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PROJECTIVELY FLAT KLT VARIETIES

by Daniel Greb, Stefan Kebekus & Thomas Peternell

Abstract . — In the context of uniformisation problems, we study projective varieties with klt
singularities whose cotangent sheaf admits a projectively flat structure over the smooth locus.
Generalising work of Jahnke-Radloff, we show that torus quotients are the only klt varieties
with semistable cotangent sheaf and extremal Chern classes. An analogous result for varieties
with nef normalised cotangent sheaves follows.

Résumé (Variétés klt projectivement plates) . — Dans le cadre des problèmes d’uniformisation,
nous étudions les variétés projectives avec singularités klt dont le faisceau cotangent admet une
structure projective plate sur le lieu lisse. En généralisant le travail de Jahnke-Radloff, nous
montrons que les quotients des tores sont les seules variétés klt avec un faisceau cotangent
semi-stable et des classes de Chern extrémales. Un résultat analogue pour les variétés avec un
faisceau cotangent normalisé nef s’ensuit.
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1. Introduction

1.1. Projective manifolds with projectively flat cotangent bundle. — Let E be
a locally free sheaf of rank r > 1 on a complex, projective manifold X of dimension
n > 2. If E is semistable with respect to some ample divisor H ∈ Div(X), then the
Bogomolov-Gieseker Inequality holds:

(1.0.1) r − 1

2r
· c1(E )2 · [H]n−2 6 c2(E ) · [H]n−2.

In case of equality, the sheaf E is known to be projectively flat. We refer the reader
to Section 3.1 for a brief discussion of projective flatness.

Motivated by the structure theory of higher-dimensional projective manifolds, we
are particularly interested in the case where E is the cotangent bundle Ω1

X of an
n-dimensional manifold X. In this setup, the equality case of (1.0.1) reads

(1.0.2) n− 1

2n
· c1(X)2 · [H]n−2 = c2(X) · [H]n−2.

While semistability of Ω1
X occurs in many relevant cases and has important geo-

metric consequences, the Equality (1.0.2) poses severe restrictions on the geometry
of X.

– In case KX is ample, Equality (1.0.2) will never hold, owing to the stronger
Miyaoka–Yau inequality.

– If KX ≡ 0, then by Yau’s theorem, X is an étale quotient of an Abelian variety.
– If X is Fano and Kähler-Einstein, again the equality (1.0.2) cannot occur, owing

to the Chen–Oguie inequality.
In their remarkable paper [JR13], Jahnke and Radloff proved the following com-
plete characterisation of manifolds with semistable cotangent bundle for which Equal-
ity (1.0.2) holds.

Theorem 1.1 (Characterisation of torus quotients, [JR13, Ths. 0.1 & 1.1])
Let X be a projective manifold of dimension n and assume that Ω1

X is H-semistable
for some ample line bundle H. If Equality (1.0.2) holds, then X is a finite étale
quotient of a torus. �

In particular, this deals with manifolds of intermediate Kodaira dimension, and
moreover implies that in the Fano case Equality (1.0.2) can never happen, independent
of the existence question for Kähler-Einstein metrics.

1.2. Main result of this paper. — We have learned from numerous previous results,
including [GKP16, LT18, GKT18, GKPT20, GKPT19a, GKP20], that the natural
context for uniformisation results is that of minimal model theory. The aim of this
paper is therefore to generalise the theorem of Jahnke–Radloff to the case when X

has klt singularities.
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Projectively flat klt varieties 1007

Theorem 1.2 (Characterisation of quasi-Abelian varieties). — Let X be a projective
klt space of dimension n > 2 and let H ∈ Div(X) be ample. Assume that Ω

[1]
X is

semistable with respect to H and that its Q-Chern classes satisfy the equation

(1.2.1) n− 1

2n
· ĉ1
(
Ω

[1]
X

)2 · [H]n−2 = ĉ2
(
Ω

[1]
X

)
· [H]n−2.

Then, X is quasi-Abelian and has at worst quotient singularities.

In Theorem 1.2, we say that a normal projective variety X is quasi-Abelian if there
exists a quasi-étale cover X̃ → X from an Abelian variety X̃ to X. The symbols ĉ•
denote Q-Chern classes on the klt variety X, as recalled in [GKPT19a, §3].

1.3. Normalised cotangent sheaves. — Work of Narasimhan, Seshadri and others,
summarised for example in [JR13, Th. 1.1] and explained in detail by Nakayama
in [Nak98, Th.A], can be used to reformulate Jahnke-Radloff’s result in terms of
positivity properties of natural tensor sheaves: a projective manifold X of dimension n
is quasi-Abelian if and only if the normalised cotangent bundle, Symn Ω1

X⊗OX(−KX),
is nef.

While the arguments presented by Nakayama use intersection theory computations
on the total space of the projectivised cotangent bundle that cannot immediately be
carried over to singular varieties, we are nevertheless able to obtain the analogous
result in our setup.

Theorem 1.3. — Let X be a normal projective variety of dimension n > 2. Assume
that X is klt and that the reflexive normalised cotangent sheaf(

Symn Ω1
X ⊗ OX(−KX)

)∗∗
is nef. Then, X is quasi-Abelian.

Definition 2.1 recalls the meaning of nef for a sheaf that is not necessarily locally
free.

1.4. Strategy of proof. — While the general strategy of proof is similar to the one
employed by Jahnke and Radloff, our argument introduces a number of new tools;
this includes a detailed analysis of sheaves that are projectively flat on the smooth a
klt variety, especially as their behaviour near the singularities is concerned. On the
one hand, these tools allow us to deal with the (serious) complications arising from
the singularities. On the other hand, they enable us to streamline parts of Jahnke-
Radloff’s proof, thereby clarifying the underlying geometric principles.

As an intermediate step, we obtain the following result, which might be of inde-
pendent interest to some readers.

Theorem 1.4 (= Theorem 4.4 in Section 4.2). — Let X be a normal, projective klt
variety of dimension n > 2. Assume that the sheaf Ω

[1]
X of reflexive differentials is of

the form Ω
[1]
X
∼= L ⊕n, where L is reflexive of rank one. Then, X is quasi-abelian.

J.É.P. — M., 2021, tome 8
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2. Conventions, notation, and variations of standard facts

2.1. Global conventions. — Throughout this paper, all schemes, varieties and mor-
phisms will be defined over the complex number field. We follow the notation and
conventions of Hartshorne’s book [Har77]. In particular, varieties are always assumed
to be irreducible. For all notation around Mori theory, such as klt spaces and klt pairs,
we refer the reader to [KM98].

2.2. Varieties and complex spaces. — In order to keep notation simple, we will some-
times, when there is no danger of confusion, not distinguish between algebraic vari-
eties and their underlying complex spaces. Along these lines, if X is a quasi-projective
complex variety, we write π1(X) for the fundamental group of the associated complex
space.

2.3. Reflexive sheaves. — As in most other papers on the subject, we will frequently
consider reflexive sheaves and take reflexive hulls. Given a normal, quasi-projective
variety (or normal, irreducible complex space) X, we write Ω

[p]
X :=

(
ΩpX
)∗∗ and refer

to this sheaf as the sheaf of reflexive differentials. More generally, given any coher-
ent sheaf E on X, write E [⊗m] :=

(
E⊗m

)∗∗ and det E :=
(
∧rankE E

)∗∗. Given any
morphism f : Y → X of normal, quasi-projective varieties (or normal, irreducible,
complex spaces), we write f [∗]E := (f∗E )∗∗.

2.4. Nef sheaves. — We recall the notion of a nef sheaf in brief and collect basic
properties.

Definition 2.1 (Nef and ample sheaves, [Anc82]). — Let X be a normal, projective
variety and let S 6= 0 be a non-trivial coherent sheaf on X. We call S ample/nef if
the locally free sheaf OP(S )(1) ∈ Pic(P(S )) is ample/nef.

We refer the reader to [Gro61] for the definition of P(S ), and to [Anc82, §2
&Th. 2.9] for a more detailed discussion of amplitude and for further references.
We mention a few elementary facts without proof.

Fact 2.2 (Nef sheaves). — Let X be a normal, projective variety.
(2.2.1) A direct sum of sheaves on X is nef iff every summand is nef.
(2.2.2) Pull-backs and quotients of nef sheaves are nef.
(2.2.3) A sheaf E is nef on X if and only if for every smooth curve C and every
morphism γ : C → X, the pull-back γ∗E is nef. �

J.É.P. — M., 2021, tome 8
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2.5. Flat sheaves. — One key notion in our argument is that of a flat sheaf. We
briefly recall the definition.

Definition 2.3 (Flat sheaf, [GKP16, Def. 1.15]). — If X is any normal, irreducible
complex space and F is any locally free coherent sheaf on X, we call F flat if it
is defined by a (finite-dimensional) complex representation of the fundamental group
π1(X). A locally free coherent sheaf on a quasi-projective variety is called flat if the
associated analytic sheaf on the underlying complex space is flat.

Remark 2.4 (Simple properties of flat sheaves). — Tensor powers, duals, symmetric
products and wedge products of locally free, flat sheaves are locally free and flat. The
pull-back of a locally free, flat sheaf under an arbitrary morphism is locally free and
flat. If F is a locally free and flat sheaf on a normal, irreducible complex space X,
then there exists a description of F in terms of a trivialising covering and transition
functions where all transitions functions are constant.

The following lemma is a direct consequence of [Kob87, Chap. II, Prop. 3.1]. We
leave the details to the reader.

Lemma 2.5 (Chern class of flat sheaf). — Every invertible, flat sheaf on a normal
projective variety is numerically trivial. �

2.6. Covering maps and quasi-étale morphisms. — A cover or covering map is a
finite, surjective morphism γ : X → Y of normal, quasi-projective varieties (or normal,
irreducible complex spaces). The covering map γ is called Galois if there exists a finite
group G ⊂ Aut(X) such that γ is isomorphic to the quotient map.

