
Lie Fu, Robert Laterveer, & Charles Vial
The generalized Franchetta conjecture for some hyper-Kähler varieties, II
Tome 8 (2021), p. 1065-1097.

<http://jep.centre-mersenne.org/item/JEP_2021__8__1065_0>

© Les auteurs, 2021.
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
LICENCE INTERNATIONALE D’ATTRIBUTION CREATIVE COMMONS BY 4.0.
https://creativecommons.org/licenses/by/4.0/

L’accès aux articles de la revue « Journal de l’École polytechnique — Mathématiques »
(http://jep.centre-mersenne.org/), implique l’accord avec les conditions générales
d’utilisation (http://jep.centre-mersenne.org/legal/).

Publié avec le soutien
du Centre National de la Recherche Scientifique

Publication membre du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

http://jep.centre-mersenne.org/item/JEP_2021__8__1065_0
https://creativecommons.org/licenses/by/4.0/
http://jep.centre-mersenne.org/
http://jep.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org


Tome 8, 2021, p. 1065–1097 DOI: 10.5802/jep.166

THE GENERALIZED FRANCHETTA CONJECTURE FOR

SOME HYPER-KÄHLER VARIETIES, II

by Lie Fu, Robert Laterveer & Charles Vial

Abstract . —We prove the generalized Franchetta conjecture for the locally complete family of
hyper-Kähler eightfolds constructed by Lehn–Lehn–Sorger–van Straten (LLSS). As a corollary,
we establish the Beauville–Voisin conjecture for very general LLSS eightfolds. The strategy
consists in reducing to the Franchetta property for relative fourth powers of cubic fourfolds,
by using the recent description of LLSS eightfolds as moduli spaces of Bridgeland semistable
objects in the Kuznetsov component of the derived category of cubic fourfolds, together with
its generalization to the relative setting due to Bayer–Lahoz–Macrì–Nuer–Perry–Stellari. As
a by-product, we compute the Chow motive of the Fano variety of lines on a smooth cubic
hypersurface in terms of the Chow motive of the cubic hypersurface.

Résumé (La conjecture de Franchetta généralisée pour certaines variétés hyper-kählériennes, II)
Nous démontrons la conjecture de Franchetta généralisée pour la famille localement complète

de variétés hyper-kählériennes de dimension 8 construite par Lehn-Lehn-Sorger-van Straten
(LLSS). Comme corollaire, nous établissons la conjecture de Beauville-Voisin pour les variétés
LLSS très générales. Notre stratégie consiste à utiliser la description récente de ces variétés LLSS
comme espaces de modules d’objets semistables (au sens de Bridgeland) dans la composante de
Kuznetsov de la catégorie dérivée d’hypersurfaces cubiques, et notamment la version relative
due à Bayer-Lahoz-Macrì-Nuer-Perry-Stellari, pour nous réduire à la propriété de Franchetta
pour les puissances relatives quatrièmes d’hypersurfaces cubiques de dimension 4. Nos résultats
nous permettent également de décrire le motif de Chow de la variété de Fano des droites sur
une hypersurface cubique lisse en termes du motif de Chow de l’hypersurface cubique.
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Introduction

The Franchetta property. — Let f : X → B be a smooth projective morphism be-
tween smooth schemes of finite type over the field of complex numbers. For any fiberX
of f over a closed point of B, we define

GDCH∗B(X) := Im
(
CH∗(X ) −→ CH∗(X)

)
,

the image of the Gysin restriction map. Here and in the sequel, Chow groups are
always considered with rational coefficients. The elements of GDCH∗B(X) are called
the generically defined cycles (with respect to the deformation family B) on X. The
morphism f : X → B is said to satisfy the Franchetta property for codimension-i
cycles if the restriction of the cycle class map

GDCHi
B(X) −→ H2i(X,Q)

is injective for all (or equivalently, for very general) fibers X. It is said to satisfy the
Franchetta property if it satisfies the Franchetta property for codimension-i cycles
for all i. At this point, we note that if B′ is a smooth locally closed subscheme of B,
then there is no a priori implication between the Franchetta properties for X → B

and for the restricted family XB′ → B′: informally, GDCHi
B′(X) is generated by

more elements than GDCHi
B(X); on the other hand, specializing to B′ creates new

relations among cycles. However, if B′ → B is a dominant morphism, the Franchetta
property for XB′ → B′ implies the Franchetta property for X → B; see [FLVS19,
Rem. 2.6].

The Franchetta property is a property about the generic fiber Xη. Indeed it is
equivalent to the condition that the composition

CH∗(Xη) −→ CH∗(Xη) −→ H∗(Xη)

is injective, where the first map, which is always injective, is the pull-back to the geo-
metric generic fiber and the second one is the cycle class map to someWeil cohomology
of Xη.

Hyper-Kähler varieties. — It was first conjectured by O’Grady [O’G13] that the uni-
versal family of polarized K3 surfaces of given genus g over the corresponding moduli
space satisfies the Franchetta property. By using Mukai models, this was proved for
certain families of K3 surfaces of low genus by Pavic–Shen–Yin [PSY17]. By investi-
gating the case of the Beauville–Donagi family [BD85] of Fano varieties of lines on
smooth cubic fourfolds, we were led in [FLVS19] to ask whether O’Grady’s conjecture
holds more generally for hyper-Kähler varieties:

Conjecture 1 (Generalized Franchetta conjecture for hyper-Kähler varieties [FLVS19])
Let F be the moduli stack of a locally complete family of polarized hyper-Kähler

varieties. Then the universal family X → F satisfies the Franchetta property.

It might furthermore be the case that, for some positive integers m, the relative
m-th powers X m

/F → F satisfy the Franchetta property. This was proved for instance
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in the case m = 2 in [FLVS19] for the universal family of K3 surfaces of genus 6 12

(but different from 11) and for the Beauville–Donagi family of Fano varieties of lines
on smooth cubic fourfolds.

The first main object of study of this paper is about the locally complete family
of hyper-Kähler eightfolds constructed by Lehn–Lehn–Sorger–van Straten [LLSvS17],
subsequently referred to as LLSS eightfolds. An LLSS eightfold is constructed from the
space of twisted cubic curves on a smooth cubic fourfold not containing a plane. The
following result, which is the first main result of this paper, completes our previous
work [FLVS19, Th. 1.11] where the Franchetta property was established for 0-cycles
and codimension-2 cycles on LLSS eightfolds.

Theorem 1. — The universal family of LLSS hyper-Kähler eightfolds over the mod-
uli space of smooth cubic fourfolds not containing a plane satisfies the Franchetta
property.

As already observed in [FLVS19, Prop. 2.5], the generalized Franchetta conjecture
for a family of hyper-Kähler varieties implies the Beauville–Voisin conjecture [Voi08]
for the very general member of the family:

Corollary 1. — Let Z be an LLSS hyper-Kähler eightfold. Then the Q-subalgebra

R∗(Z) := 〈h, cj(Z)〉 ⊂ CH∗(Z)

generated by the natural polarization h and the Chern classes cj(Z) injects into coho-
mology via the cycle class map. In particular, the very general LLSS eightfold satisfies
the Beauville–Voisin conjecture [Voi08].

Indeed, any subring of CH∗(Z) generated by generically defined cycles injects in
cohomology, provided Z satisfies the Franchetta property. As such, one further obtains
as a direct consequence of Theorem 1 that for an LLSS eightfold Z, the subring of
CH∗(Z) generated by the polarization h, the Chern classes cj(Z) and the classes
of the (generically defined) co-isotropic subvarieties described in [FLVS19, Cor. 1.12]
injects in cohomology via the cycle class map. This provides new evidence for Voisin’s
refinement in [Voi16] of the Beauville–Voisin conjecture.

Strategy of proof of Theorem 1. — In [FLVS19, Th. 1.11], we established the Franchet-
ta conjecture for 0-cycles on LLSS eightfolds. Our proof consisted in reducing, via
Voisin’s degree-6 dominant rational map

ψ : F × F Z

constructed in [Voi16, Prop. 4.8], to the generalized Franchetta conjecture for the
square of the Fano variety of lines F of a smooth cubic fourfold, which we established
in [FLVS19, Th. 1.10]. In order to deal with positive-dimensional cycles on Z, we take a
completely different approach: we consider the recent description of LLSS eightfolds as
certain moduli spaces of semistable objects in the Kuznetsov component of the derived
category of cubic fourfolds [LLMS18, LPZ18], together with its generalization due to
Bayer–Lahoz–Macrì–Nuer–Perry–Stellari [BLM+21] to the relative setting. Our first
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task, which is carried out in Section 1, consists then in relating the Chow motives
of the moduli space M of semistable objects in the Kuznetsov component of the
derived category of a smooth cubic fourfold Y to the Chow motives of powers of Y .
By adapting and refining an argument of Bülles [Bül20], we show in Theorem 1.1
that the motive of M belongs to the thick subcategory generated by Tate twists of
the motive of Y m, where dimM = 2m. Since all the data involved in the above are
generically defined, the Franchetta property for LLSS eightfolds is thus reduced to the
Franchetta property for fourth powers of smooth cubic fourfolds (Theorem 2 below).
The proof of Theorem 1 is then given in Section 3; see Theorem 3.1.

Powers of smooth cubic hypersurfaces. — The following theorem, in the case of cubic
fourfolds, suggests that the Franchetta property could hold for powers of Fano vari-
eties of cohomological K3-type; that (conjectural) motivic properties of hyper-Kähler
varieties could transfer to Fano varieties of cohomological K3-type was already pin-
pointed in [FLV21].

Theorem 2. — Let B be the open subset of PH0(Pn+1,O(3)) parameterizing smooth
cubic hypersurfaces in Pn+1, and let Y → B be the corresponding universal family.
Then the families Y m

/B → B satisfy the Franchetta property for all m 6 4.

Theorem 2 is established in Section 2.5. Its proof relies on the existence of a mul-
tiplicative Chow–Künneth decomposition for cubic hypersurfaces (see Theorem 2.7),
and on an analogue in the case of cubic hypersurfaces of a result of Yin [Yin15a] con-
cerning K3 surfaces (which itself is analogous to a result of Tavakol [Tav14] concerning
hyperelliptic curves). The latter is embodied in Corollary 2.13. In the particular case
of cubic fourfolds, it admits also the following refined form, which is the analogue of
Voisin’s [Voi08, Conj. 1.6]:

Proposition 1 (see Proposition 2.16). — Let Y be a smooth cubic fourfold and m ∈ N.
Let R̃∗(Y m) be the Q-subalgebra

R̃∗(Y m) := 〈p∗i CH1(Y ), p∗j CH2(Y ), p∗k,`∆Y 〉 ⊂ CH∗(Y m),

where pi, pj and pk,` denote the various projections from Y m to Y and Y 2. Then
R̃∗(Y m) injects into H2∗(Y m,Q) via the cycle class map for all m 6 2btr(Y ) + 1,
where btr(Y ) denotes the dimension of the transcendental cohomology of the smooth
cubic fourfold Y . Moreover, R̃∗(Y m) injects into H2∗(Y m,Q) for all m if and only
if Y is Kimura–O’Sullivan finite-dimensional [Kim05].

