σ× S1.
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Finally, assume that Rλ is C2-close to Rλ0
. Away from any fixed neighborhood

of ∂Σ × S1, Rλ̃ is C2-close to Rλ̃0
= ∂t. On Y1, since Rλ = −2πα′1∂θ + α1∂s, the

functions
F1 − 2πα′1r sin(θ), F2 + 2πα′1r cos(θ), F3 − α1

are C2-small and vanish at ∂Σ× S1. Therefore, the function

− sin(θ)G1 + cos(θ)G2 + 2π(α′1/α1)F3 ◦ ι̃
is C1-small. Equation (3.10) implies that f1 is C2-small, and Equations (3.11) and
(3.12) imply that f2 and f3−1 are C1-small. Overall, we conclude that Rλ̃ is C1-close
to Rλ̃0

= ∂t. �

Besides (3.8), we now assume:

Assumption 3.4. — The vector field Rλ̃ on Σ×S1 is transverse to Σ×{s} and oriented
as ∂s, for every s ∈ S1. �

Thanks to Lemma 3.3(iv), Assumption 3.4 is implied by the C2-closeness of Rλ
to Rλ0

. By Assumption 3.4, the first-return time

(3.13) τ : Σ −→ (0,∞), τ(z) := min
{
t > 0 | φt

λ̃
(z, 0) ∈ Σ× {0}

}
,

is a well-defined smooth map, and the first-return map

(3.14) φ : Σ −→ Σ, (φ(z), 0) = φ
τ(z)

λ̃
(z, 0),

is a diffeomorphism. The diffeomorphism φ is isotopic to the identity through the
isotopy {φs} defined by φ0 := id and, for s ∈ (0, 1],

(3.15) (φs(z), s) = φ
τs(z)

λ̃
(z, 0),

where
τs(z) := min

{
t > 0 | φt

λ̃
(z, 0) ∈ Σ× {s}

}
.

In the particular case λ = λ0, we would get that τ is identically equal to 1 and φs
equals the identity on Σ for every s ∈ [0, 1].

The next lemma relates the volume of (Y, λ) to the integral of the first return time.

Lemma 3.5. — The contact volume of (Y, λ) is given by

vol(Y, λ) =
1

α

∫
Σ

τ ω.

Proof. — The bijective map

j : Σ× [0, 1) −→ Σ× S1, j(z, s) := φ
sτ(z)

λ̃
(z, 0),

satisfies
j∗(λ̃ ∧ dλ̃) = τ ds ∧ pr∗1ω,

where pr1 : Σ × [0, 1) → Σ is the projection onto the first factor. Together with the
fact that the restriction of ι̃ to the interior of Σ×S1 is an α-th fold branched covering
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map of a full measure subset of Y pulling the volume form λ∧ dλ back to λ̃∧ dλ̃, we
obtain

α vol(Y, λ) = α

∫
Y

λ ∧ dλ =

∫
Σ×S1

λ̃ ∧ dλ̃ =

∫
Σ×[0,1)

j∗(λ̃ ∧ dλ̃)

=

∫
Σ×[0,1)

τ ds ∧ pr∗1ω =

∫
Σ

τ ω. �

The next lemma relates the first return map φ to the first return time τ via the
1-form ν.

Lemma 3.6. — The first-return map φ is an exact symplectomorphism of (Σ, ω), and
more precisely

φ∗ν = ν + dτ.

The boundary restriction of the first return time τ is given by

τ(z) = 1 +

∫
{s7→φs(z)}

ν, ∀z ∈ ∂Σ.

Proof. — The first statement follows by the well-known computation

φ∗ν = (φ
τ(z)

λ̃
)∗λ̃|Σ×{0} + φ∗(λ̃(Rλ̃))dτ = ν + dτ.