A morphism f : X → Y between normal varieties (or normal, irreducible complex
spaces) is called quasi-étale if f is of relative dimension zero and étale in codimension
one. In other words, f is quasi-étale if dimX = dimY and if there exists a closed,
subset Z ⊆ X of codimension codimX Z > 2 such that f |XrZ : X r Z → Y is étale.

2.7. Maximally quasi-étale spaces. — Let X be a normal, quasi-projective variety
(or a normal, irreducible complex space). We say that X is maximally quasi-étale if
the natural push-forward map of fundamental groups,

π1(Xreg)
(incl)∗−−−−−→ π1(X)

induces an isomorphism between the profinite completions, π̂1(Xreg) ∼= π̂1(X).

Remark 2.6 (Surjectivity of (incl)∗). — Recall from [FL81, 0.7.B on p. 33] that the
natural push-forward map (incl)∗ is always surjective.

Remark 2.7 (Existence of maximally quasi-étale covers). — If (X,∆) is any quasi-
projective klt pair, then X admits a quasi-étale cover γ : X̂ → X where X̂ is maxi-
mally quasi-étale, [GKP16, Th. 1.14]. The pair (X̂, γ∗∆) is again klt.

J.É.P. — M., 2021, tome 8
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Remark 2.8 (Extension of representations and flat sheaves). — Assume that X is
a normal, irreducible complex space that is maximally quasi-étale. Using Malcev’s
theorem, it has been shown in [GKP16, §8.1] that any representation ρ : π1(Xreg)→
GL(N,C) factorises via the fundamental group of X,

π1(Xreg) π1(X) GL(N,C).
(incl)∗

ρ

∃!

In particular, it follows that any flat bundle on Xreg extends to a flat bundle on X.

2.8. Local fundamental groups of contraction morphisms. — The behaviour of the
fundamental group under extremal contractions and resolutions of singularities has
been studied by Takayama in a series of papers. The following result is due to him.

Proposition 2.9 (Local fundamental groups of contraction morphisms)
Let X be a projective klt variety and f : X → Y the contraction of a KX-negative

extremal ray. If y ∈ Y is any point, then there exists a neighbourhood U = U(y) ⊆ Y ,
open in the analytic topology, such that f−1(U) is connected and simply connected.

Proof. — Takayama formulates a global version of the result in [Tak03, Th. 1.2]. The
arguments of [Tak03, Proof of Th. 1.2 on p. 834] apply in our setup and give a full
proof of Proposition 2.9. �

2.9. Abundance. — We will later use the following special case of the abundance
conjecture. Even though the proof uses only standard results from the literature, we
found it worth to include it here in full, for the reader’s convenience and for later
referencing.

Proposition 2.10. — Let f : X Y be a dominant, almost holomorphic, rational
map with connected fibres between projective varieties. Assume that
(2.10.1) The variety Y is smooth, positive-dimensional and of general type.
(2.10.2) The variety X is klt, and the canonical divisor KX is nef.
(2.10.3) The variety X is smooth around general fibres of f .
(2.10.4) The general fibre is smooth and is a good minimal model.
Then, X is a good minimal model. In other words, KX is semiample.

Proof. — Blowing up X in the indeterminacy locus, we obtain a diagram

X̃ X

Y Y

π

f̃ f

where π is isomorphic around the general fibre Xy
∼= X̃y of f or f̃ , respectively. Next,

consider the relative Iitaka fibration for π∗KX on X̃/Y . As discussed in [BC15, §2.4],
this is given by the (standard) Iitaka fibration for a line bundle of the form

L := π∗KX + f̃∗(sufficiently ample).

J.É.P. — M., 2021, tome 8
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Since sufficiently high powers of L have no base points along the general fibre X̃y,
we may replace X̃ by a further blow-up and obtain a diagram as follows,

X̃ X̃ X

Z Y Y

rel. Iitaka

π

f̃ f

where Z is smooth and where L is numerically trivial on the general fibre X̃z of X̃
over Z. The numerical dimension ν(X) and the Kodaira dimension κ(X) are then
estimated in terms of X̃y and dimY as follows,

κ(X̃y) + dimY = dimZ [BC15, §2.4]
= ν(π∗KX |X̃z

) + dimZ since π∗KX |X̃z
≡ 0

> ν(π∗KX) = ν(KX) [Nak04, V. Lem. 2.3.(2)]
> κ(KX) [Kaw85b, Prop. 2.2]

> κ(X̃) because π is birational

> κ(X̃y) + dimY by [Vie82, Satz III].

It follows that κ(X) = ν(X), and hence by [KMM87, Cor. 6-1-13] that KX is semi-
ample, as desired. �

2.10. The negativity lemma. — For later reference, we note the following two minor
generalisations of the classic negativity lemma, as formulated for instance in [KM98,
Lem. 3.39–3.41].

Lemma 2.11 (Negativity Lemma I). — Let f : X → Y be a surjective morphism
of normal, projective varieties. If E ∈ QDiv(X) is non-zero and effective with
codimY f(suppE) > 2, then E is not nef.

Proof. — Choose a very ample line bundle L on X and a general tuple of sections
(H1, . . . ,HdimX−dimY ) ∈ |L |×(dimX−dimY ). Set S := H1 ∩ · · · ∩HdimX−dimY . This
is a normal subvariety of X. The restricted morphism f |S is surjective and generi-
cally finite, and E ∩ S is a non-zero, effective, Q-Cartier Q-divisor on S. The Stein
factorisation of f |S is then birational and contracts E ∩ S. The negativity lemma,
[KM98, Lem. 3.39(1)] with −B = E ∩ S, then applies to conclude that E ∩ S (and
therefore E) are non-nef. �

Lemma 2.12 (Negativity Lemma II). — Let f : X → Y be a surjective morphism
of normal, projective varieties, where Y is a curve. If E ∈ QDiv(X) is non-zero,
effective, and maps to a point in Y , then either κ(E) = 1 or E is not nef.

Proof. — Write y := f(E). If supp(E) equals the set-theoretic fibre f−1(y), then
κ(E) = 1. We will therefore assume that supp(E) is a proper subset of f−1(y). Choose
a very ample line bundle L on X and a general tuple of sections (H1, . . . ,HdimX−2) ∈
|L |×(dimX−dimY ). Set S := H1 ∩ · · · ∩HdimX−2. This is a normal surface in X. The

J.É.P. — M., 2021, tome 8



1012 D. Greb, S. Kebekus & T. Peternell

divisor E∩S is a non-zero, effective, Q-Cartier Q-divisor on S, supported on a proper
subset of (f |S)−1(y). Zariski’s Lemma, [BHPVdV04, Chap. III, Lem. 8.2], will then
show that (E ∩ S)2 < 0. It follows that E ∩ S (and therefore E) cannot be nef. �

2.11. Abelian group schemes. — The proof of our main result, the characterisation
of quasi-Abelian varieties in Theorem 1.2, uses a minor generalisation of Kollár’s
characterisation of étale quotients of Abelian group schemes, [Kol93, Th. 6.3]. We
recall the relevant notions first.

Definition 2.13 (Abelian group scheme). — An Abelian group scheme over a base B
is a smooth, proper morphism a : A → B between smooth varieties such that every
fibre of a is an Abelian variety, and such that there exists a section B → A.

Definition 2.14 (Generically large fundamental group, [Kol93, Defn. 6.1])
Let X be a normal, projective variety and let Y ⊂ X be a closed subvariety. We

say that X has a generically large fundamental group on Y if for all very general
points y ∈ Y and for every closed and positive-dimensional subvariety y ∈ Z ⊂ Y

with normalisation Z, the image of the natural morphism π1
(
Z
)
→ π1(X) is infinite.

The generalisation of Kollár’s result is then formulated as follows.

Proposition 2.15 (Characterisation of étale quotients of Abelian group schemes)
Let f : X → Y be a surjective morphism with connected fibres between normal,

projective varieties. Assume that there exists ∆ ∈ QDiv(X) such that (X,∆) is klt.
Let y ∈ Y be a very general point with fibre Xy and assume that the following holds.

– The fibre Xy has a finite étale cover that is birational to an Abelian variety.
– The variety X has a generically large fundamental group on Xy.

Then, there exists an étale cover γX : X̂ → X such that the fibration â : Â → Ŷ

obtained as the Stein factorisation of (f ◦ γX) : X̂ → Y is birational to an Abelian
group scheme over a proper base.

Proof. — If X and Y are smooth, this is [Kol95, Th. 6.3]. If not, choose ∆ ∈ QDiv(X)

such that (X,∆) is klt. We will consider resolutions of the singularities and construct
a diagram of surjective morphisms between normal, projective varieties,

(2.15.1)
qX X̃ X

qY Ỹ Y

γ
X̃
, finite and étale

qa, conn. fibres

πX , resolution

f̃ , conn. fibres f , conn. fibres

γỸ , finite πY , resolution

where the morphism qa is birational to an Abelian group scheme over a proper base.
For this, begin by choosing appropriate resolution morphisms πX and πY to construct
the right square in (2.15.1). Once this is done, choose a very general point ỹ ∈ Ỹ with
very general image point y := πY (ỹ). Using a result of Campana, [Cam91, Prop. 1.3],
we see that the variety X̃ has a generically large fundamental group on X̃ỹ. Kollár’s
result therefore applies to f̃ and gives the left square.

