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A NECESSARY AND SUFFICIENT CONDITION FOR

PROBABILISTIC CONTINUITY ON A BOUNDARYLESS

COMPACT RIEMANNIAN MANIFOLD

by Rafik Imekraz

Abstract. —We give a necessary and sufficient condition for the uniform convergence of random
series of eigenfunctions on a boundaryless compact Riemannian manifold. As a consequence,
we generalize an estimate of Burq and Lebeau about the supremum of a random eigenfunction.
Finally, we prove that our results are universal with respect to the random variables (this is a
Riemannian analogue of a result of Marcus and Pisier), with respect to compact submanifolds
and with respect to the Riemannian structure of the manifold. Our proofs rely on several
tools like the Dudley-Fernique theorem, the Slepian comparison theorem and the semi-classical
functional calculus for elliptic operators on compact manifolds.

Résumé (Condition nécessaire et suffisante pour la continuité probabiliste sur une variété rie-
mannienne compacte sans bord)

Nous donnons une condition nécessaire et suffisante pour la convergence uniforme de sé-
ries aléatoires de fonctions propres sur une variété riemannienne compacte sans bord. Comme
conséquence, nous généralisons une estimation de Burq et Lebeau concernant les bornes d’une
fonction propre aléatoire. Finalement, nous prouvons que nos résultats sont universels par rap-
port aux variables aléatoires utilisées (il s’agit d’un analogue riemannien d’un résultat de Marcus
et Pisier), par rapport aux sous-variétés compactes et à la structure riemannienne de la variété
compacte. Nos preuves reposent sur plusieurs outils dont le théorème de Dudley-Fernique, le
théorème de comparaison de Slepian et un calcul fonctionnel semi-classique pour les opérateurs
elliptiques d’une variété compacte.
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1. Introduction and statement of the main result

Let M be a boundaryless compact Riemannian manifold of dimension d > 2,
the goal of Theorem 1 is to give a necessary and sufficient condition to ensure the
convergence, in the Banach space C0(M), of suitable random linear combinations of
eigenfunctions on M. The problem studied is posed in the paper of Tzvetkov [Tzv10,
p.XV-6] and, as it will be explained in this introduction, is equivalent to control expec-
tations of supremum of linear combinations of eigenfunctions. Thus we need to gener-
alize an optimal two-sided inequality obtained by Burq and Lebeau in [BL13, BL14],
see (15) and the new inequalities (16) and (18). The results below are Riemannian
analogues of those of the classical theory, for M being a compact group, whose final
treatment is done in the book of Marcus and Pisier [MP81]. And we moreover prove,
via the semi-classical analysis, that all our results are independent of the Riemannian
structure of M (see Theorem 5).

Our result really looks like a sufficient condition obtained by Salem and Zygmund
in [SZ54, p. 291], the main new point is that our Salem-Zygmund condition is neces-
sary and sufficient in the manifold framework (see (19) in Theorem 1) whereas it is
merely sufficient (and not necessary) in the classical theory on the torus (see [SZ54,
p. 292]). As underlined in the paper [BL13], a clue suggesting that better results
should exist in the Riemannian setting is that the dimensions of the eigenspaces of
the Laplace-Beltrami operator on Sd, for d > 2, tend to +∞ in contrast to the classical
setting L2(T) =

⊕
n∈Z Cein•. The present contribution gives another enlightenment

(see below Theorem 1 for definitions): it turns out that the Dudley pseudo-distance
of the Gaussian random wave of each eigenspace of Sd is equivalent to a very simple
distance (see Theorems 8 and 10).

Before going into details on compact manifolds (and giving a precise definition of
our random series), it is worthwhile to recall the main results on the torus T = R/2πZ
(we refer to [MP81] for the general case with compact groups). Although the first
results had been proved for Fourier series with real trigonometric functions, it is
known that there is no difference to deal with complex trigonometric functions (see
[MP81, p. 122]). For any real sequence (cn)n∈N ∈ `2(N), let us consider the function
f ∈ L2(T) defined by

f(x) =
∑
n∈N

cne
inx.

J.É.P. — M., 2022, tome 9



Condition for probabilistic continuity on a compact manifold 749

Now fix a sequence (εn)n∈N of i.i.d. Rademacher random variables, in other words
P(εn = 1) = P(εn = −1) = 1/2. With probability 1 with respect to ω running over a
reference probability space Ω, Paley and Zygmund proved in [PZ30, p. 347] that the
following random series

(1) fω(x) :=
∑
n∈N

εn(ω)cne
inx

almost surely converges in C0(T) provided that the following condition is fulfilled

(2) ∃ γ > 1,

+∞∑
n=2

c2n lnγ(n) < +∞.

The strong motivation of the resurgence of conditions like (2) is that they can be
interpreted as probabilistic Sobolev embeddings (more details are given in the intro-
ductions of [Tzv10, BL13] and [Ime19, p. 2734]). In [SZ54, p. 291], Salem and Zygmund
relaxed the assumption (2) by the following one

(3)
+∞∑
n=2

1

n
√

ln(n)

(+∞∑
k=n

c2k

)1/2

< +∞,

and also remarked that such a condition is not necessary. An important step is made
by Marcus in the papers [Mar73, Mar75] in which we learn that (3) becomes a neces-
sary and sufficient condition if the sequence (|cn|)n∈N in (1) is non-increasing and if
the Rademacher random variables εn are replaced with a sequence (gCn)n∈N of indepen-
dent complex standard Gaussian random variables(1) NC(0, 1) (see [Mar75] for general
complex symmetric random variables satisfying suitable normalization conditions).

For the problem of finding a necessary and sufficient condition, the solution had
finally come from a drastically different point of view. More precisely, for any sequence
(cn) ∈ `2(Z), the general Gaussian Fourier series

(4) fG,ω(x) =
∑
n∈Z

gCn(ω)cne
inx

is now seen as a stationary Gaussian random process on the torus T. Here the word
“stationary” means that the random process (fG(x))x∈T is invariant under the group
action of T: in particular, for any angle α ∈ R, fG,ω(x+α) has the same distribution
as that of fG,ω(x) due to the complex symmetry of the complex Gaussian variables gCn .
It is worthwhile to underline that such a stationary assumption has no sense for a
general compact manifold M. Then the important result, now called the Dudley-
Fernique theorem, allows for proving that the almost sure continuity of the Gaussian
functions x 7→ fG,ω(x) is equivalent to the so-called entropy condition:

(5)
∫ +∞

0

√
lnNδ(T, ε)dε < +∞,

(1)In particular we have E[gCn] = 0 and E[|gCn|2] = 1.

J.É.P. — M., 2022, tome 9



750 R. Imekraz

where
– the function δ : T× T→ R+ is the Dudley pseudo-distance of T defined by

δ(x, y)2 = E
[
|fG,ω(x)− fG,ω(y)|2

]
= 4

∑
n∈Z
|cn|2 sin2

(n(x− y)

2

)
,

– the number Nδ(T, ε) is the covering number of the torus T with respect to δ,
namely the minimal number of open δ-balls of radius ε > 0 whose union covers T.
Moreover, Marcus and Pisier proved that one may replace the sequence of Gauss-
ian random variables in (4) with any sequence of independent real centered random
variables (Xn)n∈Z satisfying

0 < inf
n∈Z

E[|Xn|] and sup
n∈Z

E[|Xn|2] < +∞.

Such a result is usually called a universality phenomenon and allows for coming back
to the Rademacher random variables Xn = εn (see [MP81, p. 7–9] and [Pis78, p. 28,
Cor. 7.3]).

One may think that the entropy condition (5) is a bit abstract but it really cap-
tures the essence of the almost sure continuity. Firstly, the entropy condition al-
lows for showing the sufficiency of the more concrete Paley-Zygmund (2) and Salem-
Zygmund (3) assumptions (see [MP81, Part VII.1]). Secondly, the entropy condition
(which is of qualitative nature) is equivalent to the following quantitative version (see
[MP81, p. 11] or [Pis78, p. 3–4]):

(6)
Eω

[∥∥∥ n∑
k=−n

εk(ω)cke
ikx
∥∥∥
C0
x(T)

]
' Eω

[∥∥∥ n∑
k=−n

gCk (ω)cke
ikx
∥∥∥
C0
x(T)

]

' |c0|+
∫ +∞

0

√
lnNδ(T, ε)dε.

For instance, here are the so-called Salem-Zygmund inequalities (see [LQ18b, p. 259]):

(7) ∀n� 1, Eω

[
1√
n

∥∥∥ 2n∑
k=n+1

εk(ω)eikx
∥∥∥
C0
x(T)

]
'
√

ln(n).

For the sequel, it is worthwhile to note that the Dudley pseudo-distance δn of
1√
n

2n∑
k=n+1

gCk (ω)eikx

satisfies the following estimates(2)

(8) ∀n� 1, δn ' min(1, nδg), where δg is the Riemannian distance of T,

which in turn allows to show the implication (6)⇒ (7).

(2)By setting θ = (x− y)/2, one checks that (8) comes from the exact formulas δn(x, y)2 =

(4/n)
∑2n
k=n+1 sin2 (kθ) = 2− (2 sin(nθ)/n sin(θ)) cos((3n+ 1)θ) by separating the cases 0 6 θ 6 2/n

and 2/n 6 θ 6 π/2.
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Condition for probabilistic continuity on a compact manifold 751

It is time to recall the known literature about the generalization of the previous
results to a boundaryless compact Riemannian manifold M of dimension d > 2.
We denote by ∆ the non-positive Laplace-Beltrami operator of M. The Hilbert space
L2(M) is considered with respect to the Riemannian measure volM of M. We recall
that L2(M) admits a Hilbert basis (φk)k∈N of eigenfunctions of ∆:

(9) ∆φk = −λ2
kφk, 0 = λ0 < λ1 6 λ2 6 . . . −→ +∞.

For simplicity, we shall assume that each φk is real-valued. By fixing a sequence of
coefficients (ck)k∈N, a natural option is to replace the random Fourier series (1) and (4)
with the following random series:

(10)
∑
k∈N

εk(ω)ckφk(x) or
∑
k∈N

gk(ω)ckφk(x), (ω, x) ∈ Ω×M,

where (gk)k∈N is a sequence of i.i.d. real Gaussian random variables NR(0, 1). For the
random series (10), Tzvetkov generalized in [Tzv10] the Paley-Zygmund condition (2),
that is a sufficient condition ensuring the almost sure convergence in C0(M). In con-
trast with the sequence of eigenvalues (λ2

k)k>0, the sequence of eigenfunctions (φk)k>0

may not be unique (actually if ∆ has multidimensional eigenspaces). For instance, on
M = Sd, there are sub-sequences of eigenfunctions having very different behaviors like
concentration around a point or around a geodesic (those are called zonal eigenfunc-
tions or Gaussian beams). Without any further information on the sequence (φk)k∈N,
it seems hopeless to expect to have a simple, necessary and sufficient condition for the
almost sure convergence in C0(M) of (10). By comparison with the classical theory on
a compact group G, the adequate random series are defined by taking account of the
irreducible representations of G (see [FTR67, MP81]). In the Riemannian framework,
it is thus natural to make an additional restriction that counterbalances the possi-
ble concentration of sub-sequences of eigenfunctions. The option chosen by Burq and
Lebeau in [BL13] will be detailed below and relies in gathering eigenfunctions whose
eigenvalues are in a same suitable small interval (for instance for the same eigenvalue
for M = Sd, see (11)). We also refer to [Ime18, p. 272] and also [IRT16, Ime19] for
more details about that multidimensional point of view.

Before writing the slight modification of (10), let us underline that the situation
is drastically different for the Lp case with p < +∞. Indeed, there is a very nice
formula of Maurey that gives a necessary and sufficient condition for the almost
sure convergence of unidimensional series like (1) and (10) in Lp for p < +∞ (see
[Mau74, p. 22, Cor. 1], [LT79, Th. 1.d.6] or [IRT16, Prop. 2.1] for a recent use). For
a multidimensional analogue of the Maurey formula, we refer to [Ime18, Th. 2.1 &
2.21] and [Ime19, Th. 12.1]. Without going into details on the difficulties of the Lp
case for p < +∞, one could say that the analogue problems of finding necessary
and sufficient conditions on Lp are quite well understood for finite p (see the papers
[AT08, Tzv10, Gri10, IRT16, Ime18] and [Ime19, Th. 2.3, 4.5 & 4.6]).

It is time to properly define the random series that naturally replace (10) in the
case of the sphere Sd (the case of manifold is considered just after). We recall that the

J.É.P. — M., 2022, tome 9



752 R. Imekraz

sequence of eigenvalues of the Laplace-Beltrami ∆ on the sphere Sd is given, without
counting multiplicities, by −n(n+ d− 1) with n ∈ N. Moreover, the dimension of the
eigenspace

(11) En = ker(∆ + n(n+ d− 1)) ⊂ L2(Sd)

satisfies the numerical equivalence dim(En) ' nd−1 for n > 1. For any function
f ∈ L2(Sd), we write

f =
∑
n∈N

fn with fn =
∑

λ2
k=n(n+d−1)

〈f, φk〉φk ∈ En.

For any n ∈ N?, we now consider a uniform random vector Un : Ω→ Rdim(En), namely
whose probability distribution is the probability spherical measure on the unit sphere
Sdim(En)−1. We write the coordinates Un = (Un,k)k with k running over the finite set
of integers such that λ2

k = n(n+ d− 1). A natural generalization of (1) and the first
random series in (10) is given by

(12) fω(x) =
∑
n>1

fωn (x), with fωn = ‖fn‖L2(Sd)

∑
λ2
k=n(n+d−1)

Un,k(ω)φk ∈ En,

where the uniform random vectors Un are assumed to be mutually independent. The
random function fωn is thus a random eigenfunction of norm ‖fn‖L2(Sd). That formal-
ism is connected to that used by Burq-Lebeau in [BL13, App.C] (see [Ime18, p. 274]
for more details).

On a general boundaryless compact Riemannian manifold M, the idea is to replace
the eigenspace En ⊂ L2(Sd) with the subspace E(Kn−K,Kn] of L2(M) defined as
follows

(13) E(Kn−K,Kn] := Span{φk, λk ∈ (Kn−K,Kn]},

where the spectral parameterK > 0 is large enough. In particular, it is known that the
analogue of the asymptotic dim(En) ' nd−1 is given by dim(E(Kn−K,Kn]) ' nd−1 (see
[BL13, p. 923] or [Ime19, Lem. 8.1]). In other words, for any f =

∑
n>1 fn ∈ L2(M)

with fn ∈ E(Kn−K,Kn], we set the following random series

(14) fω =
∑
n>1

fωn , with fωn := ‖fn‖L2(M)

∑
λk∈(Kn−K,Kn]

Un,k(ω)φk,

where Un : Ω→ Rdim(E(Kn−K,Kn]) is a uniform random vector as above. At this stage
of this introduction, we must recall an optimal result proved by Burq and Lebeau.
By using the previous notations, [BL13, Th. 5, p. 930] states the following optimal
bound on a uniform random eigenfunction fωn on L2(Sd) with eigenvalue −n(n+d−1):

(15) ∀n� 1, Eω

[
‖fωn ‖C0(Sd)

]
'
√

ln(n) ‖fn‖L2(Sd) .

We also refer to [CH15a, Th. 3] for a geometric control of the upper bound in (15).
The idea we keep in mind is that the inequalities (15) of Burq-Lebeau should really
be seen as a Riemannian analogue of the Salem-Zygmund inequalities (7).

J.É.P. — M., 2022, tome 9



Condition for probabilistic continuity on a compact manifold 753

The Salem-Zygmund
inequalities (7) on T

The Burq-Lebeau inequalities (15)
on Sd (with d > 2)

Classical theory
on a compact group

Problem posed on a compact
Riemannian manifold (of dim > 2)

-

-

Before stating our main result, we recall the striking equivalence of the following two
statements:

(i) for almost every ω ∈ Ω, the random series
∑
fωn converges in C0(Sd),

(ii) the random series
∑
fωn converges in L1(Ω,C0(Sd)).

For unidimensional Rademacher random series
∑
εn(ω)fn, an analogue equivalence

of the previous assertions was proved by Kahane and is indeed completely indepen-
dent of the Banach space C0(Sd) (see the reference book [Kah85] about random series,
[LQ18a, p. 142, Rem. 1] or [MP81, p. 43]). For the multidimensional case we are in-
terested in, such an equivalence is a consequence of a result by Marcus and Pisier
[MP81, p. 92]. We now understand that a general solution of our problem is equiv-
alent to find optimal bounds of the expectations Eω

[
‖
∑N
n=1 f

ω
n ‖C0(Sd)

]
generalizing

the Burq-Lebeau asymptotics (15). Our work will show the following new result on Sd

(with d > 2):

(16) Eω

[∥∥∥ N∑
n=1

fωn

∥∥∥
C0(Sd)

]
'

N∑
p=1

1

p
√

ln(p+ 1)

( N∑
n=p

‖fn‖2L2(Sd)

)1/2

.

The right-hand side clearly looks like (3) but no monotonicity assumption is needed
(in contrast to [Mar75] for the torus T). More generally, Theorem 1 settles the general
case of a compact manifold with a Salem-Zygmund type condition (19) which is nec-
essary and sufficient in contrast to the classical results (for which analogue estimates
of (19) are sufficient but not necessary).

Theorem 1. — There is a constant K0 > 0 depending only on the Riemannian man-
ifold M such that, for any K > K0, if one considers

– a sequence (fn)n>1 satisfying fn ∈ E(Kn−K,Kn] (see (13)) for each n ∈ N?,
– a non-zero dimensional compact submanifold Ms ⊂ M with smooth (eventually

empty) boundary,
– a sequence of independent real random variables(3) (Xn)n>1 satisfying

(17) 0 < inf
n>1

E[|Xn|] and sup
n>1

E[|Xn|2] < +∞,

(3)Note that we can choose Xn = 1 for each n > 1 in order to get (16).

J.É.P. — M., 2022, tome 9
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then
(1) we have the numerical equivalence for any N ∈ N?:

(18) Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣] ' N∑

p=1

1

p
√

ln(p+ 1)

( N∑
n=p

‖fn‖2L2(M)

)1/2

,

where the constants of that equivalence are independent of N and depend on M, Ms,
K, infn>1 E[|Xn|] and supn>1 E[|Xn|2] and where we assume that all the random
variables ω 7→ Xn(ω) and ω 7→ fωn (defined in (14)) are mutually independent.

(2) Moreover, the following two statements are equivalent:
– the random series

∑
Xn(ω)fωn almost surely converges in C0(Ms),

– the following Salem-Zygmund condition is fulfilled:

(19)
+∞∑
p=1

1

p
√

ln(p+ 1)

(+∞∑
n=p

‖fn‖2L2(M)

)1/2

< +∞.

(3) Finally, the same conclusion also holds true for the particular case M = Sd

if each fn belongs to ker(∆ + n(n + d − 1)) provided that we consider (12) instead
of (14) (and thus K is irrelevant in the equivalence (18)).

Here are two comments about the previous result:
– as a consequence of Point 2) of Theorem 1, one sees that the almost sure con-

vergence in C0(M) is equivalent to the almost sure convergence in C0(Ms) for any
submanifold Ms (more comments in that direction are given in Section 3),

– Theorem 1 supersedes [Ime19, Th. 2.1] in which one may find a sufficient condi-
tion in the spirit of the original Paley-Zygmund theorem.

