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HOW LAGRANGIAN STATES EVOLVE INTO

RANDOM WAVES

by Maxime Ingremeau & Alejandro Rivera

Abstract. — In this paper, we consider a compact connected manifold (X, g) of negative cur-
vature, and a family of semi-classical Lagrangian states fh(x) = a(x)eiφ(x)/h on X. For a wide
family of phases φ, we show that fh, when evolved by the semi-classical Schrödinger equation
during a long time, resembles a random Gaussian field. This can be seen as an analogue of
Berry’s random waves conjecture for Lagrangian states.

Résumé (Comment les états lagrangiens évoluent en ondes aléatoires). — Dans cet article, nous
considérons une variété riemannienne connexe, compacte, de courbure sectionnelle négative, et
une famille d’états lagrangiens semi-classiques fh(x) = a(x)eiφ(x)/h sur X. Pour une grande
famille de phases φ, nous montrons que fh que l’on fait évoluer par l’équation de Schrödinger
pendant un temps long ressemble à un champ aléatoire gaussien. Ceci peut être vu comme un
analogue de la conjecture des ondes aléatoires de Berry pour les états lagrangiens.
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1. Introduction

Berry’s conjecture. — In his influential paper [4], M.V.Berry, gave a heuristic
description of the behavior of high-energy wave-functions of quantum chaotic sys-
tems. He suggested that these should, in some sense, at the wavelength scale, behave
like stationary Gaussian fields whose spectral measure is uniformly distributed on
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178 M. Ingremeau & A. Rivera

the unit sphere. The ambiguous comparison between a deterministic system and
a stochastic field has given rise to many different interpretations. In the present paper,
we are interested in a formulation given by one of the authors in [13] (see also [1]
for a similar approach). In this interpretation, we consider a compact connected
Riemannian manifold (Xd, g) with negative sectional curvature. We will denote
by dx the volume measure on X and we will denote by ∆ the Laplace-Beltrami
operator on X. The conjecture can be roughly stated as follows: Let (ψh)h be a family
of functions on X such that h2∆ψh + ψh = 0 and normalized so that ‖ψh‖22 = 1. Let
U ⊂ X be an open subset on which there exists a family of vector fields (V1, . . . , Vd)

forming an orthonormal frame of the tangent bundle. Given x ∈ U , we write
ẽxpx(y) := expx(

∑d
j=1 yjVj(x)). Let x be a random point in U chosen uniformly

with respect to the volume measure dx. For each h > 0 in the index set of (ψh)h,
let ϕhx ∈ C∞(Rd) be the random field defined by ϕhx(y) = ψh(ẽxpx(hy)). Then, the
conjecture can be stated as follows.

Conjecture. — As h→ 0 in the index set of (ψh)h, the family ϕhx (y) converges in law
as a random field towards a stationary Gaussian field on Rd whose spectral measure
is the uniform measure on the unit sphere Sd−1.

This conjecture has many consequences in terms of nodal domains and semi-
classical limits of (ψh), as explained in [13]. However, as stated, it seems quite out of
reach.

Lagrangian states. — In this paper, instead, we study a much simpler question,
in which eigenfunctions are replaced by a well-behaved family of quasi-modes, namely
Lagrangian states:

Definition 1.1 (Lagrangian states). — A Lagrangian state is a family of functions
(u(·;h))h on X indexed by h ∈ ]0, 1[, defined as follows:
(1.1) fh(x) = a(x)eiφ(x)/h,

where φ ∈ C∞(U) for some open subset U ⊂ X and a ∈ C∞c (U). The energy measure
of fh is the measure on (0,∞), denoted by µa,φ, which is the push-forward of the
measure |a(x)|2 dx on X by the map X 3 x 7→ |∂φ(x)| ∈ (0,∞). We say that the
Lagrangian state is monochromatic if it furthermore satisfies |∂φ(x)| = 1 for all x ∈ U .
In particular, this implies that µa,φ is a multiple of δ{1}.

Monochromatic Lagrangian states are quasimodes in the sense that they satisfy(1)

h2∆fh(x) + fh(x) = OC0(h).

However, the conjecture above will clearly not hold for them since they vanish on
some non-empty open subset of X.

(1)Here and in all the sequel, OCk (hα) denotes a family of functions (gh) such that ‖gh‖Ck(X)

is bounded by a constant times hα.
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How Lagrangian states evolve into random waves 179

Hence, instead of studying Lagrangian states of the form (1.1), we will study their
evolution by the Schrödinger equation. It can be explicitly described using the WKB
method, and is closely related to the dynamics of the geodesic flow.

Such a strategy was already followed in [20], where it was shown that a wide family
of monochromatic Lagrangian states evolved during a long time have the Liouville
measure as their semi-classical measure. Hence, they satisfy an analogue of quantum
unique ergodicity, which is a central conjecture in quantum chaos concerning the
genuine eigenfunctions of the Laplacian. In [20], the semi-classical measure associated
to the long time evolution of non-monochromatic Lagrangian states is also described
explicitly, as a linear combination of Liouville measures at different energies.

A precise description of the long time propagation of Lagrangian states was also
used, for instance in [2], [3] and [17], to prove properties about the eigenfunctions and
resonances of quantum chaotic systems.

It is thus natural to conjecture that (generic) Lagrangian states evolved during a
long time satisfy the same quantum chaotic conjectures as genuine eigenfunctions of
the Laplacian. In particular, we can wonder if they satisfy an analogue of Berry’s
conjecture stated above.

Informal presentation of our results. — The present paper gives a (partial) positive
answer to this question. Namely, we consider a “generic” Lagrangian state, and prop-
agate it to a time t by the Schrödinger equation, which gives us a function f th. To
be more precise, recall first that a subset of a topological space is called residual if it
contains a countable intersection of dense open subsets. We will first equip the space
of phases φ defined on the support of a fixed amplitude a with a natural topology. We
then construct a residual subset of the space of phases such that our result will hold
under the condition that fh(x) = a(x)eiφ(x)/h where φ belongs to this subset. Simi-
larly to the construction in the previous paragraph, we write f th,x(y) := f th(ẽxpx(hy)),
with x chosen uniformly at random in some open set of X. We can then show that
f th,x admits a weak limit for all t large enough, and that, as t → +∞, this limit
converges to an isotropic Gaussian field. In the special case where the initial state
is monochromatic, we thus obtain the same limit as in Berry’s conjecture. There are
two major differences between our results and those of [20].

– In [20], the condition on Lagrangian states is completely explicit: one has to as-
sume that the associated Lagrangian manifold is transverse to the stable directions of
the classical dynamics (see section 2.3 for more details). Here, we also need transver-
sality to the stable directions, but also some much more subtle conditions. Namely,
we will use the WKB method to express the evolved Lagrangian state, locally, as a
sum of plane waves. We will need the fact that, generically, these plane waves have
directions of propagation which are rationally independent, so that, when observing
this sum of waves at a random point, it will behave like a sum of independent complex
numbers with uniform argument. Gaussianity will then emerge from the central limit
theorem.

– In [20], the Lagrangian states are propagated up to the Ehrenfest time, that is,
c| log h| for some c > 0 related to the classical dynamics. Here, we first take h to
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180 M. Ingremeau & A. Rivera

zero to define our limits, and then let t go to infinity, which is somehow much weaker.
We believe that an adaptation of our method could allow us to show Berry’s conjecture
for generic Lagrangian states propagated up to some time c log | log h| for some c > 0.
However, to do so, we would have to change our definition of genericity, from φ belongs
to a residual set here to φ belongs to a space of full measure for some suitable measure.
This should be pursued elsewhere.

Despite these weaknesses, our result can be considered as the first example of a
family of functions satisfying Berry’s conjecture because of an underlying chaotic
classical dynamics. Before that, [6] and [7] (see also [13] and [19]) proved Berry’s
conjecture for generic families of Laplace eigenfunctions on the two dimensional torus,
using some arithmetic arguments. Some examples of families of eigenfunctions in Rd

satisfying Berry’s conjecture are also given in [18].

Organization of the paper. — In section 2, we will present our main result, recalling all
the definitions we need regarding local weak limits and Gaussian fields. In section 3,
we will show that our main result holds, provided our initial state is a Lagrangian
state whose phase φ belongs to a special set. We show in section 5 that this set is in
some sense generic. A key step in the proof of the main results presented in section 3 is
to give an explicit description of the action of the Schrödinger operator on Lagrangian
states. This is Proposition 3.3. The proof of this proposition is the object of section 4,
where we recall some properties of the geodesic flow in negative curvature. Finally,
in Appendix A, we will recall the facts we need from semi-classical analysis, while in
Appendix B, we give a description of the monochromatic phases we consider.

Acknowledgements. — We would like to thank the anonymous referees for their mul-
tiple remarks, which greatly helped improve the general presentation of the paper.

2. Set-up and main results

Our main results state that Lagrangian states converge to some Gaussian field.
Hence, we first have to explain our notion of convergence, and then, to describe the
Gaussian fields towards which they converge. We will also need our Lagrangian states
to be associated with Lagrangian manifolds that are transverse to the stable directions
of the geodesic flow, as we will explain in section 2.3.

Recall that (X, g) is a compact connected Riemannian manifold. For each x ∈ X,
we will denote by expx : TxX → X the exponential map at x induced by the metric g
on X (as in [14, Def. 1.4.3]). Moreover, given x, y ∈ X, we will denote by d(x, y) the
Riemannian distance between the two points x and y. Unless otherwise stated, the
spaces C∞(X) and C∞(Rd) will be equipped with the topology of uniform conver-
gence of derivatives on compact sets. Moreover, when we speak of probability measures
on these spaces, we will assume that they are equipped with the Borel σ-algebra.

2.1. Local limits. — Let us now describe the form of convergence we establish here.
To avoid any topological difficulties, we define this convergence locally, though all of
our results will hold regardless of the choice of localization. To the point, let U ⊂ X be
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How Lagrangian states evolve into random waves 181

a small enough open set so that we can define an orthonormal frame V = (V1, . . . , Vd)

on it, that is to say a family of smooth sections (Vi)i=1,...,d : U → TX such that, for
each x ∈ X, (V1(x), . . . , Vd(x)) is an orthonormal basis of TxX.

If x ∈ U and y ∈ Rd, we will write yV (x) := y1V1(x) + · · ·+ ydVd(x) ∈ TxX, and

(2.1) ẽxpx(y) := expx(yV (x)).

All the constructions in this section will depend on the choice of this local frame,
and will hence not be intrinsic. For the rest of the section, let us fix x a random point
in U chosen uniformly with respect to the Riemannian volume measure.

Definition 2.1. — Let (fh)h>0 be a family of functions in C∞(X), and let P be a
probability measure on C∞(Rd). Then, for each h > 0, we define the h-local measure
associated to this family as the law of the random element of C∞(Rd) defined by
fx,h(y) := fh(ẽxpx(hy)). We say that P is the local weak limit of (fh)h in the frame V
if, as h→ 0, the law of fx,h converges weakly to P.

We insist that, in the definition of fx,h, x is a point chosen uniformly at random
in U , so that fx,h is a random element of C∞(Rd). Here, C∞(Rd) is equipped with
its usual topology, given by uniform convergence of derivatives over compact sets.

Hence, saying that P is the local weak limit of (fh)h in the frame V means that,
for any continuous bounded functional F : C∞(Rd)→ R, we have

1

Vol(U )

∫
U

F (fx,h)dx −−−→
h→0

EP[F ].

Definition 2.2. — Let (fh)h>0 be a family of functions in C∞(X), let (rh)h>0 be a
family of positive real numbers converging to 0, let x0 ∈ U and let Px0

be a probability
measure on C∞(Rd). We say that Px0

is the (rh)h-local limit of (fh)h>0 at x0 (in the
frame V ) if, as h→ 0, the law of the random function fx,h, conditioned on the event
that x ∈ B(x0, rh), converges weakly to Px0 .

In other words, Px0
is the (rh)h-local limit of (fh)h>0 at x0 (in the frame V ) if for

any continuous bounded functional F : C∞(Rd)→ R, we have
1

Vol(B(x0, rh))

∫
B(x0,rh)

F (fx,h) dx −−−→
h→0

EPx0
[F ].

Remark 2.3. — By construction, if (fh)h has an (rh)-local limit Px0
at almost every

x0 ∈ U , then it has an h-local limit P which satisfies

P =

∫
U

Px0 dx0.

2.2. Gaussian fields. — As previously, we equip C∞(Rd) with its usual topology,
given by uniform convergence of derivatives over compact sets. An almost surely
(or a.s.) C∞ (centered) Gaussian field on Rd will be a random variable f taking values
in C∞(Rd) such that for any finite collection of points x1, . . . , xk ∈ Rd, the random
vector (f(x1), . . . , f(xk)) ∈ Cd is (centered) Gaussian. We say that two fields f1

and f2 are equivalent if they have the same law. In the sequel, unless otherwise stated,
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182 M. Ingremeau & A. Rivera

we will always identify fields which are equivalent. That is to say that we will speak
indifferently of the field and of its law.

Let f be an a.s. C∞, centered Gaussian field on Rd. Then, the covariance function
K : (x, y) 7→ E[f(x)f(y)] defined on Rd × Rd is positive definite, meaning that for
each k-uple (x1, . . . , xk) ∈ (Rd)k, the matrix K(xi, xj)i,j is Hermitian. As explained
for instance in [16, App.A.11], the function K belongs to C∞(Rd × Rd) and there
is actually a bijection between such functions and a.s. C∞ centered Gaussian fields
on Rd (up to equivalence).

Next, recall that, by Bochner’s theorem (see for instance [8, §2.1.11]), given a
finite Borel complex measure µ on Rd, the Fourier transform µ̂ of µ gives rise a
continuous positive definite function K : (x, y) 7→ µ̂(x−y) on Rd×Rd. If, in addition,
µ is compactly supported, its Fourier transform is smooth and gives rise to a unique
Gaussian field f on Rd (up to equivalence). In this case, we say that µ is the spectral
measure of f . Note that K is invariant by the diagonal action of translations on each
of its variables. Consequently, the law of f is invariant by translations. We say in this
case that f is stationary.

