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AN INTEGRAL MODEL OF

THE PERFECTOID MODULAR CURVE

by Juan Esteban Rodríguez Camargo

Abstract. —We construct an integral model of the perfectoid modular curve. Studying this
object, we prove some vanishing results for the coherent cohomology at perfectoid level. We use
a local duality theorem at finite level to compute duals for the coherent cohomology of the
integral perfectoid curve. Specializing to the structural sheaf, we can describe the dual of the
completed cohomology as the inverse limit of the integral cusp forms of weight 2 and trace
maps.

Résumé (Un modèle entier de la courbe modulaire perfectoïde). — Nous construisons un modèle
entier de la courbe modulaire perfectoïde. Avec cet objet nous montrons des résultats d’annula-
tion de la cohomologie cohérente au niveau perfectoïde. Nous utilisons un théorème de dualité
locale au niveau fini pour obtenir une dualité pour la cohomologie cohérente au niveau infini.
Finalement, en considérant le faisceau structural, nous obtenons une description du dual de
la cohomologie complétée en termes des formes modulaires cuspidales de poids 2 et des traces
normalisées.
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Introduction

Throughout this article we fix a prime number p, Cp the p-adic completion of an
algebraic closure of Qp, and {ζm}m∈N ⊂ Cp a compatible system of primitive roots of
unity. Given a non-archimedean field K we let OK denote its valuation ring. We let Fp
be the residue field of OCp and Z̆p = W (Fp) ⊂ Cp the ring of Witt vectors. Let Zcyc

p

and Z̆cyc
p denote the p-adic completions of the p-adic cyclotomic extensions of Zp

and Z̆p in Cp respectively.

Mathematical subject classification (2020). — 14G35, 14F17, 14G45.
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e-ISSN: 2270-518X http://jep.centre-mersenne.org/

http://jep.centre-mersenne.org/


1194 J. E. Rodríguez Camargo

Let M > 1 be an integer and Γ(M) ⊂ GL2(Z) the principal congruence sub-
group of level M . We fix N > 3 an integer prime to p. For n > 0 we denote by
Y (Npn)/SpecZp the integral modular curve of level Γ(Npn) and X(Npn) its com-
pactification, cf. [KM85]. We denote by X(Npn) the completion of X(Npn) along its
special fiber, and by X(Npn) its analytic generic fiber seen as an adic space over
Spa(Qp,Zp), cf. [Hub96].

In [Sch15], Scholze constructed the perfectoid modular curve of tame level Γ(N).
He proved that there exists a perfectoid space X(Np∞), unique up to a unique iso-
morphism, satisfying the tilde limit property

X(Np∞) ∼ lim←−
n

X(Npn),

see [SW13, Def. 2.4.1] and [Hub96, Def. 2.4.2].
The first result of this paper is the existence of a Katz-Mazur integral model of

the perfectoid modular curve. More precisely, we prove the following theorem, see
Section 2 for the notion of a perfectoid formal scheme.

Theorem 0.1. — The inverse limit X(Np∞) = lim←−n X(Npn) is a perfectoid formal
scheme over Spf Zcyc

p whose analytic generic fiber is naturally isomorphic to the per-
fectoid modular curve X(Np∞).

The integral perfectoid modular curve X(Np∞) was previously constructed by Lurie
in [Lur20], his method reduces the proof of perfectoidness to the ordinary locus via
a mixed characteristic version of Kunz’s theorem. The strategy in this paper is more
elementary: we use faithfully flat descent to deduce perfectoidness of X(Np∞) from
the description of the stalks at the Fp-points. Then, we deal with three different kind
of points:

– The ordinary points where we use the Serre-Tate parameter to explicitly compute
the deformation rings, cf. [Kat81, §2].

– The cusps where we have explicit descriptions provided by the Tate curve,
cf. [KM85, §8–10].

– The supersingular points where even though we do not compute explicitly the
stalk, one can proves that the Frobenius map is surjective modulo p.
It is worth mentioning that the study of the ordinary locus in Lurie’s approach and
the one presented in this document are very related, see [Lur20, Prop. 2.2] and Propo-
sition 1.5 below.

As an application of the integral model we can prove vanishing results for the
coherent cohomology of the perfectoid modular curve. Let Esm/X(N) be the semi-
abelian scheme extending the universal elliptic curve over Y (N), cf. [DR73]. Let
e : X(N)→ Esm be the unit section and ωE = e∗Ω1

Esm/X(N) the sheaf of invari-
ant differentials. For n > 0 we denote by ωE,n the pullback of ωE to X(Npn), and
Dn ⊂ X(Npn) the reduced cusp divisor. Let k ∈ Z, we denote ωkE,n = ω⊗kE,n and
ωkE,n,cusp = ωkE,n(−Dn).

J.É.P. — M., 2021, tome 8



An integral model of the perfectoid modular curve 1195

Let ωkE,∞ be the pullback of ωkE to X(Np∞), and ωkE,∞,cusp the p-adic completion of
the direct limit of the cuspidal modular sheaves ωkE,n,cusp. In the following we consider
almost mathematics with respect to the maximal ideal of Zcyc

p .

Theorem 0.2. — Let F = ωkE,∞ or ωkE,∞,cusp and F+
µ = F ⊗̂OX(Np∞)

O+
X(Np∞). There

is an almost quasi-isomorphism of complexes

R Γan(X(Np∞),F+
µ ) 'ae R Γ(X(Np∞),F).

Moreover, the following holds
(1) The cohomology complex R Γ(X(Np∞),F) is concentrated in degree 0 if k > 0,

degree [0, 1] for k = 0, and degree 1 if k < 0.
(2) For k ∈ Z and i, s > 0, we have Hi(X(Np∞),F)/ps = Hi(X(Np∞),F/ps) and

Hi(X(Np∞),F) = lim←−s Hi(X(Np∞),F/ps).
(3) The cohomology groups Hi(X(Np∞),F) are torsion-free.

Next, we use Serre duality and Pontryagin duality to construct a local duality
theorem for the modular curves at finite level. In the limit one obtains the following
theorem

Theorem 0.3. — Let Xn be the connected component of X(Npn)Z̆p defined as the
locus where the Weil pairing of the universal basis of E[N ] is equal to ζN . We denote
X∞ = lim←−n Xn. Let F = ωkE,∞ or ωkE,∞,cusp and Fn = ωkE,n or ωkE,n,cusp respectively.
There is a natural GL2(Qp)-equivariant isomorphism

HomZ̆cyc
p

(Hi(X∞,F), Z̆cyc
p ) = lim←−

n,T̃rn

H1−i(Xn,F
∨
n ⊗ ω2

E,n,cusp),

where the transition maps in the RHS are given by normalized traces, and F∨n is the
dual sheaf of Fn.

Finally, we specialize to the case F = OX∞ where the completed cohomology ap-
pears. Let Xn be a connected component of X(Npn)Z̆p as in the previous theorem.
Let i > 0 and let H̃i = lim←−s lim−→n

Hi
ét(Xn,Cp ,Z/psZ) be the completed i-th coho-

mology group, where Xn,Cp = Xn ×Spec Z̆p[ζpn ] SpecCp. Note that this is a slightly
different version of Emerton’s completed cohomology [Eme06], where one considers
the étale cohomology with compact supports of Yn,Cp ⊂ Xn,Cp . Nevertheless, both
cohomologies are related via the open and closed immersions Yn ⊂ Xn ⊃ Dn. Follow-
ing the same ideas of [Sch15, §4.2] one can show that H̃i ⊗̂Zp OCp is almost equal to
Hi

an(X∞,Cp ,O
+
X∞

), in particular it vanishes for i > 2 and H̃0 = Zp. Using the theorem
above we obtain the following result.

Theorem 0.4. — There is a GL2(Qp)-equivariant almost isomorphism of almost
OCp-modules

HomOCp
(H̃1 ⊗̂Zp OCp ,OCp) =ae lim←−

n,T̃rn

H0(Xn,Cp , ω
2
E,∞,cusp).

J.É.P. — M., 2021, tome 8



1196 J. E. Rodríguez Camargo

The outline of the paper is the following. In Section 1 we recall the construc-
tion of the integral modular curves at finite level; they are defined as the moduli
space parametrizing elliptic curves endowed with a Drinfeld basis of the torsion sub-
groups, we will follow [KM85]. Then, we study the deformation rings of the modular
curves at Fp-points. For ordinary points we use the Serre-Tate parameter to describe
the deformation ring at level Γ(Npn). We show that it represents the moduli prob-
lem parametrizing deformations of the p-divisible group E[p∞], and a split of the
connected-étale short exact sequence

0 −→ Ê −→ E[p∞] −→ E[p∞]ét −→ 0.

For cusps we refer to the explicit computations of [KM85, §§8 & 10]. Finally, in the
case of a supersingular point we prove that any element of the local deformation ring
at level Γ(Npn) admits a p-th root modulo p at level Γ(Npn+1).

In Section 2 we introduce the notion of a perfectoid formal scheme. We prove
Theorem 0.1 reducing to the formal deformation rings at Fp-points via faithfully flat
descent. We will say some words regarding Lurie’s construction of X(Np∞). It is worth
mentioning that the tame level Γ(N) is taken only for a cleaner exposition, by a result
of Kedlaya-Liu about quotients of perfectoid spaces by finite group actions [KL19,
Th. 3.3.26], there are integral models of any tame level.

In Section 3, we use Serre and Pontryagin duality to define a local duality pairing
for the coherent cohomology of vector bundles over an lci projective curve over a finite
extension of Zp.

In Section 4, we compute the dualizing complexes of the modular curves at finite
level. We prove the cohomological vanishing of Theorem 0.2 and its comparison with
the cohomology of the perfectoid modular curve. We prove the duality theorem at
infinite level, Theorem 0.3, and specialize to F = OX∞ to obtain Theorem 0.4.

Acknowledgments. — The construction of the integral perfectoid modular curve ini-
tiated as a problem of a mémoire of M2 in 2019. I should like to convey my special
gratitude to Vincent Pilloni for encouraging me to continue with the study of the
coherent cohomology at perfectoid level, and its application to the completed coho-
mology. I would like to thank George Boxer and Joaquin Rodrigues Jacinto for all the
fruitful discussions of the subject. I wish to express special thanks to the anonymous
referee for the careful proofreading of this paper, and for the numerous suggestions
and corrections that have notably improved the presentation of this text. Particularly,
for the remark that Theorem 0.3 holds for all the sheaves involved and not only for
the structural sheaf. This work has been done while the author was a PhD student
at the ENS de Lyon.

1. A brief introduction to the Katz-Mazur integral modular curves

Let N > 3 be an integer prime to p and n ∈ N. Let Γ(Npn) ⊂ GL2(Z) be the
principal congruence subgroup of level Npn.

J.É.P. — M., 2021, tome 8



An integral model of the perfectoid modular curve 1197

Drinfeld bases. — We recall the definition of a Drinfeld basis for the M -torsion of
an elliptic curve

Definition 1.1. — Let M be a positive integer, S a scheme and E an elliptic curve
over S. A Drinfeld basis of E[M ] is a morphism of group schemes ψ : (Z/MZ)2 →
E[M ] such that the following equality of effective divisors holds

(1.1) E[M ] =
∑

(a,b)∈(Z/MZ)2

ψ(a, b).

We also write (P,Q) = (ψ(1, 0), ψ(0, 1)) for the Drinfeld basis ψ.

