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PARACONTROLLED CALCULUS AND
REGULARITY STRUCTURES 11

BY IsMAEL BAarLLEUL & Masato HosHiNO

ApsTtracT. — We prove a general equivalence statement between the notions of models and
modeled distributions over a regularity structure, and paracontrolled systems indexed by the
regularity structure. This takes in particular the form of a parameterization of the set of models
over a regularity structure by the set of reference functions used in the paracontrolled repre-
sentation of these objects. A number of consequences are emphasized. The construction of a
modeled distribution from a paracontrolled system is explicit, and takes a particularly simple
form in the case of the regularity structures introduced by Bruned, Hairer and Zambotti for
the study of singular stochastic partial differential equations.

Risumic (Calcul paracontrdlé et structures de régularités (II)). — Nous démontrons un énoncé
général d’équivalence entre les notions de modeles et de distributions modelées définis sur
une structure de régularité et la notion de systéme paracontrdlé indexé par cette structure de
régularité. Cet énoncé donne en particulier une paramétrisation de l’ensemble des modeéles sur
une structure donnée par ’ensemble des fonctions de référence utilisées dans la représentation
paracontrolée de ces objets. Un certain nombre de conséquences sont données. La construction
d’une distribution modelée & partir d’un systéme paracontrolé est explicite et prend une forme
particulierement simple dans le cadre des structures de régularités introduites par Bruned,
Hairer et Zambotti pour I’étude des équations aux dérivées partielles stochastiques singuliéres.
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1276 I. Bar.Leurn & M. Hosmino

1. INnTRODUCTION

The set of singular stochastic partial differential equations (PDEs) is characterized
by the appearance in each equation of this class of ill-defined products, typically the
product of a distribution with a function that is not sufficiently regular. The parabolic
Anderson model equation

(Or — A)u = ug,

on the two dimensional torus is a typical example of singular PDE. The space white
noise ¢ has almost surely parabolic Holder regularity a — 2, for any @ < 1, and u
cannot be expected to have better regularity than being a-Holder. So the product
u¢ does not make sense, since o + (o — 2) < 0. Two different sets of tools for the
study of singular stochastic PDEs have emerged recently, under the form of Hairer’s
theory of regularity structures [14, 7, 9, 6] and paracontrolled calculus [13, 4, 3], after
Gubinelli, Imkeller and Perkowski’ seminal work. Both of them implement the same
mantra: Make sense of the equation in a restricted space of functions/distributions
whose elements look like the linear combination of reference random quantities, for
which the ill-defined terms that come from the analysis of the product problems can be
defined using probabilistic tools. Within the setting of regularity structures, Taylor-
like pointwise expansions and jet-like objects are used to make sense of what it means
to look like a linear combination of reference quantities

f() ~ ZfT(z)(I'IET)(-), near z, for all spacetime points z.

In the paracontrolled approach, one uses paraproducts to implement this mantra
F Y Prlrl.
T

Each term P,b is a function or a distribution. This approach is justified at an intuitive
level by the fact that Py [7] can be thought of as a modulation of the reference
function/distribution [r]. The two options seem technically very different from one
another.

While Hairer’s theory has now reached the state of a ready-to-use black box for
the study of singular stochastic PDEs, like Cauchy-Lipschitz well-posedness theorem
for ordinary differential equations, the task of giving a self-contained treatment of
renormalisation matters within paracontrolled calculus remains to be done. It hap-
pens nonetheless to be possible to compare the two languages, independently of their
applications to the study of singular stochastic PDEs. This task was initiated in Gu-
binelli, Imkeller, Perkowski’ seminal work [13] and Martin and Perkowski’s work [22],
and in our previous work [5], where we proved that the set of admissible models
M = (g, ) over a concrete regularity structure J = ((T*,A*), (T, A)) equipped
with an abstract integration map is parameterized by a paracontrolled representation
of Tl on the set of elements T with non-positive homogeneity. (Admissible models
play a crucial in the regularity structures approach to the study of singular stochastic

PDEs.) Theorem 21 in [5] says indeed that given any family ([r] € Glﬂ)\r|<0’ with 7
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PARACONTROLLED CALCULUS AND REGULARITY STRUCTURES |1 1277

in a linear basis of T, there exists a unique admissible model (g, M) on 7 such that
one has

(11) MNr = Z Pg(r/o)[[a]] + [[TH’
o<T

for all 7 € T in the basis, with non-positive homogeneity. (All notations and words
are explained below.) This result provides a parameterization of the nonlinear set of
admissible models by a linear space, providing for instance a natural notion of tangent
space to the space of admissible models. The distribution [7] appears in (1.1) as ‘the’
part of M7 of regularity |7| in this decomposition, while the paraproducts Pg(;/,[c]
have regularity |o| < |7, for o < 7.

To understand the practical relevance of this linear parameterization of the space
of admissible models on .7, assume .7 stands for the Bruned, Hairer, and Zambotti’s
regularity structure [7] associated with a singular stochastic PDE and M® = (g=, %)
stands for the naive interpretation model associated with a smoothened noise in the
equation, with regularization parameter €. The BPHZ renormalization procedure for
the model involves a real-valued map k acting on a side space T, which also defines a
homogeneity-preserving linear map k from T into itself. It follows from [5, Th. 21] that
the bracket data associated with the renormalized model *M¥¢ is simply given by the
[[E(TH], for 7 of negative homogeneity. The convergence of renormalized admissible
models has thus a direct counterpart in terms of bracket data. This answers one
of the problems mentioned at the end of Tapia and Zambotti’s work [24] on the
parameterization problem for the set of branched rough paths, in the present general
setting.

Here is another illustration of the use of the parameterization result of admissible
models proved in [5] that will be developed in Section 4.1 and Section 4.4. Consider
the elementary setting of branched rough paths; they are admissible models on par-
ticular examples of regularity structures. Theorem 21 in [5] gives a direct proof of
Lyons’ extension theorem, saying that a branched Hoélder p-rough path has a unique
extension into a branched Hoélder ¢g-rough path, for any ¢ > p. (Recall weak geometric
rough paths are branched rough paths.) This result allows to define the signature of
a branched rough path. Similarly, let .7 be a regularity structure built from inte-
gration operators, with elements of arbitrary large positive homogeneity. It follows
from [5, Th. 21] that an admissible model defined on the quotient space of 7, modulo
elements of a given positive homogeneity «, has a unique extension into an admissible
model over the regularity structure .7 quotiented by the elements of homogeneity 3,
for any 8 > «. This allows to define the signature of an admissible model.

Such statements are concerned with admissible models on regularity structures
associated with singular stochastic PDEs. We step back in the present work and prove
a general result giving a parameterization of the nonlinear space of arbitrary models
M = (g, M) on any reasonable concrete regularity structure, by a linear space, in terms
of representations of the maps g and 1 by paracontrolled systems, similar to identity
(1.1). (The set of models on any given regularity structure is always nonempty, as it
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1278 I. Bar.Leurn & M. Hosmino

contains the element Mg = (gg, M), with go the character on T that sends any basis
element of 77 on 1, and My the null map. The nonlinearity of the space of models
can be seen from the analytical constraints that they need to satisfy, that involves
nonlinear operations on g.) Being reasonable means here satisfying assumptions (A—C)
from Section 3 and Section 4. We insist here on the fact that these assumptions are
not related to any kind of singular stochastic PDE or any dynamics or structure that
could be modeled with such a regularity structure. As we shall see, the regularity
structures used for the study of singular stochastic PDEs enjoy these properties, so
all our results hold for them.
The result takes the following form. Given a concrete regularity structure

T = ((T*,A%),(T,4)),

denote by Myap(7,R?) the space of models on R? decreasing rapidly at infinity. Once
again, all terms will be properly defined below.

Turorem 1. — Let T be a concrete reqularity structure satisfying assumptions (A—C).
Then one can construct a locally Lipschitz continuous map
Mop( TR — ] @@ x ] eli®Y

(12) gngr\B} TEBNBx
(g, M) — ([[o]]M, [r]8; 0 € Bt < B},T € B~ 31)

by giving paracontrolled representations of g and N, for (g, M) € Mrap( T, R?). Fur-
thermore, Myap(T,R) is locally bi-Lipschitz homeomorphic to the product space

(1.3) IT eldb®y < I elh®).
g-egg' TEB,, |T|<0

The first claim in Theorem 1 is part of [5, Th. 21]; see formulas (3.5) and (3.6) below
for an explicit description of the map (1.2). The sets B and BT are fixed linear bases
of the spaces T and T, respectively, consisting of homogeneous vectors. The set B, in
(1.3) parametrizes part of the basis B, while the set G parametrizes part of the basis
BT. The letter G stands for ‘generator’. In the present setting of a general concrete
regularity structure, the space Tt is not related to T, unlike what happens with
the special regularity structures used for the study of singular stochastic PDEs. It is
thus not surprising that there is some freedom in the construction/parameterization
of the map g. The degrees of freedom are parametrized by the set G, described in
assumption (C). Assumption (A) is a harmless requirement on how polynomials sit
within 7" and T%. Assumption (B) is a very mild requirement on the splitting map
A:T — T®TT, and assumption (C) is a structure requirement on T+ and A7 that
provides a fundamental induction structure. The three assumptions are met by all
concrete regularity structures built for the study of singular stochastic PDEs.

This type of parameterization is not entirely new as Tapia and Zambotti described
in [24] a free transitive action of a product of Holder spaces on the space of branched
rough paths,; a particular example of model over a particular regularity structure. This

JIEP. — M., 2021, tome 8



PARACONTROLLED CALCULUS AND REGULARITY STRUCTURES |1 1279

action was not proved to be continuous however. In relation with the renormalization
problem of stochastic models, Theorem 1 describes precisely the freedom that we have
to tweak a divergent family of models and turn it into a convergent family of models.
The renormalization process needs to give converging bracket data [o]™, [7]8, for all
o € GF and 7 € B, with || < 0. See a forthcoming work.

We single out here two direct consequences of Theorem 1 about density and ex-
tension questions on the space of models.

— The set of models with rapid decrease is equipped with a family of norms
M — |IM]],, indexed by positive exponents a. Smooth functions are known to be dense
in any Hoélder space C2(R?), with growth exponent a, if one sees the latter as a subset
of €2=¢(R9), for any positive . Theorem 1 provides as a consequence a direct proof
of the following density result, proved in Section 4.4 — see Singh and Teichmann’s
work [23] for a similar result, proved therein from an explicit mollification procedure
on models.

Cororrary 2. — Given any positive exponent €, the set of smooth models with rapid
decrease is dense in the set of models with finite G‘rglp-norms, for the topology induced
by the G‘rglrfe-norms.

— Branched rough paths are models on a finite time interval [0, T, over a particular
example of concrete regularity structure of the form .7+ = (T, AT), (T, AT)),
that satisfies assumptions (A—C). These models are entirely determined by their
g-maps, and the elements of T are planted rooted trees with decorations on the
nodes in a finite set {1,...,¢}; edges are not decorated. Defining a branched rough
path above an /-dimensional control h = (h!,..., h*) means defining a g-map over
(T*, A™) such that g assigns h’ to the tree with only one node with decoration j, for
all j such that 1 < j < ¢, and no edge. The first proof that this is possible for any
choice of Hélder control h was found by Lyons and Victoir [20], for geometric rough
paths, using the axiom of choice. This unexpected device stimulated further explo-
rations of this questions, and different proofs not using the axiom of choice were given
subsequently [25, 14, 24, 18]. Unterberger constructs in [25] a rough path above h
using paraproduct-like tools. Hairer uses in [14] the reconstruction theorem for that
purpose, while Liu, Promel and Teichmann use in [18] a version of the reconstruction
theorem for Sobolev models and the notion of Sobolev rough path to extend Lyons-
Victoir extension in their setting. Tapia and Zambotti used in [24] an explicit form
of the Baker-Campbell-Hausdorff formula to bypass the use of the axiom of choice
in the construction of a lift, and gave a parameterization of the set of all branched
rough paths above h. Theorem 1 provides a direct access to such an extension result,
in so far as the family of trees with only one node with decoration j, for 1 < j < ¢, is
a subset of the generator set G in that setting.

Cororrary 3 (Lyons-Victoir’s extension theorem). — Given any Rf-valued Holder
control h on the time interval [0,T), there exists a branched rough path above h.

J.E.P. — M., 2021, tome 8



1280 I. Bar.Leurn & M. Hosmino

The above branched rough path is said to be a lift of the control h. Like in [24],
Theorem 1 actually gives a parameterization of the set of all branched rough paths
above h. One can formulate the same extension problem for the models on the class of
concrete regularity structures introduced for the study of singular stochastic PDEs by
Bruned, Hairer and Zambotti in [7] — we talk of BHZ regularity structures. We refer
the reader to Section 4.3 for basics on BHZ regularity structures, and simply mention
here that as in the case of branched rough paths, the elements of BHZ regularity
structures .7 are rooted decorated trees. Their roots may have decorations, and we
denote by (+)1<;<¢ the family of one node trees with no edges, and decoration j.

Cororrary 4 (Extension result for models on BHZ regularity structures)

Given a multidimensional noise { = (C1,...,C), with ¢; € GL;}'(RT”), for all i
such that 1 < i < £, there exists a model M = (g, M) on the BHZ regularity structure
T such that M(e;) = (;, for all 1 < j < L.

The above model is said to be a lift of the noise . The parameterization of admis-
sible models proved in [5] shows that one can further impose to the extension that
it is an admissible model. (Recall the notion of admissibility is related to a peculiar
feature of the regularity structures used for the study of singular stochastic PDEs.)
As for the case of branched rough paths, Theorem 1 actually gives a description of
the set of all models above the ¢-dimensional noise . Corollary 3 and Corollary 4
are proved in Section 4.4. Corollary 3 and Corollary 4 are actually previously unno-
ticed consequences of [5, Th.21]. The general extension result stated in Corollary 4
is outside the scope of [5, Th. 21].

Enough for the consequences of Theorem 1; we now turn to the problem of the
parameterization of the space of modeled distributions associated with a given model.