J.É.P. — M., 2021, tome 8
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There is more: using the assumption that (X,∆) is klt, Takayama has shown
in [Tak03, Th. 1.1] that the natural push-forward map (πX)∗ : π1

(
X̃
)
→ π1(X) is

isomorphic. The étale morphism γX̃ therefore comes from an étale cover of X, say
γX : X̂ → X. Stein factorising πX ◦γX̃ and πY ◦γỸ , we will therefore obtain a diagram
of the following form,

(2.15.2)
qX X̂ X

qY Ŷ Y

πX◦γX̃

π
X̂
, resolution

qa, conn. fibres
γX , étale

â f , conn. fibres

πY ◦γỸ

πỸ , conn. fibres γY , finite

where â := πỸ ◦ qa ◦ π−1
X̂

. This map makes (2.15.2) commute and is birational to qa,
which is in turn birational to an Abelian group scheme. To end the proof, it will
therefore suffice to show that â is actually a morphism. This is not so hard: if x̂ ∈ X̂
is any point with preimage Z := π−1

X̂

(
x̂
)
, then(

γY ◦ πỸ ◦ qa
)
(Z) = f

(
γX(x̂ )

)
= point in Y

but since γY is finite, this implies that
(
πỸ ◦qa

)
(Z) is a point in Ŷ . The Rigidity Lemma

in the form of [Deb01, Lem. 1.15] will then show that â is well-defined at x̂. �

3. Projective flatness

3.1. Projectively flat bundles and sheaves. — Projective flatness is the core notion
of this paper. We will only recall the most relevant definition here and refer the reader
to [GKP20, §3] for a detailed discussion of projectively flat bundles and sheaves.

Definition 3.1 (Projectively flat bundles and sheaves on complex spaces)
Let X be a normal and irreducible complex space, let r ∈ N be any number and let

P→ X be a Pr-bundle. We call the bundle P→ X (holomorphically) projectively flat
if there exists a representation of the fundamental group, ρ : π1(X)→ PGL(r+ 1,C),
and an isomorphism of complex spaces over X

P ∼=X
X̃ × Pr

/
π1(X),

where X̃ is the universal cover of X and where the action π1(X) 	 X̃ × Pr is the
diagonal action. A locally free sheaf F of OX -modules is called (holomorphically)
projectively flat if the associated bundle P(F ) is projectively flat.

Definition 3.2 (Projectively flat bundles and sheaves on complex varieties)
Let X be a connected, complex, quasi-projective variety and let r ∈ N be any

number. A Pr-bundle P → X is called projectively flat if the associated analytic
bundle P(an) → X(an) is projectively flat. Ditto for coherent sheaves.

J.É.P. — M., 2021, tome 8



1014 D. Greb, S. Kebekus & T. Peternell

3.2. Projectively flat bundles induced by a solvable representation. — One way
to analyse a projectively flat sheaf E on a manifold or variety X is to look at the
Albanese map X → Alb(X), and to try and understand the restriction E |F to a
general fibre. The key insight here is that the Albanese map is a Shafarevich map for
the commutator subgroup, [Kol93, Prop. 4.3]. This allows to relate the geometry of the
Albanese map to the group theory of the representation that defines the projectively
flat structure on E . The following proposition, which is a variation of material that
appears in [JR13], is key to our analysis.

Proposition 3.3 (Projectively flat bundles induced by a solvable representation)
Let X be a normal, irreducible complex space that is maximally quasi-étale. Let

F be a rank-n reflexive sheaf on X such that F |Xreg is locally free and projectively
flat, so that P(F |Xreg

) is isomorphic to a projective bundle Pρ, for a representation
ρ : π1(Xreg) → PGL(n,C). If the image of ρ is contained in a connected, solvable,
algebraic subgroup G ⊂ PGL(n,C), then there exists an isomorphism

(3.3.1) F ∼= F ′ ⊗A ,

where A is Weil divisorial(1) and where F ′ is locally free and admits a filtration

(3.3.2) 0 = F ′0 ( F ′1 ( · · · ( F ′n = F ′

such that the following holds.
(3.3.3) All sheaves F ′i are locally free and flat in the sense of Definition 2.3, with
rank(F ′i ) equal to i.
(3.3.4) The sheaf F ′1 is trivial, F ′1

∼= OX .

Remark 3.4. — In the setting of Proposition 3.3, note that there exists an isomor-
phism of Weil divisorial sheaves, det F ∼= A [⊗n] ⊗ det F ′. Recall from Remark 2.4
that the invertible factor det F ′ is flat and hence by Lemma 2.5 numerically trivial.

Proof of Proposition 3.3. — To begin, we claim that the projective representation ρ

lifts to a linear representation, which we will denote by σ. To formulate our result more
precisely, write B(n,C) ⊂ GL(n,C) for the subgroup of upper-triangular matrices and
B1(n,C) ⊂ B(n,C) for the subgroup of upper-triangular matrices whose top-left entry
equals one. In other words,

B1(n,C) :=




1 ∗ ∗
0 ∗

∗
0 0 ∗



∣∣∣∣∣∣∣∣∣∣∣
all ∗ ∈ C


=
{

(b••) ∈ B(n,C) | b11 = 1
}
.

With this notation, we claim there exists a connected linear group Ĝ ⊆ B1(n,C) ⊂
GL(n,C) such that the natural projection π : GL(n,C) → PGL(n,C) induces an
isomorphism between Ĝ and G. To this end, let Ĝ′ ⊂ SL(n,C) be the maximal

(1)Weil divisorial sheaf = reflexive sheaf of rank one.
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connected subgroup of π−1(G) ∩ SL(n,C). The restricted morphism π|Ĝ′ : Ĝ′ → G is
then finite and surjective, and induces an isomorphism of the Lie algebras Lie(Ĝ′) and
Lie(G). In particular, Ĝ′ is solvable. Therefore, choosing an appropriate basis of Cn,
Lie’s Theorem allows us to assume without loss of generality that Ĝ′ is contained in the
subgroup B(n,C) of upper-triangular matrices. Finally, set Ĝ := π−1(G) ∩B1(n,C).
The obvious fact that any invertible upper triangular matrix A ∈ Ĝ′ ⊆ B(n,C) has
a unique multiple λ ·A that lies in B1(n,C) implies that the restriction π|Ĝ : Ĝ→ G

is then isomorphic, as desired.
Remark 2.8 and the assumption thatX is maximally quasi-étale allow us to identify

representations of π1(X) and π1(Xreg). With these identifications made, the following
commutative diagram summarises the situation,

Ĝ B1(n,C) GL(n,C)

π1(X) G PGL(n,C)

∼= π, nat. projection

ρ

σ

If F ′ denotes the locally free, flat sheaf on X associated with σ, then the factorisa-
tion of σ via the group B1(n,C) implies that F ′ admits a filtration as in (3.3.2) that
satisfies conditions 3.3.3 and 3.3.4. By construction, we have P(F |Xreg) ∼= P(F ′|Xreg),
and so there exists an invertible sheaf Areg on Xreg such that F |Xreg

∼= F ′|Xreg
⊗Areg.

A presentation of F as in Equation (3.3.1) therefore exists by taking A := ι∗Areg,
where ι : Xreg → X is the inclusion. �

4. Varieties with splitting cotangent sheaves

One relevant case that keeps appearing in the discussion of varieties with projec-
tively flat sheaf of reflexive differentials is the one where Ω

[1]
X decomposes as a direct

sum of Weil divisorial sheaves. We discuss settings where there are local or global
decompositions of this form. The results of this section will be used later in the proof
of our main result, but might be of independent interest. In relation to [JR13], the
local results are new, prompted by the appearance of singularities in our context, and
the results on varieties with globally split cotangent sheaf allow us to replace some of
the more involved arguments of loc. cit. by a clearer structure result.

4.1. Varieties where Ω
[1]
X is locally split. — Given a variety X where Ω

[1]
X is projec-

tively flat, for instance because the flatness criterion of [GKP20, Th. 1.6] applies, the
local description of projectively flat sheaves, [GKP20, Prop. 3.11], can often be used
to reduce to the case where Ω

[1]
X decomposes locally. We will show that this already

forces X to have quotient singularities.

Proposition 4.1. — Let X be a normal complex space with klt singularities. Assume
that the sheaf Ω

[1]
X of reflexive differentials is of the form

(4.1.1) Ω
[1]
X
∼= L ⊕ dimX ,
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where L is reflexive of rank one. Then, X has only isolated, cyclic quotient singular-
ities.

We prove Proposition 4.1 in Section 4.3.

Remark 4.2. — If X is a quasi-projective variety with klt singularities where Ω
[1]
X is

of the form L ⊕ dimX for a Weil-divisorial sheaf L , then the proof of Proposition 4.1
applies verbatim to show that X is Zariski-locally a quotient of a smooth variety. We
do not use this fact however.

4.2. Varieties where Ω
[1]
X is globally split. — There are settings where Ω

[1]
X decom-

poses globally, for instance because it is projectively flat and X is known to be simply
connected. This obviously puts strong conditions on the global geometry of X; see
[Dru00] for further results in the smooth setup.

The following proposition, including the proof, is due to the referee. He also sug-
gested Theorem 4.4, which is stronger than our original result that included a pseudo-
effectivity assumption. Our previous arguments were of analytic nature and used a
theorem of Demailly [Dem02].

Proposition 4.3. — Let U be a connected complex manifold of dimension n > 2.
Assume that Ω1

U
∼= L ⊕n, where L is invertible. Then, c1(L ) = 0 ∈ H1

(
U, Ω1

U

)
.

Proof. — Consider the induced decomposition on cohomology

H1
(
U, Ω1

U

) ∼= H1
(
U, L

)⊕n
.

For reasons that will become apparent in a second, we are particularly interested in
the coordinate hyperplanes

Zi :=
{

(α1, . . . , αn) ∈ H1
(
U, L

)⊕n ∣∣ αi = 0
}
( H1

(
U, Ω1

U

)
.

To see how the Zi come into play, restate the assumption as a decomposition of the
tangent bundle: TU

∼= A1 ⊕ · · · ⊕An. The summands A• ∼= L ∗ are regular rank-one
foliations on U , with normal bundles

Ni = A1 ⊕ · · · ⊕ Âi ⊕ · · · ⊕An.