Fano varieties of lines on smooth cubic hypersurfaces. — Combining Theorem 2 with
our previous work [FLV21, Th. 4.2] where we established the Franchetta property
for the square of the Fano variety of lines on a smooth cubic hypersurface, we can
compute explicitly the Chow motive of the Fano variety of lines on a smooth cubic
hypersurface in terms of the Chow motive of the cubic hypersurface, without resort-
ing to Kimura–O’Sullivan finite-dimensionality arguments. The following is the main
result; see Theorem 2.20 for more precise statement and stronger results.
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Theorem 3. — Let Y be a smooth cubic hypersurface in Pn+1 and F the associated
Fano variety of lines on Y . We have an isomorphism of Chow motives

(1) h(F ) ' Sym2(hn(Y )prim(1))⊕
n−1⊕
i=1

hn(Y )prim(2− i)⊕
2n−4⊕
k=0

1(−k)⊕ak ,

where

ak =



⌊k + 2

2

⌋
if k < n− 2,⌊n− 2

2

⌋
if k = n− 2,⌊2n− 2− k

2

⌋
if k > n− 2.

In particular, we have an isomorphism of Chow motives

(2) h(F )(−2)⊕ h(Y )⊕ h(Y )(−n) ' Sym2 h(Y ).

Remark. — Let us explain the relations of Theorem 3 to earlier works and open
questions in the literature.

(i) The isomorphism (1) lifts the isomorphism in cohomology due to Galkin–
Shinder [GS14, Th. 6.1] to the level of Chow motives.

(ii) The isomorphism (2) answers a question of Huybrechts [Huy19, §3.3].
(iii) Theorem 3 refines the main result of [Lat17b] and, in fact, our method of

proof, which goes through the Franchetta property for F × F established in [FLV21,
Th. 4.2] and a cancellation property described in Proposition 2.19, provides a new,
independent, and more conceptual, proof of the main result of [Lat17b].

(iv) Specializing to the case of cubic fourfolds, (1) implies an isomorphism of Chow
motives

(3) h(F ) ' Sym2M ⊕M(−1),

where

M :=
(
Y,∆Y −

1

3
h4 × Y − 1

3
h2 × h2 − 1

3
Y × h4, 1

)
= 1⊕ h4(Y )prim(1)⊕ 1(−2)

is the K3-surface-like Chow motive. Recall that for a smooth projective surface S,
the Hilbert square of S is isomorphic to the blow-up of the symmetric square Sym2 S

along the diagonal and that h(Hi‘b2(S)) ' Sym2 h(S)⊕ h(S)(−1). Therefore, (3) can
be interpreted as saying that the Chow motive of F is the Hilbert square of the Chow
motive M of a “non-commutative” K3 surface; this is the motivic analogue of the
following folklore conjecture (cf. [Pop18, Conj. 4.3]): given a smooth cubic fourfold Y ,
the derived category of the Fano variety of lines F is equivalent, as a C-linear trian-
gulated category, to the symmetric square (in the sense of Ganter–Kapranov [GK14])
of the Kuznetsov component AY of the derived category of Y , i.e., Db(F ) ∼= Sym2 AY .

J.É.P. — M., 2021, tome 8



1070 L. Fu, R. Laterveer & C. Vial

Further outlooks. — The strategy for proving Theorem 1 has potential beyond the
case of LLSS eightfolds. Indeed, once suitable stability conditions are constructed for
other non-commutative K3 surfaces (cf. Section 1), one may hope our strategy can
be employed to prove the generalized Franchetta conjecture for the associated hyper-
Kähler varieties. In Section 4, we exemplify the above by establishing the Franchetta
property for many (non locally complete) families of hyper-Kähler varieties.

Conventions. — All algebraic varieties are defined over the field of complex numbers.
We work with Chow groups with rational coefficients. The categories of motives we
consider are the categories of pure Chow motives with rational coefficients Mrat and
of pure numerical motives with rational coefficients Mnum, as reviewed in [And04].
We write h(X) for the Chow motive of a smooth projective variety X. The set of
non-negative integers will be denoted by N.

Acknowledgements. — We thank Thorsten Beckmann, Tim-Henrik Bülles, Chunyi Li
and Xiaolei Zhao for helpful exchanges. We thank the referees for constructive com-
ments that improved our paper.

1. The motive of moduli spaces of objects in 2-Calabi–Yau categories

An important source of examples of projective hyper-Kähler manifolds is given
by moduli spaces of stable sheaves on Calabi–Yau surfaces [Muk84] [O’G99] [O’G03]
[Yos01]. Recently, Bülles [Bül20] showed that the Chow motive of such a (smooth pro-
jective) moduli space is in the thick tensor subcategory generated by the motive of the
surface. By allowing non-commutative “Calabi–Yau surfaces”, we get even more ex-
amples of hyper-Kähler varieties as moduli spaces of stable objects in a 2-Calabi–Yau
category equipped with stability conditions [BM14a] [BM14b] [BLM+17] [BLM+21]
[PPZ19]. Bülles’ result was recently extended to this non-commutative setting by
Floccari–Fu–Zhang [FFZ21, Th. 5.3]. In this section, we provide a refinement of these
results following an observation of Laterveer [Lat21].

Let Y be a smooth projective variety and let Db(Y ) be its bounded derived category
of coherent sheaves. Let A be an admissible triangulated subcategory of Db(Y ) such
that it is 2-Calabi–Yau, that is, its Serre functor is the double shift [2]. There are by
now several interesting examples of such 2-Calabi–Yau categories:

(i) the twisted derived categories of K3 or abelian surfaces equipped with a Brauer
class;

(ii) the Kuznetsov component of the derived categories of cubic fourfolds [Kuz10];
(iii) the Kuznetsov component of the derived categories of Gushel–Mukai fourfolds

or sixfolds [Gus83] [Muk89] [DK19] [KP18];
(iv) the Kuznetsov component of the derived categories of Debarre–Voisin twenty-

folds [DV10].
In all the examples listed above, there is a semi-orthogonal decomposition

Db(Y ) = 〈A ,
⊥
A 〉,

J.É.P. — M., 2021, tome 8
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where
⊥
A := {E ∈ Db(Y ) | Hom(E,F ) = 0 for all F ∈ A }

is generated by an exceptional collection (with ⊥A = 0 in (i)); see [MS19] or [FFZ21,
Ex. 5.1] for more details.

Let us now proceed to review the notions of Mukai lattice and Mukai vector. For
that purpose, recall that the topological K-theory of Y is naturally equipped with the
Euler pairing:

([E], [F ]) := −χ(E,F ), for all [E], [F ] ∈ K>(Y ).

Following [AT14], the Mukai lattice of A is defined as the free abelian group

H(A ) := {α ∈ K>(Y ) | (α, [E]) = 0 for all E ∈ ⊥A }/torsion,

equipped with the restriction of the Euler pairing, which is called the Mukai pairing.
The Mukai vector of an object E ∈ A is by definition v(E) := ch(E) ·

√
tdY . It is an

element of H(A ) by construction.
Assume that A admits stability conditions in the sense of Bridgeland [Bri07];

this has by now been established for examples (i) ∼ (iii) [Bri08] [YY14] [BLM+17]
[PPZ19], and is also expected for example (iv). We denote the distinguished connected
component of the stability manifold by Stab†(A ). Recall that if v is a primitive
element in the Mukai lattice of A , a stability condition σ ∈ Stab†(A ) is said to
be v-generic if stability coincides with semi-stability for all objects in A with Mukai
vector v. General results in [Lie06] and [AHLH18] guarantee that a good moduli space
Mσ(A , v) of σ-semistable objects in A with Mukai vector v exists as an algebraic
space of finite type. Moreover, initiated by Bayer–Macrì [BM14a, BM14b], a much
deeper study shows that the moduli space Mσ(A , v) is a non-empty projective hyper-
Kähler manifold for examples (i), (ii) and (iii), by [BM14b], [BLM+21], and [PPZ19]
respectively (the example (iv) is also expected).

Theorem 1.1. — Let Y be a smooth projective variety and A be an admissible tri-
angulated subcategory of Db(Y ) such that A is 2-Calabi–Yau. Let v be a primitive
element in the Mukai lattice of A and let σ ∈ Stab†(A ) be a v-generic stability con-
dition. Assume that M := Mσ(A , v) is a non-empty smooth projective hyper-Kähler
variety of dimension 2m := v2 +2. Then the Chow motive h(M ) is a direct summand
of a Chow motive of the form

r⊕
i=1

h(Y m)(`i)

with r ∈ N, `i ∈ Z.

The novelty of this result with respect to [FFZ21, Th. 5.3] is the better bound on
the power of Y , which will be crucial in the proof of the Franchetta property.

Proof of Theorem 1.1. — Following Bülles [Bül20], we consider the following chain of
two-sided ideals of the ring of self-correspondences of M :

I0 ⊂ I1 ⊂ · · · ⊂ CH∗(M ×M ),

J.É.P. — M., 2021, tome 8



1072 L. Fu, R. Laterveer & C. Vial

where for any non-negative integer k,

Ik := 〈β ◦ α | α ∈ CH∗(M × Y k), β ∈ CH∗(Y k ×M )〉.

Note that I0 = 〈α×β | α, β ∈ CH∗(M)〉 consists of “decomposable” cycles in M ×M .
The conclusion of the theorem can be rephrased as saying that ∆M ∈ Im.

Using Lieberman’s formula, Bülles showed [Bül20, Th. 1.1] that the intersection
product behaves well with respect to the grading. More precisely, for any k, k′ > 0,

(4) Ik · Ik′ ⊂ Ik+k′ .

The observation of Laterveer [Lat21, Lem. 2.2] is that the vanishing of the irregularity
of M implies that any divisor of M ×M is decomposable, that is,

(5) CH1(M ×M ) ⊂ I0.

It was pointed out in [FFZ21, Prop. 5.2] that the proof of Markman’s result [Mar12,
Th. 1] (revisited in [MZ20]) goes through for any 2-Calabi–Yau category, and we have

∆M = c2m(P) ∈ CH2m(M ×M ),

with P := −Rπ1,3,∗(π∗1,2(E )∨ ⊗L π∗2,3(E )), where E is a universal family and the
πi,j ’s are the natural projections from M × S ×M . Therefore our goal is to show
that c2m(P) ∈ Im. We prove by induction that ci(P) ∈ Ibi/2c for any i ∈ N.

