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A RIGIDITY RESULT FOR METRIC MEASURE SPACES

WITH EUCLIDEAN HEAT KERNEL

by Gilles Carron & David Tewodrose

Abstract. —We prove that a metric measure space equipped with a Dirichlet form admitting
an Euclidean heat kernel is necessarily isometric to the Euclidean space. This helps us providing
an alternative proof of Colding’s celebrated almost rigidity volume theorem via a quantitative
version of our main result. We also discuss the case of a metric measure space equipped with a
Dirichlet form admitting a spherical heat kernel.

Résumé (Un résultat de rigidité pour les espaces métriques mesurés à noyau de la chaleur
euclidien)

Nous prouvons qu’un espace métrique mesuré équipé d’une forme de Dirichlet admettant
un noyau de la chaleur euclidien est nécessairement isométrique à l’espace euclidien. Nous en
déduisons une preuve alternative du célèbre théorème de presque rigidité du volume de Colding
grâce à une version quantitative de notre résultat principal. Nous traitons aussi le cas d’un
espace métrique mesuré équipé d’une forme de Dirichlet admettant un noyau de la chaleur
sphérique.
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102 G. Carron & D. Tewodrose

1. Introduction

In Rn, the classical Dirichlet energy is the functional defined on H1 by

E(u) :=

ˆ
Rn
|∇u|2

for any u ∈ H1. As well-known, it is related to the Laplace operator ∆ :=
∑n
k=1 ∂kk

by the integration by parts formula, namely

E(u, v) = −
ˆ
Rn

(∆u)v

for any u, v ∈ H1 such that ∇u ∈ H1, where E(u, v) :=
´
Rn〈∇u,∇v〉. Standard tools

from spectral theory show that ∆ generates a semi-group of operators (et∆)t>0 sending
any u0 ∈ L2 to the family (ut)t>0 ⊂ H1 satisfying the heat equation ∂tut = ∆ut with
u0 as an initial condition. The semi-group (et∆)t>0 admits a smooth kernel p, so that
for any f ∈ L2, x ∈ Rn and t > 0,

et∆f(x) =

ˆ
Rn
p(x, y, t)f(y) dy.

The explicit expression of this heat kernel is well-known: for any x, y ∈ Rn and t > 0,

p(x, y, t) =
1

(4πt)n/2
e−|x−y|

2/4t.

In the more general context of a measured space (X,µ), the Dirichlet energy
possesses abstract analogues called Dirichlet forms. Associated with any such a form E

is a self-adjoint operator L whose properties are similar to the Laplace operator;
in particular, the spectral theorem applies to it and provides a semi-group (Pt)t>0

delivering the solution of the equation ∂tut = Lut starting from any square integrable
initial condition. Under suitable assumptions, this semi-group admits a kernel. When
the space X is equipped with a metric d generating the σ-algebra on which µ is defined,
this kernel is often compared with the exact Gaussian kernel

1

(4πt)n/2
e−d

2(x,y)/4t

through upper and lower estimates: see [Stu95], for instance. From this perspective,
a natural question arises: what happens when the kernel of E coincides with this
Gaussian term? In this article, we answer this question by showing that the unique
metric measure space admitting such a kernel is the Euclidean space. The precise
statement of our main result is the following:

Theorem 1.1. — Let (X, d) be a complete metric space equipped with a non-negative
regular Borel measure µ. Assume that there exists a symmetric Dirichlet form E on
(X,µ) admitting a heat kernel p such that for some α > 0,

p(x, y, t) =
1

(4πt)α/2
e−d

2(x,y)/4t
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A rigidity result for metric measure spaces with Euclidean heat kernel 103

holds for any x, y ∈ X and any t > 0. Then α is an integer, (X, d) is isometric
to (Rα, de), where de stands for the classical Euclidean distance, and µ is the α-
dimensional Hausdorff measure.

Then we show that this rigidity result can be turned quantitative via a suitable
contradiction argument. Denoting by dGH the Gromov-Hausdorff distance and by Bnr
any Euclidean ball in Rn with radius r > 0, we obtain the following:

Theorem 1.2. — Let n be a positive integer. For any ε > 0, there exists δ > 0

depending only on ε and n such that if (X, d, µ) is a complete metric measure space
endowed with a symmetric Dirichlet form E admitting a heat kernel p satisfying

(1.1) (1−δ)
1

(4πt)n/2
e−d

2(x,y)/4(1−δ)t 6 p(x, y, t) 6 (1+δ)
1

(4πt)n/2
e−d

2(x,y)/4(1+δ)t

for any x, y ∈ X and t ∈ (0, T ], for some given T > 0, then for any x ∈ X and
r ∈ (0,

√
T ),

dGH (Br(x),Bnr ) < εr.

The intrinsic Reifenberg theorem of Cheeger and Colding [CC97, Th.A.1.1.] provides
the following immediate topological consequence, where Ψ(·|n) is a function depending
only on n with Ψ(r|n)→ 0 when r → 0+.

Corollary 1.3. — Let n be a positive integer. There exists δn > 0 depending only on n
such that if (X, d, µ) is a complete metric measure space endowed with a symmetric
Dirichlet form E admitting a heat kernel p such that for some numbers δ ∈ (0, δn) and
T > 0,

(1− δ)
1

(4πt)n/2
e−d

2(x,y)/4(1−δ)t 6 p(x, y, t) 6 (1 + δ)
1

(4πt)n/2
e−d

2(x,y)/4(1+δ)t

holds for all x, y ∈ X and t ∈ (0, T ), then for any x ∈ X, there exists a topological
embedding of Bn√

T
into B√T (x) whose image contains B(1−Ψ(δ|n))

√
T (x).

We point out the two previous results are also true in case T = +∞. Moreover,
Theorem 1.2 can be used to give an alternative proof of a celebrated result established
by Colding [Col97, Th. 0.8], namely the almost rigidity of the volume for Riemannian
manifolds with non-negative Ricci curvature. Let us recall this statement:

Theorem 1.4 (Colding). — Let n be a positive integer. For any ε > 0, there exists
δ > 0 depending only on ε and n such that if (Mn, g) is a complete Riemannian
manifold with non-negative Ricci curvature such that for any x ∈M and r > 0,

(1.2) volBr(x) > (1− δ)ωn r
n,

then for any x ∈M and r > 0,

dGH (Br(x),Bnr ) 6 εr.
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104 G. Carron & D. Tewodrose

This theorem is a direct consequence of our almost rigidity theorem coupled with
an intermediary result, Theorem 6.1, which states, roughly speaking, that a complete
Riemannian manifold satisfying the volume estimate (1.2) necessarily has an almost
Euclidean heat kernel. Our proof of this result is based on previous works by Cheeger
and Yau [CY81], Li and Yau [LY86] and especially Li, Tam and Wang [LTW97].

Finally, in the last section of this paper, we investigate the case of a metric measure
space equipped with a spherical heat kernel. To be precise, the sphere Sn has a heat
kernel which can be written as

K
(n)
t (dSn(x, y)),

where K(n)
t is an explicit function and dSn is the classical round Riemannian distance.

We show that if a metric measure space (X, d, µ) is equipped with a Dirichlet form
admitting a heat kernel p such that

p(x, y, t) = K
(n)
t (d(x, y))

for all x, y ∈ X and t > 0, then (X, d) is isometric to (Sn, dSn).
Let us spend some words to describe our proof of Theorem 1.1. A key point is the

celebrated result of Colding and Minicozzi asserting that on any complete Riemannian
manifold satisfying the doubling and Poincaré properties, the space of harmonic maps
with linear growth is finite-dimensional [CM97]. As already observed in non-smooth
contexts [Hua11, HKX16], the proof of this result can be carried out on any complete
metric measure spaces satisfying the doubling and Poincaré properties. It turns out
that admitting a Dirichlet form with an Euclidean heat kernel forces the metric
measure space to satisfy these two properties, see Proposition 2.4.

Then we consider the functions

B(x, ·) :=
1

2
(d2(o, x) + d2(o, ·)− d2(x, ·)), x ∈ X,

which are easily shown to have linear growth. When (X, d, µ) is equipped with a
Dirichlet form E satisfying the assumptions of Theorem 1.1, these functions are locally
L-harmonic: this follows from establishing

L1 = 0 and Ld2(x, ·) = 2α.

Therefore, the vector space V generated by the functions B(x, ·) has a finite dimension n.
Choosing a suitable basis (h1, . . . , hn) of this space, we embed X into Rn by setting

H(x) = (h1(x), . . . , hn(x))

for any x ∈ X. More precisely, there exists x1, . . . , xn ∈ X such that (δx1
, . . . , δxn)

is a basis of V∗, where δx(h) := h(x) for any x ∈ X and any h ∈ V, and (h1, . . . , hn)

is chosen as the dual of this basis. Setting Q(ξ) :=
∑
i,j B(xi, xj)ξiξj for any ξ =

(ξ1, . . . , ξn) ∈ Rn, we easily get

(1.3) Q(H(x)−H(y)) = d2(x, y)

for any x, y ∈ X, thus H is an embedding.

J.É.P. — M., 2022, tome 9



A rigidity result for metric measure spaces with Euclidean heat kernel 105

To conclude, we establish α = n and show that Q is non-degenerate, so that
dQ(ξ, ξ′) =

√
Q(ξ − ξ′) defines a distance on Rn that is isometric to the Euclidean

distance: then (1.3) shows that H is an isometric embedding onto its image which, by
a final argument, is shown to be Rn. We prove these two concluding assertions by the
study of asymptotic cones at infinity of (X, d, µ).

Concerning the rigidity result for the spherical case, we instead embed X into
E1 := Ker(L − λ1I), where λ1 is the first non-zero eigenvalue of L, and show that
H(X) is isometric to Σ := {Q = 1} for some suitable quadratic form Q.

The paper is organized as follows. Our proof of Theorem 1.1 relies on several notions
and results from different areas that we collect in the preliminary Section 2. Then
in Section 3 we establish simple rigidity results for metric measure spaces with an
Euclidean heat kernel. We use these results in Section 4 which is dedicated to the proof
of Theorem 1.1. Section 5 is devoted to the almost rigidity result, namely Theorem 1.2,
and Section 6 explains our new proof of Colding’s volume almost rigidity theorem.
Finally Section 7 contains our study of the case of metric measure spaces equipped
with a spherical heat kernel.

Acknowledgements. — The first author thanks the Centre Henri Lebesgue ANR-11-
LABX-0020-01 for creating an attractive mathematical environment. The second
author thanks S. Honda for interesting remarks and questions at a late stage of this
work and for the good working conditions in Tohoku University that grandly helped
completing this article. Both authors thank the anonymous referees for their precious
suggestions, notably to simplify the proof of Lemma 3.3.

2. Preliminaries

Throughout the article, we shall call metric measure space any triple (X, d, µ) where
(X, d) is a σ-compact metric space and µ is a non-negative σ-finite Radon measure
on (X, d) such that suppµ = X. Here suppµ denotes the support of µ. We shall keep
fixed a number α > 0 and denote by ωα the quantity

(2.1) ωα =
πα/2

Γ(α/2 + 1)
,

where Γ denotes the usual Gamma function {Re > 0} 3 z 7→
´ +∞

0
tz−1e−t dt. Note

that ωn is the volume of the unit sphere in Rn when α = n is an integer.
We shall use classical notations for the functional spaces defined on (X, d, µ), like

C(X) (resp. Cc(X)) for the space of continuous (resp. compactly supported contin-
uous) functions, Lip(X) (resp. Lipc(X))) for the space of Lipschitz (resp. compactly
supported Lipschitz) functions, Lp(X,µ), where p ∈ [1,+∞), for the space of (equiva-
lent classes of) µ-measurable functions whose p-th power is µ-integrable, L∞(X,µ) for
the space of µ-essentially bounded functions, and so on. We shall write supp f for the
support of a function f and 1A for the characteristic function of a set A ⊂ X.

A generic open ball in (X, d) will be denoted by B, and we will write λB for the
ball with same center as B but radius multiplied by λ > 0.

J.É.P. — M., 2022, tome 9



106 G. Carron & D. Tewodrose

We will extensively make use of the following definition.

Definition 2.1. — We say that a metric measure space (X, d, µ) has an α-dimensional
volume whenever µ(B) = ωαr

α for any metric ball B ⊂ X with radius r > 0.

Dirichlet forms. — Let us recall some basic facts about Dirichlet forms, referring to
e.g. [FOT11, Stu94, KZ12] for more details. Let (X, τ) be a topological space equipped
with a σ-finite Borel measure µ. A Dirichlet form E on (X,µ) is a non-negative definite
bilinear map E : D(E) × D(E) → R, with D(E) being a dense subset of L2(X,µ),
satisfying closedness, meaning that the space D(E) is a Hilbert space once equipped
with the scalar product

〈f, g〉E :=

ˆ
X

fg dµ+ E(f, g) ∀ f, g ∈ D(E),

and the Markov property: for any f ∈ D(E), the function f1
0 = min(max(f, 0), 1)

belongs to D(E) and E(f1
0 , f

1
0 ) 6 E(f, f). We denote by | · |E the norm associated with

〈·, ·〉E.
We focus only on symmetric Dirichlet forms, i.e., those E for which E(f, g) = E(g, f)

holds for all f, g ∈ D(E). Therefore, in the rest of the article, by Dirichlet form we will
always tacitly mean symmetric Dirichlet form.

Finally, let us recall that any Dirichlet form is associated with a non-positive
self-adjoint operator L with dense domain D(L) ⊂ L2(X,µ) characterized by the
following:

D(L) :=

{
f ∈ D(E) : ∃h =: Lf ∈ L2(X,µ) s.t. E(f, g) = −

ˆ
X

hg dµ ∀ g ∈ D(E)

}
.

We now additionally assume that (X, τ) is locally compact and separable and
that µ is a Radon measure such that suppµ = X. A Dirichlet form E on (X,µ) is
called strongly local if E(f, g) = 0 for any f, g ∈ D(E) such that f is constant on a
neighborhood of supp g, and regular if Cc(X) ∩D(E) contains a subset (called a core)
which is both dense in Cc(X) for ‖ · ‖∞ and in D(E) for | · |E. A celebrated result by
Beurling and Deny [BD59] implies that any strongly local regular Dirichlet form E on
(X,µ) admits a non-negative definite symmetric bilinear map Γ : D(E)×D(E)→ Rad,
where Rad denotes the set of signed Radon measures on (X, τ), such that

E(f, g) =

ˆ
X

dΓ(f, g) ∀ f, g ∈ D(E),

where
´
X

dΓ(f, g) denotes the total mass of the measure Γ(f, g). From now until the
end of this paragraph, we assume that E is strongly local and regular.

Let us mention that the map Γ is concretely given as follows: for any f ∈ D(E) ∩
L∞(X,µ), the measure Γ(f) := Γ(f, f) is defined by its action on test functions:

(2.2)
ˆ
X

ϕdΓ(f) := E(f, fϕ)− 1

2
E(f2, ϕ) ∀ϕ ∈ D(E) ∩ Cc(X).

Regularity of E allows to extend (2.2) to the set of functions ϕ ∈ Cc(X), providing a
well-posed definition of Γ(f) by duality between Cc(X) and Rad. In case f ∈ D(E) is

J.É.P. — M., 2022, tome 9



A rigidity result for metric measure spaces with Euclidean heat kernel 107

not essentially bounded, Γ(f) is obtained as the limit of the increasing sequence of
measures (Γ(fn−n))n∈N where fn−n := min(max(f,−n), n) for any n ∈ N. The general
expression of Γ(f, g) for any f, g ∈ D(E) is then obtained by polarization:

Γ(f, g) :=
1

4

(
Γ(f + g, f + g)− Γ(f − g, f − g)

)
.

Strong locality of E implies locality of Γ, that is
ˆ
A

dΓ(u,w) =

ˆ
A

dΓ(v, w)

for any open set A ⊂ X and any functions u, v, w ∈ D(E) such that u = v on A. This
property allows to extend Γ to the set Dloc(E) made of those µ-measurable functions f
for which for any compact set K ⊂ X there exists g ∈ D(E) such that f = g µ-a.e.
on K. Then Γ satisfies the Leibniz rule:

(2.3) Γ(fg, h) = fΓ(g, h) + gΓ(f, h) ∀u, v ∈ Dloc(E)∩L∞loc(X,µ), ∀h ∈ Dloc(E),

and the chain rule:

(2.4) Γ(η ◦ f, g) = (η′ ◦ f)Γ(f, g)
∀ η ∈ C1

b,bd(R), ∀ f ∈ Dloc(E),

or ∀ η ∈ C1(R), ∀ f ∈ Dloc(E) ∩ L∞(X,µ),

where C1
b,bd(R) stands for the set of bounded C1 functions on R with bounded

derivative.
For our purposes, we also need to defineDloc(Ω,E) as the set of functions f ∈ L2

loc(Ω)

for which for any compact set K ⊂ Ω there exists g ∈ D(E) such that f = g µ-a.e.
on K; here, Ω is an open subset of X.

The so-called intrinsic extended pseudo-distance dE associated with E is defined by:

(2.5) dE(x, y) := sup{|f(x)−f(y)| : f ∈ C(X)∩Dloc(E) s.t. Γ(f) 6 µ} ∀x, y ∈ X.

Here Γ(f) 6 µ means that Γ(f) is absolutely continuous with respect to µ with density
lower than 1 µ-a.e. on X, and “extended” refers to the fact that dE(x, y) may be
infinite. When the topology τ is generated by a distance d on X, we call assumption (A)
the following statement:

(A) dE is a distance inducing the same topology as d.

