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CRITICAL TIME FOR THE OBSERVABILITY OF

KOLMOGOROV-TYPE EQUATIONS

by Jérémi Dardé & Julien Royer

Abstract . — This paper is devoted to the observability of a class of two-dimensional Kolmo-
gorov-type equations presenting a quadratic degeneracy. We give lower and upper bounds for
the critical time. These bounds coincide in symmetric settings, giving a sharp result in these
cases. The proof is based on Carleman estimates and on the spectral properties of a family of
non-selfadjoint Schrödinger operators, in particular the localization of the first eigenvalue and
Agmon type estimates for the corresponding eigenfunctions.

Résumé (Temps critique pour l’observabilité d’équations de type Kolmogorov)
Nous nous intéressons à l’observabilité d’équations de type Kolmogorov bi-dimensionnelles

présentant une dégénérescence quadratique. Nous donnons un majorant et un minorant du
temps critique. Dans une configuration symétrique, ces bornes coïncident et donnent alors
précisément le temps critique d’observabilité. La preuve est basée sur des estimées de Carleman
et sur l’étude des propriétés spectrales d’une famille d’opérateurs de Schrödinger non auto-
adjoints, en particulier la localisation de la première valeur propre et des estimées de type
Agmon pour les fonctions propres correspondantes.
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1. Introduction

We study the observability properties of two-dimensional Kolmogorov-type equa-
tions with a quadratic degeneracy. Let `+, `− > 0. We set I = ]−`−, `+[ and Ω = T×I,
where T is the one-dimensional torus R/(2πZ). All along the paper, a generic point
in Ω will be denoted by (x, y), with x ∈ T and y ∈ I.
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860 J. Dardé & J. Royer

We consider q ∈ C3(I,R) such that

q(0) = 0 and min
y∈I

q′(y) > 0.

In particular, q(y) 6= 0 for y 6= 0. The model case is q(y) = y.
Then, for T > 0, we consider on Ω the Kolmogorov-type equation

(1.1)


∂tu+ q(y)2∂xu− ∂yyu = 0, on ]0, T [× Ω,

u(t, ·) = 0, on ∂Ω, for all t ∈ ]0, T [,

u|t=0 ∈ L2(Ω).

We are interested in the observability properties of the problem (1.1):

Definition 1.1
(i) We say that (1.1) is observable in time T through an open subset ω of Ω if there

exists C > 0 such that for any solution u of (1.1) we have

(1.2) ‖u(T )‖2L2(Ω) 6 C
∫ T

0

‖u(t)‖2L2(ω) dt.

(ii) We say that (1.1) is observable in time T through an open subset Γ of the
boundary T × {−`−, `+} of Ω if there exists C > 0 such that for any solution u of
(1.1) we have

(1.3) ‖u(T )‖2L2(Ω) 6 C
∫ T

0

‖∂νu(t)‖L2(Γ) dt.

Null-controllability and observability properties of non-degenerate parabolic equa-
tions have been investigated for several decades now, since the pioneering works
[Ego63] and [FR71] which proved independently the null-controllability of the one-
dimensional heat-equation. Then [LR95] and [FI96] independently generalized this
result in any dimension, showing that the heat equation is observable through any
(interior or boundary) observation set, in any positive time, in any geometrical setting.

This is not the case for degenerate parabolic equations, which are a more recent
subject of study. These equations may or may not be observable, depending on the
location and the strength of the degeneracy, the geometrical setting, and the time
horizon T . The case of a degeneracy of the equation at the boundary of the domain is
now fairly well-understood (see [CMV16] and the references therein). In general, this
type of degenerate equations are observable for weak degeneracy, and are not when
the degeneracy becomes too strong.

In the case of interior degeneracy, there is no general theory, and equations are for
the moment studied one after another. Interestingly, the known results show that, for
precise strength of the degeneracy, a minimal time appears, under which observability
is lost.

Among parabolic equations with interior degeneracy, the Grushin equation is so
far the best understood: the two-dimensional case is now almost completely under-
stood, and some partial results have been obtained in multi-dimensional settings

J.É.P. — M., 2021, tome 8



Critical time for the observability of Kolmogorov-type equations 861

[BCG14, BMM15, Koe17, Lis19, BDE20, DK20, ABM20]. Other equations have also
been studied, such as the heat equation on the Heisenberg group [BC17].

Finally, we highlight that a minimal time condition for observability might also
appear for systems of parabolic equations, degenerate or not (see, among others,
[AKBGBdT16, Dup17, BBM20]), for degenerate Schrödinger equations [BS19, LS20],
and appears naturally for the wave equation (see [RT74, BLR92]). We point out that
the closely related problem of approximate controlability is investigated in [LL17] for
a large class of degenerate parabolic and hyperbolic equations.

Regarding the Kolmogorov equation (1.1), observability properties have already
been investigated in the case q(y) = y, that is for the system

(1.4)


∂tu+ y2∂xu− ∂yyu = 0, on ]0, T [× Ω,

u(t, ·) = 0, on ∂Ω, for all t ∈ ]0, T [,

u|t=0 ∈ L2(Ω).

It is proved in [Bea14] that a critical time T appears for the observability through
an open set of the form ω = T× ]a, b[ if 0 /∈ ]a, b[:

Theorem 1.2 ([Bea14]). — Let ω = T× ]a, b[ with −`− < a < b < `+.
(i) If a < 0 < b, then the problem (1.4) is observable through ω in time T for any

T > 0.
(ii) If a > 0 there exists T > a2/2 such that

– if T > T then (1.4) is observable through ω,
– if T < T then (1.4) is not observable through ω.