The cases i = 0 and 1 are clear from (5). For i > 2, as in [Bül20], the Grothendieck–
Riemann–Roch theorem implies that ch(P) = −(π1,3)∗(π

∗
1,2α · π∗2,3β) = β ◦ α, where

α = ch(E ∨) · π∗Y
√

td(Y ) in CH∗(M × Y )

β = ch(E ) · π∗Y
√

td(Y ) in CH∗(Y ×M ).and

Hence chi(P) ∈ I1 for all i ∈ N, by definition. Let us drop P from the notation in
the sequel. Note that

chi =
(−1)i−1

(i− 1)!
ci +Q(c1, . . . , ci−1),

where Q is a weighted homogeneous polynomial of degree i. It suffices to show that

Q(c1, . . . , ci−1) ∈ Ibi/2c.

To this end, for any monomial cd11 c
d2
2 · · · c

di−1

i−1 of Q, we have that
∑i−1
j=1 jdj = i and

hence

(6)
i−1∑
j=1

bj/2cdj 6 bi/2c.

Using the induction hypothesis that cj ∈ Ibj/2c for any j 6 i− 1, we see that

cd11 c
d2
2 · · · c

di−1

i−1 ∈
i−1∏
j=1

I
dj
bj/2c ⊆ I∑i−1

j=1bj/2cdj
⊆ Ibi/2c,

where
∏

denotes the intersection product, the second inclusion uses the multiplica-
tivity (4), and the last inclusion follows from (6). The induction process is complete.
We conclude that ∆M = c2m belongs to Im, as desired. �
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In Theorem 1.1, if the Mukai vector v is not primitive, the moduli space of
semistable objects Mσ(A , v) is no longer smooth (for any stability condition σ).
However, in the so-called O’Grady-10 case, namely v = 2v0 with v20 = 2, for a generic
stability condition σ, there exists a crepant resolution of Mσ(A , v), which is a pro-
jective hyper-Kähler tenfold. In the classical case of moduli spaces of H-semistable
sheaves with such a Mukai vector v on a K3 or abelian surface with the polarization H
being v-generic, such a crepant resolution was constructed first by O’Grady [O’G99]
for some special v, and then by Lehn–Sorger [LS06] and Perego–Rapagnetta [PR13]
in general. In the broader setting where A = Db(S) is the derived category of a K3
surface and σ is a v-generic stability condition, the existence of a crepant resolution
of Mσ(A , v) was proved by Meachan–Zhang [MZ16, Prop. 2.2] using [BM14b]. In our
general setting where A is a 2-Calabi–Yau category, Li–Pertusi–Zhao [LPZ20, §3]
showed that the singularity of Mσ(A , v) has the same local model as in the classical
case and that the construction of the crepant resolution in [LS06] can be adapted by
using [AHR20]. For details we refer to [LPZ20, §3], where the proof was written for
cubic fourfolds, but works in general.

The following two results exemplify the belief that the Chow motive of the crepant
resolution can be controlled in the same way as in Theorem 1.1. Theorem 1.2 is for
K3 and abelian surfaces, while Theorem 1.3 is in the non-commutative setting where
A is the Kuznetsov component of a cubic fourfold.

Theorem 1.2. — Let S be a K3 or abelian surface and let α be a Brauer class of S.
Let v0 ∈ H̃(S) be a Mukai vector with v20 = 2. Set v = 2v0. Let σ be a v-generic
stability condition on Db(S, α). Denote by M̃ any crepant resolution of the moduli
space M := Mσ(S, v) of σ-semistable objects in Db(S, α) with Mukai vector v. Then
the Chow motive h(M̃ ) is a direct summand of a Chow motive of the form

r⊕
i=1

h(S5)(`i)

with r ∈ N, `i ∈ Z.

The existence of crepant resolutions for M := Mσ(S, v) was established in [MZ16,
Prop. 2.2]. The fact that h(M̃ ) is in the tensor subcategory generated by h(S) is
proved in [FFZ21, Th. 1.3]. The improvement here consists in bounding the power
of S by 5.

Proof. — Replacing M everywhere by the stable locus M st in the proof of Theo-
rem 1.1 yields that

(7) ∆M st ∈ 〈β ◦ α | α ∈ CH∗(M st × S5), β ∈ CH∗(S5 ×M st)〉.

Indeed, let us give some details: define the chain of subgroups I0 ⊂ I1 ⊂ · · · ⊂
CH∗(M st ×M st) by

Ik := 〈β ◦ α | α ∈ CH∗(M st × Sk), β ∈ CH∗(Sk ×M st)〉.
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Note that, since M st is not proper, CH∗(M st×M st) is no longer a ring for the com-
position of self-correspondences. It is however easy to see that the multiplicativity (4)
and the inclusion (5) still hold. Again by [FFZ21, Prop. 5.2], ∆M st = c10(P) with P

defined similarly as in the proof of Theorem 1.1, by using the universal sheaf over M st.
The Grothendieck–Riemann–Roch theorem implies that the Chern characters of P

belong to I1. The same induction process as in the proof of Theorem 1.1 shows that
the i-th Chern class of P lies in Ibi/2c for all i. In particular, ∆M st = c10(P) ∈ I5,
which is nothing but (7).

The rest of the proof is as in [FFZ21, §4]. Let us give a sketch. First, as two bi-
rationally isomorphic hyper-Kähler varieties have isomorphic Chow motives [Rie14],
it is enough to consider the crepant resolution constructed by O’Grady and Lehn–
Sorger. By construction, there is a further blow-up M̂ → M̃ whose boundary ∂M̂ :=

M̂ rM st is the union of two divisors denoted by Ω̂ and Σ̂. By taking closures, (7) im-
plies that there exist α̂i ∈ CH∗(M̂×S5), β̂i ∈ CH∗(S5×M̂ ) such that ∆

M̂
−
∑
i β̂i◦α̂i

is supported on ∂M̂ ×M̂ ∪M̂ ×∂M̂ . Consequently, there is a split injection of Chow
motives

h(M̂ ) ↪−→
⊕
i

h(S5)(`i)⊕ h(Ω̂)⊕ h(Ω̂)(−1)⊕ h(Σ̂)⊕ h(Σ̂)(−1).

It remains to show that h(Ω̂) and h(Σ̂) are both direct summands of Chow motives
of the form

⊕r
i=1 h(S5)(`i).

For h(Ω̂), the proof of [FFZ21, Lem. 4.3] shows that h(Ω̂) has a split injection into
a Chow motive of the form

⊕
i h(Mσ(S, v0))(`i). One can conclude by Theorem 1.1

that h(Mσ(S, v0)) is a direct summand of a Chow motive of the form
⊕

i h(S2)(`i).
Finally, for h(Σ̂), the proof of [FFZ21, Lems 4.2& 4.3] shows that h(Σ̂) has a split

injection into a Chow motive of the form
⊕

i h(Mσ(S, v0)2)(`i). Again by Theorem
1.1, it is a direct summand of a Chow motive of the form

⊕
i h(S4)(`i). �

Theorem 1.3. — Let Y be a smooth cubic fourfold and let

AY := 〈OY , OY (1), OY (2)〉⊥ = {E ∈ Db(Y ) | Ext∗(OY (i), E) = 0 for i = 0, 1, 2}

be its Kuznetsov component. Let v0 be an element in the Mukai lattice of AY with
v20 = 2 and set v = 2v0. Let σ ∈ Stab†(AY ) be a v-generic stability condition. Let
M := Mσ(AY , v) be the moduli space of σ-semistable objects in AY with Mukai
vector v. Let M̃ be a crepant resolution of M , which is a projective hyper-Kähler
manifold of dimension 10. Then its Chow motive h(M̃ ) is a direct summand of a
Chow motive of the form

r⊕
i=1

h(Y 5)(`i)

with r ∈ N, `i ∈ Z.

The existence of crepant resolutions for M := Mσ(AY , v) was proved in [LPZ20,
Th. 3.1]. The novelty of the above theorem compared to [FFZ21, Th. 1.8] consists in
bounding the power of Y by 5.
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Proof. — Using the arguments of [FFZ21, §5], one sees that the proof of the theorem
is the same as that of Theorem 1.2 by replacing S by Y . �

Remark 1.4. — By way of example, let V = V (Y ) be the compactification of the
“twisted intermediate jacobian filtration” constructed in [Voi18]; this V is a hyper-
Kähler tenfold of O’Grady-10 type. There exists a tenfold M̃ as in Theorem 1.3 that is
birational to V [LPZ20, Th. 1.3], and so one obtains a split injection of Chow motives

h(V ) ' h(M̃ ) ↪−→
r⊕
i=1

h(Y 5)(`i)

(here the isomorphism follows from [Rie14]). In particular, this implies that V satisfies
the standard conjectures, by Arapura [Ara06, Lem. 4.2].

2. The Franchetta property for fourth powers of cubic hypersurfaces

For a morphism Y → B to a smooth scheme B of finite type over a field and for Y
a fiber over a closed point of B, we define, for all positive integers m,

(8) GDCH∗B(Y m) := Im
(
CH∗(Y m

/B) −→ CH∗(Y m)
)
,

where CH∗(Y m
/B)→ CH∗(Y m) is the Gysin restriction map. Focusing on smooth pro-

jective complex morphisms Y → B, we say that Y → B (or by abuse Y , if the family
it fits in is clear from the context) satisfies the Franchetta property for m-th powers
if the restriction of the cycle class map GDCH∗B(Y m)→ H∗(Y m,Q) is injective.

Our aim is to establish the Franchetta property for fourth powers of cubic hyper-
surfaces; see Theorem 2 in the introduction.

2.1. Generically defined cycles and tautological cycles. — We adapt the strati-
fication argument [FLVS19, Prop. 5.7] (which was for Mukai models of K3 surfaces)
to its natural generality. We first record the following standard fact.

Lemma 2.1. — Let P be a smooth projective variety. The following conditions are
equivalent:

(i) The Chow motive of P is of Lefschetz type:

h(P ) '
r⊕
i=1

1(`i),

for some integers r > 1, `1, . . . , `r.
(ii) The cycle class map CH∗(P )→ H∗(P,Q) is an isomorphism.
(iii) The cycle class map CH∗(P )→ H∗(P,Q) is injective.
(iv) The Chow group CH∗(P ) is a finite-dimensional Q-vector space.
(v) The Chow groups of powers of P satisfy the Künneth formula: for any m ∈ N,

CH∗(Pm) ∼= CH∗(P )⊗m.

Proof. — The implications (i)⇒ (ii)⇒ (iii)⇒ (iv) are obvious, while the implication
(iv) ⇒ (i) is in [Kim09] and [Via10]. The implication (i) + (ii) ⇒ (v) is also clear
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by the Künneth formula for cohomology. It remains to show (v) ⇒ (iv). Suppose
CH∗(P 2) ∼= CH∗(P )⊗ CH∗(P ). Then there exist αi, βi ∈ CH∗(P ) such that

∆P =

r∑
i=1

αi × βi.

