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MONOTONE SOLUTIONS FOR MEAN FIELD GAMES

MASTER EQUATIONS: FINITE STATE SPACE AND

OPTIMAL STOPPING

by Charles Bertucci

Abstract . —We present a new notion of solution for mean field games master equations. This
notion allows us to work with solutions which are merely continuous. We first prove results of
uniqueness and stability for such solutions. It turns out that this notion is helpful to characterize
the value function of mean field games of optimal stopping or impulse control and this is the
topic of the second half of this paper. The notion of solution we introduce is only useful in the
monotone case. In this article we focus on the finite state space case.

Résumé (Solutions monotones des équations maîtresses des jeux à champ moyen)
On présente une nouvelle notion de solution pour les équations maîtresses des jeux à champ

moyen. Cette notion permet de travailler avec des fonctions qui sont simplement continues. On
prouve en premier lieu des résultats d’unicité, d’existence et de stabilité pour de telles solutions.
On montre alors dans la deuxième partie de cet article que cette notion permet de caractériser
la fonction valeur de jeux à champ moyen d’arrêt optimal ou de contrôle impulsionnel. Cette
notion a surtout un intérêt dans le cas monotone. On se restreint ici au cas d’un espace d’états
fini.
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Introduction

This paper introduced a new notion of solution of the mean field games (MFG in
short) master equation in the monotone setting and applies it to master equations
of games involving optimal stopping or impulse control. Even though this paper is
self contained, it falls within a series devoted to the systematic study of MFG of
optimal stopping or impulse control. Here we study the master equations associated
with optimal stopping or impulse control in finite state space. In [7], by considering
Nash equilibria of such games without common noise, we showed that those equilibria
are in general in mixed strategies and translated this statement in terms of the system
of partial differential equations (PDE) characterizing them. In [8], we extended this
notion to the case of impulse control. In [9] we presented numerical methods for such
problems.

General introduction. — The MFG theory is concerned with the study of games in-
volving an infinite number of non-atomic players interacting through mean field terms.
If such games have been studied in Economics for quite some time, a general mathe-
matical framework has only been developed around fifteen years ago by J.-M. Lasry
and P.-L. Lions. It is presented in [31, 32]. This theory has known too many devel-
opments for us to present them all but we are going to indicate some of them. For
the moment, uniqueness of Nash equilibria has been proved almost exclusively in two
cases, either under a smallness condition (on the coupling between the players or on
the duration of the game) or in the so-called monotone regime, see [31, 32, 38]. In this
monotone regime, the study of the Nash equilibria of the game reduces to the study
of the master equation, a PDE which is satisfied by the value function of a player
seen as depending on its own state and on the measure describing the states of the
other players. As soon as the state space is infinite, the master equation is an infinite
dimensional PDE [14], whereas in the finite state space case, this PDE reduces to a
system of finite dimensional PDE [32, 5, 20]. In the case in which the game is deter-
ministic or when the randomness is distributed in an i.i.d. fashion among the players,
Nash equilibria can be characterized with a system of finite dimensional forward and
backward equations [31, 14]. Several other aspects of MFG have been studied, such
as their long time average [17, 16] and the convergence of the N player game toward
the MFG [14, 29, 20]. Let us also recall that a probabilistic approach of MFG have
been developed, we refer to [18, 28] for more details on this approach. Finally let
us mention that numerical methods have been developed to compute equilibria of
MFG, mostly in the forward-backward setting, more details can be found in [1, 2, 3].
In recent years, the study of MFG of optimal stopping or other “singular” controls
have been the subject of a growing number of researches, namely because such games
have natural applications in Economy. Concerning the case of optimal stopping, let
us mention [7, 19, 35, 36], for impulse control we refer to [8] and to [27] for optimal
switching. Let us also mention that the approach of [7, 8] has been used by P.-L. Lions
in [33] to study a case of MFG of singular controls.
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Monotone solutions for mean field games master equations 1101

Regularity of the solution of the master equation. — In the monotone regime, it is
known since the work of J.-M. Lasry and P.-L. Lions that we can define a value function
for a MFG. This is a consequence of a uniqueness property of Nash equilibria of the
game. Let us recall that, formally, the monotone regime is a situation in which the
players have a tendency to repel each other. Precise assumptions on the monotonicity
shall be made later on.

If it is smooth, this value function satisfies the master equation. However, the
smoothness of this value function may be difficult to prove in general [14] and for
the moment no general weak notion of solution for the master equation has been
established. We provide in this paper a notion of solution which demands only for the
value function to be continuous. We refer to these solutions as monotone solutions
since our approach relies heavily on the monotonicity of the MFG. Let us mention
that in this paper we present this solutions in the finite state space case, but that
this approach can be extended. In fact the case of a continuous state space shall be
treated in [10].

Recently, several authors have worked to define weak solutions of the MFG master
equation, particularly in the non-monotone regime, namely [34, 25, 26] in the continu-
ous state space case and [21] in the finite state space case. Although their approaches
are quite different from the one we adopt here (because monotonicity assumptions
are crucial to this paper), they provide interesting results and approaches.

Mean field games with optimal stopping or singular control. — An objective of
this paper is to study the master equation, in finite state space, associated to optimal
stopping or impulse controls. In those situations, the players can, respectively, decide
to exit the game or to change instantly their state to any other state. The main
difficulty arising from the study of those games is that the evolution of a population
of players using such controls is not smooth in general, independently of any regularity
assumptions. This fact, already presented in [7, 8], is a crucial obstacle to overcome.
Indeed as the evolution of the population of players is not smooth, the formulation
of the associated master equation has to take into account the fact that the measure
describing the repartition of players can instantly jump from one state to another. We
shall see that this singular behavior for the evolution of the density of players does
not translate into a loss of regularity for the value function (i.e., the solution of the
master equation). We believe that, in some sense, this is reminiscent of the problem
of Hamilton-Jacobi equations associated with singular controls as in [30].

A comment on modeling. — Let us comment on a modeling choice we make in this
paper. We intend to look at the master equation set on the whole (R+)d. In the
continuous state space case, in the setting of [14] for instance, this would correspond
to look at the master equation posed on the set of positive measures instead of on
the set of probability measures. In the appendix we explain how we can pass from
one setting to another in finite state space. This choice to work on (R+)d is clearly
motivated in the optimal stopping case because the mass of players is not constant
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1102 C. Bertucci

(it can decrease). However, we argue that this kind of approach is also meaningful in
general. Indeed, in a MFG the number of player is infinite and the choice to normalize
their mass to one is only an arbitrary choice. Moreover, if in a lot of cases studied in
the literature the mass of player is preserved, it is also natural to consider, outside of
stopping or entry game, MFG in which players leave or enter the game. For instance
let us refer to [22]. Moreover, in the case in which the mass of player is preserved,
solving the master equation for any initial mass of players is a suitable strategy.
To conclude this word on modeling, let us mention that to have the same point of
view in the probabilistic approach of MFG, in which the measure characterizing the
distribution of players is often thought as the probability measure of the state of one
player, one need to consider either unnormalized measures for the state of a player or
either an additional real parameter which stands for the mass of players.

Structure of the paper. — The rest of this paper is organized as follows. In Sec-
tion 1, we present some preliminary results concerning the study of master equations
in the finite state space case, in particular for situations in which there is a boundary.
In Section 2, we present our notion of monotone solutions. In Section 3, we derive
a characterization for the value function in the optimal stopping case, as well as
we prove existence and uniqueness results for such value functions. We present in
Section 4 the master equation associated with an impulse control problem. Finally
Section 5 is concerned with a MFG model of entry and exit, in a simplified economic
market which applies the concepts developed in the previous sections.

Notations. — We shall use the following notations.
– We denote by d an integer greater than 1.
– Od = (R+)d.
– The Euclidean norm of Rd is denoted |·| and its associated operator norm ‖·‖.

The `p norms on Rd are denoted by |·|p. The Euclidean scalar product between
x, y ∈ Rd is denoted either x · y or 〈x, y〉.

– An application A : O → Rd, defined on a subset O ⊂ Rd is said to be monotone if

〈A(x)−A(y), x− y〉 > 0, for x, y ∈ O.

– We define for R > 0, B1
R := {x ∈ Od | x1 + · · ·+ xd 6 R}.

– For a d×d matrix A, we say that A > 0 in the order of positive definite matrices
if for all ξ ∈ Rd r {0}

〈ξ, Aξ〉 > 0.

– For A ∈ L (Rd), we define

ζ(A) := − inf{〈ξ, Aξ〉 | |ξ|2 6 1}.

– We denote the term by term product between matrices or vectors by ∗.
– For x ∈ Rd, we note x 6 0 when all the components of x are non-positive.
– If f : R→ R and x ∈ Rd, then f(x) := (f(x1), . . . , f(xd)).

J.É.P. — M., 2021, tome 8
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1. Preliminary results

This section introduces extensions of the results of [32] to the case in which the
master equation is posed on a domain of Rd, in particular when it is (R+)d := Od.
We also recall a weak form of Stegall’s variational lemma at the end of this section.
Let us mention the work [4], which is also concerned with the well-posedness of the
master equation in finite state space. In this article the authors derived and studied
a particular form of the master equation arising from the presence of a so-called
Wright-Fischer common noise in the MFG. This work is completely different than
ours because the authors of this paper use the structure of the noise to establish
regularity in a non-monotone setting while we make an extensive use of monotonicity
to avoid having to use regularity arising from the structure of the randomness.

The main results of this section are concerned with the existence and uniqueness
of solutions of the master equation

(1)
∂tU + (F (x, U) · ∇x)U + λ(U − T ∗U(t, Tx)) = G(x, U) in (0,∞)×Od,

U(0, x) = U0(x) in Od,

or its discounted stationary counterpart

(2) rU + (F (x, U) · ∇x)U + λ(U − T ∗U(t, Tx)) = G(x, U) in Od,

where U : (0,∞)×Od → Rd is the value function of the MFG which is characterized
by F,G : Od×Rd → R2d, λ > 0 and T ∈ L (Rd). Let us note that these PDE are not
written on an open set and that no boundary conditions are imposed.