The model studied in [Bea14] also includes the equation

∂tu+ yγ∂xu− ∂yyy = 0

with γ = 1. In that case, it is proved that the problem is observable through any
open set ω, for any T > 0, generalizing the previous study [BZ09] where the sets of
observation were horizontal strips. Theorem 1.2 corresponds to the case γ = 2. The
case γ = 3 is studied in [BHHR15]. It is proved that if 0 < a < b < `+ then the
problem is not observable through T× (a, b) in any time T > 0.

The fact that the observation domain ω is a horizontal strip of Ω may seem quite
restrictive. However, the recent study [Koe20] shows that it is a quasi-necessary con-
dition for (1.4) to be observable.

Theorem 1.3 ([Koe20]). — Let ω = ωx × I, where ωx is a strict open set of T. Then
(1.4) is not observable through ω in any time T > 0.

Furthermore, it is shown that a minimal time is needed for the system to be possibly
observable for most of observation sets ω.

J.É.P. — M., 2021, tome 8



862 J. Dardé & J. Royer

Theorem 1.4 ([Koe20]). — Let ω be an open subset of T×I. Suppose that there exists
x̃ ∈ T and a > 0 such that

{(x̃, y) : y ∈ (−a, a)} ∩ ω = ∅.

Then the system (1.4) is not observable through ω in any time T < a2/2.

In the present paper, we investigate the observability properties of (1.1) with a
more general coefficient q(y)2, when the domain of observation is the boundary

Γ = ∂Ω = T× {−`−, `+}.

We could similarly consider observation through an open subset ω given by horizontal
strips of Ω. Our main result is the following:

Theorem 1.5. — We set

Tmin =
1

q′(0)
min

(∫ `+

0

q(s) ds,

∫ 0

−`−
|q(s)| ds

)
,

and

Tmax =
1

q′(0)
max

(∫ `+

0

q(s) ds,

∫ 0

−`−
|q(s)| ds

)
.

There exists T ∈ [Tmin, Tmax] such that
(i) if T > T , the problem (1.1) is observable through Γ,
(ii) if T < T , the problem (1.1) is not observable through Γ.

In particular, in any configuration for which Tmax = Tmin, we obtain the critical
time needed for observability of equation (1.1) to hold. This is in particular the case
for symmetric configurations:

Theorem 1.6. — Suppose `− = `+ and q is odd. Let

T =
1

q′(0)

∫ `+

0

q(s) ds.

Then
(i) if T > T the problem (1.1) is observable through Γ,
(ii) if T < T the problem (1.1) is not observable through Γ.

Note that in the case q(y) = y, the critical time is T = `2+/2. This is the analog for
the observation from the boundary of the time a2/2 which appears in Theorems 1.2
and 1.4. Theorem 1.6 is, up to our knowledge, the first result giving the precise value of
the critical time for the observation of a two-dimensional Kolmogorov-type equation.

Remark 1.7. — By a classical duality argument, Theorem 1.5 is equivalent to contro-
lability properties for the adjoint equation, with a boundary Dirichlet control acting
on Γ. We refer to [TW09] for details on this equivalence.

J.É.P. — M., 2021, tome 8
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Outline of the paper. — The article is organized as follows. After this introduction,
we give in Section 2 the main ideas for the proof of Theorem 1.5. The details are
then given in the following two sections. In Section 3 we discuss the well-posedness
of the problem (1.1) and we prove some spectral properties for the non-selfadjoint
Schrödinger operator Kn = −∂yy + inq(y)2 which naturally appears in the analysis.
We prove Agmon-type estimates for the first eigenfunction, which gives the negative
result for T < Tmin, and we estimate the decay of the corresponding semigroup.
Finally, in Section 4, we prove a Carleman estimate and deduce an observability
estimate in arbitrarily small time which depends on the frequency n with respect
to x. Together with the decay properties of e−tKn , this will give the observabililty
of (1.1) for T > Tmax.

Aknowledgements. — We express our gratitude to Karine Beauchard, for enriching
discussions on this work.

2. Strategy of the proof

In this section we describe the strategy for the proof of Theorem 1.5. We only give
the main ideas, and the details will be postponed to the following two sections.

2.1. Well-posedness and Fourier transform of the Kolmorgorov equation

Before discussing the properties of the solutions of (1.1), we check that this problem
is well-posed.

Proposition 2.1. — Let uo ∈ L2(Ω). Then there exists a unique

u ∈ C0
(
[0, T ], L2(Ω)

)
∩ C0

(
]0, T ], H2(Ω) ∩H1

0 (Ω)
)
∩ C1

(
]0, T ], L2(Ω)

)
which satisfies (1.1) with u(0) = uo.

Notice in particular that the equation is regularizing, so we do not have to impose
any regularity on the initial condition to get a solution in the strong sense.

Many argument in our analysis, including the proof of Proposition 2.1, will be
based on a Fourier transform. All along the paper, the Fourier coefficients are taken
with respect to the variable x ∈ T. Given u ∈ L2(Ω), we denote by un ∈ `2(Z, L2(I))

the sequence of Fourier coefficients of u:

u(x, y) =
∑
n∈Z

un(y)einx, un(y) =
1

2π

∫
T
e−inxu(x, y) dx.