In this setting, a theorem of Baum-Bott, [BB70, Prop. 3.3 & Cor. 3.4] but see also
[Bea00, Lem. 3.1], describes the first Chern class c1(Ni) as lying in the subspace

Zi = H1
(
U, N ∗

i

)
( H1

(
U, Ω1

U

)
.

But since c1(L ) is proportional to any of the c1(N•), we find that c1(L ) is contained
in Z1 ∩ · · · ∩ Zn = {0}. The assertion is thus shown. �

Applying Proposition 4.3 to the smooth locus of a klt variety, we obtain the fol-
lowing characterisation of quasi-abelian varieties.

Theorem 4.4. — Let X be a normal, projective klt variety of dimension n > 2. Assume
that the sheaf Ω

[1]
X of reflexive differentials is of the form Ω

[1]
X
∼= L ⊕n, where L is

reflexive of rank one. Then, X is quasi-abelian.
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Proof. — We have seen in Proposition 4.3 that the Q-Cartier sheaves L are numer-
ically trivial, and then so is ωX ∼= L [⊗n]. Since X is klt, it follows from [Nak04,
Prop.V.4.9] or [Amb05, Th. 4.2] that ωX and L are torsion. As a consequence, we
find a finite quasi-étale cover γ : X̂ → X such that the reflexive pull-back γ[∗]L is
trivial. The space X̂ is klt and its tangent sheaf TX̂

∼=
(
γ[∗]L

)⊕n is likewise trivial.
By the solution of the Lipman-Zariski conjecture for spaces with klt singularities,
[GKKP11, Th. 6], it follows that the covering space X̂ is smooth. In other words, X̂
is a parallelisable projective manifold. By a classic result of Wang, X̂ is an Abelian
variety; see for example [Akh95, §3.9, Lem. 1]. �

4.3. Proof of Proposition 4.1. — The proof of Proposition 4.1 uses the following
lemma that might be of independent interest.

Lemma 4.5. — Let X be a normal, complex space with only cyclic quotient singular-
ities. Let S ⊆ Xsing be any irreducible component of the singular locus. Then, there
exists a non-empty, open set S◦ ⊆ S such that every x ∈ S◦ admits an open neigh-
bourhood U = U(x) ⊆ X of the form U = W × V , where W is smooth and V has an
isolated quotient singularity.

Proof. — To begin, consider the special case where V is a complex vector space,
ρ : Zm → GL(V ) is a linear representation of a cyclic group and where X ⊆ V/Zm
is an open neighbourhood of [~0]. Recall that ρ decomposes into direct a sum of one-
dimensional representations. Identifying Zm with roots of unity, we can thus find
linear coordinates on V such that multiplication with ξ ∈ Zm is given as

ξ · (v1, . . . , vm) =
(
ξn1 · v1, . . . , ξnm · vm

)
.

An elementary computation in these coordinates shows that S◦ exists, and can in fact
be chosen to be dense in S.

Returning to the general case where X is arbitrary, let s ∈ S be any point. By as-
sumption, there exists an open neighbourhood U = U(x) and a cyclic cover γ : Ũ → U ,
say with group G. Shrinking U and passing to a subgroup, if need be, we may assume
without loss of generality that γ is totally branched over s, that is γ−1(s) = {s̃}. The
cyclic group thus acts on Ũ and fixes s̃. The group G clearly acts on the vector space
TŨ |s̃ and linearisation at the fixed point, [Car57, Proof of Th. 4] or [HO84, Cor. 2 on
p. 13], shows the existence of a G-invariant open neighbourhood Ũ ′ of ~0 ∈ TŨ |s̃ and
an equivariant, biholomorphic map between Ũ and Ũ . In other words, we are in the
situation discussed in the first paragraph of this proof, where the claim has already
been shown. �

Proof of Proposition 4.1. — As a first step in the proof of Proposition 4.1, we claim
that L is Q-Cartier. In fact, taking determinants of both sides in (4.1.1), we obtain
that L [⊗ dimX] ∼= ωX , which is Q-Cartier by assumption. Choose a minimal number
N ∈ N+ such that L [⊗N ] is locally free. The reflexive tensor product

(
Ω

[1]
U

)[⊗N ] is
then likewise locally free.
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As a second step, we show that X has cyclic quotient singularities. In fact, given
any x ∈ X, we find an open neighbourhood U = U(x) over which L [⊗N ] is trivial.
Chose a trivialisation and let γ : Ũ → U be the associated index-one cover, which is
cyclic of order N . The complex space Ũ has again klt singularities and γ[∗] L ∼= OŨ .
In particular, it follows that Ω

[1]

Ũ
∼= γ[∗]Ω

[1]
U and TŨ are both free. The solution of the

Lipman-Zariski conjecture for spaces with klt singularities, [Dru14, Th. 3.8 & com-
ments after Th. 1.1] or [KS21, Th. 1.13], then asserts that Ũ is smooth. We conclude
that X has cyclic quotient singularities only.

As a third and last step, we show that the singularities of X are isolated. Assume
to the contrary and let S ⊆ Xsing be a positive-dimensional, irreducible component.
We have seen in Lemma 4.5 that there a non-empty, open subset S◦ ⊆ S such that
every x ∈ S◦ admits an open neighbourhood U = U(x) ⊆ X of product form U =

W ×V , where W is smooth and V has an isolated quotient singularity. In particular,
dimW = dimS and

Ω
[1]
U
∼= Ω1

W ⊕ Ω
[1]
V .

In particular, the reflexive tensor power
(
Ω

[1]
U

)[⊗N ] is written as a direct sum of reflex-
ive sheaves with

(
Ω

[1]
W

)[⊗(N−1)] ⊗ Ω
[1]
V as one of its direct summands. It follows that(

Ω
[1]
U

)[⊗N ] is not locally free and accordingly, neither is
(
Ω

[1]
X

)[⊗N ]. This contradicts
the results obtained in the first paragraph of this proof, and therefore finishes the
proof of Proposition 4.1. �

5. Proof of Theorem 1.2

5.1. Preparation for the proof. — Using the criterion for projective flatness spelled
out in [GKP20, Th. 1.6], the assumptions made in Theorem 1.2 imply that Ω1

Xreg

is projectively flat, at least after going to a quasi-étale cover. This allows to apply
following lemma in various settings that appear throughout the proof of Theorem 1.2.

Lemma 5.1 (Consequences of projectively flat cotangent bundle). — Let X be a
smooth, quasi-projective variety of dimension n where Ω1

X is projectively flat.
(5.1.1) If KX is nef, then X does not contain complete rational curves.
(5.1.2) Assume that there exists an immersion η : F → X where F is projective and
smooth. If η∗KX is nef and if KF ≡ 0, then F is quasi-Abelian.

Proof. — We prove the statements separately. Both proofs use the fact that every
locally free, projectively flat sheaf on a simply connected space is isomorphic to a
direct sum of the form L ⊕ • where L is invertible, cf. [GKP20, Prop. 3.11].

As to the first statement, let η : P1 → X be a non-constant map. Since η∗Ω1
X is

projectively flat, there is an integer m such that η∗Ω1
X
∼= OP1(m)⊕n. The canonical

morphism η∗Ω1
X → Ω1

P1
then yields m 6 −2, contradicting the nefness of η∗KX .

As to the second statement, applying the classic Decomposition Theorem [Bea83,
Th. 1] and possibly passing to a finite étale cover, we may assume that F is of product
form, F ∼= A × Z, where A is Abelian (possibly a point) and where Z is simply
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connected with KZ = 0. We aim to prove that Z is a point, argue by contradiction
and assume thatm := dimZ is positive. Let ι : Z → F denote the inclusion morphism.
The pull-back (η◦ ι)∗Ω1

X is projectively flat and hence of the form L ⊕n, for a suitable
line bundle L ∈ Pic(Z). The obvious surjection

L ⊕n ∼= (η ◦ ι)∗Ω1
X Ω1

Z

d(η◦ι)

induces a non-trivial map L ⊗m → ωZ ∼= OZ . But then the assumption that η∗KX and
hence also L are nef shows that L ⊗m cannot be a proper ideal sheaf, so L ⊗m ∼= OZ .
It follows that either L is torsion or that H0

(
Z, Ω1

Z

)
6= 0, both contradicting the

simple connectedness of Z. �

5.2. Proof of Theorem 1.2. — We maintain notation and assumptions of Theo-
rem 1.2 throughout the present Section 5.2. The proof follows the strategy of [JR13]
closely, but has to overcome a fair number of technical difficulties arising from the
presence of singularities. It is fairly long and therefore subdivided into numerous steps.
The main idea is to show abundance for X, and then to analyse the Iitaka fibration.
Abundance is shown in Steps 4, 5 and 6, with an inductive argument using repeated
covers, fibrations, and restrictions to fibres.

– Steps 1–3 set the stage, prove minimality of X and put limits on its possible
numerical dimension and Kodaira dimension.

– Step 4 fibres X using a Shafarevich map construction. The general fibre is
called F .

– Step 5, which is the longest step of this proof, considers a suitable cover of F̂
of F and takes a general fibre of its Albanese map. An analysis of this fibre will then
give abundance for F .

– Step 6 uses abundance for F to prove abundance for X.
– Steps 7–8 end the proof by showing that the Iitaka fibration of a suitable cover

of X is birational (and then isomorphic) to an Abelian group scheme over a proper
base.

Step 1: Simplification. — Since assumption and conclusion of Theorem 1.2 are sta-
ble under quasi-étale covers, we may apply [GKP16, Th. 1.5], pass to a maximal
quasi-étale cover and assume that the following holds in addition.

Assumption w.l.o.g. 5.2 (X is maximally quasi-étale). — The variety X is maximally
quasi-étale. In other words, the algebraic fundamental groups π̂1(Xreg) and π̂1(X)

agree.