Remark 1.2. — The left-hand-side of (1.1) is an effective divisor of E/S being a finite
flat group scheme over S. The right-hand-side is a sum of effective divisors given by
the sections ψ(a, b) of S to E. Furthermore, ifM is invertible over S, a homomorphism
ψ : Z/MZ → E[M ] is a Drinfeld basis if and only if it is an isomorphism of group
schemes, cf. [KM85, Lem. 1.5.3].

Proposition 1.3. — Let E/S be an elliptic curve. Let (P,Q) be a Drinfeld basis of
E[M ] and eM : E[M ]× E[M ]→ µM the Weil pairing. Then eM (P,Q) ∈ µ×M (S) is a
primitive root of unity , i.e., a root of the M -th cyclotomic polynomial.

Proof. — [KM85, Th. 5.6.3]. �

LetM > 3. From [KM85, Th. 5.1.1 & Sch. 4.7.0], the moduli problem parametrizing
elliptic curves E/S and Drinfeld bases (P,Q) of E[M ] is representable by an affine
and regular curve over Z. We denote this curve by Y (M) and call it the (affine)
integral modular curve of level Γ(M). By an abuse of notation, we will write Y (M)

for its scalar extension to Zp.
The j-invariant is a finite flat morphism of Zp-schemes j : Y (M) → A1

Zp . The
compactified integral modular curve of level Γ(M), denoted by X(M), is the normal-
ization of P1

Zp in Y (M) via the j-invariant. The cusps or the boundary divisor D is the
closed reduced subscheme of X(M) defined by 1/j = 0. The curve X(M) is projective
over Zp and a regular scheme. We refer to X(M) and Y (M) simply as the modular
curves of level Γ(M).

Let Euniv/Y (M) be the universal elliptic curve and (Puniv,M , Quniv,M ) the universal
Drinfeld basis of Euniv[M ]. Let ΦM (X) be the M -th cyclotomic polynomial, and
let Zp[µ×M ] denote the ring Zp[X]/(ΦM (X)). The Weil pairing of (Puniv,M , Quniv,M )

induces a morphism of Zp-schemes

eM : Y (M) −→ SpecZp[µ×M ].

The map eM extends uniquely to a map eM : X(M) → SpecZp[µ×M ] by normal-
ization. In addition, eM is geometrically reduced, and has geometrically connected
fibers.

J.É.P. — M., 2021, tome 8



1198 J. E. Rodríguez Camargo

Taking N as in the beginning of the section, and n ∈ N varying, we construct the
commutative diagram
· · · X(Npn+1) X(Npn) X(Npn−1) · · ·

· · · Spec(Zp[µ×Npn+1 ]) Spec(Zp[µ×Npn ]) Spec(Zp[µ×Npn−1 ]) · · · ,

the upper horizontal arrows being induced by the map
(Puniv,Npn+1 , Quniv,Npn+1) 7−→ (pPuniv,Npn+1 , pQuniv,Npn+1) = (Puniv,Npn , Quniv,Npn),

and the lower horizontal arrows by the natural inclusions. In fact, the commutativ-
ity of the diagram is a consequence of the compatibility of the Weil pairing with
multiplication by p

eNpn+1(pPuniv,Npn+1 , pQuniv,Npn+1) = eNpn(Puniv,Npn , Quniv,Npn)p,

cf. [KM85, Th. 5.5.7 & 5.6.3].

Deformation rings at Fp-points. — Let k = Fp be an algebraic closure of Fp. Let
{ζNpn}n∈N be a fixed sequence of compatible primitive Npn-th roots of unity, set
ζpn = ζNNpn . Let Z̆p = W (k) denote the ring of integers of the p-adic completion
of the maximal unramified extension of Qp. In the next paragraphs we will study
the deformation rings of the modular curve at the closed points X(Npn)(k). We let
X(Npn)Z̆p denote the compactified modular curve over Z̆p of level Γ(Npn). Proposi-
tion 8.6.7 of [KM85] implies that X(Npn)Z̆p = X(Npn)×SpecZp Spec Z̆p.

There is an isomorphism Z̆p[µ×Npn ] ∼=
∏
k∈(Z/NZ)× Z̆p[ζpn ] given by fixing a primitive

N -th root of unity in Z̆p. Let X(Npn)◦Z̆p
be the connected component of the modular

curve which corresponds to the root ζN . In other words, X(Npn)◦Z̆p
is the locus of

X(Npn)Z̆p where eNpn(Puniv,Npn , Quniv,Npn) = ζNpn . We denote P (n)
univ := NPuniv,Npn

and Q(n)
univ := NQuniv,Npn .

Finally, given an elliptic curve E/S, we denote by Ê the completion of E along the
identity section.

The ordinary points. — Let Artk be the category of local artinian rings with residue
field k, whose morphisms are the local ring homomorphisms compatible with the
reduction to k. Any object in Artk admits an unique algebra structure over Z̆p. Let
Z̆p[ζpn ]-Artk denote the subcategory of Artk of objects endowed with an algebra
structure of Z̆p[ζpn ] compatible with the reduction to k. Following [Kat81], we use
the Serre-Tate parameter to describe the deformation rings at ordinary k-points of
X(Npn)Z̆p .

Let E0 be an ordinary elliptic curve over k and R an object in Artk. A deformation
of E0 to R is a pair (E, ι) consisting of an elliptic curve E/R and an isomorphism
ι : E ⊗R k → E0. We define the deformation functor EllE0 : Artk → Sets by the rule

R 7−→ {(E, ι) : deformation of E0 to R}/ ∼ .

J.É.P. — M., 2021, tome 8



An integral model of the perfectoid modular curve 1199

Then EllE0
sends an artinian ring R to the set of deformations of E0 to R modulo

isomorphism.
Let Q be a generator of the physical Tate module TpE0(k) = Tp(E0[p∞]ét). Let Gm

be the multiplicative group over Z̆p and Ĝm its formal completion along the identity.
We have the following pro-representability theorem

Theorem 1.4 ([Kat81, Th. 2.1])
(1) The functor EllE0 is pro-representable by the formal scheme

HomZp(TpE0(k)⊗ TpE0(k), Ĝm).

The isomorphism is given by the Serre-Tate parameter q, which sends a deformation
E/R of E0 to a bilinear form

q(E/R; ·, ·) : TpE0(k)× TpE0(k) −→ Ĝm(R).

By evaluating at the fixed generator Q of TpE0(k), we obtain the more explicit de-
scription

EllE0 = Spf(Z̆p[[X]]),

where X = q(Euniv/EllE0
;Q,Q)− 1.

(2) Let E0 and E′0 be ordinary elliptic curves over k, let π0 : E0 → E′0 be a
homomorphism and πt0 : E′0 → E0 its dual. Let E and E′ be liftings of E0 and E′0 to R
respectively. A necessary and sufficient condition for π0 to lift to a homomorphism
π : E → E′ is that

q(E/R;α, πt(β)) = q(E′/R;π(α), β)

for every α ∈ TpE(k) and β ∈ TpE′(k).

We deduce the following proposition describing the ordinary deformation rings of
finite level:

Proposition 1.5. — Let x ∈ X(Npn)◦Z̆p
(k) be an ordinary point, say given by a triple

(E0, P0, Q0), and write (P
(n)
0 , Q

(n)
0 ) = (NP0, NQ0). Let Ax denote the deformation

ring of X(Npn)◦Z̆p
at x. Then there is an isomorphism

(1.2) Ax ∼= Z̆p[ζpn ][[X]][T ]/
(
(1 + T )p

n

− (1 +X)
)

= Z̆p[ζpn ][[T ]]

such that:
(i) the map (1.2) is Z̆p[ζpn ]-linear.
(ii) the variable 1 +X is equal to the Serre-Tate parameter q(Euniv/Ax;Q,Q);
(iii) the variable 1 + T is equal to the Serre-Tate parameter

q(E′univ/Ax, (π
t)−1(Q), (πt)−1(Q))

of the universal deformation π : Euniv → E′univ of the étale isogeny π0 : E0 → E0/C0,
with C0 = E0[pn]ét.

J.É.P. — M., 2021, tome 8



1200 J. E. Rodríguez Camargo

Proof. — The group scheme E0[N ] is finite étale over k, which implies that a defor-
mation of (E0, P0, Q0) is equivalent to a deformation of (E0, P

(n)
0 , Q

(n)
0 ). The group

SL2(Z/pnZ) acts transitively on the set of Drinfeld bases of E0[pn] with Weil pair-
ing ζpn . Without loss of generality, we can assume that P (n)

0 = 0 and that Q(n)
0 gen-

erates E0[pn](k), see [KM85, Th. 5.5.2]. Let Euniv denote the universal elliptic curve
over Ax and C ⊂ Euniv[pn] the subgroup generated by Q

(n)
univ, it is an étale group

lifting the étale group C0 = E0[pn]ét. The base (P
(n)
univ, Q

(n)
univ) provides a splitting of

the exact sequence

0 Êuniv Euniv[pn] C0 0.

Q
(n)
univ

Conversely, let R be an object in Z̆p[ζpn ]-Artk and E/R a deformation of E0. Let C be
an étale subgroup of E[pn] of rank pn. Then there exists a unique Q(n) ∈ C reducing
to Q(n)

0 modulo the maximal ideal. By Cartier duality, there is a unique P (n)∈ Ê[pn]

such that e(P (n), Q(n)) = ζpn . The pair (P (n), Q(n)) is then a Drinfeld basis of E[pn]

lifting (P
(n)
0 , Q

(n)
0 ) (cf. [KM85, Prop. 1.11.2]). We have proved the equivalence of func-

tors of Z̆p[ζpn ]-Artk{Deformations E of E0 and
Drinfeld bases of E[pn]
with Weil pairing ζpn

}/
∼

←→
{ Deformations E of E0 and
étale subgroup C ⊂ E[pn] of rank pn

}/
∼ .

We also have a natural equivalence{ Deformations E of E0 and
étale subgroup C ⊂ E[pn] of rank pn

}/
∼

←→
{Deformations of the étale isogeny

π0 : E0 → E0/C0

}/
∼ .

Let E′univ/Z̆p[ζpn ][[T ]] denote the universal deformation of E0/C0. The universal étale
point Q(n)

univ induces an étale isogeny of degree pn over Ax

π : Euniv −→ E′univ

lifting the quotient π0:E0→E0/C0. Furthermore, the dual morphism πt:E′univ→Euniv

induces an isomorphism of the physical Tate modules πt : TpE
′
univ(k)

∼→ TpEuniv(k).
Let Q ∈ TpEuniv(k) be the fixed generator, and Q′ ∈ TpE′univ(k) its inverse under πt.
Theorem 1.4 implies

q(Euniv;Q,Q) = q(Euniv;Q, πt(Q′)) = q(E′univ;π(Q), Q′) = q(E′univ;Q′, Q′)p
n

.

We obtain the isomorphism

Ax ∼= Z̆p[ζpn ][[X,T ]]/
(
(1 + T )p

n

− (1 +X)
)

= Z̆p[ζpn ][[T ]],

where X = q(Euniv;Q,Q)− 1 and T = q(E′univ;Q′, Q′)− 1. �

J.É.P. — M., 2021, tome 8



An integral model of the perfectoid modular curve 1201

Remark 1.6. — Let x ∈ X(Npn)(k) be a closed ordinary point. The special fiber of
the map eNpn : X(Npn)→ SpecZp[µNpn ] is a union of Igusa curves with intersections
at the supersingular points [KM85, Th. 13.10.3]. The Igusa curves are smooth over Fp
[KM85, Th. 12.6.1], which implies that the deformation ring of X(Npn) at x is iso-
morphic to a power series ring Z̆p[[Tn]] (cf. discussion after [Wei13, Rem. 3.4.4]). The
content of the previous proposition is the explicit relation between the variables Tn
in the modular tower, see also [Lur20, Prop. 2.2].