Similarly to the theory developed by Marcus and Pisier, the good idea is first to
consider our problem with a suitable Gaussian analogue of

∑
fωn . A known intuition

suggests that the uniform random vector Un : Ω → Sdim(En)−1, in (12), is closely
related to the Gaussian vector of Rdim(En) with distribution N

(
0, 1/(dim(En)) Id

)
(see [Pis89, p. 58]). We then introduce the following Gaussian analogue of (12) for
any f ∈ L2(Sd)

(20) fG,ω :=
∑
n>1

fG,ωn , with fG,ωn =
‖fn‖L2(Sd)√

dim(En)

∑
λ2
k=n(n+d−1)

gn,k(ω)φk,

that must be seen as a Gaussian process on the manifold Sd (where (gn,k)(n,k) is a
sequence of independent standard Gaussian random variables NR(0, 1) with n ∈ N?

and λ2
k = n(n+d− 1)). On a general boundaryless compact Riemannian manifoldM,

the Gaussian analogue of (14) should be

(21) fG,ω =
∑
n>1

fG,ωn , with fG,ωn :=
‖fn‖L2(M)√

dim(E(Kn−K,Kn])

∑
λk∈(Kn−K,Kn]

gn,k(ω)φk.

The random functions fG,ωn are usually called Gaussian random waves and their study
had been introduced by Zelditch in [Zel09]. Let us explain another reason for replac-
ing fωn with fG,ωn . The rotational invariance of Gaussian vectors implies the following

J.É.P. — M., 2022, tome 9



Condition for probabilistic continuity on a compact manifold 755

distribution equivalence (see [Ime19, p. 2731]):

(22) fG,ωn ∼ 1√
dim(E(Kn−K,Kn])

( ∑
λk∈(Kn−K,Kn]

g2
n,k(ω)

)1/2

fωn ,

where all the random variables involved are assumed to be mutually independent.
As a consequence of (22), one may directly replace fωn with fG,ωn for getting bounds
of Eω[‖fωn ‖C0(M)] (see Appendix A):

Eω

[
‖fG,ωn ‖C0(M)

]
=

1√
dim(E(Kn−K,Kn])

E

[( ∑
Kn−K<λk6Kn

g2
n,k

)1/2]
×Eω

[
‖fωn ‖C0(M)

]
' Eω

[
‖fωn ‖C0(M)

]
.

Our results will show that the previous equivalence can be generalized to linear com-
binations of fωn and fG,ωn (that is a Riemannian analogue of a result by Marcus and
Pisier, see Section 3).

Let us now explain how to deal with (20) or (21). In the classical theory, the main
ingredient is the fact that the Gaussian random process (4) is stationary and thus
one may use the Dudley-Fernique theorem giving a complete understanding of its
almost sure continuity. It seems to be reasonable, at least for the Gaussian random
series (20) on spheres Sd, that such ideas can be combined with the transitivity of the
isometry group (see an argument at the end of Section 2). It is however clear that
such arguments are no longer sufficient for (21) on a general compact Riemannian
manifold M since that case does not seem to fulfill any stationary assumption. How-
ever, without a stationary assumption, the Dudley theorem [Dud67] gives a sufficient
condition for the almost sure continuity. We refer to the work of Tzvetkov [Tzv10] for
a use of the Dudley theorem in the spirit of the Paley-Zygmund theorem (and also
[IRT16, Annex 6] for an adaptation of the argument of Tzvetkov).

In order to obtain a necessary and sufficient condition, there are several angles
of attack. The first way the author took was to use a generalization of the Dudley-
Fernique theorem that weakens the stationary assumption (actually a minor variant
of [Dud14, Th. 2.7.4, p. 61]). As pointed out by a referee, one may simplify such a
strategy by using the Slepian comparison theorem (see [LT91, Cor. 3.14] or [LQ18b,
p. 73]). That is indeed such a proof that will be followed in the sequel: one first
completely understands the Gaussian process (20) on the sphere Sd for d > 2 (via
the Dudley-Fernique theorem) and then the Slepian comparison theorem will show
that the almost sure continuity of (20) is equivalent to that of (21) for the manifold
setting. In both cases (submanifolds of Sd or of a general manifold), we will obtain
sharp estimates of so-called Dudley pseudo-distances whose definition is now recalled.

A fundamental idea of the paper [Dud67] of Dudley can be summarized as follows:
the almost sure properties of the Gaussian process (fG,ω(x))x∈M are closely related
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to the pseudo-distance δ given by

(23) ∀ (x, y) ∈M2, δ(x, y) :=
√

Eω[|fG,ω(x)− fG,ω(y)|2].

Except in very specific examples, one cannot expect to have a simple formula for
δ(x, y). In our concrete situation, the pseudo-distance δ will be equivalent to a simpler
distance or pseudo-distance which is a function of the original distance δg. An easy
computation in (23) indeed shows the formula

δ(x, y)2 =
∑
n>1

‖fn‖2L2(M) δn(x, y)2,

where the partial pseudo-distances δn are given by

(24) δn(x, y)2 :=
1

dim(E(Kn−K,Kn])

∑
λk∈(Kn−K,Kn]

|φk(x)− φk(y)|2.

In another context, a study of those partial pseudo-distances is done by Canzani and
Hanin in [CH18] with specific geometric assumptions on the Riemannian manifold M.
In order to dispense with any geometric assumption on M, we shall combine the
following microlocal tools and ideas:

– a part of the work of Canzani and Hanin (in this case Proposition 32 below
coming from [CH15b, Lem. 5]) about the derivative of the spectral function on a
boundaryless compact manifold,

– choosing K large enough (such an idea is due to Burq and Lebeau in [BL13]) and
using off-diagonal estimates obtained by Hörmander (see the proof of Proposition 12
below).
As a consequence, we will prove the equivalence δn ' min(1, nδg) where δg is the
Riemannian distance of M (that is a similar form to (8)). Roughly speaking, such
an equivalence is possible because concentration of individual eigenfunctions does not
matter. The simplicity of such an equivalence is the reason allowing us to simplify the
entropy integral in order to recover the Salem-Zygmund condition (19). This article
is organized as follows:

– In Section 2, we state the two main theorems concerning the Gaussian random
series (20) on Sd and (21) on M. More precisely, Theorem 2 and Theorem 3 are
respectively of qualitative and quantitative nature.

– In Section 3, we first discuss a trivial consequence of Theorem 1 about univer-
sality with respect to the choice of Xn in

∑
Xn(ω)fωn and with respect to the chosen

submanifold Ms. Then we state Theorem 5 ensuring that our analysis is actually in-
dependent of the Riemannian metric initially chosen on M. That result is proved in
Section 13 via the semi-classical analysis of the Laplace-Beltrami operator seen as an
elliptic differential operator on the compact manifold M.

– Section 4 is devoted to metric considerations giving a suitable reformulation of
the entropy integral.

– In Sections 5 and 6, we prove that the partial pseudo-distances δn in (24) are,
in some sense, equivalent to the explicit distance min(1, nδg) (where δg stands for
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the Riemannian distance). The proofs need to make an accurate comparison with the
Bessel function Jd/2−1. Actually, Theorem 8 and Theorem 10 are the main contribu-
tions of the paper that allow to understand the Gaussian processes (20) and (21).

– Section 7 is written for the sake of clarity and contains a few precisions about
the Gaussian processes (20) and (21).

– Sections 8, 9 and 10 are devoted to the proofs of the main results in the Gaussian
case for spheres and compact manifolds. As written above, we first deal with the
sphere case Sd with d > 2. Few technical details are necessary because the equivalence
δn ' min(1, nδg) does not hold in the whole sphere (for n even, δn is not a distance
on Sd and does not distinguish antipodal points). The Slepian comparison theorem is
then used to deal with submanifolds of Sd or of a general compact manifold M.

– Sections 11 and 12 contain the proof of Theorem 1 that deals with the initial
random series

∑
Xn(ω)fωn . We shall use a truncation argument (already present in

the work of Marcus-Pisier) adapted here for the so-called χ distributions.
– Section 13 contains the proof of the invariance with respect to the Riemannian

metric of M (proof of Theorem 5). The proof makes use of the theory of semi-classical
pseudo-differential operators.

– Finally, we have gathered two appendices presenting either computations or
proofs of more or less known results that we have not found in the literature in
the form we need.

Acknowledgements. — The author would like to thank Hervé Queffélec for discussions
about majorizing measures. Moreover, the author would like to thank the referees
who studied the present paper and gave improvements of our initial proofs. Actually,
the reference [Dud14, Th. 2.7.4, p. 61], Proposition 6, Proposition 16 and the idea to
use the Slepian comparison theorem (see Step 1 in Proposition 17 and the proof in
Section 10) are due to them.

2. Statements of the main results in the Gaussian case

We now study a necessary and sufficient condition ensuring that the Gaussian ran-
dom series

∑
fG,ωn almost surely converges in C0(M). It turns out that the condition∑

n>1 ‖fn‖2L2(M) < +∞ implies that the Gaussian random series fG,ω :=
∑
n>1 f

G,ω
n

defines an element of L2(Ω), hence the Dudley pseudo-distance δ in (23) is well defined
on M (see Proposition 15).

Theorem 2. — There is a constant K0 > 0 depending only on the Riemannian man-
ifold M such that, for any K > K0, if one considers

– a sequence of functions (fn)n>1 satisfying fn ∈ E(Kn−K,Kn] for each n ∈ N? (see
(13)) and

∑
n>1 ‖fn‖2L2(M) < +∞,

– a non-zero dimensional compact submanifold Ms ⊂ M with smooth (eventually
empty) boundary,
then the following assertions are equivalent:
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(i) The Gaussian random series
∑
fG,ωn is almost surely convergent in C0(Ms)

(where fG,ωn is defined in (21)).
(ii) The Salem-Zygmund condition is fulfilled

(25)
+∞∑
p=1

1

p
√

ln(p+ 1)

(+∞∑
n=p

‖fn‖2L2(M)

)1/2

< +∞.

(iii) Denoting by ε 7→ Nδ(Ms, ε) the covering number(4) function of Ms with respect
to the Dudley pseudo-distance δ defined in (23), then the entropy condition is satisfied

(26)
∫ +∞

0

√
ln(Nδ(Ms, ε))dε < +∞.

In the specific case M = Sd, with d > 2, the same conclusion holds if each fn belongs
to the eigenspace ker(∆+n(n+d−1)) provided that we consider (20) instead of (21).

As for Theorem 1, the almost sure convergence in C0(M) is also equivalent to the
almost sure convergence in C0(Ms) for any submanifold Ms.

Let us discuss a quantitative version of the last result. To avoid any problem of
measurability due to the uncountability of the submanifold Ms of M, one usually sets

(27) Eω

[
sup
x∈Ms

∣∣∣∑
n>1

fG,ωn (x)
∣∣∣] := sup

F⊂Ms
F countable

Eω

[
sup
x∈F

∣∣∣∑
n>1

fG,ωn (x)
∣∣∣].

In the concrete situation where the four conditions of Theorem 2 are true, the random
function x 7→

∑
n>1 f

G,ω
n (x) is almost surely continuous and (27) clearly recovers the

classical meaning of Eω

[
‖
∑
n>1 f

G,ω
n ‖C0(Ms)

]
by choosing a dense countable subset F

of Ms. We can now state the quantitative version of Theorem 2.

Theorem 3. — Under the assumptions of Theorem 2, the expectation

Eω

[
sup
x∈Ms

∣∣∣∑
n>1

fG,ωn (x)
∣∣∣]

and the two numbers appearing in (25) and (26) are equivalent up to a multiplicative
loss merely depending on the Riemannian manifold M, on the submanifold Ms and
on K.

Finally, the conclusion also holds true for the particular case M = Sd in a similar
fashion to the last statement of Theorem 2 (and thus K is irrelevant in the numerical
equivalences).

In the specific case M = Ms = Sd with d > 2, the equivalence of the entropy
condition (26) and the expectation (27) can be deduced by considering Sd as a homo-
geneous space based on the orthogonal group Od(R). Actually by fixing one point

(4)We recall that Nδ(Ms, ε) is the minimal number of open δ-balls of radius ε that cover Ms.
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x0 ∈ Sd then we have

Eω

[
sup
x∈Sd

∣∣∣∑
n>1

fG,ωn (x)︸ ︷︷ ︸
=fG,ω(x)

∣∣∣] = Eω

[
sup

t∈Od(R)

∣∣∣∑
n>1

fG,ωn (t · x0)︸ ︷︷ ︸
=FG,ω(t)

∣∣∣]

where FG,ω denotes a Gaussian process on Od(R) which is stationary (we refer to
Proposition 16 for computations showing that E[FG,ω(s)FG,ω(t)] merely depends on
〈s(x0), t(x0)〉 and so merely on s−1t). Then the Dudley-Fernique theorem(5) ensures
that the last expectations are equivalent to the entropy condition of FG,ω on Od(R).
The Dudley pseudo-distances of (fG,ω(x))x∈Sd and (FG,ω(t))t∈Od(R), respectively de-
noted by δ and δ′, are linked via the formula

∀ (s, t) ∈ Od(R)×Od(R), δ(sx0, tx0) = δ′(s, t).

As a consequence, for any ε > 0, we easily see the equality Nδ(Sd, ε) = Nδ′(Od(R), ε)

of the covering numbers. Hence, the entropy conditions of the Gaussian processes
(fG,ω(x))x∈Sd and (FG,ω(t))t∈Od(R) are equivalent.

In order to complete the previous remark, we stress that the main novelty of the
paper is that the Dudley pseudo-distance of the a priori non-stationary Gaussian
process (fG,ω(x))x∈Ms

with Ms ⊂ Sd or Ms ⊂ M, is in some sense equivalent to a
much simpler pseudo-distance of the form Υ(δg) (see Theorem 8 and Theorem 10)
with Υ : [0,+∞) → [0,+∞) non-decreasing near 0 and Υ being quite explicit with
respect to the coefficients of the random series (see (64)).

3. Application to universality results for random series

In the statement of Theorem 1, the Salem-Zygmund condition (19) does not involve
the random variables Xn provided that the mutual independence and the moment as-
sumption (17) are assumed. Consequently, the almost sure convergence of the random
series

∑
Xn(ω)fωn (x) in C0(M) is universal with respect to the random variables (Xn).

That is an analogue of a result by Marcus and Pisier dealing with the random Fourier
series (ω, x) ∈ Ω × R/2πZ 7→

∑
Xn(ω)einx (see [MP81, p. 7–9] and [Pis78, p. 28,

Cor. 7.3]).
For the same reason, Theorem 1 also shows the universality with respect to reason-

able submanifolds Ms of M although the eigenfunctions are considered with respect
to the Laplace-Beltrami operator ∆ of the whole Riemannian manifold M. Indeed
with the notations of Theorem 1, we directly see the equivalence of the following two
assertions:

– the random series
∑
Xn(ω)fωn is almost surely convergent in C0(Ms),

– the random series
∑
Xn(ω)fωn is almost surely convergent in C0(M).

(5)Actually we need a non-Abelian Dudley-Fernique theorem that has the same proof as the
Abelian case, as noticed in [MP81, p. 96].
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For instance, Ms may be a closed geodesic of M despite the fact that Ms is negligible
for the Riemannian volume. The previous equivalence contrasts with the classical
theory on a compact group. Maybe, the nearest result would be the following one: for
any compact Abelian group G and any compact subset T ⊂ G of non-empty interior,
then a classical random series almost surely converges in C0(G) if and only if it almost
surely converges in C0(T ) (see the argument following [LT91, Th. 13.3]).

We now want to study the universality with respect to the Riemannian metric ofM.
We first recall that the Pisier space on T is the space of functions

∑
n∈Z cne

inx ∈ L2
x(T)

such that the associated random Fourier series (4) almost surely converges in C0(T)

(see [Pis78, p. 2] or [LQ18b, Ch. 6]). In our context, it is clear how to transfer the
notion of Pisier space to a boundaryless Riemannian compact manifold M.

Definition 4. — Given a function f ∈ L2(M) and a parameter K > K0, one may
decompose

f =

(∫
M

f(x)dµ(x)

)
1M +

∑
n>1

fn, with fn := Π(Kn−K,Kn](f),

where µ is the Riemannian probability measure of M and Π(Kn−K,Kn] : L2(M) →
L2(M) is the spectral projector on the spectral window (Kn−K,Kn] with respect to√
−∆. Then the “Pisier space on M” is the space of functions f ∈ L2(M) such that

the random series
∑
n>1 f

ω
n almost surely converges in C0(M).

For K � 1, the Salem-Zygmund condition (19) gives an explicit semi-norm on
L2(M) that characterizes the functions f ∈ L2(M) of the previous definition. But
such a semi-norm clearly involves the spectral decomposition of the Laplace-Beltrami
operator ∆ which itself is defined via the Riemannian metric of M. It turns out that
the following universality result holds.

Theorem 5. — With the above notations, the “Pisier space on M” is independent of
the spectral parameter K (provided that K � 1) and of the Riemannian metric of M.

Remembering that the space L2(M) does not depend on the Riemannian structure
of M, one may compare Theorem 5 to the following Lp Paley-Zygmund theorem: for
any p ∈ [1,+∞), the random series

∑
fωn almost surely converges in Lp(M) if and

only if f belongs to L2(M) (see [Ime19, Th. 2.3] but such a result essentially appears
in [BL13] in a different form).

The independence with respect to K in Theorem 5 will be a simple consequence
of the Salem-Zygmund condition (19) whereas the independence with respect to the
Riemannian metric is more involved and uses

– a semi-classical reformulation of the Salem-Zygmund condition as follows (for a
suitable Ψ ∈ C∞c (R)): ∫ 1

0

‖f −Ψ(−h2∆)f‖L2(M)

h
√
− ln(h)

dh < +∞
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(note that such a reformulation strikingly looks like the condition giving the continuity
of stationary Gaussian processes [MS70, Mar73] and Proposition 6),

– a few estimates on semi-classical pseudo-differential operators (see Lemma 27),
– an expansion of the operator Ψ(−h2∆) with respect to h (see the proof of Propo-

sition 30), usually referred as a functional semi-classical calculus, as done by Burq-
Gérard-Tzvetkov in [BGT04].

4. Metric considerations

In the present section, let us consider a general compact metric space (M, δg).
Although we shall settle general facts, we must have in mind that the next results
will be applied in the rest of the paper for M being a Riemannian compact manifold
(or submanifold) with its Riemannian distance δg.

Proposition 6. — Let µ be a Borel probability measure on (M, δg) and let Dg be the
diameter of (M, δg). We moreover assume that there are positive constants H1, H2, σ

such that for any t ∈ [0, Dg] and x ∈M we have

(28) H1

(
t

Dg

)σ
6 µ(Bδg (x, t)) 6 H2

(
t

Dg

)σ
.

Let Υ : [0,+∞) → [0,+∞) be a subadditive, non-decreasing and right-continuous
function satisfying Υ(0) = 0 and a pseudo-distance δ on M which is equivalent to the
pseudo-distance Υ(δg) as follows:

(29) ∃ % > 1,
δ
√
%
6 Υ(δg) 6

√
% δ.

Denoting by Nδ(M, ε) the minimal number of δ-open balls of radius ε that cover M,
then the entropy condition for δ

(30)
∫ +∞

0

√
ln(Nδ(M, ε))dε < +∞

is equivalent to ∫ 1

0

Υ(t)

t
√

ln(1/t)
dt < +∞.

Proof

Topological remark. — One may assume that Υ dos not identically vanish, otherwise
the conclusion is obvious and of no interest. We also note that the subadditivity
assumption ensures that Υ(t) > 0 for any t > 0 and then Υ(δg) turns out to be a
distance. We also easily infer that δ and δg give rise to the same topology on M.