Let us now apply this recipe to define a family of Gaussian fields on Rd. Fix λ1, λ2

such that0 < λ1 < λ2, and let µ be a Borel measure on [λ1, λ2]. Consider the measure
λµ on Rd which is given by

(2.2)
∫
Rd

(x) dλµ(x) =

∫ λ2

λ1

∫
Sd−1

(ry) dωd−1(y) dµ(r),

where ωd−1 is the uniform measure on Sd−1. If µ = µa,φ with a, φ as in Definition 1.1,
we simply write λa,φ instead of λµa,φ .

Definition 2.4. — The isotropic Gaussian field with energy decomposition µ is the
unique law for an a.s. continuous stationary Gaussian field f on Rd whose spectral
measure is λµ. In other words, for each x, y ∈ Rd,

E[f(x)f(y)] =

∫
Rd
ei(x−y)·ξ dλµ(ξ).

We will denote by Pµ the law of f , which is a probability measure on C∞(Rd).
If µ = δ{1} we call f the random monochromatic wave.

Note that, when |∂φ(x)| = 1 for all x in the domain of φ, µa,φ is ‖a‖2L2(X)δ{1}.
In particular, if f is a Gaussian field with law Pµa,φ , then ‖a‖

−1
L2(X)f is (equivalent to)

the random monochromatic wave.

2.3. Transversality to the stable directions. — We denote by Φt : T ∗X → T ∗X,
t ∈ R the geodesic flow on T ∗X. For each λ > 0, let us write

S∗λX := {(x, ξ) ∈ T ∗X | |ξ| = λ}.

If 0 < λ1 < λ2, we also write S∗[λ1,λ2]X :=
⋃
λ∈[λ1,λ2] S

∗
λX. Since X has negative

curvature, (Φt)t, restricted to some S∗λX, is an Anosov flow (see [10] for a proof of
this fact). We will recall in section 4.1 the definition of an Anosov flow. In particular,
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How Lagrangian states evolve into random waves 183

we defer to this section for the definition, for each ρ ∈ S∗λX, of the unstable, stable
and neutral subspaces of TρS∗λX. For any λ1, λ2 such that 0 < λ1 < λ2 and any open
subset Ω ⊂ X, we write

(2.3) E(λ1,λ2)(Ω) := {φ ∈ C∞(Ω) | λ1 < |∂φ| < λ2}.

To each φ ∈ E(λ1,λ2)(Ω), we can associate a Lagrangian manifold

Λφ = {(x, ∂φ(x)) | x ∈ Ω} ⊂ T ∗X.

We then define the set of phases associated to Lagrangian manifolds that are trans-
verse to the stable directions as

(2.4) E T
(λ1,λ2)(Ω) :=

{
φ ∈ E(λ1,λ2)(Ω) | ∀x ∈ Ω, T(x,∂φ(x))Λφ ∩ E−(x,∂φ(x)) = {0}

}
.

For each ρ = (x, ξ) ∈ T ∗X such that ξ 6= 0, let Ê0
ρ = {(0, sξ) | s ∈ R} (as in

section 4.1). Then E+
ρ ⊕E−ρ ⊕E0

ρ⊕ Ê0
ρ = TρT

∗X. Hence, φ ∈ E T
(λ1,λ2)(Ω) if and only if

T(x,∂φ(x))Λφ ⊕ E−(x,∂φ(x)) ⊕ Ê
0
(x,∂φ(x)) = T(x,∂φ(x))T

∗X.

2.4. Convergence of Lagrangian states to Gaussian fields. — Our main result
does not hold for all Lagrangian states, but only for a generic subset of E T

(λ1,λ2)(Ω),
which we equip with the topology of uniform convergence of derivative on compact
sets.

Remark 2.5. — The set E T
(λ1,λ2)(Ω) is not open, but if φ ∈ E T

(λ1,λ2)(Ω) and if Ω′ ⊂ Ω,
then E T

(λ1,λ2)(Ω
′) contains a neighbourhood of φ|Ω′ . This follows directly from the

fact that ρ 7→ E−ρ is continuous. Furthermore, if (x, ξ) ∈ S∗[λ1,λ2]X, we know that
E+

(x,ξ) ∩ E
−
(x,ξ) = {0}.

Therefore, if φ ∈ E(λ1,λ2)(X) and x0 ∈ Ω are such that the image of dx0
(x, ∂φ(x))

is included in E+
(x0,∂φ(x0)), then if Ω′ is a small enough neighbourhood of x0, we will

have φ′|Ω′ ∈ E T
(λ1,λ2)(Ω

′) for any φ′ ∈ C∞(Ω) close enough to φ. Therefore, if Ω′ is
small enough, E T

(λ1,λ2)(Ω
′) is non-empty, and contains φ′|Ω′ for any φ′ in a non-empty

open subset of C∞(Ω).

We may now state our main result. To this end, we introduce the semi-classical
Schrödinger propagator Uh(t) := eith∆/2 : L2(X)→ L2(X). Moreover, we recall once
more that, a subset of a topological space is called residual if it contains a countable
intersection of dense open subsets.

Theorem 2.6. — Let X be a compact connected Riemannian manifold with negative
sectional curvature, let λ1, λ2 be such that 0 < λ1 < λ2, and let Ω ⊂ X be an open
subset. Then there exists a residual subset E T,irr

(λ1,λ2)(Ω) of E T
(λ1,λ2)(Ω) such that for any

φ ∈ E T,irr
(λ1,λ2)(Ω), there exists T0 > 0 such that the following holds. Let a ∈ C∞c (Ω).

For each h ∈ ]0, 1[, we write fh(x) = a(x)eiφ(x)/h.
Let U ⊂ X be an open set, and V be an orthonormal frame on U . Let α be

such that 1/2 < α < 1. Then for almost every x0 ∈ U , and every t > T0, the
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184 M. Ingremeau & A. Rivera

family (Uh(t)fh)h>0 has an (hα)h>0-pointwise local weak limit at x0, which we denote
by µt,x0 . Furthermore, µt,x0 converges weakly to Pµa,φ as t→ +∞.

Thanks to Remark 2.3, Theorem 2.6 implies the following result.

Corollary 2.7. — With the notation of Theorem 2.6, for each t > T0, the family
(Uh(t)fh)h>0 has an h-local limit µt which converges weakly to Pµa,φ as t→ +∞.

Remark 2.8. — Note that, although the law fh depends on U and on the choice of
frame V , the limiting measure Pµa,φ depends only on a and φ.

Remark 2.9. — Let us finally observe that by Remark 2.5, each point of X admits an
open neighbourhood Ω ⊂ X for which E T,irr

(λ1,λ2)(Ω) is non empty (and even uncount-
able). Hence, although we do not have a global “generic” statement, Theorem 2.6 does
yield a wide family of Lagrangian states whose pointwise local weak limits converge
to that of the isotropic stationary a.s. smooth Gaussian field on Rd with spectral
measure µa,φ from Definition 1.1 as t → +∞, under the action of the Schrödinger
flow.

2.5. The case of monochromatic phases. — We would now like to state an analogue
of Theorem 2.6 for monochromatic phases, i.e., phases satisfying(2) |∂φ| = 1. At first
glance, it would seem natural to work with the space of phases

E1(Ω) = {φ ∈ C∞(Ω) | |∂φ| = 1},

which we would equip with the C∞(Ω) topology. However, this set appears to be very
hard to work with: it is not trivial to perturb a function in E1(Ω) while remaining in
this set. Hence, the set E1(Ω) could contain isolated points, which would make our
approach based on genericity irrelevant. We will therefore use another approach to
study phases satisfying |∂φ| = 1.

Let Σ ⊂ X be an embedded orientable simply connected hypersurface. Let us
denote by ν a vector field defined on Σ such that for each y ∈ Σ, ν(y) has unit norm
and is orthogonal to TyΣ. We write

(2.5) C (Σ) = {u ∈ C∞(Σ) | |∂u| < 1}.

If u ∈ C (Σ), we define, for any y ∈ Σ, vu(y) := ∂yu+ (1− |∂yu|2)1/2ν(y) ∈ S∗yX, and

Lu := {(y, vu(y)) | y ∈ Σ}.

We then define

(2.6) C T (Σ) :=
{
u ∈ C (Σ)

∣∣∀y ∈ Σ, T(y,vu(y))Lu ∩
(
E+

(y,v(y)) ⊕ E
0
(y,vu(y))

)
= {0}

}
.

By Lemma B.1, given u ∈ C (Σ), there exists an open neighbourhood Ωu ⊂ X of Σ,
and a map φu ∈ E1(Ωu) such that

(2.7) φu|Σ = u and ∂φu|Σ = vu.

(2)The case |∂φ| = λ for some λ > 0 can be recovered from the case |∂φ| = 1 by a simple rescaling.
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How Lagrangian states evolve into random waves 185

Figure 2.1. Construction of the phase φu from u.

Moreover, any two functions with these properties must coincide on a neighbourhood
of Σ. Furthermore, by Lemma B.2, for any x ∈ Ωu, there exists a unique pair (y, t) ∈
Σ× R such that
(2.8) (x, ∂φu(x)) = Φt(y, vu(y)).

In particular, we see from (4.1) that u ∈ C T (Σ) if and only if there exists Ω′u ⊂ X
an open subset with Σ ⊂ Ω′u ⊂ Ωu such that φu ∈ E T

1 (Ω′u). The same argument as
in Remark 2.5 shows that C T (Σ) is non-empty when Σ is small enough, and that, if
u ∈ C T (Σ) and Σ′ ⊂ Σ, then C T (Σ′) contains a neighbourhood of u|Σ.

We may now state our analogue of Theorem 2.6 for monochromatic phases. To this
end, we equip the set C (Σ) with the C∞(Σ) topology (i.e., the topology of uniform
convergence of derivatives on compact sets). Note that, unlike in the polychromatic
case, the pointwise local weak limits exist here for all x0, and not just for almost all
of them.

Theorem 2.10. — Let X be a compact connected Riemannian manifold with negative
sectional curvature, and let Σ ⊂ X be an embedded orientable simply connected hyper-
surface with a normal vector field ν. There exists a residual subset C T,irr(Σ) of C T (Σ)

such that, for any u ∈ C T,irr(Σ), there exists T0 > 0 such that the following holds.
Let φu and Ωu be as in (2.7) such that φu ∈ E T

1 (Ωu), and let a ∈ C∞c (Ωu). For each
h ∈ ]0, 1[, we write fh(x) = a(x)eiφ(x)/h. Let U ⊂ X be an open set, and V be an or-
thonormal frame on U . Let α be such that 1/2 < α < 1. Then for every x0 ∈ U , and
every t > T0, the family (Uh(t)fh)h>0 has an (hα)h>0-pointwise local weak limit at x0,
which we denote by µt,x0 . Furthermore, µt,x0 converges weakly to Pµa,φ as t→ +∞.

Remark 2.11. — Note that, in this case, as explained in section 2.5, if f has law
Pµa,φ , then, ‖a‖

−1
L2 f is in fact the monochromatic wave. In particular, although the

construction depends on U , on the choice of frame (V (x))x, on a and on φ, the limit
is (up to a multiplicative constant) independent of all of these choices.

Remark 2.12. — As for the case of Theorem 2.6, C T,irr(Σ) is non-empty and we obtain
a wide family of Lagrangian states have pointwise local weak limits converging to the
monochromatic wave under the action of the Schrödinger flow.
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3. Proof of Theorems 2.6 and 2.10

The aim of this section is to describe explicitly the sets E T,irr
(λ1,λ2)(Ω) and C T,irr(Σ) ap-

pearing respectively in the statements of Theorem 2.6 and Theorem 2.10, and to prove
these theorems, postponing the proof of the fact that E T,irr

(λ1,λ2)(Ω) (resp. C T,irr(Σ)) is
a residual subset of E T

(λ1,λ2)(Ω) (resp. C T (Σ)) to the next section.
Throughout the present section, we will therefore fix Ω ⊂ X an open subset, as

well as constants λ1, λ2 such that 0 < λ1 < λ2, and consider phases in E(λ1,λ2)(Ω).
Likewise, for the monochromatic case, we fix Σ ⊂ X a simply connected embedded
orientable hypersurfaces of X and ν a section of TX|Σ such that for each y ∈ Σ, ν(y)

has unit norm and is orthogonal to TyΣ in TyX. We will also consider monochromatic
phases of the form φu with u ∈ C (Σ) as defined in section 2.5.

Finally, in order to describe local limits, we also fix U ⊂ X equipped an orthonor-
mal frame V as in section 2.1.

The proof will go as follows. In section 3.1 we state a compactness criterion. Thanks
to this criterion, proving convergence of finite marginals will yield convergence in
C∞(Rd) topology. In section 3.2 we will describe the effect of the Schrödinger propa-
gator on a Lagrangian state whose phase belongs to E T

(λ1,λ2)(Ω). In section 3.3 we first
describe the sets E T,irr

(λ1,λ2)(Ω) and C T,irr(Σ). Assuming that φ belongs to one of these
sets we let h→ 0 for some fixed (large enough) t and describe the local limits associ-
ated to the propagated Lagrangian state at time t around some point x0 (which we
assume to be generic in the former case). In section 3.4 we let t→ +∞ and describe
the asymptotic behavior of the local limit around x0. Finally, in section 3.5 we fit the
pieces together and complete the proofs of Theorems 2.6 and 2.10.

3.1. A criterion for convergence of local measures. — Here we record a com-
pactness criterion for the convergence of probability measures on C∞(Rd). Let a =

(ak,`)k,`∈N2 be a sequence of positive real numbers depending on two parameters.
We define

(3.1) K (a) := {f ∈ C∞(Rd) | ∀k, ` ∈ N, ‖f‖C`(B(0,k)) 6 ak,`}.

It follows from the Arzelà-Ascoli theorem that K (a) is a compact subset of
C∞(Rd) for the topology of convergence of all derivatives over all compact sets.