The cusps. — Let Tate(q)/Zp((q)) be the Tate curve, we recall from [KM85, Ch. 8.8]
that it has j-invariant equal to

1/q + 744 + · · · .

We consider the ring Zp[[q]] as the completed stalk of P1
Zp at infinity. The Tate curve

provides a description of the modular curve locally around the cusps, for that reason
one can actually compute the formal deformation rings by means of this object, see
[KM85] and [DR73]. In fact, let Ĉusps[Γ(Npn)] be the completion of the modular
curve X(Npn)Z̆p along the cusps. From the theory developed in [KM85, Ch. 8&10],
more precisely Theorems 8.11.10 and 10.9.1, we deduce the following proposition:

Proposition 1.7. — We have an isomorphism of formal Z̆p[[q]]-schemes

Ĉusps([Γ(Npn)])
∼−−−→

⊔
Λ∈HomSurj((Z/NpnZ)2,Z/NpnZ)/±1

Spf(Z̆p[ζpn ][[q1/Npn ]]).

The morphism Ĉusps[Γ(Npn+1)]→ Ĉusps[Γ(Npn)] is induced by the natural inclusion

Z̆p[ζpn ][[q1/Npn ]] −→ Z̆p[ζpn+1 ][[q1/Npn+1

]]

on each respective connected component.

The supersingular points. — Let (xn ∈ X(Npn)Z̆p)n∈N be a sequence of compatible
supersingular points and E0 the elliptic curve defined over xn. We denote by Axn the
deformation ring ofX(Npn)Z̆p at xn. Let Euniv/Axn be the universal elliptic curve and
(P

(n)
univ, Q

(n)
univ) the universal Drinfeld basis of Euniv[pn]. We fix a formal parameter T of

Êuniv. Since xn is supersingular, any p-power torsion point belongs to Êuniv. We will
use the following lemma as departure point:

Lemma 1.8 ([KM85, Th. 5.3.2]). — The maximal ideal of the local ring Axn is gener-
ated by T (P

(n)
univ) and T (Q

(n)
univ).

By the Serre-Tate theorem [Kat81, Th. 1.2.1], and the general moduli theory of
1-dimensional formal groups over k [LT66], the deformation ring of X(N)Z̆p at a
supersingular point is isomorphic to Z̆p[[X]]. Moreover, the p-multiplication modulo p
can be written as [p](T ) ≡ V (T p) mod p, with V ∈ k[[X]][[T ]] the Verschiebung map
V : E

(p)
0 → E0. Without loss of generality we assume that V has the form

V (T ) = XT + · · ·+ u(X)T p + · · · ,
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with V (T ) ≡ T p mod X. Using the Weierstrass preparation theorem we factorize
V (T ) as

(1.3) V (T ) = T (X + · · ·+ ũ(X)T p−1)(1 +XTR(X,T )),

where ũ(0) = 1 and R ∈ k[[X,T ]].

Proposition 1.9. — The parameter X is a p-power in Ax1
/p. Moreover, the genera-

tors T (P
(n)
univ) and T (Q

(n)
univ) of the maximal ideal of Axn are p-powers in Axn+1

/p.

Proof. — The second claim follows from the first and the equality [p](T ) ≡ V (T p)

mod p. Consider n = 1 and write P = P
(1)
univ and Q = Q

(1)
univ. Let F : E0 → E

(p)
0 and

V : E
(p)
0 → E0 denote the Frobenius and Verschiebung homomorphisms respectively.

Using the action of GL2(Z/pZ), we can assume that P and F (Q) are generators of
kerF and kerV respectively (cf. [KM85, Th. 5.5.2]). We have the equality of divisors
on E(p)

univ/(Axn/p)

(1.4) kerV =

p−1∑
i=0

[i · F (Q)].

The choice of the formal parameter T gives a formal parameter of E(p)
univ such that

T (F (Q)) = T (Q)p. Therefore, from (1.4) we see that the roots of V (T )/T are
{[i](p)(T (Q)p)}16i6p−1 where [i](p)(T ) is the i-multiplication of the formal group of
E

(p)
univ. We obtain from (1.3)

X

ũ(X)
= (−1)p−1

p−1∏
i=1

([i](p)(T (Q)p)) =

(p−1∏
i=1

[i](T (Q))

)p
,

proving that X/ũ(X) is a p-power in Ax1
/p. As k[[X]] = k[[X/ũ(X)]] we are done. �

Corollary 1.10. — The Frobenius ϕ : lim−→n
Axn/p→ lim−→n

Axn/p is surjective.

Proof. — By induction on the graded pieces of the filtration defined by the ideal
(T (Pn), T (Qn)), one shows that Axn/p is in the image of the Frobenius restricted to
Axn+1

/p. �

Remark 1.11. — The completed local ring at a geometric supersingular point x of
X(Npn) is difficult to describe. For example, its reduction modulo p is the quotient
of the power series ring k[[X,Y ]] by some explicit principal ideal which is written
in terms of the formal group law of E at x [KM85, Th. 13.8.4]. Weinstein gives in
[Wei16] an explicit description of the deformation ring at a supersingular point of the
modular curve at level Γ(Np∞). In fact, Weinstein finds an explicit description of the
deformation ring at infinite level of the Lubin-Tate space parametrizing 1-dimensional
formal OK-modules of arbitrary height. In particular, he proves that the mx0

-adic
completion of the direct limit lim−→n

Axn is a perfectoid ring. Corollary 1.10 says that
the p-adic completion of lim−→n

Axn is perfectoid, which is a slightly stronger result.
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2. Construction of the perfectoid integral model

Perfectoid Formal spaces. — In this section we introduce a notion of perfectoid for-
mal scheme which is already considered in [BMS18, Lem. 3.10], though not explicitly
defined. We start with the affine pieces

Definition 2.1. — An integral perfectoid ring is a topological ring R containing a
non zero divisor π such that p ∈ πpR, satisfying the following conditions:

(i) the ring R is endowed with the π-adic topology. Moreover, it is separated and
complete;

(ii) the Frobenius morphism ϕ : R/πR→ R/πpR is an isomorphism.
We call π satisfying the previous conditions a pseudo-uniformizer of R.

Remark 2.2. — The previous definition of integral perfectoid rings is well suited
for p-adic completions of formal schemes. We do not consider the case where
the underlying topology is not generated by a non-zero divisor, for example, the
ring W (Fp)[[X1/p∞ , Y 1/p∞ ]] which is the (p,X, Y )-adic completion of the ring
W (Fp)[X1/p∞ , Y 1/p∞ ]. As is pointed out in [BMS18, Rem. 3.8], the notion of being
integral perfectoid does not depend on the underlying topology, however to construct
a formal scheme it is necessary to fix one.

Let R be an integral perfectoid ring with pseudo-uniformizer π, we attach to R the
formal scheme Spf R defined as the π-adic completion of SpecR. We say that Spf R is
a perfectoid formal affine scheme. The following lemma says that the standard open
subschemes of Spf R are perfectoid

Lemma 2.3. — Let f ∈ R. Then R〈f−1〉 = lim←−nR/π
n[f−1] is an integral perfectoid

ring.

Proof. — Let n, k > 0, as π is not a zero divisor we have a short exact sequence

0 −→ R/πn
πk−−−→ R/πn+k −→ R/πk −→ 0.

Localizing at f and taking inverse limits on n we obtain

0 −→ R〈f−1〉 πk−−−→ R〈f−1〉 −→ R/πk[f−1] −→ 0.

Then R〈f−1〉 is π-adically complete and π is not a zero-divisor. On the other hand,
localizing at f the Frobenius map ϕ : R/π

∼→ R/πp one gets

ϕ : R/π[f−1]
∼−−−→ R/πp[f−p] = R/πp[f−1],

which proves that R〈f−1〉 is an integral perfectoid ring. �

Definition 2.4. — A perfectoid formal scheme X is a formal scheme which admits an
affine cover X =

⋃
i Ui by perfectoid formal affine schemes.
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Let F be equal to Qp or Fp((t)), OF denote the ring of integers of F and $ be
a uniformizer of OF . Let Int-PerfOF be the category of perfectoid formal schemes
over OF whose structural morphism is adic, i.e., the category of perfectoid formal
schemes X/ Spf OF such that $OX is an ideal of definition of OX. Let PerfF be the
category of perfectoid spaces over Spa(F,OF ).

Proposition 2.5. — Let R be an integral perfectoid ring and π a pseudo-uniformizer.
The ring R[1/π] is a perfectoid ring in the sense of Fontaine [Fon13]. Furthermore,
there is a unique “generic fiber” functor

(−)η : Int-PerfOF −→PerfF

extending Spf R Spa(R[1/$], R+), where R+ is the integral closure of R in R[1/$].
Moreover, given X a perfectoid formal scheme over OF , its generic fiber is universal
for morphisms from perfectoid spaces to X. Namely, if Y is a perfectoid space and
(Y,O+

Y ) → (X,OX) is a morphism of locally and topologically ringed spaces, then
there is a unique map Y→ Xµ making the following diagram commutative

(Y,O+
Y ) (Xµ,O

+
Xµ

)

(X,OX)

Remark 2.6. — The universal property of the functor (−)µ is Huber’s characterization
of the generic fiber of formal schemes in the case of perfectoid spaces, see [Hub94,
Prop. 4.1].

Proof. — The first statement is [BMS18, Lem. 3.21]. For the construction of the func-
tor, let X be a perfectoid formal scheme over OF . One can define Xη to be the gluing of
the affinoid spaces Spa(R[1/$], , R+) for Spf R ⊂ X an open perfectoid formal affine
subscheme, this is well-defined after Lemma 2.3.

We prove the universal property of the generic fiber functor. Let Y ∈ PerfK and
let f : (Y,O+

Y ) → (X,OX) be a morphism of locally and topologically ringed spaces.
First, if Y = Spa(S, S+) is affinoid perfectoid and X = Spf R is perfectoid formal
affine, f is determined by the global sections map f∗ : R → S+. Then, there exists
a unique map of affinoid perfectoid rings f∗η : (R[1/$], R+)→ (S, S+) extending f∗.
By gluing morphisms from affinoid open subsets for a general Y, one gets that Xη :=

Spa(R[1/$], R+) satisfies the universal property. For an arbitrary X, one can glue the
generic fibers of the open perfectoid formal affine subschemes of X. �

We end this subsection with a theorem which reduces the proof of the perfectoidness
of the integral modular curve at any tame level to the level Γ(Np∞).

Theorem 2.7 (Kedlaya-Liu). — Let A be a perfectoid ring on which a finite group G
acts by continuous ring homomorphisms. Then the invariant subring AG is a perfec-
toid ring. Moreover, if R ⊂ A is an open integral perfectoid subring of A then RG is
an open integral perfectoid subring of AG.
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Proof. — The first statement is [KL19, Th. 3.3.26]. The second statement follows from
the description of open perfectoid subrings of A as p-power closed subrings of A◦, i.e.,
open subrings of A◦ such that xp ∈ R implies x ∈ R, see [Mor17, Cor. 2.2]. �

The main construction. — Let X(Np∞) denote Scholze’s perfectoid modular curve
[Sch15]. Let Zcyc

p be the p-adic completion of the p-adic cyclotomic integers
lim−→n

Zp[µpn ]. Let X(Npn) be the completion of X(Npn) along its special fiber.
We have the following theorem.