The interpretation of (1) is that it is the PDE satisfied by the value function of the
MFG. The value of the game in the state i ∈ {1, . . . , d}, when the quantity of player
in each state j ∈ {1, . . . , d} is xj and the time remaining in the game is t > 0, is:
U i(t, x). The term λ(U − T ∗U ◦ T ) stands for the modeling of common noise and we
refer to [12] for more details on this question. The function F stands for the evolution
of the “density” of players and G for the evolution of the value of the MFG. That is,
in the case λ = 0, the characteristics of (1) are given by (V (t), y(t))06t6tf solution of

(3)
{
V̇ (t) = G(y(t), V (t)), 0 < t < tf , V (0) = U0(y(0)),

ẏ(t) = F (y(t), V (t)), 0 < t < tf , y(tf ) = y0,

for any y0 ∈ Od, tf > 0. The same kind of interpretation holds for (2) and we do not
detail it here. Let us only insist on the obvious fact that the characteristics associated
to (2) are set on an infinite time scale and that despite the fact the equation (2) is
stationary, the evolution of the density of players is not trivial.

Let us insist on the fact that, up to some assumptions on the map T that we shall
detail later on, the presence of a common noise is transparent throughout the paper.

J.É.P. — M., 2021, tome 8



1104 C. Bertucci

That is, the notion of solution we introduce does not rely on the presence or not of a
common noise.

Because no boundary conditions are imposed on the equation, we have to restrict
the set of functions F which leave invariant Od as well as transformations T which
leave invariant Od. Namely we shall assume the following.

Hypothesis 1. — The function F is such that for any p ∈ Rd, i ∈ {1, . . . , d},

(4) xi = 0 =⇒ F i(x, p) 6 0.

Moreover T (Od) ⊂ Od.

Remark 1.1. — In certain situations, one could also consider a coupling term F such
that (4) does not hold. In such a situation, we may be able to obtain, from other
assumptions, that

xi = 0 =⇒ F i(x, U(x)) 6 0,

for a solution U of the master equation, which is sufficient for uniqueness results.
We refer to [11] for an example of such a situation.

This assumption clearly enforces the fact that Od is invariant for the trajectories
generated by (3). We shall also make the following assumption at some point in the
paper.

Hypothesis 2. — There exists R > 0 such that for all x ∈ Od with |x|1 > R, for all
p ∈ Rd,

d∑
i=1

F i(x, p) > 0.

Moreover, T (B1
R′) ⊂ B1

R′ for any R′ > R.

This assumption states that when the mass of player is sufficiently large (|x|1 > R),
it cannot grow anymore. Thus it has the effect to bound the region of interest when
starting from an initial distribution of mass. Although it seems possible to treat
situations in which the mass of players can always increase, it is not the objective of
this paper.

As already mentioned several times above, monotonicity plays a crucial role in the
well-posedness of (1) and (2). We say that we are in the monotone regime when the
following assumption is satisfied.

Hypothesis 3. — The function U0 is monotone on Od and (G,F ) is monotone on
Od × Rd.

In order to obtain existence of solutions of either (1) or (2), we shall use the
following stronger assumption.

J.É.P. — M., 2021, tome 8
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Hypothesis 4. — The functions U0, F and G are Lipschitz continuous. Moreover,
there exists α > 0 such that

〈ξ,DxU0(x)ξ〉 > α|DxU0(x)ξ|2, ∀x ∈ Od, ξ ∈ Rd,(
DxG(x, p) DxF (x, p)

DpG(x, p) DpF (x, p)

)
> α

(
Id 0

0 0

)
for almost every x ∈ Od, p ∈ Rd,

in the order of positive matrices.

When addressing the existence of solutions of equations of the type of (2), we shall
also make the following assumption.

Hypothesis 5. — The discount rate r satisfies

r > ζ(DxF (x, p)) ∀x ∈ Od, p ∈ Rd.

1.1. Uniqueness results for the master equation in finite state space

We now present uniqueness results concerning (1) and (2). Those results are direct
extensions of the results established in [32] and do not need any new ideas, however,
as they play a crucial role in the notion of solution we introduce in the next section,
we detail their proofs.

Proposition 1.1. — Under Hypotheses 1 and 3, there exists at most one smooth solu-
tion of (1). If this solution exists, it is monotone.

Proof. — Let us take U and V two smooth solutions of (1). We define W by

W (t, x, y) = 〈U(t, x)− V (t, y), x− y〉.

This function satisfies

W (0, x, y) = 〈U0(x)− U0(y), x− y〉 in O2
d,

∂tW + F (x, U) · ∇xW + F (y, V ) · ∇yW + λ(W −W (t, Tx, Ty))

= 〈G(x, U)−G(y, V ), x− y〉+ 〈F (x, U)− F (y, V ), U − V 〉 in (0,∞)×O2
d.

From Hypothesis 3 the right-hand side of the two previous equations are non-negative.
From Lemma A.1 (in appendix), we deduce thatW is non-negative for all time. We can
conclude that i) U = V (or otherwise W should change sign around some point), ii)
U is monotone for all time. �

Proposition 1.2. — Under Hypotheses 1 through 3, there exists at most one smooth
solution of (2), and if it exists it is monotone.

Proof. — Let us take U and V two smooth solutions of (1). We define W by

W (x, y) = 〈U(x)− V (y), x− y〉.

J.É.P. — M., 2021, tome 8



1106 C. Bertucci

This function satisfies

rW + F (x, U) · ∇xW + F (y, V ) · ∇yW + λ(W −W (Tx, Ty))

= 〈G(x, U)−G(y, V ), x− y〉+ 〈F (x, U)− F (y, V ), U − V 〉 in O2
d.

We then conclude as in the previous proof, by using this time Lemma A.2 in the
appendix. �

1.2. Existence results for the master equation in finite state space

We now turn to the questions of existence of solutions of (1) and (2). As the next
section gives a precise definition of a solution of (1) and (2), we do not focus on the
sense in which solutions satisfy the PDE but rather on how we can obtain a priori
estimates.

In the monotone setting (i.e., under Hypothesis 3), an a priori estimate on the
spatial gradient of the solution can be proved, exactly as it is already the case in [32].

Proposition 1.3. — Under Hypotheses 1, 3 and 4, there exists a Lipschitz function U ,
solution of (1) almost everywhere, such that for any tf > 0, there exists C such that

‖DxU(t, x)‖ 6 C, ∀x ∈ Od, t 6 tf .

Proof. — This proposition can be obtained as a consequence of an a priori estimate
on the solution U of (1). This idea is mostly borrowed from the lecture [32] in which
this technique is presented. The only difference between this lecture and our situation
is that we consider a master equation on Od, that is why we are not going to enter in
a lot of details here but only indicate the main differences with the case in Rd. For U
a smooth solution of (1), let us define W and Z with

W (t, x, ξ) = 〈U(t, x), ξ〉,

Zβ,γ(t, x, ξ) = 〈∇xW (t, x, ξ), ξ〉 − β(t)‖∇xW (t, x, ξ)‖2 + γ(t)|ξ|2,

for some functions β and γ to be defined later on. Arguing as in [32], we deduce that
Zβ,γ satisfies

(5) ∂tZβ,γ + 〈F (x,∇ξW ),∇xZβ,γ〉+ 〈DpF (x,∇ξW )∇ξZβ,γ ,∇xW 〉
− 〈DpG(x,∇ξW )∇ξZβ,γ , ξ〉+ λ(Zβ,γ − Zβ,γ(t, Tx, Tξ))

= 〈DxG(x,∇xW )ξ, ξ〉 − 〈DpG(x,∇ξW )∇xW, ξ〉
− 〈DxF (x,∇ξW )∇xW, ξ〉+ 〈DpF (x,∇ξW )∇xW,∇xW 〉

− 2β〈DxG(x,∇xW )ξ,∇xW 〉+ 2β〈DxF (x,∇ξW )∇xW,∇xW 〉

+ βλ
(
|∇xW |2 − 2〈∇xW (t, Tx, Tξ), S∇xW 〉+ |∇xW (t, Tx, Tξ)|2

)
− d

dt
β|∇xW |2 + 2γ(〈DpF (x,∇ξW )ξ,∇xW 〉 − 〈DpG(x,∇ξW )ξ, ξ〉)

+
d

dt
γ|ξ|2 + λγ(|ξ|2 − |Tξ − e|2).

J.É.P. — M., 2021, tome 8
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Using the monotonicity of U0, G and F and the strong monotonicity of U0 and G,
we deduce that by choosing γ = 0 and

β(t) = αe−t(2‖∇xF‖+2‖∇xG‖+λ(‖T‖−1)+),

the right-hand side of (5) is non-negative and thus that by Lemma A.1, Zβ,γ is
non-negative for all time which yields the required a priori estimate on U . It may
seem strange to the reader that we introduce a function γ to take it as 0 later on.
We introduced it because it is useful in other contexts (stationary problem, different
assumptions on the monotonicity). Concerning the question of existence of a Lipschitz
function satisfying (1), the main argument (as in [32]) is to remark that the previous
technique to obtain a priori estimates still works when one adds particular degenerate
elliptic second order terms in (1). This is a consequence of the so-called Bernstein
method. We now indicate a particular choice of such terms.

Let us take ε > 0 and consider σ : R → R a smooth real bounded function such
that σ(x) = x2 in a neighborhood of 0. Assume that U is a smooth solution of

∂tU
i + F (x, U) · ∇xU i − ε

( d∑
j=1

σ(xj)∂jjU
i

)
− εσ′(xi)∂iU i

+ λ(U i − (T ∗)iU(t, Tx)) = Gi(x, U) in Od,∀i ∈ {1, . . . , d},
U(0, x) = U0(x) in Od.

(6)

Let us remark that as the terms in ε in (6) preserves the monotonicity, we are able
to adapt the previous technique to (6) to establish a, uniform in ε ∈ (0, 1), a priori
estimate on the spatial gradient of a solution of (6). Let us now remark that once we
have this a priori estimate, from classical results on degenerate elliptic equations [37],
existence of solutions of (6) can be easily obtained and that, passing to the limit
ε → 0, we deduce the existence of a Lipschitz function, solution almost everywhere
of (1). �

We now provide an a priori estimate for solutions of (2). As the proof of the
following statement is very similar to the one of the previous result, we do not detail
it here.

Proposition 1.4. — Under Hypotheses 1 through 5, any smooth function U solution
of (2) satisfies

∀x ∈ Od, ‖DxU(x)‖ 6 C,

for C > 0 depending only on r,G, F, λ and T .

Remark 1.2. — Under the assumptions of the previous proposition, existence of a
Lipschitz solution of (2) is then easy to obtain once some local boundedness can be
established for a solution of (2). Such a property can usually be obtained easily on a
case by case basis. We give such an example in the next section on optimal stopping.
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1108 C. Bertucci

Remark 1.3. — The main difference for the proof of this statement compared with
the time dependent case is that the functions β and γ in the previous proof must be
chosen constant.