Let us write F for the set of functionals F of the form C∞(Rd) 3 f 7→ F (f) =

G(f(x1), . . . , f(xk)), where k ∈ N, x1, . . . , xk ∈ Rd and G ∈ Cc(Ck). Then F forms
an algebra which separates points. Hence, by the Prokhorov theorem, we obtain the
following result, which we will use several times in the sequel. See [13, §3] for more
details.

Lemma 3.1. — Let a = (ak,`)k,`∈N2 be a sequence of positive real numbers depending
on two parameters. Let (Pn) be a sequence of Borel probability measures on C∞(Rd),
which is supported in K (a), and let µ be a Borel probability measure on C∞(Rd).
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Suppose that, for any F ∈ F , we have

EPn [F ] −→
n→+∞

EP[F ].

Then (Pn) converges weakly to P.

Remark 3.2. — More generally, using Markov inequality, the condition that (Pn) is
supported in K (a) can be replaced by the following: For every k, ` ∈ N, there exists
ak,` > 0 such that for all n ∈ N, we have

EPn
(
‖f‖C`(B(0,k))

)
6 ak,`.

3.2. Propagation of Lagrangian states by the Schrödinger equation. — In this
section, we describe the propagation of Lagrangian states by the Schrödinger equation.
In the classical world, each Lagrangian state aeiφ/h defined on Ω corresponds to a
Lagrangian submanifold Λφ = {(x, ∂φ(x)) | x ∈ Ω} ⊂ T ∗X. The dynamics of a
Lagrangian state by the Schrödinger flow is easy to describe in terms of the evolution
of Λφ under the geodesic flow on X. The main point of this section is to describe
the effect of the Schrödinger propagator acting on a Lagrangian state on a manifold
X of negative sectional curvature. We do so in Proposition 3.3. The proof of this
proposition, which is essentially an application of the WKB method, relies on the
techniques developed in [2], [3], [17], and we will recall it in section 4.5 below for the
reader’s convenience. Recall that Uh(t) = eith∆/2 is the Schrödinger propagator and
that Φt : T ∗X → T ∗X is the geodesic flow.

Proposition 3.3 (Dynamics under the Schrödinger propagator)
Let φ0 ∈ E T

(λ1,λ2)(Ω). Then there exists T0 = T0(φ0) > 0 such that for any a ∈
C∞c (Ω) and any t > T0, there existsM(t) ∈ N such that the application of the operator
Uh(t) to the Lagrangian state

a(x)eiφ0(x)/h

can be written, for any k ∈ N, as

(3.2) Uh(t)(aeiφ0/h)(x) =

M(t)∑
j=1

eiφj,t(x)/hbj,t(x) +OCk(h),

where bj,t ∈ C∞(X) are smooth functions whose support we denote by Uj,t and φj,t ∈
C∞(Uj,t), satisfying:

(1) As t → +∞, max
j=1,...,N(t)

‖bj,t‖C0 → 0. Furthermore, for all ε > 0, there exists

δ > 0 such that for all t > T0, all j ∈ {1, . . . ,M(t)} and all x, y ∈ Uj,t, we have

(3.3) d(x, y) 6 δ =⇒ |bj,t(x)| 6 (1 + ε)|bj,t(y)|.

(2) For each t > T0, j ∈ {1, . . . ,M(t)}, and x ∈ Uj,t there exists a point yj,x,t ∈ Ω

such that Φt(yj,x,t, ∂φ0(yj,x,t)) = (x, ∂φj,t(x)). In particular, |∂φj,t| ∈ [λ1, λ2].
(3) There exists C1 > 0 such that, for all t > T0, all j ∈ {1, . . . ,M(t)} and all

x0 ∈ Uj,t, the number of j′ ∈ {1, . . . ,M(t)} such that x0 ∈ Uj′,t and ∂x0
φj,t = ∂x0

φj′,t
is at most C1.
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(4) There exists a constant C2 > 0 such that for all t > T0 and all j ∈
{1, . . . ,M(t)}, we have

(3.4) ‖∂φj,t‖C1 6 C2.

For the rest of the section, we fix a ∈ C∞c (Ω) and φ ∈ E T
(λ1,λ2). For each h > 0 and

t ∈ R, we set

f th := Uh(t)(aeiφ/h).

Proposition 3.3 applies to f th. For each x0 ∈ X, t > T0, j, j′ ∈ {1, . . . ,M(t)}, we will
write j ∼x0,t j

′ if x0 ∈ Uj,t∩Uj′,t and ∂
(
φj,t ◦ ẽxpx0

)
(0) = ∂

(
φj′,t ◦ ẽxpx0

)
(0). Up to

reordering the terms {1, . . . ,M(t)}, we may suppose that there exists N(t;x0) ∈ N
such that the set {1, . . . , N(t;x0)} contains exactly one representative of each of the
different equivalence classes. In the sequel, since x0 will be fixed most of the time, we
will just write N(t) instead of N(t, x0).

We then write, for every j ∈ {1, . . . , N(t)}

(3.5)

ξt,x0

j := ∂
(
φj,t ◦ ẽxpx0

)
(0) ∈ Rd; ξt,x0 := (ξt,x0

1 , . . . , ξt,x0

N(t));

Bj,t(x0) :=
∑

j′∈{1,...,M(t)}
j′∼x0,t

j

bj′,t(x0)eiφj,t(x0)/h ∈ C

βt,x0

j := |Bj,t(x0)| ; βt,x0 := (βt,x0

1 , . . . , βt,x0

N(t)).

3.3. Convergence to pointwise local limits at fixed times. — In this section, we
first define the residual sets of phases (3.6) and (3.7) which appear in the statements
of Theorems 2.6 and 2.10 respectively. Then, assuming that the phase belongs to (3.6)
we describe the pointwise local limits at fixed time t large enough (see Proposition 3.5
below).

Recall the definitions of E(λ1,λ2)(Ω) (2.3) and E T
(λ1,λ2)(Ω) (2.4). Let us write

(3.6) E T,irr
(λ1,λ2)(Ω) :=

{
φ ∈ E T

(λ1,λ2)(Ω) | ∃T0(φ) < +∞, for almost every x0 ∈ X,

the vectors (ξt,x0

j )j=1,...,Nx0
(t) are rationally independent for all t > T0(φ)

}
,

where the (ξt,x0

j )j are obtained from φ by the construction (3.5) which follows from
Proposition 3.3. The set E T,irr

(λ1,λ2)(Ω) is precisely the set appearing in the statement
of Theorem 2.6. We will show in section 5 that the space is a residual subset of
E T

(λ1,λ2)(Ω) equipped with the convergence of all derivatives on all compact sets.
For the monochromatic case, we will consider the following analogous set. Recall

that, in section 2.5, given an oriented hypersurface Σ, we saw how to associate to
each function u ∈ C (Σ) an open neighbourhood Ωf of Σ and a map φu ∈ E1(Ωu).
If u ∈ C T , we thus denote by (ξt,x0

j )j=1,...,Nx0 (t) the vectors obtained by applying
Proposition 3.3 to φu (see (3.5)). We then define

(3.7) C T,irr(Σ) :=
{
f ∈ C T (Σ) | ∃T0(φ) < +∞, ∀x0 ∈ X,

the vectors (ξt,x0

j )j=1,...,Nx0 (t) are rationally independent for all t > T0(φ)
}
.

J.É.P. — M., 2022, tome 9



How Lagrangian states evolve into random waves 189

We will see in section 5.2 that this set is a residual subset of C T (Σ) equipped with
the topology of uniform convergence of derivatives on compact sets.

From now on, we will always suppose that the phase φ introduced in section 3.2
belongs to E T,irr

(λ1,λ2)(Ω), and take x0 such that the vectors (ξt,x0

j )j=1,...,Nx0
(t) are ratio-

nally independent for all t > T0(φ).
Let us now describe the measures Pt,x0 appearing in Theorem 2.6 associated to

the family (f th) introduced in section 3.3. To do this, recall that at the beginning of
section 3 we fixed U an open subset of X equipped with an orthonormal frame V .
We will always implicitly consider h-local limits in this frame. The local limits of (f th)

for various fixed t will belong to a family of probability laws on C∞(Rd) which we
now define.

Definition 3.4. — Let N ∈ N, β = (β1, . . . , βN ) ∈ (R+)
N , and ξ = (ξ1, . . . , ξN ) ∈(

Rd
)N . We associate to (β, ξ) a probability measure Pβ,ξ on C∞(Rd) as follows. Let

ϑ1, . . . , ϑN be i.i.d uniform random variables in [0, 2π]. Then, Pβ,ξ is the law of

y 7−→
N∑
j=1

βje
iy·ξj+iϑj .

Proposition 3.5 (Pointwise local limits in fixed time). — Let α be such that
1/2 < α < 1, and let t > T0(φ). Let x0 ∈ U be such that the vectors (ξt,x0

j )j=1,...,Nx0
(t)

are rationally independent. Then (f th)h has an hα-pointwise local weak limit at x0,
which is given by Pβt,x0 ,ξt,x0 .

Proof of Proposition 3.5

First step: a criterion for convergence. — Let t > T0(φ) and x0 ∈ U be such that the
vectors (ξt,x0

j )j=1,...,Nx0
(t) are rationally independent. Equation (3.2) implies that, for

any R > 0 and any k ∈ N, we have

‖f tx,h‖Ck(B(0,R)) 6 C(k)

M(t)∑
j=1

‖φj,t‖Ck(B(0,R))‖bj,t‖Ck(B(0,R)) +O(h).

This quantity is thus bounded independently of h, t being fixed. This implies that we
may find a sequence a such that for all h small enough and all x in B(x0, h

α), the
function f tx,h belongs to K (a), with K (a) as in (3.1). Hence, thanks to Lemma 3.1,
it suffices to show that for any k ∈ N, any y1, . . . , yn ∈ Rd and any G ∈ Cc(Cn), we
have

E
[
F (f tx,h)

]
−−−→
h→0

EPβ,ξ [F ],

where F (f) = G(f(x1), . . . , f(xn)) and where the first expectation is taken with
respect to x ∈ B(x0, h

α).

Second step: local expressions. — Next, we are going to use Taylor expansions to obtain
a simpler asymptotic expression for F (f tx,h). If x ∈ B(x0, h

α), the fact that bj,t is C1

implies that, for every fixed y ∈ Rd, we have

bj,t(ẽxpx(hy)) = bj,t(x0) +O(hα).
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To obtain a Taylor expansion for eiφj,t(ẽxpx(hy))/h, we write x̃ := h−αẽxp
−1
x0

(x),
so that x̃ ∈ Beucl(0, 1). We first note that

φj,t(x) = φj,t(ẽxpx0
(hαx̃)) = φj,t(x0) + hαx̃ · ∂

(
φj,t ◦ ẽxpx0

)
(0) +O(h2α),

thanks to the definition of ξt,x0

j .
Using the fact that x 7→ ∂(φj,t ◦ (ẽxpx(z))|z=0 is C1, we then have

φj,t(ẽxpx(hy)) = φj,t(x) + hy · ∂(φj,t ◦ (ẽxpx(z))|z=0 +O(h2)

= φj,t(x0) + (hαx̃+ hy) · ∂
(
φj,t ◦ ẽxpx0

)
(0) +O(h2α).

All in all, we have

f tx,h(y) =
Prop. 3.3

M(t)∑
j=1

bj,t(x0)eih
−1φj,t(x0)+i(hαx̃+hy)·∂(φj,t◦ẽxpx0

)(0) +O(h2α−1) +O(hα)

=

N(t)∑
j=1

Bj,t(x0)eξ
t,x0
j ·(hα−1x̃+y) +O(h2α−1) +O(hα)

=

N(t)∑
j=1

βt,x0

j eiξ
t,x0
j ·y+iϑ

x0,t
j (x̃;h) +O(h2α−1) +O(hα),

where ϑx0,t
j (x̃;h) = 1

h Arg(Bj,t(x0)) + hα−1ξt,x0

j · x̃, taking Arg(Bj,t(x0)) ∈ [0, 2π[ to
be the complex argument of Bj,t(x0).

Since α > 1/2, the error terms vanish as h → 0. Therefore, if we define the
continuous function

Γ : TN(t) 3 (θ1, . . . , θN(t)) 7−→ G

(N(t)∑
j=1

βt,x0

j eiξ
t,x0
j ·y1+iθj , . . . ,

N(t)∑
j=1

βt,x0

j eiξ
t,x0
j ·ym+iθj

)
,

we have

(3.8) F (f tx,h) = Γ(ϑx0,t
1 (x̃;h), . . . , ϑx0,t

N(t)(x̃;h)) + oh→0(1).

Third step: computing the expectation. — To compute the expectation of this quan-
tity, we note that x̃ is a random variable on Beucl(0, 1), whose density we denote by
(1/Vol(Beuc‘(0, 1)))ρh(z) dz. Since d0ẽxpx0

is an isometry, we have that

(3.9) |ρh(z)− 1| 6 Chα

for all z ∈ Beucl(0, 1) for some C < +∞ which depends only on (X, g) and on the
choice of frame (V (x))x∈X .

Therefore, if z denotes a uniform random variable on Beucl(0, 1), we have

E
[
F (f tx,h)

]
= E

[
Γ(ϑx0,t

1 (z;h), . . . , ϑx0,t
N(t)(z;h))

]
+ oh→0(1).

To compute this expectation, we want to use a multidimensional Kronecker theo-
rem, whose proof we recall.
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Suppose first of all that Γ is of the form Γ(θ1, . . . , θN(t)) = e2iπ(n1θ1+···+nN(t)θN(t)),
where n := (n1, . . . , nN(t)) ∈ ZN(t) r {0}. Let us write ξx0,t

n :=
∑N(t)
j njξ

x0,t, which
is non-zero since the ξx0,t

j are rationally independent. Therefore, we have

E
[
Γ(ϑx0,t

1 (z;h), . . . , ϑx0,t
N(t)(z;h))

]
= e(2iπ/h)

∑N(t)
j=1 Arg(Bj,t(x0)) 1

Vol(Beuc‘(0, 1))

∫
Beucl(0,1)

e2iπhα−1ξ
x0,t
n ·zρh(z) dz.