Theorem 2.8. — The inverse limit X(Np∞) := lim←−n X(Npn) is a p-adic perfectoid
formal scheme, it admits a structural map to Spf Zcyc

p [µN ], and its generic fiber is
naturally isomorphic to the perfectoid modular curve X(Np∞). Furthermore, let n > 0,
let SpecR ⊂ X(Npn) be an affine open subscheme, Spf R̂ its p-adic completion and
Spf R̂∞ the inverse image in X(Np∞). Then R̂∞ =

(
R̂∞[1/p]

)◦ and
(Spf R̂∞)η = Spa(R̂∞[1/p], R̂∞).

Remark 2.9. — The previous result gives a different proof of Scholze’s theorem that
the generic fiber X(Np∞) is a perfectoid space by more elementary means.

Proof. — The maps between the (formal) modular curves are finite and flat. Then
X(Np∞) := lim←−n X(Npn) is a flat p-adic formal scheme over Zp. Fix n0 > 0, let
SpecR ⊂ X(Npn0) and Spf R̂ ⊂ X(Npn0) be as in the theorem. For n > n0,
let SpecRn (resp. Spf R̂n) denote the inverse image of SpecR (resp. Spf R̂) in
SpecX(Npn) (resp. X(Npn)). Let R∞ := lim−→n

Rn and let R̂∞ be its p-adic comple-
tion.

Claim. — R̂∞ is an integral perfectoid ring, equal to (R̂∞[1/p])◦.

Suppose that the claim holds, it is left to show that X(Np∞)η is the perfectoid
modular curve X(Np∞). There are natural maps of locally and topologically ringed
spaces

(X(Npn),O+
X(Npn)) −→ (X(Npn),OX(Npn)).

We have X(Np∞) ∼ lim←−n X(Npn), where we use the notion of tilde limit [SW13,
Def. 2.4.1]. Then, by p-adically completing the inverse limit of the tower, we obtain a
map of locally and topologically ringed spaces

(X(Np∞),O+
X(Np∞)) −→ (X(Np∞),OX(Np∞)).

This provides a map f : X(Np∞)→ (X(Np∞))η. Since

(Spf R̂∞)η = Spa(R̂∞[1/p], R̂∞) ∼ lim←−
n

Spa(R̂n[1/p], R̂n),

and the tilde limit is unique in the category of perfectoid spaces [SW13, Prop. 2.4.5],
the map f is actually an isomorphism. �
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Proof of the claim. — First, by [Heu19, Lem.A.2.2.3] the ring (R̂n[1/p])◦ is the inte-
gral closure of R̂n in its generic fiber. By [Bha17, Lem. 5.1.2] and the fact that Rn
is a regular ring one gets that R̂n = (R̂n[1/p])◦ for all n > n0. As R∞ is faithfully
flat over Rn for all n, one easily checks that R̂∞ ∩ R̂n[1/p] = R̂n. Moreover, R∞ is
integrally closed in its generic fiber, and by Lemma 5.1.2 of loc. cit. again one ob-
tains that R̂∞ is integrally closed in R̂∞[1/p]. Let x ∈ R̂n[1/p] be power bounded in
R̂∞[1/p], then pxs ∈ R̂∞ for all s ∈ N, in particular {pxs}s∈N ⊂ R̂n which implies that
x ∈ R̂n. This shows that lim−→n

R̂n is dense in (R̂∞[1/p])◦, taking p-adic completions
one gets R̂∞ = (R̂∞[1/p])◦.

The Weil pairings evaluated at the universal Drinfeld basis (Puniv,Npn , Quniv,Npn)

of E[Npn] induce compatible morphisms X(Npn) → Spf Zp[µNpn ]. Taking inverse
limits one gets the structural map X(Np∞)→ Spf Zcyc

p [µN ]. In particular, there exists
π ∈ R̂∞ such that πp = pa with a ∈ Zcyc,×

p . To prove that R̂∞ is integral perfectoid
we need to show that the absolute Frobenius map

ϕ : R∞/π −→ R∞/p

is an isomorphism. The strategy is to prove this fact for the completed local rings of
the stalks of SpecR∞/p and use faithfully flat descent.

Injectivity is easy, it follows from the fact that R∞ is integrally closed in R∞[1/p].
To show that ϕ is surjective, it is enough to prove that the absolute Frobenius is
surjective after a profinite étale base change. Indeed, the relative Frobenius is an
isomorphism for profinite étale base changes. Let S = R⊗Zp Z̆p and let Ŝ = R̂ ⊗̂Zp Z̆p
be the p-adic completion of S. We use similar notation for Sn = Rn ⊗Zp Z̆p, Ŝn, S∞
and Ŝ∞. We have to show that the absolute Frobenius

ϕ : S∞/π −→ S∞/p

is surjective.
Let x = (xn0 , xn0+1, · · · , xn, · · · ) be a Fp-point of Spf Ŝ∞ which is an inverse limit

of Fp-points of Spf Ŝn. Write xn0
simply by x0. Then, it is enough to show that ϕ is

surjective after taking the stalk at x. Let Sn,xn be the localization of Sn at the prime xn
and S∞,x = lim−→n

Sn,xn . Let Ŝn,xn be the completion of Sn,xn along its maximal ideal.
Recall that the ring Sn is finite flat over S, this implies that Ŝn,xn = Sn,xn ⊗Sx0 Ŝx0

.
The scheme X(Npn) is of finite type over Zp, in particular every point has a closed

point as specialization. Thus, by faithfully flat descent, we are reduced to prove that
for every Fp-point x ∈ Spf S∞/p = lim←− Spf Sn/p, the Ŝx0-base change of

ϕ : S∞,x/π −→ S∞,x/p

is surjective (even an isomorphism). We have the following commutative diagram

S∞,x/π ⊗Sx0 Ŝx0 S∞,x/p⊗ϕ,Sx0 Ŝx0

lim−→ Ŝn,xn/π lim−→(Ŝn,xn/p⊗ϕ,Ŝx0 Ŝx0).

ϕ⊗ id
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The ring Rn is of finite type over Zp, so that the absolute Frobenius ϕ : Rn/π → Rn/p

is finite. This implies that Ŝn,xn/p is a finite Ŝx0
-module via the module structure

induced by the Frobenius. Then, the following composition is an isomorphism

Ŝn,xn/p⊗ϕ,Ŝx0 Ŝx0
−→ lim←−

m

Ŝn,xn/(p,m
mp
S ) ∼= Ŝn,xn/p,

where mS is the maximal ideal of Sx0
. Thus, we are reduced to prove that the absolute

Frobenius ϕ : lim−→n
Ŝn,xn/π → lim−→n

Ŝn,xn/p is surjective. Finally, we deal with the
cusps, the supersingular and the ordinary points separately; we use the descriptions
of Section 1:

– In the ordinary case, the local ring Ŝn,xn is isomorphic to Z̆p[ζpn ][[Xn]]. From the
proof of Proposition 1.5, one checks that the inclusion Ŝn,xn → ̂Sn+1,xn+1 is given by
Xn = (1 +Xn+1)p−1. Then, one obtains the surjectivity of Frobenius when reducing
modulo p.

– The supersingular case is Corollary 1.10.
– Finally, if we are dealing with a cusp x, the ring Ŝn,xn is isomorphic to

Z̆p[ζpn ][[q1/Npn ]] and Ŝn,xn → ̂Sn+1,xn+1 is the natural inclusion by Proposition 1.7.
The surjectivity of ϕ is clear. �

Relation with Lurie’s stack. — In this subsection we make more explicitly the re-
lation between Lurie’s construction of X(Np∞) and the one presented in this article.
The key result is the following theorem.

Theorem 2.10 ( [Lur20, Th. 1.9]). — Let π ∈ Zp[µp2 ] be a pseudo-uniformizer
such that πp = ap where a is a unit. For n > 3 there exists a unique morphism
θ : X(Npn)/π → X(Npn−1)/p making the following diagram commutative(1)

X(Npn)/p X(Npn)/π

X(Npn−1)/p X(Npn−1)/π,

ϕ

θ

ϕ

where ϕ is the absolute Frobenius.

This theorem can be deduced from the local computations made in Section 1.
Indeed, let xn ∈ X(Npn)(Fp) be a Fp-point and xn−1 ∈ X(Npn−1)(Fp) its image.
We have proved that there exists a unique map of the deformation rings at the points
xn−1 and xn

θ∗ : ÔX(Npn−1),xn−1
/p −→ ÔX(Npn),xn/π

(1)The assumption n > 3 is only to guarantee that O(X(Npn−1)) contains π.
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making the following diagram commutative

ÔX(Npn),xn/p ÔX(Npn),xn/π

ÔX(Npn−1),xn−1
/p ÔX(Npn−1),xn−1

/π.

ϕ∗

θ∗

ϕ∗

This corresponds to Propositions 1.5, 1.7 and 1.9 for xn ordinary, a cusp and a su-
persingular point respectively. Then, one constructs θ using faithfully flat descent
from the completed local rings to the localized local rings at xn, and gluing using the
uniqueness of θ∗.

3. Cohomology and local duality for curves over OK

LetK be a finite extension of Qp and OK its valuation ring. In this section we recall
the Grothendieck-Serre duality theorem for local complete intersection (lci) projective
curves over OK , we will follow [Har66]. Then, we use Pontryagin duality to define a
local duality paring of coherent cohomologies.

Let X be a locally noetherian scheme and D(X) the derived category of OX -mod-
ules. We use subscripts c, qc on D(X) for the derived category of OX -modules with
coherent and quasi-coherent cohomology, the subscript fTd refers to the subcategory
of complexes with finite Tor dimension. We use superscripts +,−,b for the derived
category of bounded below, bounded above and bounded complexes respectively. For
instance, Db

c(X)fTd is the derived category of bounded complexes of OX -modules
of finite Tor dimension and coherent cohomology. If X = SpecA is affine, we set
D(A) := Dqc(X), the derived category of A-modules.

Definition 3.1. — Let f : X → Y be a morphism of schemes.
(1) The map f is embeddable if it factors as X ι→ S → Y where ι is a finite

morphism and S is smooth over Y .
(2) The map f is projectively embeddable if it factors as composition X ι→ PnY → Y

for some n > 0, where ι a finite morphism.
(3) The map f is a local complete intersection if locally on Y and X it factors as

X
ι→ S → Y , where S is a smooth Y -scheme, and ι is a closed immersion defined by

a regular sequence of S. The length of the regular sequence is called the codimension
of X in S.

Theorem 3.2 (Hartshorne). — Let f : X → Y be a projectively embeddable morphism
of noetherian schemes of finite Krull dimension. Then there exist an exceptional in-
verse image functor f ! : D(Y ) → D(X), a trace map Tr : Rf∗f

! → 1 in D+
qc(Y ), and

an adjunction

θ : R f∗R HomX(F, f !G)
∼−−−→ R HomY (R f∗F,G)

for F ∈ D−qc(X) and G ∈ D+
qc(Y ).
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Moreover, the formation of the exceptional inverse image is functorial. More pre-
cisely, given a composition X

f→ Y
g→ Z with f, g and gf projectively embeddable,

there is a natural isomorphism (gf)! ∼= f !g!. This functor commutes with flat base
change. Namely, let u : Y ′ → Y be a flat morphism, f ′ : X ′ → Y ′ the base change
of X to Y ′ and v : X ′ → X the projection. Then there is a natural isomorphism of
functors v∗f ! = f ′

!
u∗.

Proof. — We refer to [Har66, Th. III.8.7] for the existence of f !, its functoriality and
compatibility with flat base change. See Theorems III.10.5 and III.11.1 of loc. cit. for
the existence of Tr and the adjunction θ respectively. �

Example 3.3. — Let f : X → Y be a morphism of finite type of noetherian schemes
of finite Krull dimension.