Remark 1.4. — We firmly believe the restriction on r from Hypothesis 5 to be mainly
technical and due to the rather abstract framework in which we are working. Let us
for instance mention [17] in which a Lipschitz estimate is proved for the solution of a
first order stationary master equation for any discount rate.

1.3. Stegall’s variational principle. — We end this section on preliminary results
by recalling a quite weak version of Stegall’s lemma [39, 40, 24] that we shall use
many times in the rest of the paper. Moreover, we present a proof of this result that
we believe to be new.

Lemma 1.1. — Let φ : Ω → R be a lower semi continuous function from a compact
set Ω ⊂ X of a separable Hilbert space X. Then there is a dense number of points c
in X such that x 7→ φ(x) + 〈c, x〉 has a strict global minimum on Ω.

Proof. — This proof relies on convex analysis. For a set E, we denote P(E) the set
of its subsets. Let us consider the operator A : X →P(X) defined by A(c) is the set
of the points at which x 7→ φ(x) + 〈c, x〉 reaches its minimum over Ω. Clearly for all c,
this set is non empty and well-defined. Let us check that the operator −A is cyclically
monotone. We consider a finite sequence c0, c2, . . . , cn = c0 and for all i, yi ∈ A(ci).
For all i, let us remark that

φ(yi) + 〈ci, yi〉 6 φ(yi+1) + 〈ci, yi+1〉.

Rearranging we get
〈ci, yi − yi+1〉 6 φ(yi+1)− φ(yi).

Let us now compute
n∑
i=1

〈ci − ci−1, yi〉 =

n∑
i=1

〈ci, yi − yi+1〉 6
n∑
i=1

φ(yi+1)− φ(yi) 6 0.

Therefore the operator −A is cyclically monotone. Thus we deduce that A ⊂ ∂ψ,
where ψ is a concave function on X and ∂ψ is its super-differential. From a general-
ization of Alexandrov theorem for separable Hilbert spaces [13], we finally deduce the
required result. �

2. Monotone solutions of the master equation

In this section we provide a notion of solution for the master equation which does
not require the solution to be differentiable with respect to the space variable. We de-
fine first our solutions in the easier case of the stationary master equation and then
present the time dependent case.
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2.1. The stationary case. — The main idea we exploit in this section is somehow
contained in the proof of Proposition 1.2. Namely let us remark that for the proof of
Proposition 1.2 to hold, we only need to have information on the solution U of (2)
at points of minima of φV,y : x 7→ 〈U(x) − V, x − y〉 for V ∈ Rd, y ∈ Od. Let us now
remark that if U is smooth, so is φV,y and

∇xφV,y(x) = U(x)− V +DxU(x) · (x− y).

In particular, if x0 is a point of minimum of φV,y in the interior of Od, then

(7) DxU(x0) · (x0 − y) = V − U(x0).

The right-hand side of (7) does not depend on derivatives of U . This leads us to
understand how we can generalize the notion of solution of (2) for a function U which
is not differentiable. According to this heuristic, we introduce the following definition.

Definition 2.1. — A function U ∈ C (Od,Rd) is said to be a monotone solution of (2)
if for any V ∈ Rd, y ∈ Od, R > 0 sufficiently large and x0 a point of strict minimum
of φV,y : x 7→ 〈U(x)− V, x− y〉 in B1

R, the following holds

(8) r〈U(x0), x0 − y〉+ λ〈U(x0)− T ∗U(Tx0), x0 − y〉
> 〈G(x0, U(x0)), x0 − y〉+ 〈F (x0, U(x0)), U(x0)− V 〉.

Remark 2.1. — Let us remark that this notion of solution is reminiscent of the def-
inition of viscosity solutions introduced by Crandall and Lions [23]. We feel that it
is useful to remark that, for the master equation (2), we could have defined a weak
solution by the fact that the function φV,y was a viscosity super-solution of a certain
PDE for all V ∈ Rd, y ∈ Od. However, we are not able to generalize such a formal-
ism to define solutions of the master equation for more general cases such as optimal
stopping or impulse control, that is why we prefer the definition of solutions we just
presented.

Remark 2.2. — Let us note that we impose the minimum to be strict because we have
in mind to build a stable notion of solution. Asking information for all minima raises
the problem that if a sequence of continuous functions (φn)n>0 converges uniformly
toward a function φ, then point of minima of φ are not necessary limits of sequences
of point of minima of (φn)n>0. This type of phenomenon raises major difficulties to
obtain stability, especially in the case of optimal stopping.

Remark 2.3. — Let us remark that this notion of solution could be stated in more
general domains than Od, as long as we have a boundary condition of the type of
Hypothesis 1.

Let us insist that in the previous definition x0 may be on the boundary of Od.
We introduce the ball B1

R because we shall place ourselves under Hypothesis 2, which,
as we already mentioned, has the effect to bound the trajectories. Before commenting
on our definition of solution, let us state the two following results which justify this
choice of definition.
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Proposition 2.1. — Under Hypotheses 1 and 2, a smooth solution of (2) is also a
monotone solution of (2) in the sense of Definition 2.1.

Proof. — This result is fairly simple so we only sketch its proof here. Let us consider
a classical solution U of (2). If the point of strict minimum of x 7→ 〈U(x)− V, x− y〉
is in the interior of B1

R, then thanks to (7), there is equality in (8). If this point is on
the boundary, thanks to the assumptions 1 and 2, the inequality holds. �

Theorem 2.1. — Under Hypotheses 1 through 3, there exists at most one continuous
monotone solution of (2) in the sense of Definition 2.1. If it exists, it is a monotone
application.

Proof. — Let us consider U and V two such solutions. Let us define W : O2
d → R by

W (x, y) = 〈U(x)− V (y), x− y〉.

Thanks to Lemma 1.1, for any ε > 0, there exists (a, b) ∈ R2d, |a|+ |b| 6 ε, such that

(x, y) 7−→ 〈U(x)− V (y), x− y〉+ 〈a, x〉+ 〈b, y〉

has a strict minimum on (B1
R)2 (for R>0 chosen sufficiently large independently of ε),

attained at (x0, y0). Thus because U is a monotone solution the following holds.

r〈U(x0), x0 − y0〉+ λ〈U(x0)− T ∗U(Tx0), x0 − y0〉
> 〈G(x0, U(x0)), x0 − y0〉+ 〈F (x0, U(x0)), U(x0)− V (y0) + a〉.

On the other hand, because V is a monotone solution, we deduce that

r〈V (y0), y0 − x0〉+ λ〈V (y0)− T ∗V (Ty0), y0 − x0〉
> 〈G(y0, V (y0)), y0 − x0〉+ 〈F (y0, V (y0)), V (y0)− U(x0) + b〉.

Summing the two previous equations, we obtain

rW (x0, y0) + λ(W (x0, y0)−W (Tx0, Ty0))

> 〈G(x0, U(x0))−G(y0, V (y0)), x0 − y0〉+ 〈F (x0, U(x0)), a〉+ 〈F (y0, V (y0)), b〉
+ 〈F (x0, U(x0))− F (y0, V (y0)), U(x0)− V (y0)〉.

From this we deduce the following.

rW (x0, y0) > λ(〈a, x0 − Tx0〉+ 〈b, y0 − Ty0〉) + 〈F (x0, U(x0)), a〉+ 〈F (y0, V (y0)), b〉.

Because U and V are continuous, we deduce from the fact that ε can be chosen
arbitrary small, that for any R > 0, W > 0 on B1

R. Thus we conclude as in the proof
of Proposition 1.2 that U = V and that U is monotone. �

This previous result is a strong justification for our notion of solution. By consid-
ering the proof of this result and the equivalent result in the smooth regime, one can
realize that we have simply used all the ingredients useful to prove uniqueness of solu-
tions of the master equation in the monotone regime and used them as a definition of
solutions. Let us note that we are not going to prove an existence result for monotone
solutions in the stationary setting (only in the time dependent one later on). This
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is entirely due to the same reasons as in Remark 1.2 and has nothing to do with an
intrinsic difficulty associated to this stationary case.

One can wonder if the notion of monotone solution is not too weak. In the next
section we show how it can be sufficient to describe solutions in the optimal stopping
case or in the impulse control one. Moreover we now present results of stability and
consistency concerning monotone solutions.

Proposition 2.2. — Consider a sequence (Fn, Gn)n∈N of applications from Od × Rd

into R2d which converges uniformly over all compact toward (F,G). If for all n, Un is
a continuous monotone solution of the master equation (2) associated to Fn and Gn
and if (Un)n∈N converges locally uniformly toward U , then U is a monotone solution
of the master equation associated to F and G.

Proof. — Let us consider V ∈ Rd, y ∈ Od, R > 0 and x0 a point of strict minimum
of φ : x 7→ 〈U(x) − V, x − y〉 in B1

R. From Lemma 1.1, we can consider a sequence
(an)n∈N ∈ (Rd)N such that for all n,{

|an| 6 n−1,
φn : x 7→ 〈Un(x)− V, x− y〉+ 〈an, x〉 has a strict minimum xn in B1

R.

Let us now remark that for all n > 0:

〈Un(xn)− V, xn − y〉+ 〈an, xn〉 6 〈Un(x0)− V, x0 − y〉+ 〈an, x0〉.

From this last inequality, we deduce that (xn)n∈N converges toward x0. Finally let us
remark that because for all n > 0, Un is a monotone solution, we can write

r〈Un(xn), xn − y〉+ λ〈Un(xn)− T ∗Un(Txn), xn − y〉
> 〈Gn(xn, Un(xn)), xn − y〉+ 〈Fn(xn, Un(xn)), Un(xn)− V + an〉.

Passing to the limit in this last expression yields the required result. �

Remark 2.4. — The same type of results can be obtained in the case in which one
seeks stability for the terms λ and T in (2). This can be achieved by changing mildly
the previous proof.

We now show consistency of this notion of solution under an additional monotonic-
ity assumption. That is we show that if a smooth function U is a monotone solution
of (2) in the sense of Definition 2.1 and that it satisfies an additional monotonicity
assumption, then it is a classical solution of (2).