A final consequence of strong locality and regularity is that the operator L canoni-
cally associated to E satisfies the classical chain rule:

(2.6) L(ϕ ◦ f) = (ϕ′ ◦ f)Lf + (ϕ′′ ◦ f)Γ(f) ∀ f ∈ G, ∀ϕ ∈ C∞([0,+∞),R),

where G is the set of functions f ∈ D(L) such that Γ(f) is absolutely continuous with
respect to µ with density also denoted by Γ(f). In particular:

(2.7) Lf2 = 2fLf + 2Γ(f) ∀ f ∈ G.

J.É.P. — M., 2022, tome 9



108 G. Carron & D. Tewodrose

Heat kernel associated to a Dirichlet form. — Let (X, τ) be a topological space
equipped with a σ-finite Borel measure µ. Let E be a Dirichlet form on (X, τ). The
spectral theorem (see e.g. [RS80, Th.VIII.5]) implies that the operator L associated
to E defines an analytic sub-Markovian semi-group (Pt)t>0 acting on L2(X,µ), where
for any f ∈ L2(X,µ), the map t 7→ Ptf is characterized as the unique C1 map
(0,+∞)→ L2(X,µ), with values in D(L), such that

d

dt
Ptf = L(Ptf) ∀ t > 0,

limt→0 ‖Ptf − f‖L2(X,µ) = 0.

One can then recover D(L) and L from (Pt)t>0 in the following manner:

D(L) =

{
f ∈ L2(X,µ) :

(Ptf − f
t

)
t>0

converges in the L2-norm when t ↓ 0

}
,

Lf = lim
t↓0

Ptf − f
t

∀ f ∈ D(L).

We say that E admits a heat kernel if there exists a family of (µ⊗ µ)-measurable
functions (p(·, ·, t))t>0 on X ×X such that for all t > 0 and f ∈ L2(X,µ), one has

Ptf(x) =

ˆ
X

p(x, y, t)f(y) dµ(y) for µ-a.e. x ∈ X;

the function p = p(·, ·, ·) is then called the heat kernel of E. In this case, the semi-group
property (namely Ps+t = Ps ◦ Pt for any s, t > 0) implies that p satisfies the so-called
Chapman-Kolmogorov property:

(2.8)
ˆ
X

p(x, z, t)p(z, y, s) dµ(z) = p(x, y, t+ s), ∀x, y ∈ X, ∀ s, t > 0.

Moreover, for any t > 0, p(·, ·, t) is symmetric and uniquely determined up to a
(µ⊗ µ)-negligible subset of X ×X.

When E admits a heat kernel, the space (X, τ, µ,E) is called stochastically complete
whenever ˆ

X

p(x, y, t) dµ(y) = 1 ∀x ∈ X, ∀ t > 0.

Under stochastic completeness, one can show that

(2.9) D(E) =

{
f ∈ L2(X,µ) :

t 7−→ 1

2t

¨
X×X

(f(x)− f(y))2p(x, y, t) dµ(x) dµ(y) is bounded
}

and
E(f, g) = lim

t↓0

1

2t

¨
X×X

(f(x)− f(y))(g(x)− g(y))p(x, y, t) dµ(x) dµ(y)

for any f, g ∈ D(E): see [Gri10, 2.2], for instance. In particular, if (X, d, µ,E) is strongly
local and regular, then

(2.10)
ˆ
X

ϕdΓ(f) = lim
t↓0

1

2t

¨
X×X

ϕ(x)(f(x)− f(y))2p(x, y, t) dµ(x) dµ(y)

for any f ∈ Dloc(E) and ϕ ∈ Cc(X).
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A rigidity result for metric measure spaces with Euclidean heat kernel 109

As well-known, the classical Dirichlet energy on Rn admits the Gaussian heat kernel

p(x, y, t) =
1

(4πt)n/2
e−d

2
e(x,y)/4t ∀x, y ∈ X, ∀ t > 0,

where de is the usual Euclidean distance. This motivates the next definition.

Definition 2.2. — Let (X, d, µ) be a metric measure space and E a Dirichlet form
on (X,µ). We say that (X, d, µ,E) has an α-dimensional Euclidean heat kernel if E
admits a heat kernel p such that:

p(x, y, t) =
1

(4πt)α/2
e−d

2(x,y)/4t ∀x, y ∈ X, ∀ t > 0.

Harnack inequalities. — Let (X, d, µ) be a metric measure space equipped with a
Dirichlet form E with associated operator L. Let L 1 be the Lebesgue measure on R.
In order to properly state what a Harnack inequality means for (X, d, µ,E), let us
introduce some notions. We refer e.g. to [Stu95] and the references therein for more
details. Note first that any element f ∈ L2(X,µ) uniquely defines a continuous linear
form on D(E), namely g 7→

´
X
fg dµ. Thus L2(X,µ) embeds into D(E)∗ whose norm

we denote | · |E,∗.
For any open interval I ⊂ R, we consider the following functional spaces:
– L2(I,D(E)) is the space of L 1-measurable functions u : I → D(E), ut := u(t),

equipped with the Hilbert norm ‖u‖L2(I,D(E)) := (
´
I
|ut|2E dt)1/2;

– H1(I,D(E)∗) is the space of L 1-measurable functions u : I → D(E)∗ admitting
a distributional derivative ∂tu ∈ L2(I,D(E)∗) on I equipped with the Hilbert norm
‖u‖H1(I,D(E)∗) := (

´
I
|ut|2E,∗ dt+

´
I
|(∂tu)t|2E,∗ dt)1/2, where (∂tu)t := ∂tu(t);

– Dpar,I(E) := L2(I,D(E)) ∩ H1(I,D(E)∗) equipped with the Hilbert norm
‖u‖par,I := (

´
I
|ut|2E dt+

´
I
|(∂tu)t|2E,∗ dt)1/2.

We can define a Dirichlet form EI on Dpar,I(E) by setting

EI(u, v) :=

ˆ
I

E(ut, vt) dt−
ˆ
I

(∂tu)t · vt dt ∀u, v ∈ Dpar,I(E).

Let Ω ⊂ X be an open set. Denote by Q the parabolic cylinder I × Ω. Let DQ(E) be
the set of (L 1 ⊗ µ)-measurable functions defined on Q such that for every relatively
compact open set Ω′ b Ω and every open interval I ′ b I there exists a function
u′ ∈ Dpar,I(E) such that u = u′ on I ′ × Ω′. We also define DQ,c(E) as the set of
functions u ∈ DQ(E) such that for any t ∈ I, the function ut has compact support
in Ω.

Definition 2.3. — We call local solution on Q of the equation (∂t + L)u = 0 any
function u ∈ DQ(E) such that EI(u, ϕ) = 0 holds for any ϕ ∈ DQ,c(E).

When E admits a heat kernel p, one can show that for any x ∈ X and t > 0 the
function p(x, ·, t) is a local solution of the equation (∂t + L)u = 0.

The next important proposition is a combination of several famous results [Gri91,
SC92, Stu96].
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Proposition 2.4. — Let (X, d, µ) be a metric measure space equipped with a strongly
local and regular Dirichlet form E satisfying assumption (A). Let L be the operator
canonically associated to E. Then the following statements are equivalent:

(1) the combination of
(a) the doubling property: there exists a constant CD > 0 such that for any

ball B ⊂ X,

(2.11) µ(2B) 6 CDµ(B),

(b) the local Poincaré inequality: there exists a constant CP > 0 such that
for any f ∈ D(E) and any ball B ⊂ X with radius r > 0, setting fB :=

µ(B)−1
´
B
f dµ,

ˆ
B

|f − fB |2 dµ 6 CP r
2E(f),

(2) the existence of a heat kernel p for E satisfying double-sided Gaussian estimates:
there exists A > 0 such that for any x, y ∈ X and any t > 0,

(2.12) 1

Aµ(B√t(x))
e−Ad2(x,y)/t 6 p(x, y, t) 6

A

µ(B√t(x))
e−d

2(x,y)/At,

(3) the parabolic Harnack inequality: there exists a constant CH > 0 such that for
any s ∈ R, any ball B with radius r > 0 and any non-negative local solution u on
(s− r2, s)×B of the parabolic equation (∂t + L)u = 0, we have

(2.13) ess sup
Q−

(u) 6 CH ess inf
Q+

(u),

where Q− := (s− (3/4)r2, s− (1/2)r2)× (1/2)B and Q+ := (s− (1/4)r2, s)× (1/2)B.

Note that the parabolic Harnack inequality (2.13) implies the elliptic one introduced
below in Lemma 2.6.

Locally L-harmonic functions. — Let (X, d, µ) be a metric measure space equipped
with a strongly local and regular Dirichlet form E with associated operator L. We set

Dc(E) := {ϕ ∈ D(E)with compact support}.

Definition 2.5. — Let Ω ⊂ X be an open set.
(1) We call local solution on Ω of the Laplace equation Lu = 0 any function

u ∈ Dloc(Ω,E) such that E(u, ϕ) = 0 holds true for any ϕ ∈ Dc(E) with suppϕ ⊂ Ω;
here suppϕ denotes the support of the measure A 7→

´
A
ϕdµ.

(2) We call locally L-harmonic function any function u ∈ D(E) such that E(u, ϕ) = 0

holds true for any ϕ ∈ Dc(E).
(3) For any f ∈ L1

loc(X,µ), we call local solution on Ω of the Poisson equation
Lu = f any function u ∈ Dloc(Ω,E) such that E(u, ϕ) = −

´
X
fϕdµ holds true for

any ϕ ∈ Dc(E) with suppϕ ⊂ Ω.
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We shall often simply write “Lu = f on Ω” to mean that u ∈ Dloc(Ω,E) is a local
solution on Ω of the equation Lu = f , and “Lv = 0” to express that v ∈ Dloc(E)

is locally L-harmonic. Lastly, we point out that strong locality directly implies that
constant functions are locally L-harmonic, i.e.,

L1 = 0.

Let us state a classical lemma (Liouville theorem under elliptic Harnack inequality)
whose proof is omitted here (see e.g. [ACT21, Lem. 7.3]).

Lemma 2.6. — Let (X, d, µ) be a metric measure space equipped with a Dirichlet form E

whose associated operator L satisfies an elliptic Harnack inequality, meaning that there
exists a constant CE > 0 such that for any ball B ⊂ X and any non-negative local
solution h of Lu = 0 on B, we have

ess sup
(1/2)B

h 6 CE ess inf
(1/2)B

h.

Then any non-negative locally L-harmonic function is constant.

Strongly harmonic functions. — Let (X, d, µ) be a metric measure space. Following
the terminology adopted in [GG09, AGG19], for any open set Ω ⊂ X we call strongly
harmonic function on Ω any function h : Ω→ R satisfying the mean value property:

h(x) =

 
Br(x)

hdµ ∀x ∈ Ω, ∀ r ∈ (0, d(x,cΩ)).

Remark 2.7. — It can easily be checked that a function h : Ω→ R is strongly harmonic
if and only if for any x ∈ Ω and any u ∈ C1

c ([0, d(x,cΩ)]) with
´
X
u(d(x, y)) dµ(y) = 1

one has
h(x) =

ˆ
X

u (d(x, y))h(y) dµ(y).

Under mild assumptions on (X, d, µ), an elliptic Harnack inequality holds true for
strongly harmonic functions, provided the doubling condition (2.11) is satisfied: see
[AGG19, Lem. 4.1]. The next lemma is an easy consequence of this fact. We recall that
a metric space is called proper if any closed ball is compact, and that proper metric
spaces are complete and locally compact.

Lemma 2.8. — Let (X, d) be a proper metric space equipped with a regular Borel
measure µ such that 0 < µ(B) < +∞ for any metric ball B ⊂ X. Assume that (X, d, µ)

satisfies the doubling condition (2.11). Then any non-negative strongly harmonic
function on X is constant.

When (X, d, µ) has an α-dimensional volume, strongly harmonic functions satisfy
the following two properties:

Lemma 2.9. — Let (X, d, µ) be with an α-dimensional volume and h : X → R be
strongly harmonic. Then:

(i) if h has linear growth – meaning that there exists C > 0 such that |h| 6
C(1 + d(o, ·)) for some o ∈ X – then h is Lipschitz;
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(ii) if h is continuous and such that sup∂Bri (o)
|h| = o(ri) for some point o ∈ X

and some sequence {ri}i ⊂ (0,+∞) such that ri → +∞, then h is constant.

Proof. — Let us first prove (i). Assuming h to have linear growth, we know that there
exists o ∈ X, ro > 0 and M > 0 such that |h(z)| 6 Md(o, z) for all z ∈ X r Bro(o).
Since h is strongly harmonic, we have

µ(Br+d(x))h(x)− µ(Br(y))h(y) =

ˆ
Br+d(x)rBr(y)

hdµ

for all r > 0 and any given x, y ∈ X, where we have set d := d(x, y). Since µ(Br+d(x)) =

ωα(r + d)α and µ(Br(y)) = ωαr
α, we obtain

(2.14)
|ωα(r + d)αh(x)− ωαrαh(y)| 6 ωα((r + d)α − rα) supBr+d(x)rBr(y) |h|

6 ωα((r + d)α − rα) supBr+d+d(o,x)(o)rBr(y) |h|

since Br+d(x) ⊂ Br+d+d(o,x)(o). Choosing r > ro + d(o, y) in order to ensure that
Br(y) contains Bro(o), we get supBr+d+d(o,x)(o)rBr(y) |h| 6M(r + d+ d(o, x)), hence

|(1 + d/r)αh(x)− h(y)| 6 ((1 + d/r)α − 1)M(r + d+ d(o, x)).

Letting r → +∞ and applying (1+d/r)α−1 = αd/r+o(1/r) yields to |h(x)−h(y)| 6
αdM .

To prove (ii), apply (2.14) with r = Ri := ri − d− d(o, x) to get

|h(x)(1 + d/Ri)
α − h(y)| 6 ((1 + d/Ri)

α − 1) supBri (o)
|h|.

By the weak maximum principle [AGG19, Cor. 4.3], we have

sup
Bri (o)

|h| = sup
∂Bri (o)

|h|.

Since (1 + d/Ri)
α − 1 = αd/Ri + o(1/Ri) = O(1/ri) when i→ +∞, then there exists

io and C > 0 such that

|h(x)(1 + d/Ri)
α − h(y)| 6 Cr−1

i sup∂Bri (o)
|h|

for all i > io. This implies h(x) = h(y) by letting i tend to +∞. �

Tangent cones at infinity. — We refer to [Gro07] for a definition of the Gromov-
Hausdorff distance dGH between compact metric spaces and only mention here
that a sequence of compact metric spaces {(Xi, di)} converges to another com-
pact metric space (X, d) with respect to the Gromov-Hausdorff distance (what we
denote by dGH (Xi, X) → 0) if and only if there exists an infinitesimal sequen-
ce {εi}i ⊂ (0,+∞) and functions ϕi : Xi → X called εi-isometries such that
|d(ϕi(x), ϕi(x

′))− di(x, x
′)| 6 εi for any x, x′ ∈ Xi and any i. If xi ∈ Xi for any i and

x ∈ X are such that d(ϕi(xi), x)→ 0, we write xi
GH−→ x.

When dealing with non-compact spaces, we say that a sequence of pointed met-
ric spaces {(Xi, di, xi)}i converges in the pointed Gromov-Hausdorff topology to
(X, d, x) if there exist sequences of positive numbers εi ↓ 0, Ri ↑ ∞, and of Borel maps
ϕi : BRi(xi)→ X, also called εi-isometries, such that such that for any i the ballBRi(x)

is included in the εi-neighborhood of ϕi(BRi(xi)), namely
⋃
y∈ϕi(BRi (xi))

Bεi(y),
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|di(y, z) − d(ϕi(y), ϕi(z))| < εi for any y, z ∈ BRi(xi), and d(ϕi(xi), x) → 0 (which
we also abbreviate to xi

GH−→ x).
Pointed measured Gromov-Hausdorff convergence of a sequence of pointed metric

measure spaces {(Xi, di, µi, xi)} to (X, d, µ, x) is set as pointed Gromov-Hausdorff con-
vergence of {(Xi, di, xi)} to (X, d, x) with the additional requirement (ϕi)]µi

Cbs(X)
⇀ µ,

where Cbs(X) is the space of continuous functions with bounded support and f] is
the push forward operator between measures induced by a Borel map f .

A metric space (X, d) is called metric doubling if there exists a positive integer N
such that any ball in (X, d) can be covered by at most N balls with half its radius.
Whenever (X, d) is a doubling space, for any o ∈ X, the family of pointed spaces
{(X, r−1d, o)}r>1 satisfies the assumptions of Gromov’s precompactness theorem
[Gro07, Prop. 5.2], henceforth it admits limit points in the pointed Gromov-Haudorff
topology as r ↑ +∞. These pointed metric spaces are called tangent cones at infinity
of (X, d) in o.

It is well-known that when (X, d, µ) is satisfies the doubling property (2.11), then
the metric space (X, d) is metric doubling: see e.g. [ACDM15, §2.5].

When a metric measure space (X, d, µ) has an α-dimensional volume, a simple
computation shows that it is measure doubling, with CD = 2α. Moreover, one can
equip any of its tangent cones at infinity (X, d, o) with a limit measure µ in the
following way. Let {ri}i be a sequence of positive real numbers diverging to +∞ such
that (X, d, o) is the pointed Gromov-Hausdorff limit of {(X, r−1

i d, o)}i. Set µi := r−αi µ

for any i, and note that

µi(B
di
r (x)) = µi(Brri(x)) = ωαr

α ∀x ∈ X, r > 0.