In particular, the identity morphism of CH∗(P ) factors through an r-dimensional
Q-vector space. Therefore CH∗(P ) is finite dimensional. �

Definition 2.2. — We say a smooth projective variety P has trivial Chow groups
if P satisfies one of the equivalent conditions in Lemma 2.1.

Examples of varieties with trivial Chow groups include homogeneous varieties, toric
varieties, and varieties whose bounded derived category of coherent sheaves admits a
full exceptional collection [MT15]. Conjecturally, a smooth projective complex variety
has trivial Chow groups if and only if its Hodge numbers hi,j vanish for all i 6= j.

Definition 2.3 (Tautological rings). — Let P be a smooth projective variety with
trivial Chow groups and Y a smooth subvariety. The tautological ring of Y is by
definition the Q-subalgebra

R∗(Y ) := 〈Im(CH∗(P )→ CH∗(Y )), ci(TY )〉 ⊂ CH∗(Y )

generated by the restrictions of cycles of P and the Chern classes of the tangent
bundle TY . Note that if Y is the zero locus of a dimensionally transverse section of
a vector bundle on P , the Chern classes of TY automatically come from P . More
generally, for any m ∈ N, we define the tautological ring of Y m as the Q-subalgebra

R∗(Y m) := 〈p∗iR∗(Y ), p∗j,k∆Y 〉 ⊂ CH∗(Y m)

generated by pull-backs of tautological classes on factors and pull-backs of the diagonal
∆Y ⊂ Y × Y . Here, pi and pj,k denote the various projections from Y m to Y and
to Y 2. Note that by Lemma 2.1 (v), the cycles coming from the ambient space are all
tautological: Im(CH∗(Pm)→ CH∗(Y m)) ⊂ R∗(Y m).

Similar subrings are studied for hyperelliptic curves by Tavakol [Tav14], for K3
surfaces by Voisin [Voi08] and Yin [Yin15a], and for cubic hypersurfaces by Diaz
[Dia19].

Given an equivalence relation ∼ on {1, . . . ,m}, we define the corresponding par-
tial diagonal of Y m by {(y1, . . . , ym) ∈ Y m | yi = yj if i ∼ j}. Natural projections
and inclusions along partial diagonals between powers of Y preserve the tautological
rings. More generally, we have the following fact, which implies that the system of
tautological cycles in Definition 2.3 is the smallest one that is preserved by natu-
ral functorialities and contains Chern classes and cycles restricted from the ambient
spaces.
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Lemma 2.4 (Functoriality). — Notation is as before. Let φ : I → J be a map between
two finite sets and let f : Y J → Y I be the corresponding morphism. Then

f∗R
∗(Y J) ⊂ R∗(Y I) and f∗R∗(Y I) ⊂ R∗(Y J).

Proof. — The fact that tautological rings are preserved by f∗ is clear from the defi-
nition. Let us show that they are preserved by f∗. By writing φ as a composition of
a surjective map and an injective map, it is enough to show the lemma in these two
cases separately.

When φ is surjective, f : Y J ↪→ Y I is a partial diagonal embedding. Choosing a
section of φ gives rise to a projection p : Y I → Y J such that p ◦ f = idY J . For any
α ∈ R∗(Y J), we have

f∗(α) = f∗(f
∗(p∗(α))) = p∗(α) · f∗(1Y J )

by the projection formula, where 1Y J is the fundamental class of Y J . It is clear that
p∗(α) and f∗(1Y J ) are both in R∗(Y I).

We leave to the reader the proof in the case where φ is injective (f : Y J →→ Y I is
then a projection), which is not needed later. �

Definition 2.5 (Condition (?r); [FLVS19, Def. 5.6]). — Let E be a vector bundle on a
variety P . Given an integer r ∈ N, we say that the pair (P,E) satisfies condition (?r)

if for any r distinct points x1, . . . , xr ∈ P , the evaluation map

H0(P,E) −→
r⊕
i=1

E(xi)

is surjective, where E(x) denotes the fiber of E at x; or equivalently,

H0(P,E ⊗ Ix1 ⊗ · · · ⊗ Ixr )

is of codimension r · rank(E) in H0(P,E). Clearly, (?r) implies (?k) for all k < r. Note
that condition (?1) is exactly the global generation of E.

Proposition 2.6 (Generic vs. Tautological). — Let P be a smooth projective variety
with trivial Chow groups and E a globally generated vector bundle on P . Denote
B := PH0(P,E). Let B be a Zariski open subset of B parameterizing smooth zero loci
of sections of E of dimension dim(P )− rank(E). Let Y → B be the universal family.
Assume (P,E) satisfies condition (?r). Then

GDCH∗B(Y r) = R∗(Y r)

for any fiber Y of Y → B over a closed point of B. Here, GDCH∗B(Y r) is as in (8).

Proof. — This is an adaptation of [FLVS19, Prop. 5.7], which relies on the notion
of stratified projective bundle [FLVS19, Def. 5.1]. Let q : Y r

/B
→ P r be the natural

projection. The morphism q is a stratified projective bundle, where the strata of P r
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are defined by the different types of incidence relations of r points in P :

Ym = Y �
�

//

qm
��

�

· · · �
�

//

�

Y1
� � //

q1
��

�

Y0 = Y r
/B

q0 = q
��

// B

Tm = P �
�

// · · · �
�

// T1
� � // T0 = P r

By definition, this means that qi : Yi r Yi+1 → Ti r Ti+1, the restriction of q to
TirTi+1, is a projective bundle. Let us write Y ′i for the Zariski closure of YirYi+1.
Let Yi (resp. Y ) denote the fiber of the morphism Y ′i → B (resp. Y → B) over a
closed point b ∈ B, hence Y0 = Y r. Let ιi : Yi ↪→ Y r denote the natural inclusion. An
application of [FLVS19, Prop. 5.2] (which holds for any stratified projective bundle)
gives that the generically defined cycles GDCH∗B(Y r) := Im

(
CH∗(Y r

/B
)→ CH∗(Y r)

)
can be expressed as follows:

(9) GDCH∗B(Y r) =

m∑
i=0

(ιi)∗ Im
(
qi|Yi

∗
: CH∗(Ti)→ CH∗(Yi)

)
.

We proceed to show inductively (just as in [FLVS19, Proof of Prop. 5.7]) that each
term on the right-hand side of (9) is in the tautological ring R∗(Y r):

– For i = 0, this follows simply from the fact that

CH∗(T0) = CH∗(P r) ∼= CH∗(P )⊗r.

– Assume a general point of Ti parameterizes r points of P with at least two of
them coinciding. Then the contribution of the i-th summand of (9) factors through
GDCH∗B(Y r−1) via the diagonal push-forward. By the induction hypothesis, this is
contained in the diagonal push-forward of R∗(Y r−1), hence by Lemma 2.4 is contained
in R∗(Y r).

– Assume a general point of Ti parameterizes r distinct points of P . In that
case, the condition (?r) guarantees that the codimension of Y ′i in Yi−1 is equal to
codimTi−1

(Ti). The excess intersection formula ([Ful98, §6.3]), applied to the Carte-
sian square

Yi = Yi+1 ∪ Y ′i
� � //

��

�

Yi−1

��

Ti
� � // Ti−1,

tells us that modulo the (i + 1)-th term of (9), the contribution of the i-th term is
contained in the (i− 1)-th term.

– Finally, the contribution of the i = m term of (9) is the push-forward of
R∗(Y ), via the small diagonal embedding Y ↪→ Y m. This is contained in R∗(Y m) by
Lemma 2.4. �
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2.2. Multiplicative Chow–Künneth decomposition for smooth cubic hypersurfaces

Let Y ⊂ Pn+1 be a smooth hypersurface of degree d. Recall that if

h := c1(OPn+1(1)|Y ) ∈ CH1(Y )

denotes the hyperplane section, then the correspondences

(10) π2i :=
1

d
hn−i × hi, 2i 6= n, and πn := ∆Y −

∑
2i6=n

π2i

in CHn(Y × Y ) define a Chow–Künneth decomposition, i.e., a decomposition of the
Chow motive of Y as a direct sum of summands hi(Y ) := (Y, πi) with cohomology of
pure weight i; see e.g. [MNP13, App.C].

The following theorem is stated explicitly in [FLV21, Th. 4.4], although it can be
deduced from a result of [Dia19] (see [FLV21, Rem. 4.13]):

Theorem 2.7. — Suppose Y is a smooth cubic n-fold. Then the Chow–Künneth
decomposition (10) is multiplicative; i.e., the cycles πk ◦ δY ◦ (πi ⊗ πj) vanish in
CH2n(Y × Y × Y ) for all k 6= i+ j.

The notion of multiplicative Chow–Künneth (MCK) decomposition was introduced
by Shen–Vial [SV16a]. While the existence of a Chow–Künneth decomposition is ex-
pected for all smooth projective varieties—in which case the cycles πk ◦ δY ◦ (πi⊗πj)
vanish in H4n(Y × Y × Y ) for all k 6= i + j due to the fact that the cohomology
ring H∗(Y,Q) is graded, there are examples of varieties that do not admit such a
multiplicative decomposition; it was however conjectured [SV16a, Conj. 4], following
the seminal work of Beauville and Voisin [BV04], that all hyper-Kähler varieties ad-
mit such a decomposition. We refer to [FLV21] for a list of hyper-Kähler varieties for
which the conjecture has been established, as well as for some evidence that Fano vari-
eties of cohomological K3 type (e.g. smooth cubic fourfolds) should also admit such a
decomposition, but also for examples of varieties not admitting such a decomposition.

A new proof of Theorem 2.7 is given in [FLV21]. The strategy consists in reducing
to the Franchetta property for the universal family F → B of Fano varieties of lines
in smooth cubic hypersurfaces and its relative square. Note that, in that reduction
step, we in fact established the Franchetta property for Y → B and for Y ×BY → B.

That the canonical Chow–Künneth decomposition (10) of a hypersurface be multi-
plicative can be spelled out explicitly as follows. (Note that the expression (11) with
d = 3 corrects the expression for the cycle γ3 in [Dia19, §2].)

Proposition 2.8 (MCK relation). — Let Y be a smooth hypersurface in Pn+1 of de-
gree d and let h := c1(OPn+1(1)|Y ). Then the Chow–Künneth decomposition (10) is
multiplicative if and only if we have the following identity in CH2n(Y ×Y ×Y ), which
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will be subsequently referred to as the MCK relation:

(11) δY =
1

d

(
p∗1,2∆Y · p∗3hn + p∗1,3∆Y · p∗2hn + p∗2,3∆Y · p∗1hn

)
− 1

d2
(
p∗1h

n · p∗2hn + p∗1h
n · p∗3hn + p∗2h

n · p∗3hn
)

+
1

d2

∑
i+j+k=2n
0<i,j,k<n

p∗1h
i · p∗2hj · p∗3hk,

where pi and pj,k denote the various projections from Y 3 to Y and to Y 2.