For each z ∈ ∂Σ, the curve

ζz : [0, 1] −→ ∂Σ× S1, ζz(s) := (φs(z), s) = φ
τs(z)

λ̃
(z, 0),

is a reparametrization of the restriction of the orbit of (z, 0) by the Reeb flow of λ̃ to
the interval [0, τ(z)], which makes one full turn around the second factor of ∂Σ× S1.
Therefore,

τ(z) =

∫
ζz

λ̃ =

∫
ζz

λ̃0 =

∫
ζz

(
ds+ pr∗1ν

)
=

∫
ζz

ds+

∫
pr1◦ζz

ν = 1 +

∫
{s7→φs(z)}

ν,

where the second equality follows by Lemma 3.3(i), and the third one from (3.7). �

In order to prove Theorem A, we will need to apply the fixed point Theorem 2.5,
which concerns symplectomorphisms that are C1-close to the identity on a surface Σ

equipped with a fixed 2-form symplectic in the interior and vanishing in a suitable
way at the boundary. By Lemma 3.6, the diffeomorphism φ : Σ → Σ is symplectic
with respect to the 2-form ω = ι∗dλ, which varies with λ. However, assumption (3.8)
and its consequence ν|∂Σ = ν0|∂Σ from Lemma 3.3(i) imply that

area(Σ, ω) =

∫
∂Σ

ν =

∫
∂Σ

ν0 = area(Σ, ω0).

Therefore, we can conjugate φ by a diffeomorphism κ : Σ → Σ pulling ω back to ω0

and obtain a symplectomorphism with respect to the fixed 2-form ω0 on Σ. The
construction of this diffeomorphism and the proof of its further properties are based
as usual on Moser’s trick but require a bit of care, since we are working on a surface
with boundary. We work out the details in the following lemma, which is a variation
of [BK21, Prop. 3.9].
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Lemma 3.7. — If λ is C2-close enough to λ0, then there exists a diffeomorphism
κ : Σ → Σ such that κ|∂Σ = id and κ∗ω = ω0. Moreover, κ C1-converges to the
identity as λ C2-converges to λ0.

Proof. — Note that the smallness of ‖λ− λ0‖C2 implies the smallness of ‖ν − ν0‖C2

and ‖ω−ω0‖C1 . Assumption 3.4 guarantees that ω is a symplectic form in the interior
of Σ inducing the same orientation as ω0. Therefore, the 2-forms ωt := tω+ (1− t)ω0

are symplectic on int(Σ) for every t ∈ [0, 1]. They are actually uniformly C1-close
to ω0 when ‖λ− λ0‖C2 is small.

We look for an isotopy κt : Σ→ Σ such that κt|∂Σ ≡ id and κ∗tωt = ω0. We build
the time-dependent vector field Xt realizing such isotopy, i.e., d

dtκt = Xt ◦ κt. By
differentiating κ∗tωt with respect to t, we obtain

(3.16) 0 = d
dtκ
∗
tωt = κ∗t

(
d(X yωt) + ω − ω0

)
= κ∗t d

(
X yωt + ν − ν0

)
.

We define Xt on int(Σ) by the equation

(3.17) Xt yωt = ν0 − ν + dft

for a suitable C2-small smooth function f : Σ×[0, 1]→ R to be determined. A suitable
choice of f will guarantee that Xt has a smooth extension to the whole Σ with
Xt|∂Σ ≡ 0.

For every connected component C of ∂Σ, we fix a collar neighborhood AC ⊂ Σ so
that, with the usual suitable identification [0, ρ) × S1, the differential forms ω0 can
be written as in (3.5). Actually, up to rescaling the interval [0, ρ), we can even write
ω0|AC

as
ω0|AC

= −r dr ∧ ds,
where r ∈ [0, ρ) and s ∈ S1. Lemma 3.3(i-ii) implies ν|C = ν0|C and ωz = (ω0)z for
all z ∈ C. Therefore we can write

(ν0 − ν)|AC
= h1 dr + r h2 ds, ω|AC

= −r h3 dr ∧ ds,

for some smooth functions hi : AC → R. If ν0 and ν are C2-close, the function h1 is
C2-small, while h2 is C1-small. Moreover, since ω0 and ω are C1-close, the function
1 − h3(0, ·) is C0-small. In particular, up to choosing the annulus AC small enough,
h3 is strictly positive on the whole AC . Since d(ν0 − ν) = ω0 − ω, we have

(3.18) ∂r(r h2)− ∂sh1 = r(h3 − 1).