(1) We can define the functor f ! for finite morphisms as

f !F = f−1 R HomOY (f∗OX ,F) for F ∈ D(Y ).

The duality theorem in this case is equivalent to the (derived) ⊗-Hom adjunction, see
[Har66, §III.6].

(2) Let f be smooth of relative dimension n, then one has f !F = F ⊗ ω◦X/Y [n]

where ω◦X/Y = ΛnΩ1
X/Y , see [Har66, §III.2].

Lemma 3.4. — Let f : X → Y be an lci morphism of relative dimension n between
locally noetherian schemes of finite Krull dimension. Then f !OY = ω◦X/Y [n] with
ω◦X/Y an invertible OX-module.

Proof. — Working locally on Y andX, we may assume that f factors asX ι→ S
g→ Y ,

where g is a smooth morphism of relative dimension m, and ι is a regular closed
immersion of codimension m−n defined by an ideal I = (f1, . . . , fm−n). Let ω◦S/Y =

ΛmΩ1
S/Y be the sheaf of m-differentials of S over Y , then

f !OY = ι!g!OY

= ι−1 R HomOS (ι∗OX , ω
◦
S/Y [m])

= ι−1 R HomOS (OS/I , ω◦S/Y )[m].

Let K(f) be the Koszul complex of the regular sequence f = (f1, . . . , fm−n). Then
K(f) is a flat resolution of OS/I , its dual K(f)∨ = HomOS (K(f),OS) is a flat
resolution of (OS/I )[−(m− n)]. Therefore

f !OY ' ι−1 HomOS (K(f), ω◦S/Y )[m]

= ι−1K(f)∨ ⊗ ω◦S/Y [m]

' ι−1(OS/I ⊗L ω◦S/Y [n])

= ι−1((ω◦S/Y /I )[n]) = ι∗ω◦S/Y [n],

which is an invertible sheaf of OX -modules as required. �
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Remark 3.5. — Let f : X → Y be a regular closed immersion of codimension n

defined by the ideal I . From the proof of Lemma 3.4 one can deduce that f !OY =

Λnf∗(I /I 2)∨[−n] is the normal sheaf concentrated in degree n.

The compatibility of f ! with tensor products allows us to compute f !F in terms
of f∗F and f !OY :

Proposition 3.6 ([Har66, Prop. III.8.8]). — Let f : X → Y be an embeddable mor-
phism of locally noetherian schemes of finite Krull dimension. Then there are functo-
rial isomorphisms

(1) f !F⊗L Lf∗G→ f !(F ⊗L G) for F ∈ D+
qc(Y ) and G ∈ Db

qc(Y )fTd.
(2) R HomX(Lf∗F, f !G)→f !(R HomY (F,G)) for F∈D−c (Y ) and G∈D+

qc(Y ).
Moreover, if f is an lci morphism, then f !OY is invertible and we have f !G ∼=

f !OY ⊗ Lf∗G for G ∈ Db
qc(Y )fTd. We call f !OY the dualizing sheaf of f .

We now prove the local duality theorem for vector bundles over lci projective curves:

Proposition 3.7. — Let f : X → SpecOK be an lci projective curve, and let ω◦X/OK
be the dualizing sheaf of f , i.e., the invertible sheaf such that ω◦X/OK [1] = f !OK . Let F
be a locally free OX-module of finite rank, then:

(1) R f∗F is representable by a perfect complex of length [0, 1];
(2) we have a perfect pairing

H0(X,F ⊗K/OK)×H1(X,F∨ ⊗ ω◦X/OK ) −→ K/OK

given by the composition of the cup product and the trace Tr : Rf∗ω
◦
X/OK

→ OK .

Proof. — As F is a vector bundle and f is projective of relative dimension 1, the co-
homology groups Ri f∗F are finitely generated over OK and concentrated in degrees 0

and 1. Then, R f∗F is quasi-isomorphic to a complex

0 −→M0
d−−→M1 −→ 0,

with M1 and M2 finite free OK-modules. Moreover, the complex

0 −→M0 ⊗K/OK
d⊗ 1−−−−−→M1 ⊗K/OK −→ 0

is quasi-isomorphic to R f∗(F ⊗K/OK) in D(OK), see [Mum08, Th. 5.2].
The duality theorem 3.2 gives a quasi-isomorphism

R f∗(F
∨ ⊗ ω◦X/OK )[1] = R f∗R HomX(F, f !OK) ' R HomOK (R f∗F,OK).

This implies that R f∗(F
∨ ⊗ ω◦X/OK ) is quasi-isomorphic to 0 → M∨1

d∨→ M∨0 → 0.
Finally, Pontryagin duality for OK implies HomOK (ker(d ⊗ 1),K/OK) = coker d∨,
which translates in the desired statement. �

Remark 3.8. — The previous proposition relates two notions of duality. Namely, Serre
and Pontryagin duality. We can deduce the following facts:
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(1) The OK-module H0(X,F ⊗K/OK) is co-free of rank r, that is isomorphic to
(K/OK)r, if and only if H1(X,F∨⊗ω◦X/OK ) is free of rank r. In that case, the module
H0(X,F) is free and H0(X,F)/pn → H0(X,F/pn) is an isomorphism for all n ∈ N.
Furthermore, Serre duality provides a perfect pairing

H0(X,F)×H1(X,F∨ ⊗ ω◦X/OK ) −→ OK .

(2) The OK-module H0(X,F) (resp. H1(X,F ⊗ K/OK)) is free (resp. co-free) for
any finite locally free OX -module.

(3) In the notation of the previous proof, Pontryagin duality implies

HomOK (coker(d⊗ 1),K/OK) = ker d∨,

which is equivalent to a perfect pairing

H1(X,F ⊗K/OK)×H0(X,F∨ ⊗ ω◦X/OK ) −→ K/OK .

4. Cohomology of modular sheaves

Let N > 3 be an integer prime to p. Let X(Npn) be the modular curve over Zp
of level Γ(Npn). Let Z̆p = W (Fp) and let X(Npn)Z̆p be the extension of scalars
of X(Npn) to Z̆p. We denote by Xn := X(Npn)◦Z̆p

the connected component of
X(Npn)Z̆p given by fixing the Weil pairing eN (PN , QN ) = ζN , where (PN , QN ) is the
universal basis of E[N ] and ζN ∈ Z̆p a primitive N -th root of unity. We also write
X = X0. Let On = Z̆p[µpn ] be the n-th cyclotomic extension of Z̆p, Ocyc the p-adic
completion of lim−→n

On, Kn and Kcyc the field of fractions of On and Ocyc respectively.
We set O = Z̆p and K = O[1/p]. Let πn : Xn → SpecOn denote the structural
map defined by the Weyl pairing of the universal basis of E[pn]. We also denote
pn : Xn → Xn−1 the natural morphism induced by p-multiplication of Drinfeld bases.

Let Esm/X be the semi-abelian scheme over X extending the universal elliptic
curve to the cusps, cf [DR73]. Let e : X → Esm be the unit section and ωE :=

e∗Ω1
Esm/X the modular sheaf, i.e., the sheaf of invariant differentials of Esm over X.

For k ∈ Z we define ωkE = ω⊗kE the sheaf of modular forms of weight k, we denote
by ωkE,n the pullback of ωkE to Xn. Let Dn ⊂ Xn be the (reduced) cusp divisor and
ωkE,n,cusp := ωkE,n(−Dn) the sheaf of cusp forms of weight k over Xn. By an abuse of
notation we will also write Dn for the pullback p∗n+1Dn to Xn+1, by Proposition 1.7
we have that Dn = pDn+1.

Finally, we let Xn be the completion ofXn along its special fiber and X∞ = lim←−n Xn
the integral perfectoid modular curve, see Theorem 2.8. Let Xn be the analytic generic
fiber of Xn and X∞ ∼ lim−→n

Xn the Scholze’s perfectoid modular curve.

Dualizing sheaves of modular curves. — Consider the tower of modular curves

· · · Xn+1 Xn Xn−1 · · ·

· · · Spec(On+1) Spec(On) Spec(On−1) · · · .

pn+1

πn+1

pn

πn πn−1
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Since Xn is regular of finite type over On, it is a local complete intersection. This
implies that the sheaf ω◦n := π!

nOn is invertible. The modular curve X/O is smooth of
relative dimension 1, then we have that ω◦0 = Ω1

X0/O
, cf. Example 3.3(2). On the other

hand, the Kodaira-Spencer map provides an isomorphism KS : ω2
E,cusp

∼= Ω1
X/O.

LetX ′n−1 = Xn−1×SpecOn−1
SpecOn, and by an abuse of notation pn : Xn → X ′n−1

the induced map. Let π′n−1 : X ′n−1 → On be the structural map and pr1 : X ′n−1 →
Xn−1 the first projection. We also write ωkE,n−1 for the pullback of ωkE,n−1 to X ′n−1.
Note that the compatibility of the exceptional inverse image functor with flat base
change (Theorem 3.2) implies that π′!n−1On

∼= pr∗1ω
◦
n−1 = ω◦n−1 ⊗On−1

On.

Proposition 4.1. — There exists a natural isomorphism

ξn : p∗n(ω◦n−1)(Dn−1 −Dn)
∼−−−→ ω◦n

induced by the normalized trace 1
p Trn : OXn → p!

nOX′n−1
. Moreover, the composition

of ξn ◦ · · · ◦ ξ1 with the Kodaira-Spencer map gives an isomorphism ω2
E,n,cusp

∼= ω◦n.

Proof. — By Proposition 3.6 we have an isomorphism

(4.1) ξ′n : p!
nOX′n−1

⊗ p∗nω◦n−1
∼−−−→ p!

nω
◦
n−1 = ω◦n.

The map pn is finite flat, then p!
nOX′n−1

= p−1
n HomOX′

n−1
(pn,∗OXn ,OX′n−1

) by Ex-
ample 3.3(1). By Lemma 3.4, the sheaf p!

nOX′n−1
is invertible as X ′n−1 is an lci pro-

jective curve. We claim that the trace Trn : OXn → p!
nOX′n−1

induces an isomorphism
1
p Trn : OXn(Dn−1 −Dn) ∼= p!

nOX′n−1
. It suffices to consider the ordinary points and

the cusps, indeed, the supersingular points are of codimension 2 in Xn.
Let x ∈ X ′n−1(Fp) be an ordinary point. We have a cartesian square

(4.2)

⊔
xn 7→x Spf ÔXn,xn Xn

Spf ÔX′n−1,x
X ′n−1.

pn

By Proposition 1.5 we have isomorphisms

ÔX′n−1,x
∼= W (Fp)[ζpn ][[Tn−1]], ÔXn,xn

∼= W (Fp)[ζpn ][[Tn]]

with relations (1+Tn)p = 1+Tn−1. Taking the different ideal of the finite flat extension
ÔXn,xn/ÔX′n−1,x

, one finds

HomÔX′
n−1

,x
(ÔXn,xn , ÔX′n−1,x

) ∼=
1

p
ÔXn,xn · Trn .

On the other hand, let x ∈ X ′n−1(Fp) be a cusp. We have a cartesian square (4.2)
and by Proposition 1.7 isomorphisms

ÔX′n−1,x
∼= W (Fp)[ζpn ][[q1/pn−1

]], ÔXn,xn
∼= W (Fp)[ζpn ][[q1/pn ]].
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Taking the different ideal we obtain the equality

HomÔX′
n−1

,x
(ÔXn,xn , ÔX′n−1,x

) ∼=
1

p
q1/pn−1/pn−1

ÔXn,xn · Trn .