Proposition 2.3. — Assume that U ∈ W 2,∞ is a monotone solution of (2) in the
sense of Definition 2.1. Assume furthermore that for all x ∈ Od, DxU(x) > 0 in the
order of positive definite matrix. Then U satisfies

rU i + (F (x, U) · ∇x)U i + λ
(
U i − (T ∗U(t, Tx))i

)
= Gi(x, U) in {xi > 0},

rU i + (F (x, U) · ∇x)U i + λ
(
U i − (T ∗U(t, Tx))i

)
6 Gi(x, U) in {xi = 0}.

(9)
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Proof. — Let us fix x0 in the interior of Od such that U is twice differentiable at x0
(such a set is dense in Od). Let us define φV,y as in Definition 2.1. Let us remark that

∇xφV,y(x0) = DxU(x0)(x0 − y) + U(x0)− V,(10)
D2
xφV,y(x0) = 2DxU(x0) +D2

xU(x0)(x0 − y).(11)

Let us note that from the assumption on the monotonicity of U , there is a neighbor-
hood O of x0 such that for any point y ∈ O, the right-hand side of (11) is non-negative.
Then, taking such a y and choosing V such that (10) vanishes, we have that x0 is a
point of strict minimum of φV,y. Because U is a monotone solution of (2), we deduce
that

r〈U(x0), x0 − y〉+ 〈F (x0, U(x0)), DxU(x0)(x0 − y)

+ λ〈U(x0)− T ∗U(Tx0), x0 − y〉 > 〈G(x0, U(x0)), x0 − y〉.

This last inequality holds for any y ∈ O. From this we easily deduce that U satisfies (9)
at x0. We argue in the same way when x0 is on the boundary of Od. �

Remark 2.5. — Let us remark that the assumption DxU(x) > 0 in the order of posi-
tive definite matrix on Od is usually verified when some strict monotonicity assump-
tion is made on (G,F ). Furthermore, even though this assumption may be weakened,
it does not seem to be purely technical. Indeed, as we shall see in the section on opti-
mal stopping, the monotone solution solution of a master equation may not solve the
associated PDE at every point (for instance it is the case at the boundary of Od). In
our opinion, and very formally, the points at which this type of behavior can occur are
points at which the evolution of the density of players is not well-defined, for instance
because there are no players or because several Nash equilibria can lead to the same
value.

Remark 2.6. — As it is usually the case in the MFG theory, the value function does
not necessary satisfy the master equation on states where there is no player, but only
an inequality. This is reminiscent of the weak solutions studied in [15] for instance.

2.2. The time dependent case. — In this section we present the analogue of Defi-
nition 2.1 for the case of (1). Let us note that in general in the MFG theory, the
time regularity is not necessary the main challenge and that we could easily define a
notion of monotone solution for smooth function of the time. However we prefer, for
completeness, to present this concept for functions which are not necessary smooth in
time, even though it makes this section more technical. Following the previous part,
we define a monotone solution in the time dependent setting with the following:

Definition 2.2. — A continuous function U : (0,∞)×Od→Rd is a monotone solution
of (1) if

– for any V ∈ Rd, y ∈Od, R> 0 sufficiently large ε > 0 and φ : R→R a smooth
function, for any (t0, x0) ∈ (0,∞)×B1

R point of strict minimum of

(t, x) 7−→ 〈U(t, x)− V, x− y〉 − φ(t)
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on (t0 − ε, t0]×B1
R, the following holds:

(12) d

dt
φ(t0) + λ〈U(t0, x0)− T ∗U(t0, Tx0), x0 − y〉

> 〈F (x, U(t0, x)), U(t0, x)− V 〉+ 〈G(x, U(t0, x)), x− y〉.

– The initial condition holds:

U(0, x) = U0(x) on Od.

In some sense, we are treating the time derivative using techniques from viscosity
solutions. As in the stationary case, we now present results of uniqueness, stability
and consistency for this notion of solution. Let us insist on the fact that the following
Proposition also yields an existence result.

Proposition 2.4. — Let U : (0,∞)×Od→Rd be a smooth function, solution of (1)
in the classical sense. Then it is a monotone solution of (1) in the sense of defini-
tion 2.2. Moreover, under the assumptions of Proposition 1.3, there exists a monotone
solution of (1).

Proof. — We only state that for any x, y ∈ Od and t0 > 0, for any φ such that
φ(t) < 〈U(t, x), x− y〉 for t ∈ (t0− ε, t0) for some ε > 0 with φ(t0) = 〈U(t0, x), x− y〉,
then one has d

dtφ(t0) > 〈∂tU(t0, x), x − y〉. The rest of the proof follows easily from
the proof of Proposition 1.3. �

Theorem 2.2. — Under Hypotheses 1 and 3, there exists at most one continuous
monotone solution of (1) in the sense of Definition 2.2.

Proof. — Let us denote by U and V two such solutions. We defineW : [0,∞)×O2
d→R

by
W (t, x, y) = 〈U(t, x)− V (t, y), x− y〉.

Our aim is to proceed as usual by proving that W > 0. Let us assume that there
exists (t0, x0, y0) such that κ := W (t0, x0, y0) < 0. Let us define the function
Z : [0, t0]2 ×O2

d → R by

Z(t, s, x, y) = 〈U(t, x)− V (s, y), x− y〉+
1

α
(t− s)2 + 〈a, x〉+ 〈b, y〉+ δ1t+ δ2s.

This function is well-defined and depends on the parameters α, δ1, δ2>0 and a, b∈Rd.
Let R > 0 be such that x0, y0 ∈ B1

R. Evaluating Z at (t0, t0, x0, y0), we deduce that

min
[0,t0]2×(B1

R)2
Z 6 κ+ 〈a, x0〉+ 〈b, y0〉+ (δ1 + δ2)t0.

Hence, there exists δ0 > 0 and ε > 0 such that if |a|+ |b| < ε and δ1, δ2 ∈ (δ0/2, δ0),
then

(13) min
[0,t0]×(B1

R)2
Z < −κ

2
.
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From Lemma 1.1, there exists a, b, δ1, δ2 satisfying |a|+ |b| < ε and δ1, δ2 ∈ (δ0/2, δ0)

such that Z has a strict minimum on [0, t0]2× (B1
R)2 at (t∗, s∗, x∗, y∗). If t∗ > 0, then

φ1 : t −→ − 1

α
(t− s∗)2 − δ1t

can be chosen as a test function in (12) for U . Using that U is a monotone solution,
we then obtain

− δ1 −
2

α
(t∗ − s∗) + λ〈U(t∗, x∗)− T ∗U(t∗, Tx∗), x∗ − y∗〉

> 〈F (x∗, U(t∗, x∗)), U(t∗, x∗)− V (s∗, y∗) + a〉+ 〈G(x∗, U(t∗, x∗)), x∗ − y∗〉.

If s∗ > 0 we can construct the analogue function φ2 for V and then obtain an analogue
relation as the previous one. Thus if both t∗ > 0 and s∗ > 0, one obtains

(14) − δ1 − δ2
+ λ
(
〈U(t∗, x∗)− V (s∗, y∗), x∗ − y∗〉 − 〈U(t∗, Tx∗)− V (s∗, T y∗), T (x∗ − y∗)〉

)
> 〈F (x∗, U(t∗, x∗)), a〉+ 〈F (y∗, V (s∗, y∗)), b〉.

By construction of (t∗, s∗, x∗, y∗), the following holds

〈U(t∗, x∗)− V (s∗, y∗), x∗ − y∗〉 6 〈U(t∗, Tx∗)− V (s∗, Ty∗), T (x∗ − y∗)〉
+ (〈a, Tx∗ − x∗〉+ 〈b, Ty∗ − y∗〉).

Hence we deduce that

−δ0 > 〈F (x∗, U(t∗, x∗)) + λ(x∗ − Tx∗), a〉+ 〈F (y∗, V (s∗, y∗)) + λ(y∗ − Ty∗), b〉,

where we have also used that δ1, δ2 > δ0/2. Let us note that a posteriori, choosing ε
as small as we want, so that a and b are as small as necessary we can contradict (13)
as δ0 > 0 and δ0 was chosen independently of ε. Thus we have proved that if δ1 and δ2
are chosen in (δ0/2, δ0), and a and b are sufficiently small, for any value of α > 0, the
point of strict minimum of Z cannot be attained for t∗ > 0 and s∗ > 0.

We now treat the case in which t∗ = 0 (the case s∗ = 0 is similar) and show that
we also arrive at a contradiction if the parameter α is well chosen. Let us take η > 0

arbitrary small. We want to show that Z(t∗, s∗, x∗, y∗) > −η for a certain choice of α.
The following estimate always holds

|t∗ − s∗| < C
√
α,

for some constant C (let us recall that we minimize the continuous function Z on
a compact set). Choosing α sufficiently small, we can assume that if t∗ = 0, then
s∗ 6 η′ for η′ > 0 arbitrary small. Thus using the continuity of V , we deduce that
|V (s∗, y∗) − U0(y∗)| 6 η′′ for η′′ > 0 arbitrary small, up to taking η′ small enough.
From which we deduce using the continuity of U (if η′′ is small enough compared
to η, which we can always assume) that Z(t∗, s∗, x∗, y∗) > −η which contradicts (13)
since η is as small as we want. Thus the function W is non-negative and we conclude
as usual. �
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Proposition 2.5. — Consider a sequence (Fn, Gn)n∈N of applications from Od × Rd

into R2d which converges uniformly over all compact toward (F,G). If for all n, Un is
a continuous monotone solution of the master equation associated to Fn and Gn and if
(Un)n∈N converges uniformly toward U , then U is a monotone solution of the master
equation associated to F and G.

Proof. — The proof is very similar to the one of the stationary case. We consider ε>0,
R > 0, V ∈ Rd, y ∈ Od, t0 > 0, x0 ∈ Od and a smooth function φ : [t0 − ε, t0]→ R,
such that (t0, x0) is a point of strict minimum of (t, x) 7→ 〈U(t, x)−V, x−y〉−φ(t) on
(t0−ε, t0]×B1

R. In view of Lemma 1.1, we can consider for all n > 0, δn ∈ [−n−1, n−1]

and an ∈ B1
n−1 such that (t, x) 7→ 〈Un(t, x)− V − an, x− y〉 − φ(t) + δnt has a strict

minimum on [t0 − ε, t0] × B1
R at (tn, xn). Arguing as in the stationary case, we can

pass to the limit n→∞ in the relation we obtain from the fact that Un is a monotone
solution of the equation. This yields the required relation for U and thus established
that U is a monotone solution of the problem. �

2.3. A generalization of this method. — As already mentioned above, the aim of
this paper is to present a new notion of solution for MFG master equations and not
necessary to enter into too much details on these solutions. However we believe the
next remark to be worth mentioning. It has been pointed out to us by Pierre-Louis
Lions.