The two-form ωt|AC
is given by

ωt|AC
= −r (t(h3 − 1) + 1) dr ∧ ds,

and if we write the vector field Xt|AC
in (r, s) coordinates as Xt = Rt ∂r + St ∂s,

Equation (3.17) becomes

Rt = − r h2 + ∂sf

r (t(h3 − 1) + 1)
, St =

h1 + ∂rf

r (t(h3 − 1) + 1)
.
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We now choose f : Σ → R to be a smooth function such that f |∂Σ ≡ 0 and, on any
collar neighborhood AC = [0, ρ)× S1 as above, satisfies

f(r, s) =


−
∫ r

0

h1(x, s) dx, if r 6 1
3ρ,

0, if r > 2
3ρ.

We shall choose such an f so that ‖f‖C2 6 const ‖h1‖C2 , and in particular f is
C2-small since ν and ν0 are C2-close. With this choice of f , we have St(r, s) = 0 if
r 6 1

3ρ. As for the function Rt, for all r 6 1
3ρ Equation (3.18) implies

Rt(r, s) = −r h2(r, s) + ∂sf(r, s)

r (t(h3 − 1) + 1)
= −r h2(r, s)−

∫ r
0
∂sh1(x, s) dx

r (t(h3 − 1) + 1)

= −r h2(r, s) +
∫ r

0

(
x(h3(x, s)− 1)− ∂x(xh2(x, s))

)
dx

r (t(h3 − 1) + 1)

= −
1
r

∫ r
0
x(h3(x, s)− 1) dx

t(h3 − 1) + 1
.

We already know that the function t(h3 − 1) + 1 appearing in the denominator of
the above equation is nowhere vanishing. As for the numerator, we can rewrite the
integral as ∫ r

0

x(h3(x, s)− 1) dx = r2 h4(r, s)

for some C0-small smooth function h4 : AC → R such that h4(0, s) = h3(0, s) − 1.
Therefore

Rt(r, s) = − r h4(r, s)

t (h3 − 1) + 1
.

From this expression we readily infer that Rt is C1-small, extends smoothly to the
whole Σ, and Rt|∂Σ ≡ 0. Summing up, we obtained a C1-small smooth vector field Xt

on Σ satisfying (3.17) and X|∂Σ ≡ 0. Its flow κt is C1-small for all t ∈ [0, 1], and
satisfies κt|∂Σ = id and, by (3.16), κ∗tωt = ω0. �

The following proposition sums up the arguments of this section and will play a
crucial role in the proof of Theorem A(ii).

Proposition 3.8. — Let λ0 be a Besse contact form on the closed manifold Y whose
closed Reeb orbits have minimal common period 1, and let γ1 be any orbit of Rλ0 .
Then there exists a closed surface with boundary Σ endowed with an exact 2-form ω0

which is symplectic on the interior of Σ and satisfies Assumption 2.4 such that the
following holds. For every ε > 0 small enough and for every C1-neighborhood U of
the identity in H̃am0(Σ, ω0) there exist δ > 0 and, for each contact form λ on Y such
that

Rλ|γ1
= Rλ0

|γ1
, ‖λ− λ0‖C2 < δ, ‖Rλ −Rλ0

‖C2 < δ,

a global surface of section
j : Σ −→ Y
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for Rλ mapping each component of ∂Σ onto some positive iterate of γ1 and an element

ψ̃ ∈ U

with the following properties:
(i) The normalized Calabi invariant of ψ̃ is related to the volumes of (Y, λ) and

(Y, λ0) by

Ĉal(ψ̃) =
vol(Y, λ)

vol(Y, λ0)
− 1.

(ii) A point z ∈ int(Σ) is a contractible fixed point of ψ̃ if and only if

γz(t) := φtλ(j(z))

is a closed Reeb orbit of Rλ in Y r γ1 with (not necessarily minimal) period

1 + aψ̃(z) ∈ (1− ε, 1 + ε).