Step 1. — We now introduce a pseudo-inverse function Υ−1 : [0,+∞) → [0,+∞] as
follows

∀ ε > 0, Υ−1(ε) := inf{t > 0, Υ(t) > ε},
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with the usual convention inf ∅ = +∞. The right-continuity of Υ implies the following
two equivalences

Υ(t) > ε ⇐⇒ t > Υ−1(ε),

Υ(t) < ε ⇐⇒ t < Υ−1(ε).

Hence, we are able to come back to the open balls for the original distance δg. For
any x ∈M and any ε > 0 we have

BΥ(δg)(x, ε) = Bδg (x,Υ−1(ε)),

µ(BΥ(δg)(x, ε)) = µ(Bδg (x,Υ−1(ε))).

Let us set H = H2/H1. The last equality, (28) and (29) easily imply that µ is also
almost-homogeneous for δ in the following sense (in which we note the multiplicative
loss % in the right-hand side):

(31) ∀ (x, y) ∈M2, ∀ ε > 0, µ(Bδ(x, ε)) 6 Hµ(Bδ(y, %ε)).

Step 2. — The following consequence of Step 1 is well-known: for any ε > 0 and any
x ∈M we have µ(Bδ(x, ε)) > 0 and

(32) 1

Hµ(Bδ(x, %ε))
6 Nδ(M, ε) 6

H

µ(Bδ(x, ε/2%))
.

For the bound from below, we consider x1, . . . , xN with N = Nδ(M, ε) so that the
open ball Bδ(x, ε) cover M. By the the subadditivity of the probability measure µ
(from the previous topological remark, Bδ(x, ε) is also open for the original topology
on M), (31) and the equality

M := Bδ(x1, ε) ∪ · · · ∪Bδ(xN , ε)

we get the bound from below of (32). For the bound from above in (32), let N? be
the so-called packing number defined as the largest integer such that (M, δ) con-
tains N? disjoint open balls Bδ(x1, ε/2), . . . , Bδ(xN? , ε/2). It is well known that
Nδ(M, ε) 6 N?. We then easily obtain (32) thanks to (31) and the inequalities

1

H
Nδ(M, ε)µ(Bδ(x, ε/2%)) 6

N?∑
k=1

µ(Bδ(xk, ε/2)) 6 1.

Step 3. — Since Dg is diameter of (M, δg), we have δ(x) 6
√
%Υ(Dg) for any x ∈M,

and so for any ε > √%Υ(Dg) we have Nδ(M, ε) = 1. That fact leads to the well-known
remark stating that the entropy condition (30) is merely relevant for ε→ 0.

In other words, for a fixed element x ∈ M, the inequalities (32) show that the
entropy condition (30) is equivalent to the finiteness of∫ +∞

0

√
ln
( 1

µ(Bδg (x,Υ−1(ε)))

)
dε =

∫ +∞

0

√
ln
( 1

µ(Bδ(x, ε))

)
dε.
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Note that the two last integrals are indeed supported in [0,Υ(Dg)] and their finiteness
is also relevant at ε → 0. By using (28), their finiteness is then equivalent to the
finiteness of the following integrals (the second one is in the sense of Stieltjes):

(33)
∫ Υ(Dg)

0

√
ln(Dg/Υ−1(ε)) dε =

∫
(0,Dg ]

√
ln(Dg/t) dΥ(t).

For any a ∈ (0, Dg), an integration by parts in the sense of Stieltjes and the condition
Υ(0) = 0 give

1

2

∫ Dg

a

Υ(t)√
ln(Dg/t)

dt

t
=
√

ln(Dg/a) Υ(a)︸ ︷︷ ︸
=
∫
(0,a]

dΥ(t)

+

∫
(a,Dg ]

√
ln(Dg/t) dΥ(t).

By using the last computations and the inequality
√

ln(Dg/a) 6
√

ln(Dg/t) for any
t ∈ (0, a], we obtain∫

(a,Dg ]

√
ln(Dg/t) dΥ(t) 6

1

2

∫ Dg

a

Υ(t)√
ln(Dg/t)

dt

t
6
∫

(0,Dg ]

√
ln(Dg/t) dΥ(t).

By making a tend to 0+ and looking at (33), we get∫ Υ(Dg)

0

√
ln(Dg/Υ−1(ε)) dε =

1

2

∫ 1

0

Υ(Dgt)

t
√

ln(1/t)
dt.

Step 4. — We now explain how to get rid of the parameter Dg in the last integral. For
any s > 0, we denote by dse the least integer greater than or equal to a given number
s > 0. By using the fact that Υ is subadditive and non-decreasing, one remarks
the inequality Υ(st) 6 dseΥ(t) for any t > 0. By replacing (s, t) with (1/s, st), the
previous bound can be reversed as follows

(34) 1

d1/se
Υ(t) 6 Υ(st) 6 dseΥ(t).

In other words, one may replace Υ(Dgt) with Υ(t) provided we authorize a multi-
plicative loss merely depending on Dg. The proof is finished. �

Note that the above proof indeed shows the quantitative following version:

Corollary 7. — Under the assumptions of Proposition 6, we have the equivalence∫ +∞

0

√
ln(Nδ(M, ε)) dε '

∫ 1

0

Υ(t)

t
√

ln(1/t)
dt

up to multiplicative constants which are independent of Υ (but possibly dependent on
Dg, H2/H1 and %).

Proof. — By looking at the proof of Proposition 6, we have to check in Step 3 that
Υ(Dg) is controlled by any of the two integrals with a constant which is independent
of Υ. For the entropy integral, let us denote by D the diameter of (M, δ). We have
Υ(Dg) 6

√
%D thanks to (29). Since no ball of radius D/3 can cover (M, δ), we get∫ +∞

0

√
ln(N(M, ε))dε >

∫ D/3

0

√
ln(N(M, ε)) dε >

√
ln(2)

D

3
>

√
ln(2)

3%
Υ(Dg).
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For the integral
∫ 1

0
(Υ(t)/t

√
ln(1/t)) dt, we use (34) as follows:∫ 1

1/2

Υ(t)

t
√

ln(1/t)
dt > 2

√
ln(2) Υ(1/2) >

2
√

ln(2)

d2Dge
Υ(Dg). �

5. Partial pseudo-distances on spheres

For any integers d > 2 and n > 1, we denote by δn the pseudo-distance on the
sphere Sd given by

(35) δn(x, y)2 :=
1

dim(En)

∑
λ2
k=n(n+d−1)

|φk(x)− φk(y)|2,

for any (x, y) ∈ Sd×Sd and where En stands for the eigenspace ker(∆+n(n+d−1)).
It is well-known that En is the space of the restrictions to Sd of the n-homogeneous
harmonic polynomials of Rd+1 (see for instance [Far08, Prop. 9.3.5]). In particular,
for n even, the relation φk(x) = φk(−x) holds for any φk ∈ En and x ∈ Sd. And
thus we get δn(x,−x) = 0 for n even. In other words, if one wants to compare δn to
the Riemannian distance δg of Sd, one must unavoidably restrict δn to a reasonable
subset of Sd that does not contain antipodal points. These considerations lead us to
the following statement (in which Bδg (p, ϑ) is a Riemannian closed ball of Sd).

Theorem 8. — For any d > 2 and for any ϑ ∈ (0, π2 ), there is C = C(d, ϑ) > 1 such
that for any n ∈ N? and any p ∈ Sd, the pseudo-distance δn is equivalent on the closed
ball Bδg (p, ϑ) to the distance min(1, nδg) as follows

1

C
min(1, nδg) 6 δn 6 C min(1, nδg).

Proof. — Let us denote by en(x, y) the reproducing kernel of the eigenspace
ker(∆ + n(n+ d− 1)):

en(x, y) :=
∑

λ2
k=n(n+d−1)

φk(x)φk(y),

where each eigenfunction φk is assumed to be real-valued. The pseudo-distance δn
then takes the form
(36) δn(x, y)2 =

en(x, x) + en(y, y)− 2en(x, y)

dim(En)
.

Let us recall how en(x, y) may be expressed thanks to orthogonal polynomials (for
instance Gegenbauer polynomials). We prefer here Jacobi polynomials (which are
directly related to Gegenbauer polynomials). Let (P

(d/2−1,d/2−1)
n )n∈N be the family of

Jacobi polynomials associated to the weight t ∈ [−1, 1] 7→ (1− t2)d/2−1 and satisfying
(see [Sze75, p. 58]):

(37) P (d/2−1,d/2−1)
n (1) =

(
n+ d/2− 1

n

)
∼

n→+∞

nd/2−1

Γ(d/2)
.

The so-called additional formula (see [SW71, Lem. 2.8 (p. 143) & Th. 2.14 (p. 149)])
ensures the existence of a constant cd,n satisfying

(38) en(x, y) = cd,nP
(d/2−1,d/2−1)
n (〈x, y〉).
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Note that en(x, x) = cd,nP
(d/2−1,d/2−1)
n (1) does not depend on x and so equals∫
Sd
en(x, x)

dx

volSd(Sd)
=

dim(En)

volSd(Sd)
.

As a consequence, one has

(39) cd,n
dim(En)

=
1

volSd(Sd)P (d/2−1,d/2−1)
n (1)

' 1

nd/2−1
.

We now simplify (36) as (2/dim(En))(en(x, x) − en(x, y)) and we get the following
closed form

(40) δn(x, y)2 =
2cd,n

dim(En)

[
P (d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (〈x, y〉)
]
.

One may write 〈x, y〉 = cos(δg(x, y)) where δg(x, y) ∈ [0, π] is the Riemannian distance
between x and y on the sphere Sd. Hence, we have the equivalence

(41) 1− 〈x, y〉 ' δg(x, y)2.

Note that the Riemannian distance between two elements x and y on the spherical
cap Bδg (p, ϑ) is less or equal to 2ϑ. Hence we have

〈x, y〉 = cos(δg(x, y)) > cos(2ϑ) > −1.

So the conclusion is a consequence of Proposition 9 below and of (39), (40) and (41).
�

Proposition 9. — For any integer d > 2 and any real number ϑ ∈ (0, π/2), there is
a constant Cd,ϑ > 1 such that the following inequalities hold true for any n > 1 and
any α ∈ [cos(2ϑ), 1)

(42) 1

Cd,ϑ
6
P

(d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (α)

nd/2−1 min(1, n2(1− α))
6 Cd,ϑ.

Proof

Step 1. — We first prove a weak version of (42) in which the constant Cd,ϑ may
depend on n. We set

Qn,d(α) :=
P

(d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (α)

1− α
,

which is a polynomial with respect to α. It turns out that P (d/2−1,d/2−1)
n reaches its

maximum in [cos(2ϑ), 1] at the mere point 1 (see [Sze75, p. 168]) and so the polynomial
Qn,d is positive on [cos(2ϑ), 1). Moreover, it also does not vanish for α = 1 thanks to
the following formula (see (37) and [Sze75, p. 63, (4.21.7)]):

(43)
(
P (d/2−1,d/2−1)
n

)′
(1) =

n+ d− 1

2
P

(d/2,d/2)
n−1 (1) > 0.

By compactness of [cos(2ϑ), 1], there is a constant Cd,ϑ,n > 1 and such that the
following holds for any α ∈ [cos(2ϑ), 1]

1

Cd,ϑ,n
6 Qn,d(α) 6 Cd,ϑ,n.
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Since 1− α belongs to [0, 2], we have

min(1, n2(1− α))

n2
6 (1− α) 6 2 min(1, n2(1− α))

and hence
1

n2Cd,ϑ,n
6
P

(d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (α)

min(1, n2(1− α))
6 2Cd,ϑ,n.

Such estimates are very far from the expected inequalities but show that it is sufficient
to prove (42) for n > nd,ϑ (for a suitable positive integer nd,ϑ merely depending on
(d, ϑ)).

Step 2. — The mean value theorem and the formula giving the derivative of a Jacobi
polynomial (as in (43)) ensure the existence of z ∈ (α, 1) such that the previous
computations can be continued:

Qn,d(α) =
d

dz
P (d/2−1,d/2−1)
n (z) =

n+ d− 1

2
P

(d/2,d/2)
n−1 (z).

Classical estimates on Jacobi polynomials (see the proof of [Ime18, Lem. 3.9] or (47)
below) ensure that there is c1 > 0, merely depending on the dimension d, such that
the equivalence P (d/2,d/2)

n−1 (cos(θ)) ' nd/2 uniformly holds true with respect to θ ∈
[0, c1/n]. As a consequence, we get

∀n� 1, ∀ θ ∈ (0, c1/n] ,
Qd,n(cos(θ))

n2
' nd/2−1.

In the last regime, we remark the equivalence n2(1− cos(θ)) ' min(1, n2(1− cos(θ))).
We thus have proved

(44) ∀n� 1, ∀ θ∈(0, c1/n],
P

(d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (cos(θ))

min(1, n2(1− cos(θ)))
' nd/2−1.

Step 3. — Thanks to [Sze75, Th. 7.32.2, p. 169], we know that for any constant c2 > 0

one may find C2 > 1 such that

∀n� 1, ∀ θ ∈ [c2/n, π/2], |P (d/2−1,d/2−1)
n (cos(θ))| 6 C2√

n θ(d−1)/2
.

The formula P (d/2−1,d/2−1)
n (−x) = (−1)nP

(d/2−1,d/2−1)
n (x) (see [Sze75, p. 59]) and the

previous inequality implies the following one for any constant c3 larger than c2:

∀n� 1, ∀ θ ∈ [c3/n, π − c3/n], |P (d/2−1,d/2−1)
n (cos(θ))| 6 C2

nd/2−1

c
(d−1)/2
3

.

Remembering (37) and noting that C2 is independent of c3, one sees that one may
choose c3 large enough satisfying for all θ ∈ [c3/n, π − c3/n]:

|P (d/2−1,d/2−1)
n (cos(θ))| 6 1

2
P (d/2−1,d/2−1)
n (1),

P (d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (cos(θ)) '
n→+∞

nd/2−1.(45)
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Since we assumed ϑ < π/2, the inequality 2ϑ 6 π − c3/n holds true for n > nd,ϑ
(with a suitable positive integer nd,ϑ). In contrast with (44), we have the equivalence
min(1, n2(1− cos(θ))) ' 1 in such a regime. As a consequence, we have

(46) ∀n > nd,ϑ, ∀ θ ∈ [c3/n, 2ϑ],

P
(d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (cos(θ))

min(1, n2(1− cos(θ)))
' nd/2−1.

Step 4. — Comparing (44) and (46), one cannot exclude the possibility that c3 may
have been chosen too large in Step 3. To complete our proof, we need to understand
the case c1 < c3. Here we invoke the following uniform limit with respect to t ∈ [0, c3]

(see [Sze75, p. 192, (8.1.1)]) that makes a connexion between the Jacobi polynomials
P

(d/2−1,d/2−1)
n and the Bessel function Jd/2−1:

(47) lim
n→+∞

P
(d/2−1,d/2−1)
n (cos (t/n))

nd/2−1
= 2d/2−1 Jd/2−1(t)

td/2−1

in the Banach space C0
t ([0, c3],R).

The Poisson representation of the Bessel function Jd/2−1 (see [Sze75, p. 15, (1.71.6)])
suggests introducing the following real-valued function

(48) σ̂d−1(t) :=
Jd/2−1(t)

td/2−1
=

1

2d/2−1Γ((d− 1)/2)
√
π

∫ 1

−1

eits(1− s2)(d−3)/2ds.

The notation σ̂d−1 is justified since that function may be interpreted as the radial part
of the Fourier transform of the spherical measure σd−1 on Sd−1 (see (56)). One directly
checks that the function σ̂d−1 is real-valued, admits a maximum at the unique point
t = 0 and satisfies limt→+∞ σ̂d−1(t) = 0 (thanks to the Riemann-Lebesgue lemma).
As a consequence, we get the strict inequality supt>c1 σ̂d−1(t) < σ̂d−1(0) which in
turn implies the equivalent one

(49) ∃ ρ ∈ (0, 1), ∀ t > c1, σ̂d−1(t) < ρσ̂d−1(0).

Coming back to (47), we see that the sequence of functions

t 7−→ 1

nd/2−1

[
P (d/2−1,d/2−1)
n (cos (t/n))− ρP (d/2−1,d/2−1)

n (1)
]

uniformly converges on [c1, c3] to the continuous negative function

t 7−→ 2d/2−1[σ̂d−1(t)− ρσ̂d−1(0)].

Hence, we infer that the following holds true

∀n� 1, ∀ θ ∈ [c1/n, c3/n], P (d/2−1,d/2−1)
n (cos(θ)) 6 ρP (d/2−1,d/2−1)

n (1).

Such new estimates can now be combined to

−P (d/2−1,d/2−1)
n (cos(θ)) 6 CdP

(d/2−1,d/2−1)
n (1)

(as a consequence of (47)). Hence (45) and (46) hold with c1 (instead of c3). Taking
account of (44), we finally obtain the wanted uniform equivalence (42). �
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6. Partial pseudo-distances on manifolds

In this part,M is a general boundaryless compact Riemannian manifold (and we use
the notations of the introduction about the spectral analysis of the Laplace-Beltrami
operator). For any interval I ⊂ [0,+∞) we define the spectral function of I (with
respect to

√
−∆) as follows: for any (x, y) ∈M2 we set

eI(x, y) =
∑
λk∈I

φk(x)φk(y),

where we recall that each eigenfunction φk of ∆ is assumed to be real-valued. Let
us recall an idea we attribute to Burq and Lebeau in [BL13, p. 923] (we also refer
to the end of the proof of [Ime19, Lem. 8.1] for details): one may find two numbers
K0 > 1 and C > 1 that merely depend on the Riemannian manifold M such that the
following on-diagonal estimates hold

(50) ∀K > K0, ∀n > 1, ∀x ∈M,
Kdnd−1

C
6 e(Kn−K,Kn](x, x) 6 CKdnd−1.

Upon modifying C, we note that the same estimates hold for dim(E(Kn−K,Kn]) by in-
tegration on the compact manifold M:

(51) ∀K > K0, ∀n > 1, ∀x ∈M,
Kdnd−1

C
6 dim(E(Kn−K,Kn]) 6 CK

dnd−1.

We now introduce a pseudo-distance δn on the manifold M which is analogue to (35)
(we keep the same notation δn for simplicity). For any pair (x, y) ∈M2 we set

δn(x, y)2 :=
1

dim(E(Kn−K,Kn])

∑
λk∈(Kn−K,Kn]

|φk(x)− φk(y)|2(52)

=
e(Kn−K,Kn](x, x) + e(Kn−K,Kn](y, y)− 2e(Kn−K,Kn](x, y)

dim(E(Kn−K,Kn])
.(53)

By bounding |φk(x)−φk(y)|2 6 2(|φk(x)|2 + |φk(y)|2) and using (50) and (51), we re-
mark the uniform estimate

(54) sup
n>1

sup
(x,y)∈M2

δn(x, y) < +∞.

In the sequel, we will prove the following analogue result of Theorem 8 (but here the
equivalence (55) holds in the whole manifold M).

Theorem 10. — There are two constants K0 > 1 and C > 1 that merely depend on
the Riemannian manifold M such that the following equivalence(6) holds true for any
K > K0, any pair (x, y) ∈M2 and any n ∈ N?:

(55) 1

C
min

(
1,Knδg(x, y)

)
6 δn(x, y) 6 C min

(
1,Knδg(x, y)

)
.

(6)We note that δn(x, y) implicitly depends on K.
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The main interest of the previous result is that it holds true without any geometric
assumption on the boundaryless compact Riemannian manifold M. It indeed relies on
the freedom to set K large enough. Under specific geometric assumptions, a similar
upper bound to that of (55) appears in [CH15a, Th. 1]. Moreover, a much more precise
than (55) is given in [CH15b, Th. 9] by assuming a “geometric mutually nonfocal
hypothesis” on the manifold M.