Proof. — Let us define π2i
alg := 1

dh
n−i × hi for 0 6 i 6 n; these coincide with π2i if

2i 6= n. A direct calculation shows that

(12) π2k
alg ◦ δY ◦ (π2i

alg ⊗ π
2j
alg) :=

0 if k 6= i+ j,
1

d2
p∗1h

n−i · p∗2hn−j · p∗3hk if k = i+ j.

In addition, if k 6= i+ j, we have

π2k
alg ◦ δY ◦ (π2i

alg ⊗ π
2j
alg) = ∆Y ◦ δY ◦ (π2i

alg ⊗ π
2j
alg) = π2k

alg ◦ δY ◦ (∆Y ⊗ π2j
alg)

= π2k
alg ◦ δY ◦ (π2i

alg ⊗∆Y ).

Assume temporarily that Y has no primitive cohomology, i.e., Y has degree 1 or Y
is an odd-dimensional quadric. In that case, we have ∆Y =

∑
i π

2i
alg; in particular

by (12) the Chow–Künneth decomposition (10) is multiplicative. Furthermore, from

∆Y =
∑
i

π2i
alg =

1

d

∑
i+j=n

p∗1h
i · p∗2hj ,

we obtain
δY = p∗1,2∆Y · p∗1,3∆Y =

1

d2

∑
i+j+k=2n

p∗1h
i · p∗2hj · p∗3hk.

Combining the above two expressions for ∆Y and δY yields the relation (11).
From now on, we therefore assume that Y has non-trivial primitive cohomology.

In that case, the above relations imply that the Chow–Künneth decomposition (10)
is multiplicative if and only if

π2n ◦ δY ◦ (πn ⊗ πn) = δY ◦ (πn ⊗ πn).

Substituting πn = ∆Y −
∑
i 6=n π

i into the identity π2n◦δY ◦(πn⊗πn) = δY ◦(πn⊗πn),
and developing, yields an identity of the form

δY = λ
(
p∗1,2∆Y · p∗3hn + p∗1,3∆Y · p∗2hn + p∗2,3∆Y · p∗1hn

)
+Q(p∗1h, p

∗
2h, p

∗
3h)

in CH2n(Y × Y × Y ), where λ is a rational number to be determined and Q is a
symmetric rational polynomial in 3 variables to be determined. Projecting on the
first two factors yields an identity in CHn(Y × Y )

∆Y = dλ∆Y +R(p∗1h, p
∗
2h)

for some symmetric rational polynomial R in 2 variables. Since ∆Y is not of the form
S(p∗1h, p

∗
2h) for some symmetric rational polynomial S in 2 variables (otherwise, the

cohomology ring of Y would be generated by h), we find that λ = 1/d. The coefficients
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of the polynomial Q are then obtained by successively applying (p1,2)∗((−) · p∗3hn−k)

for k > 0 and by symmetrizing. Note that in the above we use the identity

(13) ∆Y · p∗1h = ∆Y · p∗2h =
1

d

∑
i+j=n+1

p∗1h
i · p∗2hj ,

which is obtained by applying the excess intersection formula [Ful98, Th. 6.3] to the
following Cartesian diagram, with excess normal bundle OY (d),

Y

��

∆Y // Y × Y

��

Pn+1 // Pn+1 × Pn+1

together with the relation ∆Pn+1 =
∑
i+j=n+1 p

∗
1h
i · p∗2hj in CHn+1(Pn+1 × Pn+1),

where by abuse we have denoted h a hyperplane section of both Pn+1 and Y . �

Remark 2.9. — Using the above-mentioned fact that the cycles πk ◦ δY ◦ (πi ⊗ πj)
vanish in H4n(Y ×Y ×Y ) for all k 6= i+j, the proof of Proposition 2.8 also establishes
that the MCK relation (11) holds in H4n(Y ×Y ×Y,Q) for all smooth hypersurfaces Y
in Pn+1.

2.3. On the tautological ring of smooth cubic hypersurfaces. — We first consider
a smooth hypersurface Y ⊂ Pn+1 of any degree d > 0. In what follows, bpr(Y )

denotes the dimension of the middle primitive cohomology Hn(Y,Q)prim of Y , i.e.,
the dimension of the orthogonal complement in H∗(Y,Q) of the subalgebra generated
by the hyperplane section. In this paragraph we are interested in understanding the
intersection theory of tautological cycles on powers of Y :

Question 2.10. — Let (Y, h) be a polarized smooth projective variety; i.e., a smooth
projective variety equipped with the class h := c1(L ) ∈ CH1(Y ) of an ample line
bundle L on Y . For m ∈ N, denote R∗(Y m) the Q-subalgebra

R∗(Y m) := 〈p∗i h, p∗k,`∆Y 〉 ⊂ CH∗(Y m),

where pi and pk,` denote the various projections from Y m to Y and to Y 2. (In case Y
is a hypersurface in Pn+1, this is the tautological ring of Y m in the sense of Defini-
tion 2.3). For which integers m ∈ N does R∗(Y m) inject into H2∗(Y m,Q) via the cycle
class map?

We note that if (Y, h) satisfies the conclusion of Question 2.10 for m = 2, then
∆Y · p∗1hdimY must be a rational multiple of p∗1hdimY · p∗2hdimY in CH2 dimY (Y × Y ).
This fails for a very general curve of genus > 4 where h is taken to be the canonical
divisor; see [GG03] and [Yin15b]. Furthermore, the MCK relation (11) does not hold
for a very general curve of genus > 3 (see [FV20, Prop. 7.2]) so that the conclusion
of Question 2.10 for m = 3 fails for a very general curve of genus > 3. Note however
that Tavakol [Tav18] has showed that any hyperelliptic curve (in particular any curve
of genus 1 or 2) satisfies the conclusion of Question 2.10 for all m > 2.
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Proposition 2.11 below, which parallels [Tav18] in the case of hyperelliptic curves
and [Yin15a] in the case of K3 surfaces, shows that for a Fano or Calabi–Yau hyper-
surface Y the only non-trivial relations among tautological cycles in powers of Y are
given by the MCK relation (11) and the finite-dimensionality relation. As a conse-
quence, we obtain in Corollary 2.13 that any Kimura–O’Sullivan finite-dimensional
cubic hypersurface (e.g. cubic threefolds and cubic fivefolds—conjecturally all cubic
hypersurfaces in any positive dimension since smooth projective varieties are conjec-
turally Kimura–O’Sullivan finite-dimensional, cf. [Kim05]) satisfies the conclusion of
Question 2.10 for all m > 2.

Proposition 2.11. — Let Y be a Fano or Calabi–Yau smooth hypersurface in Pn+1;
i.e., a hypersurface in Pn+1 of degree 6 n+ 2. Then

(i) Question 2.10 has a positive answer for m 6 2;
(ii) Question 2.10 has a positive answer for all m 6 2bpr(Y ) + 1 in case n even

and for all m 6 bpr(Y ) + 1 in case n odd if and only if the Chow–Künneth decompo-
sition (10) is multiplicative;

(iii) Question 2.10 has a positive answer for all m if and only if the Chow–Künneth
decomposition (10) is multiplicative and the Chow motive of Y is Kimura–O’Sullivan
finite-dimensional.

Before giving the proof of the proposition, let us introduce some notations. Let h
be the hyperplane section class. We denote o the class of (1/deg(Y ))hn ∈ CH0(Y ).
If Y is Fano, o is represented by any point; if Y is Calabi–Yau, then o is the canonical
0-cycle studied in [Voi12]. For ease of notation, we write oi and hi for p∗i o and p∗i h

respectively, where pi : Y m → Y is the projection on the i-th factor. Finally we define
the following correspondence in CHn(Y × Y ):

(14) τ :=

πn −
1

deg(Y )
h
n/2
1 · hn/22 if n even,

πn if n odd,

where πn is the Chow–Künneth projector defined in (10), and we set τi,j := p∗i,jτ ,
where pi,j : Y m → Y ×Y is the projection on the product of the i-th and j-th factors.
Note that τ is an idempotent correspondence that commutes with πn, and that coho-
mologically it is nothing but the orthogonal projector on the primitive cohomology
Hn(Y,Q)prim of Y . We write

hn(Y )prim := τh(Y ) := (Y, τ)

for the direct summand of h(Y ) cut out by τ and call it the primitive summand
of h(Y ).

We note that Proposition 2.11 is trivial in the case bpr(Y ) = 0. Indeed in that case Y
is either a hyperplane (hence isomorphic to projective space) or an odd-dimensional
quadric. In both cases, the Chow motive of Y is known to be of Lefschetz type, so
that it is finite-dimensional and any Chow–Künneth decomposition is multiplicative
(see [SV16b, Th. 2]). From now on, we will therefore assume that bpr(Y ) 6= 0. In order
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to prove Proposition 2.11, we first determine as in [Yin15a, Lem. 2.3] the cohomolog-
ical relations among the cycles introduced above.

Lemma 2.12. — The Q-subalgebra R ∗(Y m) of the cohomology algebra H∗(Y m,Q) gen-
erated by oi, hi, τj,k, 1 6 i 6 m, 1 6 j 6= k 6 m, is isomorphic to the free graded
Q-algebra generated by oi, hi, τj,k, modulo the following relations:

hni = deg(Y ) oi, hi · oi = 0;(15)
τi,j = τj,i , τi,j · hi = 0, τi,j · τi,j = (−1)nbpr oi · oj ;(16)

τi,j · τi,k = τj,k · oi for {i, j} 6= {i, k};(17) 

∑
σ∈Sbpr+1

sgn(σ)
bpr+1∏
i=1

τi,bpr+1+σ(i) = 0

and its permutations under S2bpr+2 if n is even,∑
σ∈Sbpr+2

1
2 bpr+1∏
i=1

τσ(2i−1),σ(2i) = 0 if n is odd,

(18)

where bpr := bpr(Y ) := bnprim(Y ) is the rank of the primitive part of Hn(Y,Q) (which
is even if n is odd).

Proof. — The proof is directly inspired by, and closely follows, [Tav18, §3.1] and
[Yin15a, §3].