Given a model M = (g,) on a concrete regularity structure, natural regularity
spaces are given by the Holder-type spaces DV(T, g), with generic element

f= >

TEB,|T|<y

For M = (g,N) € Myap(T,RY), there is an associated notion of rapidly decreasing
space of modeled distributions taking values in the vector space T, with regularity
exponent v, denoted by DY, (T,g). The parameterization of D}, (T, g) by data in
paracontrolled representations of elements of that space requires in general a structure
condition on these data reminiscent of a similar condition introduced by Martin and
Perkowski in [22]; it is stated in Theorem 22. This non-trivial structure condition
has a clear meaning in terms of an extension problem for the map g from the Hopf
algebra T to a larger Hopf algebra; an interesting technical point on its own. The
structure condition happens nonetheless to take a very simple form for special concrete
regularity structures satisfying assumption (D).

Tueorem 5. — Let a concrete regularity structure 7 satisfy assumptions (A-D). Pick
v € R~ {0} such that v — |7| ¢ N for any basis element T of T with || < 7, and

JIEP. — M., 2021, tome 8



PARACONTROLLED CALCULUS AND REGULARITY STRUCTURES |1 1281

M = (g,N) € Mrap(T,R?Y). Then one can construct a locally Lipschitz continuous
map
Dlp(Te) —  [] e (RY
TEB, |T|<Y
by giving a paracontrolled representation of elements in Dy, (T,g). Furthermore,
D;Yap(T, g) is locally bi-Lipschitz homeomorphzc to the product space
TEB,, |T|<Y

See formula (3.7) for the paracontrolled representation of a modeled distribution
in D7,,(T,g). Emphasize that the set B, contains an element 1 in the setting of
regularity structures built for the study of singular stochastic PDEs. The only non-
zero component in the parameterization of a classically regular function f is in that
case given by its 1-component, equal to f € Crap(Rd) itself.

Similarly, we can see the further homeomorphism result

v%rap X Drap - H elglp Rd H el‘;‘p (Rd) X H eza;‘Tl(Rd)v
G€9+ TEB,, |T|<0 TEB,, |T|<Yy
where .#;ap x D], is the space of all pairs ((g, M), f) of models (g, M) € Mrap(T,RY)

and modeled distributions f € D7, (T, g). Following Corollary 2, say here that given
a model M on a concrete regularity structure .7, the set of modeled distributions with
rapid decrease is equipped with a family of norms f — ||f||., indexed by a positive
growth exponent a. The following result is obtained as a direct consequence of Theo-
rem 5 and the density of smooth functions in any Holder space €?(R?), equipped with
the weaker C5—¢(R?)-topology, for any positive exponent . As pointed out in Sec-
tion 2 of Singh and Teichmann’s work [23], one can use the reconstruction theorem to
define a mollification operator on modeled distributions and obtain as a consequence
a density statement for the set of smooth modeled distributions. Theorem 5 shows
that any mollification operation on Holder spaces induces a mollification operation
on the space of modeled distributions; this result is independent of the reconstruction
theorem. See Section 4.4 for a proof.

CoroLrary 6. — Let a concrete regularity structure 7 satisfy assumptions (A-D).

Fiz a model on 7. Given any exponents v € R as in Theorem 5 and € > 0, the set of

smooth elements ((g, I'I),f) in Myap X DY, is dense in the same space but with the
7]

topology induced by the Crap —-norms and the Dlap -norm.

Unlike the other assumptions, assumption (D) is fundamentally a requirement on
a linear basis of T, not on the concrete regularity structure itself. It may then happen
that one basis of T satisfies it whereas another does not. Satisfying assumption (D)
thus means the existence of a linear basis satisfying this assumption. It happens that
the class of concrete BHZ regularity structures introduced by Bruned, Hairer and
Zambotti in [7] for the study of singular stochastic PDEs all satisfy assumption (D),
despite the fact that their canonical bases do not satisfy it. We refer the reader to
Section 4.3 for the notations t € £ and [t|.

JE.P. — M., 2021, tome 8



1282 I. Bar.Leurn & M. Hosmino

Tueorem 7. Assume that the set {|t|}iee U{1} is rationally independent. Then the
BHZ concrete regularity structures satisfy assumptions (A-D).

BHZ regularity structures vs general regularity structures. Readers familiar with the
use of regularity structures for the study of singular stochastic PDEs may feel un-
comfortable at the idea of working with regularity structures that do not come from a
(system of) singular stochastic PDE(s) and with models where the maps g and I1 are
unrelated, unlike in the former setting. This freedom is useful, and Hoshino showed for
instance in [16, 17] how this leads to a clear understanding of a number of fundamental
continuity results for iterated correctors introduced in Bailleul & Bernicot’s work [3]
on high order paracontrolled calculus, from a regularity structures point of view. As a
further illustration of the use of this freedom, let us see how Theorem 1 gives back a
proof of the continuity of the product map (a,b) € €*(R%) x € (R9) s ab € CA(RY),
for a € (0,1), 8 < 0, and o+ 8 > 0; this is another formulation of [14, Prop. 4.14].
Indeed, consider the concrete regularity structure .7 = ((T*, AT) (T, A)) with

Tt =span(1,,A), T = span(B, C),
with |14|:=0, |4| :=«, |B| := 3, |C| := a+ S, and splitting maps
A+1+:1+®1+, A+A:A®1++1+®A7

and
AB=B®1,, AC=C®1,+B®A.

Theorem 1 tells us that the model (g, M), with g(1,) = 1, is uniquely characterized
by the two inputs

g(A) = a € €*(RY), NB =be C°(RY).

The distribution ¢ := lC is in particular determined by a and b. We see that Il
provides an extension of the product map (a,b) — ab, by noting that for smooth
inputs a, b, the identity (M&C)(z) = 0, implies in that case c(x) = a(x)b(x), for all
r € R

As a matter of fact, working with models with unrelated g and N should somehow
be easier than working with admissible models, where g and [ are entangled with one
another so as to satisfy the admissibility condition.

As far as working with general regularity structures rather than just working regu-
larity structures associated with singular stochastic PDEs is concerned, we would like
to encourage the reader to think about general regularity structures as mathematical
models of rough 'media’ within which one still has a calculus. Rough medias have no
reason to be associated with any PDE on a general basis.

The following additional remarks put further our results in perspective.

— In the theory of regularity structures, the solution map of a singular stochastic
PDE has the following structure

M (T RY) — DY, (T, g) — 50 (RY).

rap
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The first arrow associates to a model the solution in D7, (T, g) of the regularity
structure counterpart of the equation; the second arrow involves the model-dependent
reconstruction map R. The composition of these two maps defines a locally Lipschitz

map. Theorem 1 implies that the solution map actually has the structure

(1.4) IT ey x ] elib@®?) — eP®Y).

rap rap
oegd TEB,, T]<0

The map (1.4) is a general form of the solution maps constructed in the previous
works [13, 3] on paracontrolled calculus. Since the ansatz on solutions were given by
hand in those papers, it was very hard to extend the argument to a whole class of
equations. Our results reveal the relation between such handmade ansatz and the
sophisticated algebraic structure in Hairer’s theory, showing that it is possible to
apply paracontrolled calculus to more general equations in an automatic way, like the
works [14, 7, 9, 6].

— The map (1.4) provides interesting insights on parts of the theory of regularity
structures. For example, one of the difficult part of the theory is the continuity result
for the model-dependent multi-level extension

:K:M : D’Y(T7 g) — DFY+2(Ta g)a

of the resolution map £~!, with the property that RM(iKMf) = L‘l(RMf), for any
modeled distributions f € DY(T,g) — its very definition is non-obvious, see [14, §5].
From the paracontrolled point of view, we take profit from the fact that the classical
resolution map £ ! preserves the paracontrolled structure

£ NPyl + I — Y Py (67 ) + £ IS

up to the introduction of the modified paraproduct Prg := £L='P(Lg) — see [3]. The
main results in the present paper can be applied to such a modified paraproduct. The
map KM can be obtained directly from Theorem 5 by giving first a paracontrolled
representation of an element of DY (T', g), then applying £~!, using the modified para-
product, and finally using Theorem 5 again to get back an element of D7*2(T, g). We
do not give the details here and leave it to a future work.

— The local Lipschitz parameterizations of the sets of models and modeled distri-
butions from Theorem 1 and Theorem 5 offer the possibility to define dynamics in
these spaces by solving ordinary (or controlled/rough) differential equations driven
by vector fields on the parameterization spaces. In the setting of pathspace analy-
sis on manifolds, this kind of pathwise dynamics provided a clean understanding of
Driver’s flow equation on pathspace, in relation with quasi-invariance questions for
Wiener measure on pathspace over a compact Riemannian manifold [12, 19, 2]. One
may also make sense of classical stochastic PDEs on the space of models or modeled
distributions, as in Liu, Promel and Teichmann’s work [18].

Notice that we considered function spaces whose elements decrease rapidly at in-
finity mainly for a technical reason. Our assumption is related to localizing a singular
PDE. Indeed, we can consider a class of models on a bounded domain vanishing on the
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1284 I. Bar.Leurn & M. Hosmino

boundary, via a diffeomorphism between R? and that domain. Instead, the following

modifications are also possible.

— Theorems 1 and 5 above hold also with the spaces .Zgow and D]

of slowly

growing models and modeled distributions, respectively, with the spaces C[, , replaced
by €S- Such a modification is important because temporally or spatially stationary
models belong to .#ow but not to .#;ap. More details can be found in Appendix C.
— If the elements in G} and B, all have homogeneities smaller than 1, then The-
orem 1 and Theorem 5 above hold for the unweighted spaces .# and D7, with the
spaces Cy,, replaced by usual Hélder spaces €*. An important example is the space of
branched rough paths. As said above, Tapia and Zambotti proved in [24] an analogue

of Theorem 1 for the space of branched rough paths by a different approach.

Like in our previous work [5], we work here with the usual isotropic Hélder space
rather than with anisotropic spaces. All results given here hold true in that more
general setting, with identical proofs. The reader will find relevant technical details
in the work [22] of Martin and Perkowski.

Section 2 is dedicated to describing different functional spaces and operators. Sec-
tion 3 is dedicated to giving paracontrolled representations of models and the recons-
truction of modeled distributions in terms of data in paracontrolled systems, proving
part of Theorem 1. The later is proved in Section 4, where the main work consists
in providing a parameterization of g-maps by paracontrolled representations, Theo-
rem 17. Theorem 5 and Theorem 7 are proved in Section 4.2 and 4.3, respectively.
Appendix A gives back the setting of concrete regularity structures introduced in [5],
while Appendix B gives a number of technical details that are variations on corre-
sponding results from [5].

Norarion

— We use exclusively the letters «, 8, to denote real numbers that play the role
of regularity exponents, and use the letters o, 7, i, v to denote elements of T or T'.

— We agree to use the shorthand notation s(+) to mean both the statement s and
the statement s.

— We use the pairing notation (-, -) for duality between a finite dimensional vector
space and its dual space.

— We adopt the notations and terminology of the work [5], and write in particular
M€ and g,,, for what is denoted by II, and Ty, in Hairer’s terminology.

2. FL,NCTIONAL SETTING

We describe in this section different function spaces we shall work with and intro-
duce a modified paraproduct. For = € R, set

|z]e =14 |z, r € R
The weight function |z, satisfies the inequalities
2+ yle <zlulyle,  f2/AL <zl
for any A > 1.

JIEP. — M., 2021, tome 8



PARACONTROLLED CALCULUS AND REGULARITY STRUCTURES |1 1285

Let (pi)—1<i<oo be a dyadic decomposition of unity on R%, i.e., p; : R4 — [0,1] is
a compactly supported smooth radial function with the following properties.

— supp(p_1) C {z € R%; |z| < 4/3} and supp(po) C {z € R%; 3/4 < || < 8/3}.

~ pi(x) = po(27%z) for any x € R% and i > 0.

~ > pi(z)=1for any z € R%.
We define the Littlewood-Paley blocks (A;)_1<icoo by Aif =2 pi(V)f := FH(p:Ff),
where F is a Fourier transform on R% and F~! is its inverse. For j = -1, set

Sj = Z Ai.
i<j—1

Denote by Q; and P; the integral kernels associated with A; and S
Aif(x) = /Rd Qilx —y)f(y)dy,  S;f(z):= /Rd Pi(z —y)f(y)dy.
— For any measurable function f : R — R, set

||fHLZ°(]Rd) = H|.|ifHL°°(]Rd)7

and define the corresponding space L2°(R9) of functions with finite [/ Lo (e)-noOTm.
Set

L2 (RY = (] LE(RY,

rap

(RY) = @1 £ (RY).

slow
— For any distribution ¢ € §'(R?), set

[€llearay = >11p1 2ja||Aj§||Lgo(Rd)~

J

and define the corresponding space C%(R?) of functions with finite Il o (re)-norm.
We have C§(R?) = C¥(R?), with the usual definition of the Hélder space €*(R%) as
the Besov space BZ, . (R?) ~ see e.g. Bahouri, Chemin and Danchin’s book [1]. Set

rap

Crp(®Y) = (] €XRY),  Ehy(RY) = U €2, ().

— For any two-parameter function F : R? x R? = R and a > 0, set

|F(x,y)]

|z —ylo

I lles

%) o (REIXRY) = supd(|x|‘: A |y|‘j)

z,y€R

Define the corresponding space Cfy, .(RExR?) of functions with finite ||-|| €g,, o (RIXRY)"

norm. Set also

) (R? x RY) := (3‘(12),0(Rd x RY), ?2),mp(Rd x RY) = ﬂl (3’(12),(1(}1@ x RY).
a=

— For any R%indexed family of distributions A = (A;)zepe C 8'(R?) on RY, and
a € R, set

[Allpg = sup sup |2[227%[(Ay, Pj(z — ).
r€Rd j>—1

J.E.P. — M., 2021, tome 8



1286 I. Bar.Leurn & M. Hosmino

Set oo
D<= Dy, D¢ = () DS.
a=1

rap

(In Hairer’ seminal work [14], models are assumed to satisfy a (), ¢)-uniform regularity

condition
[(NE7)(e2)| S AT
locally uniformly in z. Requiring (MN&7),cre € DIl is equivalent to the above uniform
estimate — see e.g. Lemma 6.6 of Gubinelli, Imkeller and Perkowski’ seminal work [13]
on paracontrolled distributions.)
For any distributions f, g € 8'(R%), we define the paraproduct

o0

Prg:=> (Sif)(A9),

j=1
and resonant operator

N(fg) = 3 (Af)(A9).

li—jI<1
For any g € 8'(R9), set
(2.1) Sg:=g—Pig=(A_1 +Ag)g € C®(RY).