Let us consider the case λ = 0. The main argument to establish uniqueness of
monotone solutions is to consider two such solutions U and V and to prove that W
defined by

W (x, y) = 〈U(x)− V (y), x− y〉
is non-negative. Instead, for instance, we could have defined the function W with

W (x, y) = 〈U(x)− V (y), φ(x)− φ(y)〉

for some φ : Od → Rd. Now let us remark that if Dxφ(x) is an invertible matrix for
any x in the interior of Od, the property

W > 0 =⇒ U = V

still holds. This remark immediately generalizes the result of this section to a wider
class of systems. Indeed by replacing the condition (G,F ) is monotone by

〈G(x, U)−G(y, V ), φ(x)− φ(y)〉+ 〈F (x, U)− F (y, V ), U ·Dxφ(x)− V ·Dxφ(y)〉 > 0

∀x, y ∈ Od, U, V ∈ Rd,

we obtain the uniqueness of the associated monotone solutions. This concept of solu-
tion depending on φ can be defined (in the stationary case) by

Definition 2.3. — A function U ∈ C (Od,Rd) is said to be a φ-monotone solution
of (2) if for any V ∈ Rd, y ∈ φ(Od), R > 0 sufficiently large and x0 a point of strict
minimum of ψV,y : x 7→ 〈U(x)− V, φ(x)− y〉 in B1

R, the following holds

r〈U(x0), φ(x0)− y〉 > 〈G(x0, U(x0)), x0 − y〉+ 〈F (x0, U(x0)), (U(x0)− V )Dxφ(x0)〉.
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For instance, a remarkable choice of φ could be x 7→ −x. In such a situation, one
could study master equations with a sort of anti-monotonicity properties.

3. The master equation for mean field games with optimal stopping

This section introduces the formulation of the master equation modeling a MFG
in which the players have the possibility to leave the game. As already mentioned in
the introduction, let us recall that MFG of optimal stopping have been the subject
of several works but that the case of the master equation for such MFG has not been
treated up to now.

In this section we are interested with a MFG, similar to the ones represented by (1)
and (2), except for the fact that the players are allowed to leave the game whenever
they decide, by paying a certain exit cost. Moreover, once they have left the game,
they do not interact anymore with the other players.

Let us briefly recall some results from [7] on this kind of MFG. In this paper, we
shew that existence of Nash equilibria for MFG of optimal stopping (in the absence
of a common noise) holds in general only if the players are allowed to play mixed
strategies. That is, the players are allowed to play a random exit time (i.e., they
control their probability to leave the game). This leads to the existence of Nash
equilibria in which there are part of the state space where some players are leaving
and some are staying. Even though uniqueness of Nash equilibria (or at least of the
well posedness of a value function for the MFG) can be established through standard
monotonicity assumptions, the characterization of the evolution is highly non trivial
in the states in which some players are leaving and some are staying. We propose here
to address this problem using the notion of monotone solutions, proceeding as we did
in [7], by first considering a penalization of the MFG in which the players cannot exit
the game as freely as they may want, and then by passing to the limit.

3.1. The penalized master equation. — In the penalized version of the MFG of op-
timal stopping, the players cannot decide to leave instantly the game, they can only
control the intensity of a Poisson process which give their exit time, and the intensity
of this process is bounded by ε−1 for ε > 0. Even though we do not want to enter
into the precise formulation of this penalized game, let us insist on the fact that those
aforementioned Poisson processes are supposed to be independent from one player to
the other. The penalized master equation is then of the following form in the time
dependent setting:

(15) ∂tU +
1

ε
β(U) +

(1

ε
β′(U) ∗ x+ F (x, U)

)
· ∇xU

+ λ(U − T ∗U(t, Tx)) = G(x, U) in (0,∞)×Od,
U(0, x) = U0(x) in Od,

where β is an increasing and convex function that we would like to take as β =

β̂ := (·)+. We recall that ∗ stands for the term by term product and that β(U) is
understood component wise. Because β̂′ is not well-defined but we shall shall work
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with smooth β approximating β̂. However we shall focus first on the case of β̂ for the
sake of argument. In the stationary setting, the form of the penalized master equation
is given by

(16) rU +
1

ε
β(U) +

(1

ε
β′(U) ∗ x+ F (x, U)

)
· ∇xU

+ λ(U − T ∗U(t, Tx)) = G(x, U) in Od.

In the case λ = 0, the form of the characteristics of the previous equations is given by

(17)


V̇ (t) = G(y(t), V (t))− 1

ε
β(V ),

ẏ(t) = F (y(t), V (t)) +
1

ε
β′(V ) ∗ y.

This type of characteristics is clearly what we expect from the study in [7] when
β = β̂. Let us now come back on the case of β̂, which is not well-defined. In this
paper, we want to understand this derivative in the same manner as we did in [7].
This technique relies mainly on understanding β̂′(0) as the segment [0, 1] and the
previous master equations as differential inclusions. Instead of looking for solutions U
of (18), we are going to look for a couple (U,α) solution of

(18)


rU +

1

ε
β̂(U) +

(α
ε
∗ x+ F (x, U)

)
· ∇xU + λ(U − T ∗U(t, Tx))

= G(x, U) in Od, 0 6 αi(x) 6 1, ∀i, 1 6 i 6 d, x ∈ Od,
U i(x) < 0 =⇒ αi(x) = 0,

U i(x) > 0 =⇒ αi(x) = 1.

The same type of reformulation can be carried on for the time dependent case.
In the previous master equations, the exit cost paid by the players to leave the

game is 0. This leaving cost is necessary an upper bound for any candidate for a
value function of the game, as a player can always pay the exit cost and leave the
game. Thus we naturally expect that the value function U satisfies U 6 0 everywhere.
Moreover, seeing U 6 0 as a constraint helps to understand the function β̂ as a sort
of penalization.

The case in which the exit cost depends on the state of the player which is leaving
the game, but not on the density of all the players, can easily be treated in a similar
fashion. The case in which the exit cost depends on the density of players is much
more involved as structural assumptions have to be made on the form of the exit cost
to ensure the propagation of monotonicity. We refer to [7] for more detailed on this
topic and we leave this case for future research.

For the rest of this study we focus on the stationary case and we mention the time
dependent setting at the end of this part on optimal stopping.

3.2. Results on the stationary penalized equations. — This section presents three,
quite simple, results on the penalized master equations. We start by proving a unique-
ness result for solutions of (18), which justify in our opinion the well posedness of the
penalized MFG, even though this property would not prove to be essential to build
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a solution of the limit master equation. We do not present in full details results of
existence and uniqueness of solutions of (18), as it is quite technical and not strictly
needed to construct a solution of the limit problem. The second result is a, uniform
in ε, a priori estimate for the solution of (16). The third result is concerned with
monotone solutions of (16).

Proposition 3.1. — Under Hypotheses 1 and 2, there exists at most one smooth
function U such that (U,α) is a solution of (18). If it exists, this solution is monotone.

Proof. — The proof is very similar to the one of Proposition 1.2. Let us take (U,α1)

and (V, α2) two smooth solutions. We introduce W : O2
d → R defined by:

W (x, y) = 〈U(x)− V (y), x− y〉.

Let us remark that W satisfies

rW +
(α1(x)

ε
∗ x+ F (x, U(x))

)
· ∇xW +

(α2(y)

ε
∗ y + F (y, V (y))

)
· ∇yW

= 〈G(x, U(x))−G(y, V (y)), x− y〉+ 〈F (x, U(x))− F (y, V (y)), x− y〉

+
1

ε

(
〈α1(x) ∗ x− α2(y) ∗ y, U(x)− V (y)〉 − 〈β̂(U(x))− β̂(V (y)), x− y〉

)
= 〈G(x, U(x))−G(y, V (y)), x− y〉+ 〈F (x, U(x))− F (y, V (y)), x− y〉

+
1

ε

(
〈x, β̂(V (y))− α1(x)V (y)〉+ 〈y, β̂(U(x))− α2(y)U(x)〉

)
> 〈G(x, U(x))−G(y, V (y)), x− y〉+ 〈F (x, U(x))− F (y, V (y)), x− y〉.

The rest of the proof follows as the one of Proposition 1.2. �

Remark 3.1. — Several conclusions can be drawn from this result. The first one
is that the terms arising from the modeling of optimal stopping only reinforce the
monotonicity of the equation. The second one is that the singularity β̂′(·) can be
understood quite freely, this is justified by this uniqueness property. Finally, it is not
clear that such a uniqueness result holds for any increasing convex function β.

Remark 3.2. — Let us briefly insist on the fact that the addition of the term
“β̂′(U) ∗ x” in the dynamics does not alter the assumptions 1 and 2.

The following result is the main argument why we are able to pass to the limit
ε→ 0 in (18).

Proposition 3.2. — Under the assumptions of Proposition 1.4, for any smooth, in-
creasing and convex function β, there exists C > 0 independent of ε and β such that
if U is a classical solution of (16), then

(19) ‖∇xU‖ 6 C.

Proof. — This proof is similar to the one of Proposition 1.4. Let us defineW and Z by

W (x, ξ) = 〈U(x), ξ〉,

Z(x, ξ) = 〈∇xW (x, ξ), ξ〉 − δ|∇xW |2 + γ|ξ|2,
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for some constants β and γ. Let us remark that, arguing as if β was a smooth function,
Z satisfies
(20) rZ + 〈ε−1β′(U) ∗ x+ F (x,∇ξW ),∇xZ〉

+ 〈(ε−1β′′(U) ∗ x+DpF (x,∇ξW ))∇ξZ,∇xW 〉
− 〈DpG(x,∇ξW )∇ξZ, ξ〉+ λ(Z − Z(t, Tx, Tξ))

= 〈DxG(x,∇xW )ξ, ξ〉 − 〈DpG(x,∇ξW )∇xW, ξ〉 − 〈DxF (x,∇ξW )∇xW, ξ〉

+ 〈DpF (x,∇ξW )∇xW,∇xW 〉+ 〈ε−1β′′(U) ∗ x ∗ ∇xW,∇xW 〉
− 2δ〈DxG(x,∇xW )ξ,∇xW 〉+ 2δ〈DxF (x,∇ξW )∇xW,∇xW 〉

+ 2δ〈β′(U) ∗ ∇xW,∇xW 〉

+ δλ
(
|∇xW |2 − 2〈∇xW (Tx, Tξ), T∇xW 〉+ |∇xW (Tx, Tξ)|2

)
+ rδ|∇xW |2 + 2γ(〈DpF (x,∇ξW )ξ,∇xW 〉 − 〈DpG(x,∇ξW )ξ, ξ〉)

− rγ|ξ|2 + λγ(|ξ|2 − |Tξ|2).