But
∫
Beucl(0,1)

e2iπhα−1ξ
x0,t
n ·z dz is the Fourier transform of the indicator of the unit

ball evaluated at hα−1ξx0,t
n . Since α < 1 and ξx0,t

n 6= 0, this goes to zero as h→ 0.
For a general Γ, we may approach it uniformly by a trigonometric polynomial

having the same mean (this is a consequence of Fejér’s theorem), and we see from
what precedes that only the constant term will give a non-vanishing contribution to
the expectation as h→ 0. Therefore, we have

lim
h→0

E
[
Γ(ϑx0,t

1 (z;h), . . . , ϑx0,t
N(t)(z;h))

]
=

∫
TN(t)

G(θ1, . . . , θN(t)) dθ1 · · · dθN(t).

This quantity is exactly EPβ,ξ [F ], and the result follows. �

Remark 3.6. — We used the fact that the ξx0,t
j are rationally independent only in the

last step of the proof. If they are not rationally independent, then the phases(
ξx0,t
1 · y + ϑx0,t

1 (h), . . . , ξx0,t
N(t) · y + ϑx0,t

N(t)(h)
)

get equidistributed along an affine sub-torus of TN(t). The linear part of this torus
depends only on the ξx0,t

j , and not on h. However, the affine torus depends on the(
ϑx0,t

1 (h), . . . , ϑx0,t
N(t)(h)

)
, so we do not have convergence to a measure independent

of h (and hence, existence of a pointwise local weak limit). However, we may extract
subsequences hn such that

(
ϑx0,t

1 (hN ), . . . , ϑx0,t
N(t)(hN )

)
converges. Doing so, we ensure

the existence of pointwise local weak limits, even when the ξx0,t
j are not rationally

independent. We will not use this construction in the sequel, since we don’t want to
extract subsequences.

3.4. Long time behaviour of local limits. — The aim of this section is to prove the
following proposition, which is the last step in the proof of Theorem 2.6, except for the
fact that E T,irr

(λ1,λ2) is a residual set. Recall that we fixed a phase φ ∈ E T,irr
(λ1,λ2)(Ω), and a

function a ∈ C∞c (Ω). We now also fix point x0 such that the vectors (ξt,x0

j )j=1,...,Nx0
(t)

are rationally independent for all t > T0(φ). Recall the definition (2.2) of λµ associated
to some measure µ and those of λa,φ and λµa,φ given just below (2.2).

Proposition 3.7 (Pointwise local limits at long time). — The measures Pβt,x0 ,ξt,x0
converge weakly, as t→ +∞, to Pµa,φ .

This proposition follows from the following two lemmas, which we prove below.
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Lemma 3.8 (A criterion for convergence in long time). — Let λ1, λ2 be such that
0 < λ1 < λ2. Suppose that, for all t > 0, we have integers N(t), directions ξt =

(ξt1, . . . , ξ
t
N(t)) ∈

(
Rd
)N(t) such that for j = 1, . . . , N(t), λ1 6 |ξtj | 6 λ2, and ampli-

tudes βt = (βt1, . . . , β
t
N(t)) ∈ [0,+∞)N(t), which satisfy the following conditions:

– νt :=
∑N(t)
j=1 (βtj)

2δξtj converges weakly to λµ for some measure µ supported on
[λ1, λ2].

– maxj∈1,...,N(t) β
t
j →
t→+∞

0.

Then Pβt,ξt converges weakly to Pµ.

Lemma 3.9 (A local quantum ergodicity result). — The measures
∑N(t)
j=1 |β

t,x0

j |2δ
ξ
t,x0
j

on Rd converge weakly as t→ +∞ to λa,φ.

Let us start with the proof of Lemma 3.8.

Proof of Lemma 3.8. — For each t > 0, consider the random function f t(y) :=∑N(t)
j=1 β

t
je
iξtj ·y+iϑtj , where for each t, the ϑtj are independent random variables

uniformly distributed on [0, 2π]. Thus f t has law Pβt,ξt .
For any compact set K ⊂ Rd and any k ∈ N, we have

EP
βt,ξt

[
‖f‖2Hk(K)

]
=

k∑
`=0

N(t)∑
j=1

(βtj)
2|ξtj |` Vol(K) 6

(
Vol(K)

k∑
`=0

λ`2

)
νt(Rd),

which is bounded independently of t, by assumption. We may therefore apply Lem-
ma 3.1 and Remark 3.2 to prove the result.

To this end, we fix y1, . . . , yk ∈ Rd and we study the convergence of the
vector (f t(y1), . . . , f t(yk)) as t → +∞. We wish to apply a multivariate Linde-
berg Central Limit Theorem to the sum over j of the random vectors ηj(t) =

(βtje
iξtj ·y1+iϑj , . . . , βtje

iξtj ·yk+iϑj ). By construction, the ηj ’s are mutually independent.
Moreover, for each t > 0 and j ∈ {1, . . . , N(t)}, E[ηj(t)] = 0 and the covariance
of ηj(t) has coefficients E[ηhj (t)η`j(t)] = (βtj)

2eiξ
t
j(yh−y`). Thus, the sum of their

covariance matrices M t = (mt
h`)h` has coefficients

mt
h` =

N(t)∑
j=1

(βjt )
2eiξ

t
j ·(yh−y`)

which converge to mh` =
∫
Rd e

iξ(yh−y`)dλµ(ξ) by the first assumption of the lemma.
But the matrix (mh`)h` thus constructed is the covariance matrix of the random vector
(f(y1), . . . , f(yk)), where f is a random function following the law Pµ. In particular,
the matrixM t is invertible for all large enough t. Lastly, since supj β

t
j −−−→
t→0

0, we have
(deterministically) supj |η(t)| = o(N(t)), which implies the remaining condition for
the multivariate Lindeberg Central Limit Theorem(3). Thus, as t → +∞, the vector

(3)Thanks to the Cramér-Wold Theorem [5, Th. 29.4], the multivariate Lindeberg Central Limit
Theorem follows from the usual Lindeberg Central Limit Theorem [5, Chap. 27].
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(f t(y1), . . . , f t(yk)) converges in law to a Gaussian vector (ζ1, . . . , ζk) with covariance
(mh`)h`. We may then conclude thanks to Lemma 3.1 and Remark 3.2. �

Before proceeding with the proof of Lemma 3.9, let us introduce some notations.
Recall that V = (V1, . . . , Vd) is an orthonormal frame defined in a neighbourhood U

of x0. Using the Riemannian metric, it naturally induces an orthonormal co-frame
(V ∗1 , . . . , V

∗
d ), that is to say a family of smooth sections (V ∗i )i=1,...,d : X → T ∗X such

that, for each x ∈ X, (V ∗1 (x), . . . , V ∗d (x)) is an orthonormal basis of T ∗xX. If x ∈ U

and y ∈ Rd, we will write yV ∗(x) := y1V
∗
1 (x) + · · · + ydV

∗
d (x) ∈ T ∗xX. Conversely,

if ξ ∈ T ∗xX, we write (V ∗x )−1(ξ) for the unique y ∈ Rd such that yV ∗(x) = ξ. We
refer the reader to Appendix A for the definition and standard results regarding semi-
classical measures, which we use in the proof. Recall also that Φt : T ∗X → T ∗X is
the geodesic flow.

Proof of Lemma 3.9. — The sequence (aeiφ/h)h>0 has a semi-classical measure, which
we denote by ν0. By Egorov’s theorem (Theorem A.1 below), the semi-classical mea-
sure of f th = U th(aeiφ/h) is νt = Φt∗ν0. By [20, Th. 1], if Liouλ denotes the Liouville
measure on S∗λ, then νt converges weakly to the measure νa,φ :=

∫ λ2

λ1
Liouλ dµa,φ. Let

ε > 0, and χ1 ∈ C∞c (X) be supported in a neighbourhood of size ε of x0, such that∫
X
χ1(x)dx = 1. Let χ2 ∈ C∞c (Rd). We define χ ∈ C∞c (T ∗X) by

χ(x, ξ) = χ1(x)χ2

(
(V ∗x )−1(ξ)

)
.

By the previous remarks, we have∫
T∗X

χ(x, ξ) dνt(x, ξ) −→
t→+∞

∫
T∗X

χ(x, ξ) dνa,φ(x, ξ)

=

∫
Sd−1

∫ λ2

λ1

χ2(λv) dµa,φ(λ) dv +O(ε) =

∫
Rd−1

χ2(w) dλa,φ(w) +O(ε),

with λa,φ and µa,φ as in section 2.2. On the other hand, by Proposition 3.3 we know
that, as h→ 0,

f th(x) =

M(t)∑
j=1

eiφj,t(x)/hbj,t(x) + oL2(1),

so that, by (A.1) and the L2-continuity of semi-classical measures (which follows for
instance from [21, Th. 5.1]),∫

T∗X

χ(x, ξ) dνt(x, ξ) =

∫
T∗X

N(t)∑
j=1

χ1(x)χ2

(
(V ∗x )−1 (∂φj,t(x))

)
|Bj,t(x)|2 dx

(3.4)
=

∫
T∗X

N(t)∑
j=1

χ1(x)χ2

(
(V ∗x0

)−1 (∂φj,t(x0))
)
|Bj,t(x)|2 dx

+O(ε)

∫
T∗X

N(t)∑
j=1

χ1(x)|Bj,t(x)|2 dx

(3.3)
=

N(t)∑
j=1

|Bj,t(x0)|2χ2

(
(V ∗x0

)−1 (∂φj,t(x0))
)

(1 +O(ε)) +O(ε)νt(χ1)

(3.3)
=

N(t)∑
j=1

|Bj,t(x0)|2χ2

(
(V ∗x0

)−1 (∂φj,t(x0))
)

(1 +O(ε)) +O(‖χ1‖∞ε).
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To obtain the second line, we used the smoothness of the vector fields V ∗i and of χ2.
Note that (V ∗x0

)−1 (∂φj,t(x0)) = ξtj and recall that |Bj,t(x0)| = βtj . For the last line,
we use the fact that, since νt = Φt∗ν0 as observed at the start of the proof, the total
mass of νt is constant. We deduce that

lim sup
t→+∞

∣∣∣∣N(t)∑
j=1

|βtj |2χ2(ξtj)−
∫
Rd−1

χ2(w) dλa,φ(w)

∣∣∣∣ = O(ε),

so that
∑N(t)
j=1 (βtj)

2χ2(ξtj) →
∫
Rd−1 χ2(w) dλa,φ(w). In other words,

∑N(t)
j=1 (βtj)

2δξtj
converges weakly to λa,φ. �

3.5. Conclusion of the proofs. — In this section we use the results from sections
3.1, 3.2, 3.3 and 3.4, as well as Propositions 5.1 and 5.2 from the following section, to
prove Theorems 2.6 and 2.10.

Proof of Theorem 2.6. — Let E T,irr
(λ1,λ2)(Ω) be as in (3.6), which is a residual subset of

E T
(λ1,λ2)(Ω) by Proposition 5.1. Let a ∈ C∞c (Ω), let φ ∈ E T,irr

(λ1,λ2)(Ω). Then, there
exists T0(φ) < +∞ such that for almost every x0 ∈ U , for every t > T0, the vectors
(ξt,x0

j )j=1,...,Nx0 (t), defined in (3.5), are rationally independent. Let ξt,x0 and βt,x0 be
as in (3.5). Then, by Proposition 3.5, the field (f th)h has an hα-pointwise local weak
limit at x0 given by Pβt,x0 ,ξt,x0 (from Definition 3.4). Next, by Proposition 3.7, the
measures Pβt,x0 ,ξt,x0 converge to Pµa,φ (defined in section 2.2). �

Proof of Theorem 2.10. — The proof is very close to that of Theorem 2.6. The only
differences are the following. The set E T,irr

(λ1,λ2)(Ω) should be replaced by C T,irr(Σ) and
Proposition 5.1 should be replaced by Proposition 5.2. For the rest of the proof, one
takes u ∈ C T,irr(Σ), which induces a phase φu defined on an open subset Ωu. The
rest of the proof carries over with φu (resp. Ωu) in place of φ (resp. Ω). �

4. Classical and quantum dynamics of Lagrangian submanifolds

The aim of this section is to prove Proposition 3.3. In sections 4.1 and 4.2 we
introduce basic definitions and properties related to the hyperbolic dynamics on S∗X.
In section 4.3, we then apply these to state Lemma 4.8, which is a key estimate needed
in the proof (more precisely, we need it to prove (3.3). In section 4.4, we prove Lem-
ma 4.8. Finally, in section 4.5, we prove Proposition 3.3. In all this section, we fix an
arbitrary metric g0 on T ∗X.

4.1. Hyperbolicity. — For each λ > 0, we denote by Φtλ : S∗λX → S∗λX, t ∈ R
the geodesic flow on S∗λX. Since X has negative curvature, (Φtλ)t is an Anosov flow
(see [10] for a proof of this fact). It means that for each ρ ∈ S∗λX, there exist E+

ρ ,
E−ρ and E0

ρ subspaces of TρS∗λX, respectively called the unstable, stable and neutral
direction at ρ such that:

– TρS∗λX = E+
ρ ⊕ E−ρ ⊕ E0

ρ .
– The distributions E+

ρ , E−ρ and E0
ρ depend Hölder continuously on ρ.
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– The distribution E0
ρ is one dimensional and generated by d

dt |t=0Φtλ(ρ). In par-
ticular, dΦtλ|E0 is bounded from above and below uniformly in t.

– E+
ρ and E−ρ are both d− 1 dimensional, and for each t ∈ R, we have

(4.1) dρΦ
t
λ(E±ρ ) = E±

Φtλ
(ρ).