(The letter S is chosen for ‘smooth’.) The following continuity result is an elementary
variation on the classical continuity results for the paraproduct and resonant opera-
tors. We refer for instance the reader to Lemma 2.1.34 in J. Martin’s thesis [21] for a
reference.

Prorosition 8. — Let a,8 € R, a,b € Z.
— If a # 0, then C¥(R?) x @bﬁ(Rd) > (f,9) = Psg e CNTA(RA) is continuous.

a+b
— Ifa+B3 >0, then C2(RY) x@f(Rd) > (f,9)—N(f,9) € Ggif(Rd), is continuous.
~Ifa,f#0 and a+ B > 0, then C2(R?) x €)(R?) > (f,g) = f-g € €2} (RY),

s continuous.

As a consequence of the last item, the product fg, of f € §(R%) and g € €*(R?),

belongs to G?ap(Rd), for any o € R — so the space €%, (R?) is in particular not empty.

rap

We use a modified paraproduct in Section 3.1.3. Note that
V" f =TT,

for m € Z, is well-defined for functions f € 8(R?) whose Fourier transform have
support in an annulus. For m € N and a € R, the map |V|™ sends continuously
€2 (R4 into €2 ™(R%). For m € N, we define the modified paraproduct

rap rap
Fo = V" (PrIVI"g) = Y _IVI™(Sif [V 7" Ayg).
j=1
Note that P® = P. The first item of Proposition 8 also holds for the modified paraprod-
uct P™. This modified paraproduct will play a pivotal role in the proof of Lemma 18,

along the proof of Theorem 17. The latter provides the construction of a g-map from
bracket data.
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3. FROM REGULARITY STRUCTURES AND MODELS TO PARACONTROLLED SYSTEMS

This section sets the scene and contains a proof of the first part of Theorem 1.
We work in the setting of concrete regularity structures, a special case of regularity
structures introduced in [5]. Their definition is recalled in Appendix A. As we work
a priori with the most general concrete regularity structures, we need to identify a
number of conditions that serve our purpose in Section 3.1. Assumption (A) is a
harmless assumption on how polynomials sit inside 7" and T'F. Assumption (B) is a
very mild requirement on the splitting map A : T — T ® TT. Both assumptions are
met by the regularity structures used in the study of singular PDEs. This is all we
need to get a representation of models and reconstructions of modeled distributions
by paracontrolled systems. Before embarking on the journey, recall from [5] that we
use the notations

Aazz,u@a/u, Atr = ZV®7/+V
p<o v<tr
to denote the action of the splitting map A on T and the coproduct AT on TT — see
the comments following assumption (A). The notation g < o will mean g < o and
p # o; we shall make a similar use of the expression v <% 7.

We shall introduce along the way three assumptions (A), (B), (C) on general reg-
ularity structures. Their meaning is to be understood in the light of what regularity
structures are useful for: They encode the algebra at hand in the pointwise descrip-
tion of ‘irregular’ functions. One will for instance read assumption (A) as saying that
the classically regular part of functions behave as in the classical Taylor calculus.
Interpretations of assumptions (B) and (C) are given after their statement.

3.1. A Basic assumpTioN. — Appendix A recalls elementary properties of concrete
regularity structures. Let .7 = ((T",A™), (T, A)) be a concrete regularity structure
with 7" = @, c 4+ T and T = @y o Tp- Write 14 for the unit of the algebra 7.
Recall that we agree to use the shorthand notation s(*) to mean both the statement
s and the statement sv.

Assumption A. — The spaces T and T have linear bases BT and B, respectively,
with the following properties.

(1) BT is a commutative monoid freely generated by a finite set BY and Taylor
monomials X1, ..., Xq. Each element 7 € BY has a positive homogeneity. For general
elements in BT, homogeneities are defined by | X;| = 1, and multiplicativity

[ro| = || + |o].

(2) The action of AT on polynomials is characterized by its action on the mono-
mials

(3.1) ATX, =X, @1, +1, @ X5,
that holds for all 1 < i < d. Denote by B} the submonoid generated by X1, ..., X4.

JE.P. — M., 2021, tome 8



1288 I. Bar.Leurn & M. Hosmino

(3) There exists a subset B, C B, such that B is in bijection with N% x B,. An
element (k,0) € N% x B, is denoted by Xko, and assigned a homogeneity

X" o = |k| + 0.
(4) If B, contains an element 1 with homogeneity 0, then it is unique and satisfies
the identity
Al=1®1,.
Write X" for XF1. Set
By = {X"}pena C B.
The coproduct A on X% is characterized by its action on the monomials
AXZ :X1®1++1®Xﬁ

where X, = X and e; = (§¢j)?:1 € N4, that holds for all 1 < i < d, and by requiring
multiplicativity on Bx. For general elements, one has the multiplicative formula

A(XFo) = (AX") (Ao).

For later use, denote by {7'},cs the dual basis of B. Following [5], for o, 7 € B(+),
write o <t 7, if o appears in the left hand side of the tensor products in the optimal
expansion of A(f)7, so we have the unique representation

AP = 3" o (r/Mo),

oceBH)

o<(H)r
where 7/(t)g € T+ . {0}. The relation < needs not to be transitive. Using the
coassociativity

(AM @I AN 7 = (IdeAt)AD) T,
we obtain the chain formula
(32) AT/ Py = Y /P we /D).
p<H <7

Write 0 <() 7, if ¢ <) 7 and o # 7. The notations /o and o <) 7 are only
used for 7 and o in B, Be careful! The notations <, <, etc. are basis-dependent —
like the matrix of a linear map.

The following structural assumption simplifies some arguments in this paper.

Assumprion B
(1) For eacht,0 € B witho < T, either /o € span(B%) or /o € span(B+\BY).
(2) For any T € BY N BY and 0 € BY, 7/70 € span(B+ < BE).
(3) For any 7 € B\ Bx and o € Bx, 7/o € span(BT \ BY).

Assumption (B) is about the distinction between polynomial and non-polynomial
elements. Assumption B(1) means that, in the expansion of A7, there is no term of
the form o ® (n+ X*), with 1 € span(B* \ B%) and k € N%. It is used to justify the
quantity [u/7]8 in the formula (3.7) below. Assumptions B(2) and B(3) are needed
in the proof of Theorem 12. BHZ regularity structure satisfies assumption (B), since
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polynomial and non-polynomial elements are obviously distinguished by the number
of their edges. See Section 4.3 for details.

A natural way to ensure (B) is to give homogeneities not in N for the non-
polynomial elements. Hence the following is one of the sufficient conditions.

Assumprion B’. — Homogeneities of elements in BT \ B} and B \ Bx are not
nonnegative integers.

This is a kind of natural assumption on regularity structures associated with PDEs;
[14, Ass.5.3] is a part of assumption (B’) for elements in B \ Bx. Under assumption
(B) write, for 7 € BT,

Atr= Y oa(/fo)+) XFe(r/fxF)
k

oceB+ \’B;

(33) Xk A
= Z 0-®(T/+U)+ZF®D T.

ceBTt \‘B)t k
Extend by linearity the map D* from T;F to Tc:rflk\’ for all a € A.
Lemma 9. Under assumptions (A) and (B) one has, for all o,7 € T and all
k¢ e N,

(a) D7 =T,

(b) if TeBT\BYL, then DFrespan(BT\BY%); moreover, D*7£0 only if |k| <|7|,
(c) D*D'r = D*+tr,

(d) D*X' = Lpcr gl X5,

(e) D*(ro) =3, (:,)Dk TD** o - Leibniz rule,

Proof. — Ttem (a) comes from the property (A.1) satisfied by coproducts in Hopf
algebras, recalled in Appendix A. The former part of item (b) is a consequence of
assumption B(2). The latter part comes from the property (A.1). Since |7| > 0 by the
definition of concrete regularity structures, the term (X*/k!) ® D¥r appears in the
expansion of A*r only if |k| < |7|. Item (c) is a consequence of the coassociativity
property

(AT @I)AT = (IdeAT)AT

of the coproduct A™. Expanding both sides at 7 € B+, we have

S ne/te /o)

a,nG’B+\B;

Xk Xk XZ
+ Z ﬁ@DkUQ@(T/—FO’)ﬁ- Z F(@W@Dk-‘r%—
cEBTNBL kend :
keNd Xk .
= Y oA/t + > S ©ATDE
cEBTNBL keNd
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It gives indeed the identity

Xé
(3.4) ATDFr = Z DFo @ (1/70) + Z o ® DRy,

Ué*‘r,dg‘B; £eNd

this means (c). Item (d) is a direct consequence of the Leibniz formula for the poly-
nomials, which follows from identity (3.1) giving the action of A* on X; and the
multiplicativity property of AT. Item (e) is again a consequence of the multiplicativ-
ity property of AT, |

3.2. 'RoM MODELS TO PARACONTROLLED sYsTEMS. — We recall in this section some of
the results proved in [5], stated here in the slightly more general setting of the present
work. The proofs of these extensions are given in Appendix B. These results are
proved in [5, §§2 & 3] without any extra assumptions about ‘bounded polynomials’
and interaction between T and T. Hence the proofs are completely parallel to the
proofs in [5], except for the use here of the modified paraproduct and the weight.

Given Fréchet spaces FE and F, denote by L(E, F) the space of continuous linear
maps from F into F. Recall GT stands for the set of characters of the Hopf algebra 7.
Given maps

g: R — Gt Ne L(T,8(RY),
and z,y € R?, set
By = (8y ® ggl)AJ’_ € GY,
and
Me .= (Nog, ')A € L(T,8 (R).
Set
Bo :=min A,

where A is a homogeneity set of T = P sea s

Derinrrion 10. Let a concrete regularity structure 7 satisfying assumption (A)
be given. We denote by
%rap(gv Rd)v
the set of pairs of maps
g: R — Gt Ne L(T,8(RY),

such that

(a) one has g, (X*) = 2F, for all x € R?, k € N%

(b) for any 7 € B, the function z +— g, (7) belongs to L (R%), and the function

rap
() — 8y (7);
belongs to Cl(;‘)ﬁmp(Rd x R%);
(¢) one has (MNX*0)(z) = z¥(No)(z) and (N1)(z) = 1;
(d) for any 7 € B, \ {1}, one has MNr € Gfgp(Rd), and the R%-indexed family of

distributions (NMET),cga belongs to DIL).
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The pair (g,MN) is called a rapidly decreasing model on the concrete regularity
structure 7.

We define metrics on the space of rapidly decreasing models on J setting

da((g: 1), (1)) == sup (II(g — &)z + &~ )T lelrl (mavsa)

reBE (2),a

+ sup (101 = M0l sy + | (T8 = (M))0) ) )

With a slight abuse of notations, we write

g.(7) € LI, (RY),  gy.(7) € €]

d d
(2),rap(R x RY).

The definition of a model depends on the choice of subspaces span(BT \ B}) and
span(B \ Bx), but not on the choice of their bases. Indeed, since

g (X") € L3 (RY),  g(X*) € €3 (RY x RY)
and since
gﬁ)w(Rd) : Lfgp(Rd) C L?gp(Rd)
and Cly (R xRY) - € (R x RY) C et (R x RY),

for all non-negative «, 3, condition (b) holds for any 7€ B+\B}. Recall that the set B,
in item (d) of Definition 10 stands for the index parameterizing the non-polynomial
part of the basis of T'. It is not so obvious to see whether condition (d) holds or not
for any 7 € B \ Bx; however, the following lemma holds.

Levma 11
Assume (A) and (B). Under the condition (c), the estimate (MN&T),cpe € DEL
holds for any T € B\ Bx.

Proof. — We prove the estimate for X*7, with 7 € B,, k € N? \ {0}. Because of the
multiplicative property in assumption A(4) and item (c) in Definition 10, we have

nex*r = (- — z)*ner.
Recalling the notations at the beginning of Section 2, we have

$,(NEx*)(2) = [ Pito = 9)ly = ) (NEN) @) dy = [ Phia — p)(MET) (o)

where Pf(x) := (—x)*P;(z). Hence Pjiq * Pf = Pf by the property of support of
Fourier transform, and we have

S;(MEXE7) () = Pyyr* Pf o+ (NE7)(2) = /Pf(m —y)Sj+1(NE7)(y) dy.
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By induction, we assume the required estimate for any ¢ < 7 (hence 0 = 7 or
o = X*n with some k # 0 and 5 € B, such that |5 < |7]). Since either of ¢ or 7/
is non-polynomial by assumption (B), for any a € N,

1S40 (MET) ()| = [S11(MEBYam) ()| < D |8ye(T/0)||S;41(ME0) (1)

o<1
S (el + 1yl Y ly — w771l 2730,
o<T
By using the scaling property Pf(a&) =2 (d_‘k‘)Pf(Qj z) and by a similar argument
to Lemma 29 in Appendix B, we can conclude that
S (MEX*7)(@)]  fal 279714,

k
hence (MEX*r) ., € DI 7). O

The next statement is a variation on [5, Prop. 12], where we use now the usual
polynomials and polynomial weights, and the modified paraproducts P™ instead of
the bounded polynomials, no weights and the usual paraproduct P. Its proof is given
in Appendix B.

Tareorem 12. Let T stand for a regularity structure satisfying assumptions (A)
and (B). Pick m € N. For any model M = (g,M) € Mrap(T,RY), there exists a
family
m, T d m,M o d
(1715 € eEh®D). g g (I01™ € CRY) e s, )
such that one has, for any T € BT ~ BJ)} and o € B \ Bx, the identities
(3.5) &)= > Po i,y E+ T,

1.<tv<tr
+
UEB+\’BX

(36) No= > Pglosmlud™" + [o1™".

p<lo
HEBNBx

Moreover, the mapping

M— (([[T]]myg € BLQL(Rd))TE'B‘*'\fB;’ ([[O-]]m’M € GL;’L(Rd))UE'E\‘Bi)
1s locally Lipschitz continuous.