Let us remark that, since β is an increasing and convex function, all the terms in the
right-hand side involving ε are non-negative. Thus we conclude that the announced a
priori estimate holds (indeed independently of ε). �

As already mentioned in the previous section, existence of solution of a station-
ary master equation can be established from estimates such as (19) if some local
boundedness holds. We here give an assumption for which such a property can be
proved.

Hypothesis 6. — For any p ∈ Rd, F (0, p) = 0. Moreover there is a unique solution
V ∈ Rd, V 6 0 of

rV + λ(V − T ∗V ) = −G(0,−V ).

We believe this assumption to be quite mild as it only assumes that i) once the
mass of players reaches 0, it stays at 0, ii) the MFG with a 0 mass of player (which is
thus an optimal control problem) is well-defined and players remaining do not exit it.
Let us remark that there can indeed still be player in the MFG, even if the mass of
players is 0. In such a case, the remaining players do not “see” each other.

Proposition 3.3. — For ε > 0 and β a smooth increasing and convex function such
that β = 0 on {x 6 0}, under the assumptions of Proposition 1.4 and Hypothesis 6,
there exists a monotone solution Uε,β of (16), Lipschitz continuous, with a Lipschitz
constant independent of ε and β, and such that Uε,β(0) is bounded uniformly in ε

and β.

The proof of this result follows exactly the argument of the previous part.

3.3. The limit master equation. — We show in this section how we can characterize
the value function of a MFG of optimal stopping using the notion of monotone solu-
tions. The main idea consists in characterizing the limit of the sequence (Uε)ε>0 of
solutions of (18) when ε→ 0.
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Let us take (Uε, αε) such that Uε is a monotone solution of (18), for any V ∈ Rd,
y ∈ Od and x point of strict local minimum of φV,y : x 7→ 〈Uε(x) − V, x − y〉, the
following holds.
r〈Uε(x), x− y〉+ λ〈Uε(x)− T ∗Uε(Tx), x− y〉
> 〈G(x, Uε(x)), x− y〉+ 〈F (x, Uε(x)), Uε(x)− V 〉

+
1

ε

(
〈αε ∗ x, Uε(x)− V 〉 − 〈β̂(Uε(x)), x− y〉

)
= 〈G(x, Uε(x)), x− y〉+〈F (x, Uε(x)), Uε(x)− V 〉 − 1

ε

(
〈αε ∗ x, V 〉+〈β̂(Uε(x)), y〉

)
.

From this computation, we deduce that if V ∈ Rd is such that V 6 0, then for any
y ∈ Od and x point of strict local minimum of φV,y : x 7→ 〈Uε(x)−V, x−y〉, we obtain
that

(21) r〈Uε(x), x− y〉+ λ〈Uε(x)− T ∗Uε(Tx), x− y〉
> 〈G(x, Uε(x)), x− y〉+ 〈F (x, Uε(x)), Uε(x)− V 〉.

As we clearly expect that the limit of (Uε)ε>0 (if it exists) is non-positive, this leads
us to the following definition.

Definition 3.1. — A function U ∈ C (Od,Rd) is said to be a monotone solution of
the master equation for the MFG of optimal stopping if

– U 6 0,
– for any V ∈ Rd such that V 6 0, for any y ∈ Od, R > 0 sufficiently large and x0

a point of strict minimum of φV,y : x 7→ 〈U(x)− V, x− y〉 in B1
R, the following holds

r〈U(x0), x0 − y〉+ λ〈U(x0)− T ∗U(Tx0), x0 − y〉
> 〈G(x0, U(x0)), x0 − y〉+ 〈F (x0, U(x0)), U(x0)− V 〉.

Let us insist that the only thing which differs from the non-optimal stopping case
is that U has to be non-positive component-wise and that we only have information
for V which are also non-positive component wise. The existence of such a solution is
stated in the next result.

Theorem 3.1. — Under the assumptions of Proposition 1.4 and Hypothesis 6, there
exists a monotone solution U of the MFG of optimal stopping in the sense of Defini-
tion 3.1.

Proof. — Let us take a sequence of functions (βn)n>0 such that for all n > 0, βn is a
smooth increasing, convex and non negative function such that βn(0) = 0 and (βn)n>0

converges locally uniformly toward β̂. For ε > 0 we denote by Uε,n a monotone solution
of (16) with β = βn. From Proposition 3.3, we know that, (Uε,n)ε>0,n>0 is uniformly
continuous and locally bounded.

From the Ascoli-Arzelà theorem, we can build two sequences (Up)p>0 and (εp)p>0

such that:
– For all p > 0, εp > 0 and εp → 0 as p→∞.
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– For all p > 0, (Uεp,n)n>0 converges locally uniformly toward Up.
– (Up)p>0 is a family of uniformly Lipschitz functions, locally bounded, and con-

verges locally uniformly toward a function U .
Thanks to Proposition 2.2, recalling (21), we deduce that for all p > 0, V ∈ Rd, V 6 0,
y ∈ Od and x0 point of strict minimum of x 7→ 〈Up(x)−V, x− y〉, the following holds

r〈Up(x0), x0 − y〉+ λ〈Up(x0)− T ∗U(Tx0), x0 − y〉
> 〈G(x0, Up(x0)), x0 − y〉+ 〈F (x0, Up(x0)), Up(x0)− V 〉.

We do not detail this fact as it follows exactly the same argument as in the proof
of Proposition 2.2 except for the fact that one has to be careful to choose an (using
the notation of the aforementioned proof) so that V − an 6 0, which we can do
due to Stegall’s variational principle. The same property is of course also obtained
immediately for U the limit of (Up)p>0. Thus it remains only to show that U 6 0.

Let us take R > 0 sufficiently large ε > 0 and n > 0. Consider D := [R+1, R+2]d.
There exists y ∈ D and a ∈ Rd, a 6 0 arbitrary small such that x 7→ 〈Uε,n(x)−a, x−y〉
has a strict minimum onB1

R at x0. Since Uε,n is a monotone solution of (16), we deduce
that

r〈Uε,n(x0), x0 − y〉+ λ〈Uε,n(x0)− T ∗Uε,n(Tx0), x0 − y〉

> 〈G(x0, Uε,n(x0)), x0− y〉+ 〈F (x0, Uε,n(x0)), Uε,n(x0)−a〉+ 1

ε
〈β′n(Uε,n(x0)) ∗x0, a〉

+
1

ε
〈βn(Uε,n(x0)), y〉+

1

ε
〈β′n(Uε,n(x0)) ∗ Uε,n(x0)− βn(Uε,n(x0)), x0〉.

From which we deduce (using that β′n(z)z > βn(z)) that βn(Uε,n(x0)) = o(ε). Be-
cause y is chosen such that for any x ∈ B1

R, xi − yi 6 0, we deduce by construction
of x0 that, on B1

R, βn(Uε,n) is bounded by a o(ε). Hence, we obtain that U 6 0. �

We now present a result of uniqueness for this type of solutions.

Theorem 3.2. — Under Hypotheses 1 through 3, there exists at most one monotone
solution of the MFG of optimal stopping in the sense of Definition 3.1.

Proof. — The proof of this statement follows exactly the one of Theorem 2.1 by
remarking that thanks to Lemma 1.1, using the notation of the aforementioned proof,
a and b can be chosen such that V − a 6 0 and U − b 6 0. �

3.4. Comments on this notion of solution in the optimal stopping case. — In this
section we want to discuss how the knowledge of the value function of the MFG is
helpful to understand the behavior of the population of agents. In particular we make
an analogy with the notion of mixed solutions introduced in [7].

First, we expect that when no player is leaving the game, U solves a certain PDE,
which is the master equation characterizing the MFG without optimal stopping. The
set which corresponds to the fact that no player is leaving is the set

⋂d
i=1{U i < 0}.

The fact that U satisfies this property can be obtained by two arguments. First, from
the PDE satisfied by Uε for ε > 0 and then by passing to the limit ε→ 0. Secondly by
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remarking that if U i(x) < 0 for all i and DxU(x) > 0 in the order of positive definite
matrix, then the proof of Proposition 2.3 can be easily adapted to show that U indeed
satisfies

rU i + (F (x, U) · ∇x)U i + λ
(
U i − (T ∗U(t, Tx))i

)
= Gi(x, U) in {xi > 0} ∩ {U < 0},

rU i + (F (x, U) · ∇x)U i + λ
(
U i − (T ∗U(t, Tx))i

)
6 Gi(x, U) in {xi = 0} ∩ {U < 0}.

Thus in the set {U < 0}, we can infer the evolution of the population of agents as in
the case without optimal stopping, at least when DxU > 0.

On the other hand, when players are actually leaving the game, we would like
to gain information on how they are leaving the game. Although the question of
describing the precise evolution of the population is not the central question of this
paper, we indicate formally what happens for the density of players. We refer to [7] for
more details on this question in the deterministic case. Let us consider a distribution
of players x ∈ Od such that it is optimal for some players to leave the game. For this
to happen, one must have I(x) 6= ∅, where I is defined by

(22) I(x) = {i ∈ {1, . . . , d} | U i(x) = 0}.

A natural requirement could be to expect that starting from x, the density of players
should instantly become x̃ defined by

(23) x̃i =

{
xi for i /∈ I(x),

0 for i ∈ I(x).

This type of behavior corresponds to considering only symmetric Nash equilibria in
pure strategies, i.e., equilibria in which if one player is leaving, then all the other
players are leaving. From [7], we know that we have to consider Nash equilibria in
mixed strategies and that players can play a certain leaving rate (a probability to exit
the game or not). Hence, even though some players are leaving the game in the state
i ∈ I(x), this does not necessary mean that x̃i = 0. However, because some players
are leaving and some are staying in this situation, there is a way to determine x̃i.
Following [7], we expect that x̃ is characterized by

(24)


x̃i = xi for i /∈ I(x),

U(x̃) = U(x),

Gi(x̃, U(x̃))x̃i = 0 for i ∈ I(x).