With this assumption in place, the criterion for projective flatness, [GKP20,
Th. 1.6], implies that Ω1

Xreg
is projectively flat. As we have seen, this has a number

of interesting consequences.
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Consequence 5.3 (Extension of projectively flat bundles). — The extension result
for projectively flat bundles, [GKP20, Prop. 3.10], allows to find a projectively flat
Pn−1-bundle P→ X and an isomorphism of X-schemes, P|Xreg

∼=X P
(
Ω1
Xreg

)
.

Consequence 5.4 (Quotient singularities). — The local description of projectively flat
sheaves, [GKP20, Prop. 3.11], and Proposition 4.1 imply that X has only isolated
cyclic quotient singularities.

Notation 5.5. — We chose a projectively flat bundle P → X as in Consequence 5.3
and maintain this choice throughout. We write τ : π1(X)→ PGL(n,C) for the repre-
sentation that defines the projectively flat structure on P.

If KX is numerically trivial, then the Chern class equality (1.2.1) reduces to
ĉ2(X) · [H]n−2 = 0, and we may apply [LT18, Th. 1.2] to conclude that X̂ is quasi-
Abelian. This allows to make the following assumption.

Assumption w.l.o.g. 5.6 (KX 6≡ 0). — The canonical class KX is not numerically
trivial.

Step 2: Minimality of X. — Next, we show that the variety X is minimal.

Claim 5.7 (Minimality of X). — The canonical divisor KX is nef.

Proof of Claim 5.7. — Choose an integer m such that ω[⊗m]
X is invertible. We argue by

contradiction and assume that there exists a contraction of a KX -negative extremal
ray. Choosing a resolution of X, we find a sequence of morphisms

X̃
π, resolution−−−−−−−−−→ X

φ, contraction−−−−−−−−−−→ Y.

If y ∈ Y is any point, Takayama’s result on the local fundamental groups of φ,
Proposition 2.9, allows to find a neighbourhood U = U(y) ⊆ Y (an), open in the
analytic topology, such that V := φ−1(U) ⊆ X(an) is connected and simply connected.
Using simple connectedness, the local description of projectively flat sheaves, [GKP20,
Prop. 3.11], provides us with a reflexive, rank-one coherent analytic sheaf L on V and
an isomorphism Ω

[1]
V
∼= L ⊕n. We are done once we show that the first Chern class of

the invertible sheaf L [⊗n·m],

c1(L [⊗n·m]) ∈ H1
(
V, Ω1

V

)
,

intersects all curves trivially, as this will contradict negativity of the contracted ex-
tremal ray. To this end, write Ṽ := π−1(V ) and consider the following commutative
diagram,

(5.7.1)
Pic(V ) H1

(
V, Ω1

V

)
H1
(
V, Ω

[1]
V

)
H1
(
Vreg, Ω1

Vreg

)

Pic(Ṽ ) H1
(
Ṽ , Ω1

Ṽ

)
H1
(
Ṽ , Ω1

Ṽ

)
c1

π∗ dπ

α

β

c1
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where β is induced by the pull-back map for reflexive differentials, and where c1 maps
a bundle with transition functions fij to {d log fij}i,j . We have seen in Proposition 4.3
that the image of c1(L [⊗n·m]) in H1

(
Vreg, Ω1

Vreg

)
vanishes. As Ω

[1]
X is reflexive, the

morphism α is injective by [ST71, Th. 1.14] and [BS76, Cor. II.3.15]; see also [BS76,
Th. II.3.6]. By commutativity of (5.7.1), the Chern class c1(π∗L [⊗n·m]) of the pullback
via π vanishes. The claim follows from the projection formula for intersection numbers.

�

Step 3: Kodaira dimension. — We aim to show that the minimal variety X is quasi-
Abelian, which implies in particular that κ(X) = 0. As a first step, we show that X
is at least not of general type.

Claim 5.8. — The variety X is not of general type.

Proof of Claim 5.8. — Suppose to the contrary that X is of general type. Using that
X is also minimal, recall from [GKPT19a, Th. 1.1] that the Chern classes of X satisfy
a Q-Miyaoka-Yau inequality,

(5.8.1) n

2(n+ 1)
· [KX ]n =

n

2(n+ 1)
· ĉ1
(
Ω

[1]
X

)2 · [KX ]n−2 6 ĉ2
(
Ω

[1]
X

)
· [KX ]n−2.

On the other hand, we assume that Equation (1.2.1) holds. An elementary computa-
tion, using [Kob87, (1.14) on p. 34] and [GKPT19a, §3.8] shows that Equation (1.2.1)
is equivalent to the assertion that the semistable sheaf End(Ω

[1]
X ) has vanishing Q-

Chern classes with respect to H, in the sense of [GKPT20, Defn. 6.1]. But then we
have seen in [GKPT20, Fact and Defn. 6.5] that End(Ω

[1]
X ) has vanishing Q-Chern

classes with respect any ample bundle, and hence also with respect to any nef bundle.
We obtain that

(5.8.2) n− 1

2n
· [KX ]n =

n− 1

2n
· ĉ1
(
Ω

[1]
X

)2 · [KX ]n−2 = ĉ2
(
Ω

[1]
X

)
· [KX ]n−2.

But we know that KX is big and nef, so that [KX ]n > 0. Putting (in)equalities (5.8.1)
and (5.8.2) together hence produces a contradiction. � (Claim 5.8)

Step 4: The Shafarevich map. — Recall Notation 5.5 and consider the representation
τ : π1(X)→ PGL(n,C) that defines the projectively flat structure on P. Write

GX = img(τ) ⊆ PGL(n,C)

for the algebraic Zariski closure of its image. This is a linear algebraic group, which
has finitely many components. Applying Selberg’s Lemma(2) and passing to an ap-
propriate étale cover of X, we may hence assume without loss of generality that the
following holds.

Assumption w.l.o.g. 5.9 (Connectivity and torsion-freeness). — The linear algebraic
group GX is connected. Writing Rad(GX) C GX for the solvable radical of GX ,

(2)see [Alp87] for a brief account of this classic result.
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the image of the composed group homomorphism to the linear algebraic group
GX
/
Rad(GX) is torsion-free,

(5.9.1) π1(X)
τ−−→ GX −→ GX

/
Rad(GX).

IfGX reduces to a point, we have Ω
[1]
X
∼= L ⊕n for a suitable Weil-divisorial sheaf L .

We may then apply Theorem 4.4 to conclude that X is quasi-Abelian. As a conse-
quence, we may assume without loss of generality that the following holds.

Assumption w.l.o.g. 5.10 (Representation has infinite image). — The group GX is of
positive dimension.

We now follow the strategy of [JR13] and use Assumption 5.10 to consider the
Shafarevich map for the solvable radical of GX . We refer the reader to [Kol95, §3] for
more on Shafarevich maps.

Construction 5.11. — Consider the composed morphism (5.9.1) of Assumption 5.9,
let KCπ1(X) be its kernel and consider an associated K-Shafarevich map, shaK(X) :

X ShaK(X), where shaK(X) is dominant and ShaK(X) is a smooth, projective
variety.

The following two properties of shaK(X) will be most relevant in the sequel.

Fact 5.12 (Shafarevich maps are almost holomorphic, [Kol95, Th. 3.6])
The rational map shaK(X) is almost holomorphic. In other words, there exists a

Zariski open set X◦ ⊆ X such that shaK(X)|X◦ is well-defined and proper. The fibres
of shaK(X)|X◦ are connected. �

Fact 5.13 (Shafarevich maps and fundamental groups, [Kol95, Th. 3.6])
Let x ∈ X◦ be a very general point and let Z ⊂ X be a subvariety through x, with

normalisation η : Z̃ → Z. Then, the rational map shaK(X) maps Z to a point if and
only if the composed morphism

π1(Z̃)
η∗−−−→ π1(X)

τ−−→ GX −→ GX
/
Rad(GX)

has finite image. �

Claim 5.14 (The base of the Shafarevich map). — The (smooth) variety ShaK(X) is
of general type.

Proof of Claim 5.14. — Choose a resolution π : X̃ → X, recall from [Tak03, Th. 1.1]
that the natural push-forward map π∗ : π1(X̃) → π1(X) is isomorphic and observe
that the composed map shaK(X) ◦π : X̃ ShaK(X) is therefore a Shafarevich map
for K C π1(X̃). Using the assumption that the image of the composed morphism
(5.9.1) is torsion-free, the claim then follows from [CCE15, Th. 1]. � (Claim 5.14)

Claims 5.8 and 5.14 together imply in particular that the fibres of shaK(X) are
positive-dimensional. These will be investigated next.
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Step 5: Fibres of the Shafarevich map. — Throughout the present step, choose a
general fibre F ⊂ X of shaK(X). There are two cases to consider: either ShaK(X) is
a point and F = X is potentially singular, or F is a proper subvariety of X, and then
it avoids the (finitely many!) singularities of X, cf. Consequence 5.4, and must hence
be smooth. Either way, we will show in this step that F is quasi-Abelian. The proof
is somewhat long and therefore divided into sub-steps.

Notation 5.15. — Given an étale cover γ : F̂ → F , consider the composed group
morphism

(5.15.1) π1
(
F̂
)
−→ π1(F ) −→ π1(X)

τ−−→ PGL(n,C)

and let Gγ ⊆ PGL(n,C) be the Zariski closure of its image.

Remark 5.16. — Given an étale cover γ : F̂ → F , the group Gγ is an algebraic
subgroup of PGL(n,C) with finitely many connected components. Fact 5.13 implies
that the maximal connected subgroup of Gγ is solvable.

Step 5-1: Irregularity. — To begin our analysis of the fibres of the Shafarevich map,
we show that the fibres have positive irregularity, at least once we pass to a suitable
étale cover. This will later allow to analyse the fibres by means of their Albanese map.

Claim 5.17. — There exists an étale cover γ : F̂ → F such that h0
(
F̂ , Ω

[1]

F̂

)
> 0.