The previous computations show that the trace of OXn/OX′n−1
induces an isomor-

phism of invertible sheaves
1

p
Trn : OXn(Dn−1 −Dn)

∼−−−→ p!
nOX′n−1

.

Then, from (4.1) we have an isomorphism

ξn : OXn(Dn−1 −Dn)⊗ p∗nω◦n−1 −→ ω◦n,

with ξn = ξ′n ◦ ( 1
p Trn⊗1).

The isomorphism ω2
E,n,cusps

∼= ω◦n follows by a straightforward induction on the
composition ξn ◦ · · · ◦ ξ1, and the Kodaira-Spencer map KS : ω2

E,cusp
∼= Ω1

X/O. �

Lemma 4.2. — Let x ∈ X ′n−1(Fp) be an an ordinary point or a cusp. Let T̃rn :

pn,∗OXn(Dn−1 − Dn) → OX′n−1
be the normalized trace map 1

p Trn. Then the com-
pleted localization of T̃rn at x is surjective. Moreover, if F is a quasi-coherent sheaf
over X ′n−1, the composition F → pn,∗p

∗
nF

T̃rn−−→ F is multiplication by p.

Proof. — Localizing at x we find

T̃rn = ⊕( 1
p Trn) :

⊕
xn 7→x

ÔXn,xn ⊗ (q1/pn−1/pn−1

) −→ ÔX′n−1,x
,

where q1/pn−1 is invertible if x is ordinary, or a generator of Dn−1 if it is a cusp. The
explicit descriptions found in the previous proposition show that T̃rn is surjective on
each direct summand. Finally, looking at an ordinary point x, it is clear that there
are p different points xn in the fiber of x, this implies T̃rn(1) = p. �

Vanishing of coherent cohomology. — In order to prove vanishing theorems for the
coherent cohomology over the perfectoid modular curve, we first need some vanishing
results at finite integral level. We have the following proposition

Proposition 4.3. — For all n ∈ N the following holds:
(1) H0(Xn, ω

k
E,n ⊗On Kn/On) = H0(Xn, ω

k
E,n,cusp ⊗On Kn/On) = 0 for k < 0.

(2) H1(Xn, ω
k
E,n) = H1(Xn, ω

k
E,n,cusp) = 0 for k > 2.

(3) H0(Xn,OXn(−Dn) ⊗On Kn/On) = H1(Xn, ω
2
E,n) = 0 and H0(Xn,OXn ⊗On

Kn/On) = H1(Xn, ω
2
E,n,cusp)⊗On (Kn/On) = Kn/On.

Proof. — By Propositions 3.7 and 4.1, (1) and (2) are equivalent. Similarly, by
Remark 3.8(1), and Proposition 4.1, it is enough to show (3) for OXn and OXn(−Dn).

Let νn be the closed point of SpecOn and$ ∈ On a uniformizer, we write ν = ν0 for
the closed point of SpecO. It suffices to prove H0(Xn, ω

k
E,n/$) = H0(Xn,νn , ω

k
E,n) = 0

for k < 0. Indeed, for s > 1, the short exact sequence

0 −→ ωkE,n/$
s $−−−→ ωkE,n/$

s+1 −→ ωkE,n/$ −→ 0
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induces a left exact sequence in global sections

0 −→ H0(Xn, ω
k
E,n/$

s) −→ H0(Xn, ω
k
E,n/$

s+1) −→ H0(Xn, ω
k
E,n/$).

An inductive argument on s shows H0(Xn, ω
k
E,n/$

s) = 0 for all s > 1.
Let λ ∈ H0(Xn,νn , ω

k
E,n) be non-zero. Applying the action of SL2(Z/pnZ), we can

assume that λ is non-zero in an open dense subscheme of Xn,νn . In fact, this
holds for some linear combination

∑
γ∈SL2(Z/pnZp) anγ

∗λ with an ∈ Fp. The norm
NXn,νn/Xν

(ωkE,n) of ωkE,n to Xν is ωkdE , where d = deg(Xn,νn/Xν). Hence if k < 0,
the sheaf NXn,νn/Xν

(ωkE,n) has negative degree in the smooth curve Xν . This implies
that

H0(Xν ,NXn,νn/Xν
(ωkE,n)) = 0 and NXn,νn/Xν

(λ) = 0,

a contradiction. Therefore H0(Xn,νn , ω
k
E,n)=0 for k<0. Since ωkE,n,cusp =ωkE,n(−Dn),

we trivially deduce H0(Xn,νn , ω
k
E,n,cusp) = 0.

The results for OXn and OXn(−Dn) are clear as Xn/On is proper, flat, geometri-
cally connected and has geometrically reduced fibers. �

Remark 4.4. — Strictly speaking, we can apply Proposition 3.7 only for projective
curves over a finite extension of Zp. However, as the formation of coherent cohomology
is compatible with affine flat base change of the base, the conclusion of loc. cit. holds
in the situation of the previous proposition.

Corollary 4.5. — Let F = ωkE,n or ωkE,n,cusp for k 6= 1, the following holds.
(1) The cohomology groups H0(Xn,F ⊗ K/O) and H1(Xn,F) are cofree and free

On-modules respectively.
(2) We have a perfect duality pairing

H0(Xn,F ⊗K/O)×H1(Xn,F
∨ ⊗ ω2

n,cusp) −→ Kn/On.

Proof. — Part (2) is Proposition 3.7. Part (1) follows from Remark 3.8(1) and the
previous proposition. Indeed, if k < 0, the vanishing of H0(Xn,F ⊗Kn/On) implies
that H1(Xn,F) is torsion-free. As the cohomology group is of finite type over On, it
is a finite free On-module. The other cases are proved in a similar way. �

Next, we will prove some cohomological vanishing results for the modular
sheaves ωkE and ωkE,cusp at infinite level. Particularly, we will show that the cohomol-
ogy of ωkE over X∞ is concentrated in degree 0 if k > 0. The case k > 2 will follow
from Proposition 4.3, one can also argue directly for k = 2. What is remarkable is
the vanishing for k = 1, in which case we use the perfectoid nature of X∞.

Let ωkE,∞ be the pullback of ωkE to X∞. Let m > n, note that we have an inequality
of divisors Dm 6 Dn. Then, OXm(−Dn) ⊂ OXm(−Dm), and the pullback of ωkE,n,cusp

injects into ωkE,m,cusp. We define ωkE,∞,cusp as the p-adic completion of the direct
limit lim−→n

ωkE,n,cusp, if k = 0 we simply write OX∞(−D∞) for ω0
E,∞,cusp. The sheaf

ωkE,∞,cusp is no longer a coherent sheaf over X∞; its reduction modulo p is a direct
limit of line bundles which is not stationary at the cusps. One way to think about
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an element in ωkE,∞,cusp is via q-expansions: the completed localization of ωkE,∞ at a
cusp x = (x0, x1, · · · ) ∈ X∞ is isomorphic to

Ocyc[[q1/p∞ ]] := lim←−
s

(
lim−→
n

Ocyc[[q1/pn ]]
)/

(p, q)s.

Then, an element f ∈ ωkE,∞,x can be written as a power series

f =
∑

m∈Z[1/p]>0

amq
m

satisfying certain convergence conditions. The element f belongs to the localization
at x of ωkE,∞,cusp if and only if a0 = 0. For a detailed treatment of the cusps at
perfectoid level we refer to [Heu20], particularly Theorem 3.17.

Theorem 4.6. — The following holds
(1) The cohomology complexes R Γ(X∞, ω

k
E,∞) and R Γ(X∞, ω

k
E,∞,cusp) are con-

centrated in degree [0, 1] for all k ∈ Z.
(2) For allm, i > 0 and k ∈ Z, we have Hi(X∞, ω

k
E,∞/p

m) = lim−→n
Hi(Xn, ω

k
E,n/p

m)

and Hi(X∞, ω
k
E,∞,cusp/p

m) = lim−→n
Hi(Xn, ω

k
E,n,cusp/p

m).
(3) The sheaves ωkE,∞ and ωkE,∞,cusp have cohomology concentrated in degree 0 for

k > 0. Similarly, the sheaves ωkE,∞ and ωkE,∞,cusp have cohomology concentrated in
degree 1 for k < 0.

(4) H0(X∞,OX∞(−D∞)) = 0 and H0(X∞,OX∞) = Ocyc.

Proof. — Let F = ωkE,∞ or ωkE,∞,cusp and Fn = ωkE,n or ωkE,n,cusp respectively.
We show (1) assuming part (2). By evaluating F at formal affine perfectoids of X∞
arising from finite level, one can use [Sch13, Lem. 3.18] to deduce that F = R lim←−s F/p

s:
the case F = ωkE,∞ is clear as it is a line bundle. Otherwise, we know that

F/ps = lim−→
n

Fn/p
s = lim−→

n

(Fn/p
s ⊗Xn OX∞)

is a direct limit of OX∞/p
s-line bundles, so that it is a quasi-coherent sheaf over X∞,

and the system {F/ps}s∈N satisfies the Mittag-Leffler condition on formal affine per-
fectoids. One obtains the quasi-isomorphism

R Γ(X∞,F) = R lim←−
s

R Γ(X∞,F/p
s)

whose cohomology translates into short exact sequences

(4.3) 0 −→ R1 lim←−
s

Hi−1(X∞,F/p
s) −→ Hi(X∞,F) −→ lim←−

s

Hi(X∞,F/p
s) −→ 0.

But part (2) implies that Hi(X∞,F/p
s) = lim−→n

Hi(Xn,Fn/p
s) for all s ∈ N.

As Xn is a curve over On and Fn/p
s is supported in its special fiber, we know that

Hi(Xn,Fn/p
s) = 0 for i > 2 and that the inverse system {H1(Xn,Fn/p

s)}s∈N satisfies
the ML condition. This implies that Hi(X∞,F/p

s) = 0 for i > 2 and that the ML
condition holds for {H1(X∞,F/p

s)}s∈N. From (4.3) one obtains that Hi(X∞,F) = 0

for i > 2.
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We prove part (2). Let U = {Ui}i∈I be a finite affine cover of X, let Un (resp. U∞)
be its pullback to Xn (resp. X∞). As F/ps = lim−→n

Fn/p
s is a quasi-coherent OX∞/p

s-
module, and the (formal) schemes X∞ and Xn are separated, we can use the Čech
complex of Un (resp. U∞) to compute the cohomology groups. By definition we have

C •(U∞,F/p
s) = lim−→

n

C •(Un,Fn/p
s),

then (2) follows as filtered direct limits are exact.
The vanishing results of Proposition 4.3 imply (3) for k < 0 and k > 2. Let

k = 1, 2 and p1/p ∈ Ocyc be such that |p1/p| = |p|1/p. As X∞ is integral perfectoid,
the Frobenius F : X∞/p→ X∞/p

1/p is an isomorphism. Moreover,

F ∗(ωkE,∞/p
1/p) = ωpkE,∞/p and F ∗(ωkE,∞,cusp/p

1/p) = ωpkE,∞,cusp/p

(notice that F ∗(Dn) = pDn = Dn−1). Then, Proposition 4.3(2) implies

(4.4) H1(X∞, ω
k
E,∞/p

1/p) ∼= H1(X∞, ω
pk
E,∞/p) = 0,

similarly for ωkE,∞,cusp. By induction on s, one shows that H1(X∞, ω
k
E,∞/p

s) = 0 and
that H0(X∞, ω

k
E,∞/p

s+1) → H0(X∞, ω
k
E,∞/p

s) is surjective for all s ∈ N (resp. for
ωkE,∞,cusp). Taking derived inverse limits one gets

H1(X∞, ω
k
E,∞) = H1(X∞, ω

k
E,∞,cusps) = 0

H0(X∞, ω
k
E,∞) = lim←−

s

H0(X∞, ω
k
E,∞/p

s)and

(resp. for ωkE,∞,cusp). This proves (3) for k = 1, 2.
Finally, part (4) follows from part (2), Proposition 4.3(3), and the fact that

H0(X∞,OX∞) = lim←−
s

H0(X∞,OX∞/p
s)

by (4.3) (resp. for OX∞(−D∞)). �

Corollary 4.7. — Let F = ωkE,∞ or ωkE,∞,cusp for k ∈ Z. Then Hi(X∞,F)/ps =

Hi(X∞,F/p
s) and Hi(X∞,F) = lim←−s Hi(X∞,F/p

s) for all i, s > 0. In particular, the
cohomology groups Hi(X∞,F) are p-adically complete and separated. Moreover, they
are all torsion-free.