– There exists C > 0 and A > 1 such that for each ρ ∈ S∗λX, t > 0, ξ+ ∈ E+
ρ and

ξ− ∈ E−ρ ,

(4.2)
‖ dρΦ

−t
λ (ξ+)‖g0

6 CA−t‖ξ+‖g0

‖ dρΦ
t
λ(ξ−)‖g0

6 CA−t‖ξ−‖g0
.

If ρ = (x, ξ) ∈ S∗λX for some λ > 0, let us write Ê0
ρ := {(0, sξ) | s ∈ R}, where

ρ = (x, ξ). Note that TρT ∗X = E+
ρ ⊕ E0

ρ ⊕ E−ρ ⊕ Ê0
ρ . In a basis adapted to this

decomposition, we have

(4.3) dρΦ
t =


Mρ,t 0 0 0

0 1 0 λt

0 0 (M−1
ρ,t )† 0

0 0 0 1

 ,

whereMρ,t is a (d−1)×(d−1) matrix such that ‖Mρ,tξ‖ > CAt‖ξ‖ for any ξ ∈ Rd−1.
It follows from (4.1) and (4.3) that E−ρ ⊕ Ê0

ρ and E+
ρ ⊕ E0

ρ are Lagrangian spaces.
If σ denotes the canonical symplectic structure on T ∗X, we may find a constant

C0 > 0 such that, for all ρ ∈ T ∗X and all ξ, ζ ∈ TρT ∗X, we have

(4.4) |σ(ξ, ζ)| 6 C0‖ξ‖g0
‖ζ‖g0

.

Furthermore, the map Φt being symplectic, we have σ(ξ, ζ) = σ(dρΦ
t(ξ), dρΦ

t(ζ)).
Combining this with (4.3) and letting t→ ±∞, we see that

(4.5)
(
ξ ∈ E±ρ and ζ ∈ E±ρ ⊕ E0

ρ ⊕ Ê0
ρ

)
=⇒ σ(ξ, ζ) = 0.

In particular, E0
ρ ⊕ Ê0

ρ is symplectically orthogonal to E+
ρ ⊕ E−ρ . Since E0

ρ ⊕ Ê0
ρ

forms a vector space of dimension 2, and there is a unique symplectic form on R2

up to a multiplicative constant, if ξ = (ξ0, ξ̂0) ∈ E0
ρ ⊕ Ê0

ρ and ζ = (ζ0, ζ̂0) ∈ E0
ρ ⊕ Ê0

ρ ,
we have σ(ξ, ζ) = c(ρ)(ξ0ζ̂0 − ζ0ξ̂0). By continuity and compactness, if 0 < λ1 6 λ2,
there exists 0 < c1 < c2 such that

(4.6) ρ ∈ S∗[λ1,λ2] =⇒ c1 6 |c(ρ)| 6 c2.

Finally, we define the stable and weak stable manifolds of ρ as

W−(ρ) = {ρ′ ∈ S∗λX | d(Φtλρ,Φ
t
λρ
′) −→
t→+∞

0}

W−0(ρ) = {ρ′ ∈ S∗λX | d(Φtλρ,Φ
t
λρ
′) remains bounded as t→ +∞}.

W−(ρ) and W−0(ρ) are then manifolds, whose tangent space at ρ are respec-
tively E−ρ and E−ρ ⊕ E0

ρ . Furthermore, if ρ′ ∈ W−0(ρ), there exists t ∈ R such that
Φtλ(ρ′) ∈W−(ρ).
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4.2. Properties of Lagrangian submanifolds of T ∗X. — In this section we intro-
duce some basic properties of Lagrangian submanifolds of T ∗Y , where Y is a Rie-
mannian manifold. Recall that a Lagrangian submanifold is a submanifold Λ ⊂ T ∗Y
of dimension d, such that the canonical symplectic form of T ∗Y vanishes on TρΛ for
any ρ ∈ Λ (see [9, Chap. 1]). Here, we will focus on a special family of Lagrangian
submanifolds, which can be written as graphs.

Definition 4.1
– Let Y be a smooth Riemannian manifold. We say that a Lagrangian submanifold

Λ ⊂ T ∗Y is projectable if there exist an open subset ΩΛ ⊂ Y and a smooth real-valued
function φ defined on a neighbourhood of ΩΛ such that

Λ = {(x, ∂φ(x)) | x ∈ ΩΛ}.

– We call φ a phase function and say that it generates Λ. Note that φ is monochro-
matic if and only if Λ ⊂ S∗Y . We call ΩΛ the support of Λ.

– Given also Λ′ ⊂ T ∗Y a Lagrangian submanifold, we say that Λ′ is a Lagrangian
extension of Λ if Λ ⊂ Λ′.

Remark 4.2. — Let Λ be a submanifold of T ∗Y . Then, Λ is a projectable Lagrangian
manifold if and only if Λ is the graph of a smooth section of T ∗Y defined over an
open subset ΩΛ, which can be extended smoothly to some neighbourhood of ΩΛ.

Definition 4.3. — Let λ1, λ2 be such that 0 < λ1 < λ2, and let Λ ⊂ S∗[λ1,λ2]X be
some Lagrangian submanifold. We say that Λ is transverse to the stable directions
if it admits a Lagrangian extension Λ′ such that for any ρ ∈ Λ′, we have

TρΛ
′ ∩ E−ρ = {0}.

Note that, if Λ ⊂ S∗λX for some λ > 0, TρΛ′∩E−ρ = {0} is equivalent to TρΛ′⊕E−ρ =

Tρ(S
∗
λX). In the case where Λ is a section of T ∗X, this is equivalent to the fact that

this section is transverse at ρ to the unique stable manifoldW−(ρ′) containing ρ. This
motivates our use of the term transverse in this context.

Definition 4.4. — Let λ1, λ2 be such that 0 < λ1 < λ2, and let Λ ⊂ S∗[λ1,λ2]X be
some Lagrangian submanifold. We say that Λ is nowhere stable if it admits a simply
connected Lagrangian extension Λ′ such that for any ρ1, ρ2 ∈ Λ′, we have

(4.7)
(
ρ2 ∈W−(ρ1)

)
=⇒ (ρ2 = ρ1).

Lemma 4.5. — Let Y be a smooth Riemannian manifold. Let Λ ⊂ S∗[λ1,λ2]Y be a
precompact Lagrangian submanifold transverse to the stable directions. Then there
exists finitely many Lagrangian submanifolds Λ1, . . . ,Λn such that Λ =

⋃n
i=1 Λi and

each Λi is nowhere stable.

Proof. — Let Λ′ be a Lagrangian extension of Λ. By our transversality assumption,
we know that the points of Λ′ ∩W−(ρ) are isolated. In other words, for any ρ ∈ Λ′,
there exists ερ > 0 such that Λ′ ∩W−(ρ) ∩ B(ρ, ερ) = {ρ}, where B(ρ, ερ) denotes
the open ball of center ρ and of radius ερ.

J.É.P. — M., 2022, tome 9



How Lagrangian states evolve into random waves 197

Since Λ′ is a smooth manifold and the dependence of the unstable directions in ρ
is Hölder, we see that ρ 7→ ερ is continuous. Hence ε0 := infρ∈Λ ερ is > 0.

Let us consider a covering of Λ′ by finitely many balls of radius ε0/2, and check
that each element of this covering is nowhere stable. If ρ1, ρ2 belong to the intersection
of Λ′ with a ball of radius ε0/2, then we have ρ2 ∈ B(ρ1, ε0) ∩ Λ ⊂ B(ρ1, ερ1

) ∩ Λ.
Therefore, we have (ρ2 ∈W−(ρ1)) =⇒ (ρ2 = ρ1), as announced. �

4.3. Evolution of Lagrangian manifolds on Hadamard manifolds. — Next we will
focus on the evolution of nowhere stable Lagrangian submanifolds on the universal
cover of X, which we denote by X̃. The manifold X̃ is then a Hadamard manifold,
i.e., a complete simply connected manifold of negative curvature. In particular, we
state the key estimate Lemma 4.8 needed in the proof of Proposition 3.3.

Definition 4.6. — Let Y be a Riemannian manifold and let π : T ∗Y → Y be the
canonical projection. Let Λ ⊂ T ∗Y be a Lagrangian submanifold. Let (Φt)t be the
geodesic flow, acting on T ∗Y . We say that Λ is expanding if there is a Lagrangian
extension Λ′ of Λ such that for any ρ, ρ′ ∈ Λ′ which do not belong to the same
geodesic, the function t 7→ distY (πY Φt(ρ), πY Φt(ρ′)) is increasing.

Lemma 4.7. — Let Y be a complete simply connected manifold of negative curvature,
and let Λ ⊂ S∗[λ1,λ2]Y be a Lagrangian submanifold which is nowhere stable. Then
there exists T0(Λ) > 0 such that for all t > T0, Φt(Λ) is an expanding projectable
Lagrangian submanifold.

Proof. — Let Λ′,Λ′′ be Lagrangian extensions of Λ with Λ′ ⊂ Λ′′, both satisfy-
ing (4.7). Let ρ1, ρ2 ∈ Λ′′ be points which do not belong to the same geodesic. By
the proof of [14, Th. 4.8.2], there exists c > 0 such that d2

dt2 dist2
Y (Φtρ1,Φ

tρ2) >
c distY (Φtρ1,Φ

tρ2). In particular, when t→ +∞, distY (Φtρ1,Φ
tρ2) either converges

to zero or diverges to +∞.
Suppose that this map converges to zero as t → +∞, so that it is decreasing.

Then we must also have distT∗Y (Φtρ1,Φ
tρ2) converging to zero. Indeed, if this were

not the case, we could find large times t at which the points Φtρ1 and Φtρ2 are very
close when projected on Y , but have directions which are not close to each other. The
distance on the base of such points cannot be a decreasing function. Therefore, we
must have ρ2 ∈W−(ρ1), which contradicts the fact that Λ is nowhere stable.

Hence, we must have distY (πY (Φtρ1), πY (Φtρ2)) → +∞ as t → +∞, so that
the distance between Φtρ1 and Φtρ2 will be increasing after a time T (ρ1, ρ2) where
it is minimal. This time T (ρ1, ρ2) depends continuously on ρ1, ρ2, so, by com-
pactness, we can find T0 such that for all t > T0 and all ρ1, ρ2 ∈ Λ′, we have
distY (πY (Φtρ1), πY (Φtρ2)) > 0, and this quantity is increasing with t. In par-
ticular, Φt(Λ′) is a smooth section of T ∗Y , so that it can be put in the form
{(x, θt(x)) | x ∈ Ω′t}. Since Λ′ is simply connected, so is Φt(Λ′) and therefore Ω′t is
simply connected. Therefore, θt can be chosen as the differential of some function φt,
so that Φt(Λ) is a projectable expanding Lagrangian submanifold of T ∗Y . �
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For all t ∈ {0} ∪ [T0(Λ),+∞), let us denote by Ωt the support of Φt(Λ), and
by φt ∈ C∞(Ωt) a generating function for Φt(Λ). Let t1 ∈ {0} ∪ [T0(Λ),+∞), and
t2 > T0(Λ). Since Φt1(Λ) and Φt2(Λ) are projectable, the map κt1,t2 : Ωt1 3 x 7→
πY (Φt2−t1(x, ∂φt1(x))) ∈ Ωt2 is then an embedding, and we will write κ−1

t1,t2 =: gt1,t2 :

Ωt2 → Ωt1 . Therefore, for all y ∈ Ωt2 , we have

(4.8) (y, ∂φt2(y)) = Φt2−t1
(
gt1,t2(y), ∂φt1(gt1,t2(y))

)
.

Note that for any t1, t2, t3 > T0, we have

(4.9) gt1,t2 ◦ gt2,t3 = gt1,t3 .

The following lemma, which we prove in the next section, gives us an estimate on
the regularity of the maps gt1,t2 which will be essential to obtain the first point in
Proposition 3.3.

Lemma 4.8. — Let Λ ⊂ S∗[λ1,λ2]X be a Lagrangian manifold which is transverse to
the stable directions, and let T0(Λ) be as in Lemma 4.7. Then for all t > T0(Λ),
log(|det(dxg0,t)|) is continuous in x, uniformly in (x, t).

4.4. Proof of Lemma 4.8. — In this section, we prove Lemma 4.8 but before doing
so, we state and prove a final auxiliary lemma. Recall that we fixed a metric on T ∗X,
which allows us to define angles between vectors of TρT ∗X for any ρ ∈ S∗[λ1,λ2]X.

Definition 4.9. — Let η0 > 0. We say that a Lagrangian submanifold Λ ⊂ S∗[λ1,λ2]X

is η0- transverse to the stable directions if, for any ρ ∈ Λ, the angle between any vector
of TρΛ and any vector of E−ρ is at least η0.

Lemma 4.10. — For each η0 > 0 and δ0 > 0, there exists T1 = T1(η0, δ0) < +∞ such
that the following holds.

Let Λ ⊂ S∗[λ1,λ2]X be a Lagrangian manifold which is η0-transverse to the stable
directions. Then for each t > T1 and each ρ ∈ Φt(Λ), the angle between the space of
TρΦ

t(Λ) and E+
ρ ⊕ E0

ρ ⊕ Ê0
ρ is smaller than δ0.

More precisely for each t > T1 and each ρ ∈ Φt(Λ), we may find a vector space
Ẽ0
ρ ⊂ E0

ρ⊕Ê0
ρ, whose dependence on ρ is Hölder, such that the angle between TρΦt(Λ)

and E+
ρ ⊕ Ẽ0

ρ is smaller than δ0.

Proof. — First of all, note that there exists c > 0 such that for all ρ ∈ S∗[λ1,λ2]X and
all ξ = (ξ+, ξ−, ξ0, ξ̂0) ∈ E+

ρ ⊕ E−ρ ⊕ E0
ρ ⊕ Ê0

ρ , we have

(4.10) ‖ξ‖2 > c‖ξ−‖2, ‖ξ‖2 > c
(
‖ξ+‖2 + |ξ0|2 + |ξ̂0|2

)
.