This version of the statement, with m > 1, will be used in the proof of Theorem 17
given in Section 4.1. Write [7]8 and [o]M instead of [7]™¢€ and [o]™M, when m = 0.
Given a model M € #yap(7,R?) on a regularity structure .7, and v € R, define
the space DY, (T, g) of rapidly decreasing modeled distributions as the set of functions
FRY— @ Ty,
B<y

such that, for each 7 € B, the function (7', f(-)) belongs to L35, (R?), and the function
(z,y) — (7, £ (y) — ga (@)
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belongs to C?’(YQ_) ‘:Jp(]Rd x R?). The reconstruction Rf of f € D

of 8'(R%) satisfying the condition

(Rf —ME£(2)) ,cpa € Diap

If v > 0, there exists exactly one reconstruction. If v < 0, there are infinitely many
YLop(RY). (This is a key
point to prove Proposition 15.) In what follows, we assume v # 0 and denote Rf by
the one defined in Corollary 33 in Appendix B. If v = 0, existence of the reconstruction
is not ensured in general. See [8, Ex. 5.5].

The next statement was proved in [5, Th. 14] in the unweighted setting; its extension

Yop(T', g) is an element

reconstructions and two reconstructions are equal modulo €

to the present setting is given in Appendix B.

Turorem 13. — Let T be a regularity structure satisfying assumptions (A) and (B).
Let a regularity exponent v € R\ {0} and a model M = (g,N) € Myap(T,R?) on T
be given. For any modeled distribution

f=> f0eDL,(Te),
lo|<y
each coefficient f, has a paracontrolled representation

(3'7) fo= Z Pf# [[:u/a]]g + [[fa]]ga

o<p
p/o€span(B+ \‘B;)

where [f,]& € (ﬂfp‘a‘ (RY). (The quantity [1/c]® is defined as a linear extension of the
symbols [T]& in Theorem 12.) Moreover, there exists a distribution [f]M € €, (R%)
such that

(3.8) Rf= > Prlod"+[1"
cEB\Bx
The mapping
(£ € Dhp(T.8)) — (LA™ (1£e19) ) € Chp(®?) x T] €27 (RY)
oceB

1s locally Lipschitz continuous.

A similar statement with P™ used in place of P holds true. We end this section
with three useful formulas involving g, that will be used in the proof of Theorem 17.
The reader can skip this statement now and come back to it at the moment where it

is needed. Recall D*r = 0, for |k| > |7|. Let Px : T* — Ty, stand for the canonical
projection map on T;g, and for 7 € BT set

fo(7) = —(gz ®g, )(PX ® Id)( Z i g—l Dé
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For 7 £ 1, we also have

fo(7) = (g ® g ") (Id —Px) ® Id) (AT 1) = Z g.(0)g; ' (r/T0o).
b

Lemma 14. — Let F be a regularity structure satisfying assumption (A) and (B). For
any T € BT B} and any k € N%, we have

(3.9) g:(D*7) = Y gu(r/T0)f2(D o).
0<+T
og¢B%
and
(3.10) Be(D'T) = Y Eulr/ o)y (DFo) - 3 W g (pir)
0<+ L
U%B;
and

f,(DF7) = 1|k|<|7‘8§{(gy 2g ) (Id-Px) @ Id)NTH

_ 1|k|<|73§{ 2 o<tr 8y(9) g;1(7/+0)}‘

+
ogBy

Y=z

(3.11)

y=x

Note that one cannot interchange in (3.11) the derivative operator with the sum,
as a given function g, (o) may not be sufficiently regular to be differentiated k times.
Note that formula (3.10) does not have the classical feature of a Taylor-type expansion
formula, which would rather involve an a-dependent term in front of g,,(7/%0), in
the first term of the right hand side.

Proof. — Note first that formula (3.4) for A*(DFr) gives

(3.12) (D7) = (g, ®g; ") ((1d—Px) @ I)A*DFr = >~ g.(D*v) g, (7/7v).
v<tr
vgB

Formula (3.9) is an inversion formula for the preceding identity. One obtains the
former from the latter by writing

Yo r/To)u(Dro) = Y gulr/To)g; (o) v)g.(DFY)

o<tr v<togtr
UéB; awiﬁ;

Y elr/To)g, (o) v)g. (DY)
v<tog<tr

V¢B§
= Z (g;I ® gx)(T/+V)gx(DkV) = gz(DkT)'
v<tr
u%B}
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(In the second equality, we can remove the condition “o ¢ B%" because v <+ X*
implies that v € B;. In the last equality, we use the property of the antipode.)
~ Applying g, ® g, ' to (3.4), we have

¢
gy (DFT) = Z g, (D*p) gy M () ) + Z %ggl(Dk-',-eT)
!

p<tr
(3.13) pgn ,
_ kN o—1(,/+ + (y— =) kett!
= Y aD'we W/ mee(r/v) =D S (D),
pu<tosts e '
ngBL

where we use the formula (3.2) in the expansion of g, 1(7/* ). Identity (3.10) follows
from (3.13) using (3.12). Note that u <* v and p ¢ B implies that v ¢ BY.

— Formula (3.11) comes from identity (3.12) by rewriting the terms g, (D*v) for
ve BT~ B} in an appropriate form. As a preliminary remark, notice that applying
gyz @ g to the defining identity (3.3) for the D¥v, we have

_ )k
B0)= Y ew(@)s/ o)+ Y a0 LI
k

a<+ma¢3}

Since one has

61Ijgyw (U) ‘y:z =0,

for any x € R%, whenever |k| < |o|, one then has

31 w0 = g {8 0) - ooty @m0}
J¢B} y=c
lo|<[k]

At the same time, one has

g () =Y (& *e)w/Twe() = > (87" x&) (/") gy(1)

p<ty p<ty

ne¢BY

= > eW/To)g o/ ey (w).
p<to<ty
no¢BY

In the second equality, we use assumption B(2) to derive (g; ! * g.)(v/TX*) = 0 for
any k € N%. In the third equality, we use that 4 <* o and pu ¢ BY implies o ¢ BY.
Furthermore, since u <* o ¢ BY, u € B, and |o| < |k| implies 4 <t o (hence
|| < |k]), we have

Yoo s/To)g o/ Twem) = D e/ 7o) gye(0) + P (v),
p<to<ty o<ty
wogBL. |o|<|k| ogBL, o<kl
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where p. ;) is a polynomial of degree less than |k[, hence 6§p<|k‘ = (0. We thus obtain
from formula (3.14), that

£ (0") = 0] Sycroer, 0/ 0) e 0 Wm0 ]
,u,,cr%'B; y=e
lo]>|k|

Inserting this expression in formula (3.12) one gets,

(D7) = ) gt (7/ ) ga(DM)
v<Tr
V¢B}

0 Sucrpener, & /MR ) e o Wm0
;A,U,V&’B; y=e
lo|>]k|

O Suctoeryer 2 0/ )/ ) g 0 )0
n¢BY Y
lo|>|k|

=0 Sucroerrlen e )0/ )8 0 w0

HogB% y=r
lo|>]k|

= 1k<7|8§{ D ucts 8o (/T h) gy(u)}‘yzx-

nEBY%
In the third line, we can omit the condition o, v ¢ B¥ because of ¢ B In the last
line, we use that (g, * g;!)(7/To) =1 if and only if o = 7. O

4. FROM PARACONTROLLED SYSTEMS TO MODELS AND MODELED DISTRIBUTIONS

We prove the main results of this work in this section. Theorem 1 gives a parame-
terization of the space of models by ‘bracket’ data in paracontrolled representations.
The main part of the work consists in building a g-map from a paracontrolled repre-
sentation for it on a minimal subset of a linear basis of 7. Assumption (C) below
gives a structural assumption on T that identifies this minimal set. The proofs of
Corollary 2 on the density of smooth models, Corollary 3 and Corollary 4 on extension
problems, are proved in Section 4.4.

Theorem 5 provides a parameterization of the space of modeled distributions of reg-
ularity v, for a fixed v € R, by a product of Hoélder spaces. It is proved in Section 4.2.
On a technical level, one brings back the proof of Theorem 5 to an extension problem
for the g-map from the Hopf algebra T to a larger Hopf algebra T . This allows to
see Theorem 5 as a corollary of Theorem 1 under the additional assumption (D).

Unlike the other assumptions, assumption (D) is about a basis B of T rather than
about T itself. It is thus possible that a given basis satisfies assumption (D) whereas
another does not. This flexibility is at the heart of the proof of Theorem 7, dealing with
the case of BHZ regularity structures, investigated in Section 4.3. Those regularity
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structures introduced by Bruned, Hairer and Zambotti in [7] provide the universal
model of regularity structures associated with a subcritical singular stochastic PDE.

4.1. FroM PARACONTROLLED SYSTEMS TO MODELS. The following claim is the same
as [5, Cor. 15], with the modified paraproduct P™ in the role of P. Recall from The-

orem 12 the definition of the reference distributions [¢]™M, in the paracontrolled

representation of the I1 operator of a model M, using the modified paraproduct P™.

Prorosrrion 15. Let T be a regularity structure satisfying assumptions (A)
and (B). Pick m € N, and assume we are given a map g : R* — G¥, such
that conditions (a) and (b) in Definition 10 are satisfied. Then for any family
(Ir] € GLQ‘I,(Rd))Te,Bh‘TKO, there exists a unique model M = (g,MN) € Myap( T, R?)
such that
(4.1) MNr = Z Pe(r/o) [o]™M + 7], VT eB,, || <0.

o<T

The map
(& (7] € Sl (RD), s, 11c0) — M € Hrap(T,RY)

is continuous.

Note that the distributions [o]™M in (4.1) are recursively defined by application
of Theorem 12 to the subspace @, T3. If o € B, with |o| <0, then [o]™M = [o].

Proof
— Recall there is no other element than 1 of zero homogeneity in the present setting,

and pick a basis vector 7 € B, with |7| < 0, and assume that (g, 1) is a model on the
sector T|;|. Set for all x € R4

h:(z) :== Z g:(7/0)0;

o<T

this defines a modeled distribution in DIZh (T, g). Then the bound (NE7),cra € Db is
equivalent to that N7 is one of the reconstructions of k.. From the version of Theorem
13 with the modified paraproduct P™, the distribution

Rh. = Z Pgé'r/a) IIO']]WLM + [[h’T]]va'
o<T

is a reconstruction of h,. Since

Nr — Rh, =[] — [h]™M € el7l (RY),

rap

the distribution N7 appears then as another reconstruction of h..
— If one picks now a basis vector p € B, with || > 0, then h, € DLﬁI‘)(T, g) has a
unique reconstruction, equal to [Ny, that is characterized by the data

(N&o, g.(n/0) s 2 € RY, o < ),
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from the defining property of a reconstruction. An elementary induction then shows
the existence of a unique extension of 1 to T' that satisfies the property N+ = Rh,
for every T € B with positive homogeneity. O

The fact that this statement holds not only for the paraproduct P but also for the
modified paraproduct P™ will play a pivotal role in the proof of Lemma 18 below. The
proof of Proposition 15 makes it clear that the above parameterization of the set of I
maps is related to the non-uniqueness of the reconstruction map on the set of modeled
distributions of negative regularity exponent. This statement leaves us with the task
of giving a parameterization of the set of characters g on T by their paracontrolled
representation. We need for that purpose to make the following assumptions on the
Hopf algebra (T, A*) and the basis B+ of T+. Recall that D* : T — T;*Ikl’
linear map satisfying the recursive rules from Lemma 9. Recall that a pre-order < is
a reflexive transitive binary relation. Write o <7 if 0 <7 and 7 g 0.

is a

Assumption G
(1) There emists a finite subset GF of BY such that BT is of the form

B = | | {D¥r;keN, |7[—|k| > 0}.
T€GT
(2) There exists a preorder < on the set Bt such that, for each T € GT, the
coproduct AT T is of the form

Xk:
(4.2) Afr=rol+ Y a®(7’/+0)+zﬂ®DkT,
— k!

o<tr, UQ’B;

with o € BT(77) and 7/" o € span(B*(77)), for each o in the above sum, where for
each 7 € BT, denote by BT (77) the submonoid of BT generated by

{X1,....xa3u || {DFoikeN |of -k >0}.

o€St, oar

(3) For any element o € B \ BY such that there exists T € G and o <t 7, the
homogeneity of o is non-integer.

Note the disjoint union in the description of BF. Assumption C(1) identifies a
set of generators, modulo the action of the D operator. Assumption C(2) provides a
useful induction structure. Assumption C(3) is a part of assumption B’ and it is used
at the end of the proof of Theorem 17. If one understands the coproduct A™ as giving
the elementary pieces of any given element, assumption (C) as a whole provides an
inductive description of BY.

As discussed in Section 4.3, BHZ regularity structure satisfies assumption (C).
Indeed, we can choose G as a set of all conforming trees of the form I§(7), and the
operator D* appears as the form D*I{(7) = I (7). In the BHZ regularity structure,
one of the examples of < is the binary relation based on the scale of graphs. Since o
and 7/%o in (4.2) are subtree and quotient tree of 7 respectively, it follows from
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definition of AT that o,7/70 < 7. The last assumption is true, if the types {t} are
assigned rationally independent homogeneities {|t|}. See Theorem 26 for details. We
leave now this special setting and come back to our general setting.

Lemvia 16. — Denote T+ (77 ) :=span(BT(77)). For any 7€ 5F and any o € BT (17),
one has

(4.3) AtoeTH(r )T (r7).