First, we check that the above relations hold in H∗(Y m,Q). The relations (15) take
place in Y and are clear. The relations (16) take place in Y 2: the relation τi,j = τj,i is
clear, the relation τi,j ·hi = 0 follows directly from (13), while the relation τi,j · τi,j =

(−1)nbpr oi ·oj follows from the additional general fact that deg(∆Y ·∆Y ) = χ(Y ), the
topological Euler characteristic of Y which in our case is χ(Y ) = n+1+(−1)nbpr. The
relation (17) takes place in Y 3 and follows from the relations (15) and (16) together
with the fact that the cohomology algebra H∗(Y m,Q) is graded (see also Remark 2.9).
Finally, if n is even, the relation (18) takes place in Y 2(bpr+1) and expresses the fact
that the (bpr + 1)-th exterior power of Hn(Y,Q)prim vanishes; while if n is odd, the
relation (18) takes place in Y bpr+2 and follows from the vanishing of the (bpr + 2)-th
symmetric power of Hn(Y,Q)prim viewed as a super-vector space.

Second, we check that these relations generate all relations among oi, hi, τj,k, 1 6
i 6 m, 1 6 j < k 6 m. To that end, let R∗(Y m) denote the formally defined graded
Q-algebra generated by symbols τi,j , oi, hi (placed in appropriate degree) modulo
relations (15), (16), (17), (18). We claim that the pairing

R e(Y m)×R mn−e(Y m) −→ R mn(Y m) ' Q{ o1 · o2 · · · om}

(which is formally defined by relations (15), (16), (17), (18)) is non-degenerate for
all 0 6 e 6 mn. Arguing as in [Yin15a, §3.1] this claim implies that the natu-
ral homomorphism from R∗(Y m) to R ∗(Y m) is an isomorphism, which establishes
the lemma. To prove the claim, we observe as in [Yin15a, §3.2] (or as in [Tav18,
p. 2047]) that the relations (15), (16) and (17) imply that R∗(Y m) is linearly spanned
by monomials in {oi}, {hki | 0 6 k < n} and {τi,j} with no repeated index (i.e.,
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each index i ∈ {1, . . . ,m} appears at most once). Denote then (as in [Yin15a, §3.4])
by QMonnkτ (2k) the free Q-vector space spanned by the (formal) monomials (of de-
gree nk) of the form τi1,i2 · · · τi2k−1,i2k , where {1, . . . , 2k} = {i1, i2}t · · · t {i2k−1, i2k}
is a partition of {1, . . . , 2k} into subsets of order 2. Using a direct analogue of [Yin15a,
Lem. 3.3], the claim reduces to showing that the kernel of the pairing

QMonnkτ (2k)×QMonnkτ (2k) −→ Q{o1 · · · o2k}

formally defined by the relations (15), (16) and (17) is generated by the relation (18).
This is derived from [HW89, Th. 3.1], and is the content of [Yin15a, §§3.5-3.7] in the
case n even and of [Tav18, Prop. 3.7] in the case n odd. The lemma is proved. �

Proof of Proposition 2.11. — In view of Lemma 2.12, the Proposition will follow if we
can establish the relations (15), (16), (17) and (18) in R∗(Y m). For that purpose,
let us denote as before o = hn/ deg(Y ) ∈ CHn(Y ), and τ as in (14). The relations
(15) hold true in R∗(Y ) for any smooth hypersurface Y . The relations (16) hold true
in R∗(Y 2) for any smooth hypersurface Y ; this is a combination of (13) and of the
identity

∆Y ·∆Y = ∆Y · p∗1cn(Y ) =
χ(Y )

deg(Y )
∆Y · hn1 .

The relation (17) takes place in R∗(Y 3) and, given the relations (15) and (16) modulo
rational equivalence, it holds if and only if the MCK relation (11) of Proposition 2.8
holds. In case n even, the relation (18), which takes place in R∗(Y 2(bpr+1)), holds if and
only if the motive of Y is Kimura–O’Sullivan finite-dimensional. Finally, in case n odd,
if the motive of Y is Kimura–O’Sullivan finite-dimensional, then as a direct summand
of h(Y ) the motive hn(Y )prim is also Kimura–O’Sullivan finite-dimensional and it
follows that the (bpr + 1)-th symmetric power, and hence the (bpr + 2)-th symmetric
power, of hn(Y )prim vanishes. Since the cycle

∑
σ∈Sbpr+2

1
2 bpr+1∏
i=1

τσ(2i−1),σ(2i)

clearly defines a cycle on Symbpr+2 hn(Y )prim, it vanishes.
Conversely, if Rn(bpr+1)(Y 2(bpr+1)) injects in cohomology via the cycle class map,

then the tautological cycle

∑
σ∈Sbpr+1

bpr+1∏
i=1

τi,bpr+1+σ(i),

which defines an idempotent correspondence on (hn(Y )prim)⊗(bpr+1) with image
Symbpr+1 hn(Y )prim, is rationally trivial since Symbpr+1 Hn(Y,Q)prim = 0. �

Finally, by combining Proposition 2.11(ii) with Theorem 2.7, we have the following
result in the case of cubic hypersurfaces:
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Corollary 2.13. — Let Y be a smooth cubic hypersurface in Pn+1. Then the tauto-
logical ring R∗(Y m) := 〈p∗i h, p∗k,`∆Y 〉 ⊂ CH∗(Y m) injects into H2∗(Y m,Q) via the
cycle class map for all m 6 2bpr(Y ) + 1 if n is even and for all m 6 bpr(Y ) + 1 if n
is odd. Moreover, R∗(Y m) injects into H2∗(Y m,Q) via the cycle class map for all m
if and only if Y is Kimura–O’Sullivan finite dimensional. �

Remark 2.14. — We note that all smooth projective curves, and in particular cubic
curves, are Kimura–O’Sullivan finite-dimensional, and that cubic surfaces have trivial
Chow groups (Definition 2.2) and hence are Kimura–O’Sullivan finite-dimensional by
Lemma 2.1 and by the fact that Lefschetz motives are finite-dimensional. In addition,
cubic threefolds and fivefolds are known to be Kimura–O’Sullivan finite dimensional;
see [GG12] and [Via13, Ex. 4.12], respectively. Hence, for n = 1, 2, 3, 5, Corollary 2.13
gives the injectivity R∗(Y m) ↪→ H2∗(Y m,Q) for all m. We note further that in case
n = 1, after fixing a closed point O in Y , the pair (Y,O) defines an elliptic curve; in this
case the injectivity R∗(Y m) ↪→ H2∗(Y m,Q) for all m is due to Tavakol [Tav11], and
can also be deduced directly from O’Sullivan’s theory of symmetrically distinguished
cycles [O’S11].

2.4. On the extended tautological ring of smooth cubic fourfolds. — This para-
graph is not needed in the rest of the paper; its aim is to show how the arguments
of Section 2.3 can be refined to establish analogues of [Yin15a, Th.] concerning K3
surfaces in the case of cubic fourfolds.

For a K3 surface S, let R̃∗(Sm) ⊂ CH∗(Sm) be the Q-subalgebra generated by
CH1(S) and the diagonal ∆S ∈ CH2(S×S). Voisin conjectures [Voi08, Conj. 1.6] that
R̃∗(Sm) injects into cohomology (by [Yin15a] this is equivalent to Kimura–O’Sullivan
finite-dimensionality of S). Here is a version of Voisin’s conjecture for cubic fourfolds
that refines Question 2.10:

Conjecture 2.15. — Let Y be a smooth cubic fourfold, and m ∈ N. Let R̃∗(Y m) be
the Q-subalgebra

R̃∗(Y m) := 〈p∗i h, p∗j CH2(Y ), p∗k,`∆Y 〉 ⊂ CH∗(Y m),

where pi, pj and pk,` denote the various projections from Y m to Y and to Y 2. Then
R̃∗(Y m) injects into H2∗(Y m,Q) via the cycle class map.

In what follows, btr(Y ) denotes the dimension of the transcendental cohomology
of the smooth cubic fourfold Y , i.e., the dimension of the orthogonal complement
in H∗(Y,Q) of the subspace consisting of Hodge classes. Using the multiplicative
Chow–Künneth relation (11) for cubic hypersurfaces, we can adapt the method of
Yin concerning K3 surfaces [Yin15a] and prove the following result.

Proposition 2.16. — Let Y be a smooth cubic fourfold. Then Conjecture 2.15 is true
for Y for all m 6 2btr(Y ) + 1, in particular for all m 6 5. Moreover, Conjecture 2.15
is true for Y for all m if and only if Y is Kimura–O’Sullivan finite-dimensional.
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Before giving the proof of Proposition 2.16, let us introduce some notations. We fix
a smooth cubic fourfold Y . First we note that the cycle class map CH2(Y )→ H4(Y,Q)

is injective and an isomorphism on the Hodge classes in H4(Y,Q). Let {`s}s be an
orthogonal basis of the Hodge classes in H4(Y,Q)prim, i.e., {h2} ∪ {`s}s forms a basis
of CH2(Y ) with the property that `s · `s′ = 0 whenever s 6= s′ and `s · h = 0 for
all s. Note that the latter property `s · h = 0 holds cohomologically (by definition of
primitive cohomology) and lifts to rational equivalence since `s · h must be a rational
multiple of h3 in CH3(Y ). Recall that all points on Y are rationally equivalent and
that o denotes the class of any point on Y . For ease of notation, we write oi, `si and hi
for p∗i o, p∗i `s and p∗i h respectively, where pi : Y m → Y is the projection on the i-th
factor. Finally we define

τ := π4 − 1

3
h21 · h22 −

∑
s

`s1 · `s2
deg(`s · `s)

∈ CH4(Y × Y ),

where π4 is the Chow–Künneth projector π4
Y defined in (10) (in our case, n = 4), and

we set τi,j = p∗i,jτ , where pi,j : Y m → Y × Y is the projection on the product of the
i-th and j-th factors. Note that τ is an idempotent correspondence, and that cohomo-
logically it is nothing but the orthogonal projector on the transcendental cohomology
of Y , i.e., on the orthogonal complement of the space of Hodge classes in H∗(Y,Q).

In order to prove Proposition 2.16, we establish as in [Yin15a, Lem. 2.3] sufficiently
many relations among the cycles introduced above. Central is the MCK relation (11)
of Proposition 2.8.

Lemma 2.17. — In R̃∗(Y m) we have relations

hi · oi = 0, `si · hi = 0, h4i = 3oi, `si · `si = deg(`s · `s) oi;(19)
τi,j = τj,i , τi,j · hi = 0, τi,j · `si = 0, τi,j · τi,j = btr oi · oj ;(20)

τi,j · τi,k = τj,k · oi for {i, j} 6= {i, k},(21)

where btr := btr(Y ) is the rank of the transcendental part of H4(Y,Q).