For a given ρ, this follows from the fact that all norms are equivalent on a finite-
dimensional space, and the constant c involved depends on the angle between the
directions E0

ρ , Ê0
ρ and E+

ρ . By compactness, the constant may hence be taken inde-
pendent of ρ.
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Let us fix η0 > 0 and Λ as in the statement. Let ρ ∈ Λ and let t ∈ R. Write
ρt := Φt(ρ) and ξt := (dρΦ

t)(ξ) ∈ TρtΦt(Λ). Decomposing ξt as

ξt = (ξ+
t , ξ

−
t , ξ

0
t , ξ̂

0
t ) ∈ E+

ρt ⊕ E
−
ρt ⊕ E

0
ρt ⊕ Ê

0
ρt ,

our first aim is to show that ‖ξ−t ‖2/‖ξt‖2 converges to zero as t → ∞ uniformly in
ρ ∈ Λ, ξ ∈ TρΛ.

Thanks to (4.2) and (4.10), we have

‖ξ−t ‖2 6 CA−2t‖ξ−‖2 6 C

c
A−2t‖ξ‖2.

On the other hand, (4.2) and (4.10) also imply that

‖ξt‖2 >
c

C
(|ξ0|2 + |ξ̂0|2 + ‖ξ+‖2) >

c

C
| sin η0|2‖ξ‖2.

Thus, we have

(4.11) ‖ξ−t ‖2

‖ξt‖2
6
C2

c2
A−2t

| sin η0|2
,

and the first claim follows.
We now move to the construction of Ẽ0

ρ . Let ρ ∈ Φt(Λ) for t > T1. The space
TρΦ

t(Λ) is d-dimensional, so its intersection with E−ρ ⊕E0
ρ⊕ Ê0

ρ must contain a norm-
one vector ζ = (0, ζ−, ζ0, ζ̂0) ∈ E+

ρ ⊕ E−ρ ⊕ E0
ρ ⊕ Ê0

ρ . We denote by Ẽ0
ρ the vector

space generated by (0, 0, ζ0, ζ̂0). In particular, it depends Hölder-continuously on ρ,
as claimed. Let us also denote by ζ− the vector (0, ζ−, 0, 0) and by ζ0 the vector
(0, 0, ζ0, ζ̂0).

Thanks to (4.11), we know that, for t large enough, we have |ζ−| < c1δ0/6C0,
with C0 as in (4.4) and c1 as in (4.6). Therefore, if δ0 is chosen small enough, either |ζ0|
or |ζ̂0| must be > 1/3. Up to exchanging the role of ζ0 and ζ̂0, we may suppose that
|ζ0| > 1/3.

Let ξ = (ξ+, ξ−, ξ0, ξ̂0) ∈ TρΦ
t(Λ). We denote by ξ0 the vector (0, 0, ξ0, ξ̂0).

If σ denotes the natural symplectic structure on T ∗X, we have thanks to (4.5)
that σ(ξ, ζ) = σ(ξ0, ζ0) + σ(ξ, ζ−). Recall from the discussion before (4.6) that
σ(ξ0, ζ0) = c(ρ)(ξ0ζ̂0 − ζ0ξ̂0).

On the other hand, since Φt(Λ) is Lagrangian, σ(ξ, ζ) must be zero. Therefore, we
have

(4.12) ξ̂0 =
ξ0ζ̂0

ζ0
+

1

c(ρ)ζ0
σ(ξ, ζ−),

and the last term has an absolute value smaller than δ0‖ξ‖/2.
Therefore, we may write

ξ = (ξ+, 0, 0, 0) +
ξ0

ζ0
(0, 0, ζ0, ζ̂0) +

(
0, 0, 0,

1

c(ρ)ζ0
σ(ξ, ζ−)

)
+ (0, ξ−, 0, 0).

The result follows, as the first two terms belong to E+
ρ ⊕ Ẽ0

ρ , while, for t > T 1, the
sum of the last terms has absolute value smaller than δ0‖ξ‖ thanks to (4.11). �
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We may now proceed with the proof of Lemma 4.8. Recall that it says that, if we
consider the family of functions Dt ∈ C∞(X) indexed by t > T0(Λ), defined by
Dt(x) = log(|det(dxg0,t)|), then for all ε > 0, there exists µ > 0 such that for all
t > T0(Λ) and all x, x′ ∈ ΩT0

at mutual distance at most µ,
(4.13) |Dt(x)−Dt(x

′)| 6 ε.

Proof of Lemma 4.8. — By compactness, we may find η0 > 0 such that Λ is η0-trans-
verse to the stable directions. Let ε > 0, let δ0 > 0 which we will choose later,
depending on ε, and let T1 = T1(η0, δ0) be as in Lemma 4.10, which we may assume
to be greater than T0. Clearly, it is enough to establish (4.13) for t > T1. Let t > T1.
By (4.9), for any x ∈ Ωt, defining ρ ∈ Λt by π(ρ) = x, we have

(4.14)

dxg0,t = (dgT1,t
(x)g0,T1) dxgT1,t

= (dgT1,t
(x)g0,T1

)(dΦT1−t(ρ)π|ΛT1
)

· (dρΦT1−t|TρΛt→TΦT1−t(ρ)ΛT1
)(dρπ|Λt)−1.

To study the right-hand side of this decomposition, we make the three following
observations.

– Thanks to the second part of Lemma 4.10, for each t > T1, we may find a
subspace Ẽ0

ρ ⊂ E0
ρ ⊕ Ê0

ρ such that the orthogonal projector Pρ : TρS
∗X → E+

ρ ⊕ Ẽ0
ρ

is Hölder continuous in ρ and is δ0-close to the orthogonal projection onto TρΛs.
Therefore, up to an error oδ0→0(1), we may replace the factors dρ′π|Λs in (4.14) by
factors (dρ′πP

∗
ρ′), and the factor dρΦ

T1−t|TρΛt→TΦT1−t(ρ)ΛT0
by PΦT1−t(ρ) dρΦ

T1−tP ∗ρ .
– Thanks to (4.3), we have det(PΦT1−t(ρ) dρΦ

T1−tP ∗ρ ) = det(MΦT1−t(ρ),ρ).
– For all s > 0, π|Λs : Λs → Ωs is a diffeomorphism and uniformly bi-Lipschitz

in s. Moreover, for each s > 0, the maps Φ−s : Λs → Λ and gs,s′ for s < s′ are
contracting. Consequently, the mappings x 7→ dρπP

∗
ρ , x 7→ dΦT1−t(ρ)πP

∗
ΦT1−t and

x 7→ dgT1,t
(x)g0,T1

(where π(ρ) = x) are Hölder continuous on Ωt, uniformly in t > T1.
From these observations we deduce the existence of δ0 = δ0(ε) > 0 and µ1 =

µ1(ε) > 0 such that if T1 = T1(η0, δ0) > 0 is chosen accordingly, for any t > T1 and
x, x′ ∈ Ωt such that dist(x, x′) 6 µ1,
(4.15) |Dt(x)−Dt(x

′)| 6 ε/2 +
∣∣log det(MΦT1−t(ρ),T1−t)− log det(MΦT1−t(ρ′),T1−t)

∣∣,
where ρ, ρ′ ∈ Φt(Λ) are such that πX(ρ) = x, πX(ρ′) = x′.

Now, by the chain rule, we have

det(MΦT1−t(ρ),ρ) =

(bt−T1c−1∏
k=0

det(MΦT1−t+k(ρ),1)

)
× det(MΦ−〈t−T1〉(ρ),〈t−T1〉),

where 〈s〉 = s− bsc. We thus get that∣∣log det(MΦT1−t(ρ),T1−t)− log det(MΦT1−t(ρ′),T1−t)
∣∣

6
bt−T1c−1∑
k=0

∣∣log det(MΦT1−t+k(ρ),1)− log det(MΦT1−t+k(ρ′),1)
∣∣

+
∣∣log det(MΦ−〈t−T1〉(ρ),〈t−T1〉)− det(MΦ−〈t−T1〉(ρ′),〈t−T1〉)

∣∣.
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We note that the map ρ′ 7→ log det(MΦ−s(ρ′),s) is Hölder continuous uniformly in
s ∈ [0, 1], and that the distance between ΦT1−t+k(ρ) and ΦT1−t+k(ρ′) decays expo-
nentially in k as |T1 − t + k| increases from 1 to T1 − t, with an exponent of decay
independent of ρ, ρ′. We deduce from this that∣∣log det(MΦT1−t(ρ),T1−t)− log det(MΦT1−t(ρ′),T1−t)

∣∣ 6 C distS∗X(ρ, ρ′)α,

for some C,α independent of ρ, ρ′. The result follows from this and (4.15). �

4.5. The action of the Schrödinger propagator on Lagrangian states. — The aim
of this section is to prove Proposition 3.3, which describes the action of the Schrödinger
propagator on Lagrangian states that are transverse to the stable directions. We will
start with the following proposition, which treats the case of Lagrangian states that are
nowhere stable, on a complete simply connected manifold. The discussion is simplified
by the fact that, here, we only consider Lagrangian states associated with Lagrangian
manifolds that are projectable. We start by establishing the following proposition,
which is an adaptation of results from [17, §4.1].

Proposition 4.11. — Let X̃ be the universal cover of a Riemannian manifold of neg-
ative sectional curvature, let λ1, λ2 be such that 0 < λ1 < λ2, and let Λ ⊂ S∗[λ1,λ2] be
a projectable Lagrangian submanifold of T ∗X̃ with support Ω0, generated by a phase
function φ0. Suppose that Λ is nowhere stable. Then there exists T0 > 0 such that, for
any t > T0, Φ̃t(Λ) is a projectable Lagrangian manifold, whose support and phase we
denote by Ωt and φt. Furthermore, for any symbol a ∈ C∞c (Ω0), any t > T0 and any
k ∈ N, the application of the operator Uh(t) to the Lagrangian state

aeiφ0/h

associated with Λ0 can be written as

Uh(t)(aeiφ0/h)(x) = eiφt(x)/h+iβ(t)/hbt(x) +OHk(h)

for some β(t) ∈ R. Here, the bt are smooth compactly supported functions on X̃ such
that φt is smooth on a neighbourhood of the support of bt. The two functions are
defined as follows:

(1) Let πX̃ : T ∗X̃ → X̃ be the canonical projection. For any y ∈ Ωt, there exists
a unique x ∈ Ω0 such that πX̃Φ̃t(x, ∂φ0(x)) = y. We then write Φ̃t(x, ∂φ0(x)) =

(y, ∂φt(y)).
(2) The function bt is defined by

bt(x) = |det(dgt(x))|1/2a ◦ gt(x),

where gt(x) = g0,t(x) is the projection on the base manifold of Φ̃−t(x, ∂tφ(x)). Fur-
thermore, log |bt(x)| is continuous in x, uniformly in (x, t).

Proof. — This proposition essentially follows from the fact that the Schrödinger prop-
agator is a Fourier Integral Operator, and by using the WKB method. This method
has been described in [17, Lem. 4.1], in coordinate charts. Let us explain how we can
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reduce the proof to this setting. In the coming steps we will use tools from semi-
classical analysis, some of which are presented in section A of the appendix.

Step 1: the Schrödinger propagator as a Fourier Integral Operator. — For any t ∈ R,
we denote

Λ(t) := {(x, x′; ξ,−ξ′) | Φt(x, ξ) = (x′, ξ′)} ⊂ T ∗(X̃2).

We claim that if t 6= 0, Λ(t) is a projectable Lagrangian submanifold of T ∗(X̃2).
Indeed, since X̃ has negative curvature, [14, Th. 4.8.1] implies that for any x, x′ ∈ X̃
and any t ∈ R r {0}, there exists unique ξ ∈ TxX̃, ξ′ ∈ Tx′X̃, depending smoothly
on x and x′, such that Φt(x, ξ) = (x′, ξ′). In other words, Λ(t) is a smooth section of
T ∗(X̃2), so it is a projectable Lagrangian manifold thanks to Remark 4.2. Next, recall
the standard fact that the frequency-localized Schrödinger propagator is a Fourier
Integral Operator associated to the geodesic flow, whose proof is similar to [15, Th. 2.1]
(see also [21, Th. 10.4]). This means that, if ψt is a phase generating Λ(t), and if(4)

A ∈ Ψcomp
h (X̃), then there exists u ∈ C∞c (X̃2) such that U(t)A is the sum of an

operator whose Schwartz kernel is

u(x, x′)eiψt(x,x
′)/h

and of an OL2→L2(h∞) remainder. Here, u can depend on h, but its supports and Ck
norms are bounded independently of h.

Step 2: using coordinates. — Fourier Integral Operators are easier to describe in some
system of coordinates. Since X̃ is a complete simply connected manifold of neg-
ative curvature, by the Cartan-Hadamard theorem, there exists a diffeomorphism
κ : X̃ → Rd, which is simply given by the exponential map at any point. We denote
by T ∗X̃ the co-tangent bundle of X̃, and by Φt : T ∗X̃ → T ∗X̃ the geodesic flow at
time t. We equip T ∗X̃ with its natural symplectic structure. The diffeomorphism κ

can be lifted to a symplectomorphism by

(4.16) K :

{
T ∗X̃ −→ T ∗Rd

(y, ξ) 7−→
(
κ(y), (dκ(y)t)−1ξ

)
.

For any t ∈ R, let us write

Λ̂(t) :=
{(
κ(x), κ(x′); (dκ(x)t)−1ξ, (dκ(x′)t)−1ξ′

)
| (x, x′, ξ, ξ′) ∈ Λ(t)

}
⊂ T ∗R2d.

We deduce from the previous step that Λ̂(t) is a projectable Lagrangian submanifold
of T ∗R2d. Furthermore, if ψ̂t is a phase generating Λ̂(t), and if A ∈ Ψcomp

h (X̃), then
there exists û ∈ C∞c (Rd) such that Ũh(t) := (κ−1)∗Uh(t)A(κ)∗ : L2(Rd)→ L2(Rd) is
the sum of an operator whose Schwartz kernel is

(4.17) û(y, y′)eiψ̂t(y,y
′)/h,

(4)The space Ψcomp
h is the space of (Weyl) pseudo-differential operators with compactly supported

symbols. It is defined in section A of the appendix.
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and of an OL2→L2(h∞) remainder. Here, again, û can depend on h, but its supports
and Ck norms are bounded independently of h.