The last line of (24) stands for the fact that either all the players in state i have left the
game, or it is also optimal to stay in the game and thus one must have Gi(x̃, U(x̃)) = 0

(recall that the exit cost is 0). This relation is the analogue of an integral relation in
the formulation of Nash equilibria in [7]. Finally, let us remark that when there is a
strict monotonicity assumption on G, for any x ∈ Od, there is at most one solution x̃
of (24). Thus, if we are given the solution of the master equation, we can reconstruct
the trajectories by using (24).
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3.5. The time dependent case. — As we already mentioned above, we are not going
to treat in full details the time dependent case. However we indicate the natural
generalizations of the results above in this situation. The definition of a solution of
the problem is straightforward from definitions 2.2 and 3.1. It is given by

Definition 3.2. — A continuous function U : (0,∞) × Od → Rd is a monotone
solution of the time dependent MFG of optimal stopping if

– U 6 0,
– for any V ∈ Rd, V 6 0, y ∈ Od, R > 0 sufficiently large, ε > 0 and φ : R → R

a smooth function, for any (t0, x0) ∈ (0,∞)×B1
R point of strict minimum of (t, x) 7→

〈U(t, x)− V, x− y〉 − φ(t) on (t0 − ε, t0]×B1
R, the following holds:

(25) d

dt
φ(t0) + λ〈U(t0, x0)− T ∗U(t0, Tx0), x0 − y〉

> 〈F (x, U(t0, x)), U(t0, x)− V 〉+ 〈G(x, U(t0, x)), x− y〉,

– U(0, x) = min(U0(x), 0) on Od.

The fact that the initial condition is only satisfied when U0 is smaller than 0 is
classical feature of optimal stopping problem. The uniqueness of such solutions is a
direct adaptation of the proof of Theorem 2.2. It can be summarized as follows.

Theorem 3.3. — Under Hypotheses 1 and 3, for any continuous function U0, there
exists at most one continuous function solution of the time dependent MFG of optimal
stopping in the sense of Definition 3.2.

The question of existence of such a solution is more involved that in the stationary
case. We expect that it can also be proved by penalization by considering the sequence
(Uε)ε>0 of solutions of (15) and taking the limit ε→ 0. The main argument to consider
this method is that, as in the stationary case, a, uniform in ε, estimates on ‖DxUε‖ can
be established. However, unlike in the case of (1), because of the terms in ε−1 in (15),
this does not automatically translate into uniform estimates on the time regularity
of Uε.

4. The master equation for mean field games of impulse control

This section generalizes the results of the previous section to a case in which the
players have the possibility to use impulse controls. Let us briefly insist on the fact
that, in finite state space, the evolution of the state of a player is necessary discon-
tinuous. Hence it could be thought that all MFG in finite state space are games of
impulse controls. This is not the case. Indeed if one were to detail the game modeled
by a master equation of the type of (1), then the transition rates between the states,
which are controlled by the players, would be either bounded or get a dissuasive cost
as they become higher. In this section, we consider the possibility for a player to
change instantly its state by paying a certain (finite) cost, this is what we call a MFG
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of impulse control. We refer to [6] for a complete presentation of impulse control
problems and to [8] for the study of MFG of impulse control without common noise.

As the formulation of impulse control is very general, and thus difficult to work
with, we shall focus at some point in our study on a particular instance of MFG
of impulse control. We hope that the forthcoming results convince the reader of the
generality of this method. As we did in the optimal stopping case, we shall also focus
on the stationary case in this section.

4.1. Description of the model. — We consider a MFG in finite state space which is
described by F,G, λ and T as in (2). We add the possibility for a player in the state i
to instantly jump to the state j by paying a cost kij > 0. The so-called jump operator
is then defined by

(26) (Mp)i = min{kij + pj | j ∈ {1, . . . , d}}, for p ∈ Rd, i ∈ {1, . . . , d}.

We shall use the notationM ip = (Mp)i for i ∈ {1, . . . , d}. Given the value function U
of the MFG of impulse control, the function MU plays formally the same role as an
exit cost. Indeed when a player is in a state i and the distribution of other players is
x ∈ Od, such that

(27) U i(x) < M iU(x),

then it is strictly sub-optimal to use an impulse control. On the other hand, when
there is equality in (27), then it is optimal for players in state i to jump to a state j
which reaches the minimum of M iU(x) in (26).

As in the optimal stopping case, we introduce first a penalized version of the master
equation and then explain how we can pass to the limit.

4.2. The penalized master equation and monotone solutions of the limit game

Following the previous section, we are interested in a penalized version of the
impulse control MFG in which the players cannot exactly jump instantly from one
state to another but only control an intensity of jump which is bounded by ε−1 for
ε > 0 (in particular this penalized game is a “classical” MFG in finite state space, it
only has a particular structure). The master equation associated to such a MFG is

(28) rU i +
1

ε
β̂(U i −M iU) +

1

ε

(
(α · 1) ∗ x− x ·α

)
· ∇xU i + (F (x, U)) · ∇xU i

+ λ
(
U i − (T ∗)iU(Tx)

)
= Gi(x, U) in Od, i ∈ {1, . . . , d},

where β̂ is the positive part, 1 = (1, . . . , 1) and α = (αij)16i,j6d is a matrix made
of d2 real valued functions on Od which satisfy

(29)


αij(x) = 0 if U i(x) < U j(x) + kij on Od,∑d
j=1 αij(x) = 1 if ∃ j, U i(x) > U j(x) + kij on Od,

0 6 αij 6 1,∑d
j=1 αij 6 1.
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Formally, for i, j ∈ {1, . . . , d}, the function αij indicates the proportion of players
in state i which choose to jump (using the impulse control) to state j. Let us note
in particular that different jumps may be optimal to use from a single state. Thus
that we are forced to use this family of functions (αij)16i,j6d. Let us insist on the
fact established in [7] for the optimal stopping case, that if we restrict ourselves
to situations in which only a single behavior is optimal in every state, then a Nash
equilibrium may not exist. From [8], we expect that some monotonicity property holds
for (28)–(29). This following result gives a precise statement of this idea.

Proposition 4.1. — Under Hypotheses 1 through 3, there exists at most one smooth
function U such that (U,α) is a solution of (28)–(29). Moreover if such a solution
exists, U is monotone.

Proof. — As usual we take (U,α) and (V, γ) two such solutions and we define
W : O2

d → R by
W (x, y) = 〈U(x)− V (y), x− y〉.

Let us remark that W is a solution of

rW +
(
F (x, U) +

1

ε
((α ·1) ∗ x− x ·α)

)
∇xW +

(
F (y, V ) +

1

ε
((γ ·1) ∗ y− y · γ)

)
∇yW

= 〈G(x, U)−G(y, V ), x− y〉+ 〈F (x, U)− F (y, V ), U − V 〉

− λ(W (x, ξ)−W (Tx, Tξ)) +
1

ε
〈(V −MV )+ − (U −MU)+, x− y〉

+
1

ε
〈(α · 1) ∗ x− x · α− (γ · 1) ∗ y + y · γ, U − V 〉.

Let us remark that
〈(V −MV )+ − (U −MU)+, x− y〉+ 〈(α · 1) ∗ x− x · α− (γ · 1) ∗ y + y · γ, U − V 〉

= 〈x, (V −MV )+ − (U −MU)+ + (U − V ) ∗ (α · 1)− α · (U − V )〉
+ 〈y, (U −MU)+ − (V −MV )+ + (V − U) ∗ (γ · 1)− γ · (V − U)〉

> 〈x, (V −MV )+ − V ∗ (α · 1) + α · V + (α ∗ k) · 1〉
+ 〈y, (U −MU)+ − U ∗ (γ · 1) + γ · U + (α ∗ k) · 1〉 > 0,

where k = (kij)16i,j6d. Thus we deduce that W satisfies

rW +
(
F (x, U) +

1

ε
((α · 1) ∗ x− x ·α)

)
∇xW

+
(
F (y, V ) +

1

ε
((γ · 1) ∗ y − y · γ)

)
∇yW + λ(W (x, ξ)−W (Tx, Tξ)) > 0.

Thus we conclude as we did in Proposition 1.2, first thatW > 0, and then the required
results. �

This result clearly suggests that the master equation for the impulse control MFG
is well posed. Indeed, as we shall see, as the solution of the problem is monotone, the
notion of monotone solution introduced in Section 2 shall be helpful. As in the case of
optimal stopping, let us consider a monotone solution U of the penalized equation (28)
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for ε > 0 satisfying (29) for a family of functions (αij)16i,j6d. Thus for any V ∈ Rd,
y ∈ Od and x0 a point of strict local minimum of x 7→ 〈U(x)−V, x− y〉, the following
holds:
r〈U(x0), x0 − y〉+ λ〈U(x0)− T ∗U(Tx0), x0 − y〉

> 〈G(x0, U(x0))− β̂(U(x0)−MU(x0)), x0 − y〉

+ 〈F (x0, U(x0)) +
1

ε
((α(x0) · 1) ∗ x0 − x0 ·α(x0)), U(x0)− V 〉.

From the same calculations of the previous proof, because (29) holds, the previous
equation can be rewritten to obtain the following.
r〈U(x0), x0 − y〉+ λ〈U(x0)− T ∗U(Tx0), x0 − y〉 > 〈G(x0, U(x0)), x0 − y〉

+ 〈F (x0, U(x0)), U(x0)− V 〉 − 1

ε
〈x0, ((α(x0) · 1) ∗ V + α(x0)) · V − (α ∗ k) · 1〉.

Hence, if V satisfies V 6MV , then we obtain
r〈U(x0), x0 − y〉+ λ〈U(x0)− T ∗U(Tx0), x0 − y〉

> 〈G(x0, U(x0)), x0 − y〉+ 〈F (x0, U(x0)), U(x0)− V 〉.

This remark leads us to the following definition.

Definition 4.1. — A function U ∈ C (Od,Rd) is said to be a monotone solution of
the master equation for the MFG of impulse control if

– U 6MU ,
– for any V ∈ Rd such that V 6 MV , for any y ∈ Od, R > 0 sufficiently large,

and x0 a point of strict minimum of φV,y : x 7→ 〈U(x)−V, x− y〉 in B1
R, the following

holds
r〈U(x0), x0 − y〉+ λ〈U(x0)− T ∗U(Tx0), x0 − y〉

> 〈G(x0, U(x0)), x0 − y〉+ 〈F (x0, U(x0)), U(x0)− V 〉.