Set V (x, r) := ωαr
α for any x ∈ X and r > 0. Then for any δ > 0 and any Borel set A

of (X, d), setting

µ
δ
(A) := inf

{∑
i V (zi, r) : {Bri(zi)}i s.t. A ⊂

⋃
iBri(zi) and ri 6 δ

}
and then µ(A) = limδ→0 µδ(A) defines a metric outer measure µ on (X, d) whose
canonically associated measure, still denoted by µ, is a Radon measure satisfying
µ(Br(x)) = ωαr

α for any x ∈ X and r > 0. This shows that (X, d, µ) has an α-dimen-
sional volume. Moreover, we obviously have µ(Br(x)) = limi→+∞ µi(B

di
r (xi)) for any

r > 0 and any sequence xi
GH−→ x; by density in Cbs(X) of the space spanned by

the collection of characteristic functions of balls, this implies the pointed measured
Gromov-Hausdorff convergence (X, r−1

i d, µi, o)→ (X, d, µ, o).

Ascoli-Arzelà type theorems. — Let {(Xi, di, xi)}i, (X, d, x) be pointed proper met-
ric spaces such that

(Xi, di, xi) −→ (X, d, x)

in the pointed Gromov-Hausdorff topology and ϕi : BRi(xi) → X be εi-isometries,
where {εi}i, {Ri}i ⊂ (0,+∞) are such that εi ↓ 0 and Ri ↑ +∞. For any i, let Ki

be a compact subset of Xi, and assume that there exists K ⊂ X compact such that
dGH (Ki,K)→ 0. We say that functions fi : Xi → R converge to f : X → R uniformly
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over Ki → K if supKi |fi−f ◦ϕi| → 0. Note that this definition depends on the choice
of the εi-isometries ϕi that we keep fixed for the rest of this paragraph.

Remark 2.10. — In the rest of the article, whenever we consider a convergent sequen-
ce of pointed metric spaces (Xi, di, xi) → (X, d, x), we always implicitly assume
that sequences {εi}i, {Ri}i ⊂ (0,+∞) with εi ↓ 0, Ri ↑ +∞ and εi-isometries ϕi :

BRi(xi) → X have been chosen a priori and that the statements “xi
GH−→ x” and

“fi → f uniformly on compact sets” are meant with these εi-isometries.

In this context, we have the following Ascoli-Arzelà theorem:

Proposition 2.11. — Let {(Xi, di, xi)}i, (X, d, x) be as above, and r > 0. For any i,
let fi ∈ C(Xi) be such that:

– supi ‖fi‖L∞(Br(xi))
< +∞,

– the sequence {fi}i is asymptotically uniformly continuous on Br(x) (see [Hon15,
Def. 3.2]).
Then {fi}i admits a subsequence (fi(j))j which converges to f uniformly over Br(xi)→
Br(x).

Proof. — From [Hon15, Prop. 3.3], we know that for {fi}i satisfying the above assump-
tions, there exists f ∈ C(Br(x)) and a subsequence (fi(j))j such that fi(j)(xj)→ f(x)

whenever xj
GH−→ x ∈ Br(x). With no loss of generality, we can assume that the

subsequence is the whole sequence itself. By contradiction, assume that the uniform
convergence fi → f over Br(xi)→ Br(x) is not satisfied. Then there is some ε > 0

and a subsequence (fi(`))` such that inf`{supBr(xi(`))
|fi(`) − f ◦ ϕi(`)|} > ε. Again,

we can assume that the subsequence is the whole sequence itself. For any i, choose
yi ∈ Br(xi) such that |fi(yi) − f ◦ ϕi(yi)| > ε/2 and set zi := ϕi(yi) ∈ Br+εi(x).
Properness of X implies that the sequence {zi}i converges to some z ∈ Br(x), up to
extraction. In particular, yi

GH−→ z. Then in

ε/2 6 |fi(yi)− f(z)|+ |f(z)− f ◦ ϕi(yi)|,

the first term in the right-hand side goes to 0 when i tend to +∞. Since f is continuous,
we also have |f(z)− f ◦ ϕi(yi)| → 0 when i tend to +∞, hence a contradiction. �

Let {(Xi, di, xi)}i, (X, d, x), {ϕi}i be as above. Let (Y, dY ) be another metric space.
We say that fi : Y → Xi converge to f : Y → X uniformly on compact subsets of Y if
supK di(ϕi ◦ fi, f)→ 0 for any compact set K ⊂ Y .

An Ascoli-Arzelà theorem is also available in this context. We state it with an
equi-Lipschitz assumption which is enough for our purposes. The proof is omitted for
brevity.

Proposition 2.12. — Let {(Xi, di, xi)}i, (X, d, x) be as above. Let (Y, dY ) be a metric
space and fi : Y → Xi be Lipschitz functions such that:

– L := supi Lip(fi) < +∞,
– there exists y ∈ Y and r > 0 such that di(fi(y), xi) 6 r for any i.
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Then {fi}i admits a subsequence converging uniformly on compact sets of Y to some
Lipschitz function f : Y → X, and Lip(f) 6 L.

Let us conclude this paragraph with a stability result for strongly harmonic functions.

Proposition 2.13. — Let {(Xi, di, µi, xi)}i, (X, d, µ, x) be proper pointed metric mea-
sured spaces such that (Xi, di, µi, xi)→ (X, d, µ, x) in the pointed measured Gromov-
Hausdorff topology. Let fi ∈ C(Xi) be converging to f ∈ C(X) uniformly over
Br(xi) → Br(x) for any r > 0. Assume that fi is strongly harmonic for any i.
Then f is strongly harmonic.

Proof. — By the characterization of strongly harmonic functions stated in Remark 2.7,
it is enough to establish

(2.15) f(y) =

 
Br(y)

u(d(y, z))f(z) dµ(z)

for any given r > 0, y ∈ X and u ∈ C1
c ([0,+∞)) such that

´
X
u(d(y, z)) dµ(z) = 1.

Let yi ∈ Xi for any i be such that yi
GH−→ y. For any i, set

ui :=
u´

Xi
u(di(yi, z)) dµi(z)

and note that ˆ
Xi

ui(di(yi, z)) dµi(z) = 1

so that fi being strongly harmonic implies

(2.16) fi(yi) =

 
Br(yi)

ui(di(yi, z))fi(z) dµi(z).

But
ˆ
Xi

u(di(yi, z)) dµi(z) = −
ˆ +∞

0

u′(r)µi(B
di
r (yi)) dr

−→ −
ˆ +∞

0

u′(r)µ(Bd
r(y)) dr =

ˆ
X

u(d(y, z)) dµ(z) = 1,

so ui → u uniformly on (0,+∞): this implies that the functions ui(di(yi, ·))fi ∈ C(Xi)

converge uniformly over all compact sets to u(d(y, ·))f ∈ C(X). Therefore, letting i
tend to +∞ in (2.16) provides (2.15). �

Length structures. — Let (X, d) be a metric space. A path in X is a continuous
map c : [0, 1]→ X. It is called rectifiable if its length

Ld(c) := sup
{∑n

i=1 d(c(ti), c(ti−1)) : 0 = t0 < · · · < tn = 1, n ∈ Nr {0}
}

is finite. (X, d) is called length metric space if for any x, y ∈ X,

d(x, y) = inf{Ld(c) : c ∈ Ωxy},
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where Ωxy is the set of rectifiable paths in X such that c(0) = x and c(1) = y.
A geodesic space is a trivial example of length space. Equivalently, (X, d) is length
if d coincides with its associated length distance d defined by:

d(x, y) := inf{Ld(c) : c ∈ Ωxy} ∀x, y ∈ X,

in which case we say that d is a length distance. Note that we always have d 6 d and
Ld(c) = Ld(c) whenever c is a rectifiable path in X. Moreover,

Ld(c) = lim
α→0+

Ld,α(c),

where

Ld,α(c) = sup
{∑n

i=1 d(c(ti), c(ti−1)) :

0 = t0 < · · · < tn = 1, |ti − ti+1| < α ∀ i, n ∈ Nr {0}
}
.

In this context, we have the following lemma.

Lemma 2.14. — Let (X, δ) be a length metric space. Assume that d defined as d :=

2 sin(δ/2) is a distance. Then its associated length distance d coincides with δ.

Proof. — First note that (2/π)δ 6 d 6 δ because (2/π)x 6 2 sin(x/2) 6 x for any
x ∈ [0, π]. In particular, a map c : [0, 1]→ X is continuous for δ if and only if it is for d.
Moreover, since δ is a length distance, d 6 δ implies d 6 δ, so we are left with proving
the converse inequality. Let c be a path in X. Being continuous, c is also uniformly
continuous: for any ε ∈ (0, 1), there exists α > 0 such that for any t, s ∈ [0, 1],

|t− s| < α =⇒ δ(c(t), c(s)) < ε.

Since x− 2 sin(x/2) 6 x2 for any x > 0, then

δ − d 6 δ2,

so that for any t, s ∈ [0, 1]:

|t− s| < α =⇒ δ(c(t), c(s))− d(c(t), c(s)) 6 εδ(c(t), c(s)).

This implies Lδ,α(c)− Ld,α(c) 6 εLδ,α(c) and thus (1− ε)Lδ(c) 6 Ld(c) by letting α
tend to 0. Letting ε tend to 0 provides Lδ(c) 6 Ld(c). This implies δ 6 d. �

Busemann functions. — Let (X, d) be a metric space. A geodesic ray in X is a
continuous function γ : [0,+∞)→ X such that d(γ(t), γ(s)) = |t− s| for any s, t > 0.
The Busemann function associated to a geodesic ray γ is defined by

bγ(x) = lim
t→+∞

t− d(x, γ(t)).

Note that this limit is well-defined for any x ∈ X since the function t 7→ t− d(x, γ(t))

is non-decreasing and bounded from above by d(o, x). Note also that bγ is 1-Lipschitz,
since for any x, y ∈ X and any t > 0, one has t− d(x, γ(t))− (t− d(y, γ(t)) 6 d(x, y),
henceforth bγ(x)− bγ(y) 6 d(x, y) by letting t→ +∞. Moreover, for any s > 0, one
can easily check that

bγ(γ(s)) = s.
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We shall need the following lemma.

Lemma 2.15. — Let (X, d, µ) be a metric measure space equipped with a strongly local
and regular Dirichlet form E with associated operator L. Assume that:

(1) Lip(X) embeds continuously in Dloc(E), i.e., there exists C > 0 such that
dΓ(f) 6 C Lip2(f) dµ for any f ∈ Lip(X),

(2) there exists α > −1 such that Ld(x, ·) = α/d(x, ·) on X r {x} for any x ∈ X.

Then any Busemann function on (X, d) is locally L-harmonic.

Proof. — Let bγ be a Busemann function on (X, d). Since bγ is 1-Lipschitz, we have
bγ ∈ Dloc(E). To conclude we must prove that E(bγ , ϕ) = 0 for any ϕ ∈ Dc(E).

Recall that strong locality implies that constant functions are locally L-harmonic.
Set fs := s − d(γ(s), ·) for any s > 0 and note that (2) implies that fs is a local
solution of Lu = −α/d(γ(s), ·) on X r {γ(s)}. Then for any ϕ ∈ Dc(E), since for s
large enough γ(s) /∈ suppϕ and thus d(γ(s), ·) > 0 on suppϕ, we get

|E(fs, ϕ)| =
∣∣∣∣ˆ
X

(Lfs)ϕdµ

∣∣∣∣ 6 |α|
d(γ(s), suppϕ)

ˆ
X

|ϕ|dµ −→ 0 when s −→ +∞.

Thus to conclude, it suffices to show that for any ϕ ∈ Dc(E),

lim
s→+∞

E(fs, ϕ) = E(bγ , ϕ).

Let ϕ ∈ Dc(E) and K ⊂ X be a compact set containing the support of ϕ. We introduce

DK(E) :=

{
f ∈ L2(K,µ) :

ˆ
K

dΓ(f) < +∞
}
,

which is a Hilbert space when equipped with the norm

‖f‖DK(E) :=

(
‖f‖2L2(K,µ) +

ˆ
K

dΓ(f)

)1/2

.

As (fs) is increasing and converges pointwise to bγ , we have fs → bγ in L2
loc(X,µ). As

a consequence, the sequence (fs|K) converges to bγ |K weakly in L2(K,µ). Since the
functions fs are all 1-Lipschitz, by (1) we get that the sequence (fs|K) is bounded
in DK(E), so it admits limit points for the weak convergence in DK(E). This weak
convergence implies the weak convergence in L2(K,µ). Therefore, by uniqueness of
the weak limit in L2(K,µ), we get that bγ |K is the unique limit point of (fs|K) for
the weak convergence in DK(E). The strong locality implies that

E(fs, ϕ) = E(fs|K , ϕ) and E(bγ , ϕ) = E(bγ |K , ϕ).

Moreover v ∈ DK(E) 7→ E(v, ϕ) is continuous hence

E(fs, ϕ) −→ E(bγ , ϕ). �
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Laplace transform. — Let F : [0,+∞) → R be a locally integrable function such
that F (t) = O(eγt) when t→ +∞ for some γ ∈ R. The Laplace transform of F is the
complex-valued function L{F} defined by:

L{F}(z) =

ˆ +∞

0

F (ξ)e−zξ dξ, ∀ z ∈ {Re(·) > γ}.

Lerch’s theorem asserts that if F1, F2 : [0,+∞) → R are two continuous, locally
integrable functions satisfying F1(t), F2(t) = O(eγt) when t → +∞ and L{F1} =

L{F2} on {Re > γ}, then F1 = F2 (see e.g. [Coh07, Th. 2.1]). This provides the
following lemma.

Lemma 2.16. — Let F : (0,+∞)→ R be a continuous and locally integrable function
such that F (t) = O(eεt) when t→ +∞ for any ε > 0 and

(2.17) L{F}(λ) = λ−α−1 ∀λ > λo

for some α > 0 and λo > 0. Then F (ξ) = ξα/Γ(α+ 1) for any ξ > 0.

Proof. — Since F is locally integrable, one can apply the classical theorem on holomor-
phy under the integral sign to get that L{F} is holomorphic on any compact subset
of {Re > 0}. Therefore, by analytic continuation, (2.17) implies L{F}(z) = z−α−1 for
any z ∈ {Re(·) > 0}. Since the Laplace transform of ξ 7→ ξα is z 7→ Γ(α + 1)z−α−1,
Lerch’s theorem gives F (ξ) = ξα/Γ(α+ 1) for any ξ > 0. �

3. First rigidity results for spaces with an Euclidean heat kernel

In this section, we establish several properties of metric measure spaces equipped
with a Dirichlet form admitting an α-dimensional Euclidean heat kernel. We shall use
most of these results in the next section to prove Theorem 1.1.

3.1. Stochastic completeness and consequences. — We begin with stochastic com-
pleteness.

Lemma 3.1. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel. Then
(X, d, µ,E) is stochastically complete.

Proof. — Take t, s > 0 and x ∈ X. By (2.8), for any y ∈ X we haveˆ
X

p(x, z, t)e−d
2(z,y)/4s dµ(z) =

( s

t+ s

)α/2
e−d

2(x,y)/4(t+s).

Letting s → +∞ and applying the monotone convergence theorem, we get the
result. �

As a consequence of Lemma 3.1, we can show that spaces with an α-dimensional
Euclidean heat kernel have an α-dimensional volume.

Lemma 3.2. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel. Then
(X, d, µ) has an α-dimensional volume.
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Proof. — Take x ∈ X. By Lemma 3.1, we have:ˆ
X

p(x, y, t) dµ(y) = 1 ∀ t > 0,

so that the hypothesis on the heat kernel implies:

(3.1)
ˆ
X

e−d
2(x,y)/4t dµ(y) = (4πt)α/2 ∀ t > 0.

By Cavalieri’s principle (see for instance [AT04, Lem. 5.2.1]), we haveˆ
X

e−d
2(x,y)/4t dµ(y) =

ˆ +∞

0

µ({e−d
2(x,·)/4t > s}) ds.

Since for any y ∈ X, one has e−d2(x,y)/4t > s if and only if d2(x, y) < −4t log(s), then{
e−d

2(x,·)/4t > s
}

=

∅ if s > 1,

B√−4t log(s)
(x) if s < 1.

Therefore, the change of variable ξ = −4t log(s) yields toˆ
X

e−d
2(x,y)/4t dµ(y) =

1

4t

ˆ +∞

0

e−ξ/4tµ(B√ξ(x)) dξ.

Coupled with (3.1), and setting λ = 1/(4t), this leads to:ˆ +∞

0

e−λξµ(B√ξ(x)) dξ = πα/2λ−α/2−1 ∀λ > 0.

Applying Lemma 2.16 and (2.1) provides the result. �

A second consequence is that complete spaces with an α-dimensional Euclidean
heat kernel are proper; in particular, they are locally compact. Note that the space
(Rn r {0}, de,L n) shows that completeness is a non-removable assumption.

Lemma 3.3. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel and
such that (X, d) is complete. Then any closed ball in X is compact.

Proof. — From Lemma 3.2, we know that (X, d, µ) has an α-dimensional volume,
hence it is measure doubling. Thus (X, d) is metric doubling. Since (X, d) is also
complete, by [Hei01, Exer. 10.17], any closed ball in X is totally bounded and hence
compact. �

Let us conclude with an important lemma.

Lemma 3.4. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel such
that (X, d) is complete. Then (X, d) is a geodesic space.

Proof. — Let us begin with showing that any two points x, y ∈ X admit a midpoint,
i.e., a point m ∈ X such that

d(x,m) = d(y,m) =
d(x, y)

2
.
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Set F (z) = d2(x, z)+d2(z, y) for any z ∈ X. Since F (z)→ +∞ when d(x, z), d(z, y)→
+∞, then there exists a ball B ⊂ X such that infX F = infB F . From the previous
lemma, we know that balls in X are compact, so infB F is attained in some m ∈ B.
Therefore, setting

λ := F (m) = d2(x,m) + d2(m, y),

we have
‖e−F/4‖L∞(X,µ) = e−λ/4.