Step 3: using the WKB method. — Let φ0 ∈ C∞(Ω0) and a ∈ C∞c (Ω0) be as in the
statement of Proposition 4.11. Recall that λ1 6 |∂φ0| 6 λ2. Take α1 ∈ C∞c (X̃) with
α1 ≡ 1 on the support of a, and α2 ∈ C∞c (0,+∞) with α2 ≡ 1 on [λ1, λ2]. Then,
if we write α : T ∗X 3 (x, ξ) 7→ α1(x)α2(|ξ|) ∈ R and A := Oph(α), the method of
stationary phase shows that aeiφ0/h = Aaeiφ0/h + OHk(h∞) for any k ∈ N. Let us
write ω0 := κ(Ω0) ⊂ Rd, ϕ0 := (κ−1)∗φ0 ∈ C∞(ω0), and a := (κ−1)∗a ∈ C∞c (ω0).
Moreover, for each t ∈ R, let us write Φ̂t = K ◦ Φt ◦K−1 : T ∗Rd → T ∗Rd.

We thus want to apply the operator (κ−1)∗Uh(t)(κ)∗ to the Lagrangian state ae
i
hϕ0 .

Up to a OHk(h∞) (for any k ∈ N), it does therefore amount to applying the operator
(κ−1)∗Uh(t)A(κ)∗, whose integral kernel is described by (4.17). We are then exactly
in the framework of [17, Lem. 4.1], and we can conclude using the following lemma,
the last point in Proposition 4.11 coming from Lemma 4.8. �

Lemma 4.12. — Let Λ0 be a projectable Lagrangian submanifold of T ∗Rd, generated
by a phase function ϕ0, with support ω0 ⊂ Rd. Fix t > 0. Suppose that Φ̂t(Λ0) is a
projectable Lagrangian submanifold of T ∗ωt, for some open subset ωt ⊂ Rd, generated
by a phase function ϕt. Then, for any a ∈ C∞c (ω0) and any k ∈ N, the application of
the operator (κ−1)∗Uh(t)(κ)∗ to the Lagrangian state

aeiϕ0/h

associated with Λ0 can be written as

(κ−1)∗Uh(t)(κ)∗(aeiϕ0/h)(x) = eiϕt/h(at + rh),

where ‖rh‖Hk = O(h), and where at ∈ C∞c (Rd) is given by

(4.18) at(x) = eiβ(t)/h|det dg0,t(x)|1/2(a ◦ g0,t)(x),

for some β(t) ∈ R. Here, g0,t : ωt → ω0 is given by g0,t = κ−1 ◦ g0,t ◦ κ, with
g0,t : ωt → ω0 as in (4.8).

We may now proceed with the proof of Proposition 3.3, after introducing a few no-
tations. Let us write pr:X̃→X for the covering map of X. It induces a projection pr∗ :

T ∗X̃→T ∗X, such that pr∗ ◦Φ̃t=Φt◦pr∗. We shall write pr−1(x) :={y∈X̃ | pr(y)=x}.
We also define a map Π : C0(X̃) → C0(X) by (Πf)(x) =

∑
y∈pr−1(x) f(y). Let us

denote by Ũh(t) : L2(X̃) → L2(X̃) the semi-classical Schrödinger propagator on X̃.
If f ∈ C0(X̃), we have

(4.19) ΠŨh(t)f = Uh(t)Πf,

because both side satisfy the same differential equation with the same initial condi-
tions.

Proof of Proposition 3.3. — Thanks to Lemma 4.5, we know that we may find finitely
many open sets (On)n=1,...,N in X such that T ∗On ∩ Λ is nowhere stable. Let
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(χn)n=1,...,N be a family of smooth functions with χn ∈ C∞c (On) and
∑N
n=1 χn ≡ 1

on Ω0. For each n ∈ {1, . . . , N}, let Λn = Λ ∩ T ∗On ⊂ T ∗X, which is a projectable
nowhere stable Lagrangian submanifold with support On. Then, there exists a pro-
jectable Lagrangian submanifold Λ̃n ⊂ T ∗X̃ such that the projection pr∗ restricts to
a diffeomorphism Λ̃n → Λn. For the rest of the proof T0 = maxn T0(Λn) ∨ T0(Λ̃n) as
in Lemma 4.7. Moreover, any other projectable Lagrangian Λ̃′n ⊂ T ∗X̃ with the same
property is the image of Λ̃n by some element of Γ. We call Λ̃n a lift of Λn. Note that
Λn ⊂ S∗[λ1,λ2]X if and only if Λ̃n ⊂ S∗[λ1,λ2]X̃. Let us fix a lift of each Λn, and denote
by Ω̃n and φ̃n its support and phase function. We may also lift each aχn ∈ C∞c (On)

to some ãχn ∈ C∞c (Õn) such that aχn = ãχn ◦ pr. Hence, Π(ãχne
iφ̃0/h) = aχne

iφ0/h.
We then apply Corollary 4.11 to describe the action of Ũh(t) on the Lagrangian
state ãχneiφ̃0/h. Let bt,n and φt,n be the phases appearing in the statement of the
proposition. Thanks to equation (4.19), we get

Uh(t)(aeiφ0/h) =

N∑
n=1

Uh(t)(aχne
iφ0/h) =

N∑
n=1

Π(bt,ne
iφt,n/h) +OC0(h).

Now, the group of deck transformations of X is freely acting, properly discon-
tinuous group of isometries of X̃, and for each t > T0, bt,n has compact support.
Therefore, Π(bt,ne

iφt,n/h)(x) =
∑
y∈pr−1(x) bt,ne

iφt,n/h is made of finitely many terms.
Equation (3.2) follows. The rest of the statements follow from the corresponding
properties in Corollary 4.11, noting that (3.3) is equivalent to the fact that log |bt,n|
is continuous, uniformly in (x, t).

It remains to prove equation (3.4). Suppose for contradiction that this bound does
not hold. Then, we could find a sequence tp of times larger than T0, a sequence
jp ∈ {1, . . . ,M(tp)} and sequences of points xp, yp ∈ U ′jp,tp such that

distX(xp, yp) = o(1) and distX(xp, yp)

= o
(
distT∗X

(
(xp, ∂φjp,tp(xp)), (yp, ∂φjp,tp(yp))

))
,

where the distance on T ∗X is computed thanks to the metric g0 we fixed. Now,
the points (xp, ∂φjp,tp(xp)) and (yp, ∂φjp,tp(yp)) can be lifted to points (x̃p, ξ̃p) and
(ỹp, ξ̃′p) in Φtp(Λ̃n) ⊂ T ∗X̃. But we would then have distX̃(x̃p, ỹp) = o(1) and
distX̃(x̃p, ỹp) = o

(
dT∗X̃

(
(x̃p, ξ̃p), (ỹp, ξ̃′p)

))
. In particular, for p large enough, the map

t 7→ distX̃
(
Φ̃t((x̃p, ξ̃p), (ỹp, ξ̃′p)

)
would not be increasing for t close to zero, which

would contradict the fact that Λ̃n is expanding. �

5. Rational independence of phases is generic

Let Ω ⊂ X be an open subset. Let 0 < λ1 < λ2. Let Σ ⊂ X be an orientable
hypersurface of X. We fix ν a vector field on Σ normal to TΣ at each point and of
unit norm. Recall the objects E(λ1,λ2)(Ω), E T

(λ1,λ2)(Ω) and E T,irr
(λ1,λ2)(Ω) defined in (2.3),

(2.4) and (3.6) respectively. Moreover, recall C (Σ), C T (Σ) and C T,irr(Σ) defined
in (2.5), (2.6) and (3.7) respectively. The goal of the present section is to prove the
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two following propositions, which we use in the proofs of Theorems 2.6 and 2.10
respectively. We equip all these sets with the topology of uniform convergence of
derivatives on compact sets.

Proposition 5.1. — The set E T,irr
(λ1,λ2)(Ω) is a residual subset of E T

(λ1,λ2)(Ω).

Proposition 5.2. — The set C T,irr(Σ) is a residual subset of C T (Σ).

5.1. The polychromatic case: proof of Proposition 5.1. — In this section we prove
Proposition 5.1. For the proof, we will need the following definition. Let k be an
integer no smaller than two. For each finite sequence of relative, non-zero integers,
n = (n1, . . . , nk), let

Tn =
{

((x, ξ1), . . . , (x, ξk)) | x ∈ X, ξ1, . . . , ξk ∈ T ∗xX r {0},

the ξj are not all equal and
∑k
j=1 njξj = 0

}
.

Proposition 5.1 will be a consequence of the following result.

Lemma 5.3 (Rationally independent polychromatic phases are generic)
Let k > 2, n ∈ Nk. There exists a residual subset En ⊂ C∞(Ω) such that for each

φ ∈ En, the set

On :=
{

(x1, . . . , xk, t) ∈ Ωk × R | (Φt(x1, ∂φ(x1)), . . . ,Φt(xk, ∂φ(xk))) ∈ Tn
}

is a countable union of one dimensional submanifolds.

Before proving Lemma 5.3 let us deduce Proposition 5.1 from it.

Proof of Proposition 5.1. — A countable intersection of residual sets is still a residual
set. Hence, thanks to the previous lemma, we know that there exists a residual subset
E ⊂ C∞(Ω) such that for all φ ∈ E, the following holds. For all k > 2 and all n ∈ Nk,
the sets On are countable unions of one dimensional submanifolds. Let φ ∈ E, and
let k > 2. We shall write Ψφ : Ωk × R 3 (x1, . . . , xk, t) 7→ πX (Φt(x1, ∂φ(x1))) ∈ X.
Then, for all n ∈ Nk, Ψφ(On) has measure zero.

We claim that the set Ψφ(On) is exactly the set of x ∈ X such that there exists
x1, . . . , xk ∈ X, t ∈ R and ξ1, . . . , ξk ∈ T ∗xX such that Φt(xj , ∂φ(xj)) = (x, ξj) for all
j = 1, . . . , k and

∑k
j=1 njξj = 0. Indeed, by the discussion after Proposition 3.3, the

directions ξ1, . . . , ξk are all different, so the claim follows from definition of Tn.
All in all, if φ ∈ E ∩E T

(λ1,λ2)(Ω), we have that for almost every x0 ∈ X, the vectors
(ξt,x0

j )j=1,...,Nx0 (t) are rationally independent for all t > T0(φ). This is precisely saying
that E ∩ E T

(λ1,λ2)(Ω) ⊂ E T,irr
(λ1,λ2)(Ω), which proves the result. �

Proof of Lemma 5.3. — Let us write

Ψ : (T ∗Ω)k × R −→ (T ∗X)k

((x1, ξ1), . . . , (xk, ξk), t) 7−→
(
Φt(x1, ξ1), . . . ,Φt(xk, ξk)

)
.

Since Φt is a diffeomorphism, the map Ψ is a submersion. Moreover, Tn is a
submanifold of (T ∗X)k of codimension kd. Therefore, Ψ−1(Tn) is a submanifold of
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(T ∗Ω)k ×R of codimension kd (and hence of dimension kd+ 1). Let pr(T∗Ω)k denote
the projection of (T ∗Ω)k × R onto (T ∗Ω)k. We claim that

(5.1) dim(Ker(dpr(T∗Ω)k)) ∩ TΨ−1(Tn)) = 0.

The proof of (5.1) is a geometric argument which we postpone to the end of the
proof of the present lemma. By (5.1), Pn = pr(T∗Ω)k(Ψ−1(Tn)) is a countable union
of submanifolds of (T ∗Ω)k of dimension kd + 1. By the multijet transversality theo-
rem (see [12, Th. 4.13, Chap. 2]) the set En of phases φ ∈ E(λ1,λ2)(Ω) such that the
section of (T ∗Ω)k defined by (dφ, . . . , dφ) is transversal to Pn is a residual subset of
C∞(Ω). In particular, if φ ∈ E, the intersection of the section (dφ, . . . , dφ) with Pn
is a countable union of submanifolds of dimension 1 of (T ∗Ω)k. Using (5.1) again,
we deduce that On is a countable union of one dimensional submanifolds of Ωk × R.

To conclude, we now prove (5.1). Firstly, for all p ∈ (T ∗Ω)k×R, Ker(dp pr(T∗Ω)k) =

{0}×R. In order to prove the statement of the claim, we must therefore study the im-
age by dpΨ of perturbations of p along the t variable Let τ = (0, . . . , 0, t) ∈ {0}×Rk ⊂
Tp((T

∗Ω)k × Rk) be different from zero. We want to show that τ /∈ TpΨ
−1(Tn).

Since Ψ is a submersion, this amounts to proving that dpΨ(τ) /∈ TΨ(p)Tn. Let us
write dpΨ(τ) = ((v1, w1), . . . , (vk, wk)) ∈ (T ∗xX)k. Then, we have vj = tσx(ξj) for
j = 1, . . . , k, where σx : T ∗xX → TxX is the identification of the cotangent and tan-
gent spaces induced by the Riemannian metric. But on the other hand, for dpΨ(τ) to
belong to TΨ(p)Tn, the vectors vk would have to be all equal. Since the ξj are not all
equal, this would imply τ = 0. Hence,

Ker(dp pr(T∗Ω)k)) ∩ TpΨ−1(Tn) = {0} × R ∩ dpΨ−1(TpTn) = {0},

as announced. �

5.2. The monochromatic case: proof of Proposition 5.2. — The aim of this section
is to prove Proposition 5.2. As in section 5.1, we will use an intermediate result,
Proposition 5.4 below, for which we now introduce certain geometric objects.

Let us denote by Ŝ∗Σ for the set of (x, ξ) ∈ S∗X with x ∈ Σ and ξ /∈ T ∗xΣ. If k ∈ N,
consider the map

Ψk :

{
Ŝ∗Σk × Rk −→ (S∗X)k

((x1, ξ1), . . . , (xk, ξk), t1, . . . , tk) 7−→
(
Φt1(x1, ξ1), . . . ,Φtk(xk, ξk)

)
.