Proof of Claim 5.17. — Passing to a first étale cover of F , we may assume without
loss of generality that Gγ is connected. If the composed map (5.15.1) has infinite
image, then by Remark 5.16 this defines a solvable representation of π1

(
F̂
)
with

infinite image. It follows that H1
(
F̂ , Z

)
has positive rank and consequently, that

dimCH
1
(
F̂ , C

)
> 0. The description of the natural Hodge structure on this space,

[Sch16, Th. 1], then implies that h0
(
F̂ , Ω

[1]

F̂

)
> 0, as desired.

It therefore remains to consider the case where the composed map (5.15.1) has finite
image. By Assumption 5.10, this implies that F is a proper subvariety of X, entirely
contained in Xreg. We may then choose γ such that the composed map (5.15.1) is
trivial, implying as before that the pull-back of the projectively flat sheaf Ω

[1]
X is a

direct sum of the form, γ∗Ω1
X
∼= L ⊕n, for some L ∈ Pic(F̂ ). The pull-back of the

conormal bundle sequence, which is non-trivial for reasons of dimension, will then
read as follows,

0 −→ γ∗N∗F/X︸ ︷︷ ︸
trivial bundle

−→ γ∗Ω1
X︸ ︷︷ ︸

∼=L⊕n

−→ Ω1
F̂
−→ 0.

Hence H0
(
F̂ , L

)
6= {0}, and consequently H0

(
F̂ , Ω1

F̂

)
6= {0}. � (Claim 5.17)

Notation 5.18. — For the remainder of this proof, fix one particular Galois cover
γ : F̂ → F such that Gγ is connected, and where h0

(
F̂ , Ω

[1]

F̂

)
> 0. Recalling Re-

mark 5.16, we may apply Proposition 3.3 and using its notation we write

(5.18.1) γ∗Ω
[1]
X
∼= F ⊗A ,
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where A is Weil divisorial with numerical class [A ] ≡ [γ∗KX ], and where F is locally
free and admits a filtration

(5.18.2) 0 = F0 ( F1 ( · · · ( Fn = F

such that all sheaves Fi are locally free and flat with rank(Fi) = i and such that the
sheaf F1 is trivial, F1

∼= OX . In particular, there exists an inclusion

(5.18.3) A = A ⊗F1 ↪−→ γ∗Ω
[1]
X .

The pull-back of the normal bundle sequence (which is trivial if F = X) reads

(5.18.4) 0 −→ γ∗N∗F/X︸ ︷︷ ︸
trivial bundle

−→ γ∗Ω
[1]
X︸ ︷︷ ︸

=F⊗A

−→ Ω
[1]

F̂
−→ 0.

Step 5-2: Numerical dimension and Kodaira dimension. — Claim 5.17 has fairly
direct consequences for the Kodaira dimension of the fibres, which will turn out to be
either zero or one, the second case disappearing eventually.

Claim 5.19 (Bounding the Kodaira dimension from below). — Maintaining Nota-
tion 5.18, if π : F̃ → F̂ is any resolution of singularities, then the Kodaira dimension
of F̃ is non-negative. In particular, it follows that κ(F̂ ) > 0.

Proof of Claim 5.19. — The assumption that h0
(
F̂ , Ω

[1]

F̂

)
> 0, together with the Iso-

morphism (5.18.1) and the Filtration (5.18.2) allows to find an index i such that

(5.19.1) h0
(
F̂ , A ⊗ Fi

/
Fi−1

)
6= 0.

Writing Li := Fi
/
Fi−1 and recalling that Li is invertible and flat, hence numerically

trivial by Lemma 2.5, Equation (5.19.1) implies in particular that the sheaf

A [n] ⊗L ⊗ni = A [n] ⊗ det F︸ ︷︷ ︸
=γ∗ωX=ωF̂

⊗ (det F )∗ ⊗L ⊗ni︸ ︷︷ ︸
=:L ′, num. trivial by Rem. 3.4

also has a non-trivial section. In this setting, the extension theorem for differential
forms, [GKKP11, Th. 4.3] yields a non-trivial morphism π[∗]ωF̂ ↪→ ωF̃ and hence a
non-trivial section of ωF̃ ⊗ π

∗L ′, where again π∗L ′ ∈ Pic(F̃ ) is numerically trivial.
The claim thus follows from the “numerical character of the effectivity of adjoint line
bundles”, [CKP12, Th. 0.1], applied to the smooth space F̃ . � (Claim 5.19)

Claim 5.20 (Bounding the numerical dimension from above). — The numerical
dimension of F̂ satisfies ν(F̂ ) 6 1.

Proof of Claim 5.20. — To begin, recall from (5.18.1) that the (nef!) numerical classes
n · [A ] and [γ∗KX ] = [KF̂ ] agree. It follows that ν(F̂ ) = ν(A ), and so it suffices to
consider ν(A ) and to show that ν(A ) 6 1. In other words, given any very ample
divisor H on F̂ , we need to show that

(5.20.1) [A ]2 · [H]m−2 = 0, where m := dim F̂ .
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Recall from (5.18.3) that there exists an embedding A ↪→ γ∗Ω
[1]
X . Combined with

Sequence (5.18.4), we obtain a sheaf morphism

(5.20.2) A −→ Ω
[1]

F̂
.

If this morphism is constantly zero, then A maps into the trivial sheaf γ∗N∗F/X , the
nef sheaf A must thus be trivial, and the claim is shown. We will therefore continue
this proof under the assumption that (5.20.2) is an embedding.

Next, choose a general tuple (H1, . . . ,Hm−2) ∈ |H| × · · · × |H| and consider the
associated complete intersection surface S := H1 ∩ · · · ∩Hm−2. Then, S has klt sin-
gularities(3) and A |S is reflexive. The kernel of the restriction morphism for reflexive
differentials is

N∗
S/F̂

= ker
(
Ω

[1]

F̂

∣∣
S
→ Ω

[1]
S

) ∼= OF̂ (−H)⊕(m−2),

so in particular anti-ample. But since the nef sheaf A never maps to an anti-ample,
we find that the composed sheaf morphism

A |S −→ Ω
[1]

F̂

∣∣∣
S
−→ Ω

[1]
S

cannot vanish. The Bogomolov-Sommese vanishing theorem for the potentially sin-
gular surface S, [GKK10, Th. 8.3], implies that A |S is not big. Since it is nef, we
conclude that

0 = [A |S ]2 = [A ]2 · [H]m−2,

as desired. � (Claim 5.20)

Claim 5.21 (Kodaira dimension and numerical dimension of F ). — The Kodaira-
dimension and the numerical dimension of F satisfy the inequalities

(5.21.1) 0 6 κ(F ) 6 ν(F ) 6 1.

Proof of Claim 5.21. — Given that γ : F̂ → F is étale, Claim 5.20 immediately implies
that ν(F ) 6 1. Since KF = KX |F is nef, [Kaw85b, Prop. 2.2] gives the two rightmost
inequalities in (5.21.1), and so it remains to show that κ(F ) > 0. But we already
know from Claim 5.19 that κ(F̂ ) > 0, so that there exists a number p ∈ N and a
non-trivial section σ ∈ H0

(
F̂ , ω⊗p

F̂

)
. But then⊗

g∈Gal(γ)

g∗σ ∈ H0
(
F̂ , ω

⊗p·#Gal(γ)

F̂

)
is a non-trivial Galois-invariant pluri-form on F̂ , which hence descends to a non-trivial
pluri-form on F . � (Claim 5.21)

(3)The surface S will in fact almost always be smooth, except perhaps when X=F and dimX=2.
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Step 5-3: Fibres of the Albanese map. — We pointed out above that the Albanese
map of F is not trivial, at least once we pass to a suitable cover. Using the fact that the
Albanese yields a Shafarevich map for the commutator subgroup of the fundamental
group, there is much that we can say about its fibres, which will eventually turn out
to be abundant.

Construction 5.22. — Maintaining Notation 5.18, consider the Albanese map
alb(F̂ ) : F̂ → Alb(F̂ ) and recall from Claim 5.17 and Notation 5.18 that this map
is non-trivial, which is to say that dim Alb(F̂ ) > 0. Let F1 ( F̂ be a general fibre
component of alb(F̂ ). This might be a point if F̂ is of maximal Albanese dimension.
Since F̂ has at worst isolated singularities, F1 is necessarily smooth. Now, we use the
fact that Albanese maps are Shafarevich maps by recalling from [Kol95, §0.1.3] that
the push-forward morphism of Abelianised fundamental groups,

(ι1)
(ab)
∗ : π1(F1)(ab) −→ π1

(
F̂
)(ab)

has finite image. We can thus find an étale cover γ1 : F̂1 → F1 such that the composed
push-forward

(ι1 ◦ γ1)
(ab)
∗ : π1(F̂1)(ab) −→ π1

(
F̂
)(ab)

is trivial. The following diagram summarises the morphisms that we have discussed
so far,

F̂1 F1 F̂ F X

Alb(F̂ ) ShaK(X)

η

γ1, étale ι1, fibre inclusion γ, étale

alb(F̂ )

ι, fibre inclusion

shaK(X)

Observing that img(η) ( Xreg, we consider the exact sequence of differentials,

(5.22.1) 0 −→ Ω1
F̂1/X︸ ︷︷ ︸

trivial, non-zero

−→ η∗Ω1
X

d η−−−→ Ω1
F̂1
−→ 0.

Claim 5.23 (Numerical invariants of F1 and F̂1). — Assume the setting of Construc-
tion 5.22. Then, 0 6 κ(F1) 6 ν(F1) 6 1 and 0 6 κ(F̂1) 6 ν(F̂1) 6 1.