By the Chapman-Kolmogorov identity (2.8), we have for any t > 0ˆ
X

e−(d2(x,z)+d2(z,y))/4t dµ(z) = e−d
2(x,y)/8t(2πt)α/2

which can be raised to the power t to provide

‖e−F/4‖L1/t(X,µ) = ed
2(x,y)/8(2πt)αt/2.

Letting t tend to 0, this yields to e−λ/4 = e−d
2(x,y)/8 hence λ = d2(x, y)/2, thus

(3.2) d2(x,m) + d2(m, y) =
d2(x, y)

2

by definition of λ. Since for any z ∈ X,

d2(x, z) + d2(z, y) =
1

2
(d(x, z) + d(z, y))2 +

1

2
(d(x, z)− d(z, y))2

>
1

2
(d(x, y))2 +

1

2
(d(x, z)− d(z, y))2,

taking z = m and using (3.2) implies d(x,m) = d(m, y).
The existence of midpoints implies that (X, d) is a length space, see [BBI01,

Th. 2.4.16 (1)]. Then the result follows from [BBI01, Th. 2.5.23] and [BBI01, Th. 2.5.9].
�

Remark 3.5. — The previous proof can be adapted to show that if a complete proper
metric measure space (X, d, µ) can be endowed with a symmetric Dirichlet form E

admitting a heat kernel p such that for any x, y ∈ X,

lim
t→0+

−4t log p(x, y, t) = d2(x, y),

where the convergence holds locally uniformly, then (X, d) is geodesic.

3.2. Strong locality and regularity of the Dirichlet form. — Let us show now
that having an α-dimensional Euclidean heat kernel forces a Dirichlet form to satisfy
several properties. We begin with the following.

Lemma 3.6. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel. Then
Lipc(X) ⊂ D(E).

Proof. — Let f ∈ Lipc(X) be with support K. Thanks to (2.9), we only need to show
that

F : (0,+∞) 3 t 7−→ 1

2t

¨
X×X

(f(x)− f(y))2 1

(4πt)α/2
e−d

2(x,y)/4t dµ(x) dµ(y)
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is a bounded function. Set D(x, y) = f(x)− f(y) for any (x, y) ∈ X ×X. It is easily
checked that supp(D) ⊂ (K ×X) ∪ (X ×K), so for any t > 0, using the symmetry
in x and y of the integrand we get

F (t) 6
Lip(f)2

t

ˆ
K

ˆ
X

d2(x, y)
1

(4πt)α/2
e−d

2(x,y)/4t dµ(x) dµ(y)

=
4 Lip(f)2

(4πt)α/2

ˆ
K

ˆ
X

d2(x, y)

4t
e−d

2(x,y)/4t dµ(x) dµ(y).

For any measurable function g : X → [0,∞) and any C1 function ϕ : [0,∞)→ [0,∞)

satisfying limλ→+∞ ϕ(λ) = 0 and
´ +∞

0
|ϕ′|(λ) µ ({g < λ}) dλ <∞, writing ϕ(g(x)) =´ +∞

g(x)
ϕ′(λ)dλ and applying Fubini’s theorem leads to

(3.3)
ˆ
X

ϕ(g(x)) dµ(x) = −
ˆ +∞

0

ϕ′(λ) µ ({g < λ}) dλ.

For any y ∈ K, using this fact with g(x) = d2(x, y)/(4t) and ϕ(ξ) = ξe−ξ, we get

F (t) 6
4 Lip(f)2

(4πt)α/2

ˆ
K

ˆ +∞

0

(λ− 1)e−λµ(B√4tλ(y)) dλ dµ(y).

Setting Co = Co(α) := 4
´ +∞

0
(λ − 1)e−λλα/2 dλ and recalling that µ(B√4tλ(y)) =

ωα(4tλ)α/2, we obtain F (t) 6 Lip(f)2µ(K)Coωαπ
−α/2, thus F is bounded. �

Next we prove the following crucial result.

Proposition 3.7. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel.
Then E is strongly local and regular.

Proof. — In the proof of [Gri10, Th. 4.1], it is shown that if (X, d, µ,E) admits a
stochastically complete heat kernel p satisfying

t−γ/βΦ1(d(x, y)t−1/β) 6 p(x, y, t) 6 t−γ/βΦ2(d(x, y)t−1/β)

for any x, y ∈ X and t > 0, where β and γ are positive constants and Φ1,Φ2

are monotone decreasing functions from [0,+∞) to itself such that Φ1 > 0 and´ +∞
sβ+γ−1Φ2(s) ds < +∞, then

(3.4) E(f) ' lim sup
t→0

t−(β+γ)/2

¨
{d(x,y)<t1/2}

(f(x)− f(y))2 dµ(x) dµ(y)

holds for all f ∈ D(E), what in turn implies strong locality of E. Here we have used
A ' B to denote the existence of a constant c > 1 such that c−1A 6 B 6 cA. Choosing
Φ1(s) = Φ2(s) = e−s

2/4, β = 2 and γ = α, we can apply this result in our context to
get strong locality of E.

To prove regularity, let us show that Lipc(X) is a core for E.
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Density in Cc(X). — Let f ∈ Cc(X) be with support K. For any R > 0 and x ∈ X,
set fR(x) = infy{f(y) +Rd(x, y)}. Note that fR(x) 6 f(x) for any x ∈ X, and since
f(y) +Rd(x, y)→ +∞ when d(x, y)→ +∞ and (X, d) is proper, the infimum in the
definition of fR is always attained at some x′ ∈ X. Then fR(x) = f(x′) + Rd(x, x′)

implies

d(x, x′) 6
2‖f‖∞
R

.

Being continuous with compact support, f is uniformly continuous, so it admits a
modulus of continuity ω which we can assume non-decreasing with no loss of generality.
Then for any x ∈ X,

|fR(x)− f(x)| = f(x)− fR(x) = f(x)− f(x′) + f(x′)− fR(x)︸ ︷︷ ︸
=−Rd(x′,x)60

6 ω(d(x, x′)),

so that

‖fR − f‖∞ 6 ω (2‖f‖∞/R) −→ 0

when R→ +∞. Therefore, setting ϕK := max(1− d(·,K), 0) and gR := ϕKfR for any
R > 0, we get a sequence of compactly supported Lipschitz functions (gR)R converging
uniformly to f .

Density in D(E). — Let Lipo(X) be the set of Lipschitz functions f on X vanishing at
infinity, i.e., such that for some o ∈ X one has f(x)→ 0 when d(o, x)→ +∞. We are
going to show that Lipc(X) is dense in Lipo(X) ∩D(E) for the norm | · |E. By (3.4),
we know that that there exists a constant Cα > 0 such that if f ∈ D(E), then

1

Cα
lim sup
t→0

ˆ
X

E(f, x, t) dµ(x) 6 E(f) 6 Cα lim sup
t→0

ˆ
X

E(f, x, t) dµ(x),

where

E(f, x, t) = t−(α+2)/2

ˆ
B√t(x)

(f(x)− f(y))2 dµ(y).

Let f ∈ Lipo(X) ∩D(E). For any R > 0, we set

ϕR(x) :=
(

1− d(x,BR(o)

R

)
+

for any x ∈ X, and fR := fϕR. By monotone convergence, we have

lim
R→+∞

‖f − fR‖2 = 0.

We look now at E(fR, x, t) and we distinguish 3 cases:

– if x ∈ BR−√t(o), then E(fR, x, t) = E(f, x, t);
– if x 6∈ B2R+

√
t(o), then E(fR, x, t) = 0;

– if x ∈ B2R+
√
t(o) rBR−

√
t(o),
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then using fR(x)− fR(y) = ϕR(x)(f(x)− f(y)) + f(y)(ϕR(x)− ϕR(y)) we get

E(fR, x, t) 6 2t−(α+2)/2

(ˆ
B√t(x)

(f(x)− f(y))2 dµ(y)

+

ˆ
B√t(x)

f2(y)(ϕR(x)− ϕR(y))2 dµ(y)

)
6 2E(f, x, t) + 2t−(α+2)/2

ˆ
B√t(x)

f2(y)
t

R2
dµ(y),

where we have used the fact that ϕR is 1/R-Lipschitz. By Fubini’s theorem,ˆ
X

ˆ
B√t(x)

f2(y) dµ(y) dµ(x) =

ˆ
X

f2(y)µ(B√t(y)) dµ(y) = ωαt
α/2

ˆ
X

f2(y) dµ(y),

thus

E(fR) 6 Cα lim sup
t→0

ˆ
X

E(f, x, t) dµ(x) + Cα
2

R2
ωα

ˆ
X

f2(y) dµ(y)

6 C2
αE(f) + Cα

2

R2
ωα

ˆ
X

f2(y) dµ(y).

Hence {fR}R>1 is bounded in D(E). The fact that limR→+∞ ‖f − fR‖2 = 0 implies
that fR converges weakly to f in D(E) when R → +∞. By Mazur’s lemma, there
exists a sequence {u`}` ⊂ Lipc(X) made of convex combination of {fR}R>1 such that

lim
`→+∞

‖f − u`‖E = 0.

Therefore, it is enough to show that Lipo(X) contains a subset that is dense in D(E)

for | · |E. Let L2
c be the set of compactly supported functions f in L2(X,µ). Then

Pt(L
2
c) ⊂ Lipo(X) for any fixed t > 0. Indeed, for any f ∈ L2

c and x, y ∈ X,

|Ptf(x)− Ptf(y)| 6 1

(4πt)α/2

ˆ
X

∣∣∣e−d2(x,z)/4t − e−d
2(y,z)/4t

∣∣∣|f(z)|dµ(z).

Setting ϕ(s) = e−s
2/4t and noting that |ϕ′(s)| 6 |ϕ′(

√
2t)| =: ct for all s > 0, we

get from the mean value theorem, the triangle inequality and Hölder’s inequality,
that |Ptf(x)−Ptf(y)| 6 C(t, f)d(x, y) with C(t, f) := ct(4πt)

−α/2µ(supp f)1/2‖f‖L2 .
Moreover,

|Ptf(x)| =
∣∣∣∣ 1

(4πt)α/2

ˆ
supp f

f(y)e−d
2(x,y)/4t dµ(y)

∣∣∣∣
6
e−d

2(o,x)/8t

(4πt)α/2

ˆ
supp f

|f(y)|ed
2(o,y)/4t dµ(y) −→ 0

when d(o, x)→ +∞.
Let us show now that Pt(L2

c) is dense in D(E) by proving that its 〈·, ·〉E-orthogonal
complement F in D(E) reduces to {0}. For any v ∈ F , we have:

(3.5)
ˆ
X

vPtf dµ+ E(v, Ptf) = 0 ∀ f ∈ L2
c .
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Since Pt maps L2(X,µ) into D(L) and is self-adjoint, then

E(v, Ptf) = −
ˆ
X

vL(Ptf) dµ = −
ˆ
X

v
d

dt
Ptf dµ = − d

dt

ˆ
X

vPtf dµ

= − d

dt

ˆ
X

(Ptv)f dµ = −
ˆ
X

d

dt
(Ptv)f dµ = −

ˆ
X

L(Ptv)f dµ = E(Ptv, f)

for any f ∈ L2
c , so (3.5) becomes:ˆ

X

(Ptv)f dµ+ E(Ptv, f) = 0 ∀ f ∈ L2
c .

This implies Ptv ∈ D(L) with L(Ptv) = Ptv. Since L is a non-positive operator,
1 cannot be an eigenvalue of L, so we necessarily have Ptv = 0. This implies v = 0

since the spectral theorem ensures that 0 cannot be an eigenvalue of Pt. �

Proposition 3.7 has several consequences. The first one is the existence of a Γ

operator defined on Dloc(E) for any (X, d, µ,E) with an α-dimensional Euclidean heat
kernel. Coupled with Lemma 3.6, this yields the following.

Corollary 3.8. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel.
Then Lip(X) ⊂ Dloc(E) ∩ C(X) and for some constant C1 depending only on α, we
have:

(3.6) Γ(f) 6 C1 Lip(f)2µ ∀ f ∈ Lip(X).

Proof. — Take f ∈ Lip(X). For any compact set K ⊂ X, the function ϕK :=

max(1− d(·,K), 0) is a compactly supported Lipschitz function constantly equal to 1

on K. Therefore, fϕK coincides with f on K, and thanks to Lemma 3.6, fϕK belongs
to D(E). This shows that f ∈ Dloc(E). Moreover, for any non-negative ϕ ∈ Cc(X) and
t > 0, a direct computation like in the proof of the previous lemma implies

1

2t

¨
X×X

ϕ(x)(f(x)− f(y))2p(x, y, t) dµ(x) dµ(y) 6 C1 Lip(f)2

ˆ
X

ϕ(x) dµ(x)

with C1 depending only on α, so that letting t tend to 0 and applying formula (2.10)
yields to (3.6). �

Proposition 3.7 also implies that we can define the pseudo-distance dE recalled in
Section 2 for any (X, d, µ,E) with an α-dimensional Euclidean heat kernel. It turns
out that in this case, dE is equivalent to the initial distance d, as shown in the next
proposition.

Proposition 3.9. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel.
Then there exists C2 > 0 depending only on α such that C2d 6 dE 6 d. In particular,
the assumption (A) is satisfied.

Proof. — Let us first show that C2d 6 dE for some C2 > 0. Set

Λ := {f ∈ Lip(X) : C1 Lip(f)2 6 1},
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where C1 is as in (3.6). It follows from Corollary 3.8 that Λ is included in the set of
test functions in (2.5). Noting that f := C

−1/2
1 d(x, ·) is in Λ for all x ∈ X and that

|f(x)− f(y)| = C
−1/2
1 d(x, y) for all x, y ∈ X, with C2 := C

−1/2
1 we get:

dE(x, y) > C2d(x, y) ∀x, y ∈ X.

Let us show now that dE 6 d. To this aim, we follow the lines of [Gri94]. Let
v ∈ Dloc(E) ∩ C(X) be bounded and such that Γ(v) 6 µ. For any a ∈ R, t > 0 and
x ∈ X, set ξa(x, t) := av(x)− a2t/2.

Claim 3.10. — For any f ∈ L2(X,µ), the quantity

I(t) :=

ˆ
X

f2
t e
ξa(·,t) dµ,

where ft := Ptf , does not increase when t > 0 increases.

Indeed, for any t > 0, writing ξa for ξa(·, t) and ξ′a for d
dtξa(·, t), we have

d

dt
(f2
t e
ξa) = 2ft

( d

dt
ft

)
eξa + f2

t ξ
′
ae
ξa = 2ftLfte

ξa − a2

2
f2
t e
ξa .

Since eξa 6 ea‖v‖∞ , this implies∣∣∣∣ d

dt
(f2
t e
ξa)

∣∣∣∣ 6 ea‖v‖∞(2|ft||Lft|+ a2|ft|2/2) ∈ L1(X,µ),

so we can differentiate under the integral sign to get

I ′(t) = 2

ˆ
X

ftLfte
ξa dµ− a2

2

ˆ
X

f2
t e
ξa dµ.

The Leibniz rule (2.3) impliesˆ
X

ftLfte
ξa dµ = − E(ft, fte

ξa) = −
ˆ
X

Γ(ft, fte
ξa) dµ

=−
ˆ
X

ft Γ(ft, e
ξa)︸ ︷︷ ︸

=Γ(ft,eξa/2eξa/2)

dµ−
ˆ
X

eξaΓ(ft) dµ

=− 2

ˆ
X

fte
ξa/2Γ(ft, e

ξa/2) dµ−
ˆ
X

eξaΓ(ft) dµ

and, starting from Γ(fte
ξa/2),

−2fte
ξa/2Γ(ft, e

ξa/2) = −Γ(fte
ξa/2) + f2

t Γ(eξa/2) + eξaΓ(ft),

so that

I ′(t) = 2

ˆ
X

f2
t Γ(eξa/2)− 2

ˆ
X

Γ(fte
ξa/2) dµ− a2

2

ˆ
X

f2
t e
ξa dµ

6
ˆ
X

f2
t

(
2Γ(eξa/2)− a2

2
eξa
)

dµ.
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Since v is bounded, we can apply the chain rule (2.4) with η(ξ) := eξ/2 to get
Γ(eξa/2) = (1/4)eξaΓ(ξa) and thus

2Γ(eξa/2)− a2

2
eξa =

1

2
eξaΓ(ξa)− a2

2
eξa =

1

2
eξaa2Γ(v)− a2

2
eξa 6 0,

so I ′(t) 6 0.
From now on, assume a > 0. Apply the claim to f = 1A, where A is some Borel

subset of X. Then for any t > 0 and any Borel subset B of X,ˆ
B

f2
t e
ξa(·,t) dµ 6

ˆ
X

f2
t e
ξa(·,t) dµ = I(t) 6 I(0) =

ˆ
A

eav dµ,

hence ˆ
B

f2
t e
ξa(·,t) dµ 6 µ(A)ea supA v.

Moreover, since the heat kernel is Euclidean, we haveˆ
B

f2
t e
ξa(·,t) dµ =

ˆ
B

(ˆ
A

p(x, y, t) dµ(y)

)2

eξa(x,t) dµ(x)

>
e−(supA×B d2)/2t

(4πt)α
µ(B)µ(A)2ea infB v−a2t/2,

thus
e−(supA×B d2)/2t

(4πt)α
µ(B)µ(A)ea(infB v−supA v)−a2t/2 6 1.