Proof. — The case k 6= 0 follows since the cohomology complexes R Γ(X∞,F/p
s) are

concentrated in only one degree, and R Γ(X∞,F) = R lim←−s R Γ(X∞,F/p
s). The case

k = 0 follows by part (4) of the previous theorem. Namely,

H0(X∞,OX∞(−D∞)/ps) = 0 and H0(X∞,OX∞/p
s) = Ocyc/ps

for all s > 0. Hence, the inverse system of H0-cohomology groups satisfy the Mittag-
Leffler condition, and the R1 lim←− appearing in the derived inverse limit disappears for
the H1-cohomology. �
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As an application of the previous vanishing theorem, we obtain vanishing results
for the coherent cohomology of the perfectoid modular curve. Let (X∞,O

+
X∞

) →
(X∞,OOX∞ ) be the natural map of locally and topologically ringed spaces provided
by the generic fiber functor, see Proposition 2.5 and Theorem 2.8. We define

ωk,+E,η := ωkE,∞ ⊗OX∞
O+

X∞
and ωk,+E,cusp,η := ωkE,∞,cusp ⊗̂OX∞

O+
X∞

,

where the completed tensor product is with respect to the p-adic topology. As usual,
we denote O+

X∞
(−D∞) = ω0,+

E,cusp. In the following we consider almost mathematics
with respect to the maximal ideal of Ocyc.

Corollary 4.8. — The following holds.
(1) The cohomology complexes R Γan(X∞, ω

k,+
E,η) and R Γan(X∞, ω

k,+
E,cusp,η) of

almost Ocyc-modules are concentrated in degrees [0, 1] for all k ∈ Z.
(2) The sheaves ωk,+E,η and ωk,+E,cusp,η have cohomology almost concentrated in de-

gree 0 for k > 0. Similarly, the sheaves ωk,+E,η and ωk,+E,cusp,η have cohomology almost
concentrated in degree 1 for k < 0.

(3) H0
an(X∞,O

+
X∞

(−D∞)) = 0 and H0
an(X∞,O

+
X∞

) = Ocyc.

Proof. — We first prove the corollary for F = ωkE,∞. Let F+
η denote the pullback

of F to (X∞,O
+
X∞

). Let U = {Ui}i∈I be an open cover of X∞ given by formal affine
perfectoids arising from finite level such that ωE,∞|Ui is trivial. By Theorem 2.8, the
generic fiber Ui,η of Ui is an open affinoid perfectoid subspace of X∞. Let Uη :=

{Ui,η}i∈I , note that Uη is a covering of X∞ and that the restriction of F+
η to Ui,η

is trivial. By Scholze’s Almost Acyclicity Theorem for affinoid perfectoids, F+
η |Ui,η is

almost acyclic for all i ∈ I. The Čech-to-derived functor spectral sequence gives us
an almost quasi-isomorphism

C •(Uη,F
+
η ) ' R Γan(X∞,F

+
η ).

On the other hand, by the proof of Theorem 4.6 there is a quasi-isomorphism

C •(U,F) ' R Γ(X∞,F).

But by definition of F+
η , and the fact that O+

X∞
(Ui,η) = OX∞(Ui) by Theorem 2.8,

we actually have an almost equality C •(Uη,F+
η ) =ae C •(U,F). In other words, there

is an almost quasi-isomorphism R Γan(X∞,F
+
η ) 'ae R Γ(X∞,F).

Let Fcusp = ωkE,∞,cusp and F+
cusp,η its pullback to (X∞,O

+
X∞

). To prove that

R Γan(X∞,F
+
cusp,η) 'ae R Γ(X∞,Fcusp),

we argue as follows: note that we can write Fcusp = F ⊗OX∞
OX∞(−D∞). To apply

the same argument as before we only need to show that O+
X∞

(−D∞) is almost acyclic
over affinoid perfectoids of X∞. Let V (D∞) ⊂ X∞ be the perfectoid closed subspace
defined by the cusps. Note that OX∞(−D∞) is the ideal sheaf of V (D∞), see the
proof of [Sch15, Th. IV.2.1] or the explicit description of the completed stalks at the
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cusps of the integral perfectoid modular curve. Then, we have an almost short exact
sequence for all s ∈ N

(4.5) 0 −→ O+
X∞

(−D∞)/ps −→ O+
X∞

/ps −→ O+
V (D∞)/p

s −→ 0.

As the intersection of an affinoid perfectoid of X∞ with V (D∞) is affinoid perfectoid,
and the second map of (4.5) is surjective when evaluating at affinoid perfectoids of X∞,
Scholze’s almost acyclicity implies that O+

X∞
(−D∞)/ps is almost acyclic in affinoid

perfectoids. Taking inverse limits and noticing that {O+
X∞

(−D∞)/ps}s∈N satisfies the
ML condition in affinoid perfectoids, we get that O+

X∞
(−D∞) is almost acyclic in

affinoid perfectoids of X∞. The corollary follows from the vanishing results at the
level of formal schemes. �

Remark 4.9. — As it was mentioned to me by Vincent Pilloni, the cohomological van-
ishing of the modular sheaves at infinite level provides many different exact sequences
involving modular forms and the completed cohomology of the modular tower (to be
defined in the next subsection). Namely, the primitive comparison theorem permits to
compute the Cp-scalar extension of the completed cohomology as H1

an(X∞,Cp ,OX∞).
On the other hand, the Hodge-Tate exact sequence

0 −→ ω−1
E ⊗OX

ÔX −→ TpE ⊗Ẑp ÔX −→ ωE ⊗OX
ÔX −→ 0

gives a short exact sequence over X∞

(4.6) 0 −→ ω−1
E,η −→ O⊕2

X∞,Cp −→ ωE,η −→ 0

via the universal trivialization of TpE. Then, taking the cohomology of (4.6) one
obtains an exact sequence

0→ C⊕2
p → H0

an(X∞,Cp , ωE,η) −→ H1
an(X∞,Cp , ω

−1
E,η) −→ H1

an(X∞,Cp ,OX∞)⊕2 → 0.

Another is example is given by tensoring (4.6) with ωE and taking cohomology. One
finds

0→ Cp → H0
an(X∞,Cp , ωE,η)⊕2 −→ H0

an(X∞,Cp , ω
2
E,η) −→ H1

an(X∞,Cp ,OX∞)→ 0.

It may be interesting a more careful study of these exact sequences.

Duality at infinite level. — Let F = ωkE,∞ or ωkE,∞,cusp for k ∈ Z, let Fn = ωkE,n
or ωkE,ncusp respectively. Let C be a non archimedean field extension of Kcyc and OC

its valuation ring. Let X∞,C be the extension of scalars of the integral modular curve
to OC . Corollary 4.7 says that the cohomology groups Hi(X∞,F) are torsion-free, p-
adically complete and separated. In particular, we can endow Hi(X∞,C ,F)[1/p] with
an structure of C-Banach space with unit ball Hi(X∞,C ,F). The local duality theorem
extends to infinite level in the following way.
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Theorem 4.10. — Let F and Fn be as above, and let F∨n = HomOXn (Fn,OXn) be
the dual sheaf of Fn. There is a GL2(Qp)-equivariant isomorphism of topological OC-
modules

(4.7) HomOC (Hi(X∞,C ,F),OC) ∼= lim←−
n,T̃rn

H1−i(Xn,OC ,F
∨
n ⊗ ω2

E,n,cusp).

The LHS is endowed with the weak topology, the RHS is endowed with the inverse
limit topology, T̃rn are the normalized traces of Proposition 4.1, and the extension of
scalars is given by Xn,OC = Xn ×SpecOn SpecOC .

Remark 4.11
(1) We could restate the previous theorem using ω◦n = π!

nOn instead of ω2
E,n,cusp,

the trace T̃rn would be replaced by the Serre duality trace relative to the morphism
Xn+1,OC → Xn,OC . Note that even though the ring OC is not noetherian, all the
objects involved are defined as pullbacks of objects which live over a finite extension
of Zp, see Remark 4.4.

(2) Let F+
η = F ⊗̂OX∞

O+
X∞

be the pullback of F to X∞, denote Fη = F+
η [1/p]. By

Corollary 4.8 we know that

Hi(X∞,Fη) = Hi(X∞,F)[1/p].

Thus, Hi(X∞,C ,Fη) can be endowed with an structure of C-Banach space. Its dual is
given by

Hi(X∞,C ,Fη)∗ =
(

lim←−
m,T̃rn

H1−i(Xn,OC ,F
∨
n ⊗ ω2

E,n,cusp)
)

[1/p].

(3) Let Rn : Zp[ζN ]cyc → Zp[ζNpn ] denote the n-th normalized Tate trace, and let
X ′n be the connected component of X(N, pn)Zp[ζN ] corresponding to ζN . There is a
natural injective map

lim←−
m,T̃rn

H1−i(X ′n,Zp[ζN ]cyc ,F
∨
n ⊗ ω2

E,n,cusp) −→ lim←−
n,Rn◦T̃rn

H1−i(X ′n,F
∨
n ⊗ ω2

E,n,cusp).

However, this map is not surjective in general; the RHS is profinite while the LHS is
not compact.

Before proving Theorem 4.10 let us say some words about the inverse limit of (4.7),
it can be described as the kernel of the map∏

n

H1−i(Xn,OC ,F
∨
n ⊗ ω2

E,n,cusp)
1− T̃rn−−−−−−−→

∏
n

H1−i(Xn,OC ,F
∨
n ⊗ ω2

E,n,cusp).

Moreover, Corollary 4.7 says that the factors in the products are p-adically complete,
separated and torsion-free. The following lemma implies that the inverse limit is
always p-adically complete and separated

Lemma 4.12. — Let N , M be torsion-free, p-adically complete and separated Zp-mod-
ules, and f : N →M a Zp-linear map. Then ker f is torsion-free, p-adically complete
and separated.
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Proof. — It is clear that ker f is torsion-free. The map f is continuous for the p-adic
topology, in particular ker f ⊂ N is a closed sub-module. Since M is torsion-free, one
has that ker f ∩ psN = ps ker f for all s > 1. Then,

ker f = lim←−
s

(ker f/(ker f ∩ psN)) = lim←−
s

ker f/ps ker f,

proving the lemma. �

Next, we recall the GL2(Qp)-action in both sides of (4.7). Without loss of generality
we take C = Kcyc. Let χ : Gal(Ocyc/O)

∼→ Z×p be the cyclotomic character. We define
ψ : GL2(Qp) → Gal(Ocyc/O) to be ψ(g) = χ−1(p−vp(det g) det g), where vp : Q∗p → Z
denotes the p-adic valuation. Fix g ∈ GL2(Qp) and n > 0. Let m > 1 be such that
Γ(pm) ⊂ Γ(pn) ∩ gΓ(pn)g−1, write cg : GL2(Qp) → GL2(Qp) for the conjugation
x 7→ gxg−1. We denote by X(Npn)c(g) be the modular curve of level Γ(N) ∩ Γ(pn) ∩
gΓ(pn)g−1, let Xn,c(g) be the locus where the Weil pairing of the universal basis
of E[N ] is equal to ζN ∈ Z̆p. We let ω◦ be the dualizing sheaf of Xn,c(g), i.e., the
exceptional inverse image of On,c(g) := H0(Xn,c(g),OXn,c(g)) over Xn,cg .