The same applies if u (and then the un, n ∈ Z) are also functions of the time t.
For n ∈ Z we consider the problem

(2.1)


∂tun − ∂yyun + inq(y)2un = 0, on ]0, T [× I,
un(t,−`−) = un(t, `+) = 0, for t ∈ ]0, T [,

un(0) ∈ L2(I).

Then the Fourier coefficients of a solution of (1.1) are given by the solutions of (2.1).

J.É.P. — M., 2021, tome 8



864 J. Dardé & J. Royer

Proposition 2.2. — Let u be a solution of (1.1) and let un, n ∈ Z, be the correspond-
ing Fourier coefficients. Then for all n ∈ Z we have

un ∈ C0
(
[0, T ], L2(I)

)
∩ C0

(
]0, T ], H2(I) ∩H1

0 (I)
)
∩ C1

(
]0, T ], L2(I)

)
,

and un is the unique solution of (2.1) with un(0) = uo,n, where uo,n is the n-th Fourier
coefficient of uo = u(0).

An important property of the problem (2.1) is the following exponential time decay.

Proposition 2.3. — Let
γ <

q′(0)√
2
.

There exists C > 0 such that for n ∈ Z, a solution un of (2.1) and θ1, θ2 ∈ [0, T ] with
θ1 6 θ2, one has

‖un(θ2)‖2L2(I) 6 C exp
(
−2γ

√
|n| (θ2 − θ1)

)
‖un(θ1)‖2L2(I).

The proofs of Propositions 2.1 and 2.2 will be given in Section 3.1. Proposition 2.3
will be discussed in Section 3.3.

2.2. Positive result: upper bound for the critical time. — We begin the proof of
Theorem 1.5 with the first statement and prove observability for (1.1) when T > Tmax.

With the trace theorems, the regularity of the solution ensures that the right-hand
side of (1.3) makes sense, even if it could be equal to +∞ if the initial condition is
not regular enough. In fact, we are going to prove the following stronger result for
observability (note that with τ1 chosen positive, the right-hand side of (2.2) is finite).

Proposition 2.4. — Let T > Tmax and τ1 ∈ ]0, T − Tmax[. Let τ2 ∈ ]τ1, T ]. Then there
exists C > 0 such that for any solution u of (1.1) we have

(2.2) ‖u(T )‖2L2(Ω) 6 C
∫ τ2

τ1

‖∂νu(t)‖2L2(∂Ω) dt.

Obviously, Proposition 2.4 implies (1.3). The fact that we observe during an arbi-
trarily small time τ2− τ1 might seem contradictory with the minimal time condition.
It is not the case, since only the state at time T > Tmax is controled by the obser-
vation on the time interval [τ1, τ2]. As we will see below, the dissipation effect of the
Kolmogorov equation plays a key role in obtaining (2.2). Roughly speaking, we have
to wait long enough for the dissipation to fully play its role, and inequality (2.2) to
be true.

By Proposition 2.2 and the Parseval identity, Proposition 2.4 is equivalent to an
observability estimate for (2.1) uniform with respect to the Fourier parameter n.
In other words, it is equivalent to prove the following result.

Proposition 2.5. — Let T , τ1 and τ2 be as in Proposition 2.4. There exists C > 0

such that for any n ∈ Z and any solution un of (2.1) one has

(2.3) ‖un(T )‖2L2(I) 6 C
∫ τ2

τ1

(
|∂yun(t,−`−)|2 + |∂yun(t, `+)|2

)
dt.

J.É.P. — M., 2021, tome 8
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Note that it is sufficient to prove (2.3) for n ∈ N. The case n ∈ Z then follows by
complex conjugation of (2.1).

The difficulty in Proposition 2.5 is the uniformity with respect to the parame-
ter n. For n fixed, it is already known that the one-dimensional heat equation with a
complex-valued potential is observable through the boundary in any positive time:

Proposition 2.6. — Let T > 0 and n ∈ N. Let τ1, τ2 ∈ ]0, T ] with τ1 < τ2. There
exists Cn > 0 such that for any solution un of (2.1) we have

(2.4) ‖un(T )‖2L2(I) 6 Cn

∫ τ2

τ1

(
|∂yun(t,−`−)|2 + |∂yun(t, `+)|2

)
dt.

A proof of Proposition 2.6 will be given in Section 4.2. With this result, it is now
enough to prove Proposition 2.5 for n large. To do so, we first obtain a precise estimate
of the constant Cn in the asymptotic n large.

Proposition 2.7. — Let τ1, τ2 ∈ ]0, T ] with τ1 < τ2 and

κ > max

(
1√
2

∫ `+

0

q(s) ds,
1√
2

∫ 0

−`−
|q(s)| ds

)
=
q′(0)√

2
Tmax.

There exist n0 ∈ N and C > 0 such that for n > n0 and a solution un of (2.1) one
has

‖un(τ2)‖2L2(I) 6 C exp(2κ
√
n)

∫ τ2

τ1

(
|∂yun(t,−`−)|2 + |∂yun(t, `+)|2

)
dt.

The proof of this proposition is based on carefully constructed Carleman estimates,
in the spirit of [BDE20]. We refer to Section 4.4 for the details.

The observability estimate of Proposition 2.7 is valid for any non-trivial interval
of time, but it is not uniform with respect to n. As said above, the dissipation ef-
fect has to be taken into account here. More precisely, the second ingredient for the
proof of Proposition 2.5 is the estimate given by Proposition 2.3, which precisely
counterbalances the loss observed in Proposition 2.7 if we wait long enough.