Take x, y ∈ X. With no loss of generality we can assume v(y)− v(x) > 0. Choose t
such that

√
t < d(x, y)/3. Apply the previous inequality with A = B√t(x) and

B = B√t(y). In this case, supA×B d2 = d2(x, y)+2
√
t. Moreover, since v is continuous,

we have infB v − supA v = v(y)− v(x) + ε(t) where ε(t)→ 0 when t→ 0+. Then

e−(d2(x,y)+2
√
t)/2t

(4π)α
ω2
α e

a(v(y)−v(x)+ε(t))−a2t/2 6 1

for any t ∈ (0, d2(x, y)/9) and any a > 0. Now for t ∈ (0, d2(x, y)/9), choose a =

a(t) = (v(y)− v(x) + ε(t))/t to get

e−(d2(x,y)+2
√
t)/2t

(4π)α
ω2
α e

(1/2t)(v(y)−v(x)+ε(t))2 6 1.

Apply the logarithm function, multiply the resulting inequality by 2t and then add
d2(x, y) to get

−2
√
t+ 2t ln(ω2

α/(4π)α) + (v(y)− v(x) + ε(t))2 6 d2(x, y).

Letting t tend to 0 gives

(3.7) (v(x)− v(y))2 6 d2(x, y).

Since for any u ∈ Dloc(E) and any R > 0, the function uR := max(u,R) is in Dloc(E)

with Γ(uR) 6 Γ(u), approximating any possibly unbounded v ∈ Dloc(E)∩Cc(X) with
Γ(v) 6 µ by (vR)R>0 provides (3.7) for any x, y ∈ X for such a v. This implies
dE 6 d. �
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Remark 3.11. — Though we will not use it in the sequel, let us point out that
Proposition 3.9 can be upgraded into d = dE provided a suitable technical assumption
holds: see [tERS07, Th. 2.5 (I)].

3.3. Evaluation of L on squared distance functions. — Let us show now that the
operator associated to the Dirichlet form of a space with an α-dimensional Euclidean
heat kernel behaves on squared distance functions as the Laplacian does in Rn.

Lemma 3.12. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel. Then
Ld2(x, ·) = 2α, Ld(x, ·) = (α− 1)/d(x, ·) on X r {x} and Γ(d(x, ·)) = 1 µ-a.e. on X.

Proof. — Take x ∈ X. Note first that Corollary 3.8 guarantees that d2(x, ·), d(x, ·) ∈
Dloc(E). For any t > 0, a direct computation relying on the chain rule (2.6) and
starting from the equation ( d

dt
− L

)e−d2(x,·)/4t

(4πt)α/2
= 0

(recall the remark after Definition 2.3) provides
d2(x, ·)

4t2
+
α

2t
− 1

4t
Ld2(x, ·)− 1

(4t)2
Γ(d2(x, ·)) = 0.

Multiplying by (4t)2 and letting t tend to 0 gives Γ(d2(x, ·)) = 4d2(x, ·) hence
Γ(d(x, ·)) = 1 by (2.4), while multiplying by 4t and letting t tend to +∞ gives
Ld2(x, ·) = 2α, from which follows Ld(x, ·) = (α− 1)/d(x, ·) by (2.7). �

Remark 3.13. — Note that any space (X, d, µ,E) with an α-dimensional Euclidean
heat kernel satisfies the assumptions of Lemma 2.15. Indeed, Proposition 3.7 states
that (X, d, µ,E) is strongly local and regular, Corollary 3.8 yields assumption (1) and
Lemma 3.12 yields assumption (2).

As a consequence of Lemma 3.12, we can show that locally L-harmonic functions on
spaces with an α-dimensional Euclidean heat kernel are necessarily strongly harmonic.

Lemma 3.14. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel. Let
Ω ⊂ X be an open set and h a locally integrable local solution of Lh = 0 on Ω. Then
for any x ∈ Ω, the function defined on (0, d(x,cΩ)) by

r 7−→
 
Br(x)

hdµ

is a constant. Therefore, h has a continuous representative strongly harmonic in Ω.

Proof. — Take x ∈ Ω and set R := d(x,cΩ). From Lh = 0 we get that for any ϕ ∈ D(L)

with compact support in Ω,
〈h, Lϕ〉L2 = 0.

Take ϕ ∈ C∞c ((0, R)) and set u = ϕ ◦ d(x, ·) on X. Then u belongs to D(L) and has
compact support included in Ω. The chain rule (2.6) and Lemma 3.12 yields to

Lu = χ ◦ d(x, ·),
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where we have set

χ(r) := ϕ′′(r) +
α− 1

r
ϕ′(r) = r1−α (rα−1 ϕ′

)′
for any r ∈ (0, R). Since χ ◦ d(x, ·) = −

´ R
d(x,·) χ

′(s)ds, we have

−
ˆ R

0

χ′(s)

(ˆ
Bs(x)

hdµ

)
ds = −

ˆ R

0

χ′(s)

(ˆ
X

h1Bs(x) dµ

)
ds

=

ˆ
X

(
−
ˆ R

0

χ′(s)1(d(x,·),+∞)(s) ds

)
hdµ

=

ˆ
X

(χ ◦ d(x, ·))hdµ = 〈h, Lu〉L2 = 0.

This implies that the function s 7→ I(s) :=
´
Bs(x)

hdµ satisfies the equation[
rα−1

(
r1−αy′

)′]′
= 0

in the distributional sense on (0, R). Then there exists real-valued constants a, b and c
such that for any s ∈ (0, R),

I(s) = asα + bs2 + c.

Since h is locally integrable, c = lims→0 I(s) = 0. Then s−αI(s) = a+ bs2−α for any
s ∈ (0, R). Using test functions ϕ that are constantly equal to 1 in a neighborhood
of 0, we can get (2−α)b = 0, from which follows that s 7→ s−αI(s) is a constant. Since
(X, d, µ) has an α-dimensional volume, this provides the result. �

3.4. Spaces of locally L-harmonic functions with polynomial growth. — Let us
conclude with a result that shall be crucial in the next section. We recall that for any
positive integer m, a function h : X → R has polynomial growth of rate m if there
exists C > 0 such that |h| 6 C(1 + dm(o, ·)) holds for some o ∈ X. The case m = 1

corresponds to a linear growth. Note that functions with a fixed polynomial growth
rate form a vector space.

Proposition 3.15. — Let (X, d, µ,E) be with an α-dimensional Euclidean heat kernel.
Then for any m ∈ Nr {0}, the space of locally L-harmonic functions h : X → R with
polynomial growth of rate m is finite dimensional.

Proof. — Having an α-dimensional Euclidean heat kernel, (X, d, µ,E) trivially satisfies
the Gaussian estimate (2.12). Moreover, we know from Proposition 3.9 that it satisfies
the assumption (A). Consequently, by Proposition 2.4, (X, d, µ,E) has the doubling
and Poincaré properties. Therefore, the arguments of [CM97] carry over. �

4. Construction of the isometry

In this section, we construct an isometry between a given metric measure space
(X, d, µ) equipped with a Dirichlet form E admitting an α-dimensional Euclidean heat
kernel and an Euclidean space R` equipped with a distance dQ associated to a suitable
quadratic form Q.
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Let us recall that a quadratic form on a R-vector space V is a map Q : V → R for
which there exists a bilinear symmetric form β : V × V → R such that Q(u) = β(u, u)

for any u ∈ V , in which case one has β(u, v) = 1
2 (Q(u+ v)−Q(u)−Q(v)) and then

Q(u + v) = Q(u) + 2β(u, v) + Q(v) for any u, v ∈ V . Moreover, when Q is positive
definite, setting

dQ(u, v) :=
√
Q(u− v)

for any u, v ∈ V defines a distance on V canonically associated to Q. When V = R`,
Sylvester’s law of inertia states that Q can be transformed into (v1, . . . , v`) 7→

∑
i v

2
i

via a suitable change of basis. This implies that (R`, dQ) and (R`, de) are isometric, so
that the construction made in this section proves Theorem 1.1.

4.1. The quadratic form Q and the coordinate function H. — Let us explain how
to define Q in our context. We first fix a base point o ∈ X and set

B(x, y) :=
1

2
(d2(o, x) + d2(o, y)− d2(x, y))

for any x, y ∈ X. Note that

(4.1) d2(x, y) = B(x, x) +B(y, y)− 2B(x, y).

Remark 4.1. — In case (X, d) = (R`, de) and o is the origin in R`, the law of cosines
gives B(x, y) = 〈x, y〉 for any x, y ∈ R`, where 〈·, ·〉 is the usual Euclidean scalar
product in R`.

For any x ∈ X, it follows from Lemma 3.12 and the fact that constant functions
are locally L-harmonic that B(x, ·) is locally L-harmonic. Moreover, for any x, y ∈ X,
since d2(o, y)−d2(x, y) = (d(o, y)−d(x, y))(d(o, y)+d(x, y)), d(o, y)−d(x, y) 6 d(o, x)

and d(x, y) 6 d(x, o) + d(o, y), we have

B(x, y) 6
1

2
(d2(o, x) + d(o, x)(d(o, x) + 2d(o, y)))

= d2(o, x) + d(o, x)d(o, y) 6 Cx(1 + d(o, y))

with Cx := max(d2(o, x), d(o, x)). This shows that B(x, ·) has linear growth for any
x ∈ X. Then V := Span{B(x, ·) : x ∈ X} is a subspace of the space of locally
L-harmonic functions with linear growth. Using Proposition 3.15, we know that this
space has a finite dimension, so V has a finite dimension which we denote by `.

Let us then consider the subspace D := Span{δx : x ∈ X} of the algebraic dual V∗
of V. If f ∈ V is such that θ(f) = 0 for any θ ∈ D, then f = 0; since the duality
pairing V × V∗ → R is non-degenerate, this implies D = V∗. Therefore, there exist
x1, . . . , x` ∈ X such that {δx1

, . . . , δx`} is a basis of V∗. Let {h1, . . . , h`} be the
associated basis of V. Then for any x ∈ X,

B(x, ·) =
∑̀
i=1

δxi(B(x, ·))hi =
∑̀
i=1

B(x, xi)hi
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and for any i ∈ {1, . . . , `},

B(x, xi) = B(xi, x) =
∑̀
j=1

δxj (B(xi, ·))hj(x) =
∑̀
j=1

B(xi, xj)hj(x).

Therefore, we have

(4.2) B(x, y) =
∑̀
i,j=1

B(xi, xj)hj(x)hi(y)

for any x, y ∈ X. We now define Q on R` by setting:

Q(ξ) :=
∑̀
i,j=1

B(xi, xj)ξiξj ∀ ξ = (ξ1, . . . , ξ`) ∈ R`.

Then Q is a quadratic form whose associated symmetric form β is given by

β(ξ, ξ′) =
∑̀
i,j=1

B(xi, xj)ξiξ
′
j

for any ξ, ξ′ ∈ R`. Note that β is non-degenerate. Indeed, if ξ ∈ R` is such that
β(ξ, ·) = 0, then for any y ∈ X we have

∑`
i=1 ξiB(xi, y) = 0 because∑̀

i=1

ξiB(xi, y) =
∑̀
i,j=1

ξihj(y)B(xi, xj) = β(ξ, (h1(y), . . . , h`(y))) = 0.

But {B(xi, ·)}i is a basis of V since

B(x, y) =
∑̀
i=1

δxi(B(·, y))hi(x) =
∑̀
i=1

B(xi, y)hi(x)

for any x, y ∈ X, thus ξ = 0`, where 0` denotes the origin in R`.
We are now in a position to introduce our “coordinate” function H : X → R` which

we define as
H := (h1, . . . , h`).

This function H is continuous because h1, . . . , h` are so. Moreover, for any x, y ∈ X,
we have

(4.3) β(H(x), H(y)) = B(x, y)

thanks to (4.2) and

(4.4) d2(x, y) = Q(H(x)−H(y))

thanks to (4.1). Note that H(o) = 0` because B(x, o) = 0 for any x ∈ X. Moreover,
(4.4), the continuity of H and the completeness of (X, d) imply that H(X) is a closed
set of R`.

Claim 4.2. — H is an injective map. Moreover, Span(H(X)) = R` – in fact, the
closed convex hull of H(X) is R`.
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Proof. — If H(x) = H(y) then (4.4) gives d2(x, y) = Q(0) = 0, so x = y. Then H is
injective. For the second statement, let us recall that the closed convex hull conv(E)

of a closed set E ⊂ R` is defined as the smallest convex subset of R` containing E;
moreover, conv(E) coincides with ⋂

λ∈A(E)

{λ > 0},

where A(E) is the set of affine functions on R` that are non-negative on E. Note
that being closed and convex, Span(E) contains conv(E). Take λ ∈ A(H(X)). Then
λ ◦H : X → R is an affine combination of locally L-harmonic functions, hence it is a
locally L-harmonic function too. Since λ ◦H is non-negative on X, Lemma 2.6 implies
that it is a constant. Therefore, conv(H(X)) = R`, what brings the result. �

Note that the right-hand side in (4.4) does not define any squared distance on R`

unless Q is shown to be positive definite, see Section 4.3.

4.2. Conical structure of tangent cones at infinity. — Let (X, d, o) be a tangent
cone at infinity of (X, d) at o. We denote by {(Xi, di := r−1

i d, o)}i, where {ri}i ⊂
(0,+∞) converges to +∞, the sequence of rescalings of (X, d, o) converging in the
pointed Gromov-Hausdorff topology to (X, d, o). Note that whenever x ∈ X, there
exists a sequence {xi}i ⊂ X such that xi

GH−→ x; in particular, di(o, xi)→ d(o, x) and
d(o, xi)→ +∞.

Step 1. Construction of a Busemann function h∞ associated with a divergent sequence

Let {xi}i ⊂ X be a sequence such that d(o, xi)→ +∞. For any i, setting

Di := d(o, xi),

we define
hi(y) := Di − d(xi, y)

for any y ∈ X and call ci : [0, Di]→ X a minimizing geodesic joining o to xi.
On one hand, the triangle inequality implies that the functions hi are all 1-Lipschitz,

so by the Ascoli–Arzelà theorem, up to extracting a subsequence, we can assume that
the sequence {hi}i converges uniformly on compact subsets of X to a 1-Lipschitz
function h∞. On the other hand, the minimizing geodesics ci being 1-Lipschitz too,
we can use again the Ascoli-Arzelà theorem to assume, up to extraction, that they
converge uniformly on compact sets of [0,+∞) to a geodesic ray γ.

Claim 4.3. — The function h∞ constructed as above coincides with the Busemann
function bγ associated with γ.

Proof. — Thanks to Lemma 3.12 and the fact that constant functions are locally
L-harmonic, we know that for any i we have hi ∈ Dloc(E) and

Lhi =
α− 1

d(xi, ·)
on X r {xi}.
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Therefore, for any R ∈ (0, d(o, xi)), since d(xi, y) > Di − d(y, o) > Di − R holds for
any y ∈ BR(o), we get

|Lhi| 6
α− 1

Di −R
on BR(o).

Then

|E(hi, ϕ)| = |〈ϕ,Lhi〉L2 | 6 α− 1

Di −R
‖ϕ‖1 −→ 0 when i −→ +∞

for any ϕ ∈ Dc(E). Since hi → h∞ uniformly on compact sets, we can act as in the
proof of Lemma 2.15 to show that h∞ is locally L-harmonic. Lemma 2.15 also shows
that bγ is locally L-harmonic, hence h∞ − bγ is so too.

Let us show now that h∞ − bγ is non-negative. For any i and s ∈ [0, Di], set:

hi,s(y) = s− d(y, ci(s)) ∀ y ∈ X.

Since d(xi, y) 6 d(xi, ci(s)) + d(y, ci(s)) = Di − s+ d(y, ci(s)) for all y ∈ X, we have

hi,s 6 hi.

As the curves ci pointwise converge to γ, the functions hi,s pointwise converge to
gs : y 7→ s− d(y, γ(s)), so that letting i tend to +∞ provides

gs 6 h∞

and then letting s tend to +∞ gives

bγ 6 h∞.

By Lemma 2.6, since h∞−bγ is non-negative and locally L-harmonic, it is a constant
function. But bγ(o) = 0 = hi(o) for any i, so h∞ − bγ is constantly equal to 0. �

Step 2. Behavior of H in the convergence (X, di) → (X, d) and link with h∞. — Recall
that for any 1 6 j 6 `, the function hj has linear growth: |hj(x)| 6 Cj(1 + d(o, x)) for
any x ∈ X, where Cj > 0 is some constant. Then the rescalings hij := r−1

i hj are such
that |hij(x)| 6 Cj(r−1

i + di(o, x)) for any x ∈ X, hence

‖hij‖L∞(B
di
r (o))

6 Cj(r
−1
i + r) 6 Cj(1 + r)

holds for any r > 0 and any i such that ri > 1. Moreover, since hj is locally L-harmonic,
it is strongly harmonic by Lemma 3.14 and then Lipschitz by Lemma 2.9: there is
some constant C ′j > 0 such that

|hj(x)− hj(y)| 6 C ′jd(x, y)

for any x, y ∈ X. This implies that the sequence {hij}i is asymptotically uniformly
continuous on Br(x). It is immediate to check that the rescalings hij are also strongly
harmonic in (X, di, µi) where µi := r−αi µ. Then Propositions 2.11 and 2.13 imply
that up to extracting a subsequence, we can assume that for any j = 1, . . . , `, the
functions hij converge uniformly on all compact sets to a strongly harmonic function
hj : X → R. We set

H := (h1, . . . , h`) : X −→ R`.

J.É.P. — M., 2022, tome 9



A rigidity result for metric measure spaces with Euclidean heat kernel 133

Claim 4.4. — For any given x ∈ X, the function X 3 y 7→ β(H(x), H(y)) is a multiple
of a Busemann function.