Proof. — By multiplicativity it is sufficient to show the case o = D*n € B+ (77) with
n € G and k € N9 If k = 0, (4.3) follows because of the transitivity of <. By the
formula (3.4) for A* D*n and the property D¥ : T*(77) — T+ (77) that is proved by
Lemma 9, D¥n also satisfies (4.3). O

Recall from formula (3.14) that if we are given characters (g;),cre on T as in
Definition 10, then

(44)  g(DM7) = 1pep aj{gy<r> St 8el0) gw<v/+a>}
O'QB;
lo|< k|

y=u

The induction structure from assumption C(2) restricts the above sum and shows
that the family of all g,(D*7) is uniquely determined by the preceding formula. It
follows then from assumption C(1) that the character g on T is entirely determined
by the datum of the g(7), for 7 € GF. We have in particular, if 7 € §I is minimal
(i.e., there is no o € G such that o <7) then

(y — )"
gy(T) = gyw(T) + Z T gw(DkT)’
[k|<|7|
since B (77) = B¥, so for |k| < |7|, one has
(4.5) g:(D'r) = Oy (7)],_,.
and

fz(DkT) = gz(DkT)a

and

—x)
(46) gyw(DkT) = gy(DkT) - Z % gw(DkHT).
7 !

Recall that, given a concrete regularity structure .7,
Tt =((T",A%).(T, A7)

is also a concrete regularity structure, and that for a g map as in Definition 10 one
defines a model M& = (g, &) on I T setting

(ME7) (y) = gy (7).
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Tueorem 17. Let  stand for a concrete reqularity structure satisfying assumptions
(A-C). Then, for any family ([r] € Crl;‘,(Rd))
(g,N8) on T+ such that

regts there exists a unique model M& =

(4.7) g(r) = Z Per/+oy [o1™ + [7], Vr1e gt
o<tT
cEBTNBYL
The map
(4.8) ([7] € CELRY) o — MB € My (T, RY)

1s locally Lipschitz continuous.

Note that one uses the paraproduct P and the brackets [-]M* in the statement.
The modified paraproduct P™ is only used in the proof of Lemma 18, where we
construct a model on an intermediate regularity structure introduced along the proof.
The injectivity of the map (4.8) is elementary, so Theorem 17 and Proposition 15,
with Theorem 12, prove all together Theorem 1.

The remaining of this section is dedicated to proving Theorem 17. The proof is
done by induction on the preorder <.

Initialization of the induction. — 1f 7 € G is an minimal element, then set

g(r) == [,
and define g(D*7) and g, (D*7) by (4.5) and (4.6). It is clear on these formulas that
they define elements of the spaces CloL *(R) L5 (R?) and G‘(Zl) rla’;l (RY x R9),
respectively.

Induction step. Fix 7 € G and assume that g has been constructed on the sub-
monoid BT (77) as a continuous function of the bracket data — so all the functions
[o]M* and g(r/* o) make sense as elements of their natural spaces. Define g(7) by
identity (4.7), and define g(D*7) by (4.4), for all k € N¢ with |k| < |7|. The induction
step consists in proving that g, (D*7) € L5y, (RY) and gy, (D7) € Gl(gl) rL’;l (R? x R%),
as one can use for «, 8 non-negative the inclusions

RY) . L (RY) c LSS

rap rap (Rd)

slow(

and

&R xRY) €L (R xRY) C €3 (RY x RY),

to get the regularity properties of g, (u D¥7) and gy, (u D*7), for p € B+ (7).
Choose m € N, with m > |7|. We introduce a regularity structure .7™ () with Hopf
algebra part T (77 ) and T-space defined as follows. Consider the formal symbols

)
indexed by o € BT \ B}, with homogeneity
)] =

o lo| —m
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Set
(1) := span({o(m) so<tro¢BLU {T(m)}),
so all elements of 7™ (7) have negative homogeneity. Lemma 16 ensures that we can
define a coassociative coproduct
§:T™(1) — T"™(1)@T*(77)
setting
ey = Y W)
u<to, pgBY
for each basis element of 7 (7). Lemma 16 also ensures that
AT (TH(r) cTT(r )@ TH(r),
SO
T (1) = ((TH(r7), A7), (T™(7),9))
is a concrete regularity structure.
We build a model (g,A) on Z™(r), from g : TT(77) — R given by an induction
assumption and an operator A : 7™ (1) — 8'(R?) defined by
Ao ™) := |V|"g(0),

where |V|™ is the Fourier multiplier operator |V|™¢ = F7!(|:|™F(). The pair (g,A)
turns out to be a model by Lemma 18 below. Then formula (3.11) giving f,(D*o) can
be interpreted in terms of that model, under the form of identities

f,(DFo) = Jtm (/\g(a<m>)) (x)

for operators J¥™ on distributions defined below. The identity

—~ 6

/\i:/\%ogym y

where g° := (Id ®g)d, is then used crucially to obtain estimates on f,(D*c), that
eventually give information on g, (D*7) and g, (D*7) via formulas (3.9) and (3.10).

Levmma 18. — The pair (g,\) is a rapidly decreasing model on the regularity structure

T™(T).
Proof. — Since we have the identity
No'™) = |V["g(0) = Y PylosiVIMIHE + VI [oT8,

p<o
ngBL

for all 0 € B+ \ BY with ¢ <T 7, from the intertwining relation defining P™ and
the induction assumption, the operator A is the unique model on ™ (7) associated

by Proposition 15 to the inputs
[0 := [V"[0]® € €2y ™ (RY),

rap

since all elements of T™ (1) have negative homogeneity. O
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Note that it follows from identity (3.11) in Lemma 14 that the model M and the
function f(D*c) are related by the identity

f.(D*o) = 8{;’{ P ugto g;l(U/W)gy(u)})y_

ngBL

- a;;{wyrmzu@ g;lw/*mA(M(m))(y)}L:x

ngBL

= {19, AE (o) () }|

= Z T (NE (™)) (),

y=z

where the operators J?’m are defined by

JET(C) = ORIV T A,

for an appropriate distribution ¢ € 8'(R%). If j > 0, since the Fourier transform of
A;( is supported on an annulus, the function me(o is always well-defined; this is

not the case of J ’i{”(g) However, we only use in this section distributions ¢ of the
form ¢ = |V|™¢ (where such ¢ is unique in the class of rapidly decreasing functions),
SO J’i{"(() = 0FA_ ¢, in our setting.

Levva 19. — Under assumptions (A-C), for any o € B¥ \BY with o < 7,k € N4,
and a € N, we have

[ (N8 (™) ()| S el 2720118,

k,m m - o|l—|pulo—i(lpul—|k
5 (A (™)) ()| S Iyl 32y — af o1l Ik,

p<to
ngBL
Consequently, f(D*o) € L33,
Proof. — For the first estimate, since
I (N (o)) (2) = Y 85 0/ T)OEA1ga () € L,
p<to
nEBL

by assumption, it is sufficient to consider the case j > 0. By the property of p;,
there exists a smooth function p supported on an annulus, and such that setting
p;(-) == p(277-), one has p;p; = p;. Set

~k, _ 1~

g = oIV T(F 1),

and note the scaling property

@?v’”(.) — 2j(d+\k|—m)@’(§xm(2j.).
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We now use the fact that (g, A) is a model to write
T (o)) (@) = [ @57 - ) A5 (A ™)) ()
= [ @ - a5 0 g (0™ )y
>/ Q;W(x — ) &y (/1) A (NS (1)) (y)dy.

n<to

Recall that |z +y|. < |7|.|y|s, for all 7,y € RY. By Lemma 18, for any a € N we have

(Ne(o ™) ()]

S /Ix—yl‘iléf’m(x—y)lly—fﬂ\'”"'“' [yl A5 (A8 (™)) ()] dy

u<to
< 3 gilnl- m>/| 12 @5 (2)] 2171141 dz
u<+o’
<y 2—j<|u|—m>2j<\k|—m—|a|+m>/|Z|Z@gnn(2),|z||a|—|u| ds
p<to
< gilll=Ikl),

We get the second estimate from the first using once again the fact that (g,A) is a
model, writing

I3 (NS () = 357 (A8 (85" (™)) ) ()
= > gyalo/Tw) I;T (N (™)) (1) O

u<to
+
ngEB

We can now prove that g,(D*r) € Lgg,(RY) and gy (DFr) € Cf'(;‘ rlalﬂ (R x R?),
and close the induction step. We use the formulas from Lemma 14 for that purpose.

First, since

g:(D"7) = Z g:(r/*0)f.(D*0),

o<tr
U%B;

with g, (7/%0) € Slow (RY) and f,(D*o) € Lgg,(RY), from Lemma 19, we have indeed

g.(DF7) € L2 (RY). Second, one can rewrite the identity

rap
+ (y — 37)@ f k44
8ya( D 7) Z gya(T/T0 ( o) - Z /) «(D"0T),
U<+ 14 ’
a¢$;
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from Lemma 14, using identity (4.9) for the f-terms. This gives for g,.(D*r) the
formula

j{j{}:a<+7.gyw<f/+a>J§""<A§<00n»)<y>

- et
J O'QBX

Iki<lo] (y_x)e k+4,m j k
= Spestetn L I (A 0) = 5, (D),
Given z,y € R?, set jo = —1, if |y — 2| > 2, and pick otherwise jo > —1 such that
|y — 2| ~ 279, One uses the first estimate from Lemma 19 to bound above the sum
over j = jo
o SO S Y Xy sl
Jj=Jjo JjZJjo a'<+7'7a'€3;
[kI<lel DD el 9= (7|l —Ie)
+ ly — z|""1 2
(4 10) j=Jo |k+L|<|T|
< Z ly — x|\7|—|0| g—do(lol=Ik) | Z ly — x‘lfl 9—do(IT|—Ik|—1¢])
o<tr [k+L|<| 7]
[k|<|o|
<ly— I|\T|f|k|.

To consider the sum over j < jo, assume now that |y — 2| < 2. Then, since (g,A) is a
model and

. —~5
AE () = A8 (.°7) = 37 gyulr/To)AE (™),

o<tT

we have for g/ (D"r) the formula

810 (DF7) = TP (NS (T)) () = Y gyal(r/T )T (AE(0™)) (9)

cint
[k1>17] RV
L T ) o)
+L|<|T
=[] ) (y;,“;”)k /01(1 — p)[PIIETR (A& (7 0M)) (2 + t(y — x))dt

k,m m
- Z gym(T/U) Jj (/\%(U( )))(y)a
o<tr
aQ‘B;
|k[>|o]
where b:=|7|—|k|, by the multivariable Taylor remainder formula. Note that |7, |o| ¢ N
in the above formula, by assumption C(3). Since |y — x| < 2, |z + t(y — )|« = |x]«.
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It follows then from Lemma 19 that >° ;. . |g{/x (D*7)| is bounded above by

S ST fy Kl gmatel- k=D
J<do |k'|=[b] o< T T
o¢ B +Z Z |y7I|\T|f|0||y|;a2*j(|0|*|k|)
J<jo o<tr
UQ(B;
|k|>|o]

Slalz® S Jy — o K #rIlel giolol=lki-1k)

o<tr
‘7¢'B; —a T|—|o| 9—jo(lo|—|k
+ lyl; E' ly — z| |71 1ol g=do(lel=1kD)
o<t
+
ogBy
|k[>]o]

S (2 4yl ) |y — a7 1H
Together with inequality (4.10), the preceding upper bound tells us that

T|—|k
gy (DFr) € @‘@'),er' (R x RY).

This closes the induction step. O

Remarks

(1) On branched rough paths. The setting of Rf-valued branched rough paths pro-
vides an example of regularity structure where Theorem 5 applies, giving an alter-
native point of view on the results of Tapia and Zambotti in [24]. The Hopf algebra
(Tt,A") is in that case the Butcher-Connes-Kreimer Hopf algebra. We recall the
details for the reader as it also sets the scene for part of the results of Section 4.4.

The set T is the free commutative unital algebra generated by the set BT of non-
planar rooted trees with node decorations in a finite set {1,...,¢} and no decoration
on the edges. The empty tree plays the role of the unit in 77. A product of decorated
trees is called a forest, so generic elements of 7' are linear combinations of forests. The
splitting map A7 is the algebra morphism defined on trees as follows. Given a labeled
rooted decorated tree 7, denote by Sub(7) the set of subtrees of 7 with the same root
as 7, and induced decoration. Given such a subtree s, we obtain a collection 71, ..., 7,
of decorated rooted trees by removing s and all the adjacent edges to s from 7, and
keeping the node decoration inherited from 7. Write 7/s for the monomial 71 ... 7,.
One defines a linear multiplicative map A" : T+ — TT® T, defining it on decorated

trees by the formula
AT = Z s® (1/s),
s€Sub(r)

An explicit formula for the antipode was first given by Connes and Kreimer in their
celebrated work [11]; see [10] for a simple and enlightening proof. Each node dec-
oration ¢ € {1,...,¢} is assigned a homogeneity a € (0,1), and each decorated
tree 7 is equipped with the homogeneity «(f7), where 7 denotes the number of
nodes contained in 7. The homogeneity of a forest is the sum of the homogeneities
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of its decorated trees. It is elementary to check that (T, AT) is indeed a Hopf alge-
bra. To avoid polynomials and derivatives, we consider the subalgebra of trees with
homogeneities smaller than 1. Thus assumptions (A-C) without polynomials X* and
derivatives DF hold, but it does not matter here. Branched rough paths are g-maps
on (T+,A%) over a fixed time interval [0, 7] in place of RY. Theorem 17 applies then
in this setting and provides a parameterization of the set of branched rough paths by
the product space [[, cp+ CI1([0,T),RY), in accordance with Tapia and Zambotti’s
main result [24, Th. 1.2 & Cor. 1.3]. Our parameterization is different from their iden-
tification of the space of branched rough paths as a principal homogeneous space over
the preceding product of Holder spaces.

(Theorem 1 cannot be applied in a finite region [0, 7] directly. To overcome this
point, we extend a function f € C([0,T],RY) to [~T,T] symmetrically, and extend
it to [(2n — 1)T, (2n + 1)T] for any n € Z periodically. Then for any « € (0,1), the
Holder space C([0, T], R) is identified with the space

Co(RRY) = { f € CORRY); f(t) = f(~1), f(t+2T) = f(t) for any t € R}.

Note that Littlewood-Paley blocks A; preserve the symmetry and periodicity, so such
spaces are closed under paradifferential operators (paraproduct, its two-parameter
extension, etc.) used in this paper. Hence we can apply Theorem 1 to such spaces.)