Here, aψ̃(z) is the normalized action of the contractible fixed point z.
(iii) The element ψ̃ is the identity in H̃am0(Σ, ω0) if and only if (Y, λ) is Besse

and its Reeb orbits have common period 1.

Proof. — We consider a global surface of section

ι : Σ −→ Y

for the Reeb flow of λ0 as in Theorem 3.1 and the corresponding map

ι̃ : Σ× S1 −→ Y, ι̃(z, t) := φtλ0
(ι(z)).

The 2-form
ω0 := ι∗dλ0,

is symplectic in the interior of Σ, satisfies Assumption 2.4 (see the discussion after
the proof of Theorem 3.1) and, thanks to Lemma 3.2, has total area

(3.19) area(Σ, ω0) = α vol(Y, λ0),

where α is the positive integer appearing in Theorem 3.1. Given another contact
form λ on Y , we set as before

λ̃ := ι̃∗λ, ν := ι∗λ, ω := dν = ι∗dλ.

Here, we are assuming that Rλ|γ1
= Rλ0

|γ1
, which is exactly condition (3.8), and

that ‖Rλ − Rλ0‖C2 is small enough, so that also Assumption 3.4 holds thanks to
Lemma 3.3(iv). In particular, ι is also a global surface of section for the Reeb flow
of λ. Moreover, by Lemma 3.3 the 1-form λ̃ defines a flow on Σ× S1 having Σ× {0}
as global surface of section and we denote by τ and φ the corresponding first return
time and first return map, see (3.13) and (3.14). By Lemma 3.3(iv), the map φ is
C1-close to the identity when ‖Rλ −Rλ0

‖C2 is small.
By further assuming that ‖λ−λ0‖C2 is small enough, we can use Lemma 3.7 to find

a diffeomorphism κ : Σ → Σ that is C1-close to the identity and satisfies κ∗ω = ω0.
Up to conjugating φ by κ and replacing ι by j := ι ◦ κ, which is still a global surface
of section for the Reeb flow of λ, we may assume that ω equals ω0.
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In this case, ν is a primitive of ω0 and the equality

(3.20) φ∗ν − ν = dτ

proved in Lemma 3.6 shows that φ is an exact symplectomorphism on (Σ, ω0). Being
C1-close to the identity, φ is the image under the universal cover

π : H̃am(Σ, ω0) −→ Ham(Σ, ω0)

of a unique ψ̃ = [{ψt}] which is also C1-close to the identity (see Theorem 2.8).
Moreover, the C1-closeness to the identity implies that the Hamiltonian isotopy {ψt}
is homotopic with fixed ends to the (non necessarily symplectic) isotopy {φt} which
is defined in (3.15), and hence Lemma 3.6 gives us the identity

(3.21) τ(z) = 1 +

∫
{t 7→ψt(z)}

ν, ∀z ∈ ∂Σ.

Identities (3.20) and (3.21) imply that ψ̃ has vanishing flux (see Remark 2.2), so we
may assume that it belongs to the C1-neighborhood U of the identity in H̃am0(Σ, ω0),
and give us the following relationship between the function τ and the normalized
action of ψ̃ with respect to the primitive ν of ω0:

(3.22) τ = 1 + aψ̃,ν .

Therefore, (3.19) and Lemma 3.5 imply the identity

Ĉal(ψ̃) =
1

area(Σ, ω0)

∫
Σ

(τ − 1)ω0 =
vol(Y, λ)

vol(Y, λ0)
− 1,

which proves (i). Moreover, if z ∈ int(Σ) is a contractible fixed point of ψ̃, then the
Reeb orbit

γz(t) := φtλ(j(z))

is different from γ1 and closes up at time τ(z) = 1 + aψ̃,ν(z). This number belongs to
the interval (1−ε, 1+ε) when ‖Rλ−Rλ0‖C2 is small enough, again by Lemma 3.3(iv).
Conversely, if ε is small enough then any closed orbit of Rλ other than γ1 and with
(non necessarily minimal) period in the interval (1−ε, 1+ε) corresponds to an interior
fixed point of φ = π(ψ̃). All fixed points of φ are contractible as fixed points of the
lift ψ̃, as this is C1-close to the identity. This proves (ii).