Proof. — Let {xi}i ⊂ X be such that xi
GH−→ x. Denote by h∞ the Busemann function

associated to {xi}i as in the previous step. Then for any y ∈ X,

β(H(x), H(y)) = lim
i→+∞

β(Hi(xi), H(y))

= lim
i→+∞

1

ri
β(H(xi), H(y))

= lim
i→+∞

1

2ri
(d2(o, xi) + d2(o, y)− d2(xi, y)) by (4.3)

= lim
i→+∞

(d(o, xi)− d(xi, y))(d(o, xi) + d(xi, y))

2ri

= h∞(y)
(d(o, x)

2
+ lim
i→+∞

d(xi, y)

2ri

)
since d(o, xi)− d(xi, y)→ h∞(y). Now

d(xi, o)− d(o, y)

ri︸ ︷︷ ︸
→d(x,o)

6
d(xi, y)

ri
6

d(xi, o) + d(o, y)

ri︸ ︷︷ ︸
→d(x,o)

,

so
�β(H(x), H(y)) = d(o, x)h∞(y).

Note that we also have the following.

Claim 4.5. — H is an injective map. Moreover, Span(H(X)) = R`.

Proof. — Dividing (4.4) by r2
i and taking i→ +∞ implies d2(x, y) = Q(H(x)−H(y))

for any x, y ∈ X, hence the injectivity of H. To prove the second part of the statement,
let us show that H(X) is contained in no hyperplane of R`. Take a linear form
λ : R` → R vanishing on H(X). Considering the convergent sequence (Xi, di, o) →
(X, d, o), Proposition 2.11 implies that up to extraction the equi-Lipschitz functions
r−1
i λ ◦H : Xi → R converge to 0 = λ ◦H : X → R over Bdi

r (o)→ Br(o) for any r > 0.
Therefore, we have

sup
∂Bri (o)

|λ ◦H| = sup
∂B

di
1 (o)

|λ ◦H| = o(ri).

Being a linear combination of locally L-harmonic functions, λ◦H is locally L-harmonic
hence strongly harmonic by Lemma 3.14. Thus Lemma 2.9 implies that λ ◦ H is
constantly equal to 0. Since Span(H(X)) = R`, this implies λ = 0. �

Step 3. Construction of the bijection. — Our goal now is to construct a natural bijection
between X r {o} and S × (0,+∞), where S := {x ∈ X : d(o, x) = 1}.

Let us start with some heuristics. For x ∈ X r {o} given, we look for σ ∈ S and
t ∈ (0,+∞) uniquely determined by x. Here is how we are going to proceed:

(1) prove that there exists only one minimizing geodesic c joining o to x;
(2) show that c extends in an unique way into a geodesic ray γ.
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Indeed, the unique geodesic ray γ that we are going to construct necessarily crosses S
at a single point σ (otherwise γ would fail to be a minimizing geodesic) and it is
such that γ(t) = x for a unique time t > 0. Conversely, a pair (σ, t) would uniquely
determine a point γ(t) ∈ X.

Let us proceed now with the construction. Take x ∈ X r {o}. Let {xi}i ⊂ X be
such that xi

GH−→ x. For any i, let ci be the minimizing di-geodesic joining o to xi.
As done previously, up to extracting a subsequence we can assume that {ci}i converges
uniformly on compact subsets of [0,+∞) to a geodesic ray γ : [0,+∞)→ X. We know
from Claim 4.3 and the previous step that

(4.5) β(H(x), H(y)) = d(o, x)bγ(y)

holds for any y ∈ X, where bγ is the Busemann function associated with γ. Consider
now a minimizing geodesic c in (X, d) joining o to x and set

D := d(o, x).

For any s ∈ [0, D], acting as we did to establish (4.5), we can prove that

β(H(c(s)), H(y)) = sbγ(y)

holds for any y ∈ X. Subtracting (4.5) to this latter equality yields to

β
(
H(c(s))− s

D
H(x), H(y)

)
= 0

for any y ∈ X. By Claim 4.2, this implies

β
(
H(c(s))− s

D
H(x), ξ

)
= 0

for any ξ ∈ Rn and then

(4.6) H(c(s)) =
s

D
H(x)

since β is non-degenerate. Uniqueness of c follows: if c1 and c2 are two minimizing
geodesics joining o to x, for any s ∈ [0, D] one has

H(c1(s)) =
s

D
H(x) = H(c2(s))

and thus c1(s) = c2(s) since H is injective.
Let us show now that c extends in an unique way into a geodesic ray. Our argument

is inspired by the analysis done by Cheeger about generalized linear functions [Che99,
§8]. For any i, set Di := d(o, xi) and write γi : [0,+∞)→ X for the geodesic ray in
(X, di) defined by:

γi(s) = γ(sri +Di) ∀ s > 0.

On the one hand, by Proposition 2.12, we know that up to extracting a subsequence
we can assume that {γi}i converges uniformly on compact subsets of [0,+∞) to a
geodesic ray γ̃ : [0,+∞]→ X whose associated Busemann function we denote by bγ̃ .
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On the other hand, if we write bγi for the Busemann function associated with γi,
we can proceed as in Step 2 with di, Hi, γi in place of d, H, γ respectively to get

bγi(y) =
β(H(x), Hi(y))

D

for any y ∈ X. Then the sequence (bγi) converges pointwise to the function

F : X 3 y 7−→
β(H(x), H(y))

D

and we have the following:

Claim 4.6

(4.7) F = bγ̃ +D.

Proof. — Observe first that F is strongly harmonic since it is a linear combination of
the strongly harmonic functions h1, . . . , h`. Let us show that bγ̃ is strongly harmonic
too. For any i, set

pi(x, y, t) :=
1

(4πt)α/2
e−d

2
i (x,y)/4t = rαi p(x, y, r

2
i t)

for any x, y ∈ X and t > 0, and

p(x, y, t) :=
1

(4πt)α/2
e−d

2(x,y)/4t

for any x, y ∈ X and t > 0. Then for any x, y ∈ X and s, t > 0,

pi(x, y, t+ s) = rαi p(x, y, r
2
i t+ r2

i s) = rαi

ˆ
X

p(x, z, r2
i t)p(z, y, r

2
i s) dµ(z)

=

ˆ
X

pi(x, z, t)p(z, y, r
2
i s) r

α
i

dµ(z)

rαi
=

ˆ
X

pi(x, z, t)pi(z, y, s) dµi(z).

For any x, y ∈ X and {xi}i, {yi}i ∈ X such that xi
GH−→ x and yi

GH−→ y, the convergence
di(xi, yi)→ d(x, y) implies pi(xi, yi, t)→ p(x, y, t) for any t > 0, hence:

p(x, y, t+ s) =

ˆ
X

p(x, z, t)p(z, y, s) dµ(z) ∀x, y ∈ X, ∀ t, s > 0.

By a standard procedure described for instance in [Gri10, §2], we can construct
a Dirichlet form E on (X, d, µ) admitting a heat kernel given by p. In particular,
(X, d, µ,E) has an α-dimensional Euclidean heat kernel. Writing L for the associated
self-adjoint operator, we deduce from Lemma 2.15 that bγ̃ is locally L-harmonic, then
Lemma 3.14 implies that bγ̃ is strongly harmonic.

Let us show now that F − bγ̃ > 0. Take i ∈ N, s > 0 and y ∈ X. Then
bγ(y) > ris + Di − d(γ(ris + Di), y) by definition of a Busemann function, hence
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r−1
i bγ(y) > s+ r−1

i Di − di(γi(s), y). Since

r−1
i bγ(y) = lim

s→+∞
r−1
i s− r−1

i d(γ(s), y)

= Dir
−1
i + lim

s′→+∞
s′ − di(γ(Di + ris

′), y), where s′ = (s−Di)r
−1
i

= Dir
−1
i + bγi(y),

we get bγi(y) > s− di(γi(s), y). Letting i tend to +∞ provides F (y) > s− d(γ̃(s), y),
after what letting s tend to +∞ gives F > bγ̃ .

By Lemma 2.6, we get that F − bγ̃ is a constant function. Since F (x) = D = d(o, x)

and bγ̃(x) = 0, the claim is proved. �

Let γ : [0,+∞)→ X be the concatenation of c and γ̃, i.e.,

γ(t) :=

{
c(t) if 0 < t 6 D,
γ̃(t−D) if t > D.

By construction, γ is 1-Lipschitz: d(γ(t), γ(s)) 6 |t − s| for any s, t > 0. Moreover,
(4.6) implies F (γ(t)) = t when 0 < t 6 D while (4.7) implies F (γ(t)) = t when t > D.
Since the function F is 1-Lipschitz we get |t− s| 6 d(γ(t), γ(s)) for any s, t > 0, thus γ
is a geodesic ray that extends c.

Let us show that this extension γ is unique. By (4.7), we have

(4.8) β(H(x), H(y)) = D(bγ̃(y)−D)

for any y ∈ X and we can obtain

β(H(γ̃(t)), H(y)) = t(bγ̃(y)−D)

for any y ∈ X and t > D by a similar reasoning. Then if γ′ is another extension of c
obtained from a geodesic ray γ̃′ emanating from x, we get

β(H(γ̃(t))−H(γ̃′(t)), H(y)) = 0

for any y ∈ X and t > D, from which Claim 4.5 yields γ̃(t) = γ̃′(t).

Remark 4.7. — Note that (4.8) implies β(H(γ̃(t)), H(y)) = tβ(H(γ̃(1)), H(y)) for all
y ∈ X, hence

(4.9) H(γ̃(t))) = tH(γ̃(1)).

Step 4. Construction of the isometry. — Let Φ be the inverse of the bijection constructed
in the previous step, i.e.,

Φ :
(0,+∞)× S −→ X r {o}

(t, σ) 7−→ γ
σ
(t),

where γ
σ
is the geodesic ray obtained by extending the minimizing geodesic joining o

to σ. Note that (4.9) implies

(4.10) H(Φ(t, σ)) = tH(Φ(1, σ))
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for any (t, σ) ∈ (0,+∞)× S. Let dC be the cone distance on (0,+∞)× S defined by

d2
C((t, σ), (t′, σ′)) := (t− t′)2 + 4tt′ sin2

(
dS(σ, σ′)/2

)
for any (t, σ), (t′, σ′) ∈ (0,+∞)× S, where dS is the length distance associated with
the distance on S obtained by restricting d to S × S. We are going to establish

(4.11) d(x, x′) = dC((t, σ), (t′, σ′))

for any x = Φ(t, σ), x′ = Φ(t′, σ′) ∈ X r {o}.

Claim 4.8. — There exists δ(σ, σ′) ∈ [0, π] such that

(4.12) d2(x, x′) = (t− t′)2 + 4tt′ sin2(δ(σ, σ′)/2).

Proof. — Choose {xi}i, {x′i}i ⊂ X such that xi
GH−→ x and x′i

GH−→ x′. For any i, divide
(4.4) by r2

i to get d2
i (xi, x

′
i) = Q(Hi(xi) − Hi(x

′
i)). Letting i tend to +∞ implies

d2(x, x′) = Q(H(x)−H(x′)), hence

d2(x, x′) = Q(tH(Φ(1, σ))− t′H(Φ(1, σ′))),

thanks to (4.10). To compute Q(tH(Φ(1, σ)) − t′H(Φ(1, σ′))), let us use hi(σ) as a
shorthand for hi(Φ(1, σ)). Then:

d2(x, x′) = Q(th1(σ)− t′h1(σ′), . . . , th`(σ)− t′h`(σ′))

=
∑̀
i,j=1

B(xi, xj)(thi(σ)− t′hj(σ′))(thj(σ)− t′hj(σ′))

=

( ∑̀
i,j=1

B(xi, xj)hi(σ)hj(σ)

)
t2 +

( ∑̀
i,j=1

B(xi, xj)hi(σ
′)hj(σ

′)

)
(t′)2

− 2tt′
( ∑̀
i,j=1

B(xi, xj)hi(σ
′)hj(σ)

)
= Q(H(σ))t2 +Q(H(σ′))(t′)2 − 2tt′β(H(σ), H(σ′))

= d2(σ, o)t2 + d2(σ′, o)(t′)2 − 2tt′β(H(σ), H(σ′))

= t2 + (t′)2 − 2tt′β(H(σ), H(σ′).

Set B(x, x′) := 1
2 (d2(o, x) + d2(o, x′) − d2(x, x′)). Write (4.3) with x = xi, x′ = x′i,

divide by r2
i and let ri tend to +∞ to get β(H(x), H(x′)) = B(x, x′) and then

d2(x, x′) = t2 + (t′)2 − 2tt′B(σ, σ′).

Assuming t = t′ = 1 provides B(σ, σ′) = 1− 1
2 d2(σ, σ′). The triangle inequality implies

d2(σ, σ′) 6 4, thus B(σ, σ′) ∈ [−1, 1], so we can set

cos(δ(σ, σ′)) := B(σ, σ′)

for some δ(σ, σ′) ∈ [0, π]. �

In particular, (4.12) implies d(σ0, σ1) = 2 sin(δ(σ0, σ1)/2) for any σ0, σ1 ∈ S.

Claim 4.9. — The function δ defines a geodesic distance on S.
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Proof. — Let us first show that δ defines a distance on S. We only prove the triangle
inequality since the two other properties are immediate. For given σ0, σ1, σ2 ∈ S, let
us set α := δ(σ0, σ1), β := δ(σ1, σ2) and γ := δ(σ0, σ2). We can assume α + β 6 π

because otherwise we would have α + β > π > γ, thus nothing to prove. For any
t, s, r > 0, the triangle inequality for d written with (4.12) gives√

(t− s)2 + 4ts sin2(α/2) +

√
(s− r)2 + 4sr sin2(β/2) >

√
(t− r)2 + 4tr sin2(γ/2).

Considering the three complex numbers z0 = t, z1 = seiα and z2 = rei(α+β), this can
be rewritten as

|z0 − z1|+ |z1 − z2| >
√

(t− r)2 + 4tr sin2(γ/2).

Choosing s so that z0, z1, z2 are aligned implies |z0 − z2| = |z0 − z1|+ |z1 − z2| thus√
(t− r)2 + 4tr sin2((α+ β)/2) = |z0 − z2| >

√
(t− r)2 + 4tr sin2(γ/2),

which yields to α+ β > γ.
Let us show now that δ is geodesic. For given σ0, σ1 ∈ S with σ0 6= σ1, we aim at

finding σm ∈ S such that

δ(σ0, σm) = δ(σm, σ1) =
1

2
δ(σ0, σ1).

Let c : [0, d(σ0, σ1)]→ X be the minimizing d-geodesic between σ0 and σ1. Assume
first δ(σ0, σ1) < π so that c(d(σ0, σ1)/2) 6= 0. Then c(d(σ0, σ1)/2) writes as Φ(s, σm)

for some (s, σm) ∈ (0, 1)× S. We have

d(σ0, σm) = d(σm, σ1) =
1

2
d(σ0, σ1),

from which follows

(4.13) (1− s)2 + 4s sin2 (α0/2) = (1− s)2 + 4s sin2 (α1/2) = sin2 (β/2)

thanks to (4.12), where we have set α0 := δ(σ0, σm), α1 := δ(σm, σ1) and β :=

δ(σ0, σ1). Note first that (4.13) immediately implies α0 = α1. Moreover, for any t > 0,

d (σ0,Φ(t, σm)) + d (σ1,Φ(t, σm)) > d (σ0, σ1)

implies √
(1− t)2 + 4t sin2(α0/2) +

√
(1− t)2 + 4t sin2(α1/2) > 2 sin(β/2),

thus
(1− t)2 + 4t sin2(α0/2) > sin2(β/2).

Therefore, the polynomial function F : t 7→ (1 − t)2 + 4t sin2(αo/2) − sin2(β/2) is
non-negative and vanishes only at t = s, so F ′(s) = 0 hence

2(1− s) = 4 sin2(α0/2).

Plugging this in (4.13) leads to sin2(β/2) = sin2(α0/2) hence α0 = β2. �

Claim 4.9 and Lemma 2.14 implies δ = dS which yields (4.11) by Claim 4.8.
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4.3. Equality ` = α and positive definiteness of Q. — Since β is non-degenerate,
we can write

(4.14) R` = E+ ⊕ E−,

where E+ is a subspace of R` with maximal dimension where β is positive definite
and E− is its β-orthogonal complement; β is negative definite on E−. We call p+ the
dimension of E+ and p− the dimension of E−. Note that ` = p+ + p− so in particular,
` > p+. Let us prove p+ > α, then ` = α, in order to reach our conclusion that is
` = p+ = α.

Step 1. p+ > α. — Let us write H = (H+, H−), where H+ := projE+
◦H and H− :=

projE− ◦H, and projE+
,projE− are the projections associated to the decomposition

(4.14). Moreover, we set q+(v+) := β(v+, v+) for any v+ ∈ E+ and q−(v−) := β(v−, v−)

for any v− ∈ E−. Then for any x, y ∈ X,

Q(H(x)−H(y)) = q+(H+(x)−H+(y)) + q−(H−(x)−H−(y)),

thus

(4.15) d2(x, y)− q−(H−(x)−H−(y)) = q+(H+(x)−H+(y)).

Since q− 6 0, it follows from (4.15) that q+(H+(x) −H+(y)) > d2(x, y). Moreover,
−q−(H−(x) − H−(y)) is bounded from above by λ d2(x, y), where λ is the largest
modulus an eigenvalue of Q can have, so q+(H+(x) − H+(y)) 6 (1 + λ) d2(x, y).
Finally, since H is injective, then H+ is injective too. Therefore, the map H+ is a bi-
Lipschitz embedding of (X, d) into (E+, dq+) where dq+(v+, v

′
+) :=

√
q+(v+ − v′+) for

any v+, v
′
+ ∈ E+. This implies that p+ is greater than or equal to the local Hausdorff

dimension of X which is equal to α.