Proof. — The relations (19) take place in Y and were established in the discussion
above the lemma. The relations (20) take place in Y 2. The relation τi,j = τj,i is
trivial and the relation τi,j · hi = 0 follows directly from (13). The relation τi,j · τi,j =

btr oi · oj follows from the general fact that deg(∆Y · ∆Y ) = χ(Y ), the topological
Euler characteristic of Y , and the fact that CH8(Y ×Y ) is 1-dimensional. Concerning
the relation τi,j · `si = 0, this is a consequence of

∆Y · p∗1`s = (δY )∗`
s = p∗1`

s · p∗2o+ p∗1o · p∗2`s,

where δY is the small diagonal of Y 3, seen as a correspondence from Y to Y × Y
and where we used the relation h · `s = 0 together with the MCK relation (11) of
Proposition 2.8. Finally, the relation (21) takes place in Y 3 and follows from the
relations (19) and (20) together with the MCK relation (11) of Proposition 2.8. �
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Proof of Proposition 2.16. — Once we have the key Lemma 2.17, the proof of the
proposition is similar to that of Proposition 2.11: beyond the cohomological rela-
tions (19) and (20), the only other relations in the Q-algebra H∗(Y m,Q) are the ones
given by (21) (expressing that H∗(Y,Q) is a graded Q-algebra) and by the finite-
dimensionality relation Λbtr+1H∗(Y,Q)tr = 0 (expressing that the transcendental co-
homology H∗(Y,Q)tr has finite dimension btr). �

2.5. The Franchetta property for powers of cubic hypersurfaces: proof of Theo-
rem 2. — Let Y be a smooth cubic hypersurface. We start by using Proposition 2.6
to determine generators of GDCH∗B(Y m) for m 6 4:

Proposition 2.18. — Let B ⊂ PH0(Pn+1,O(3)) be the open subset parameterizing
smooth cubic hypersurfaces of dimension n, and let Y → B be the universal family.
For all m 6 4, we have

GDCH∗B(Y m) = 〈p∗i h, p∗j,k∆Y 〉,

where pi : Y m → Y and pj,k : Y m → Y × Y are the various projections. Here,
GDCH∗B(Y m) is as in (8).

Proof. — In view of Proposition 2.6, we simply check that (Pn+1,O(3)) satisfies the
condition (?4). Let ∆i,j := p−1i,j (∆Pn+1) be a big diagonal in (Pn+1)4. Since all the
closed orbits of the natural action of PGLn+2 on (Pn+1)4 r (

⋃
i,j ∆i,j) parameterize

four collinear points, we only need to check (?4) for four collinear points x1, . . . , x4.
In this case, the needed surjectivity follows from surjectivity of the restriction and
the evaluation

H0(Pn+1,O(3)) −→−→ H0(P1,O(3)) −→−→
4⊕
i=1

Cxi ,

where P1 is the line containing these points. �

Proof of Theorem 2. — By Proposition 2.18, when m 6 4, GDCH∗B(Y m) is generated
by tautological cycles, i.e., GDCH∗B(Y m) = R∗(Y m). We then note that Corollary 2.13
and Remark 2.14 give the injectivity of R∗(Y m) → H2∗(Y m,Q) for all m if n =

1, 2, 3, 5, for m 6 45 if n is even and for m 6 171 if n is odd (indeed, for n > 2

even we have bpr(Y ) > 22 and for n > 5 odd we have bpr(Y ) > 170, see e.g. [Huy19,
Cor. 1.11]). �

2.6. The Franchetta property and the cancellation property for Chow motives

Due to Theorem 2, the following motivic proposition applies to cubic hypersurfaces.

Proposition 2.19. — Let X → B be a smooth projective family parameterized by a
smooth quasi-projective variety B. Let X := Xb be a closed fiber and consider the
additive thick subcategory MX of Mrat generated by the Tate twists h(X)(n), n ∈ Z,
with morphisms given by generically defined correspondences. Assume that X satisfies
the standard conjectures and that X 2

/B → B has the Franchetta property. Then MX

is semi-simple. In particular, cancellation holds, i.e., if we have A ⊕ A1 ' A ⊕ A2

in MX , then A1 ' A2 in MX .
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Proof. — By definition, the objects of MX are of the form (Z, p, n) with Z=
⊔
iX×Pni

for finitely many ni ∈ Z>0, p ∈ EndMrat(h(Z)) an idempotent and generically defined
correspondence, and n an integer; and the morphisms

HomMX
((Z1, p1, n1), (Z2, p2, n2)) ⊆ HomMrat((Z1, p1, n1), (Z2, p2, n2))

are given by the subspace consisting of generically defined correspondences.
By the Franchetta property for X 2

/B → B and the coincidence of homological and
numerical equivalence on X×X, the restriction of the functor Mrat →Mnum to MX

is fully faithful. Let us denote MX its essential image. We have to show that MX

is semi-simple. This follows simply from the fact that, for M ∈MX , EndMX
(M) is

a sub-algebra of the algebra EndMnum(M) which is semi-simple by the main theorem
of [Jan92]. �

2.7. Application to the motive of the Fano variety of lines on a smooth cubic
hypersurface. — We start with the observation that the Chow–Künneth decompo-
sition (10) for smooth hypersurfaces is generically defined in the following sense. Let

B ⊂ PH0(Pn+1,O(d))

be the open subset parameterizing smooth hypersurfaces of degree d in Pn+1, and
let Y → B be the universal family. If H ∈ CH1(Y ) denotes the relative hyperplane
section, then the relative correspondences

(22) π2i
Y :=

1

d
Hn−i ×B Hi, 2i 6= n, and πnY := ∆Y /B −

∑
2i 6=n

π2i
Y

in CHn(Y ×B Y ) define a relative Chow–Künneth decomposition, in the sense that
they are relative idempotent correspondences and their specializations to any fiber Yb
over b ∈ B gives a Chow–Künneth decomposition of Yb, and in fact restrict to the
Chow–Künneth decomposition (10) for all b ∈ B. Moreover, the idempotent corre-
spondence τ of (14) defining the direct summand hn(Y )prim is also generically defined
with respect to the family Y → B; indeed, the relative correspondence

(23) τY :=

πnY −
1

d
H
n/2
1 ·Hn/2

2 if n even,

πnY if n odd,

defines a relative idempotent correspondence whose specialization to any fiber Yb over
b ∈ B is the idempotent correspondence τ of (14).

Let us now focus on the case where Y is a smooth cubic hypersurface in Pn+1. Let F
be its Fano variety of lines, which is known to be smooth projective of dimension 2n−4.
As before, we denote B ⊂ PH0(Pn+1,O(3)) the Zariski open subset parameterizing
smooth cubic hypersurfaces of dimension n; and we denote Y → B and F → B

the corresponding universal families. The first isomorphism in the following theorem
is a motivic lifting of [GS14]. It refines, and gives a new proof of, the main result
of [Lat17b].

J.É.P. — M., 2021, tome 8



The generalized Franchetta conjecture for some hyper-Kähler varieties, II 1089

Theorem 2.20. — Notation is as above.
(i) We have an isomorphism of Chow motives

(24) h(F ) ' Sym2(hn(Y )prim(1))⊕
n−1⊕
i=1

hn(Y )prim(2− i)⊕
2n−4⊕
k=0

1(−k)⊕ak ,

where

ak =



⌊k + 2

2

⌋
if k < n− 2,⌊n− 2

2

⌋
if k = n− 2,⌊2n− 2− k

2

⌋
if k > n− 2.

(ii) Denoting N the Chow motive (Y,∆Y − o× Y − Y × o) for any choice of point
o ∈ Y , we have an isomorphism of Chow motives

h(F )⊕ 1(2− n) ' Sym2(N(1)).

(iii) We have an isomorphism of Chow motives

h(F )(−2)⊕ h(Y )⊕ h(Y )(−n) ' Sym2 h(Y ).

(iv) F and Y have canonical Chow–Künneth decompositions, and

(25) hn−2(F ) '

{
hn(Y )prim(1)⊕ 1(−(n− 2)/2)⊕b(n+2)/4c, if n is even,
hn(Y )prim(1) = hn(Y )(1) if n is odd,

where the isomorphism is given by P ∗ : hn(Y )prim(1) → hn−2(F ) and in the even
case, for the i-th copy,

· g(n/2)+1−2ici−1 : 1(−(n− 2)/2) −→ hn−2(F ),

where 1 6 i 6 b(n+ 2)/4c, P = {(y, `) ∈ Y × F | y ∈ `} is the incidence correspon-
dence and g := −c1(E |F ), c := c2(E |F ) with E being the rank-2 tautological bundle
on the Grassmannian Gr(P1,Pn+1).

(v) If n = 4, cup-product induces an isomorphism of Chow motives

Sym2 h2(F )
'−→ h4(F ).

Proof. — Our starting point is the isomorphism of Chow motives

(26)
n⊕
i=0

h(Y )(−i)⊕ h(F )(−3)⊕ h(F )(−2)⊕2 ⊕ h(F )(−1)

' h(Y [2])⊕ h(F )(−3)⊕ h(F )(−2)⊕ h(F )(−1),

which can be obtained by applying the blow-up formula and the projective bundle
formula for Chow motives to the construction due to Galkin–Shinder [GS14] and
Voisin [Voi17]; see [FLV21, Diag. (15)&Eq. (16)].

We wish to apply Proposition 2.19 to

X := Y × Y t F,
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seen as a fiber of the family (Y ×B Y ) tF → B. Since the Galkin–Shinder–Voisin
construction can be done in a relative setting, all arrows in the blow-up formula and
the projective bundle formula are generically defined (with respect to B), and the
above isomorphism (26) therefore takes place in MX (as defined in the statement of
Proposition 2.19). Let us now check that all conditions of Proposition 2.19 are verified
for this X.

First, the standard conjectures hold for X. We only need to check them for Y and
for F :

– For Y , this is elementary.
– For F , this is either [Lat17a, Cor. 6] or alternatively [FLV21, Cor. 4.3] for a new

self-contained proof.
Second, the Franchetta property holds forX. It is enough to show it for Y 4

/B , F×BF ,
and F ×B Y ×B Y :

– For Y 4
/B , this is Theorem 2.

– For F ×B F , this was achieved in our previous work [FLV21, Th. 4.2].
– For F ×B Y ×B Y . As in the proof of Proposition 2.19, denote MX the semi-

simple category that is the essential image of MX in Mnum. Looking at the reduction
modulo numerical equivalence of the isomorphism (26) (which takes place in MX),
and using the semisimplicity of Mnum [Jan92], we obtain a split injective morphism

h(F ) −→ h(Y [2])(2) in MX .

Using the standard conjectures for F and Y , combined with the Franchetta property
for F × F [FLV21, Th. 4.2], this lifts to a split injection of Chow motives

h(F ) −→ h(Y [2])(2) in MX .