We now recall the relation linking the Bessel function Jd/2−1 and the Fourier
transform of the spherical measure σd−1 on Sd−1, for any ν ∈ Rd r {0} we set
J(d−2)/2(|ν|)
|ν|(d−2)/2

=
1

(2π)d/2

∫
Sd−1

ei〈ν,w〉dσd−1(w) =
1

(2π)d/2

∫
Sd−1

exp(i|ν|w1)dσd−1(w).

Since the previous Fourier transform is radial, we make the following abuse of notation:

(56) ∀ ν > 0, σ̂d−1(ν) :=
J(d−2)/2(ν)

ν(d−2)/2
=

1

(2π)d/2

∫
Sd−1

exp(iνw1)dσd−1(w).

We will use some material developed by Canzani and Hanin. More precisely we need
a suitable asymptotic of the spectral function given in the next theorem (proved
by Hörmander in [Hör68, Th. 4.4] for the case |I| = |J | = 0). But the choice of
the explicit principal term has been enlightened by Canzani and Hanin in [CH15b].
The asymptotic formula, involving derivatives, is now considered as known (see the
introduction of [CH18]). We give here a reformulation with coordinate patches.

Theorem 11. — There is α0 > 0 such that for any coordinate patch τ : U ⊂ Rd →
V ⊂ M with diam(V ) < α0, for any multi-indexes I ∈ Nd and J ∈ Nd, the following
asymptotic holds true for any (x, y) ∈ V 2 and λ > 0 (where the derivatives are seen
in the coordinate patch):

∂Ix∂
J
y

∑
λj6λ

φj(x)φj(y) =
∂Ix∂

J
y

(2π)d/2

∫ λ

0

νd−1σ̂d−1(νδg(x, y))dν + O
(
(1 + λ)d−1+|I|+|J|).

Finally, the remainder is uniform provided that x and y run over a compact subset of
the open set V .

Proof. — Since we do not know a published reference where Theorem 11 is stated with
a proof, we explain in Appendix B how it can be easily recovered as a consequence of
the analysis of [CH18], a Bernstein-type inequality proved in [Bin04] and a Tauberian
theorem as in [Sog17, Ch. 4]. �

The reason of restricting the estimates of Theorem 11 to compact subsets of the
open subset V is due to the definition of the C∞(M)-topology (see [Die72, Ch.XVII.1
& XVII.2]). Obviously for |I| = |J | = 0, coordinate patches are useless and the
estimates hold on the whole compact manifold.

If the two points x and y are far from each other, we shall need to forget the
principal term of the asymptotic of the spectral function (at least for |I| = |J | = 0).
In [CH15b, line (79)], a geometric mutually nonfocal hypothesis on the manifold M

is assumed, and thus Canzani and Hanin make use of an asymptotic of Safarov
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[Saf88] stating e[0,λ](x, y) = o(λd−1). Since our issue is posed without any geomet-
ric assumption, we replace their argument with the off-diagonal Hörmander estimate
e[0,λ](x, y) = O(λd−1).

Proposition 12. — For any fixed α > 0, one may find two numbers K0 > 1 and
c > 1 (depending on the Riemannian manifold M and α > 0) satisfying the following
property: for any K > K0 the following implication holds true for any n ∈ N? and
any pair (x, y) ∈M2:

δg(x, y) > α =⇒ 1

c
6 δn(x, y) 6 c.

Proof. — The upper bound δn(x, y) 6 c has already been proved in (54). From [Hör68,
line (4.11)] (see also [Shu01, p. 162, Th. 21.1, point 2)]), we know that for any α > 0

there is C > 0 such that, for any (x, y) ∈ M2, the following uniform off-diagonal
estimate holds true

δg(x, y) > α =⇒ ∀λ > 0,
∣∣e[0,λ](x, y)

∣∣ 6 C(1 + λ)d−1,

where C depends on α and on the Riemannian structure of M. Thus we obtain

|e(Kn−K,Kn](x, y)| =
∣∣e[0,Kn+K](x, y)− e[0,Kn](x, y)

∣∣
6 C(1 +Kn+K)d−1 + C(1 +Kn)d−1

6 C(3d−1 + 2d−1)(Kn)d−1.

We now recall the estimate e(Kn−K,Kn](x, x) ' Kdnd−1 (see (50)), which also implies
dim(E(Kn−K,Kn]) ' Kdnd−1 by integration over M. Remembering the formula (53),
we infer that there are three positive constants C1, C2, C3 (independent of n and K)
such that

(57)
δn(x, y)2 >

nd−1

dim(E(Kn−K,Kn])

[
C1K

d − C2K
d−1
]

>
C1K

d − C2K
d−1

C3Kd
.

We conclude by making K tend to +∞. �

We now need to improve the previous result if nδg(x, y) is bounded from below
or from above. By comparison with [CH15b, p. 1728–1729] that involves geometric
assumptions on the manifold M and relies on several tools obtained by Zelditch,
Potash and Xu, our proofs of the next two results merely use the asymptotic of the
spectral function given by Theorem 11.

Proposition 13. — For any fixed β > 0, one may find two numbers K0 > 1 and
c > 1 (depending on the Riemannian manifold M and β > 0) satisfying the following
property: for any K > K0, for any n ∈ N? and any pair (x, y) ∈ M2 the following
implication holds true

δg(x, y) >
β

Kn
=⇒ 1

c
6 δn(x, y) 6 c.
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Proof. — As for Proposition 12, the upper bound δn 6 c is given in (54). To get the
lower bound, we apply Proposition 12 with the constant α = α0 appearing in the
statement of Theorem 11. Hence, the case δg(x, y) > α0 is already done. We now
assume α0 > δg(x, y) > β/Kn and we have the following asymptotic

(58) e(Kn−K,Kn](x, y) =

∫ Kn

Kn−K
νd−1σ̂d−1(νδg(x, y))

dν

(2π)d/2
+ (Kn)d−1O(1),

where the remainder O(1) is uniformly bounded with respect to (x, y,K, n). By using
the definition (53) of the pseudo-distance δn, we get the relation

dim(E(Kn−K,Kn])δn(x, y)2

= 2Kd

∫ n

n−1

νd−1 [σ̂d−1(0)− σ̂d−1(Kνδg(x, y))]
dν

(2π)d/2
+ (Kn)d−1O(1).

Remembering that the function |σ̂d−1| is bounded by σ̂d−1(0) (see (56)), we can
restrict our analysis on

[
n− 1/2, n

]
so that δn(x, y)2 is bounded from below by

(59) 2Kd

dim(E(Kn−K,Kn])

∫ n

n−1/2

νd−1 [σ̂d−1(0)− σ̂d−1(Kνδg(x, y))]
dν

(2π)d/2

+
(Kn)d−1O(1)

dim(E(Kn−K,Kn])
.

By looking the last integral and our assumptions, one notices
∀ ν ∈ [n− 1/2, n], Kνδg(x, y) > (n− 1/2)β/n > β/2.

The inequality (49) (proved in the case M = Sd) may be used to ensure the existence
of ρ ∈ (0, 1) (merely depending on the dimension d and on β) such that the following
holds true

∀ ν ∈ [n− 1/2, n], σ̂d−1(Kνδg(x, y)) 6 ρσ̂d−1(0).

As at the end of the proof of Proposition 12, we obtain an inequality similar to (57)
which in turn gives suitable constants K0 and c. �

Proposition 14. — There are three numbers β0 ∈ (0, 1),K0 > 1 and c > 1 (depending
on the Riemannian manifold M) satisfying the following property: for any K > K0,
for any n ∈ N? and any pair (x, y) ∈M2, the following implication holds true

δg(x, y) <
β0

Kn
=⇒ Knδg(x, y)

c
6 δn(x, y) 6 cKnδg(x, y).

Proof. — The main issue is that an inequality like (59) seems to give an unavoidable
O(1) remainder. Forgetting technicalities, one may consider that the main idea relies
on the formula (60) that will need derivatives of order 2 of the spectral function. In the
next steps, we will make several restrictions so that any small enough number β0 will
be convenient.

Step 1. — We first recall that if β0 is small enough, then any two points x and y

of M, satisfying δg(x, y) < β0, belong to a same geodesically convex Riemannian
ball. To see that point, we invoke the Whitehead theorem (see [CE08, Th. 5.14]):
there is a continuous function c : M → (0,+∞), called the convexity radius, such
that each Riemannian ball Bδg (z, r), for z ∈ M, is geodesically convex for r < c(z).
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We finish by using the compactness of M and choosing β0 less than the positive
number minz∈M c(z).

Step 2. — We now claim that if β0 is small enough, then for any z ∈ M the open
Riemannian ball Bδg (z, β0) is relatively compact in the domain of a suitable local
chart around z. We again give a compactness argument. Let r(z) > 0 be such that
there is a coordinate patch around z (for some open subset Uz of Rd)

Rd M

∪ ∪
τz : Uz −→ Bδg (z, r(z)).

By compactness, one may cover the compact manifold M with a finite atlas as follows

M = Bδg (z1, r(z1)) ∪ · · · ∪Bδg (z`, r(z`)).

In other words, any z ∈ M satisfies max16k6`(r(zk) − δg(z, zk)) > 0. By continuity
and compactness, one may enforce the previous inequality as follows for some positive
constant R:

max
16k6`

(
r(zk)− δg(z, zk)

)
> 2R.

Hence, by choosing β0 6 R, for any z ∈M, there is k ∈ {1, . . . , `} such that we have
the inclusion

Bδg (z, β0) ⊂ Bδg (zk, r(zk)−R).

In other words, Bδg (z, β0) is relatively compact in the domain Bδg (zk, r(zk)).

Step 3. — Now fix x and y satisfying δg(x, y) < β0/Kn as in the statement (other
restrictions on β0 will be given in Step 4 and Step 5). Since we are looking for K > 1,
we also have δg(x, y) < β0. Thanks to Step 2, we can consider a coordinate patch
τk : Uzk ⊂ Rd → Bδg (zk, r(zk)) ⊂ M so that the ball Bδg (x, β0) is included in the
compact set Bδg (zk, r(zk)−R). Thanks to Step 1, there is a geodesic

γ : [0, 1] −→ Bδg (zk, r(zk)−R)

starting from x and stopping at y. By using the symmetry of (x, y) 7→e(Kn−K,Kn](x, y),
we obtain the following integral formulas

(60)

e(Kn−K,Kn](x, x) + e(Kn−K,Kn](y, y)− 2e(Kn−K,Kn](x, y)

= e(Kn−K,Kn](y, y)− e(Kn−K,Kn](y, x)

− [e(Kn−K,Kn](x, y)− e(Kn−K,Kn](x, x)]

=

∫ 1

0

∂

∂t1
{e(Kn−K,Kn](γ(t1), y)− e(Kn−K,Kn](γ(t1), x)}dt1

=

∫ 1

0

∫ 1

0

∂2

∂t1∂t2

{
e(Kn−K,Kn](γ(t1), γ(t2))

}
dt1dt2.
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Step 4. — Assuming that β0 is smaller than the constant α0 of Theorem 11, it is
natural to compare the previous integral formula by replacing e(Kn−K,Kn] with its
principal term appearing in (58). More precisely, let us introduce

(61) e℘(Kn−K,Kn](x, y) = Kd

∫ n

n−1

νd−1σ̂d−1(Kνδg(x, y))
dν

(2π)d/2
.

We now claim that the following inequality holds true for any (t1, t2) ∈ [0, 1]2:

(62)
∣∣∣∣ ∂2

∂t1∂t2

{
e(Kn−K,Kn](γ(t1), γ(t2))− e℘(Kn−K,Kn](γ(t1), γ(t2))

}∣∣∣∣
6 C(Kn)d+1δg(x, y)2,

where C merely depend on the Riemannian structure of M. To obtain that bound,
we work with the coordinate patch τk : Uzk ⊂ Rd → Bδg (zk, r(zk)) ⊂ M around x

and y as above:

e(Kn−K,Kn](γ(t1), γ(t2)) =

Uzk×Uzk→R︷ ︸︸ ︷
e(Kn−K,Kn] ◦

(
τk ⊕ τk

) ∈Uzk×Uzk︷ ︸︸ ︷(
τ−1
k ◦ γ(t1), τ−1

k ◦ γ(t2)
)
.

By denoting (p, q) a generic point of Uzk × Uzk , the previous formula allows us to
write the double derivative

∂2

∂t1∂t2

{
e(Kn−K,Kn](γ(t1), γ(t2))

}
as follows (in which we denote by (τ−1

k )i the i-th coordinate of τ−1
k ):

d∑
i=1

d∑
j=1

d

dt1

(
(τ−1
k )i ◦ γ(t1)

)
× d

dt2

(
(τ−1
k )j ◦ γ(t2)

)
× Λij

with Λij =
∂2

∂pi∂qj
{e(Kn−K,Kn] ◦ (τk ⊕ τk)}

∣∣∣
(τ−1
k ◦γ(t1),τ−1

k ◦γ(t2))
.

A similar computation holds true for e℘(Kn−K,Kn]. Here is the point where we really
need the asymptotic given by Theorem 11 of the spectral function with derivatives
and holding uniformly on any compact subset of the domain Bδg (zk, r(zk)) of the
local chart τ−1

k given by the coordinate patch τk. More precisely we choose the com-
pact subset Bδg (zk, r(zk)−R) that turns out to contain the geodesic γ (see Step 3).
Theorem 11 then shows the bound (uniformly in (t1, t2) ∈ [0, 1]2):
∂2

∂pi∂qj

{
(e(Kn−K,Kn] − e℘(Kn−K,Kn]) ◦ (τk ⊕ τk)

}∣∣∣(
τ−1
k ◦γ(t1),τ−1

k ◦γ(t2)
) = O

(
(Kn)d+1

)
.

And hence we get∣∣∣∣ ∂2

∂t1∂t2

{
e(Kn−K,Kn](γ(t1), γ(t2))− e℘(Kn−K,Kn](γ(t1), γ(t2))

}∣∣∣∣
6 C(Kn)d+1

d∑
i=1

d∑
j=1

∣∣∣ d
dt1

(
(τ−1
k )i ◦ γ(t1)

)∣∣∣× ∣∣∣ d
dt2

(
(τ−1
k )j ◦ γ(t2)

)∣∣∣.
J.É.P. — M., 2022, tome 9



774 R. Imekraz

where C merely depends on the Riemannian structure of M (we recall that Step 2
allows us to work in a finite atlas and with a finite collection of compact subsets
Bδg (zk, r(zk)−R)). Remembering now that γ : [0, 1] → M is a geodesic between x

and y, the speed of γ is constant and must equal δg(x, y) (since we have parametrized
the curve with [0, 1]). In other words, we have ‖γ′(t1)‖Tγ(t1)M

= δg(x, y) in the tangent
space Tγ(t1)M endowed with its Riemannian inner product. Still using that we are
working with a finite atlas, we clearly obtain, for a suitable uniform constant C > 0,
the following bound

∀ t1 ∈ [0, 1],
∣∣∣ d
dt1

(
(τ−1
k )i ◦ γ(t1)

)∣∣∣ 6 C ‖γ′(t1)‖Tγ(t1)M
= Cδg(x, y).

A similar reasoning may be done for t2 and (62) is proved.

Step 5. — We now claim that if β0 is small enough, then the contribution of the prin-
cipal term e℘(Kn−K,Kn] defined in (61) is given by the following equivalence (uniformly
in (t1, t2) ∈ [0, 1]2):

(63) ∂2

∂t1∂t2
e℘(Kn−K,Kn](γ(t1), γ(t2)) ' K(Kn)d+1δg(x, y)2,

where the constants of equivalence merely depend on the dimension d = dim(M).
To prove such estimates, we shall use the equality δg(γ(t1), γ(t2)) = δg(x, y)|t1 − t2|
coming from the fact that geodesic γ : [0, 1]→M has a speed equaling δg(x, y). Since
the function σ̂d−1 : (0,+∞) → R admits an even smooth extension to R (see (48)
and (56)), one may write

σ̂d−1

(
Kνδg(γ(t1), γ(t2))

)
= σ̂d−1

(
Kνδg(x, y)|t1 − t2|

)
= σ̂d−1

(
Kνδg(x, y)(t1 − t2)

)
and hence
∂2

∂t1∂t2
e℘(Kn−K,Kn](γ(t1), γ(t2))

= Kd

∫ n

n−1

νd−1 ∂2

∂t1∂t2
σ̂d−1

(
Kνδg(x, y)(t1 − t2)

) dν

(2π)d/2

= −Kd+2δg(x, y)2

∫ n

n−1

νd+1σ̂d−1
′′(
Kνδg(x, y)(t1 − t2)

) dν

(2π)d/2
.

Remember now that x and y satisfy the inequality δg(x, y) < β0/Kn. In the last
integral, we see that the term Kνδg(x, y)(t1 − t2) belongs to the interval (−β0, β0).
Differentiating and taking the real part of the Poisson formula (48) give

−σ̂d−1
′′
(t) =

1

2d/2−1Γ((d− 1)/2)
√
π

∫ 1

−1

cos(ts)s2(1− s2)(d−3)/2ds.

Here is our last restriction for β0: due to the continuity of σ̂d−1
′′ at 0, if β0 is small

enough then one obviously has

∃ c > 0, ∃C > 0, ∀ t ∈ (−β0, β0), c 6 −σ̂d−1
′′
(t) 6 C.

These inequalities lead to (63).
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Step 6. — By plugging (62) and (63) in (60), we get the following inequality (for
suitable positive constants C1 and C2):

e(Kn−K,Kn](x, x) + e(Kn−K,Kn](y, y)− 2e(Kn−K,Kn](x, y)

> (C1K
d+2 − C2K

d+1)nd+1δg(x, y)2.

Coming back to (53) and (51), there is also another positive constant C3 > 0 satisfying

δn(x, y)2 >
[C1K

d+2 − C2K
d+1

C3Kd

]
n2δg(x, y)2.

A similar argument would show

δn(x, y)2 6
[C1K

d+2 + C2K
d+1

C3Kd

]
n2δg(x, y)2.

We conclude by making K tend to +∞. �

Theorem 10 follows by an application of Proposition 13 for the constant β = β0 ∈
(0, 1) of Proposition 14. Upon increasing the constants K0 and c, we assume that
those numbers have the same meaning in Proposition 13 and Proposition 14. In the
zone δg > β0/Kn, we have 1/c 6 δn 6 c and hence

β0

c
min(1,Knδg) 6 δn 6

c

β0
min(1,Knδg).

Similarly, in the zone δg < β0/Kn, the inequalities (1/c)Knδg 6 δn 6 cKnδg hold
true and so do the following ones

1

c
min(1,Knδg) 6 δn 6 cmin(1,Knδg).

Hence we get (55) in which one may choose C = c/β0.

7. Preliminaries for proofs of Theorems 2 and 3

For our purpose, a Gaussian process (fG,ω(x))x∈M on (M, δg) is defined as a family
of real random variables satisfying the following two properties

(i) for any finite subset {x1, . . . , xk} ⊂M, the random vector

ω ∈ Ω 7−→ (fG,ω(x1), . . . , fG,ω(xk)) ∈ Rk

is a centered Gaussian vector. In other words, any linear combination

ω 7−→
k∑
i=1

αif
G,ω(xi),

with αi ∈ R, is centered and Gaussian.
(ii) the function (x, y) ∈ M2 7→ Eω[fG,ω(x)fG,ω(y)], called the covariance struc-

ture, is continuous. An equivalent condition is the continuity of the function x 7→
fG,ω(x) from M to L2(Ω).
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Here is the simple example of a Gaussian process we are interested in: for any
continuous function c : M → `2(N) the process (fG,ω(x))x∈M given by fG,ω(x) =∑
`∈N g`(ω)c`(x) is Gaussian. As recalled in the introduction, we shall need the fol-

lowing pseudo-distance δ given by

∀ (x, y) ∈M2, δ(x, y) :=
√

Eω[|fG,ω(x)− fG,ω(y)|2].