Step 2. ` = α. — Set µ̃ := (Φ−1)#(µ
¬
X r {o}). Then µ̃ is a Borel measure on

(0,+∞) × S equipped with dC . We complete (0,+∞) × S by adding the point o
corresponding to the tip of this metric cone. Let dt⊗ νt be the disintegration of µ̃ with
respect to the first variable t (we refer to [AFP00, 2.5] for the definition of disintegration
of a measure). Since for any λ, r > 0, we have µ(hλ(Br(o))) = λαµ(Br(o)), where
hλ : (t, σ) 7→ (λt, σ), then dνt = tα−1ν1 for any t > 0 and ν1(S) = αωα. Let us write ν
instead of ν1.

Claim 4.10. — For any σ ∈ S and h ∈ V := Span(h1, . . . , h`),

(4.16) h(σ) =
α

ν(S)

ˆ
S

cos(dS(σ, ϕ))h(ϕ) dν(ϕ).

Proof. — Take h ∈ V and t > 0. Since h1, . . . , h` are locally L-harmonic, then for any
x ∈ X,

(4.17) h(x) =

ˆ
X

p(x, y, t)h(y) dµ(y).
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Use the notation x = Φ(r, σ) and y = Φ(s, ϕ) and note that h(Φ(t, σ)) = rh(σ) and
h(Φ(s, ϕ)) = sh(ϕ) thanks to (4.9). Then (4.17) writes

(4.18) rh(σ) =
1

(4πt)α/2

ˆ +∞

0

ˆ
S

e(−r2−s2+2rs cos(dS(σ,ϕ)))/4th(ϕ)sα dsdν(ϕ).

Since
d

dr

(
e(−r2+2rs cos(dS(σ,ϕ)))/4t

)
=
(
− r

2t
+
s cos(dS(σ, ϕ))

2t

)
e(−r2+2rs cos(dS(σ,ϕ)))/4t,

differentiating (4.18) with respect to r and evaluating at r = 0 gives

h(σ) =
1

(4πt)α/2

ˆ +∞

0

e−s
2/4t s

α+1

2t
ds

ˆ
S

cos(dS(σ, ϕ))h(ϕ) dν(ϕ).

A direct computation using the change of variable ξ = s2/4t shows that

1

(4πt)α/2

ˆ +∞

0

e−s
2/4t s

α+1

2t
ds =

1

ωα
=

α

ν(S)
. �

Set W := {h|S : h ∈ V}. Note that (4.9) implies that the restriction map V→W is
a bijection, hence dimW = `. We introduce the operator K : L2(S,dν) → L2(S,dν)

defined by

K(f)(σ) :=
α

ν(S)

ˆ
S

cos(dS(σ, ϕ))f(ϕ) dν(ϕ)

for any f ∈ L2(S,dν) and µ-a.e. σ ∈ S. Since for any σ, σ′ ∈ S,

cos(dS(σ, σ′)) = B(σ, σ′) = β (H(Φ(1, σ)), H(Φ(1, σ′))) =
∑
i,j

B(xi, xj)hi(σ)hj(σ
′),

then the image of K is contained in W and according to (4.16), we have

Kf = f for every f ∈W.

Hence K is the orthogonal projection onto W and if k1, . . . , k` form an orthonormal
basis of W for the L2(S, ν) scalar product, then for any f ∈ L2(S,dν):

K(f)(σ) =
∑̀
i=1

ki(σ)

ˆ
S

ki(ϕ)f(ϕ) dν(ϕ).

This implies

(4.19) α

ν(S)
cos(dS(σ, ϕ)) =

∑̀
i=1

ki(σ)ki(ϕ)

for ν ⊗ ν-a.e. (σ, ϕ) ∈ S × S. Since for any i, the function ki admits a continuous
representative – still denoted by ki – defined by

ki(σ) =

ˆ
S

cos(dS(σ, ϕ))h(ϕ) dν(ϕ)
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for any σ ∈ S, then (4.19) holds for all (σ, ϕ) ∈ S × S. In particular, we can take
σ = ϕ in (4.19) to get

α

ν(S)
=
∑̀
i=1

ki(σ)2.

Integrating over S with respect to ν gives α = `.

4.4. Conclusion. — From the previous subsections, we get that H is an isometric
embedding of (X, d) into (R`, dQ) or, as explained at the beginning of this section, into
(R`, de). Therefore, H(X) equipped with the restriction of de is geodesic. Minimizing
geodesics in (R`, de) being straight lines, this implies that H(X) is convex. Being also
closed, H(X) is equal to its closed convex hull that is equal to R` by the proof of
Claim 4.2, hence Theorem 1.1 is proved.

5. Almost rigidity result for the heat kernel

In this section, we show how our rigidity result (Theorem 1.1) provides an almost
rigidity result (Theorem 1.2). We fix a positive constant T > 0, a positive integer n,
and we recall that Bnr stands for an Euclidean ball in Rn with radius r > 0 (where
this ball is centered as no importance), and dGH for the Gromov-Hausdorff distance.

We begin with the following lemma:

Lemma 5.1. — If (X, d, µ) is a complete metric measure space endowed with a sym-
metric Dirichlet form E admitting a heat kernel p such that for some γ > 1,

(5.1) γ−1

(4πt)n/2
e−γd

2(x,y)/4t 6 p(x, y, t) 6
γ

(4πt)n/2
e−d

2(x,y)/4γt

for all x, y ∈ X and t ∈ (0, T ], then there exists positive constants c(n,γ), C(n,γ) such
that for any x ∈ X and r 6

√
T ,

c(n,γ) rn 6 µ(Br(x))) 6 C(n,γ) rn.

Remark 5.2. — The upper bound is quite classical, the novelty is the lower bound
which was nonetheless known for stochastically complete spaces (see [Gri10, Th. 2.11]).

Proof. — For any x ∈ X and r > 0, integrating the lower bound in (5.1) gives

e−γr
2/4tµ (Br(x))) 6

ˆ
Br(x)

e−γd
2(x,y)/4t dµ(y) 6 γ(4πt)n/2,

hence µ (Br(x))) 6 γ(4πt)n/2eγr
2/4t for any t ∈ (0, T ]. Consequently, when r 6

√
T ,

choosing t = r2 provides

(5.2) µ (Br(x)) 6 eγ/4γ(4π)n/2 rn,

while when r >
√
T , choosing t = T gives

(5.3) µ (Br(x)) 6 γ (4πT )n/2 eγr
2/4T .

J.É.P. — M., 2022, tome 9



142 G. Carron & D. Tewodrose

Note that (5.2) is the desired upper bound. Take t ∈ (0, T/2]. Combining (5.1) with
the Chapman-Kolmogorov formula, we get

γ−1

(8πt)n/2
6 p(x, x, 2t) =

ˆ
X

p(x, y, t)2 dµ(y) 6
γ2

(4πt)n

ˆ
X

e−d
2(x,y)/2γt dµ(y),

hence

(5.4) γ−3 (2π)n/2 tn/2 6
ˆ
X

e−d
2(x,y)/2γt dµ(y) 6 µ(Br(x))+

ˆ
XrBr(x)

e−d
2(x,y)/2γt dµ(y).

From now on, assume r 6
√
T . By Cavalieri’s principle and the estimates (5.2)

and (5.3), we get

(5.5)
ˆ
XrBr(x)

e−d
2(x,y)/2γt dµ(y) =

ˆ +∞

r

e−ρ
2/2γt ρ

γt
µ(Bρ(x)) dρ

6 (4π)n/2eγ/4
ˆ √T
r

e−ρ
2/2γt ρ

t
ρn dρ+ (4πT )n/2

ˆ +∞

√
T

e−ρ
2/2γt ρ

t
eγρ

2/4T dρ.

A direct computation shows that for any n ∈ N, there exists C0 > 0 depending only
on n such that for any A > 1,ˆ +∞

A

e−ξ
2/2ξn+1 dξ 6 C0A

ne−A
2/2.

Therefore, using the change of variable ξ = ρ/
√
γt to get

ˆ √T
r

e−ρ
2/2γt ρ

t
ρn dρ 6

ˆ +∞

r

e−ρ
2/2γt ρ

t
ρn dρ = γ(n/2)+1tn/2

ˆ +∞

r/
√
γt

e−ξ
2/2ξn+1 dξ,

we obtain that r >
√
γt implies

(5.6)
ˆ √T
r

e−ρ
2/2γt ρ

t
ρn dρ 6 C0γr

ne−r
2/2γt.

To bound the second term in (5.5), assume t 6 T/γ2. Then a straightforward compu-
tation shows that −ρ2/2γt+ γρ2/4T 6 −ρ2/4γt holds, thus

(5.7)
ˆ +∞

√
T

e−ρ
2/2γt ρ

t
eγρ

2/4T dρ 6
ˆ +∞

√
T

e−ρ
2/4γt ρ

t
dρ = 2γe−T/4γt.

Combining (5.5), (5.6) and (5.7), we get existence of a constant C > 0 depending only
on n such that if r2 > γ2t (this implies both r >

√
γt and t 6 T/γ2), thenˆ

XrBr(x)

e−d
2(x,y)/2γt dµ(y) 6 C

(
γeγ/4rne−r

2/2γt + γTn/2e−T/4γt
)
.

Then (5.4) implies

γ−3 (2π)n/2 tn/2 6 µ(Br(x)) + C
(
γeγ/4rne−r

2/2γt + γTn/2e−T/4γt
)

for any t ∈ (0, r2/γ2), what can be rewritten as

c′(n, γ)tn/2 6 µ(Br(x)) + Ctn/2
(
γeγ/4F (r2/t) + γG(T/t)

)
,
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where c′(n, γ) := γ−3 (2π)n/2 and F (s) := sn/2e−s/2γ , G(s) := sn/2e−s/4γ for any
s > 0. The function G is decreasing on (2nγ,+∞) so if r2/t > 2nγ, since r2 6 T ,
we get G(T/t) 6 G(r2/t). As lims→+∞ F (s) = lims→+∞G(s) = 0, then there exists
s(n, γ) > 0 such that if s > s(n, γ),

C
(
γeγ/4F (s) + γG(s)

)
6
c′(n, γ)

2
.

Then for any t > 0 such that r2/t > max(γ2, 2nγ, s(n, γ)) =: θ(n, γ), we get
c′(n, γ)

2
tn/2 6 µ(Br(x)).

Choosing t = t(r) such that θ(n, γ)t 6 r2 6 2θ(n, γ)t, we get
c′(n, γ)

2n/2+1θ(n, γ)n/2
rn 6 µ(Br(x)). �

We shall also need the next proposition.

Proposition 5.3. — Let (X, d, µ) be a measure metric space satisfying the local doubling
condition, namely there exists ro > 0 and CD > 0 such that µ(B2r) 6 CDµ(Br) for
any r ∈ (0, ro), and such that for some α > 0, we haveˆ

X

1

(4πt)α/2
e−d

2(x,z)/4t 1

(4πs)α/2
e−d

2(z,y)/4s dµ(z) =
1

(4π(t+ s))α/2
e−d

2(x,y)/4(t+s)

for all x, y ∈ X and t, s ∈ (0, T ). Then there exists a symmetric Dirichlet form E on
(X, d, µ) admitting an α-Euclidean heat kernel.

Proof. — By [Car19, Lem. 3.9], the space (X, d, µ) satisfies µ(BR(x))/µ(Br(x)) 6
coe

c1R/r for any x ∈ X, r ∈ (0, ro) and R > r, where co and c1 depend only on CD.
For any C > 0 and z ∈ X, applying (3.3) with ϕ(λ) = λ2e−Cλ

2 and g(y) = d(z, y)

yields to

(5.8)

ˆ
X

e−Cd2(z,y) dµ(y) =

ˆ +∞

0

2Cλe−Cλ
2

µ(Bλ(y)) dλ

6

(ˆ r

0

2Cλe−Cλ
2

dλ+

ˆ +∞

r

2Cλcoe
−Cλ2+c1λ/r dλ

)
µ(Br(y))

6 c2µ(Br(y))

for any r ∈ (0, ro), where c2 depends only on r, CD and C. For any x, y ∈ X and
t ∈ Cr {0}, we set

Pα(x, y, t) :=
1

(4πt)α/2
e−d

2(x,y)/4t.

Take x, y ∈ X and t ∈ (0, T ). By assumption, the identityˆ
X

Pα(x, z, t)e−d
2(z,y)/4s dµ(z) =

( s

t+ s

)α/2
e−d

2(z,y)/4(t+s)

is valid for any s ∈ (0, T − t). However both expressions are holomorphic in s ∈
C+ := {z ∈ C : Rez > 0} (the left-hand side can be proved holomorphic by a suitable
application of the dominated convergence theorem using (5.8)), thus the identity holds
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for any s ∈ C+. Freezing s and letting t be variable, we can apply the same reasoning
to get the identity valid for any s, t ∈ C+. In particular, we obtain:ˆ

X

Pα(x, z, t)Pα(z, y, s) dµ(z) = Pα(x, y, t+ s) ∀ s, t > 0.

Thus for any x ∈ X and t > 0,ˆ
X

Pα(x, z, t) dµ(z) = (4πt)α/2
ˆ
X

( 1

(4πt)α/2
e−d

2(x,z)/8t
)2

dµ(z)

= (16πt)α/2
ˆ
X

Pα(x, z, 2t)2 dµ(z)

= (16πt)α/2Pα(x, x, 4t) = 1.

This easily implies that for any f ∈ L2(X,µ), if ft(x) =
´
X
Pα(x, z, t)f(z) dµ(z), then

lim
t→0+

‖ft − f‖L2 = 0.

Then by a standard procedure described for instance in [Gri10, §2], we can build a
symmetric Dirichlet form whose heat kernel is Pα. �

We can now prove Theorem 1.2.

Proof. — The metric spaces considered in this proof are all complete. Assume that
the result is not true. Then there exists some ε > 0 such that for any δ > 0 we can
find:

– Tδ > 0,
– a metric measure space (Xδ, dδ, µδ) endowed with a symmetric Dirichlet form Eδ

admitting a heat kernel pδ satisfying

(1− δ)
1

(4πt)n/2
e−d

2
δ(x,y)/4(1−δ)t 6 pδ(x, y, t) 6 (1 + δ)

1

(4πt)n/2
e−d

2
δ(x,y)/4(1+δ)t

for any x, y ∈ Xδ and t ∈ (0, Tδ],
– xδ ∈ Xδ and rδ ∈ (0,

√
Tδ] such that dGH

(
Brδ(xδ),Bnrδ

)
> εrδ.

By a rescaling of the distance and of the measure, we can assume that rδ = 1 and
Tδ = 1. It follows from Lemma 5.1 that the set of pointed metric measure space

{(Xδ, dδ, µδ, xδ)}δ∈(0,1/2)

satisfies a uniform local doubling condition, thus it is precompact for the pointed
measure Gromov-Hausdorff topology. Therefore, we can consider an infinitesimal
sequence {δ`}` ⊂ (0, 1/2) and a sequence of pointed metric measure spaces

{(X`, d`, µ`, x`)}`

converging to some pointed metric measure space (X∞, d∞, µ∞, x∞) such that for
any `:
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– the space (X`, d`, µ`) is endowed with a symmetric Dirichlet form E` admitting a
heat kernel p` satisfying

(5.9) (1− δ`)
1

(4πt)n/2
e−d

2
`(x,y)/4(1−δ`)t 6 p`(x, y, t)

6 (1 + δ`)
1

(4πt)n/2
e−d

2
`(x,y)/4(1+δ`)t

for any x, y ∈ X` and t ∈ (0, 1],
– dGH (B1(x`),Bn1 ) > ε.

In particular, letting ` tend to +∞ gives:

(5.10) dGH (B1(x∞),Bn1 ) > ε.

Since for any ` we haveˆ
X`

p`(x, z, t)p`(z, y, s)dµ`(z) = p`(t+ s, x, y)

for all x, y ∈ X` and t, s > 0, we deduce from (5.9) that when t+ s < 1,

(1− δ`)
(n/2)+1

(1 + δ`)n+1
Pn
(
x, y,

1− δ`

1 + δ`
(t+ s)

)
6
ˆ
X`

Pn(x, z, t)Pn(z, y, s)dµ`(z)

and ˆ
X`

Pn(x, z, t)Pn(z, y, s)dµ`(z) 6
(1 + δ`)

(n/2)+1

(1− δ`)n+1
Pn
(
x, y,

1 + δ`

1− δ`
(t+ s)

)
.

From this, we obtain for any x, y ∈ X∞ and any t, s > 0 with t+ s < 1,ˆ
X∞

Pn(x, z, t)Pn(z, y, s)dµ∞(z) = Pn(x, y, t+ s).

Then Proposition 5.3 and Theorem 1.1 imply that (X∞, d∞) is isometric to (Rn, de).
But this is in contradiction with (5.10). �

6. A new proof of Colding’s almost rigidity theorem

In this section, we show how our almost rigidity result (Theorem 1.2) can be used to
give an alternative proof of the almost rigidity theorem for the volume of Riemannian
manifolds with non-negative Ricci curvature (Theorem 1.4). Here again n is a fixed
positive integer and Bnr is an Euclidean ball in Rn with radius r > 0.

We recall that whenever (Mn, g) has non-negative Ricci curvature, the Bishop-
Gromov comparison theorem states that the function r 7→ ω−1

n r−n vol(Br(x)) is
non-increasing for any x ∈M and the quantity

(6.1) θ = lim
r→+∞

vol(Br(x))

ωn rn

does not depend on x. When θ > 0, we say that (Mn, g) has Euclidean volume growth,
in which case one has

(6.2) vol(Br(x)) > θωnr
n
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for any x ∈ X and r > 0. Note that a manifold satisfying (1.2) has Euclidean volume
growth with θ > 1−δ. Our proof of Theorem 1.4 is a direct application of Theorem 1.2
together with the following heat kernel estimate.