If ψ̃ is the identity, then every orbit of the Reeb flow of λ is closed and, since
the action aψ̃,ν vanishes identically, has (non necessarily minimal) period 1 by (3.22).
Therefore, (Y, λ) is Besse with orbits having common period 1. Conversely, if (Y, λ)

has this property then the fact that τ is close to 1 and the closeness of ψ̃ to the
identity imply that ψ̃ is the identity. This proves (iii). �

Remark 3.9. — The above result can be generalized to a more general situation in
which the Reeb flows of λ and λ0 have more closed orbits γ1, . . . , γh in common and
the boundary of Σ is mapped onto their union, but with a caveat: If Rλ|γi = ciRλ0

|γi
then the flux of the Hamiltonian isotopy defining ψ̃ is in general non zero, unless all
numbers ci coincide.
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4. Proof of Theorem A

Proof of Theorem A(i). — Let λ be a contact form on Y such that there exists a point
z ∈ Y whose Reeb orbit is open or has minimal period strictly larger than τk(λ). The
same must be true for all points in a sufficiently small compact neighborhood U ⊂ Y
of z. Let f : Y → (−∞, 0] be a non-positive smooth function supported in U and such
that f(z) < 0. For each ε > 0 small enough, the contact form λε := eεfλ satisfies
fix(φtλε

) = fix(φtλ) for all t ∈ [0, τk(λ)]. In particular, τk(λε) = τk(λ). Since

vol(Y, λε) =

∫
Y

e2εfλ ∧ dλ <
∫
Y

λ ∧ dλ = vol(Y, λ),

we have that ρk(λε) > ρk(λ), and therefore λ is not a local maximizer of ρk. This
proves that each local maximizer of ρk is a Besse contact form λ0 such that k0(λ0) 6 k.

Now, let λ0 be a Besse contact form on Y with k0 := k0(λ0). It remains to show
that λ0 is not a local maximizer of ρk for any k > k0. Without loss of generality,
we can assume that τk0(λ0) = 1, so that the Reeb flow of λ0 defines a locally free
S1 = R/Z-action on Y and

τk(λ0) = τk0
(λ0) = 1 ∀k > k0.

We denote by γ1, . . . , γh the singular orbits of Rλ0
and by α1, . . . , αh the integers

greater than 1 such that γi has minimal period 1/αi (if λ0 is Zoll, we have h = 0).
Then

k0 = α1 + · · ·+ αh − h+ 1.

We denote by B := Y/S1 the quotient orbifold and by π : Y → B the quotient
projection. We choose a small open disk D ⊂ B with smooth boundary such that, for
all b ∈ D, the preimage π−1(b) is a closed Reeb orbit of minimal period 1. We can
identify D with the open disk of radius ρ in C and assume that the restriction of λ0

to π−1(D) has the form

(4.1) λ0 = ds+
r2

2
dθ, ∀(reiθ, s) ∈ D × S1,

where r, θ are polar coordinates on C. We now choose a smooth function h : B → R
such that

(i)
∫
Y
h ◦ π λ0 ∧ dλ0 = 0;

(ii) h equals a positive constant c+ on Y rD;
(iii) on D, h has the form h = χ(r) where χ : [0, ρ]→ R is a smooth function such

that −c− := χ(0) < 0, χ(ρ) = c+ and χ′(r) > 0 for every r ∈ (0, ρ).
For every ε > 0, we consider the 1-form

λε := (1 + ε h ◦ π)λ0,

which is a contact form for ε small enough. By (i), we have

(4.2) vol(Y, λε) =

∫
Y

(1 + ε h ◦ π)2 λ0 ∧ dλ0 = vol(Y, λ0) + c ε2,
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where
c :=

∫
Y

(h ◦ π)2 λ0 ∧ dλ0.