Proof of Claim 5.23. — In order to lighten notation a little bit, we will suppress ι1 in
the following discussion. Given that the morphism γ1 is étale, it suffices to consider
the variety F̂1 only. We will also assume that F̂1 is not a point, or else there is little
to show, cf. Claim 5.21. On the one hand, using that img(η) ( Xreg, we obtain a
description of the canonical bundle,

ωF̂1

(5.22.1)∼= η∗(ωX)
(5.18.1)∼= γ∗1

(
A [⊗n] ⊗ det F

)
.
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Observing that γ∗1A is invertible and that γ∗1F is flat, this gives a numerical equiva-
lence [ωF̂1

] ≡ n ·
[
γ∗1A

]
. On the other hand, (5.18.3) and (5.22.1) combine to give a

morphism
α : γ∗1A −→ Ω1

F̂1
.

There are two cases to consider. If the morphism α is not zero, Claim 5.23 follows
from [JR13, Lem. 3.1]. Otherwise, if the morphism α is zero, we obtain an embedding
of the nef line bundle γ∗1A into the trivial sheaf Ω1

F̂1/X
. It follows that γ∗1A and

hence ωF̂1
are numerically trivial, so ν(F̂1) = 0. By [Kaw85a, Th. 8.2], this implies

κ(F̂1) = 0. Either way, Claim 5.23 follows. � (Claim 5.23)

Claim 5.24 (Semiampleness of KF̂1
and KF1). — Assume the setting of Construc-

tion 5.22. Then, the canonical bundles KF̂1
and KF1

are semiample.

Proof of Claim 5.24. — As before, we consider the variety F̂1 only and assume that
it is not a point. We also consider the following commutative diagram of group mor-
phisms,

π1
(
F̂1

)
GX PGL(n,C)

π1
(
F̂
)

Gγ

τ◦η∗

(ι1◦γ1)∗
trivial after Abelianisation

subgroup

τ◦(ι◦γ)∗

subgroup

The representation τ◦η∗ is solvable because it factors via the solvable groupGγ . Better
still, the representation τ ◦ η∗ is in fact trivial, or else there would be a non-trivial
Abelian subrepresentation, contradicting triviality of the Abelianised push-forward
(ι1 ◦ γ1)

(ab)
∗ . As a consequence, we find that η∗Ω1

X is isomorphic to a direct sum of
line bundles,

∃L ∈ Pic(F̂1) : η∗Ω1
X
∼= L ⊕n.

Recalling from Sequence (5.22.1) that η∗Ω1
X contains the trivial, non-zero subbundle

Ω1
F̂1/X

, we find that L admits a section. But then η∗Ω1
X is generically generated,

and so is its quotient Ω1
F̂1
. By [Fuj13, Rem. 2.2], the manifold F̂1 is then of maximal

Albanese dimension. But then [Fuj13, Th. 4.2] implies that the nef canonical bundle
KF̂1

is semiample, as claimed. � (Claim 5.24)

Step 5-4: Abundance and description of F . — In this step, we finally prove abun-
dance for F and describe its Iitaka fibration. According to Claim 5.21, there are only
two cases, κ(F ) = 0 and κ(F ) = 1, which we consider separately.

Claim 5.25. — If κ(F ) = 0, then F is quasi-Abelian.

Proof of Claim 5.25. — To keep this proof readable, we consider three cases sepa-
rately.
(5.25.1) The divisor KF is numerically trivial and F = X.
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(5.25.2) The divisor KF is numerically trivial and F ( X.
(5.25.3) The divisor KF is not numerically trivial.

Case 5.25.1 is easiest. If KX is numerically trivial, then Equation (1.2.1) guarantees
that

ĉ2
(
Ω

[1]
X

)
· [H]n−2 = 0.

Then, X is quasi-Abelian by [LT18, Th. 1.2] and we are done. In Case 5.25.2, apply
Item 5.1.2 of Lemma 5.1 to the inclusion F ⊂ Xreg to find again that F is quasi-
Abelian.

We consider Case 5.25.3 for the remainder of the proof, with the aim of producing
a contradiction. To begin, we consider a strong log resolution of F̂ and the Stein
factorisation of the associated Albanese morphism. We obtain a commutative diagram
as follows

F̃ S Alb(F̃ )

F F̂ Alb(F̂ )

a, conn. fibres

π, strong log res.

b, finite

∼=

albF̂
γ, étale

By Claim 5.17, Alb(F̂ ) is not a point. A general fibre F̃1 ( F̃ of a is therefore smooth.
Observe that the image F1 = π(F̃1) is a connected component of a general fi-

bre of albF̂ , which avoids the (finitely many) singularities of F̂ . The restriction
π|F̃1

: F̃1 → F1 is thus isomorphic, and Claim 5.24 applies to show that F̃1 is a
good minimal model. More is true. Since κ(F ) = 0 by assumption, we deduce from
Claim 5.19 that κ(F̃ ) = 0. Hence it follows from [Lai11, Th. 4.2] that F̃ has a good
minimal model F̂min, which has terminal singularities and numerically trivial canon-
ical class.

We use the existence of F̂min to describe KF̂ in more detail. To this end, resolve
the singularities of the rational map F̂min F̂ and obtain morphisms as follows,

F̂min Y F̂

Alb(F̂min) Alb(Y ) Alb(F̂ )

albF̂min

π1

birational
π2

birational
albY

albF̂

The fact that F̂min has terminal singularities implies that KY ≡ Ê, where Ê ∈
QDiv(Y ) is effective with π2-exceptional support. Recalling that every fibre of π2 is
rationally connected by [HM07, Cor. 1.5], we find that every component of supp Ê is
uniruled. The canonical class KF̂ is then numerically equivalent to E := (π1)∗Ê. The
Q-divisor E is effective, nef and not trivial (because KF̂ is not numerically trivial),
and its components are again uniruled. But the Albanese map albF̂ contracts all
rational curves in suppE! We claim that the image set albF̂ (suppE) cannot contain
any isolated points.
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– If dim albF̂ (F̂ ) > 2, this follows from nefness of E ≡ KF̂ = γ∗KX and from the
Negativity Lemma 2.11.

– If dim albF̂ (F̂ ) = 1, this follows from nefness of E ≡ KF̂ = γ∗KX , from the
assumption that 0 = κ(F ) = κ(F̂ ) and from the Negativity Lemma 2.12.

Either way, we find that E contains rational curves that stay away from the finitely
many singular points of F̂ . Since KX is nef, this contradicts Item 5.1.1 of Lemma 5.1.

� (Claim 5.25)

Claim 5.26 (Description of F if κ(F ) = 1). — If κ(F ) = 1, then KF is semiample
and the general fibre of the Iitaka fibration is quasi-Abelian.

Proof of Claim 5.26. — If κ(F ) = 1, then ν(F ) = κ(F ) by Claim 5.21. It follows that
KF is semiample, [KMM87, Cor. 6-1-13]. As F has isolated singularities at worst, the
general fibre A of the associated Iitaka fibration F → B is smooth, contained in Xreg,
and has numerical trivial canonical class. As before, use Item 5.1.2 of Lemma 5.1 to
find that A is quasi-Abelian. � (Claim 5.26)

Step 6: Abundance for X, description of the Iitaka fibration. — We have seen in
the previous step that the general fibres of the Shafarevich map are abundant. As we
will see now, this implies Abundance for X.

Claim 5.27 (Abundance for X). — The canonical bundle KX is semiample.

Proof of Claim 5.27. — If ShaK(X) is a point, then F = X and we have seen in
Claim 5.21 that 0 6 κ(F ) = κ(X) 6 1. We know that abundance holds because the
two cases have been described in Claims 5.25 and 5.26, respectively. If ShaK(X) is
positive-dimensional, then we can apply Proposition 2.10 to the Shafarevich map.

– Assumption 2.10.1 is satisfied by Claim 5.14
– Assumption 2.10.2 is satisfied as nefness of KX has been shown in Claim 5.7.
– Assumption 2.10.3 holds by Consequence 5.4.
– Assumption 2.10.4 has been shown in Claims 5.25 and 5.26, respectively.

The claim thus follows. � (Claim 5.27)

Remark 5.28. — Claim 5.27 implies in particular that

– the Iitaka fibration has a positive-dimensional base by Assumption 5.6, and
– the fibres of the Iitaka fibration are quasi-Abelian by Item 5.1.2 of Lemma 5.1.

We denote the Iitaka fibration by iit(X) : X → Iit(X).

Remark 5.29 (Ambro’s canonical bundle formula). — Ambro’s canonical bundle for-
mula for projective klt pairs, [Amb05, Th. 4.1] or [FG12, Th. 3.1], provides us with an
effective Q-divisor ∆ on Iit(X) that makes the pair

(
Iit(X),∆

)
klt.

J.É.P. — M., 2021, tome 8



1030 D. Greb, S. Kebekus & T. Peternell

Step 7: Abelian group schemes. — Following the ideas of Jahnke-Radloff, [JR13],
we use Kollár’s characterisation of étale quotients of Abelian group schemes to show
that the Iitaka fibration of a suitable étale cover of X is birational to an Abelian
group scheme.

Claim 5.30. — There exists an étale cover X̂ → X whose Iitaka fibration is birational
to an Abelian group scheme over a smooth projective base admitting a level three
structure. More precisely, there exists a commutative diagram

(5.30.1)
A X̂ X

S Iit(X̂)

φ, birational

α

étale

iit(X̂)

ψ, birational

σ

where S is smooth and projective, and α is a family of polarised Abelian varieties
admitting a level three structure.