The maps

Γ(pm) ↪−→ Γ(pn) ∩ gΓ(pn)g−1
cg−1

−−−−→ g−1Γ(pn)g ∩ Γ(pn) ↪−→ Γ(pn)

induce maps of modular curves

Xm
q1−−−→ Xn,c(g)

g−−→ Xn,c(g−1)
q2−−−→ Xn,

with g an isomorphism. Notice that the modular sheaves ωkE are preserved by the
pullbacks of q1, q2 and g. Let F and Fn be as in Theorem 4.10, we have induced maps
of cohomology

R Γ(Xn,Fn/p
s)

q∗1 ◦ g∗ ◦ q∗2−−−−−−−−−−→ R Γ(Xm,Fm/p
s).

Taking direct limits we obtain a map

R Γ(X∞,F/p
s)

g∗−−−→ R Γ(X∞,F/p
s).

Finally, taking derived inverse limits one gets the action of g ∈ GL2(Qp) on the
cohomology R Γ(X∞,F).

The action of GL2(Qp) on cohomology is not Ocyc-linear. In fact, it is ψ-semi-linear;
this can be shown by considering the Cartan decomposition

GL2(Qp) =
⊔

n1>n2

GL2(Zp)
(
pn1 0

0 pn2

)
GL2(Zp)

and using the compatibility of the Weil pairing with the determinant.
The action of GL2(Qp) on lim←−n,T̃rn

H1−i(Xn,Ocyc ,F∨n ⊗ω2
E,n,cusp) is defined in such

a way that the isomorphism (4.7) is equivariant. Namely, there is a commutative
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diagram of local duality pairings provided by the functoriality of Serre duality
(4.8)

H1−i(Xm,Ocyc ,F∨m ⊗ ω2
E,m,cusp)×Hi(Xm,Ocyc ,Fm ⊗K/O) Kcyc/Ocyc

H1−i(Xn,c(g),Ocyc , (g ◦ q2)∗F∨n ⊗ ω◦)×Hi(Xn,c(g),Ocyc , (g ◦ q2)∗Fn ⊗K/O) Kcyc/Ocyc

H1−i(Xn,c(g−1),Ocyc , q∗2F
∨
n ⊗ ω◦)×Hi(Xn,c(g−1),Ocyc , q∗2F ⊗K/O) Kcyc/Ocyc

H1−i(Xn,Ocyc ,F∨n ⊗ ω2
E,n,cusp)×Hi(Xn,Ocyc ,Fn ⊗K/O) Kcyc/Ocyc.

T̃rq1

g−1∗

q∗1

T̃rq2

g∗ ψ(g)

q∗2

The maps T̃rq1 and T̃rq2 are induced by the Serre duality traces of q1 and q2 respecti-
vely, cf. Remark 4.11(1). Thus, the right action of g ∈ GL2(Qp) on a tuple f = (fn) ∈
lim←−n,T̃rn

H1−i(Xn,Ocyc ,F∨n ⊗ ω2
E,n,cusp) is given by f |g = ((f |g)n)n∈N, where

(f |g)n = T̃rq2 ◦ g−1∗ ◦ T̃rq1(fm)

for m big enough, and q1, q2 as in (4.8).

Proof of Theorem 4.10. — Without loss of generality we take C=Kcyc. Let F=ωkE,∞
or ωkE,∞,cusp. By Corollary 4.7 we have

Hi(X∞,F)⊗ (K/O) = Hi(X∞,F ⊗K/O).

Therefore

HomOcyc(Hi(X∞,F),Ocyc) = HomOcyc(Hi(X∞,F)⊗K/O,Kcyc/Ocyc)

= HomOcyc(Hi(X∞,F ⊗K/O),Kcyc/Ocyc).

On the other hand, we have

Hi(X∞,F ⊗K/O) = lim−→
n,p∗n

Hi(Xn,Ocyc ,Fn ⊗K/O),

where the transition maps are given by pullbacks. By local duality, Proposition 3.7,
we have a natural isomorphism

HomOcyc(Hi(X∞,F),Ocyc) = lim←−
n,p∗n

HomOcyc(Hi(Xn,Ocyc ,Fn ⊗K/O),Kcyc/Ocyc)

= lim←−
n,T̃rn

H1−i(Xn,Ocyc ,F∨n ⊗ ω2
E,n,cusp).

The isomorphism is GL2(Qp)-equivariant by the diagram (4.8). �

We end this section with an application of the local duality theorem at infinite
level to the completed cohomology. We let Xn,pro-ét be the pro-étale site of the finite
level modular curve as in [Sch13, §3], and X∞,pro-ét the pro-étale site of the perfectoid
modular curve as in [SW20, Lect. 8].
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Definition 4.13. — Let i > 0. The i-th completed cohomology group of the modular
tower {Xn}n>0 is defined as

H̃i := lim←−
s

lim−→
n

Hi
ét(Xn,Cp ,Z/psZ).

Remark 4.14. — The previous definition of completed cohomology is slightly different
from the one of [Eme06]. Indeed, Emerton consider the étale cohomology with compact
support of the affine modular curve Yn. Let j : Yn → Xn be the inclusion and
ι : Dn → Xn be the cusp divisor, both constructions are related by taking the
cohomology of the short exact sequence

0 −→ j!(Z/psZ) −→ Z/psZ −→ ι∗ι
∗Z/psZ −→ 0.

Moreover, the cohomology at the cusps can be explicitly computed, and many inter-
esting cohomology classes already appear in H̃1.

We recall some important completed sheaves in the pro-étale site. Let W denote Xn
or X∞

– We denote Ẑp = lim←−s Z/p
sZ, the p-adic completion over Wpro-ét of the locally

constant sheaf Z.
– Let Ô+

W = lim←−s O+
W/p

s be the p-adic completion of the structural sheaf of
bounded functions over Wpro-ét.
By [Sch13, Lem. 3.18] the sheaf Ô+

W is the derived inverse limit of the projective
system {O+

W/p
s}s. On the other hand, the repleteness of the pro-étale site and [BS14,

Prop. 3.1.10] implies that Ẑp is also the derived inverse limit of {Z/psZ}s. We have
the following proposition

Proposition 4.15. — Let i > 0, there is a short exact sequence

0 −→ R1 lim←−
s

Hi−1
ét (X∞,Cp ,Z/psZ) −→ Hi

pro-ét(X∞,Cp , Ẑp) −→ H̃i −→ 0.

Proof. — As Ẑp = R lim←−s Z/p
sZ, the Grothendieck spectral sequence for derived lim-

its gives short exact sequences for i > 0

0 −→ R1 lim←−
s

Hi−1
pro-ét(X∞,Cp ,Z/p

sZ) −→ Hi
pro-ét(X∞,Cp , Ẑp)

−→ lim←−
s

Hi
pro-ét(X∞,Cp ,Z/psZ) −→ 0.

Lemma 3.16 of [Sch13] implies that Hi
pro-ét(X∞,Cp ,Z/psZ) = Hi

ét(X∞,Cp ,Z/psZ).
On the other hand, [Sch12, Cor. 7.18] gives an isomorphism

Hi
ét(X∞,Cp ,Z/psZ) = lim−→

n

Hi
ét(Xn,Cp ,Z/psZ),

the proposition follows. �

Next, we relate the completed cohomologies H̃i with the coherent cohomology
of X∞ via the Primitive Comparison Theorem. This strategy is the same as the one
presented by Scholze in [Sch15, Ch. IV] for Emerton’s completed cohomology. In the
following we work with the almost-setting with respect to the maximal ideal of OCp .
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Proposition 4.16 ([Sch15, Th. IV.2.1]). — There are natural almost isomorphisms

(4.9) H̃i⊗̂ZpOCp =ae Hi
pro-ét(X∞,Cp , Ô

+
X∞

) =ae Hi(X∞,OX∞) ⊗̂Ocyc OCp .

In particular, H̃i = 0 for i > 2, the R1 lim←−s of Proposition 4.15 vanishes, and the H̃i

are torsion-free, p-adically complete and separated.

Proof. — By the Primitive Comparison Theorem [Sch13, Th. 5.1], there are almost
quasi-isomorphisms for all n, s, i ∈ N

Hi
ét(Xn,Cp ,Z/psZ)⊗Zp OCp =ae Hi

ét(Xn,Cp ,O
+
Xn
/ps).

Taking direct limits on n, and using [Sch12, Cor.,7.18] one gets

(4.10) Hi
ét(X∞,Cp ,Z/psZp)⊗Zp OCp =ae Hi

ét(X∞,Cp ,O
+
X∞

/ps).

Namely, we have O+
X∞

/ps = lim−→n
O+

Xn
/ps as sheaves in the étale site of X∞. In fact,

let U∞ be an affinoid perfectoid in the étale site of X∞ which factors as a compo-
sition of rational localizations and finite étale maps. By [Sch12, Lem. 7.5] there ex-
ists n0>0 and an affinoid space Un0

∈ Xn,ét such that U∞ = X∞ ×Xn0
Un0

. For
n > n0 denote the pullback of Un0 to Xn,ét by Un, then U∞ ∼ lim←−n>n0

Un and
O+(U∞)/ps = lim−→n>n0

O+(Un)/ps.
The sheaf O+

X∞
/ps is almost acyclic on affinoid perfectoids, this implies that the

RHS of (4.10) is equal to Hi
an(X∞,Cp ,O

+
X∞

/ps). Then, the proof of Corollary 4.8 allows
us to compute the above complex using the formal model X∞

(4.11) Hi
an(X∞,Cp ,O

+
X∞

/ps) =ae Hi(X∞,OX∞/p
s)⊗Ocyc OCp .

Corollary 4.7 shows that the inverse system {Hi(X∞,OX∞/p
s)}s satisfy the Mittag-

Leffler condition. As OCp/p
s is a faithfully flat Z/psZ-algebra, the inverse system

{Hi
ét(X∞,Cp ,Z/psZ)}s also satisfies the Mittag-Leffler condition. One deduces from

Proposition 4.15 that

(4.12) Hi
pro-ét(X∞,Cp , Ẑp) = H̃i.

We also obtain that H̃i/ps = Hi
ét(X∞,Cp ,Z/psZ) for all i ∈ N. Taking inverse limits

in (4.10), and using (4.11) and (4.12) one obtains the corollary. �

We obtain a description of the dual of the completed cohomology in terms of
cuspidal modular forms of weight 2:

Theorem 4.17. — There is a GL2(Qp)-equivariant isomorphism of almost OCp-
modules

HomOCp
(H̃1 ⊗̂Zp OCp ,OCp) =ae lim←−

n,T̃rn

H0(Xn,OCp
, ω2

E,n,cusp).

Proof. — This is a consequence of Proposition 4.16 and the particular case of Theorem
4.10 when F = OX∞ and C = Cp. �
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