Let ε > 0 be so small that λε is a contact form. Condition (ii) implies that the set
π−1(B r D) is invariant under the Reeb flow of λε, and hence the same is true for
its complement π−1(D). The Reeb orbits of λε on π−1(B rD) are exactly the Reeb
orbits of λ0 reparametrized in such a way that their period gets multiplied by 1+εc+.
In particular, on π−1(B rD) the Reeb flow of λε has exactly

k0 − 1 = α1 + · · ·+ αh − h
closed orbits with period strictly less that 1+εc+: the iterates γmi with 1 6 m 6 αi−1.

On π−1(D), the Reeb flow of λε has an orbit of minimal period 1− εc−, which is
given by the inverse image by π of the center of D, and all other orbits are either
non-periodic or have a very large minimal period when ε is small. The latter assertion
follows from (4.1) and (iii), which imply that the Reeb orbits of λε in π−1(D) are lifts
of Hamiltonian orbits on D defined by the standard symplectic form r dr∧dθ and the
radial Hamiltonian χ. These orbits wind around the circle of radius r ∈ (0, ρ) with
frequency εχ′(r)/2πr > 0, which by the mean value theorem has the upper bound

εχ′(r)

2πr
6

ε

2π
max
r∈[0,ρ]

|χ′′(r)|, ∀r ∈ (0, ρ).

If ε is so small that the above upper bound is smaller than (1 + εc+)−1 and

2(1− εc−) > 1 + εc+,

we conclude that on π−1(D) the Reeb flow of λε has precisely one closed orbit whose
period is strictly less that 1 + εc+.

Summing up, λε has k0 many orbits whose period is strictly less that 1 + εc+.
Together with the fact that this Reeb flow has infinitely many closed orbits of minimal
period 1 + εc+, we deduce that

τk(λε) = 1 + εc+ ∀k > k0,

when ε > 0 is small enough. By (4.2), we conclude that for every k > k0 the k-th
systolic ratio of λε has the lower bound

ρk(λε) =
τk(λε)

2

vol(Y, λε)
=

(1 + εc+)2

vol(Y, λ0) + c ε2
>

1 + 2εc+
vol(Y, λ0) + c ε2

,

which is strictly larger than
1

vol(Y, λ0)
= ρk(λ0)

if ε is small enough. This shows that λ0 is not a local maximizer of ρk in the C∞-topo-
logy if k > k0. �

Proof of Theorem A(ii). — Let (Y, λ0) be a Besse contact 3-manifold. We recall that
the positive integer

k0 := k0(λ0)
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is the minimal k so that the Reeb orbits of (Y, λ0) have minimal common period
τk(λ0). Without loss of generality, up to multiplying λ0 with a positive constant,
we can assume that

τk0
(λ0) = 1.

We first carry out the proof under the assumption that (Y, λ0) is not Zoll, so that
k0 > 1. We denote by γ1, . . . , γh the singular Reeb orbits of (Y, λ0), that is, the closed
Reeb orbits with minimal period strictly less than 1. We denote by αi > 1 the positive
integer whose reciprocal 1/αi is the minimal period of γi, and by γmi the closed Reeb
orbit γi seen as a m/αi-periodic orbit. Therefore,
(4.3) k0 = α1 + · · ·+ αh − h+ 1.

It is well known that all the periodic orbits γmi with 1 6 m 6 αi−1 are non-degenerate,
i.e.,

ker(dφ
m/αi

λ0
(γi(0))− I) = span{Rλ0(γi(0))}, ∀m = 1, . . . , αi − 1.

We refer the reader to [CGM20, §4.1] for a proof of this fact. Standard results about
perturbation of vector fields imply that, for every ε ∈

(
0, 1/2 max{α1, . . . , αh}

)
, there

is a C3-neighborhood V of λ0 such that every λ ∈ V satisfies the following properties.
(i) Rλ has pairwise distinct closed orbits γ̃i, i = 1, . . . , h, such that γ̃i has minimal

period in ( 1
αi
− ε, 1

αi
+ ε) and is C2-close to γi.

(ii) The family of possibly iterated closed orbits of Rλ of period less than or equal
to 1− ε is {

γ̃mi | i ∈ {1, . . . , h}, m ∈ {1, . . . , αi − 1}
}
.