Proof of Proposition 2.5, assuming Propositions 2.3, 2.6 and 2.7. — Let δ ∈ ]0, 1[ be so
small that

(1 + δ)Tmax < (1− δ)2(T − τ1).

Then we set

κ = (1 + δ)
q′(0)√

2
Tmax, γ = (1− δ) q

′(0)√
2
.

Proposition 2.3 applied with θ2 = T and

θ1 = min
(
τ1 + δ(T − τ1), τ2

)
gives a constant C1 > 0 such that for all n ∈ N and un solution of (2.1) we have

‖un(T )‖2L2(I) 6 C1 exp
(
−2γ
√
n (1− δ)(T − τ1)

)
‖un(θ1)‖2L2(I).

J.É.P. — M., 2021, tome 8



866 J. Dardé & J. Royer

By Propositions 2.6 and 2.7, there exists C2 > 0 such that for all n ∈ N and un
solution of (2.1) we have

‖un(θ1)‖2L2(I) 6 C2 exp(2κ
√
n)

∫ θ1

τ1

(
|∂yun(t,−`−)|2 + |∂yun(t, `+)|2

)
ds.

Since

κ− γ(1− δ)(T − τ1) =
q′(0)√

2

(
(1 + δ)Tmax − (1− δ)2(T − τ1)

)
< 0,

these two inequalities give

‖un(T )‖2L2(I) 6 C1C2

∫ τ2

τ1

(
|∂yun(t,−`−)|2 + |∂yun(t, `+)|2

)
dt,

and the proposition is proved. �

We recall that Proposition 2.5 implies Proposition 2.4 and hence the first statement
of Theorem 1.5. Thus, it is enough to prove Propositions 2.3, 2.6 and 2.7 to get the
observability of (1.1) through Γ for T > Tmax. These proofs are postponed to Sections 3
and 4.

2.3. Negative result: lower bound for the critical time. — In this paragraph we
discuss the second statement of Theorem 1.5 about the non-observability of (1.1)
if T < Tmin. The proof relies on the construction of a particular family of solutions
of (1.1) for which the estimate (1.3) cannot hold if T < Tmin. In Section 3, we will
prove the following result.

Proposition 2.8. — For all n ∈ N, there exist λn ∈ C and ψn ∈ H2(I) ∩H1
0 (I) such

that ‖ψn‖L2(I) = 1,

(2.5) λn =
√
n q′(0)eiπ/4 + o

n→+∞
(
√
n),

and (
−∂yy + inq(y)2

)
ψn = λnψn.

Moreover, for any ε > 0 there exists C > 0 such that, for all n ∈ N,

(2.6) |ψ′n(−`−)|2 + |ψ′n(`+)|2 6 Cn exp
(
−
√

2n(1− ε)q′(0)Tmin

)
.

With this proposition we now prove that we cannot have observability through Γ

in time T < Tmin.

Proof of Theorem 1.5.(ii), assuming Proposition 2.8. — Assume that (1.3) holds. For
m ∈ N, t ∈ [0, T ], x ∈ T and y ∈ I we set

um(t, x, y) = e−λmteimxψm(y),

where λm and ψm are given by Proposition 2.8. This defines a solution um of (1.1).
Then (1.3) gives

2Re(λm) 6 C
(
e2T Re(λm) − 1

)(
|ψ′m(−`−)|2 + |ψ′m(`+)|2

)
.

J.É.P. — M., 2021, tome 8
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Let ε > 0. By Proposition 2.8 there exists C1 > 0 such that

(
√

2 q′(0) + o(1))
√
m 6 C1m exp

(√
2mq′(0) [T − (1− ε)Tmin + o(1)]

)
.

This implies
T > (1− ε)Tmin.

Since this holds for any ε > 0, this implies that T > Tmin, and the conclusion follows.
�

3. Spectral properties of the Kolmogorov equation

In this section we prove Propositions 2.1, 2.2, 2.3 and 2.8.

3.1. Well-posedness and Fourier transform of the Kolmogorov equation

We begin with the well-posedness of the problems (1.1) and (2.1) for all n ∈ Z.
We also show that if u is a solution of (1.1) then its Fourier coefficients un, n ∈ Z,
are solutions of (2.1). We set

H1
0,y(Ω) =

{
u ∈ L2(Ω) : ∂yu ∈ L2(Ω), u(x, `±) = 0 for almost all x ∈ T

}
.

By the Poincaré inequality, this is a Hilbert space for the norm defined by

‖u‖2H1
0,y(Ω) = ‖∂yu‖2L2(Ω).

We consider on L2(Ω) the operator K defined by

Ku = −∂yyu+ q(y)2∂xu

on the domain
Dom(K) = {u ∈ H1

0,y(Ω) : Ku ∈ L2(Ω)},
where Ku is understood in the sense of distributions. Similarly, for n ∈ Z we consider
on L2(I) the operator

(3.1) Kn = −∂yy + inq(y)2,

defined on the domain (independent of n)

(3.2) Dom(Kn) = H2(I) ∩H1
0 (I).

We notice that K0 is just the usual Dirichlet Laplacian on I. In particular, it is
selfadjoint and non-negative. However, the operators K and Kn for n 6= 0 are not
symmetric. We will show that they are at least accretive. For K this means that

∀u ∈ Dom(K), Re〈Ku, u〉L2(Ω) > 0.