The differential of Ψk at any point is invertible, so, by the inverse function theorem,
the image of Ψk is an open set, which we will call the reachable set, and denote
by Rk(Σ) ⊂ (S∗X)k. For each finite sequence of non-zero relative integers n =

(n1, . . . , nk) with k > 2 let

Sn =
{

((x, ξ1), . . . , (x, ξk)) | x ∈ X, ξ1, . . . , ξk ∈ S∗xX,
∑k
i=1 niξi = 0

}
⊂ (S∗X)k.
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Let π : (Ŝ∗Σ)k × Rk → (Ŝ∗Σ)k denote the projection on the first component.
We will write

Zn := (Ψk)−1
(
Sn ∩Rk(Σ)

)
⊂ (Ŝ∗Σ)k × Rk

Z ′n := π(Zn)

Z ′′n := pkΣ(Z ′n) ⊂ (T ∗Σ)k,

where, if (x, ξ) ∈ Ŝ∗Σ, we write pΣ(x, ξ) = (x, ζ) ∈ T ∗Σ, where ζ is the orthogonal
projection of ξ on T ∗xΣ and pkΣ acts as pΣ on each coordinate of Ŝ∗Σ. In particular,
|ζ| < 1. Proposition 5.2 will follow from Proposition 5.4 below.

Proposition 5.4. — Let k ∈ N r {1} and n ∈ Nk. There exists a residual subset
En ⊂ C (Σ) such that for all u ∈ En, the set{

(x1, . . . , xk) ∈ Σk | ((x1, ∂u(x1)), . . . , (xk, ∂u(xk)) ∈ Z ′′n
}
.

is empty.

Before proving Proposition 5.4, let us show that it implies Proposition 5.2.

Proof of Proposition 5.2. — By Proposition 5.4, E =
⋂
k∈Nr{1},n∈Nk En is a residual

set. If u ∈ E, then for all k ∈ Nr{1}, for all x1, . . . , xk ∈ Ωu and all t1, . . . , tk, if there
exists x ∈ X such that for all j = 1, . . . , k, we have Φtj (xj , ∂φu(xj)) = (x, ξj), then
the ξj are rationally independent. Indeed, by (2.7),

((x1, ∂u(x1), . . . , (xk, ∂φu(xk)) ∈ Z ′′n ⇐⇒ ((x1, ∂u(x1), . . . , (xk, ∂φu(xk)) ∈ Z ′n.

Therefore, if u ∈ E ∩ C T (Σ), we have u ∈ C T,irr(Σ). �

Proof of Proposition 5.4. — By the inverse function theorem, for any q ∈ (Ŝ∗Σ)k×Rk,
there exists a neighbourhood Vq of Ψk(q) and a map I k

q : Vq → (Ŝ∗Σ)k×Rk such that
Ψk ◦I k

q ≡ Id on Vq, and I k
q (Ψk(q)) = q. We define the hitting map by Hq = π ◦I k

q :

Vq → (S∗X)k. We would like to show that Z ′n is a countable union of submanifolds of
(S∗X|Σ)k of codimension at least kd−1. To this end, we note that Z ′n can be written
as the union of Hq(Sn∩Vq) for a countable family of points q ∈ Zn. Hence, it suffices
to study the structure of Hq(Sn ∩ Vq) for a given q ∈ Zn.

If σ = (σ1, . . . , σk) ∈ {+1,−1}k, we define

S σ
n :=

{
((x, ξ1), . . . , (x, ξk)) ∈ Sn | ∀i, j ∈ {1, . . . , k}, σiξi = σjξj

}
.

Then, S σ
n is a smooth submanifold of Sn, and Snr

(⋃
σ∈{+1,−1}k S σ

n

)
is open in Sn.

We shall write
Zσn := (Ψk)−1

(
S σ
n ∩ (R(Σ))k

)
.

The following lemma can be deduced from a simple geometric argument which we
will give at the end of the proof.
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Lemma 5.5. — We have

∀σ ∈ {+1,−1}k, ∀q ∈ Zσn, dim(Ker(dΨk(q)Hq) ∩ TΨk(q)S
σ
n ) = 1,

∀q ∈ Zn r
( ⋃
σ∈{+1,−1}k

Zσn

)
, dim(Ker(dΨk(q)Hq) ∩ TΨk(q)Sn) = 0.

It follows from Lemma 5.5 and from the fact that Sn is a smooth submanifold of
(S∗X)k of codimension kd − 1 that Z ′n = π

(
(Ψk)−1(Sn ∩ (R(Σ))k)

)
is a countable

union of submanifolds of (S∗X|Σ)k of codimension at least kd− 1. As a consequence,
Z ′′n is also a countable union of submanifolds of (T ∗Σ)k of codimension at least kd−1.
Now, by the multijet transversality theorem (see [12, Th. 4.13, Chap. 2]) the set En
of u ∈ C∞(Σ) such that the section (du, . . . , du) : (y1, . . . , yk) 7→ (dy1

u, . . . , dyku) of
(T ∗Σ)k ' T ∗(Σk) is transversal to Z ′′n, a residual in C∞(Σ). But since dim(Σk) =

k(d−1) < kd−1 = codim(Z ′′n) (as we have assumed that k > 2), transversality in this
case implies that the range of (du, . . . , du) never intersects Z ′′n. The result follows. �

Proof of Lemma 5.5. — The map Hq is clearly a submersion, and is invariant by the
action of the geodesic flow on each component. If we write p = ((x1, ξ1), . . . , (xk, ξk)) =

Ψk(q), then we see that Ker(dpHq) is generated by the (0, . . . , (ξj , 0), . . . , 0), where
the factor (ξj , 0) corresponds to the j-th factor of S∗X and ξj acts on the horizontal
part of the tangent bundle T (S∗X). In particular, Ker(dpHq) is a subspace of the
horizontal subspace of Tp(S∗X)k. On the other hand, if p ∈ Sn, the intersection of
TpSn with the horizontal subspace of Tp(S∗X)k is exactly the diagonal Dp of this
horizontal subspace (i.e., the set of ((v, 0), . . . , (v, 0)) where v ranges over all of Tx1

X).
Thus, the corank of Hq at p is the dimension of the space Ker(dpHq)∩Dp. This space
is trivial except when the ξj ’s are all colinear, in which case it is exactly the line
generated by ((ξ1, 0), . . . , (ξ1, 0)). The statement follows. �

Appendix A. A review of semi-classical analysis

In this section we review some basic definitions from semi-classical analysis and
state Egorov’s theorem. Let Y be a smooth d-dimensional Riemannian manifold. In
all the paper, Y is either the compact manifold X or its universal cover X̃.

We shall use the class Scomp(T ∗Y ) of symbols a ∈ C∞c (T ∗Y ), which may depend
on h, but whose semi-norms and supports are all bounded independently of h.

Using coordinate charts, and the standard Weyl quantization on Rd as in [21,
§14.2], we may associate to each symbol in a ∈ Scomp(T ∗Y ) an operator Oph(a),
acting on functions of Y . We thus obtain a quantization map

Oph : Scomp(T ∗Y ) −→ Ψcomp
h (Y ).

This construction is not intrinsic. However, as explained in [21, Th. 14.2], the principal
symbol map

σh : Ψcomp
h (Y ) −→ Scomp(T ∗Y )/hScomp(T ∗Y )

is intrinsic, and we have
σh(A ◦B) = σh(A)σh(B)
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and
σh ◦Oph : Scomp(T ∗Y ) −→ Scomp(T ∗Y )/hScomp(T ∗Y )

is the natural projection map. The operators in Ψcomp
h (Y ) are always bounded inde-

pendently of h when acting on L2(Y ), as explained in [21, Th. 14.2].
Let (fh) be a bounded family in L2(Y ), and let ν be a measure on T ∗Y . We say that

(fh) has a semi-classical measure ν (which is then unique), if, for any a ∈ C∞c (T ∗Y ),
we have

〈fh,Oph(a)fh〉 −−−→
h→0

∫
T∗Y

a(x, ξ) dν(x, ξ).

Let fh := eiφ(x)/ha(x), with a ∈ C∞c (Y ) and φ a smooth function defined in a neigh-
bourhood of the support of a. As explained in [21, §5.1, Ex. 2], (fh) has a semi-classical
measure, which is given by

ν = |a(x)|2 dx δξ=∂φ(x).

More generally, if fh(x) =
∑N
j=1 e

iφj(x)/haj(x), with ∂φj(x) 6= ∂φj′(x) for all j 6= j′

and all x in the support of both aj and aj′ , then a similar proof (using non-stationary
phase to show that the non-diagonal terms are negligible) implies that fh has a semi-
classical measure, which is given by

(A.1) ν =

N∑
j=1

|aj(x)|2 dx δξ=∂φj(x).

The following result, known as Egorov’s theorem, whose proof can be found in
[21, §15], says that, when considering semi-classical measures, the classical and quan-
tum evolutions commute. Recall that Uh(t) := eith∆/2 : L2(X) → L2(X) is the
semi-classical Schrödinger propagator.

Theorem A.1 (Egorov’s theorem, [21, Th. 15.2]). — Let (fh) be a bounded family in
L2(Y ) having a semi-classical measure ν0. Then, for any t ∈ R, the family (Uh(t)fh)

has a semi-classical measure νt, which is given by
νt = Φt∗ν0.

Appendix B. Construction of monochromatic phases

In this section we describe how to construct the phase φu starting from a function
u ∈ C T (Σ) as announced in section 2.5. Let Σ ⊂ X be an embedded orientable simply
connected hypersurface. Let us denote by ν a vector field defined on Σ such that for
each y ∈ Σ, ν(y) has unit norm and is orthogonal to TyΣ. Recall the definition of
C T (Σ) from (2.6). Consider the following first order PDE, where the unknown is a
smooth function ψ : Ω→ R defined on an open neighbourhood Ω of Σ in X:

(B.1)


|∂ψ| = 1;

ψ|Σ = u;

∂ψ|Σ = vu.

According to the following lemma Equation (B.1) always admits solutions and these
satisfy a certain (weak) uniqueness property.
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Lemma B.1. — Let u ∈ C T (Σ). Then, there exists a neighbourhood Ω of Σ in X and
a function ψ ∈ C∞(Σ) which solves (B.1). Moreover, if (ψ1,Ω1) and (ψ2,Ω2) are two
such solutions then ψ1 and ψ2 coincide on some open subset Ω3 ⊂ Ω1 ∩ Ω2.

Proof. — The lemma follows by the method of characteristics. Indeed, for the PDE
(B.1), the hypersurface Σ is non-characteristic (in the sense of [11, (36) p. 106]).
Therefore, we can apply the method of characteristics and deduce local existence and
uniqueness of the solution near each point of Σ (see [11]). Then, piecing together local
solutions using the uniqueness, we obtain a global solution near Σ. Moreover, given
two solutions (ψ1,Ω1) and (ψ2,Ω2) of (B.1), by local uniqueness, for each x ∈ Σ,
there exists Ux ⊂ Ω1 ∩ Ω2 on which they coincide. In particular, Ω3 =

⋃
x∈Σ Ux is a

neighbourhood of Σ on which they coincide. �

To better understand the solutions to Equation (B.1), we check that solutions to
this equation satisfy a property that makes them simple do describe in terms of the
initial condition.

Lemma B.2. — Let U ⊂ X be an open subset and let φ ∈ C∞(U) be such that
|∂φ| = 1. Then, if x ∈ U and v = ∂φ(x), we have, for each t ∈ R close enough
to 0, φ(Φt(x, v)) = φ(x) + t.

Proof. — For simplicity, we assume that φ(x) = 0. Since |∂xφ| = 1, the level set
Σ = φ−1(0) is a smooth hypersurface orthogonal to the vector field ∂φ. For each
t ∈ R, let γt : Σ→ X be the geodesic flow starting from Σ in the direction ∂φ|Σ. There
exists a neighbourhood W̃ ⊂ Σ × R of Σ × {0} such that the map γ : (y, t) 7→ γt(y)

from W into X is a diffeomorphism onto its image W . Let ψ ∈ C∞(W ) be defined
by ψ(γt(y)) = t. Let us show that ψ solves (B.1). To do so, first note that the level
sets of ψ are of the form γt(U), where U ⊂ Σ is an open subset. Next, note that for
each y ∈ Σ and each t ∈ R, γ̇t(y) ⊥ Ty(γt(Σ)). Indeed, this is true for t = 0 and,
if we write ∇ for the Levi-Civita connection on X induced by g, for each vector field v
on Σ,

d

dt
g(dγt(v), γ̇t) = g(∇d/ dt(dγtv), γ̇t) + g(dγtv,∇d/ dtγ̇t) by compatibility

= g(∇d/ dt(dγtv), γ̇t) since ∇d/ dtγ̇t = 0

= g(∇v(γ̇t), γ̇t) by symmetry
= (1/2) d [g(γ̇t, γ̇t)] v by compatibility
= 0 because g(γ̇t, γ̇t) = 1.

Since we also have |γ̇t| = 1 = d
dtψ(γt), we deduce that for each (y, t) ∈ W̃ , ∂ψ(γt(y)) =

γ̇t(y). In particular, ψ solves (B.1) as announced. Moreover, ψ|Σ = φ|Σ so, by Lem-
ma B.1, they coincide near Σ. In particular,

φ(Φt(x, ∂xφ)) = ψ(Φt(x, ∂xψ)) = ψ(γt(x)) = t

for |t| small enough, and the proof is over. �
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Remark B.3. — Though we never use this property in the article, note that Lem-
ma B.2 allows us to describe a maximal choice of Ω3 from Lemma B.1. More precisely,
if (ψ1,Ω1) and (ψ2,Ω2) are two such solutions then ψ1 and ψ2 coincide on

Ω1 ∩ Ω2 ∩ {Φt(x, ∂ψ1(x)) | x ∈ Σ, t ∈ R}.

Indeed, notice that the characteristic curves of (B.1) are gradient lines of ψ1 and ψ2.
But by Lemma B.2, these are geodesics started at points of the form (x, ∂ψj(x)) for
j = 1, 2 and x ∈ Ωj . In particular, taking x ∈ Σ, these gradient lines coincide for
both ψ1 and ψ2 and the two functions must coincide along them as long as they are
well defined.
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