Here, we say that two closed curves γ : R/pZ→ Y and γ̃ : R/p̃Z→ Y are C2-close
if γ and γ̃ are C2-close on [0,max{p, p̃}].

In particular, for any λ ∈ V, the closed Reeb orbit γ1 of (Y, λ0) with minimal
period 1/α1 is C2-close to some closed Reeb orbit γ̃1 of (Y, λ) with minimal period
T ∈ ( 1

α1
− ε, 1

α1
+ ε). Up to multiplying the contact form λ with a constant close to 1,

we can assume that T = 1/α1, that is, γ1 and γ̃1 have the same minimal period 1/α1.
By an argument analogous to [ABHSa18, Prop. 3.10], there exists a diffeomorphism
υ : Y → Y such that υ ◦γ1 = γ̃1 and the quantities ‖υ∗λ−λ0‖C2 and ‖Rυ∗λ−Rλ0

‖C2

are small. Therefore, up to pulling back λ by υ, we can assume that

Rλ|γ1
= Rλ0

|γ1
,

that is, γ1 is a closed orbit of minimal period 1/α1 for both Rλ and Rλ0 . After this
modification, we can assume that λ and Rλ are arbitrarily C2-close to λ0 and Rλ0

respectively, so that the assumptions of Proposition 3.8 are fulfilled.
The contact form λ satisfies

τk0
(λ) 6 τk0

(λ0) = 1;

as a consequence of (4.3), of point (ii) above and of the fact that γα1
1 is an orbit of Rλ

of period 1. If vol(Y, λ) > vol(Y, λ0), we have ρk0(λ) < ρk0(λ0), and we are done.
Therefore, it remains to consider the case in which

(4.4) vol(Y, λ) 6 vol(Y, λ0).
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We now apply Proposition 3.8 (using the objects and terminology introduced
therein), choosing a C1-neighborhood U ⊂ H̃am0(Σ, ω0) of the identity such that
the conclusion of the fixed point Theorem 2.5 with c := 1/2 holds for all elements
of U. We require λ and Rλ to be sufficiently C2-close to λ0 and Rλ0

respectively,
so that the element ψ̃ ∈ H̃am0(Σ, ω0) provided by Proposition 3.8 is contained in U.
By Proposition 3.8(i) and (4.4), the normalized Calabi invariant of ψ̃ has the value

Ĉal(ψ̃) =
vol(Y, λ)

vol(Y, λ0)
− 1 6 0.

By Theorem 2.5, ψ̃ has a contractible fixed point z ∈ int(Σ) whose normalized action
satisfies

(4.5) aψ̃(z) +
1

2
aψ̃(z)2 6

1

2
Ĉal(ψ̃) =

1

2

( vol(Y, λ)

vol(Y, λ0)
− 1
)
.

Moreover, if ψ̃ is not the identity, then the above inequality is strict.
Assume first that ψ̃ is not the identity. By Proposition 3.8(ii), the contact manifold

(Y, λ) has a closed Reeb orbit of period 1+aψ̃(z) ∈ (1−ε, 1+ε). By the strict inequality
in (4.5), we obtain the desired strict upper bound

ρk0
(λ) =

τk0
(λ)2

vol(Y, λ)
6

(1 + aψ̃(z))2

vol(Y, λ)
=

1 + 2aψ̃(z) + aψ̃(z)2

vol(Y, λ)

<
1 + (vol(Y, λ)/vol(Y, λ0))− 1

vol(Y, λ)
=

1

vol(Y, λ0)
=

τk0
(λ0)2

vol(Y, λ0)
= ρk0(λ0).