In fact, they are even maximal accretive. This means in particular that any z ∈ C
with Re(z) < 0 belongs to the resolvent set of K.

Proposition 3.1
(i) The operator K is maximal accretive on L2(Ω).
(ii) For all n ∈ Z, the operator Kn is maximal accretive on L2(I).

J.É.P. — M., 2021, tome 8
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(iii) Let u ∈ Dom(K) and let (un)n∈Z be the Fourier coefficients of u. Then un
belongs to Dom(Kn) for all n ∈ Z and the Fourier coefficients of Ku are the Knun,
n ∈ Z.

Proof

– We begin with the second statement. It is easy to see that for n ∈ Z and u ∈
Dom(Kn) we have

(3.3) Re〈Knu, u〉 = ‖u′‖2L2(I) > 0,

which means that Kn is accretive. Then Kn is an accretive and bounded perturbation
of the selfadjoint operator K0, so it is maximal accretive.

– Now let u ∈ Dom(K) and v = Ku ∈ L2(Ω). We denote by (un)n∈Z, (vn)n∈Z ∈
`2(Z, L2(I)) the sequences of Fourier coefficients of u and v, respectively. Let n ∈ Z,
φn ∈ C∞0 (I) and φ : (x, y) 7→ einxφn(y). By the Parseval identity we have

〈un,−φ′′n − inq(y)2φn〉L2(I) =
1

2π

〈
u,−∂yyφ− q(y)2∂xφ

〉
L2(Ω)

=
1

2π
〈v, φ〉L2(Ω) = 〈vn, φn〉L2(I).

This implies that u′′n ∈ L2(I) (hence un ∈ H2(I)) and

−u′′n + inq(y)2un = vn.

On the other hand, it is clear from the definition of un that un(−`−) = un(`+) = 0,
so un ∈ Dom(Kn). Then we can write Knun = vn. This gives the last statement of
the proposition.

– As above we can see that the Fourier coefficients of ∂yu are the u′n, n ∈ Z. Then,
by (3.3) and the Parseval identity we get

(3.4) ‖∂yu‖2L2(Ω) = 2π
∑
n∈Z
‖u′n‖2L2(I) = 2π Re

∑
n∈Z
〈vn, un〉 = Re〈v, u〉 = Re〈Ku, u〉.

– We check that the operator K is closed. Let (um)m∈N be a sequence in Dom(K)

such that um → u and Kum → v in L2(Ω), for some u, v ∈ L2(Ω). In the sense of
distributions we have

(3.5) − ∂yyu+ q(y)2∂xu = lim
m→+∞

(
−∂yyum + q(y)2∂xum

)
= v ∈ L2(Ω).

For m, p ∈ N we have um − up ∈ Dom(K), so by (3.4) we have

‖um − up‖2H1
0,y(Ω) = Re〈K(um − up), um − up〉2L2(Ω) −−−−−→m→+∞

0.

This implies that the sequence (um)m∈N has a limit in H1
0,y(Ω), which is necessarily u.

By the trace theorem, we see that um also goes to u in L2(∂Ω), so u vanishes on ∂Ω.
Finally, we have proved that u belongs to Dom(K) and, by (3.5), Ku = v. This proves
that K is closed.
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– By (3.4) the operator K is accretive on L2(Ω). Then, for u ∈ Dom(K) we have

(3.6) ‖(K + 1)u‖2L2(Ω) > ‖Ku‖
2
L2(Ω) + ‖u‖2L2(Ω),

so (K + 1) is injective with closed range. Now let v ∈ L2(Ω) be such that

∀u ∈ Dom(K), 〈(K + 1)u, v〉 = 0.

Then, in the sense of distributions we have

−∂yyv − q(y)2∂xv + v = 0.

As above we can check that the operator K̃ = −∂yy− q(y)2∂x, defined on the domain

Dom(K̃) = {u ∈ H1
0,y(Ω) : K̃u ∈ L2(Ω)},

is accretive. This implies that v = 0 (in fact, K̃ is the adjoint of K). Thus
Ran(K + 1)⊥ = {0} and (K + 1) is invertible. By (3.6), its inverse is bounded.
This proves that −1 belongs to the resolvent set of K, and hence K is maximal
accretive. �

By the Lummer-Philipps theorem (see for instance [EN00]), the operator (−K)

generates a contractions semigroup (e−tK)t>0 on L2(Ω). Given uo ∈ Dom(K), the
function u : t 7→ e−tKu belongs to C0(R+,Dom(K)) ∩ C1(R+, L

2(Ω)). This gives a
strong solution of (1.1). More generally, for uo ∈ L2(Ω), the function t 7→ e−tKuo
belongs to C0(R+, L

2(Ω)). This gives a weak solution of (1.1). The same applies on
L2(I) to Kn and (2.1) for any n ∈ Z. In particular, if un is a solution of (2.1) then
for all t1, t2 ∈ [0, T ] such that t1 6 t2 we have

(3.7) ‖un(t2)‖2L2(I) 6 ‖un(t1)‖2L2(I).

Now, we show that the solutions of (2.1) for n ∈ Z give the Fourier coefficients of
a solution of (1.1).

Proposition 3.2. — Let uo ∈ L2(Ω). For t > 0 we set u(t) = e−tKuo ∈ L2(Ω).
We denote by (uo,n)n∈Z and (un(t))n∈Z the Fourier coefficients of uo and u(t), t > 0,
respectively. Then for all n ∈ Z and t > 0 we have

un(t) = e−tKnuo,n.