Remark 4.1. — As we can see, this definition is similar to the one of the optimal
stopping case, as they only differ in the fact that the constraint of being non-positive
component wise has been replaced by satisfying an inequality associated with the
jump operator M .

4.3. Results for particular mean field games of impulse control. — In the present
section, we assume a particular form for the jump operator M and we prove a result
of uniqueness for monotone solutions in the impulse control case.

Let us assume that not all impulse jumps are feasible, that is we assume that
kij = +∞ for some i, j ∈ {1, . . . , d}. More precisely we assume the following.

Hypothesis 7. — The cost to jump along a non trivial cycle is always infinite. That is,
for all i ∈ {1, . . . , d}, there exists no non constant sequence i = i0, i1, . . . , in+1 = i

such that for all k ∈ {0, . . . , n},
kikik+1

< +∞.

Moreover, for all i, j ∈ {1, . . . , d}, kij > 0.
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We comment on this assumption after the following result.

Theorem 4.1. — Under Hypotheses 1 through 3 and 7, there exists at most one so-
lution of the master equation of the MFG of impulse control in the sense of Defini-
tion 4.1. If it exists, this solution is monotone.

Proof. — From Assumption 7, there exists an open set O ⊂ Rd such that 0 ∈ O and
for any V ∈ Rd, a ∈ O:

V 6MV =⇒ V + a 6M(V + a).

The rest of the proof follows exactly the one of Theorem 2.1 by remarking that thanks
to Lemma 1.1, using the notations of the aforementioned proof, a and b can be chosen
in O. �

Remark 4.2. — Hypothesis 7 restricts the jumps such that it is not possible to do a
sequence of successive jumps to exit one state and enter it again. We firmly believe
this assumption is purely technical, even though we have not been able to prove it.
Let us also mention that no particular assumption of this form is made on F . In
particular, using “usual” controls, the players can come back to state from which
they have jumped.

5. A mean field game of entry and exit

In this section we consider an application of the tools developed in this paper.
We consider a market which agents can enter or exit by paying a certain cost, and
in which the revenue of the agents in the market is a function of the total number of
agents in the market. The simple model we are about to present is closely related to a
model for cryptocurrency mining introduced in [11], namely the version of the model
with no friction at entry.

The number of agents in the market is denoted by the variable K. The cost to exit
the market is denoted by s ∈ R and the cost to enter the market is denoted by b ∈ R.
We assume

b < s.

Knowing the evolution of the number of agents in the market (Kt)t>0, the revenue of
an agent in the market is given by∫ τ

0

e−rtg(Kt)dt,

where g is a real valued function, r > 0 is a constant which takes into account the
inter-temporal preference rate of the agents and 0 6 τ 6 +∞ is the time at which the
agent exits the market. We want to characterize the value function U of this MFG
which gives for a number of agents K in the market, the value of the game U(K)

for agents in the market. Following Section 3, we introduce first a penalized version
of the game in which the player cannot exit or enter the market freely. For ε > 0, a
plausible penalization of the MFG leads to the following penalized master equation:

(30) rU +
1

ε
(β′(U − s)K − β(b− U)) ∂KU +

1

ε
β(U − s) = g(K) in R+,

where β(·) = (·)+. The following result holds true.
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Proposition 5.1. — Let U be a smooth solution of (30). Assume that g is an in-
creasing and Lipschitz function. There exists C > 0 depending only on g and r such
that

‖∂KU‖∞ 6 C.

The proof of this statement follows exactly the one of Proposition 3.2 so we do not
detail it here. From this result, we easily deduce that, if g is Lipschitz and increasing,
there exists a monotone solution of (30). Such a monotone solution U satisfies that for
any V ∈ R, y ∈ R+, K0 a point of local strict minimum of K → (U(K)− V )(K − y)

rU(K0)(K0 − y) > g(K0)(K0 − y)

+
1

ε
(β′(U(K0)− s)K0 − β(b− U(K0))) (U(K0)− V )− 1

ε
β(U(K0)− s)(K0 − y).

Let us remark that if b 6 V 6 s, we obtain:

rU(K0)(K0 − y) > g(K0)(K0 − y).

This remark leads us to the following definition.

Definition 5.1. — A continuous function U : R→ R is said to be a monotone solution
of the MFG of entry and exit if

– b 6 U 6 s,
– for any V ∈ [b, s], for any y ∈ R+, for any point K0 of strict local minimum of

K 7→ (U(K)− V )(K − y),

rU(K0)(K0 − y) > g(K0)(K0 − y).

The following result is easily obtained following the previous parts of this article.

Theorem 5.1. — Assume that g is a Lipschitz and increasing function. There exists a
unique monotone solution of the MFG of entry and exit in the sense of Definition 5.1.

Remark 5.1. — Obviously, we only intend to apply the concepts developed in the
previous sections here, and extensions of this model could easily be considered, fol-
lowing modeling as in [11] or simply by adding terms which plays the same role as F
and G in the previous sections.

6. Conclusion and future perspectives

In this paper we have provided a notion of solution to study a class of first order
systems of PDE arising from the MFG theory and referred to as master equations.
This notion of monotone solution relies heavily on the so-called monotone structure of
the master equation (Hypothesis 3). Although it was already well known in the MFG
community that regularity and uniqueness for the solution of the master equation
can be obtained in a monotone regime, we hope that our notion of solution can be
helpful to reduce the assumptions made to obtain well-posedness of master equations.
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Moreover we have shown in this paper that we are able to characterize the value func-
tion of MFG involving a variety of novel actions for the players (stopping, jumping,
entering) using monotone solutions.

The natural extensions for this notion of solution are the case in which the master
equation takes the form of an infinite dimensional PDE and the case of second order
equations. The generalization of this work to infinite dimensional cases is standard
and shall be the subject of another work. Concerning the case of second order master
equations, defining a notion of monotone solutions for functions which are one time
differentiable is straightforward following the techniques we here developed, however
to treat functions which are merely continuous is much more involved and shall also
be the subject of a future work.

Finally, we do not claim that the notion of monotone solutions is appropriate to
address the question of the characterization of a value function in a MFG in a non-
monotone regime, in particular because in such a situation, if such a value function
exists, it may be discontinuous. Personally, we do not believe this previous prob-
lem to be solvable outside under additional structural assumptions on the MFG. By
structural assumptions, we mean assumptions which completely change the nature of
the MFG such as being in the potential case, having specific couplings or particular
information structure for instance.

Appendix A. Two maximum principle results

Lemma A.1. — Let φ : (0,∞)×Od → R be a smooth solution of

∂tφ+ F (x, φ) · ∇xφ−
d∑
i=1

σ(xi)∂iiφ+ λ(φ− φ(Tx)) > 0 in (0,∞)×Od,

φ(0, x) > 0 in Od,

where σ is a non-negative function with σ(0) = 0 and T : Od → Od. Under Hypothe-
sis 1, φ is a non-negative function.

Proof. — We argue by contradiction. Arguing as in the proof of lemma 3 in [12], we
can assume without loss of generality that there exists (t0, x0) ∈ (0,∞) × Od such
that 

∂tφ(t0, x0) < 0,

φ(t0, x0) = 0 6 φ(t0, y) ∀y ∈ Od,∑d
i=1 σ(xi0)∂iiφ(t0, x0) > 0,

F (x0, φ) · ∇xφ(t0, x0) > 0.

Thus we conclude to a contradiction by evaluating the PDE satisfied by φ at (t0, x0).
Hence φ is non-negative. �
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Lemma A.2. — Let φ : Od → R be a smooth solution of

rφ+ F (x, φ) · ∇xφ−
d∑
i=1

σ(xi)∂iiφ+ λ(φ− φ(Tx)) > 0 in (0,∞)×Od,

φ(0, x) > 0 in Od,

where σ is a non-negative function with σ(0) = 0 and T : Od → Od. Under Hypothe-
ses 1 and 2, φ is a non-negative function.

Proof. — Consider R sufficiently large and x0 := arg min{φ(x) | x ∈ B1
R}. Assump-

tions 1 and 2 precisely state that −F (x, p) points inward B1
R for any x ∈ ∂B1

R, p ∈ Rd.
Thus evaluating the PDE satisfied by φ at x0 we deduce that φ(x0) > 0, hence that φ
is a non-negative function. �

Appendix B. Finite state MFG on the orthant

In this section we consider a problem which arises from the discretization of a con-
tinuous problem, mainly to highlight the links between a master equation on Od and
on the simplex. For other examples of master equations in finite state space, we refer
to [4, 11]. Namely we are interested in the case in which G is given by

(31) Gi(x, p) = fi(x)−
∑
j 6=i

H((pj − pi)−), (x, p) ∈ (R+)d × Rd,

where H : R → R is a function with quadratic growth whose second derivative
is bounded from above and from below by a non negative constant. We then define
F (x, p) = −DpG(x, p)x. The master equation in such a cases is the PDE of unknown U
given by

(32) ∂tU + (F (x, U) · ∇x)U = G(x, U) in (0, T )× Rd,

where for the sake of clarity we omit terms modeling common noise, such terms
could be treated following the same technique as in the previous sections. Obviously
such a master equation is associated to games in which the number of players is
conserved, i.e., ∑

i

Fi = 0.

Let us consider a reduction of (32). We define V : (0, T )× Rd−1 → Rd−1 by:

(33) Vi(t, z) = Ui(t, φ(z))− Ud(t, φ(z))

for 1 6 i 6 d, where φ : Rd−1 → R is defined by φ(z) = (z1, z2, . . . , zd−1, 1 −
∑
i zi).

The natural equation to consider for V is

(34) ∂tV + (F̃ (z, V ) · ∇z)V = G̃(z, V ) in (0,∞)× Σd,

where Σd := {x ∈ Od−1 | x1 + · · · + xd−1 = 1} and G̃ and F̃ are defined for i ∈
{1, . . . , d− 1} by {

G̃i(z, V ) = Gi(φ(z), ψ(V ))−Gd(φ(z), ψ(V )),

F̃ i(z, V ) = F i(φ(z), ψ(V )),
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where ψ(p) = (p1, p2, . . . , pd−1, 0) for p ∈ Rd−1. The following result then easily
follows.

Proposition B.1. — Let us consider two functions

U : (0,∞)× Rd −→ Rd and V : (0,∞)× Rd−1 −→ Rd−1

which satisfy (33). Then if U solves (32), V solves (34).
Moreover, if x 7→ (fi(x))16i6d is monotone and H is convex, then both (G,F ) and

(G̃, F̃ ) are monotone.
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