(2) On the signature of arbitrary models. We mentioned in the introduction that
admissible models on regularity structures built from integration operators have a
well-defined signature — that is a unique extension to the full regularity structure
with elements of arbitrary large positive homogeneity. This comes from the fact that
such models are determined uniquely by the definition of the 1 map on elements of the
regularity structure of negative homogeneity. Extending a regularity structure with
additional elements of positive homogeneity the initial datum of the restriction of Il
on the elements of negative homogeneity still defines a unique admissible model on the
extended regularity structure. Such an automatic extension result does not hold for
general models, with unrelated g and 1 maps. Indeed, Theorem 17 tells us that the set
of g-maps is parametrized by a set of functions indexed by G}. Embedding a regularity
structure into a larger regularity structure will a priori embed the set G into a larger
set, implying the non-uniqueness of an extension of the g-map, from Theorem 17
again. The following statement follows nonetheless from Theorem 1 while it is beyond
the scope of [5, Th. 21]. See [5, §4] for the definition of admissible model.

Cororrary 20. — Let J be a regularity structure satisfying assumptions (A-C). Let
T C T be a sub-regularity structure of 7 satisfying these assumptions as well,
and such that J' contains all the elements of 7 of negative homogeneity. Then any
admissible model on 7' has a unique extension into an admissible model on 7 .

Like with Lyons’ extension theorem, it is important to notice that the extension
map is a continuous map. So even in a stochastic setting where the construction of a
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model may require stochastic analysis arguments, once this is done, the extension of
this model to a larger structure no longer involves probability arguments.

4.2. FROM PARACONTROLLED SYSTEMS TO MODELED DISTRIBUTIONS. — We prove Theorem
5 in this section. Let .7 be a regularity structure satisfying assumptions (A-C). Pick
v €R, and M = (g,N) € Mrap(T,RY).

The key observation is that proving Theorem 5 is equivalent to an extension prob-
lem for the map g. Consider indeed the commutative algebra T; generated by BT
and new symbols

(FT)TECB, [T <+
Define the homogeneity of the symbol F'; by

|Fr| =~ —|7|.
The coproduct A}i on T; extending AT and such that

(4.11) AT(F,) = (F)®@1+ Y (u/7)® (F,),

<p
is coassociative and turns Ty into a Hopf algebra. It satisfies assumptions (A) and
(B) with
By, =BIU{F.;|r| <7}
in the role of B}. Note that T; does not satisfy assumption (C) in general, since the

DFF . have no reason to be independent from the {F,},. The elementary proof of
the next statement is left to the reader.

Lemva 21, — Given a family (f;)res of continuous functions on RY, set f :=
> e frT, and
8a(F7) := fr(x).
Then
(7, £(Y) = By f (2)) = gyu (F-).

Defining a modeled distribution f € DY, (T, g) is thus equivalent to extending the
map g from T to T4 in such a way that the extended map on (T4, A}) still satisfies
the regularity constraints from Definition 10.

Recall from assumption (B) that either u/7 € span(B* \B%) or p/7 € span(BY),

for 7,p1 € B. If p/7 € span(BY), set

Xk
wir=y cr (k) 27
keNd
and define
(4.12) DFF. = > (k) F,.
TSH
M/TGSPEH(‘B;)
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Then we have

ATF. =F, @1+ > (u/7) @ F, +Z—®DkF
T<p keNd
p/TEspan('B+\'B;)
Turorem 22. — Let a concrete reqularity structure 7 satisfying assumptions (A—C)

be given, together with a family ([f;] € @;YaplTl(IRd))TeB <y Assume that y—|7| ¢ N
for any T € B with |7| < 5. Pick a model (g,N) € Mrap(T,R?). Define by decreasing
induction on |t|

fr = > P lu/]® + -],

T<p, [pl<y
pn/TEspan(B+ \3;)

and

@y Pw=d{rm- Y s h]]

TEW, [l <y, ln/TI<| K|

y=x

M/TEspan(’B‘*'\B';)
If the structure conditions
(4.14) = 3 ) fu
TW, [pl<y
u/TEspan(‘B;)

holds for any T € B and k € N?, then
f=> freDL,(Tg).
TEB

The structure condition is reminiscent of a condition introduced by Martin and
Perkowski in [22] to give a characterization of modeled distributions in terms of Besov
type spaces. Given that we see f, as g(F';), formula (4.13) is nothing but a formula
for g(D*F,) — the analogue of formula (3.14) in the present setting.

Proof. — Consider the extended Hopf algebra freeT;E freely generated by the symbols
{(X1,..., Xa} UBF U{D"(F,); 7€ B, v> ||+ |k}

It satisfies assumptions (A—C). By Theorem 17 giving a paracontrolled parameteriza-

tion of the map g by its definition on the g(7), with 7 € 9;;70 =GTU{F;;|r| <~}

there exists a unique model g on f'eeT;-.' that coincides with g on T+, and such that

Fr)i= ) Pglu/7I® + £,

T
[p] <y

for all 7 € B with |7| < . Since T} is the quotient space of T} by the relations
(4.12), and

g(D"F-)= > ci(k)e(F,),
TW, |p<y
p,/‘respan(B;'()
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from the structure condition (4.14), the map g is consistently defined on the quotient
space, where it satisfies the estimates from Definition 10. g

One can get rid of the structure condition in some cases.

Assumerion D. — For any T € B,, there is no term of the form o @ X* with k # 0,
in the expansion of Ar.

Under assumption (D), we can show that, given 7 € B, the only u > 7 such
that /7 has a non-null component on X* is y = X*r. Indeed, writing y = X‘o
(¢ € N¢, o € B,), by the multiplicativity of A and by (A.2), we have

(Id®Px)Ap = (Id®@Px)(AX")(Ao)

14
= [d®Px)(AX")c@1y) =) (k>Xf—’fa ® X*.
k
Then /7 € span(X*) if and only if 7 = X* ¥, thus 4 = X"7. Then (4.12) takes

the form

14
DkFXe_kU:mFXZU’ o € B,.

Moreover, this reduces to the formula
D"F, =k Fx.,, o€B,,

hence the structure condition (4.14) takes the simple form (4.15) below. Note that the
data in the next statement is indexed by B,, unlike in the general case of Theorem 22
where it is indexed by B.

CororLrary 23. — Let T be a regularity structure satisfying assumptions (A-D), and
a family ([f;] € Gza;‘Tl(Rd))Teg <y be given. Assume that v — |7| ¢ N for any
7 € B with |7| < . Pick a model (g,N) € Mrap(T,RE). Set, for T € B, with || < 7,

f‘r = Z Pf#[[:u/T]]g—"_ [[fr]]>

T [l <y
w/TEspan(BT~BL)

and, for T € B, k € N\{0} with |k| + |7| < v,
1

R N LA ED S eI

y=u
T |l <ys |1/ TIL| K]

u/TEspan(‘B"’\B;)
Then
f= > foo+ D> fx, X'reD] (T 0)
c€B, |ol<y TEB,, keNd
|7|+] k<~
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Corollary 23 yields the homeomorphism result from Theorem 5. As stated in the
introduction, we can see the further homeomorphism result

Mrap % Doy i = {(M, f); M € Mrap(T,RY), f €DLL(T )}
~ [T em®) = JI em®)x [ e ®),

cegt TE€B,, |7|<0 TEB., |T|<Y

where the left hand side has a topology induced by the metrics

da (M, £), (M, f’))
= da(M.M) 4 sup [ (7, (£(0) — G2 F ) — (£ () — g ()]

T€B

Yy Tl (RO xRY) '

Note that assumption (D) is an assumption about the basis B of T' we choose to
work with, not about the regularity structure itself. It is thus possible that a given
basis satisfies assumption (D) whereas another does not. This flexibility is at the heart
of the proof of Theorem 7 in the next section.

4.3. MopELED pisTrRIBUTIONS OVER BHZ REGULARITY sTrucTURES. — Bruned, Hairer
and Zambotti introduced in [7] class of regularity structures convenient for the study
of singular stochastic PDEs. We call these structures BHZ regularity structures

Tonz = (( BHZ?AgHZ) ( BHZaABHZ))-

Although the canonical basis of these concrete regularity structures do not satisfy
assumption (D) the following result holds true.

Tueorem 24. — Assume that the set of homogeneities {|t|}ice U {1} is rationally in-
dependent, that is, the only tuple of integers {k¢}¢ U {k1} such that ) k¢t + &k =0
is the trivial solution k¢ = ki = 0. Then the canonical bases B, and Bypy, sat-
isfy assumptions (A—C). Moreover, one can construct a basis of Tsuy that satisfies
assumptions (A-D).

The remaining of this section is dedicated to proving this statement. We recall
first the elements of the construction of BHZ regularity structures that we need here.
These concrete regularity structures are indexed by decorated rooted trees.

Any finite connected graph without loops and with a distinguished vertex is called
a rooted tree. For any rooted tree 7, denote by V. the node set, by E, the edge set,
by o € N, the distinguished vertex, called root of 7. Let also £ be a finite set of
types. (Edges will be interpreted differently depending on their type, when given any
model on Jy,. Different types may for instance correspond to different convolution
operators.) Denote by B the set of rooted decorated trees. Each 7 € B is a rooted
tree equipped with the type map t: E; — £ and with the decorations

—n:N, > N¢

~0:N, = ZD7L(L).

~¢: E; - N°

JIEP. — M., 2021, tome 8



PARACONTROLLED CALCULUS AND REGULARITY STRUCTURES |1 13

Equivalently, the set B is generated recursively by the application of the following
operations — see [7, §4.3].

— One has «¥ € B for any k € N%, where «* is a tree with only one node s, with
n(e) =k, and o(s) =06 0.

—If 1,0 € B then 7o € B, where 7o is called a tree product; To is a graph
7 U o divided by the equivalence relation ~ on N, LI N,, where x ~ y means x = y
or z,y € {0r,0,}. On the root g, the decorations n(g.,) = n(o;) + n(o,) and
0(¢rq) = 0(or) + 0(0o) are given.

— For any t € £ and k € N9,

Te€B = Ii(1) € B,

where the tree I} (7) is obtained by adding on 7 one distinguished node ¢’ and one
edge e = (0, 0') of type t, with decorations e(e) = k and o(¢') =0 0.

~ For any a € Z* @ Z(£), denote by R, the operator on decorated rooted trees
adding a value « on the decoration o on .. Assume

T€B = R,(7) € B.

By applying the operator R, with various a on each step as above, one can see that,
if 7 € B then the same decorated tree with any other o-decoration is also an element

of B.

Each type t € £ is assigned a nonzero real number |t|, the collection of which
satisfies the assumption of Theorem 24. One assigns a homogeneity |n|, |o], |e|, [t| to
the decorations and edge types of any decorated tree 7, and set

[n| + lo] —[e] + ¢

= )+ Y fot)l = Y lee)l + D e,

neN.. neN., ecE, ecE.,

7]

where |a+ Y, at| := |a| + >, alt| for a+ >, a¢t € Z? @ Z(L). A noise-type object ©
is represented by I§(+"), with t of negative homogeneity.

With each subcritical singular stochastic PDE is associated a notion of conforming
and strongly conforming decorated tree. The basis By, of Ty, is made up of the set
of elements of B that strongly conforms the rule (see 7, §5]), and the basis BY,,, of
T, is made up of the elements of the form

N
- H I;: (Ti>7
=1

where k, k; € N4 t; € &, 7; € Bouy, and |I,Z (1:)] > 0. Such a tree is said to conform
the rule. We do not need more details here and refer the interested reader to [7, §5].
We do not describe in particular the details of the definition of the splitting maps
Agy, and A, ; we only record the following fact, where we write 1 for «, and X*
for oF.
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Prorosirion 25 ([7, Prop. 4.17]). The coproduct A = Apyy, : Tony — Tenz @ Ty,
satisfies the following identities

Al=1®1, AX;,=X,®1+1X,;, A(ro)=(A1)(Ao),

XZ
ALi(r) = (I @Id)Ar+ Y T ©Lh(7), ARo(r) = (R @ 1) Ar.
[+ Ikl <[]+t
The coproduct AT = AL T+ — Tt

gt T QT satisfies the same identities with A

in the right hand sides replaced by A™.
Turorem 26. — The bases B = By, and Bt = B satisfy assumptions (A-C).
Proof. — Assumption (A) is satisfied by setting
B ={I{(r) e BT;te g, keN 7ecB} B, := {1 € B; n(p;) =0},
and X*F = XF = .k, Assumption (B) follows because polynomial elements and non-
polynomial elements are distinguished by the number of their edges. Indeed, §F, = 0
if and only if 7 € BY = Bx. Assumption C(1) is satisfied by setting
§h = {Ii(r) e Bt;te £, 1€ B}

Then DFI{(7) = I}(7) follows from Proposition 25. To check C(2), we define the
binary relation on B+ by denoting o < 7 if

- {E, < tE;, or

- §E, = {E; and |n,| < |n;|, where n, (resp. n,) denotes the n-decoration given
for 7 (resp. o).

This relation is transitive and satisfies the first condition of C(2). The second one in
C(2) follows from the graphical definition of A™ — see [7, §2] for details. Essentially,
we have the decomposition

Atr = ZO’ ® (t/0),

where either of the following holds.

— o is the same graph as 7 but with n, < n,. 7/ consists of only one node.

— 0 is a strict subtree of 7 such that g, = ¢,, and 7/%o is a quotient graph of 7
obtained by contracting the subgraph ¢ into one node.
For the first case, if n, = n, then ¢ = 7 as an element of B, and if n, < n, then
o < 7. For the second case, if /N, = 0 then ¢ is a polynomial and if N, > 0 then
o,7/%Yo < 7. Hence the formula (4.2) holds. For the last assumption, since the set
{|t|}tee U {1} is rationally independent, non-polynomial 7 (hence 7 has at least one
edge) has non-integer homogeneity. Hence C(3) holds. O

The canonical bases Byy, of BHZ concrete regularity structures do not satisfy
assumption (D) since one has

Xk
AINX0) =I{(X®) @1+ [(O)® X+ Y. T @ IMX:0),
[k|<|©|+14]¢
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for any edge type t with positive homogeneity, but the second term in the right hand
side contradicts to assumption (D). Now we define another basis of Tgqy,. Set

T := span(B).
The tree product (7,0) — 7o and the operators I} and R, are linearly extended to T
For any t € £ and k, ¢ € N¢, we define the new operator oI} T — T, by
E m —m —m
PHOEY Qn>X’(—1Y I (X)),
meNd
(An operator I} represents the convolution with a kernel z‘(9*K)(z). These oper-
ators also appeared in the very recent work [15] of Hairer and Pardoux.) If 7 is
homogeneous, then (I} (7) is also homogeneous and
|eZi ()] = [t] = k] + [¢] + |7].