Proof. — First assume that uo ∈ Dom(K). Let n ∈ Z and t > 0. By differentiation
under the integral sign and Proposition 3.1 we have in L2(I), for h > 0,

un(t+ h)− un(t)

h
=

1

2π

∫
T
e−inx

u(t+ h, x)− u(t, x)

h
dx

−−−→
h→0

− 1

2π

∫
T
e−inxKu(t, x) dx = −Knun(t).

The conclusion follows in this case.
In general, since Dom(K) is dense in L2(Ω), we can consider a sequence (umo )m∈N

in Dom(K) which converges to uo in L2(Ω). For m ∈ N we denote by umo,n, n ∈ Z,
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the Fourier coefficients of umo . Then umo,n goes to uo,n in L2(I) for all n ∈ Z and, by
continuity of e−tK and e−tKn in L2(Ω) and L2(I) respectively,

un(t) =
1

2π

∫
T
e−inx(e−tKuo)(x) dx = lim

m→+∞

1

2π

∫
T
e−inx(e−tKumo )(x) dx

= lim
m→+∞

e−tKnumo,n = e−tKnuo,n.

The proposition is proved. �

Before we can state Theorem 1.5, we still have to check that the right-hand side
of (1.3) makes sense (one would not have this difficulty with observabililty through an
open subset of Ω). To do so, we investigate the regularizing effect of equation (1.1),
and prove that even if the initial condition uo merely belongs to L2(Ω), the solution
is smooth enough for the right-hand side of (1.3) to be well defined. The proof of this
result relies on Proposition 2.3, which will be proved in Section 3.3 below.

Proposition 3.3. — For uo ∈ L2(Ω) and τ > 0 we have

e−τKuo ∈ H2(Ω) ∩H1
0 (Ω) ⊂ Dom(K).

Proof

– For t > 0 we set u(t) = e−tKuo. We denote by uo,n and un(t), n ∈ Z, the Fourier
coefficients of uo and u(t), respectively. For n ∈ Z and t > 0 we have un(t) = e−tKnuo,n
by Proposition 3.2.

– By Proposition 2.3 there exists c > 0 such that for τ > 0 and k ∈ N we have

(3.8) nk‖un(τ)‖L2(I) 6
c

τ2k
‖uo,n‖L2(I).

This implies in particular that u(τ) ∈ C∞(T, L2(I)).
– Let τ > 0. Assume that uo ∈ C∞0 (Ω) ⊂ Dom(K2). Then u ∈ C1([0, τ ],Dom(K))

and un ∈ C1([0, τ ],Dom(Kn)) for all n ∈ Z. Let n ∈ Z. Since (∂t + Kn)un = 0 we
have

0 = Re

∫ 2τ

τ

(t− τ)〈(∂t +Kn)un(t), ∂tun(t)〉L2(I) dt

=

∫ 2τ

τ

(t− τ)‖∂tun(t)‖2L2(I) dt+

∫ 2τ

τ

(t− τ) Re〈Knun(t), ∂tun(t)〉L2(I) dt.

Since

Re〈Knun(t), ∂tun(t)〉 = Re〈−∂yyun(t), ∂tun(t)〉+ Re〈inq(y)2un(t), ∂tun(t)〉

>
1

2

d

dt
〈−∂yyun(t), un(t)〉 − n‖q‖2∞‖un(t)‖‖∂tun(t)‖

>
1

2

d

dt
Re〈Knun(t), un(t)〉 − n2‖q‖4∞‖un(t)‖2

2
− ‖∂tun(t)‖2

2
,
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with (3.7) this gives∫ 2τ

τ

(t− τ)
‖∂tun(t)‖2

2
dt

6 −1

2
Re

∫ 2τ

τ

(t− τ)
d

dt
〈Knun(t), un(t)〉 dt+

n2τ2‖q‖4∞‖un(τ)‖2

4
.

An integration by parts gives

−Re

∫ 2τ

τ

(t− τ)
d

dt
〈Knun(t), un(t)〉 dt

= −τ Re〈Knun(2τ), un(2τ)〉+

∫ 2τ

τ

Re〈Knun(t), un(t)〉 dt

6 −1

2

∫ 2τ

τ

d

dt
‖un(t)‖2 dt 6 ‖un(τ)‖2

2
− ‖un(2τ)‖2

2
.

On the other hand, since the function t 7→ ∂tun(t) is also a solution of (1.1), its norm
is non-increasing, so

1

2

∫ 2τ

τ

(t− τ)‖∂tun(t)‖2 dt > τ2‖∂tun(2τ)‖2

4
.

Finally, with (3.8) we get

‖∂tun(2τ)‖2 +
2‖un(2τ)‖2

τ2
6

2‖un(τ)‖2

τ2
+ n2‖q‖4∞‖un(τ)‖2

6
2‖uo,n‖2

τ2
+
c2‖q‖4∞‖uo,n‖2

τ4
.

Hence, by the Parseval identity,

(3.9) ‖Ku(2τ)‖2 = ‖∂tu(2τ)‖2L2(Ω) 6
2‖uo‖2

τ2
+
c2‖q‖4∞‖uo‖2

τ4
.