We note that if the Gaussian random series
∑
fG,ωn defined in (21) almost surely

converges in C0(Ms) (for a submanifold Ms of M) then the random series
∑
fG,ωn (x)

almost surely converges for any x ∈Ms. For the sake of clarity, we state the following
result.

Proposition 15. — There is a constant K0 > 1 merely depending on the Riemannian
manifold M such that for any K > K0 and for any sequence (fn)n>1 satisfying fn ∈
E(Kn−K,Kn] for n > 1 (see (13)), then the following assertions are equivalent:

(i) the series
∑
‖fn‖2L2(M) is convergent,

(ii) for any x ∈M, the random series
∑
fG,ωn (x) converges in L2(Ω) to a Gaussian

random variable,
(iii) for any x ∈M, the random series

∑
fG,ωn (x) almost surely converges in R,

(iv) there is x ∈M such that the random series
∑
fG,ωn (x) almost surely converges

in R.
Moreover, the previous statements imply the following one:

(v) the family of random variables fG,ω(x) =
∑
n>1 f

G,ω
n (x) is a Gaussian process

on M and its Dudley pseudo-distance δ : M2→ [0,+∞) is given, for any (x, y)∈M2, by

(64) δ(x, y)2 = Eω

[∣∣fG,ω(x)− fG,ω(y)
∣∣2] =

∑
n>1

‖fn‖2L2(M) δn(x, y)2,

where the partial pseudo-distance δn is defined in (52).
Finally, in the specific case M = Sd, a similar statement holds true if each fn

belongs to the eigenspace ker(∆+n(n+d−1)) provided that we replace fG,ωn with (20)
and δn with (35).

Proof

(i)⇔ (ii). — For any x ∈M, the random variable fG,ωn (x) is centered and Gaussian
with variance equaling

Eω

[
|fG,ωn (x)|2

]
=

‖fn‖2L2(M)

dim(E(Kn−K,Kn])

∑
λk∈(Kn−K,Kn]

φk(x)2.

By orthogonality of the random variables (fG,ωn (x))n>1 in L2(Ω), it is clear and well-
known that the Gaussian series

∑
fG,ωn (x) converges in L2(Ω) if and only if the series∑

Eω[|fG,ωn (x)|2] converges and we have

Eω

[∣∣∣∑
n>1

fG,ωn (x)
∣∣∣2] =

∑
n>1

Eω[|fG,ωn (x)|2].
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Thanks to (50) and (51), we get the equivalence (i)⇔ (ii) and there are two constants
C > 1 and K0 > 1 that merely depend on the Riemannian structure of M such that
for any K > K0 we have

(65) 1

C

∑
n>1

‖fn‖2L2(M) 6 Eω

[∣∣∣∑
n>1

fG,ωn (x)
∣∣∣2] 6 C∑

n>1

‖fn‖2L2(M) .

(iii)⇔ (iv). — Obvious.

(i)⇔ (iii) and (iv)⇔ (i). — See for instance [LQ18b, Cor. III.6, p. 26] and the previ-
ous computations.

Proof of (v). — The finite linear combination
∑p
i=1 αi

(∑
n>1 f

G,ω
n (xi)

)
, with αi ∈ R,

is Gaussian because it is the limit in L2(Ω) of the Gaussian random variables
N∑
n=1

( p∑
i=1

αif
G,ω
n (xi)

)
as N → +∞ (with the same argument as in (i)⇔ (iii)).

We now have to check the continuity of the covariance structure. By using the nota-
tion (52) and orthogonality arguments, the definition (21) of fG,ωn directly proves (64).
We recall that the expected continuity is equivalent to the continuity of the function
x ∈M 7→ fG,ω(x) ∈ L2(Ω). But the partial pseudo-distance δn are continuous on M2

and uniformly bounded onM2 (see (54)). Hence, the right-hand side of (64) absolutely
converges in C0(M2) and we obtain the expected continuity.

Towards the case M = Sd. — For the sphere Sd, we work with (20). In the same spirit
as (38), we have ∑

λ2
k=n(n+d−1)

φk(x)2 =
dim(En)

volSd(Sd)
.

From such an identity, we see that the equivalence (65) becomes

Eω

[∣∣∣∑
n>1

fG,ωn (x)
∣∣∣2] =

1

volSd(Sd)
∑
n>1

‖fn‖2L2(Sd).

We also deduce that the partial pseudo-distances δn, associated to the sequence of
the eigenspaces of ∆ and defined in (35), are uniformly bounded on Sd × Sd (an
information used in the proof of (v)):

�(66) δn 6
2√

volSd(Sd)
.

8. Proof of Theorem 2 for spheres Sd with d > 2

Thanks to the convergence of
∑
n>1 ‖fn‖

2
L2(Sd) and Point v) of Proposition 15, we

know that the process
(∑

n>1 f
G,ω
n (x)

)
x∈Sd is Gaussian and so is its restriction to any

compact submanifold Ms. We begin by the following proposition.
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Proposition 16. — Let us consider a Gaussian process (Fω(x))x∈Sd whose covariance
structure reads

(67) ∀ (x, y) ∈ Sd × Sd, Eω[Fω(x)Fω(y)] = C (〈x, y〉)

for some continuous function C : [−1, 1] → R. Then the following statement are
equivalent:

(i) the condition
∫ 1

0
((C (1)− C (cos(t)))1/2/t

√
ln(1/t)) dt < +∞ is fulfilled,

(ii) the Gaussian process (Fω(x))x∈Sd admits a version (F̃ω(x))x∈Sd which is
sample-continuous in the following sense:

– with probability one, the function x 7→ F̃ω(x) is continuous from Sd to R,
– for any x ∈M, the equality P[Fω(x) = F̃ω(x)] = 1 holds true.

(iii) on some fixed geodesic arc Γ of Sd, the Gaussian process (Fω(x))x∈Γ process
on Γ admits a version which is sample-bounded in the following sense:

– with probability 1, the function x 7→ F̃ω(x) is bounded from Γ to R,
– for any x ∈M, the equality P[Fω(x) = F̃ω(x)] = 1 holds true.

Proof

Preliminary remarks. — Note that due to the definition (67) of the function C and to
the Cauchy-Schwarz inequality, we easily check the inequality |C (u)| 6 C (1) for any
u ∈ [−1, 1] (so the square root in the integral in Point i) is well defined). Then one
may compute the Dudley pseudo-distance δ of the Gaussian process (Fω(x))x∈Sd :

δ(x, y) :=
√

Eω[|Fω(x)− Fω(y)|2] =
√

2C (1)− 2C (〈x, y〉).

We now note that for any two points x and y on the sphere Sd we have 〈x, y〉 =

cos(δg(x, y)) where δg(x, y) stands for the Riemannian distance on Sd. In other words,
we have

(68) δ(x, y) =
√

2C (1)− 2C (cos(δg(x, y))).

Now from the classical result [Sch42, p. 101, Th. 1] by Schoenberg, there exists a
sequence of non-negative coefficients (un)n>0 satisfying

∀ θ ∈ R, C (cos(θ)) =

+∞∑
n=0

unP
(d/2−1,d/2−1)
n (cos(θ))

and such that series converges at θ = 0 (in other words
∑+∞
n=0 n

d/2−1un < +∞).

(i)⇒ (ii). — We may cover Sd by a finite set of closed Riemannian balls:

Sd =
⋃

16k6N
Bk with Bk := Bδg (ak, π/4) and ak ∈ Sd.

In order to show (ii), it is clear that it is sufficient to prove that each Gaussian
process (Fω(x))x∈Bk , for 1 6 k 6 N , admits a sample-continuous version. Thanks
to the Dudley theorem, it is sufficient to show the entropy conditions of the Dudley
pseudo-distances of the N Gaussian processes (Fω(x))x∈Bk . Since each closed ball Bk
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has a diameter equaling π/2 < π, we may use Proposition 9 (with ϑ = π/4) to get
the equivalence (up to multiplicative constants independent of x and y):

δ(x, y)2 = 2

+∞∑
n=1

un

[
P (d/2−1,d/2−1)
n (1)− P (d/2−1,d/2−1)

n (cos(δg(x, y)))
]

δ(x, y)2 '
+∞∑
n=1

unn
d/2−1 min(1, nδg(x, y))2.(69)

The function Υ : t ∈ [0,+∞) 7→
√∑

n>1 unn
d/2−1 min(1, nt)2 fulfills the assump-

tion of Proposition 6. Note that the probability Riemannian volume µ of Sd satisfies
(28) (with suitable possibly different constants) on the ball Bk since Bk is a sub-
manifold with smooth boundary. Then the conclusion of Proposition 6 combined with
(68) and (69) shows that the entropy condition of each (Fω(x))x∈Bk is equivalent to
Point (i).

(ii)⇒ (iii). — Obvious.

(iii) ⇒ (i). — The main point is that (67) implies that the restriction of the Gauss-
ian process (Fω(x))x∈Sd is stationary on any geodesic closed curve (identified as the
torus T). By applying a finite set of translations to the Gaussian process (Fω(x))x∈Γ,
one obtains the almost sure boundedness on the whole geodesic curve containing Γ.
So there is no loss of generality to assume that Γ is the whole geodesic curve of the
points xθ = (cos(θ), sin(θ), 0, . . . , 0) for θ ∈ [0, 2π]. But the Dudley-Fernique theorem
ensures that the almost sure boundedness is equivalent to the entropy condition on Γ.
In order to use Proposition 6 and the equivalence (69) of the Dudley pseudo-distance,
we need to restrict to a subcurve of Γ on which the geodesic distance is strictly less
that π, for instance

(70) Γ+ :=
{

(cos(θ), sin(θ), 0, . . . , 0), θ ∈ [0, π/2]
}
.

It is easy to see that the entropy condition on Γ+ is still satisfied.(7) Let us now denote
by δΓ+ the Dudley pseudo-distance on Γ+ of the Gaussian process (Fω(x))x∈Γ+ . Due
to the equivalence (69), we still have δΓ+ ' Υ(δg) (where δg equals both the geodesic
distance on Γ+ and of course the geodesic distance on Sd due to the definition of Γ+).
Moreover, the length measure of Γ+ obviously satisfies inequalities like (28) (with
σ = 1). As above, the conclusion of Proposition 6 shows Point (i). �

In the sequel of this part, we shall consider the case of the Gaussian process fG,ω =∑
n>1 f

G,ω
n defined in (20) with

∑
n>1 ‖fn‖2L2(Sd) < +∞. The proof of Proposition 15

(7)We indeed have the inequality Nδ(Γ+, 2ε) 6 Nδ(Γ, ε). For the proof, we consider a finite cover
Γ =

⋃
Bδ(xi, ε) with xi ∈ Γ. And so we have Γ+ =

⋃
(Bδ(xi, ε) ∩ Γ+). If Bδ(xi, ε) intersects Γ+

then any element x′i ∈ Bδ(xi, ε) ∩ Γ+ satisfies Bδ(xi, ε) ⊂ Bδ(x
′
i, 2ε). Hence we obtain a cover

Γ+ ⊂
⋃
Bδ(x

′
i, 2ε).
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easily gives the formula

∀ (x, y) ∈ Sd × Sd, E[fG,ω(x)fG,ω(y)] =
∑
n>1

‖fn‖2L2(Sd)

dim(En)

∑
λ2
k=n(n+d−1)

φk(x)φk(y).

Hence, (38) shows that the previous term equals C (〈x, y〉) with

C (θ) =
∑
n>1

‖fn‖2L2(Sd)

dim(En)
cd,nP

(d/2−1,d/2−1)
n (cos(θ))

(where cd,n is given by (39) and satisfies cd,n 'n→+∞ nd/2 and dim(En) 'n→+∞
nd−1) and the function Υ : [0,+∞[→ [0,+∞[ of the previous proof can be chosen as

Υ(t) =

√∑
n>1

‖fn‖2L2(Sd)
min(1, nt)2.

Moreover, the Dudley pseudo-distance of (fG,ω(x))x∈Sd satisfies

(71) δ(x, y) ' Υ(δg(x, y))

uniformly in x and y provided that δg(x, y) 6 π/2 (that is a consequence of Theorem 8
and (64)). We now prove Theorem 2 and so we are interested in studying the almost
sure continuity of x ∈Ms 7→

∑
n>1 f

G,ω
n (x) ∈ R.

Proposition 17. — The equivalence (i)⇔ (ii) of Theorem 2 is true.

Proof
Preliminary remarks. — Let us recall why the existence of a sample-continuous ver-
sion of the Gaussian process

(∑
n>1 f

G,ω
n (x)

)
x∈Ms

on Ms is equivalent to the almost
sure convergence of the Gaussian random series

∑
fG,ωn in C0(Ms), namely Point (i)

of Theorem 2. That is the same argument than that the one used in the classical
theory for compact groups. Actually, we apply the Itô-Nisio theorem (see [LQ18b,
p. 238]) that merely needs to check the additional assumption ensuring that, for any
x ∈ Ms, each random numerical series

∑
fG,ωn (x) is almost surely convergent. Such

a fact is actually proved in Point iii) of Proposition 15.

Step 1

For (i)⇒ (ii), we may clearly assume that Ms is a curve with ends. We can also as-
sume that the diameter ofMs is less than π/2. Letms : [0, π/2]→Ms be a bi-Lipschitz
parametrization and let us consider the Gaussian process (fG,ω(ms(θ)))θ∈[0,π/2].
We clearly have the equivalence

E
[
|fG,ω(ms(θ))− fG,ω(ms(θ

′))|2
]
' Υ(δg(ms(θ),ms(θ

′)))2 ' Υ(|θ − θ′|)2.

Now let γ : [0, π/2] → Γ+ be the natural parametrization of Γ+ defined in (70).
We also have (see (71)):

(72) E
[
|fG,ω(γ(θ))− fG,ω(γ(θ′))|2

]
' Υ(|θ − θ′|)2.

The classical Slepian comparison theorem ensures that the almost sure bound-
edness of the Gaussian processes (fG,ω(ms(θ)))θ∈[0,π/2] is equivalent to that of
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(fG,ω(γ(θ)))θ∈[0,π/2] (see [LT91, Cor. 3.14] or [LQ18b, p. 73]), and so the same is
obviously true for (fG,ω(x))x∈Ms and (fG,ω(x))x∈Γ+ . Then Proposition 16 (or its
proof) implies the following convergence

(73)
∫ 1

0

Υ(t)

t
√

ln(1/t)
dt < +∞.

For the conclusion, we need to admit for a moment Step 2.

(i)⇒ (ii). — That is a direct consequence of Step 2.

(ii) ⇒ (i). — By Step 2 we obtain (73), which is equivalent to Point i) of Proposi-
tion 16 (via (71)) which in turns proves the almost sure continuity of x 7→ fG,ω(x)

(see the preliminary remarks above) on the whole sphere Sd thanks to Point (ii) of
Proposition 16.

Step 2. — We shall prove that (73) is equivalent to the Salem-Zygmund condi-
tion (25). We begin by writing∫ 1

0

√∑
n>1

‖fn‖2L2(Sd) min(1, n2t2)
dt

t
√
− ln(t)

=
∑
p>1

∫ 1/p

1/(p+1)

√∑
n>1

‖fn‖2L2(Sd) min(1, n2t2)
dt

t
√
− ln(t)

'
∑
p>1

√∑
n>1

‖fn‖2L2(Sd) min(1, n2/p2)
1

p
√

ln(p+ 1)
.

We now write√∑
n>1

‖fn‖2L2(Sd) min(1, n2/p2) =

√
1

p2
Up + Vp '

√
Up

p
+
√
Vp,

where Up and Vp are defined as follows

(74) Up =

p−1∑
n=1

n2 ‖fn‖2L2(Sd) and Vp =

+∞∑
n=p

‖fn‖2L2(Sd) ,

with the convention U1 = 0. Hence we get∫ 1

0

Υ(t)

t
√
− ln(t)

dt '
∑
p>1

√
Up

p2
√

ln(p+ 1)
+

√
Vp

p
√

ln(p+ 1)
.

The Vp part is exactly the Salem-Zygmund type term in (25). So the proof will be
finished provided that we show that the contribution of the Up part is controlled by
that of the Vp part:

(75)
∑
p>2

√
Up

p2
√

ln(p+ 1)
.
∑
p>1

√
Vp

p
√

ln(p+ 1)
.
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Thanks to the Cauchy-Schwarz inequality and the definition of Up in (74), we have∑
p>2

√
Up

p2
√

ln(p+ 1)
=
∑
p>2

1
√
p ln(p+ 1)

×
√
Up
√

ln(p+ 1)

p3/2

6 C

(∑
p>2

Up ln(p+ 1)

p3

)1/2

6 C

(∑
n>1

‖fn‖2L2(Sd) n
2
∑

p>n+1

ln(p+ 1)

p3

)1/2

6 C

(+∞∑
n=1

‖fn‖2L2(M)2 ln(n+ 1)

)1/2

.

By using the equivalence
√

ln(n+ 1) '
∑n
p=1 1/p

√
ln(p+ 1) and the definition of Vp

in (74), we obtain∑
p>1

√
Up

p2
√

ln(p+ 1)
6 C

(+∞∑
n=1

‖fn‖2L2(Sd)

( n∑
p=1

1

p
√

ln(p+ 1)

)2)1/2

6 C

(+∞∑
n=1

‖fn‖2L2(Sd)

n∑
p=1

n∑
q=1

1

p
√

ln(p+ 1)q
√

ln(q + 1)

)1/2

6 C

(+∞∑
p=1

+∞∑
q=1

Vmax(p,q)

p
√

ln(p+ 1)q
√

ln(q + 1)

)1/2

.

By bounding Vmax(p,q) 6
√
VpVq, we finally prove (75). �

The following proposition finishes the proof of Theorem 2 for spheres.

Proposition 18. — The equivalence (i)⇔ (iii) is true in Theorem 2.

Proof. — The implication (iii)⇒ (i) is nothing other than the Dudley theorem. Let us
prove the converse implication(i)⇒ (iii). Let us set σ = dim(Ms). By compactness, we
can decompose Ms as a union of σ-dimensional compact submanifolds Ms,1, . . . ,Ms,N

with smooth boundary and with diameter less than π/2:

(76) Ms = Ms,1 ∪ · · · ∪Ms,N , max
x∈Ms,k

y∈Ms,k

δg(x, y) 6
π

2
, ∀ k ∈ {1, . . . , N}.

Point (i) of Theorem 2 implies the almost sure continuity of each x ∈Ms,k 7→ fG,ω(x)

for any k ∈ {1, . . . , N}. Proposition 17 (or its proof) shows that the following condition
holds ∫ 1

0

Υ(t)

t
√

ln(1/t)
dt < +∞.

Note that the probability Riemannian volume of each Ms,k satisfies the assump-
tion (28). As a consequence of Proposition 6, we obtain the entropy condition for
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each Ms,k: ∫ +∞

0

√
ln(Nδ(Ms,k, ε)) dε < +∞.

The definition of the covering number and (76) lead to the following inequality

(77) Nδ(Ms, ε) 6
∑

16k6N

Nδ(Ms,k, ε),

which in turn implies

(78) Nδ(Ms, ε) 6 N ×
∏

16k6N

Nδ(Ms,k, ε).