Lemva 27. — Consider the subset %, C T generated by the following rules.
~1eB..
— 7B, = JIi(r) € B,.
—-TE€ @. = Ra(7) € @,.
—1,0€B, = 10 €B,.
Set ~ ~
B .= {XkT; keNire B,}.
Then B is a linear basis of T, and there exists a basis B = Byuz of Tguz such that
BCB.
Proof. — Assume that 7 € B is expanded by the basis %, that is, 7 is of the form

T= g a; X% o
i

with a; € R, k; € N¢ and o; € %.. Since the commutative property Ra(Xk-) =
X*R,(-) holds by the definition, R,(7) is also expanded by B. By the inversion
formula
14
It XK _ X™m(—1 L—m _mIt
H(Xo) = <m) (=)™ =iy (o),

meNd

I (7) is also expanded by B. Certainly, if 7,0 € span(fg), then 70 € span(%). We
can conclude that T' = span(B) by the induction on the number of edges on 7.
As in the definition of Bgy, from B, one obtains B by keeping only those elements

from B that strongly conforms. O

The set B can be encoded as a set of rooted decorated trees using different deco-
rations from the preceding decorations. Fach 7 € B, is represented by a rooted tree
with o and e decorations, together with a new decoration

f:E, — N

The map (I} : B, — @., is defined as follows. For any 7 € B, with root o, the
tree (I} (7) is obtained by adding to 7 one node ¢’ and one edge e := (g, ¢'), with
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decorations e(e) = k and f(e) = . Each 7 = X¥o € B is represented by a rooted
tree with decorations n, 0, ¢, f, where n vanishes at any node except the root, where
it is equal to k. We call this tree representation of elements of B the non-canonical
representation. Note that, under such exchange of representations, the shape of trees
is preserved.

Tirorem 28. —  The basis B of Tsnz satisfies assumption (D), where %, = %, naB.

Proof. — The proof is done by the induction on the number of edges on 7 in its non-
canonical representation. In fact, one can conclude a stronger claim; for any 7 € B,,
one has
(4.16) AT = Z Con0 @ 1).
_ UE%.

NEB~{ X"} rro
It is sufficient to show that, if the coproduct of 7 € B. has such a form, then (I} (7)
also satisfies the same condition. To complete the proof, we compute explicitly the
coproduct A(,I}(7)). Since

£
AL (X"7) = (I @ IT)A(X ) + Y f—, ® I, (XOT)

LeNd
-y (Z)z,g(xb Jox /o) + Y o C @1 (X0,
0<Td ¢eNd
beEN
we have
A(al,i(r)) = Z (Z) (AXb)(—l)a—bAIk(X“—bT)
beNd
- ¥ (-1)“(2‘) (i) (a P b) XI{ (X0) © X0 X7 /o)
b,zjeTNd
— b c)(é —c a—
+ Z (-1)* b(Z) (C)X‘a@’Xb e (X707)
£,b,ceNd

=: (i) + (ii).
The term (ii) does not contain any terms of the form o ® X* with k # 0. The sum (i)
is equal to
ira O c d, ¢ yod

o<T
a=c+c +d+d’

- ¥ a‘f'@( 3 (-1 'd'XCIk(Xd )) ( > (- ,?d,,Xch (T/ff))

o<1 a=c+d B=c'+d
a=a+p3

o<T o<t
a=a+f
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Since 7 is assumed in the induction step to have a coproduct (4.16), hence A(, I (7)),
enjoys the same property. O

4.4. DENSITY AND EXTENSION COROLLARIES. — Corollaries 2, 3, 4, and 6 are proved as
follows. Note that Schwartz space §(R9) is dense in the space C2_(R%) in the topology

rap
of CE¢(R?) for any e > 0; for any f € Cf (R?), the function e® f belongs to S(R)

rap

and satisfies
t—0

167 = Fllog-eqgay S 210z ey = 0

for any a > 0.
Proof of Corollary 2. — By Theorem 1, the space .#yap(7,R?) is homeomorphic to

the product space
o d T d
[T cloh@®) x J] elzh®?)

0-693’ TEB,
|7]<0

For any € > 0, any elements of this space can be approximated by smooth elements
in the topology of the same space with each exponent |7| replaced by |r| — . By the
formulas (3.5) and (3.6), it turns out that a smooth element of (1.3) is transferred to
a smooth model in .#;ap(7, RY). O

The proof of Corollary 6 is completely parallel and left to the reader.

Proof of Corollaries 3 and 4. For Corollary 3, consider the algebra T generated
by the set BT of rooted trees as in Remark 1 of the previous section. Given an
Rf-valued a-Hélder function h = (h;)L,, a lift of the control h is a branched rough
path (HT)TeB;f such that H** = h;, where «; denotes a graph with only one node and
with node decoration i. By Theorem 1, such a lift is transferred to an elements of the
product space HT€3+ Grap( ) such that [+;] = h;. A trivial extension is defined by
[7] = 0 if 7 > 2, and the associated model is nothing but a trivial lift of h.
Corollary 4 is proved by a similar argument. By admissibility, the set .# (.7, R™)

7|

is homeomorphic to the space [] Crap(R™). Given a multi-dimensional

TEB,,|T|<0
noise (Cj)gzl, a trivial extension is defined by

th{Q’T:”’ O

0, otherwise.

ApPENDIX A. CONCRETE REGULARITY STRUCTURES

We recall in this appendix the setting of concrete regularity structures introduced
in [5], and refer the reader to [5, §2] for motivations for the introduction of that
setting.

DerFiNTTION. A concrete regularity structure J = (TT,T) is the pair of graded
vector spaces
@ To-z‘ra T= @ Tﬁ
a€At BEA

such that the following holds.
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— The index set AT C R contains the point 0, and AT + AT C A™T; the index set
A C R is bounded below, and both A*and A have no accumulation points in R. Set

Bo := min A.
— The vector spaces T, and Tp are finite dimensional.
— The set T'" is an algebra with unit 1., with an algebra morphism
AT TH —THeTt,
such that AT1, =1, ® 1, and, for 7 € T,
(A1) ATTe{T01 + 1,07+ Y0 sea Th O TS 4},
and AT satisfies the coassociativity property
(AT ®@Id)AT = (IdeAT)AT.
That is, 7" has a Hopf structure with coproduct A* and counit 1/, .
— One has T," = span(1;), and for any «, 3 € A*, one has T(;j‘Tﬁ+ C T;_ﬂ.
— One has a linear splitting map
AT —TTT,
of the form
(A.2) Are{r®@1+Y, . TsT 4}
for each 7 € T, with the right comodule property
(A ® Id)A = (Id ®A+)A.
Let B and By be bases of T} and T, respectively. We assume Bl = {1, }. Set
Bt:= J B, B:= |J Bs.

acAt BeEA
An element 7 of To(f) is said to be homogeneous and is assigned homogeneity |7| := a.
The homogeneity of a generic element 7 € T(H) is defined as |7| := max{a}, such

that 7 has a non-null component in To(fr). We denote by
T = ((TJrv A+)7 (Ta A))
a concrete regularity structure.
One of the elementary and important examples is the Taylor polynomial ring.

Consider symbols X, ..., X; and set
Tx == R[X1,..., Xd].
For a multi index k = (k;)%_; € N%, we use the notation
Xk =X X
We define the homogeneity |X*| = |k| := Y, k;, and the coproduct
(A.3) AX;= X, ®1+1® X;.

Then ((Tx,A), (Tx,A)) is a concrete regularity structure.
The set GT of characters g : Tt — R, i.e., nonzero algebra morphisms, forms a
group with the convolution product

g1 % g2 := (1 ® ga)AT.
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ApPENDIX B. TECHNICAL ESTIMATES

We provide in this appendix a number of technical estimates that are variations
on the corresponding results from [5]. Proofs are given for completeness.

Lemva 29, — If @ > 0 and a € Z, then
[ 1P = w)lle = sl dy S 27l
[1@ite = )lle = ylolulzedy £ 22l
Proof. — Recall the inequalities in the beginning of Section 2. If a > 0,

ol2 [ Pie = g)lz = ol *dy 5 [ 1PGa = e~ il — vlzdy

=/\H(y)!|y|"|y|§?dy=/\Po(y)| 23 %*dy
<2‘1“/\Po(y)l|y\°‘|ylidy§2‘m~
If a <0,
/\Pi(w—y)Hw—yI“IyI:adyS \wII“/!Pi(m—y)Hx—yla\x—yl*‘“dy
Sl O

As a consequence of Lemma 29, we have the inequality
185 e < suplat [ 1@~ ) F)ldy < 1l suplete [ 1Qs ~ Il dy
x x

S g

for any a € Z. This ensures that S maps €%(R%) to C°*(R?) for any « € R.
Recall the two-parameter extension of the paraproduct, used in [5]. For any distri-
bution A on R% x R¢, we define

@)@ = [ Pl - M)y
(PA)(z) := Z(QjA) (z).
If Ay, 2) is of the form f(y)g(/z), then PA = Pyg.
Prorosition 30 ([5, Prop.8(a)]). — Fiz a € Z.

(a) Forany A € 8'(R*xR?) for which there exists o € R such that ||QjAHLw(
2799 for all j > 1, one has PA € C%(RY) and

iy S

HPA”CS(Rd) 5 Sup2ja||QjA||LgC(Rd)~
jz1
(b) For any o> 0 and F € C?‘z),a(Rd x R%), one has PF € C*(RY) and
IPFca®ay S IF e

(2),a(Rd XRd)'
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Proof
(a) Since .Z P; is supported in the annulus {\ € R%;|\| < 27 x 2/3} and FQ); is
supported in the annulus {\ € R%; 27 x 3/4 < |A\| < 27 x 8/3}, the integral

[ it —wpitw Qi - 2w

vanishes if [i — j| = 5. Hence A;(PA) =37, <, Ai(Q;A) and we have

2Pz < Y0 1AiQMIee S Y 1QiAze S Y 27 2770

li—jl<4 li—j|<4 li—jl<4

For (b) it is sufficient to show that |‘QjFHL20(Rd) < 2772, By Lemma 29,
QF@)] 5 [ [P~ 9@ 2| (sl + 21y — 21 dydz
S [ 171 = 5)Qs(o = 2)| (Il + 121:) (o = o1 + fo 217 dy=
S 270l =
Recall from [3] the definition of the operator

R®(f,9:h) := PfPgh = Pygh.

This operator is continuous from C%(R%) x €#(R%) x €7(R?) into C*TA+7(R?), for any
a,f €[0,1] and v € R — see Proposition 14 therein.

Prorosirion 31 ([5, Prop. 10]). Consider a function f € LY (RY) and a finite
family (a, by)1<e<n n L (RY) x LY (R?) such that

N

=Y ai(@)(bi(y) = be(2)) + fiar @y €RY,

k=1

with a remainder fﬁz Let a > 0 and 8 € R be given. Assume that either of the
following assumptions holds.

( ) f € Lrap(Rd)7 akbk: € Lrogp(Rd) fﬁ € 6(2 rap( x Rd)? and g€ e
(b) f* € €y (R x RY) and g € €L, (RY).

Then one has the estimate

(RY).

slow

N
> R (an, br, g) € Ct? (RY).

Proof. — Recall from identity (2.1) the definition of the operator S. As in the proof
of [5, Prop. 10], we see that

ZRo(ak7bk7g) S(Pfg +Pf Sg Zpakbk Sg (( JiR g)(y))
k
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The first three terms belong to €
term. Note that

QG (Pro)W) = X [ Ble= 0@ - 0)(5if5) W) (Aigr)w) dedy,

li—j|<4

25 (R?), assuming either (a) or (b). Consider the last

For case (a), there exists be N such that |A;gl(y)| <27 |y|°. Since f*€ €2, (R?xRY)
for any a € N, one has

(7wl < [ 1A= wll il do s [ 1A - wlle=af (a2 + 1) do
5/|Pi(y*“>|(lufyla+ ly = 2[*) (Jul*~° + |2[27°) du

Sl ) 27 + |y — 2])

by Lemma 29. Hence we have

QiP5 D /|P = 2)[Q;(= = | |(SiF%) )| | (Bigr) ()] dady
\l jl<4
S Y [ 1P lQs -l el + ol ol
li—jl<4

x (277 + |y — 2|*) 27 dady
S S [ 1B Dl - )l lult + 1ol2)
\1 jl<4
x (2 Ty — x| |z -y )Q_zﬁdl"dy

S D el 27IY) 27 S e 2R,
ji—jl<4

For case (b), since |A;gl(y)| <27 |y|;* for any a € N, and

Yl < / Py — )| | £, du < / Py — w)|lu— ] du S 275 + |y — 2,

we have
G(Pr))@| S Y [P0l |@i ~ )l (S0 | (igr) )] dody
\z JI<4
< Y 1P =2 |Qi =y vl (27 + |y — /%) 27 dady
li—il<4
DY /\P 2= 2)||Q(z = )|yl * 27 + [z — 2|* + |2 —y|*) 277 dwdy
\1 jls4
< DT el (2 2 I) 27 S eI,
li—dl<4
By Proposition 30, we are done. 0
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Prorosition 32 ([5, Prop. 9]). Let v€R and By €R be given together with a fam-
ily Ay of distributions on R?, indexed by x € R?. Assume one has

sup [z]S|Azlleso < o0
zERC

for any a € Z and one can decompose (A, — A,) under the form

L

Ay—Ap =) 08
(=1

for L finite, R%-indexed distributions ©%, and real-valued coefficients cgr depending
measurably on x and y. Assume that for each ¢ there exists By < 7y such that either of

the following conditions holds.
(a) ©° € Dft, and ¢ € €], 7" (RY x RY).
(b) © € D and ¢ € €% (RY x RY).