– Let uo ∈ L2(Ω) and (uo,m)m∈N be a sequence in C∞0 (Ω) which goes to uo in
L2(Ω). For τ > 0 we set u(τ) = e−τKuo and um(τ) = e−τKuo,m, m ∈ N. Let δ > 0.
um(t) converges to u(t) for any t > 0 and the function t 7→ u′m(t) has a uniform limit
on [δ,+∞[. This implies that the function u belongs to C1(]0,+∞[, L2(Ω)). Then,
since −K is the generator of the semigroup e−tK , u(t) belongs to Dom(K) for all
t > 0 and u′(t) = −Ku(t).

– Finally, for uo ∈ L2(Ω) and τ > 0 we have (−∂yy − q(y)2∂x)u(τ) ∈ L2(Ω)

and ∂xu(τ) ∈ L2(Ω), so −∂yyu(τ) ∈ L2(Ω). Since we also have ∂xxu(τ) ∈ L2(Ω), this
proves that u(τ) belongs toH2(Ω). The fact that u(τ) is also inH1

0 (Ω) is a consequence
of the fact that it is in Dom(K) ⊂ H1

0,y(Ω), and the proof is complete. �

3.2. General spectral properties for non-selfajdoint Schrödinger operators

In the rest of this section, we prove Propositions 2.3 and 2.8. They can both be
rewritten in terms of the operator Kn defined by (3.1)-(3.2).

We have seen in Proposition 3.1 that Kn is a maximal accretive operator on L2(I).
In particular, the resolvent set of Kn is not empty. And since Dom(Kn) is compactly
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embedded in L2(I), the resolvent of Kn is compact. This implies that the spectrum
of Kn consists of eigenvalues which have finite algebraic multiplicities.

We have already said that (−Kn) generates a contractions semigroup on L2(I) (see
(3.7)). However, this is not enough for Proposition 2.3. For n = 0, the operator K0 is
selfadjoint and the decay of the corresponding semigroup is given by the functional
calculus. If we denote by λ0 the first eigenvalue of K0, then λ0 is positive and for all
t > 0 we have

‖e−tK0‖L (L2(I)) 6 e
−tλ0 .

For n 6= 0, the operator Kn is not selfadjoint, and the link between the exponential
decay of e−tKn and the real parts of the eigenvalues of Kn is not that direct.

The purpose of the rest of this section is then to give some spectral properties for
the non-selfadjoint operator Kn. We are interested in the location of the spectrum
(and in particular the eigenvalue with the smallest real part), the size of the resolvent
(Kn − z)−1 for z outside this spectrum (for a non-selfadjoint operator, the resolvent
can have a large norm even for z far from the spectrum) and then an estimate of the
propagator e−tKn for t > 0.

The properties of the operator Kn will be deduced from analogous results for the
classical complex harmonic oscillators and the complex Airy operators.

With the Agmon estimates (see Section 3.4 below), we will see that for large n the
eigenvectors of Kn associated to “small” eigenvalues should be in some sense localized
close to 0. And near 0 we have

inq(y)2 ∼ inq′(0)2y2.

Thus, it is expected that, at least for a small spectral parameter, the spectral prop-
erties of Kn for large n should be close to those of the harmonic oscillator

(3.10) Hn = −∂yy + inq′(0)2y2,

defined on the domain

Dom(Hn) = {u ∈ H2(R) : yu ∈ H1(R), y2u ∈ L2(R)}.

It is known (see for instance [Hel13, §14.4]) thatHn defines for all n ∈ N∗ a maximal
accretive operator on L2(R). Its spectrum consists of a sequence of (geometrically and
algebraically) simple eigenvalues, given by

(2k − 1)
√
n q′(0)eiπ/4, k ∈ N∗,

and for each k ∈ N∗, a corresponding eigenfunction is given by

(3.11) y 7−→ Pk(eiπ/8αy)e−((αy)2/2
√

2)−(i(αy)2/2
√

2), α = n1/4q′(0)1/2,

where Pk is a polynomial of degree k. In particular,

inf
σ∈Sp(Hn)

Re(σ) =

√
n q′(0)√

2
.
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This is not enough to get a decay estimate for the propagator e−tHn , t > 0. However,
it is also known that for γ < q′(0)/

√
2 there exists c > 0 such that

(3.12) sup
Re(z)6γ

√
n

‖(Hn − z)−1‖L (L2(R)) 6
c√
n

(in fact we have more precise resolvent estimates [HSV13, KSTV15]). Then we deduce
(see for instance [EN00, Th. V.1.11]) that there exists C > 0 such that for all t > 0

we have

(3.13) ‖e−tHn‖L (L2(R)) 6 Ce
−tγ
√
n.

Proposition 2.3 precisely says that we have a similar estimate for the propagator
generated byKn, while Proposition 2.8 shows that for large n the first eigenvalue ofKn

is close to the first eigenvalue of Hn. The decay of the corresponding eigenfunction has
the same form as in (3.11), but it depends on the values of q on the whole interval I,
and not only on its behavior in a neighborhood of 0.

For the proofs, we will also compare Kn to some complex Airy operators. Near
y0 ∈ I r {0}, the potential inq(y)2 looks like inq(y0)2 + 2inq(y0)q′(y0)(y − y0), with
q(y0)q′(y0) 6= 0. It is then useful to recall the properties of Schrödinger operators with
linear purely imaginary potentials.

Given α ∈ Rr {0}, we consider on L2(R) the operator

(3.14) Aαu = −∂yyu+ iαyu,

defined on the domain

Dom(Aα) = {u ∈ L2(R) : (−u′′ + iαyu) ∈ L2(R)}.