Proof of Claim 5.30. — We construct from right to left a diagram as follows,

(5.30.2)
A qA qX X

S qS qY Iit(X)

α

étale

qα

birational

qa

ε, étale

iit(X)

εS , étale ρ, birational β, finite

where qa has connected fibres, where α and qα are Abelian group schemes and where α
has the additional structure of a family of Abelian varieties with level three struc-
ture. To begin, we claim that the variety X has generically large fundamental group
along the general fibre Xy of the Iitaka fibration. In case where X is smooth, this
claim has been shown in [JR13, Prop. 5.1]. We leave it to the reader to check that in
our case, where X has only finitely many singularities, the proof of [JR13, Prop. 5.1]
still applies verbatim. Given that the fibres of the Iitaka fibration are quasi-Abelian,
Proposition 2.15 will therefore apply to yield the right and middle square of Dia-
gram (5.30.2) — strictly speaking, Proposition 2.15 gives ρ only as a rational map,
but we can always blow up to make it a morphism, and then pull back qA. Once this
is done, we can find a suitable étale cover S → qS such that the pull-back A := qA×

qS S

is an Abelian group scheme with level three structure, and a result of Grothendieck
allows to equip A/S with a polarisation, cf. [Ray70, Th.XI.1.4]. For later reference,
we note that the following property holds by construction.
(5.30.3) If s ∈ S is any general point, with image y ∈ Iit(X), then the induced map
between fibres, As Xy is birational.

We still need to construct X̂. We begin its construction with the observation
that K [m]

X = iit(X)∗(H) for a suitable number m ∈ N+ and a suitable ample H ∈
Div
(
Iit(X)

)
. But then,

(5.30.4) K
[m]
|X

= ε∗K
[m]
X = ε∗ iit(X)∗(H) = qa ∗(β∗H),

J.É.P. — M., 2021, tome 8



Projectively flat klt varieties 1031

where β∗H is ample on Ŷ ; this shows that qa is the Iitaka fibration for qX and allows
to apply Ambro’s canonical bundle formula, Remark 5.29, which shows that qY is the
underlying space of a klt pair. We are interested in this, because [Tak03, Th. 1.1] then
asserts that π1

(
qS
)

= π1
(

qY
)
. As a consequence, we find that the Stein factorisation

of the morphism S → qY factors via an étale cover of qY and therefore gives a diagram,

A X̂ qX

S Ŷ qY

φ

α

étale
qa

ψ, birational

ρ◦εS

εY , étale

where X̂ := qX×
qY Ŷ and where the map φ is induced by the universal property of the

fibre product. Observe, exactly as in (5.30.4), that the natural projection map X̂ → Ŷ

is the Iitaka fibration of X̂, iit(X̂) : X̂ → Iit(X̂) = Ŷ . Assertion 5.30.3 implies that φ
is birational. � (Claim 5.30)

Claim 5.31. — There exists an étale cover X̂ → X whose Iitaka fibration is birational
to an Abelian group scheme over Iit(X̂) with level three structure. More precisely, there
exists a commutative diagram

(5.31.1)
A X̂ X

Iit(X̂) Iit(X̂)

φ, birational

α iit(X̂)

étale

σ

where α is a family of polarised Abelian varieties with level three structure.

Proof of Claim 5.31. — Consider Diagram (5.30.1) and recall that polarised Abelian
varieties with level three structure admit a fine moduli space A3 with universal fam-
ily U3 → A3, and that moreover A3 does not contain any rational curve [Kol93,
Lem. 5.9.3]. On the other hand, while observing Remark 5.29 recall from [HM07,
Cor. 1.5] that the fibres of the morphism ψ are rationally chain connected. It fol-
lows that the moduli map S → A3 factors via ψ to give a morphism Iit(X̂) → A3.
To conclude, set A := U3 ×A3 Iit(X̂). � (Claim 5.31)

Step 8: End of proof. — We end the proof by showing that X̂ itself is an Abelian
group scheme over a smooth base with ample canonical bundle.

Claim 5.32. — In the setting of Claim 5.31, the rational map δ := φ−1 : X̂ A is a
morphism.

Proof of Claim 5.32. — Given that X̂ is klt and that the fibres of α do not contain
any rational curves, the claim follows from [HM07, Cor. 1.6]. � (Claim 5.32)

Claim 5.33. — The base variety Iit(X̂) is smooth. In particular, A is smooth.
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Proof of Claim 5.33. — Assume not. Let s ∈ Iit(X̂)sing be any singular point, and let
a ∈ α−1(s) be a general point of the fibre. Note that the morphism α is smooth, so a
will be a singular point of A. On the other hand, note that the general choice of a
guarantees that δ−1(a) does not contain any of the (finitely many) singular points
of X. It follows that δ resolves the singularity at a, and that the fibre δ−1(a) is thus
necessarily positive-dimensional.

There is more that we can say. Recalling from Remark 5.29 that
(
Iit(X),∆

)
is

klt for a certain Q-divisor ∆ it follows from smoothness of α that (A,α∗∆) is klt as
well. But then δ−1(a) ( iit(X̂)−1(s) ∩ X̂reg is covered by rational curves, violating
Item 5.1.1 of Lemma 5.1 from above. � (Claim 5.33)

Claim 5.34. — The morphism δ is an isomorphism and X̂ is therefore smooth.

Proof of Claim 5.34. — If a ∈ A is any (smooth!) point where δ is not isomorphic, then
δ−1(a) is positive-dimensional, and every section of KX̂ will necessarily vanish along
δ−1(a). That contradicts the semiampleness of KX̂ , Claim 5.27. � (Claim 5.34)

In the current, now nonsingular setup, the following has already been observed in
[JR13, Proof of Lem. 5.1].

Claim 5.35. — The canonical bundle of Iit(X̂) is ample.

Proof of Claim 5.35. — The smooth variety Iit(X̂) is of general type, while the exis-
tence of σ and minimality of X and hence X̂ together imply that its canonical bundle
is nef, hence abundant. Fibres of the Iitaka fibration for Iit(X̂) are covered by rational
curves, which do not exist by the existence of σ and the fact that X̂ (as an étale cover
of X) does not contain rational curves by Item 5.1.1 of Lemma 5.1. �

Now that we know that X̂ is an Abelian group scheme over a smooth projective
base with ample canonical bundle, the final step of the argument of Jahnke-Radloff,
[JR13, Th. 6.1], applies to conclude also our proof. � (Theorem 1.2)

6. Proof of Theorem 1.3

Step 1: Preparations. — In the setup of Theorem 1.3, we set

F :=
(
Symn Ω1

X ⊗ OX(−KX)
)∗∗

.

Let H be a very ample divisor on X and let (D1, . . . , Dn−1) ∈ |H|×(n−1) be a general
tuple of divisors, with associated general complete intersection curve C := D1 ∩ · · · ∩
Dn−1. The curve C is then smooth and entirely contained in Xreg. The restriction
F |C is locally free and nef, with c1(F |C) = 0. It follows that F |C is semistable
and therefore that F is semistable with respect to H. But then, Ω

[1]
X will likewise be

semistable with respect to H.
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Step 2: Local freeness of F . — Next, choose a resolution of singularities π : X̃ → X

such that the quotient sheaf

F̃ := π∗(F )
/

tor

is locally free; such a resolution exists by [Ros68, Th. 3.5]. Recall from Fact 2.2 that
since F is nef, then so are π∗(F ), F̃ and det F̃ . There is more that we can say. Since
the determinant of F is trivial by construction, det F ∼= OX , we may write

det F̃ = OX̃
(∑

ai · Ei
)

where Ei are π-exceptional and ai ∈ Z.

The divisor
∑
ai · Ei is nef. But then the Negativity Lemma, [KM98, Lem. 3.39(1)],

asserts that ai 6 0 for all i, which of course means that all ai = 0. It follows that
det F̃ = OX̃ and thus that F̃ is numerically flat. This has two consequences.

– First, it follows from the descent theorem for vector bundles on resolutions of
klt spaces, [GKPT19b, Th. 1.2], that F is locally free, numerically flat, and that
F̃ = π∗(F ).

– Second, it follows from [GKP20, Prop. 3.7] that Ω1
Xreg

is projectively flat.

Step 3: Singularities of X. — If X̂ → X is any maximally quasi-étale cover, then
local freeness of F immediately implies local freeness and nefness for the reflexive
normalised cotangent sheaf of X̂. The covering space X̂ therefore reproduces the
assumptions of Theorem 1.3, which allows us to assume without loss of generality
that X is itself maximally quasi-étale. Together with projective flatness of Ω1

Xreg
, this

assumption allows to apply the local description of projectively flat sheaves found in
[GKP20, Prop. 3.11]: every singular point x ∈ X(an) admit a neighbourhood U , open
in the analytic topology, such that

Ω
[1]
U ' L ⊕nU

with some Weil-divisorial sheaf LU on U . It follows from Proposition 4.1 that X has
at worst isolated singularities.

Step 4: End of proof in case where X is higher-dimensional. — If n > 3, consider
the general complete intersection surface S := D1 ∩ · · · ∩ Dn−2. Using that X has
isolated singularities, we find that S is smooth and contained in Xreg, so that Ω1

X |S is
locally free, H-semistable and projectively flat. But by [Kob87, Prop. 3.1.b on p. 42]
this implies

n− 1

2n
· c1
(
Ω1
X |S

)2
= c2

(
Ω1
X |S

)
and therefore

n− 1

2n
· ĉ1(X)2 · [H]n−2 = ĉ2(X) · [H]n−2.

The claim thus follows from the semistability of Ω1
X and Theorem 1.2.
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Step 5: End of proof in case where X is a surface. — It remains to consider the
case where dimX = 2, so that X is a surface with klt quotient singularities. We have
seen above that

Sym[2] Ω1
X = F ⊗ OX(KX),

where F is a locally free numerically flat sheaf of rank three. The second Q-Chern
class is therefore computed as

ĉ2
(
Sym[2] Ω

[1]
X

)
= ĉ2

(
F ⊗ OX(KX)

)
= ĉ2

(
OX(KX)⊕3

)
= 3 · [KX ]2.

On the other hand, the standard formula for the second Chern class of a symmetric
product gives

ĉ2
(
Sym[2] Ω

[1]
X

)
= 2 · [KX ]2 + 4 · ĉ2(X).

Comparing these two equations, we find 1
4 ·[KX ]2 = ĉ2(X). Thanks to the semistability

of Ω
[1]
X , we may again apply Theorem 1.2 and end the proof. �
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