Theorem 6.1. — There exists a function γ : [0, 1]→ [1,∞) satisfying limθ→1− γ(θ) = 1

such that whenever (Mn, g) is a complete Riemannian manifold with non-negative
Ricci curvature and Euclidean volume growth, then the heat kernel p of (Mn, g) satisfies

1

(4πt)n/2
e−d

2(x,y)/4t 6 p(x, y, t) 6 γ(θ)
1

(4πt)n/2
e−d

2(x,y)/γ(θ)4t

for all x, y ∈M and t > 0, where θ is given by (6.1).

Remark 6.2. — Our proof of the above heat kernel upper bound follows the arguments
of P. Li, L-F. Tam and J. Wang [LTW97].

Proof. — The lower bound is the comparison theorem of J. Cheeger and S-T. Yau
[CY81]: for any t > 0 and x, y ∈M , we have

(6.3) Pn(x, y, t) 6 p(x, y, t),

where Pn(x, y, t) = (4πt)−n/2e−d
2(x,y)/4t. Consequently we only need to prove the

upper bound.
Take x, y ∈ X and t > 0. We shall need the following estimates from P. Li and S-T.

Yau (see [LTW97, Form. (2.1)]): for any r, τ > 0,
ˆ
Br(x)

p(x, z, τ) d vol(z) >
ˆ
Bnr

1

(4πτ)n/2
e−‖ξ‖

2/4τ dξ

and

(6.4)
ˆ
MrBr(x)

p(x, z, τ) d vol(z) 6
ˆ
RnrBnr

1

(4πτ)n/2
e−‖ξ‖

2/4τdξ.

For δ > 0 to be precisely chosen later, set r := (1 + δ)−1d(x, y) and τ := (1 + δ)t.
Note that Br(x) ∩ Bδr(y) = ∅. By the Harnack inequality of P. Li and S-T. Yau
[LY86], we have

p(x, y, t) 6
(τ
t

)n/2
ed(z,y)2/4(τ−t)p(x, z, τ)

for every z ∈M , so that averaging over the ball Bδr(y) gives

(6.5)
p(x, y, t) 6 eδ

2r2/4(τ−t)
(τ
t

)n/2  
Bδr(y)

p(x, z, τ) d vol(z)

6 eδd
2(x,y)/4(1+δ)2t

(τ
t

)n/2  
Bδr(y)

p(x, z, τ) d vol(z).
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Nowˆ
Bδr(y)

p(x, z, τ) d vol(z)

=

ˆ
MrBr(x)

p(x, z, τ) d vol(z)−
ˆ
Mr(Br(x)∪Bδr(y))

p(x, z, τ) d vol(z)

6
ˆ
RnrBnr

1

(4πτ)n/2
e−‖ξ‖

2/4τ dξ −
ˆ
Mr(Br(x)∪Bδr(y)

Pn(x, z, τ) d vol(z)

thanks to (6.4) and (6.3). Continuing,
ˆ
Bδr(y)

p(x, z, τ) d vol(z) 6
ˆ
RnrBnr

1

(4πτ)n/2
e−‖ξ‖

2/4τ dξ

−
ˆ
MrBr(x)

Pn(x, z, τ) d vol(z) +

ˆ
Bδr(y)

Pn(x, z, τ) d vol(z)

6
ˆ
RnrBnr

1

(4πτ)n/2
e−‖ξ‖

2/4τ dξ

−
ˆ
MrBr(x)

Pn(x, z, τ) d vol(z) + vol(Bδr(y))
1

(4πτ)n/2
e−(d(x,y)−δr)2/4τ .

By Cavalieri’s principle and (6.2), we have
ˆ
MrBr(x)

Pn(x, z, τ) d vol(z) =

ˆ +∞

r

1

(4πτ)n/2
e−s

2/4τ s

2τ
vol(Bs(x)) ds

>
ˆ +∞

r

1

(4πτ)n/2
e−s

2/4τ s

2τ
θωns

n ds = θ

ˆ
RnrBnr

1

(4πτ)n/2
e−‖ξ‖

2/4τ dξ,

hence

(6.6)
ˆ
Bδr(y)

p(x, z, τ) d vol(z)

6 (1− θ)
ˆ
RnrBnr

1

(4πτ)n/2
e−‖ξ‖

2/4τ dξ + vol(Bδr(y))
1

(4πτ)n/2
e−(d(x,y)−δr)2/4τ .

As pointed out in [LTW97, Form. (2.6)], direct computations show that there exists a
constant C = C(n) > 0 such that

ˆ
RnrBnr

1

(4πτ)n/2
e−‖ξ‖

2/4τ dξ 6 C
(

1 +
(
r/
√

4πτ
)n)

e−r
2/4τ .

This together with (6.6) and (6.5) yields to

p(x, y, t) 6 (1− θ)C
(

1 +
(
r/
√

4πτ
)n)

e−r
2/4τeδd

2(x,y)/4(1+δ)2t
(τ
t

)n/2 1

vol(Bδr(y))

+
1

(4πt)n/2
e−(d(x,y)−δr)2/4τeδd

2(x,y)/4(1+δ)2t.
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It is easily checked that −r2/4τ = −(d(x, y)− δr)2/4τ = −d2(x, y)/4(1 + δ)3t hence

p(x, y, t)

6

[
(1− θ)C

(
1 +

(
r/
√

4πτ
)n)

(1 + δ)
n/2 1

vol(Bδr(y))︸ ︷︷ ︸
61/(θωnδnrn)

+
1

(4πt)n/2

]
· e−(1−δ−δ2)d2(x,y)/4(1+δ)3t

6

[
(θ−1 − 1)C

(
1 +

(
r/
√

4πτ
)n) (4πτ)n/2

(4πt)n/2
1

ωnδnrn
+

1

(4πt)n/2

]
· e−(1−δ−δ2)d2(x,y)/4(1+δ)3t

=

[
(θ−1 − 1)

(
1 +

(
r/
√

4πτ
)n) C

ωn

(4πτ)n/2

δnrn
+ 1

]
1

(4πt)n/2

· e−(1−δ−δ2)d2(x,y)/4(1+δ)3t.

Now we distinguish two cases. According to [LTW97, Form. (2.4)], if d(x, y) 6 δ
√
t,

then

p(x, y, t) 6
1

θ

1

(4πt)n/2
e−d

2(x,y)/4teδ
2/4.

If d(x, y) > δ
√
t, then r/

√
τ > δ/(1 + δ)2, thus(

1 +
(
r/
√

4πτ
)n) (4πτ)n/2

δnrn
=
( (4πτ)n/2

rn
+ 1
)
δ−n 6 (4π)n/2

(δ + 1

δ

)2n

+
(1

δ

)n
.

Therefore, if δ < 1/2, we get(
1 +

(
r/
√

4πτ
)n) (4πτ)n/2

δnrn
6 C ′δ−2n,

where C ′ depends only on n, which yields to

p(x, y, t) 6
[
(θ−1 − 1)Λδ−2n + 1

] 1

(4πt)n/2
e−(1−δ−δ2)d2(x,y)/4(1+δ)3t,

where Λ := CC ′/ωn depends only on n. Now we choose

δ = δ(θ) := min

{
1

2
,
((
θ−1 − 1

)
Λ
)1/(2n+1)

}
,

so that when
((
θ−1 − 1

)
Λ
)1/(2n+1)

< 1/2 then

δ(θ) =
(
θ−1 − 1

)
Λδ(θ)−2n,

hence

p(x, y, t) 6
δ(θ) + 1

(4πt)n/2
e−(1−δ(θ)−δ(θ)2)d2(x,y)/4(1+δ(θ))3t,

and when
((
θ−1 − 1

)
Λ
)1/(2n+1)

> 1/2 – which corresponds to the case θ 6 1 − εn
with εn := (1 + 22n+1Λ)−1 depending only on n – then δ(θ) = 1/2 implies

p(x, y, t) 6
(θ−1 − 1)Λ22n + 1

(4πt)n/2
e−(1−δ(θ)−δ(θ)2)d2(x,y)/4(1+δ(θ))3t.
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Note that δ(θ)→ 0 when θ→ 1. Therefore, setting

F (θ) := (1 + δ(θ))3/(1− δ(θ)− δ(θ)2)

γ(θ) :=

{
max(1 + δ(θ), F (θ)) if 1− εn < θ < 1,
max(22nΛ(θ−1 − 1) + 1, F (θ)) if 0 < θ 6 1− εn,

and

we get the result. �

For completeness, let us provide a short proof of Theorem 1.4.

Proof. — Take ε > 0. By Theorem 1.2, there exists δ′ = δ′(n, ε) > 0 such that if
(Mn, g) is complete and satisfying Ric > 0 and (1.1) with δ replaced by δ′, then any
ball with radius r in M is (εr)-GH close from a ball with same radius in Rn. But
Theorem 6.1 implies that there exists δ = δ(n, δ′) = δ(n, ε) > 0 such that if 1− δ 6 θ
holds, then γ(θ)− 1 6 δ and thus (1.1) is true. The result follows. �

7. Case of a spherical heat kernel

In this section, for any Riemannian manifold (Mn, g), we define the operator L
acting on L2(M) as the Friedrich extension of the operator L̃ defined by the formula:

−
ˆ
M

(L̃u)v =

ˆ
M

〈∇u,∇v〉 ∀u, v ∈ C∞c (M).

The spectral theorem implies that L generates a semi-group (etL)t>0 which admits a
smooth heat kernel.

The heat kernel of (etL)t>0 on the sphere Sn equipped with the canonical spherical
metric gSn admits a well-known expression, namely

K
(n)
t (dSn(x, y))

for any x, y ∈ Sn and t > 0, where dSn is the Riemannian distance canonically
associated with gSn and

(7.1) K
(n)
t (r) :=

+∞∑
i=0

eλitC
(n)
i (r)

for any r > 0, with

λi := −i(i+ n− 1) and C
(n)
i (·) := (2i+ n− 1)(n− 1)−1σ−1

n G
(n−1)/2
i (cos(·))

for any i ∈ N. Here the functions Gαi are the Gegenbauer polynomials (see e.g. [AH12]).
For our purposes, it is worth mentioning that

C
(n)
0 (r) =

1

σn
and C

(n)
1 (r) =

n+ 1

σn
cos(r)

for any r > 0. Moreover, the sum in (7.1) converges uniformly in C([0,+∞)).

Theorem 7.1. — Let (X, d, µ) be a complete metric measure space equipped with a
Dirichlet form E admitting a spherical heat kernel p, that is

(7.2) p(x, y, t) = K
(n)
t (d(x, y))

for any x, y ∈ X and t > 0. Then (X, d) is isometric to (Sn, dSn).
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Proof. — Let L be the self-adjoint operator canonically associated with E and (Pt)t>0

the associated semi-group. Assumption (7.2) implies that for any t > 0 and f ∈
L2(X,µ),

ˆ +∞

−∞
etλ d(f,Eλf) =

+∞∑
i=0

eλit
¨
X×X

Ci(d(x, y))f(x)f(y) dµ(x) dµ(y)

holds, where (f,Eλf) is the projection-valued measure of L associated with f , see
e.g. [RS80, p. 262–263]. Uniqueness of the map f 7→ (f,Eλf) implies that the spectrum
of L is given by λ0, λ1, λ2, . . . and that the projection operators Pi : L2(X,µ)→ Ei :=

Ker(L− λiId), for any i ∈ N, have a kernel pi such that for any x, y ∈ X,

pi(x, y) = Ci(d(x, y)).

Since Pi commutes with L for any i, we have PiLg = λiPig for any g ∈ D(L), thus
〈pi(x, ·), Lg〉L2 = λi〈pi(x, ·), g〉L2 for any x ∈ X. This implies pi(x, ·) ∈ D(L) with

Lpi(x, ·) = λipi(x, ·)

for any x ∈ X. In case i = 0, as λ0 = 0 and p0(x, y) = C0(d(x, y)) = 1/σn for any
x, y ∈ X, we get L1 = 0 thus P01 = 1. This implies

´
X
p0(x, y) dµ(y) = 1 for any

x ∈ X, hence

(7.3) µ(X) = σn.

In case i = 1, we have λ1 = −n and

p1(x, y) = C1(d(x, y)) =
n+ 1

σn
cos(d(x, y))

for any x, y ∈ X, hence

(7.4) Lx cos(d(x, y)) = −n cos(d(x, y)).

Let ϕ1, . . . , ϕl be continuous functions forming a L2(X,µ)-orthogonal basis of E1.
Observe that

(7.5) P1f(x) =

ˆ
X

p1(x, y)f(y) dµ(y) =

ˆ
X

n+ 1

σn
cos(d(x, y))f(y) dµ(y)

and

P1f(x) =
∑̀
j=1

(ˆ
X

ϕi(y)f(y) dµ(y)

)
ϕi(x) =

ˆ
X

[∑̀
j=1

ϕ(y)ϕ(x)

]
f(y) dµ(y)

holds for any f ∈ L2(X,µ) and x ∈ X. This implies∑̀
i=1

ϕ(x)2 =
n+ 1

σn

for any x ∈ X, hence integration over X and (7.3) provides

` = n+ 1.

Setting
V := Span{cos(d(x, ·)) : x ∈ X},
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we get V ⊂ E1 thanks to (7.4). Since E1 is the image of L2(X,µ) by P1, the reverse
inclusion follows from (7.5), hence

V = E1.

Acting as in Section 4.1, we can show that there exist x1, . . . , xn+1 ∈ X such that
{δx1

, . . . , δxn+1
} is a basis of V∗ whose associated basis {h1, . . . , hn+1} of V permits

to write

(7.6) cos(d(x, y)) =

n+1∑
i,j=1

cijhi(x)hj(y)

for any x, y ∈ X, where cij := cos(d(xi, xj)) for any i, j. Let β be the bilinear form
defined by

β(ξ, ξ′) =

n+1∑
i,j=1

cijξiξ
′
j

for any ξ = (ξ1, . . . , ξn+1), ξ′ = (ξ′1, . . . , ξ
′
n+1) ∈ Rn+1 and Q the associated quadratic

form. Set

H :
X −→ Rn+1

x 7−→ (h1(x), . . . , hn+1(x)).

Then (7.6) writes as

cos(d(x, y)) = β(H(x), H(y)).

Choosing y = x implies H(x) ∈ Σ := {ξ ∈ Rn+1 : β(ξ, ξ) = 1}, so H(X) is a subset
of Σ. A direct computation provides:

Q(H(x)−H(y)) = 4 sin2 (d(x, y)/2) ∀x, y ∈ X,

from which follows that H is an injective map. Writing Rn+1 = E+ ⊕ E− ⊕ Kerβ

where E+, E− are subspaces of Rn+1 where β is positive definite and negative definite
respectively, we can proceed as in Section 4.3, Step 1 (using the same notations) to get
that H+ is a bi-Lipschitz embedding of (X, d) onto its image in (E+, q+). Therefore,
dim(E+) is greater than the Hausdorff dimension of X.

Claim 7.2. — The Hausdorff dimension of X is n.

Proof. — The short-time expansion of the heat kernel on Riemannian manifolds
[MP49] and the Cheeger-Yau estimate [CY81] implies that for some C > 0 and to > 0,

1

(4πt)n/2
e−r

2/4t 6 K(n)
t (r) 6

C

(4πt)n/2
e−r

2/5t

holds for any r ∈ (0, π) and t ∈ (0, t0). Therefore, proceeding as in the proof of
Lemma 5.1, we get existence of a positive constant C such that for any x ∈ X and
any r ∈ (0,

√
t0),

C−1rn 6 µ(Br(x)) 6 Crn.

Hence the claim is proved. �
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Thus n + 1 > dim(E+) > n, so dim(E+) = n + 1. This shows that β is positive
definite, thus the distance dQ is well-defined. The associated length distance δ on Σ is
then given by:

dQ(ξ, ξ′) = 2 sin (δ(ξ, ξ′)/2) ∀ ξ, ξ′ ∈ Σ,

so that one eventually has:

δ(H(x), H(y)) = d(x, y) ∀x, y ∈ X,

i.e., H is an isometric embedding of (X, d) into Σ equipped with δ. Since

lim
t→0+

−4t logK
(n)
t (r) = r2,

we get from Remark 3.5 that (X, d) is a geodesic space. Then H(X) is a closed
totally geodesic subset of Σ, meaning that minimizing geodesics joining two points in
H(X) are all contained in H(X). We assume that there exists p ∈ Σ rH(X) and set
r := δ(p,H(X)).

Claim 7.3. — We have r < π/2.

Proof. — Assume r > π/2. Then H(X) is contained in the hemisphere

{σ ∈ Σ : β(σ, p) 6 0}.

Set λ(ξ) = β(ξ, p) for any ξ ∈ Rn+1. Then λ ◦ H : X → R is non-positive, and
λ ◦H(x) = 0 if and only if H(x) = 0, which is impossible, so λ ◦H is actually negative.
But λ ◦ H is a linear combination of h1, . . . , hn thus it is an element of V. Since
functions in V = E1 are L2-orthogonal to constant functions, we reach a contradiction,
namely

´
X
λ ◦H dµ = 0. �

In fact, the same reasoning can be used to prove that H(X) is contained in no
hemisphere of Σ.

We are now in a position to conclude. Since H(X) is closed there exists q ∈ H(X)

such that δ(p, q) = r. The convexity of H(X) implies that any minimizing geodesic
of length < π starting at q and passing through the open ball Br(p) cannot meet
H(Σ). But the union of these minimizing geodesics is an open hemisphere, so H(X)

is contained in the complementary hemisphere, hence a contradiction. �
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