Hence h(F × Y 2) is a direct summand of h(Y [2] × Y 2)(2) via a generically defined
correspondence. It follows that the Franchetta property for F ×B Y ×B Y is implied
by that for Y m

/B with m 6 4, which is Theorem 2.
With all conditions of Proposition 2.19 verified for X, we deduce that the category

MX is semi-simple and in particular, the cancellation property holds. We obtain (24)
by canceling an isomorphic direct summand from both sides of (26).

Statement (ii) follows from (i), by writing

N = hn(Y )prim ⊕
n−1⊕
j=1

1(−j).

Likewise, statement (iii) follows from (i) by writing

h(Y ) = hn(Y )prim ⊕
n⊕
j=0

1(−j).

For statement (iv), we observe that F has a generically defined Künneth decom-
position; using the Franchetta property for F ×F , this is a generically defined Chow–
Künneth decomposition. The isomorphism (25) is generically defined and holds true in
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cohomology [FLV21, Prop. 4.8]. As such, the isomorphism (25) holds in MX ⊂Mnum.
But MX →MX is fully faithful, proving (iv).

Statement (v) is proved similarly, using as input the well-known fact that cup-
product induces an isomorphism H4(F,Q) ∼= Sym2 H2(F,Q), and the Franchetta
property for F × F . �

3. The generalized Franchetta conjecture for LLSS eightfolds

Given a smooth cubic fourfold Y ⊂ P5 not containing a plane, Lehn–Lehn–Sorger–
van Straten [LLSvS17] constructed a hyper-Kähler eightfold Z = Z(Y ) using the
twisted cubic curves in Y . Let B be the open subset of PH0(P5,O(3)) parameterizing
smooth cubic fourfolds and let B◦ be the open subset of B parameterizing those
not containing a plane. Let Y → B be the universal family of cubic fourfolds and
Z → B◦ be the universal family of LLSS eightfolds. The following theorem establishes
Theorem 1.

Theorem 3.1. — Let C ◦ be the moduli stack of smooth cubic fourfolds not containing a
plane. Then the universal family of LLSS hyper-Kähler eightfolds [LLSvS17], denoted
by Z → C ◦, satisfies the Franchetta property.

Proof. — By [FLVS19, Rem. 2.6], it is sufficient to prove the Franchetta property for
the universal family Z → B◦. For any cubic fourfold Y , let

AY := 〈OY , OY (1), OY (2)〉⊥

be the Kuznetsov component of Db(Y ), which is a K3 category. A natural stability
condition σ ∈ Stab†(AY ) is constructed in [BLM+17]. The Mukai lattice of AY always
contains the A2-lattice generated by λ1 and λ2, where λi is the (cohomological) Mukai
vector of δ(OL(i)) with δ : Db(Y ) → AY the projection functor and L a (any) line
in Y .

For any cubic fourfold Y not containing a plane, the result of Li–Pertusi–Zhao
[LPZ18, Th. 1.2] says that the LLSS hyper-Kähler eightfold Z(Y ) associated to Y is
isomorphic to Mσ(AY , 2λ1 + λ2), the moduli space of σ-stable objects in AY with
Mukai vector 2λ1 + λ2 (alternatively, one can reduce the proof of Theorem 3.1 to
the very general cubic fourfold Y , for which the modular construction of Z(Y ) was
already done in [LLMS18, MainTh.].) Theorem 1.1 applied in this special case implies
that there exists a split injection of Chow motives:

(27) h(Z(Y )) ' h(Mσ(AY , 2λ1 + λ2)) ↪−→
r⊕
i=1

h(Y 4)(`i).

The theory of stability conditions in family has recently been worked out in [BLM+21],
and as such the isomorphism of Li–Pertusi–Zhao can be formulated in a relative
setting. More precisely, the family Z → B◦ is isomorphic, as B◦-scheme, to the
relative (smooth and projective) moduli space M → B◦, whose fiber over b is
Mσ(AYb

, 2λ1 + λ2). It is also clear from the proof of Theorem 1.1 that the injec-
tion (27), as well as its left inverse, is generically defined over B◦ and gives rise to
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the following morphism of relative Chow motives over B◦ which is fiberwise a split
injection:

(28) h(Z ) ' h(M ) −→
r⊕
i=1

h(Y 4/B◦)(`i).

As a consequence, for any b ∈ B◦, we have the following commutative diagram

(29)

GDCH∗(Zb)
cl //

��

H∗(Zb,Q)

��⊕r
i=1 GDCH∗(Y 4

b )
cl //

⊕r
i=1 H∗(Y 4

b ,Q),

where GDCH∗(Zb) := Im(CH∗(Z ) → CH∗(Zb)) is the group of generically defined
cycles. In the above diagram (29), the two vertical arrows are injective by (28), the
bottom arrow is injective by Theorem 2. Therefore the top arrow is also injective,
which is the content of the Franchetta property for the family Z → B◦. �

4. Further results

The aim of this section is to show how the results of Section 1 also make it possible
to establish the Franchetta property and to deduce Beauville–Voisin type results for
certain non locally complete families of hyper-Kähler varieties. These include certain
moduli spaces of sheaves on K3 surfaces (Corollary 4.2), and certain O’Grady tenfolds
(Theorem 4.3). We also include a Beauville–Voisin type result for Ouchi eightfolds
(Corollary 4.4).

4.1. The Franchetta property for some moduli spaces of sheaves on K3 surfaces

We show how Theorem 1.1 makes it possible to extend our previous results
[FLVS19, Ths 1.4&1.5] on the Franchetta property for certain Hilbert schemes of
points on K3 surfaces of small genus to the case of certain moduli spaces of sheaves
on K3 surfaces of small genus.

Let Fg be the moduli stack of polarized K3 surfaces of genus g and let S → Fg

be the universal family. Denote by H the universal ample line bundle of fiberwise
self-intersection number 2g − 2.

Theorem 4.1. — Let m be a positive integer. If Sm
/Fg
→ Fg satisfies the Franchetta

property, then for any r, d, s ∈ N such that 06d2(g−1)−rs+16m and gcd(r, d, s) = 1,
the relative moduli space M → Fg of H-stable sheaves with primitive Mukai vector
v = (r, dH, s) also satisfies the Franchetta property.

Proof. — For a given K3 surface S of genus g, the moduli space MH(S, v) is a pro-
jective hyper-Kähler variety of dimension v2 + 2 = d2(2g − 2) − 2rs + 2 6 2m.
By Theorem 1.1, we have the following split injective morphism of Chow motives

h(MH(S, v)) ↪−→
r⊕
i=1

h(Sm)(`i).

J.É.P. — M., 2021, tome 8



The generalized Franchetta conjecture for some hyper-Kähler varieties, II 1093

It is clear from the proof of Theorem 1.1 that the above split injective morphism, as
well as its left inverse, is generically defined over Fg. We have therefore a morphism
of relative Chow motives (over Fg) that is fiberwise a split injection:

(30) h(M ) ↪−→
r⊕
i=1

h(Sm
/Fg

)(`i).

As a consequence, for any b ∈ Fg, we have the following commutative diagram

(31) GDCH∗(MH(Sb, v))
cl //

��

H∗(MH(Sb, v),Q)

��⊕r
i=1 GDCH∗(Smb )

cl //
⊕r

i=1 H∗(Smb ,Q),

where GDCH∗(MH(Sb, v)) := Im
(
CH∗(M ) → CH∗(MH(Sb, v))

)
is the group of

generically defined cycles relative to Fg. In the above diagram (31), the two vertical
arrows are injective by (30), the bottom arrow is injective by hypothesis. Therefore
the top arrow is also injective, which is the content of the Franchetta property for the
family M → Fg. �

Combined with [FLVS19, Ths 1.4& 1.5], we get their generalization as follows.

Corollary 4.2. — Notation is as above. Assume that 2 6 g 6 12 and g 6= 11. Set the
function

m(g) =


3 g = 2, 4, or 5,

5 g = 3,

2 g = 6, 7, 8, 9, 10, or 12.

Then for any r, d, s ∈ N such that 0 6 d2(g− 1)− rs+ 1 6 m(g) and gcd(r, d, s) = 1,
the relative moduli space M → Fg of H-stable sheaves with primitive Mukai vector
v = (r, dH, s) satisfies the Franchetta property. �

4.2. Franchetta property for certain families of hyper-Kähler varieties of
O’Grady-10 type

Theorem 4.3. — Given any r, d, s ∈ N such that d2(g − 1)− rs = 1, let M → Fg be
the relative moduli space of H-stable sheaves with Mukai vector v = 2(r, dH, s) and
let M̃ →M be O’Grady’s simultaneous crepant resolution.

(i) Assume that S 5
/Fg

→ Fg satisfies the Franchetta property. Then M̃ → Fg

satisfies the Franchetta property.
(ii) In case g = 3 (quartic surface case), the family M̃ → F3 has the Franchetta

property. In particular, the Beauville–Voisin conjecture is true for the very general
element of M̃ → F3.

Proof. — Statement (i) follows from Theorem 1.2, plus the observation that the con-
struction of the split injection of that theorem can be performed relatively over Fg.
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Statement (ii) follows from (i), in view of the fact that S 5
/F3
→ F3 has the Franchetta

property [FLVS19, Th. 1.5]. �

4.3. The Chow ring of Ouchi’s eightfolds. — In [Ouc17], Ouchi has constructed
certain hyper-Kähler eightfolds, that we call Ouchi eightfolds, as moduli spaces of
stable objects on the Kuznetsov component of a very general cubic fourfold containing
a plane. These form therefore a 19-dimensional family of projective hyper-Kähler
eightfolds of K3[4]-type. We provide the following Beauville–Voisin type consequence
of Theorem 3.1 for Ouchi eightfolds.

Corollary 4.4. — Let Y be a very general cubic fourfold containing a plane, and let
Z = Z(Y ) be the associated Ouchi eightfold [Ouc17]. Then the Q-subalgebra

〈h, cj(Z), [Y ]〉 ⊂ CH∗(Z)

injects into cohomology, via the cycle class map. Here, h is the natural polarization
and Y ⊂ Z is the Lagrangian embedding constructed in [Ouc17].

Proof. — Referring to the notation of the proof of Theorem 3.1, one considers the rel-
ative moduli space M → B, whose fiber over b ∈ B, denotedMb, is Mσ(AYb

, 2λ1+λ2).
For b ∈ B◦,Mb is isomorphic to the LLSS eightfold associated to Yb by [LPZ18]; while
for a very general point b ∈ B r B◦, Mb is isomorphic to the Ouchi eightfold associ-
ated to Yb by [BLM+21, Ex. 32.6]. Moreover, the classes h, cj(Mb) and [Yb] on Ouchi
eightfolds are specializations of the corresponding classes on LLSS eightfolds. Thanks
to Theorem 3.1, the Q-subalgebra generated by h, cj and [Y ] (which are generically
defined with respect to B) injects into cohomology. By specialization, the same holds
true for Ouchi eightfolds. �
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