We then easily deduce Point (iii) of Theorem 2. �

9. Proof of Theorem 3 for Sd with d > 2

The proof developed in the last part already shows that the following two numbers
are equivalent (up to multiplicative constants):

(i) the number
∫ 1

0
(Υ(t)/t

√
ln(1/t)) dt,

(ii) the Salem-Zygmund expression
∑
p>1(1/p

√
ln(p+ 1))

(∑
n>p ‖fn‖2L2(Sd)

)1/2.
In order to add the the entropy integral

∫ +∞
0

√
ln(Nδ(Ms, ε)) dε to that list,

we merely need the following two arguments.

(a) The entropy integral onMs is equivalent to sup16k6N

∫ +∞
0

√
ln(Nδ(Ms,k, ε)) dε.

To see that equivalence, one firstly precises (77) as follows

max
16k6N

Nδ(Ms,k, 2ε) 6 Nδ(Ms, ε),

which can be proved as explained after (70). Then, we easily can bound from below
the entropy integral

∫ +∞
0

√
ln(Nδ(Ms, ε)) dε. To bound from above the entropy inte-

gral on Ms by sup16k6N

∫ +∞
0

√
ln(Nδ(Ms,k, ε)) dε, we may use (78) by remembering

that N in (78) can be chosen merely depending on the submanifold Ms and that the
diameter of (Ms, δ) is bounded by C(d)

√
limn>1 ‖fn‖2L2(Sd)

(see (66)).

(b) Thanks to Corollary 7, each entropy integral
∫ +∞

0

√
ln(Nδ(Ms,k, ε)) dε of Ms,k

is equivalent to the same number
∫ 1

0
(Υ(t)/t

√
ln(1/t)) dt.

The last thing to explain is why we can equivalently control the expectation

Eω

[
sup
x∈Ms

∣∣∣∑
n>1

fG,ωn (x)
∣∣∣].

The quantitative version of the Dudley theorem will allow to bound from above the
last expectation by the entropy integral (see [LT91, Th. 11.17]): we fix x0 ∈ Ms and
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write (thanks to the symmetry of the Gaussian process):

Eω

[
sup
x∈Ms

∣∣∣∑
n>1

fG,ωn (x)
∣∣∣] 6 Eω

[∣∣∣∑
n>1

fG,ωn (x0)
∣∣∣]+ Eω

[
sup

x,y∈Ms

∣∣∣∑
n>1

fG,ωn (x)− fG,ωn (y)
∣∣∣]

6 Eω

[∣∣∣∑
n>1

fG,ωn (x0)
∣∣∣]+ 2Eω

[
sup
x∈Ms

∑
n>1

fG,ωn (x)

]
.

The last expectation is controlled by the entropy integral ([LT91, Th. 11.17]) whereas
the first is controlled as follows (see the proof of Proposition 15):

Eω

[∣∣∣∑
n>1

fG,ωn (x0)
∣∣∣] 6 Eω

[∣∣∣∑
n>1

fG,ωn (x0)
∣∣∣]1/2

6 C

(∑
n>1

‖fn‖2L2(Sd)

)1/2

6 C
√

ln(2)
∑
p>1

1

p
√

ln(p+ 1)

(∑
n>p

‖fn‖2L2(Sd)

)1/2

(see p = 1)

and then we note that we already proved that the Salem-Zygmund term is controlled
by the entropy integral at the beginning of this part.

For bounding Eω

[
supx∈Ms

∣∣∑
n>1 f

G,ω
n (x)

∣∣
C0(Ms)

]
from below, we may use the

quantitative version of the Fernique theorem (see [LT91, Th. 13.3]) and the Slepian
comparison theorem (see the proofs of (iii) ⇒ (i) in Proposition 16 and Step 1 in
Proposition 17).

10. Proof of Theorem 2 and 3 for compact manifolds

Here fG,ω is defined in (21) and so the Dudley pseudo-distance δ implicitly depends
on K since fG,ωn is a random wave with values in E(Kn−K,Kn]. We assume that K is
large enough so that the conclusion of Theorem 10 holds true.

– For the proof of the analogue of Proposition 17, the mere thing to clarify is the
proof of Step 1. Actually, we can repeat some arguments with

Υ(t) =

√∑
n>1

‖fn‖2L2(M) min(1,Knt)2 '
√∑
n>1

‖fn‖2L2(M) min(1, nt)2.

Note the equivalence δ ' Υ(δg). For (i)⇒ (ii), the idea(8) is that the Slepian theorem
shows that the following two Gaussian processes are simultaneously sample-continuous
or simultaneously unbounded:

– (fG,ω(x))x∈Ms on a curveMs of a compact manifoldM and fG,ω(x) defined
in (21),

– (fG,ω(γ(θ))θ∈[0,π/2] with γ : [0, π/2] → Γ+ as in (72) but (fG,ω(x))x∈Sd

defined on the sphere Sd (as in (20) with ‖fn‖L2(M) instead of ‖fn‖L2(Sd)) with

(8)The author is grateful to a referee for that argument.
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the following form:

fG,ω(x) :=
∑
n>1

‖fn‖L2(M)√
dim(En)

∑
λ2
k=n(n+d−1)

gn,k(ω)φk(x), x ∈ Sd.

Repeating the end of argument of Step 1 of Proposition 17 or applying Proposition 17
itself, we get the Salem-Zygmund condition.

For (ii)⇒ (i), the idea is that ii) is equivalent to the condition∫ 1

0

Υ(t)

t
√

ln(1/t)
dt < +∞,

which in turn is equivalent to the entropy condition on the whole manifold M thanks
to Proposition 6 (note that the Riemannian probability volume µ of M satisfies (28)).
We then get (i) thanks to the Dudley theorem.

– For the proof of the analogue of Proposition 18, the argument is much simpler
since Theorem 10 gives an equivalence holding true on the whole manifold M.

– Finally, the quantitative counterpart given by Theorem 3 can be proved com-
pletely similarly once we use the inequalities given by the Slepian theorem (see [LT91,
Cor. 3.14] or [LQ18b, p. 12]).

11. Proof of (18) in Theorem 1, quantitative version

In the following proof, the implicit constants merely depend on M,Ms and K

(except for the setting M = Sd and fn ∈ ker(∆ + n(n + d − 1)) for which K is
obviously irrelevant). Moreover, in the manifold framework, the spectral parameter K
is assumed to be large enough so that the conclusions of Theorem 2 and Theorem 3
hold.

The quantitative part of Theorem 1, namely the equivalence (18), is a direct con-
sequence of Proposition 19, Proposition 22 below and the Cauchy-Schwarz inequality:

(79) Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣] 6 Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣2]1/2

.

Proposition 19. — There is a constant C > 0 such that for any N ∈ N?, any se-
quence (fn) as in Theorem 1 and random variables (Xn) belonging to L2(Ω), the
following holds true

(80) Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣2]1/2

6 C
√

sup
16n6N

E[|Xn|2]×
N∑
p=1

1

p
√

ln(p+ 1)

( N∑
n=p

‖fn‖2L2(M)

)1/2

,

where all the random variables X1(ω), fω1 , . . . , XN (ω), fωN are assumed to be indepen-
dent.
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The last result is analogue to [MP81, p. 53, Lem. 1.1] or [LQ18b, p. 249, Th. III.6]
but the proof of Proposition 19 is somehow simpler and relies, among other arguments,
on fact that the Salem-Zygmund condition (25) is very explicit. We begin by recalling a
form of the contraction principle that we will use for the symmetric random functions
Fn : ω 7→ fωn (see the definitions in (12) and (14)).

Proposition 20. — Let B be a Banach space and F1, . . . , FN be N independent and
symmetric random variables belonging to Lp(Ω, B) for some p ∈ [1,+∞). Then for
any tuple (a1, . . . , aN ) ∈ RN , the following inequalities hold true

min
16n6N

|an| ·E
[∥∥∥ N∑

n=1

Fn

∥∥∥p
B

]1/p

6 E

[∥∥∥ N∑
n=1

anFn

∥∥∥p
B

]1/p

6 max
16n6N

|an| ·E
[∥∥∥ N∑

n=1

Fn

∥∥∥p
B

]1/p

.

Proof. — The first inequality is a consequence of the second one (upon assuming that
each an is not zero and upon replacing an with 1/an). For the second one, we refer
to [LQ18a, p. 136] or the proof of [LT91, Th. 4.4]. �

It is known that the previous result has a reformulation if each coefficient an is
random (see [LT91, Lem. 4.5], [MP81, Th. 4.9, p. 45] or [LQ18a, p. 137, Th. IV.4]). For
the convenience of the reader, we write the proof of the following result (but all ideas
are included in the last references).

Corollary 21. — Let B be a Banach space, F1, . . . , FN be N symmetric random vari-
ables belonging to Lp(Ω, B) for some p ∈ [1,+∞) and A1, . . . , AN be N real random
variables belonging to Lp(Ω,R). We assume that the 2N variables A1,F1,...,AN ,FN
are mutually independent. Then the following inequalities hold true

E

[∥∥∥ N∑
n=1

AnFn

∥∥∥p
B

]1/p

6 E

[
max

16n6N
|An|p

]1/p

·E
[∥∥∥ N∑

n=1

Fn

∥∥∥p
B

]1/p

,(81)

min
16n6N

E[|An|] ·E
[∥∥∥ N∑

n=1

Fn

∥∥∥p
B

]1/p

6 E

[∥∥∥ N∑
n=1

AnFn

∥∥∥p
B

]1/p

.(82)

Proof. — By independence (see [Ime19, App. F] for more details), we may write

(83) E

[∥∥∥ N∑
n=1

AnFn

∥∥∥p
B

]
= Eω1

Eω2

[∥∥∥ N∑
n=1

An(ω1)Fn(ω2)
∥∥∥p
B

]
.

We now freeze ω1 and apply Proposition 20 with respect to the expectation in ω2.
Hence we get

Eω2

[∥∥∥ N∑
n=1

An(ω1)Fn(ω2)
∥∥∥p
B

]
6 max

16n6N
|An(ω1)|p ×Eω2

[∥∥∥ N∑
n=1

Fn(ω2)
∥∥∥p
B

]
.

We then obtain the expected inequality by integrating in ω1.
In order to get the lower bound, we first need to modify the right-hand side of (83).

For ω1 fixed, let us consider θn(ω1) = ±1 such that An(ω1)θn(ω1) = |An(ω1)|.
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By symmetry and independence, one can replace each Fn(ω2) with θn(ω1)Fn(ω2)

in the expectation Eω2 in (83). So we get

(84) E

[∥∥∥ N∑
n=1

AnFn

∥∥∥p
B

]
= Eω1Eω2

[∥∥∥ N∑
n=1

|An(ω1)|Fn(ω2)
∥∥∥p
B

]
.

We now bound from below with the Hölder inequality and the triangular inequality
in ω1, namely Eω1

[‖ · ‖] > ‖Eω1
[ · ]‖, as follows

E

[∥∥∥ N∑
n=1

AnFn

∥∥∥p
B

]
= Eω2

[
Eω1

[∥∥∥ N∑
n=1

|An(ω1)|Fn(ω2)
∥∥∥p
B

]]
> Eω2

[
Eω1

[∥∥∥ N∑
n=1

|An(ω1)|Fn(ω2)
∥∥∥
B

]p]
> Eω2

[∥∥∥ N∑
n=1

Eω1

[
|An(ω1)|Fn(ω2)

]∥∥∥p
B

]
= E

[∥∥∥ N∑
n=1

E[|An|]Fn
∥∥∥p
B

]
.

The second inequality of the statement is then a consequence of Proposition 20. �

Proof of Proposition 19
Step 1. — We first need to compare fωn with fG,ωn . More precisely, we shall prove

(85) Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣2] 6 CEω′Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

|Xn(ω′)|fG,ωn (x)
∣∣∣2].

The distribution equivalence (22) for the manifold framework suggests introducing
the following random variable (collinear to a so-called chi random variable)

(86) ∀ω ∈ Ω, χn(ω) :=
1√

dim(E(Kn−K,Kn])

( ∑
Kn−K<λk6Kn

g2
n,k(ω)

)1/2

.

The case M = Sd with fn ∈ ker(∆ + n(n + d − 1)) is completely similar and merely
needs to change the definition (86). Having assumed the independence of all the
random variables, we may write

(87) Eω′Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

|Xn(ω′)|fG,ωn (x)
∣∣∣2]
= Eω′Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

|Xn(ω′)|χn(ω)fωn (x)
∣∣∣2].

For almost any ω′ ∈ Ω, one may see |Xn(ω′)| as a constant in the expectation Eω.
Hence, the contraction principle given by (82) in L2(Ω,C0(Ms)), with An(ω) = χn(ω)

and Fn(ω) = |Xn(ω′)|fωn (x), gives the bound from below

Eω′Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

|Xn(ω′)|χn(ω)fωn (x)
∣∣∣2]

>
(

inf
16n6N

E[χn]2
)
Eω′Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

|Xn(ω′)|fωn (x)
∣∣∣2].

J.É.P. — M., 2022, tome 9



788 R. Imekraz

By independence and symmetry of each ω 7→ fωn (as in (84)), the last lower bound
equals (

inf
16n6N

E[χn]2
)
Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣2].

Now we use the inequality E[χn] >
√

2/
√
π (see Appendix A) to get (85).

Step 2. — For ω′ fixed, we now recall that
∑N
n=1 |Xn(ω′)|fG,ωn can be seen, with

respect to ω, as a Gaussian random finite sum in the Banach space C0(Ms). We now
invoke the important property stating that all the moments of such a Gaussian sum
are universally equivalent, that is the Gaussian version of the Kahane-Khintchine
inequalities (see [LT91, Cor. 3.2], [MP81, p. 44] or [LQ18a, p. 256, Cor.V.27]). Hence,
(85) implies the following bound

Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣2] 6 CEω′

[
Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

|Xn(ω′)|fG,ωn (x)
∣∣∣]2]

.

Note now that changing fn by Xn(ω′)fn in (21) leads to change fG,ωn by |Xn(ω′)|fG,ωn .
Consequently, Theorem 3 (for fn replaced with Xn(ω′)fn) allows us to replace the
last upper bound with

(88) CEω′

[( N∑
p=1

1

p
√

ln(p+ 1)

( N∑
n=p

Xn(ω′)2‖fn‖2L2(M)

)1/2
)2]

.

Step 3 below will show the concavity of the following function:

Ψ : [0,+∞)N −→ R

(t1, . . . , tN ) 7−→
( N∑
p=1

1

p
√

ln(p+ 1)

( N∑
n=p

tn‖fn‖2L2(M)

)1/2
)2

.
(89)

Note that the number in (88) equals CE[Ψ(X2
1 , . . . , X

2
N )]. Hence, the multidimen-

sional Jensen inequality allows to bound it by

CΨ(E[X2
1 ], . . . ,E[X2

N ]) = C

( N∑
p=1

1

p
√

ln(p+ 1)

( N∑
n=p

E[|Xn|2]‖fn‖2L2(M)

)1/2)2

6 C
(

sup
16n6N

E[|Xn|2]
)( N∑

p=1

1

p
√

ln(p+ 1)

( N∑
n=p

‖fn‖2L2(M)

)1/2)2

.

The expected inequality (80) is proved.

Step 3. — It remains to check the concavity of (89). By developing the square in (89),
we see that is is sufficient to prove the concavity of any continuous function of the form√

Φ1Φ2 on the set Λ := {Φ1 > 0}∩{Φ2 > 0} in which Φ1 : RN → R and Φ2 : RN → R
are two linear functionals. Actually, such a fact is a straightforward consequence
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of the Cauchy-Schwarz inequality applied to the two vectors (
√

Φ1(s),
√

Φ1(t)) and
(
√

Φ2(s),
√

Φ2(t)) for any (s, t) ∈ Λ2:√
Φ1

(
(s+ t)/2

)
Φ2

(
(s+ t)/2

)
=

√
Φ1(s) + Φ1(t)

√
Φ2(s) + Φ2(t)

2

>

√
Φ1(s)

√
Φ2(s) +

√
Φ1(t)

√
Φ2(t)

2
. �

In in order to finish the proof of the numerical equivalence (18), we have to reverse
the inequality (80). Actually, we will use a suitable truncation argument first used by
Marcus and Pisier (see [MP81, p. 53-54, proof of Lem. 1.1 & p. 99, Lem. 3.7]). In our
specific context, the truncation argument is based on the uniform estimate (91) of the
sequence of random variables (χn)n>1 defined in (86).

Proposition 22. — There is a constant C > 0 such that for any N ∈ N? and any
sequence (fn) and random variables (Xn) as in Theorem 1, the following holds true

Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

Xn(ω)fωn (x)
∣∣∣]

> C
(

inf
16n6N

E[|Xn|]
)
×

N∑
p=1

1

p
√

ln(p+ 1)

( N∑
n=p

‖fn‖2L2(M)

)1/2

.

Proof. — The contraction principle (82) and Theorem 3 ensure that we merely have
to prove the following inequality:

(90) Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

fG,ωn (x)
∣∣∣] 6 CEω

[
sup
x∈Ms

∣∣∣ N∑
n=1

fωn (x)
∣∣∣].

As in (87), we have

Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

fG,ωn (x)
∣∣∣] = Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

χn(ω)fωn (x)
∣∣∣],

where all the random variables are assumed to be mutually independent. Let us now
consider a number M > 0 (that will be chosen below) and we bound

Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

fG,ωn (x)
∣∣∣] 6 Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

χn(ω)1χn(ω)>Mf
ω
n (x)

∣∣∣]
+ Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

χn(ω)1χn(ω)6Mf
ω
n (x)

∣∣∣].
By using (79) and (80) with Xn = χn1χn>M and Theorem 3 on the one hand, and
then the contraction principle (81) on the other hand, we obtain

Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

fG,ωn (x)
∣∣∣]

6 C
(

sup
n∈N?

√
E[|χn1χn>M |2]

)
Eω

[
sup
x∈Ms

∣∣∣ N∑
n=1

fG,ωn (x)
∣∣∣]+MEω

[
sup
x∈Ms

∣∣∣ N∑
n=1

fωn (x)
∣∣∣].
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In order to get (90), it is sufficient to justify that there is M > 0 satisfying

sup
n∈N?

√
E[|χn1χn>M |2] <

1

C
.

That is actually a consequence of the following more precise bound (See Appendix A):

�(91) E[|χn1χn>M |2] = E[χ2
n1χn>M ] 6 E[χ4

n/M
2] 6

3

M2
.

12. Proof of Theorem 1, qualitative version

The end of the proof of Theorem 1 is a consequence of the equivalence (i) ⇔ (iv)
of the following result.

Proposition 23. — Let us assume the same assumptions as in Theorem 1. Then the
following assertions are equivalent:

(i) the random series
∑
Xn(ω)fωn almost surely converges in C0(Ms),

(ii) with probability 1, the sequence of partial sums of the random series
∑
Xn(ω)fωn

is bounded in C0(Ms),
(iii) the sequence of partial sums of the random series

∑
Xn(ω)fωn is bounded in

L1(Ω,C0(Ms)),
(iv) the Salem-Zygmund condition

+∞∑
p=1

1

p
√

ln(p+ 1)

(+∞∑
n=p

‖fn‖2L2(M)

)1/2

< +∞

holds,
(v) the random series

∑
Xn(ω)fωn converges in L2(Ω,C0(Ms)).

Remark 24. — The Gaussian random series
∑
fG,ωn can be written as

∑
χn(ω)fωn

(see (87)) in which the sequence (Xn) = (χn) satisfies the assumptions (17) (see
Appendix A). In other words, Proposition 23 holds true for the Gaussian random
series

∑
fG,ωn .

Let us prove Proposition 23.

(i)⇒ (ii). — Obvious.