Assume now that ψ̃ is the identity. By Proposition 3.8(iii), (Y, λ) is Besse and its
Reeb orbits have common period 1. Since the only closed Reeb orbits of (Y, λ) with
minimal period less than 1 are γ̃1, . . . , γ̃h, we infer that 1 is the minimal common
period of the closed Reeb orbits of (Y, λ). Every γ̃i is C2-close to the corresponding γi
and has minimal period close to the minimal period 1/αi of γi. This, together with
the Besse property, implies that γ̃i and γi have the same minimal period (once again,
provided λ is sufficiently C3-close to λ0). We conclude that the C2-close Besse flows
of λ and λ0 have the same common period 1 and there is a period preserving bijection
between their singular orbits. Thanks to the local rigidity of Seifert fibrations, we can
find a diffeomorphism θ : Y → Y such that θ∗Rλ = Rλ0

. Deforming θ by means of a
Moser’s trick, we can actually ensure that θ∗λ = λ0.

Actually, the existence of a diffeomorphism θ : Y → Y with the latter property
follows also from a theorem of Cristofaro-Gardiner and the third author, stating that
the prime action spectrum determines Besse contact forms on closed 3-manifolds.
Here, the prime action spectrum σp(λ) is the set of minimal periods of the Reeb
orbits of λ, and the above discussion implies in particular that σp(λ) = σp(λ0).
According [CGM20, Th. 1.5], the equality σp(λ) = σp(λ0) implies the existence of
a diffeomorphism θ : Y → Y such that θ∗λ = λ0, also without assuming λ to be
close to λ0.
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It remains to consider the case in which (Y, λ0) is Zoll, for which k0 = 1. This case
was already treated by Benedetti-Kang [BK21], generalizing the result of the first
author together with Bramham-Hryniewicz-Salomão [ABHSa18] for the special case
Y = S3, but we add some details here for the reader’s convenience. The argument
provided above in the non-Zoll case goes through in the Zoll case as well, except for
the existence of the closed orbit γ̃1, which now cannot be obtained perturbatively
starting from a non-degenerate orbit of Rλ0 as in (i) above. Since all orbits of Rλ0

have the same minimal period 1, we choose γ1 to be any one of them. This is the orbit
we will apply Proposition 3.8 to. Note that if γ is any other orbit of Rλ0

, then we can
find a diffeomorphism ηγ : Y → Y such that η∗γλ0 = λ0 and ηγ ◦ γ = γ1. Moreover,
the set of these diffeomorphisms can be chosen to be pre-compact in the Ck-topology
for every k ∈ N.

We now consider a perturbation λ of λ0. If λ − λ0 is C3-small, then Rλ admits a
closed orbit γ̃1 of period close to 1 which is C2-close to some orbit γ of Rλ0 . This is
a consequence of the fact that the space of 1-periodic closed Reeb orbits of the Zoll
contact form λ0 is Morse-Bott non-degenerate (see, e.g., [Wei73], [Bot80] or [Gin87]).
Up to replacing λ by η∗γλ, which is still C3-close to λ0 = η∗γλ0, we may assume that
γ̃1 is C2-close to γ1. The rest of the proof continues as in the non Zoll case. �

Remark 4.1. — There is a key point in which the proof of Theorem A(ii) above differs
from the proofs of the local systolic maximality of Zoll contact forms in [ABHSa18]
and [BK21]. The proofs from these two papers use the weaker version (2.9) of the
fixed point Theorem 2.5, and in this case it is crucial that the boundary of the global
surface of section is given by a closed orbit of λ having minimal period. In the Besse
case, the same argument would require us to have the boundary of the global surface
of section on an orbit γ which realizes τk0

(λ), where k0 = k0(λ0). This orbit might
be close to a singular orbit of λ0, and hence be one of the orbits that are considered
in assertion (i) of the above proof, but could also be an orbit of minimal period close
to 1 bifurcating from the set of regular orbits of λ0. In the latter case, finding a global
surface of section with boundary on γ and first return map C1-close to the identity
seems problematic: we could apply a diffeomorphism bringing this orbit to a fixed
regular orbit of Rλ0

, but we cannot hope to have a uniform bound on the Ck norms
of this diffeomorphism, because the set of regular orbits of λ0 is not compact and γ
could be very close to some iterate of a singular orbit of λ0. This issue is overcome
by the more precise fixed point Theorem 2.5 which we proved here, whose use does
not require the boundary periodic orbit to have any minimality property. �
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