Write P(A) for Py, .(Ay(2)) below.
(i) If v > 0, then there exists a unique function A € €, (R%) such that

rap
{(P(A) = A) = Az}, g € D
(ii) If v <0, then
{P(A) ~ A}, o € DLy
Consequently, P(A) € €50 (R?). If furthermore A € D}, . then P(A) € €, (R?).

rap’
Proof. — In view of [5, Prop.9], it is sufficient to show that

(B.1) sup |7
zERC

A;(P(A) - Ax)(m)‘ < 9707,
We write for that purpose

AV (P(A) - AI)(m) = Z // Qi(z —y)Pj(y —u)Q;(y — v) (Ay — Ay)(v) dydudv
I

— AS(A) (@)
= A+B+C,

where

A= > // Qi(z —y)Pj(y —w)Q;(y — v) (Au — Ay)(v) dydudv

li—jl<4

= 55 [ e =00 o)y 0, 0) s

li—j|<4 £=1
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and

B= 3 [[[@te-npu- w0 @, - 8w dyduds

li—jl<4

L
= > > // Qilz — y)Pj(y — w)Q;(y — v) ¢,0,(v) dydudv.

li—jl<4 =1
For the C term,

sup |z|¢ ’AlS(Am)(x)’ < 277" sup || HS(AQJ)‘
x xr

er

~

<27 sup o]l [ Aglles <27
xr

for any r > 0. For the A term, for any a € Z we have

L
A< 3 Y [[1ate -l - wlic, 14,8,)] dydu

li—j|<4 £=1

L
> Z/ |Qi(z = || Pi(y — w)|lu =y~ lyl 277 dydu, if (a)

li—jl<4 =1

L .
Sy / / Qi — )| Py — )] (Jul=® + y]72) u — P29 dydu,

li—jl<4 £=1 it (b)

A

S > /|Qi($*y)|\y|;“2*”dy§\x|;“2*”,

li—jl<4
The B term has the same estimate by a similar argument. So estimate (B.1) follows
from Lemma 29.
(i) If v > 0, the estimate (B.1) implies that the sum

M) = > A;(P(A) = Ay)(2)

iz—1

defines an element \ of €7, (RY). To show it, we follow the argument in [13, §6].

rap

We decompose A = AT+ 4 A7+ where
AT () o= Y A(P(A) = Ay)(2) = Sjys(P(A) — A) (x).
i<+

We consider Aj\ = A;ASITL 4 A;A>9FL For the second term, by the estimate (B.1)
one has

AN oo S AT e S )0 277 S 2797,
i>j4+1
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For the first term, since A;S;43 = A}, one has
AXTy) = [ Qyly = )S11a(P(A) - ) (o)
~ [ @it 0)851a(P1) - 4, + > cx6L) (e
= 8(PO) - 4)0) + 3 [ @ty - 2164 (1200, (@)

Similarly to above, we can show that |A; ST (y)| < |y[; 22797 for any a € Z. In the
end we have |AjAl|Le <2777, hence A € €7,,(RY).

rap

Since D ;5 1 A; (P(A) — Ay — A)(z) = 0 by definition, we have
1S:(P(A) = Ap = N)(2)] < D [A;(P(A) = Az — ) (2)]
jzi-1
Slalrt Y 27 S el
jzi-1

for any a € Z.

(ii) If v < 0, then directly from (B.1),

1Si(PA) = A) (@) < Y [A;(PA) = Ag)(@)] Sl Y 2777 Sfaf 27"

j<i—1 j<i—1

for any a € Z. |
CoroLrrary 33. — Given a concrete reqularity structure 7 satisfying assumptions

(A) and (B) and given a rapidly decreasing model M = (g,M), we define the map
R: Dy (T ,g) — Cl (RY), by

rap rap

RS = Py (MEF(2)) ()
Then one has

(Rf - ﬂng(x))TeRd € Dgap'
Proof. — Let A, = N& f(z). Since

Ay - A:c - Z <T,ag/m\yf(y) - f($)> I_I:%T
TEB

one gets conditions (a) and (b) of Proposition 32 from the definition of a model. O
Proofof Theorem 12. — We prove the case m = 0 here for simplicity. For general m,

the proof is at the end of this appendix, after we introduce the modified paraproducts.
Consider the first formula (3.5). First we show that, for each 7 € B* we have

(B.2) g(r) =Y. PyjrnlVIE+ 7,

1<tv<tr
ve®t
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where [V]8 € GLZL(Rd), if v € BY N BY, and [v]E € €2 (RY), if v € BE. If 7 = XP,
then since AT X* =3, (¥)X* @ X*~¢ we have

w0 = 3 (§)Paxolxt e+ x4
0<t<k
We see for instance that [1]8 =1, then [X]8 =, since g, (X )=, and since g, (X?) =122,
one has
x? = 2P,z + [ X8
We recognize [X2]& = N(z, ). More generally, since g, (X*) = z* is a function belong-
ing to C,(RY), by an induction we have [X*]& € C2_(R?). Now let 7 € BT \ BY.

slow slow

Recall the formula obtained in [5];
[T]® = Sg(7) + P,y (gym (ﬂ)

+ Z(*l)n71 Z R® (g(T/JrUl) T g(gn—l/JrUn)v g(gn/+0n+1)v [‘77l+1]g)-

1<toppi1<t--<toi<tr

k

This is obtained from the expansion formula obtained in [5];
(B.3) gy(r/T0) —ga(r/"0)

= Z(_l)n_l Z go(7/T01) - 'gz(on*1/+0n)(gy(an/+g) - gz(an/+0))
n=1 o<to, <t <toy<tr

+gya(7/T0)

with o = 1 and by definition of the R° operator. Since 7 € BT \ B, we have Sg(7) €

@f;’p(Rd) and P, ,(gy(7)) € Cglp(Rd). For the R° terms, we apply Proposition 31

to (B.3). If o € BY, then since 7/*0 € span(B* \ BY), by assumption B(2), we
have g, (7/T0) € L2 (R?) and g,.(1/%0) € G‘Tl*lgl(Rd x R%). For the sum over

rap (2),rap
o<t o, <t - <t oy <7, we can see that at least one element among
g(7/+01)a LR} g(anfl/—i_an), g(Un/+U)
belongs to L5, (RY). Indeed, if oy, ¢ B% then g(o,/%0) € L5 (R). Otherwise,

if 0,1 ¢ BY then g(o,_1/T0,) € L5 (R?). Since 7 ¢ B, for at least one i we have
g(oi/Toiy1) € L3g,(R?). Since L (RY) - L35, (RY) C L5, (R?), we can apply Propo-
sition 31(a) to get

oo

DD Y R(g(r/Ton) - -gon-1/Ton),g(0n/ o), [0]F) € I (RY).

n=1 o<to, <t <to <t
If o ¢ B}, since gy, (7/%0) € GL;‘)_‘U‘(Rd x R%) and [o]& € C’LZ'I,(R‘{) we can apply
Proposition 31(b) to get the same estimate. Hence we obtain the required estimates
in the formula (B.2).

To get (3.5) from (B.2), it is sufficient to show

(B.4) [7]& — [7]8 € €, (RY)

rap
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for any 7 € BT \ B}. Assume that all v € B+ \ BE with |v| < |7| satisfy (B.4).
Then we have

[FIE= 8= D PaasinlWE— Y. Pyujinlv]®

1<tv<tr 1<ty<tr
V%’B;
= Z Pe(r/+v) ([V]g - [[Vﬂg) + Z Pg(T/+Xk)[Xk]g.
1<V';V®<£'T k#0

The first term belongs to €25 (R?) by assumption. For the second term, since [X*]& €
Cxw(R?) and g(7/TX*) € Lgg, (RY), we can complete the proof.
One can obtain formula (3.6) in the similar way. As above, we define the quan-

tity [7]M for each 7 € B by

MNr= Z Pe(r /™ + [7]M.

v<T,VEB

Then we can show that [V]M € CL(RY), if v € B\ By, and VM € €2 (RY), if
v € Bx. The only difference is that, for 7 € B \ Bx, we use the formula obtained

in [5]

[7]8 = S(N7) + Po, (ME7) (1)

+3 D ST R(g(r/on) - 8(0n-1/00), 800 /Tn i) [onsa]™),

and use Proposition 32 to get P, ((M&7)(y)) € GLQL(Rd). Since the property (B.4)
also holds for the operator [-]M — []M, we can conclude (3.6). O

Proof of Theorem 13. — (3.7) is proved by a similar argument as Theorem 12. See
[5, Th.14] for details. More easily, it is useful to consider the extended algebra T4
defined in Section 4.2. Since a modeled distribution f € D7(T,g) defines a g-part of
the model on T; by Lemma 21, we have

fo =8(Fs) = > Per,)[1/7]8 + [Fo]®.

o<p
M/UEspan('BJr\fB;)

Thus [f,]€ = [F,]¢ € €l (RY).

As for (3.8), a similar interpretation is useful. Consider a symbol F' and an extended
model space Tr := T @ span(F). Giving the homogeneity |F| := « and the coproduct
formula

AF=F®1l,+ Y 70(F,),

TEB
[T|<v

the pair (T7,TF) turns out to be a regularity structure. (It is not difficult to check
that T is a comodule over Tj by using (4.11).) For given a reconstruction R f, we can
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define the model on T by setting [MF := Rf. Indeed, similarly to Lemma 21, we can
show that
MEF =Rf — N8 f(x).
Then (3.8) follows from (3.6) in Theorem 12. O
To complete the proof of Theorem 12, we define here the two-parameter extension

P™ of the modified paraproduct P™. Note that, there is an annulus A C R such that
the Fourier transform of the function

zr— Pi(z —y) Q;(x — 2)

is contained in 2/A (independently to y,z). Let x be a smooth function on R¢ sup-
ported in a larger annulus A’ and such that x = 1 on A. Letting R; = g1 ()((2_j~))7

we have
"= /// Rz = w)Pj(w = y)Q; (w = 2)A(y, 2) dydzduw.
R4 xR xR4
For m € Z, set
Q"= F (™ p5),
R =[x (277));
then they are smooth functions such that ijm = |V|~™Q; and Rm = V™R,

DEriNiTION 34. For any m € N and any two-variable distribution A on R¢ x R%,
define
QmA /// ] 1’ - ’U))Pj(’w — y)Q;m(u} - z)A(y,Z) dydzdw,
RdxR4d xRa
(P™A)(x) =Y (Q)'A) ().
j=1

If necessary, we emphasize the integrated variables by writing
P"A =P (A(y, 2)).
For the special case A(y, z) = f(y)g(z), we have the consistency relation
P"A = PPy

All the above estimates in this appendix still hold for these modified operators. Indeed,
because of the scaling properties

Q" () =2TMQe ™ (2w), Ry (x) = 2R (2,
we can show the following analogue of Lemma 29; for any o > 0 and a € Z, one has

1Rl =y llzdy £ 2750 ol
(B.5)
1@ = )lle =yl lol=dy £ 275 ol

Thus we can repeat the argument in this appendix as follows.
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— Proposition 30(a) still holds, since A;(P™A) = 37, . n Ai(Q]"A) for some
integer depending only on the support of .
— Proposition 30(b) still holds, since by the scaling property,

QmF /|Rm z —w)Pj(w— y)Q m(w—z)|\F(y,z)|dydzdw

S [ 1Ry =) By = Q50 = 2 (ol + 11:7)
X (lw—y|* + |w — 2|%) dydzdw
sz [Rp(z - w)lful; *du
S 277wl
— Proposition 31 still holds if R° is replaced by

R™(f,9,h) := P§'PJh — Pih,

by a parallel argument using (B.5).

Consequently, we can repeat the proof of Theorem 12 for any m € N.

APPE\IDIX C ThE SLOWLY GROWING SETTING

In applications of regularity structures to the study of singular stochastic PDEs
set in the entire space R? usually involve noises that do not have rapid decrease at
infinity, but rather have moderate growth at infinity. Our results can be formulated
as follows in this slightly modified setting.

We define the spaces #gow and D7
distributions, respectively, by replacing ‘rap’ in definitions in Section 3.2 by ‘slow’.
We can repeat the same arguments to obtain the variations of Theorems 1 and 5 with
the spaces Agow and D), respectively. All we need is to consider the weight |z|*
for some sufficiently large a, instead of any a € Z. Precisely, we need the following
minor modifications of the arguments.

dow Of slowly growing models and modeled

— Proposition 31 still holds under the assumption f# € 6(2) R? x RY) and

slow(
g € GSIOW(R ), instead of rapid decrease assumptions.
— Proposition 32 still holds under the assumption

sup [z]S|Azlleso < o0
zERY

for some a € Z, and for any ¢, ©° € Dgf)w and ¢! € (32’2)[2’{0 (R4 x RY).

— Lemma 19 still holds for some a € Z, instead of any a.

Details are left to readers. We end this appendix by writing the precise statements of
main theorems.
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Tueorem 35. Let  be a concrete regqularity structure satisfying assumptions
(A—C). Then one can construct a locally Lipschitz continuous map

Maoe( TR — [ el ®Yx T ehl®d

slow slow
(C.1) ceBHBL TEBNBx

(g,N) — ([[UHM,[[T]]g; oe BT \'B;_(,T cB \Bi)

by giving paracontrolled representations of g and N, for (g,N) € Mrap( T, RY). Fur-
thermore, Maow (T ,RY) is locally bi-Lipschitz homeomorphic to the product space

ITel®)x J[ el ®.

oegt TEB,, |T|<0

Tueorem 36. — Let a concrete regularity structure 7 satisfy assumptions (A-D).
Pick v € R~ {0} such thaty—|7| ¢ N for any basis element T of T with |7| < ~, and
M = (g,M) € Myow(T,RY). Then one can construct a locally Lipschitz continuous

map
Dl (Tg) — [ €l (®Y
TEB, |T|<Y

by giving a paracontrolled representation of elements in D) (T,g). Furthermore,

DY (T, g) is locally bi-Lipschitz homeomorphic to the product space

slow
T enrwy).

TEB,, |T|<y
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