(ii) ⇒ (iii). — We shall use the Paley-Zygmund inequality in a similar spirit to
[MP81, p. 55, Lem. 1.2] and [Ime18, Prop. 2.17]. For any N ∈ N? and ω ∈ Ω, we set
the partial sum

SN (ω) :=

N∑
n=1

Xn(ω)fωn .

We now give a proof by contradiction and we may assume that there is a subsequence
of integers (Nk)k>1 satisfying

(92) E[‖SNk‖C0(M)s ] > 2k.
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The classical Paley-Zygmund inequality [Kah85, p. 8, Ineq. II] can be combined to
Proposition 19 and Proposition 22 so we get

P
(
‖SNk‖C0(Ms) >

1

2
E[‖SNk‖C0(Ms)]

)
>

E[‖SNk‖C0(Ms)]
2

4E[‖SNk‖2C0(Ms)
]
> C

inf16n6Nk E[|Xn|]2

sup16n6Nk E[|Xn|2]
.

Therefore (17) and (92) imply

inf
k>1

P
(
‖SNk‖C0(Ms) > k]

)
> 0.

That inequality contradicts ii) since the dominated convergence theorem proves

lim
k→+∞

P(‖SNk‖C0(Ms) > k) = lim
k→+∞

Eω

[
1{‖SNk (ω)‖C0(Ms)

>k}

]
= 0.

(iii)⇒ (iv). — Thanks to Proposition 22 and the assumption (17), we have

sup
N∈N?

N∑
p=1

1

p
√

ln(p+ 1)

( N∑
n=p

‖fn‖2L2(M)

)1/2

< +∞,

which implies

sup
(N,N ′)∈(N?)2

N<N ′

N∑
p=1

1

p
√

ln(p+ 1)

( N ′∑
n=p

‖fn‖2L2(M)

)1/2

< +∞,

and which in turn means the convergence of
+∞∑
p=1

1

p
√

ln(p+ 1)

(+∞∑
n=p

‖fn‖2L2(M)

)1/2

.

(iv) ⇒ (v). — Let us prove that (SN )N>1 is a Cauchy sequence in L2(Ω,C0(Ms)).
As a consequence of Proposition 19, for any integers N ′ > N we have

E
[
‖SN ′ − SN‖2C0(Ms)

]1/2
6 C

√
sup

N<n6N ′
E[|Xn|2]×

N ′∑
p=1

1

p
√

ln(p+ 1)

( N ′∑
n=p

‖fn‖2L2(M)1[N+1,+∞)(n)

)1/2

.

Looking at p = 1 in the Salem-Zygmund condition, we see that (iv) implies the
convergence of the series

∑
‖fn‖2L2(M). We then conclude with the assumption (17)

and the following limit proved via the discrete dominated convergence theorem:

lim
N→+∞

+∞∑
p=1

1

p
√

ln(p+ 1)

(+∞∑
n=p

‖fn‖2L2(M)1[N+1,+∞)(n)

)1/2

= 0.

(v)⇒ (i). — Due to the Markov inequality, we get the convergence in probability in
C0(Ms). Then (i) is a known consequence (see [LT91, Th. 6.1] or [LQ18a, p. 130–131,
Th. III.3]).
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13. Proof of Theorem 5, semi-classical analysis and independence of
the Riemannian metric

The Salem-Zygmund condition (19) depends on the Riemannian structure via the
spectral analysis of the Laplace-Beltrami operator ∆. Hence, we have to prove that
if one considers another Laplace-Beltrami operator ∆ on M (defined with another
Riemannian structure of M), then the Salem-Zygmund condition does not change.

For any K > K0 we set f =
∑
n>1 fn ∈ L2(M) with fn ∈ E(Kn−K,Kn]. Noting

that f1 does not impact the convergence of the Salem-Zygmund condition (19) and
remembering that the subspaces E(Kn−K,Kn] are orthogonal, we see that (19) is indeed
equivalent to

(93)
+∞∑
p=1

‖Π(Kp,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
< +∞,

where Π(Kp,+∞) : L2(M) → L2(M) is the spectral projector on the spectral window
(Kp,+∞) with respect to

√
−∆. Although the inequality K > K0 is essential in the

proof of Theorem 1 (see Theorem 10), it turns out that (93) is independent of K > 0

from a Hilbertian point of view. More precisely, the following lemma shows the first
part of the statement of Theorem 5.

Lemma 25. — For any f ∈ L2(M), the condition (93) is independent of K ∈ (0,+∞).

Proof. — Let K ′ and K be two spectral parameters satisfying K 6 K ′. Let us more-
over consider a positive integer q satisfying K 6 K ′ 6 Kq. Thus we clearly have

+∞∑
p=1

‖Π(Kp,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
>

+∞∑
p=1

‖Π(K′p,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
.

In order to reverse that condition, we just note that for any r ∈ {0, 1, . . . , q − 1}
we have K ′p 6 Kpq +Kr and hence for p > 1

‖Π(K′p,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
>
‖Π(Kpq+Kr,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
>
‖Π(Kpq+Kr,+∞)(f)‖L2(M)

(pq + r)
√

ln(pq + r + 1)
.

By summing over r and p, we get

+∞∑
p=1

‖Π(K′p,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
=

1

q

q−1∑
r=0

+∞∑
p=1

‖Π(K′p,+∞)(f)‖L2(M)

p
√

ln(p+ 1)

>
1

q

q−1∑
r=0

+∞∑
p=1

‖Π(Kpq+Kr,+∞)(f)‖L2(M)

(pq + r)
√

ln(pq + r + 1)
=

1

q

+∞∑
p=q

‖Π(Kp,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
. �

The sequel is devoted to the proof of the invariance of (93) with respect to the choice
of the Laplace-Beltrami operator ∆. We first need a semi-classical reformulation of
the Salem-Zygmund condition.
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Lemma 26. — Let us fix a smooth function Ψ : [0,+∞)→ [0, 1] satisfying

t ∈ [0, 1] =⇒ Ψ(t) = 1,

t > 2 =⇒ Ψ(t) = 0.
(94)

Then, for any f ∈ L2(M), the Salem-Zygmund condition (93) is equivalent to the
following semi-classical condition

(95)
∫ 1

0

‖f −Ψ(−h2∆)f‖L2(M)

h
√
− ln(h)

dh < +∞.

Proof. — Following (9), we decompose f =
∑
k∈N ckφk with (ck) ∈ `2(N). Hence

we get

f −Ψ(−h2∆)f =
+∞∑
k=0

(1−Ψ(h2λ2
k))ckφk,

‖f −Ψ(−h2∆)f‖2L2(M) =

+∞∑
k=0

(1−Ψ(h2λ2
k))2|ck|2.

The imposed conditions on Ψ allow us to bound as follows∑
λk>
√

2/h

|ck|2 6 ‖f −Ψ(−h2∆)f‖2L2(M) 6
∑

λk>1/h

|ck|2,

‖Π(
√

2/h,+∞)(f)‖L2(M) 6 ‖f −Ψ(−h2∆)f‖L2(M) 6 ‖Π(1/h,+∞)(f)‖L2(M).

By integrating with respect to h ∈ (0, 1], we get∫ 1

0

‖Π(
√

2/h,+∞)(f)‖L2(M)

h
√
− ln(h)

dh 6
∫ 1

0

‖f −Ψ(−h2∆)f‖L2(M)

h
√
− ln(h)

dh(96)

6
∫ 1

0

‖Π(1/h,+∞)(f)‖L2(M)

h
√
− ln(h)

dh.(97)

By using that h ∈ (0, 1] 7→ ‖Π(1/h,+∞)(f)‖L2(M) is non-decreasing, we see that the
upper bound in (97) is bounded from above by∑
p>1

∫ 1/p

1/(p+1)

‖Π(1/h,+∞)(f)‖L2(M)

h
√
− ln(h)

dh 6
∑
p>1

‖Π(p,+∞)(f)‖L2(M)

∫ 1/p

1/(p+1)

dh

h
√
− ln(h)

.
∑
p>1

‖Π(p,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
.

Similarly, we see that the lower bound in (96) is bounded from below by∑
p>1

∫ 1/p

1/(p+1)

‖Π(
√

2/h,+∞)(f)‖L2(M)

h
√
− ln(h)

dh &
∑
p>2

‖Π(
√

2p,+∞)(f)‖L2(M)

p
√

ln(p+ 1)
.

We conclude with Lemma 25. �
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Before analyzing the semi-classical Salem-Zygmund condition (95), we need to
recall a few facts about semi-classical symbols and semi-classical pseudo-differential
operators. The standard relation between a symbol s : Rd × Rd × (0, 1] → R and its
quantized operator, usually denoted by s(x,D, h), is given by the formula

(98) ∀F ∈ S(Rd), ∀x ∈ Rd, (s(x,D, h)F )(x) =

∫
Rd
ei〈x,ξ〉s(x, ξ, h)F̂ (ξ)

dξ

(2π)d
.

For the particular case s(x, hξ), one prefers writing s(x, hD). Such operators, with h
running over (0, 1], are called semi-classical pseudo-differential operators. Here is the
result we need in the sequel.

Lemma 27. — For any symbols s1 and s2 belonging to C∞b (Rd×Rd) and having disjoint
supports, for any N ∈ N?, there are constant C > 0 and CN such that the following
estimates uniformly hold for any h ∈ (0, 1]:

‖s1(x, hD)‖L2(Rd)→L2(Rd) 6 C,(99)

‖s1(x, hD) ◦ s2(x, hD)‖L2(Rd)→L2(Rd) 6 CNh
N .(100)

Proof. — We will use the notations of [Ler10, p. 22–23]. For any m ∈ R, one denotes
by Smscl the space of symbols s(x, ξ, h) satisfying for any α ∈ Nd and β ∈ Nd:

sup
x∈Rd

sup
ξ∈Rd

sup
h∈(0,1]

|(∂αξ ∂βx s)(x, ξ, h)|hm−|α| < +∞.

With those notations, the symbols s1(x, hξ) and s2(x, hξ) belong to the class S0
scl.

The first estimate is merely the semi-classical Calderon-Vaillancourt (see [Ler10,
Th. 1.1.30]). For the second estimate, [Ler10, Th. 1.1.31] states that there is a “com-
position” symbol s(x, ξ, h) belonging to the class S0

scl satisfying

s1(x, hD) ◦ s2(x, hD) = s(x,D, h).

Then we use the semi-classical symbolic calculus at rank N of s1(x, hξ) ∈ S0
scl and

s2(x, hξ) ∈ S0
scl (see [Ler10, Th. 1.1.32]) that ensures that the “composition” symbol

s(x, ξ, h) satisfies

s(x, ξ, h)−
∑
|α|<N

1

α!iα
∂αξ {s1(x, hξ)}∂αx {s2(x, hξ)} ∈ S−Nscl ,

which means that s(x, ξ, h) belongs to S−Nscl because the partial sum vanishes thanks to
the assumption of disjoints supports. Finally, a new use of the semi-classical Calderon-
Vaillancourt (see [Ler10, Th. 1.1.30]) proves (100). �

We now recall the local expression of the Laplace-Beltrami operator ∆ of M. Let
τ : U ⊂ Rd → V ⊂M be a coordinate patch of M. For any x ∈ U , we denote by gx the
d × d positive-definite matrix corresponding to the Riemannian metric at τ(x) ∈ M

via the coordinate patch τ . Moreover, (gijx )i,j is the usual notation for the inverse
of the matrix gx. For any smooth function f : M → C with compact support in V ,
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the action of the Laplace-Beltrami operator on f can be seen as that of a differential
operator acting on f ◦ τ : U → R as follows (see for instance [Shu01, p. 167]):

(∆f)(τ(x)) =
1√

det gx

d∑
i=1

d∑
j=1

∂xi

(
gijx
√

det gx∂xj (f ◦ τ)
)

=

d∑
i=1

d∑
j=1

gijx ∂xi∂xj (f ◦ τ) + differential terms of order 1.

By introducing the so-called principal symbol of −∆ on the coordinate patch τ

(101) ℘ : (x, ξ) ∈ Rd × Rd 7−→ 1U (x)

d∑
i=1

d∑
j=1

gijx ξiξj ∈ R

and using the pseudo-differential notation (98) above (without h), the principal term
of (−∆f)(τ(x)) reads

−
d∑
i=1

d∑
j=1

gijx ∂xi∂xj (f ◦ τ) = ℘(x,D)(f ◦ τ),

where f ◦ τ belongs to S(Rd) after being extended by 0 outside U . Moreover, on any
compact subset of the domain U of the coordinate patch, there is by continuity a
constant γ > 1 for which the following uniform estimates hold

(102) ∀ ξ ∈ Rd,
1

γ
|ξ|2 6 ℘(x, ξ) 6 γ|ξ|2.

These inequalities implies that −∆ is a second order elliptic operator. We stress that ℘
depends on the chosen coordinate patch τ : U ⊂ Rd → V ⊂ M (although we merely
write ℘ for simplicity).

In order to avoid repeating the same technical assumptions, we set the following
definition.

Definition 28. — We denote by Λ(M) the set of triplets (τ, ψ, ψ̃) as follows
(i) τ : U → V is a coordinate patch of M from an open subset U ⊂ Rd to an open

subset V ⊂M,
(ii) ψ belongs to C∞c (V ),
(iii) ψ̃ belongs to C∞c (V ) and equals 1 on a neighborhood of the support of ψ.
Furthermore, for any (τ, ψ, ψ̃) ∈ Λ(M) and any smooth function Ψ : [0,+∞) →

[0, 1] satisfying (94), we define the following two symbols

∀ (x, ξ) ∈ Rd × Rd, s℘,Ψτ,ψ (x, ξ) := 1U (x)ψ(τ(x))× (1−Ψ ◦ ℘(x, ξ)),(103)

s•Ψτ,ψ(x, ξ) := 1U (x)ψ(τ(x))× (1−Ψ(|ξ|2)),(104)

where ℘ in (103) is given in (101) (note that s℘,Ψτ,ψ (x, ξ) = 0 for x 6∈ U).

For the sequel, we warn the reader that the symbol s℘,Ψτ,ψ will appear by making
a semi-classical expansion of Ψ(−h2∆) in (95) (see the proof of Proposition 30).
The main drawback of s℘,Ψτ,ψ is its dependence with respect to the Laplace-Beltrami
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operator ∆ (more precisely to ℘ via the coordinate patch τ). The next result shows
that the family of symbols s℘,Ψτ,ψ is equivalent, in a semi-classical sense, to the family
of symbols s•Ψτ,ψ whose expression (104) is clearly independent of the Laplace-Beltrami
operator.

Proposition 29. — Let us fix a smooth function Ψ : [0,+∞)→ [0, 1] satisfying (94).
For any (τ, ψ, ψ̃) ∈ Λ(M), there are α > 0 and C > 0 such that the following inequal-
ities hold true uniformly in F ∈ L2(Rd) and h ∈ (0, 1]:

‖s℘,Ψτ,ψ (x, hD)F‖L2
x(Rd) 6 C‖s•Ψτ,ψ̃(x, αhD)F‖L2

x(Rd) + ‖F‖L2(Rd)O(h),(105)

‖s•Ψτ,ψ(x, hD)F‖L2
x(Rd) 6 C‖s

℘,Ψ

τ,ψ̃
(x, αhD)F‖L2

x(Rd) + ‖F‖L2(Rd)O(h).(106)

Proof. — Let us explain the main idea for (105). We will decompose

F = s•Ψ
τ,ψ̃

(x, αhD)F +
(
1− s•Ψ

τ,ψ̃
(x, αhD)

)
F,

which in turn will imply that ‖s℘,Ψτ,ψ (x, hD)F‖L2
x(Rd) is bounded by∥∥s℘,Ψτ,ψ (x, hD)s•Ψ

τ,ψ̃
(x, αhD)F

∥∥
L2
x(Rd)

+
∥∥s℘,Ψτ,ψ (x, hD)(1− s•Ψ

τ,ψ̃
(x, αhD))F

∥∥
L2
x(Rd)

.

We will then conclude by applying (99) and (100) provided that α > 0 is chosen large
enough so that the two symbols s℘,Ψτ,ψ (x, ξ) and 1− s•Ψ

τ,ψ̃
(x, αξ) have disjoint supports.

Let us now go into technical details. We first remark that the smooth function
1U (x)×(ψ◦τ(x)) has compact support and thus belongs to C∞b (Rd). Similarly, thanks
to (94) and (102), one also checks that the two symbols 1U (x)(ψ ◦ τ(x))×Ψ(℘(x, ξ))

and 1U (x)(ψ̃ ◦ τ(x)) × Ψ(α2|ξ|2) belong to C∞b (Rd × Rd). As a consequence of (99),
the pseudo-differential operators s℘,Ψτ,ψ (x, hD) and s•Ψ

τ,ψ̃
(x, αhD) are well-defined and

bounded on L2(Rd).
We now turn to the choice of α. The two symbols s℘,Ψτ,ψ and 1U (x)(ψ̃ ◦ τ(x)) ×

Ψ(α2|ξ|2) are respectively supported in

U ×
{
|ξ|2 > 1/γ

}
and U ×

{
|ξ|2 6 2/α2

}
.

For α >
√

2γ, the two supports are disjoint. In order to prove (105), we decompose
as follows for any (x, ξ) ∈ Rd × Rd:

1 =
(
1U (x)(ψ̃ ◦ τ(x))× (1−Ψ(α2h2|ξ|2))

)
+
(
1U (x)(ψ̃ ◦ τ(x))×Ψ(α2h2|ξ|2)

)
+
(

1− 1U (x)(ψ̃ ◦ τ(x))
)
,

which leads, after using the quantization formula (98), to

(107) F = s•Ψ
τ,ψ̃

(x, αhD)F +
(
1U × (ψ̃ ◦ τ)×Ψ(−αh2∆)

)
F +

(
1− 1U × (ψ̃ ◦ τ)

)
F.
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Hence we get

‖s℘,Ψτ,ψ (x, hD)F‖L2
x(Rd) 6 ‖s

℘,Ψ
τ,ψ (x, hD)s•Ψ

τ,ψ̃
(x, αhD)F‖L2

x(Rd)

+
∥∥s℘,Ψτ,ψ (x, hD)

(
1U × (ψ̃ ◦ τ)×Ψ(−αh2∆)

)
F
∥∥
L2
x(Rd)

(108)

+
∥∥s℘,Ψτ,ψ (x, hD)

(
(1− 1U × (ψ̃ ◦ τ))F

)∥∥
L2
x(Rd)

.(109)

By using the Calderon-Vaillancourt inequality (99) for s1 = s℘,Ψτ,ψ , we obtain

‖s℘,Ψτ,ψ (x, hD)s•Ψ
τ,ψ̃

(x, αhD)F‖L2
x(Rd) 6 C‖s•Ψτ,ψ̃(x, αhD)F‖L2

x(Rd).

The inequality (105) can then be proved by bounding the two terms (108) and (109)
by ‖F‖L2(Rd)O(h) thanks to (100) and the following two remarks:

(i) accordingly to the choice of α >
√

2γ, the symbols s℘,Ψτ,ψ (x, ξ) and

1U (x)× (ψ̃ ◦ τ(x))×Ψ(α2|ξ|2)

have disjoint supports because of the frequency variable ξ,
(ii) let s2(x, ξ) be the smooth symbol 1− 1U (x)× (ψ̃ ◦ τ(x)) that merely depends

on x. The quantization formula (98) shows that s2(x, hD) is the multiplication oper-
ator by 1−1U (x)× (ψ̃ ◦τ(x)). We furthermore note that the spatial component of the
support of s℘,Ψτ,ψ (x, ξ) (see (103)) is included in U and more precisely in the support
of ψ ◦ τ . But the supports of ψ ◦ τ and 1− ψ̃ ◦ τ are disjoint because 1− ψ̃ vanishes in
a neighborhood of the support of ψ (see Definition 28). In other words, the symbols
s℘,Ψτ,ψ (x, ξ) and s2(x, ξ) have disjoint supports.

The second inequality (106) can be proved with a similar strategy. Actually, we have
to choose α > 0 so that the two symbols s•Ψτ,ψ(x, ξ) and 1U (x)×(ψ̃◦τ(x))×(Ψ◦℘(x, αξ))

have disjoint supports. According to (94), (102) and (104), the supports of those two
symbols are respectively included in

U ×
{
|ξ| > 1

}
and U ×

{
|ξ|2 6 2γ/α2

}
.

Here again, for the same choice of α >
√

2γ, we may apply (99) and (100) to the
following similar decomposition to (107):

F = s℘,Ψ
τ,ψ̃

(x, αhD)F +
(
1U × ψ̃ ◦ τ ×Ψ(℘(x, αD))

)
F +

(
1− 1U × ψ̃ ◦ τ

)
F. �

We are now ready to give a local but pseudo-differential reformulation of the semi-
classical Salem-Zygmund condition (95).

Proposition 30. — Let us fix a smooth function Ψ : [0,+∞)→ [0, 1] satisfying (94).
For any f ∈ L2(M), the semi-classical Salem-Zygmund condition (95) is equivalent
to the following condition: for any (τ, ψ, ψ̃) ∈ Λ(M) (according to Definition 28),
we have

(110)
∫ 1

0

‖s℘,Ψτ,ψ (x, hD)
(

(ψ̃f) ◦ τ
)
‖L2

x(Rd)

h
√
− ln(h)

dh < +∞,

where s℘,Ψτ,ψ is defined in (103).
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Proof. — By compactness of M, there is a finite open cover M = V1 ∪ · · · ∪ Vn where
each open subset Vi corresponds to a coordinate patch τi : Ui ⊂ Rd → Vi ⊂ M. Now
consider a smooth partition of unity 1 = ψ1 + · · · + ψn subordinate to the previous
open cover of M. Since the support of ψi is a compact subset of Vi, one infers that, for
any g ∈ L2(M), the equivalence ‖ψig‖L2(Vi) ' ‖(ψig) ◦ τi‖L2(Rd) holds with constants
independent of g. We then easily obtain the equivalence

‖g‖L2(M) '
n∑
i=1

‖(ψig) ◦ τi‖L2(Rd).

As a consequence, it is clear that (95) is equivalent to the following property: for any
coordinate patch τ : U ⊂ Rd → V ⊂M and for any ψ ∈ C∞c (V ), we have

(111)
∫ 1

0

∥∥(ψ × f − ψ × (Ψ(−h2∆)f)
)
◦ τ
∥∥
L2
x(Rd)

h
√
− ln(h)

dh < +∞,

with the convention (ψ × f) ◦ τ(x) = 0 for x 6∈ U . We now invoke the semi-classical
functional calculus of the Laplace-Beltrami operator as stated in [BGT04, Prop. 2.1
with N = 1 and σ = 0]. Let ψ̃ ∈ C∞c (V ) be a function equaling 1 on the support
of ψ (in other words, (τ, ψ, ψ̃) belongs to Λ(M) in Definition 28). The semi-classical
functional calculus ensures that there exists an explicit symbol Ψ0 ∈ C∞c (U × Rd)
satisfying the following properties:

(i) the pseudo-differential Ψ0(x, hD) quantizes Ψ0 as in (98) and satisfies the uni-
form estimates

(112)
∥∥(ψΨ(−h2∆)f

)
◦ τ −Ψ0(x, hD)

(
(ψ̃f) ◦ τ

)∥∥
L2(Rd)

6 Ch‖f‖L2(M),

(ii) the symbol Ψ0 has the following explicit expression:

(113) ∀ (x, ξ) ∈ U × Rd, Ψ0(x, ξ) = ψ(τ(x))Ψ(℘(x, ξ)).

By plugging (112) in (111) and using the finiteness of
∫ 1

0
dh/

√
− ln(h) =

√
π,

we see that (111) is equivalent to

(114)
∫ 1

0

∥∥(ψf) ◦ τ −Ψ0(x, hD)
(
(ψ̃f) ◦ τ

)∥∥
L2
x(Rd)

h
√
− ln(h)

dh < +∞.

Remembering that ψ̃ equals 1 on the support of ψ, we get ψ = ψψ̃ and so (ψf) ◦ τ =

(ψ ◦ τ) × ((ψ̃f) ◦ τ). Since the pseudo-differential operator (1U × ψ ◦ τ)(x, hD) with
symbol 1U×ψ◦τ (independent of ξ) is merely the multiplication by 1U×ψ◦τ (see (98)),
one may look at (103) and (113) to conclude that (114) reduces to (110). �

The following result achieves the proof of Theorem 5 because it allows us to get
rid of the Laplace-Beltrami operator ∆ and because the vector space L2(M) is inde-
pendent of the Riemannian structure of M.

Proposition 31. — Let us fix a smooth function Ψ : [0,+∞)→ [0, 1] satisfying (94).
Then for any f ∈ L2(M), the Salem-Zygmund condition (93) is equivalent to the
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following condition: for any (τ, ψ, ψ̃) ∈ Λ(M) (according to Definition 28), we have

(115)
∫ 1

0

∥∥s•Ψτ,ψ(x, hD)
(
(ψ̃f) ◦ τ

)∥∥
L2
x(Rd)

h
√
− ln(h)

dh < +∞,

where s•Ψτ,ψ is defined in (104).

Proof. — The key point is the following: for any (τ, ψ, ψ̃) ∈ Λ(M) there is ψ ∈ C∞c (V )

such that (τ, ψ, ψ) and (τ, ψ, ψ̃) belong to Λ(M). Indeed, there is an open subset
W ⊂ V such that supp(ψ) ⊂ W ⊂ {ψ̃ = 1}. So we just have to choose ψ ∈ C∞c (W )

that equals 1 on a neighborhood of the compact subset supp(ψ).
If the finiteness conditions (115) hold, then for (τ, ψ, ψ̃) ∈ Λ(M) we get

(116)
∫ 1

0

∥∥s•Ψ
τ,ψ

(x, hD)
(
(ψ̃f) ◦ τ

)∥∥
L2
x(Rd)

h
√
− ln(h)

dh < +∞.

Thanks to the Calderon-Vaillancourt inequality (99) (as in the proof of Proposi-
tion 29), we know that ‖s•Ψ

τ,ψ
(x, hD)((ψ̃f) ◦ τ)‖L2

x(Rd) is bounded with respect to
h ∈ (0, 1] and hence the integrability of (116) is at h = 0. For any α > 0, a simple
linear change of variable shows∫ 1

0

∥∥s•Ψ
τ,ψ

(x, αhD)
(
(ψ̃f) ◦ τ

)∥∥
L2
x(Rd)

h
√
− ln(h)

dh < +∞.

By applying (105) of Proposition 29 with (τ, ψ, ψ) ∈ Λ(M), we clearly get the finiteness
conditions (110) of Proposition 30. A perfectly similar argument using (106) allows
us to reverse the previous implication. Finally, Lemma 26 and Proposition 30 show
the equivalence with the Salem-Zygmund condition (93). �

Appendix A. First moments of chi distributions

We give elementary estimates about the first moments of chi distributions. For any
n ∈ N?, we set

χn :=
1√
n

( n∑
k=1

g2
k

)1/2

,

where g1, . . . , gn are i.i.d. Gaussian random variables NR(0, 1). The equality E[χ2
n] = 1

is obvious. The following uniform inequalities also hold (with sharpness for n = 1):
√

2√
π
6 E[χn] 6 1 and 1 6 E[χ4

n] 6 3.

– For the bound on E[χ4
n], we write

E[χ4
n] =

1

n2

∑
16k6n
16`6n

E[g2
kg

2
` ]

and use the Cauchy-Schwarz inequality E[g2
kg

2
` ] 6

√
E[g4

k]E[g4
` ] = 3. Note that the

Cauchy-Schwarz inequality also shows 1 = E[χ2
n]2 6 E[χ4

n].
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– Let us now justify the bounds of E[χn]. The inequality E[χn] 6
√

E[χ2
n] = 1 is di-

rect. For the lower bound E[χn] >
√

2/
√
π, one considers random variables ε1, . . . , εn

(which are, as usual, independent of all other random variables), then one has
n∑
k=1

gk(ω)2 = Eω′

[( n∑
k=1

εk(ω′)gk(ω)

)2]
> Eω′

[∣∣∣ n∑
k=1

εk(ω′)gk(ω)
∣∣∣]2

Eω [χn] >
1√
n

EωEω′

[∣∣∣ n∑
k=1

εk(ω′)gk(ω)
∣∣∣].=⇒

We now remark that, for a fixed ω′, the random variable ω 7→
∑n
k=1 εk(ω′)gk(ω)

is Gaussian and more precisely has the same distribution as
√
ng1. Hence, we get

E[χn] > E[|g1|] =
√

2/
√
π.

Appendix B. Proof of Theorem 11 via a result of Canzani-Hanin

As written above, Theorem 11 is considered as known (see for instance [CH18, lines
(4), (5) & (8)]). We merely write elements of proofs for the non-specialist reader since
we do not know a published reference. The argument here relies on the published
references [CH18, Sog17] and on a Bernstein-type inequality on the boundaryless
compact Riemannian manifold M proved in [Bin04, line (11)].

We recall a few facts of Riemannian geometry. For any y ∈ M, the Riemannian
structure of M induces a canonical isomorphism between the tangent space TyM and
the cotangent space T ?yM. Hence, we may endow T ?yM with a canonical inner product
and a canonical Euclidean norm ξ 7→ |ξ|y. Consequently, in the Riemannian setting,
the exponential map of M is canonically defined on the cotangent fiber bundle. We
denote by inj(M) the injectivity radius of M, namely the supremum of radii r > 0 us
such that, for any y ∈M, the restriction of the exponential map expy : T ?yM→M on
the open ball {ξ ∈ TyM, |ξ|y < r} is a diffeomorphism. The injectivity radius inj(M)

is positive thanks to the compactness of M. Moreover one has

expy({ξ ∈ T ?yM, |ξ|y < r}) = Bδg (y, r).

For any ξ ∈ T ?yM in the ball {|ξ|y < inj(M)}, the norm |ξ|y equals the distance
δg(expy(ξ), y). In particular for any point x ∈ M satisfying dist(x, y) < inj(M), the
element ξ = exp−1

y (x) ∈ T ?yM is well defined and moreover satisfies the following
norm equality in T ?yM:

(117) | exp−1
y (x)|y = δg(x, y).

In order to keep the same notations as in [CH18, line (11)], we also denote by
ρ : R→ R a Schwartz function satisfying the following properties

|t| 6 1

2
inj(M) =⇒ ρ̂(t) = 1,(118)

|t| > inj(M) =⇒ ρ̂(t) = 0.

J.É.P. — M., 2022, tome 9



Condition for probabilistic continuity on a compact manifold 801

For any (x, y) ∈M2 and λ > 0, we also write the spectral function

e[0,λ](x, y) =
∑
λj6λ

φj(x)φj(y).

We now decompose the derivatives of e[0,λ](x, y) via a coordinate patch τ : U ⊂ Rd →
V ⊂M as follows:

(119) ∂Ix∂Jy e[0,λ](x, y) = ρ ? ∂Ix∂
J
y e[0,λ](x, y) +

[
∂Ix∂

J
y e[0,λ](x, y)− ρ ? ∂Ix∂Jy e[0,λ](x, y)

]
,

where the convolution has to be understood with respect to λ. We now invoke the
part of a work of Canzani-Hanin that holds true without any geometric property on
the manifold. In local coordinates, Lemma 5 of [CH18] (with Q = Id, DQ

0 = 1 and
DQ
−1 = 0) implies the following statement.

Proposition 32 (Canzani-Hanin). — Let M be a boundaryless compact Riemannian
manifold of dimension d > 2 and let us consider a coordinate patch τ : U ⊂ Rd →
V ⊂ M with diam(V ) 6 1

2 inj(M). For any multi-indexes I ∈ Nd and J ∈ Nd, the
following asymptotics holds true for any (x, y) ∈ V 2 and any ν > 1 (where the spatial
derivatives ∂x and ∂y are seen in the coordinate patch and ∂ν is seen in R):

∂ν(ρ ? ∂Ix∂
J
y e[0,ν])(x, y) =

νd−1

(2π)d
∂Ix∂

J
y

{∫
|ξ|y=1

eiν〈exp−1
y (x),ξ〉ds(ξ)

}
+ O

(
νd−2+|I|+|J|δg(x, y) + (1 + ν)d−3+|I|+|J|),

where ds denotes the measure of the unit sphere of T ?yM (canonically induced by
the inner product on the cotangent space T ?yM). Finally, the remainder is uniform
provided that x and y run over a compact subset of the open set V .

The presence of the distance δg(x, y) in the remainder is of interest in [CH18] and
also in [CH15b, Prop. 10] because δg(x, y) may become very small in the previous
papers. However, by using the fact that the Riemannian distance is bounded on the
compact manifold M, we may integrate on ν ∈ [0, λ] with polar coordinates to get

ρ ? ∂Ix∂
J
y e[0,λ](x, y) =

∂Ix∂
J
y

(2π)d

{∫ λ

0

(∫
|ξ|y=1

ei〈exp−1
y (x),νξ〉νd−1ds(ξ)

)
dν

}
+ O(λd−1+|I|+|J|)

=
∂Ix∂

J
y

(2π)d

{∫
|ξ|y<λ
ei〈exp−1

y (x),ξ〉 dξ√
|gy|

}
+ O(λd−1+|I|+|J|),

where dξ/
√
|gy| is the usual notation for the Lebesgue measure associated to the inner

product of the cotangent space T ?yM. With the formulas (117), (56) and [CH18, lines
(8–9)], we recover the principal term of the statement of Theorem 11:

ρ ? ∂Ix∂
J
y e[0,λ](x, y) =

∂Ix∂
J
y

(2π)d/2

{∫ λ

0

νd−1σ̂d−1(νδg(x, y))dν

}
+ O(λd−1+|I|+|J|).

To complete the proof of Theorem 11, we merely need to look at the decomposition
(119) and the following result (still written in local coordinates).
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Proposition 33. — Let M be a boundaryless compact Riemannian manifold of di-
mension d > 2 and let us consider a coordinate patch τ : U ⊂ Rd → V ⊂M. For any
two multi-indexes I ∈ Nd and J ∈ Nd, the following inequalities hold true for any x
and y belonging to a compact subset of the open set V :

(120) ∀λ > 1,
∣∣ρ ? ∂Ix∂Jy e[0,λ](x, y)− ∂Ix∂Jy e[0,λ](x, y)

∣∣ 6 Cλd−1+|I|+|J|.

Proof. — Let us convene that e[0,λ](x, y) equals 0 for λ < 0. The Fourier transform of
λ ∈ R 7→ ρ ? ∂Ix∂

J
y e[0,λ](x, y)− ∂Ix∂Jy e[0,λ](x, y) can be factorized by ρ̂(t)− 1 and hence

vanishes near 0 thanks to (118). Hence, a standard Tauberian lemma (see [Sog17,
Lem. 4.2.3, lines (4.2.13) and (4.2.14)]) ensures that (120) will be a consequence of
the following estimates for all λ > 0 and s ∈ [0, 1]∣∣ρ ? ∂Ix∂Jy e(λ,λ+s](x, y)− ∂Ix∂Jy e(λ,λ+s](x, y)

∣∣ 6 C(1 + λ)d−1+|I|+|J|.

Clearly, it is sufficient to prove the following two inequalities

|∂Ix∂Jy e(λ,λ+s](x, y)| 6 C(1 + λ)d−1+|I|+|J|,(121)

|ρ ? ∂Ix∂Jy e(λ,λ+s](x, y)| 6 C(1 + λ)d−1+|I|+|J|.(122)

Let us prove (121). The Cauchy-Schwarz inequality gives

|∂Ix∂Jy e(λ,λ+s](x, y)| =
∣∣∣∣ ∑
λ<λj6λ+s

∂Ixφj(x)∂Jy φj(y)

∣∣∣∣
6
√ ∑
λ<λj6λ+s

|∂Ixφj(x)|2
√ ∑
λ<λj6λ+s

|∂Jy φj(y)|2.

We then get (121) by invoking the following Bernstein-type inequality proved by Bin
(see [Bin04, line (11)]):

(123)
√ ∑
λ6λj6λ+1

|∂Ixφj(x)|2 6 C(1 + λ)(d−1)/2+|I|.

Note actually that the results of [Bin04] are stated in specific coordinate patches that
are usually called normal coordinates. Here are some details explaining why (123) is
still true for other coordinates. Let us consider normal coordinates

τN : UN ⊂ Rd −→ V ⊂M

(see [Bin04] for definitions). Since τ−1
N ◦τ : U → UN is a diffeomorphism, all its deriva-

tives are bounded on any compact subset of U . Given an eigenfunction φj : M→ R,
it is clear that bounding a finite number of derivatives of φj ◦ τ : U → R or φj ◦ τN :

UN → R are equivalent problems since, by decomposing φj ◦ τ = (φj ◦ τN) ◦ (τ−1
N ◦ τ)

and using the Faà di Bruno’s formula, we have for any k ∈ N and x ∈ V an inequality
of the form ∑

|I|6k

(
∂I(φj ◦ τ)|τ−1(x)

)2
6 C

∑
|I|6k

(
∂I(φj ◦ τN)|τ−1

N
(x)

)2
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and the last inequality is moreover uniform for x running over a compact subset of V .
Hence the inequality (123) of [Bin04] still holds for non-normal coordinates.

Let us turn to the proof of (122). We begin by writing the finite sums

ρ ? ∂Ix∂
J
y e(λ,λ+s](x, y) = ρ ?

(∑
j∈N

∂Ixφj(x)∂Jy φj(y)1[λj−s,λj)(λ)

)

=
∑
j∈N

∂Ixφj(x)∂Jy φj(y)

∫ λ−λj+s

λ−λj
ρ(ν)dν.

Using that ρ belongs to the Schwartz space and the fact that the length of the interval
[λ− λj , λ− λj + s] is less or equal to 1, we obtain the following upper bound

|ρ ? ∂Ix∂Jy e(λ,λ+s](x, y)| 6 C
∑
j∈N

|∂Ixφj(x)||∂Jy φj(y)|
(1 + |λ− λj |)d+1+|I|+|J|

6 C

√√√√∑
j∈N

|∂Ixφj(x)|2
(1 + |λ− λj |)d+1+2|I|

√√√√∑
j∈N

|∂Jy φj(y)|2

(1 + |λ− λj |)d+1+2|J| .

We finish by bounding the first square root (the other is obviously similar):∑
j∈N

|∂Ixφj(x)|2

(1 + |λ− λj |)d+1+2|I| =
∑
k∈N

∑
|λj−λ|∈[k,k+1)

|∂Ixφj(x)|2

(1 + |λ− λj |)d+1+2|I|

6
∑
k∈N

1

(1 + k)d+1+2|I|

∑
|λj−λ|∈[k,k+1]

|∂Ixφj(x)|2.

In the last sum, λj belongs to [λ− k − 1, λ− k] ∪ [λ+ k, λ+ k + 1] and we may use
(123) to get ∑

j∈N

|∂Ixφj(x)|2

(1 + |λ− λj |)d+1+2|I| 6 C
∑
k∈N

(1 + λ+ k)d−1+2|I|

(1 + k)d+1+2|I|

6 C(1 + λ)d−1+2|I|. �
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