This complex Airy operator is now well understood, see for instance [Hel11, KS15]
and references therein. We notice that for α > 0 we have

Θ−1
α (Aα − z)−1Θα =

1

α2/3

(
A1 − zα−2/3

)−1
,

where Θa is the unitary operator defined on L2(R) by

(Θαu)(y) = α1/6u
(
α1/3y

)
.

Moreover, A−α = A∗α. Then, from the properties of A1 we deduce the following result.

Proposition 3.4
(i) The spectrum of Aα is empty for any α ∈ Rr {0}.
(ii) Let γ ∈ R. Then there exists c > 0 such that for all α ∈ Rr {0} we have

sup
Re(z)6γ|α|2/3

‖(Aα − z)−1‖ 6 c

|α|2/3
.

To understand the behavior of Kn near the boundary points ±`±, we introduce the
complex Airy operator on R+. For α ∈ R r {0} we consider on L2(R+) the operator
defined by

A+
αu = −∂yyu+ iαyu,
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on the domain

Dom(A+
α ) =

{
u ∈ L2(R+) : (−u′′ + iαyu) ∈ L2(R+) and u(0) = 0

}
.

To prove the following proposition, we use in L2(R+) the same dilation Θa as above
and we apply [Hel11, Lemma 5.1]. For the properties of the Airy function we refer for
instance to [VS10].

Proposition 3.5
(i) Let α > 0. The spectrum of A+

α consists of a sequence of simple eigenvalues.
These eigenvalues are given by

λ+
k = α2/3eiπ/3|µk|, k ∈ N∗,

where · · · < µk < · · · < µ2 < µ1 < 0 are the zeros of the Airy function.
(ii) Let γ < |µ1|/2. There exists C > 0 such that for all α ∈ Rr {0} we have

sup
Re(z)6γ|α|2/3

‖(A+
α − z)−1‖ 6 c

|α|2/3
.

Of course, we have similar properties on L2(R−) for the operator

A−α : u 7−→ −∂yyu+ iαyu,

defined on the domain

Dom(A−α ) =
{
u ∈ L2(R−) : (−u′′ + iαyu) ∈ L2(R−) and u(0) = 0

}
.

3.3. Resolvent estimates. — In this paragraph, we prove Proposition 2.3 (see Propo-
sition 3.7 below) and the first part of Proposition 2.8, about the eigenvalue λn (see
Proposition 3.9). The estimate of a corresponding eigenfunction at the boundary will
be given in the next paragraph.

We prove estimates for the resolvent (Kn− z)−1 when z has real part smaller than
γ
√
n, with γ as in Proposition 2.3. More precisely, we estimate the difference between

(Kn − z)−1 and the model resolvent (Hn − z)−1, in a suitable sense. By the theory
of semigroups, this will give Proposition 2.3. This will also give the existence of an
eigenvalue λn which satisfies (2.5).

To compare (Kn − z)−1 and (Hn − z)−1, we follow the ideas of [Hen14]. Our one-
dimensional setting is simpler than the general case considered therein so, for the
reader convenience, we provide a complete proof adapted to our problem. Notice also
that (2.5) is not contained in the results given in [Hen14], where the imaginary parts
of the eigenvalues are not an issue.

We denote by 1I the operator which maps u ∈ L2(R) to its restriction on I:
1Iu = u|I ∈ L2(I). Then 1∗I maps a function v ∈ L2(I) to its extansion by 0 on R.

Proposition 3.6
(i) Let γ ∈

]
0, q′(0)/

√
2
[
. There exist n0 ∈ N∗ and c > 0 such that for n > n0 and

z ∈ C with Re(z) 6 γ
√
n we have z ∈ ρ(Kn) and

‖(Kn − z)−1‖L (L2(I)) 6
c√
n
.
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(ii) We have
‖1∗IK−1

n 1I −H−1
n ‖L (L2(R)) = o

n→+∞
(1/
√
n).

Proof. — The proof consists in using localized versions of the resolvents of the com-
plex harmonic operator Hn and of Airy-type operators to construct an approximation
Qn(z) of the resolvent (Kn − z)−1. We first introduce suitable cut-off functions, then
we define Qn(z) and finally we check that it is indeed an approximation of (Kn−z)−1

up to a uniformly bounded operator. The proposition will then follow from estimates
on Qn(z). For n ∈ N∗ we set

C−n = {z ∈ C : Re(z) 6 γ
√
n}.

– For n ∈ N∗ and z ∈ C−n we set

Rn(z) = 1I(Hn − z)−11∗I .

This defines a bounded operator on L2(I). Our purpose is to prove that Rn(z) gives
an approximate inverse of (Kn − z) near 0, in the following sense. We consider

ρ ∈ ]1/6, 1/4[,

a cut-off function χ ∈ C∞0 (R, [0, 1]) supported in I and equal to 1 on a neighborhood
of 0, and for n ∈ N∗ and y ∈ I we set

χn(y) = χ(nρy).

Then we set
Tn(z) = Rn(z)χn(Kn − z)− χn.

We prove that Tn(z) extends to a bounded operator on L2(I) and

(3.15) ‖Tn(z)‖L (L2(I)) −−−−−→
n→+∞

0,

where the convergence is uniform with respect to z ∈ C−n .
Let u ∈ Dom(Kn). For n ∈ N∗ we have χnu ∈ Dom(Kn) and 1∗Iχnu ∈ Dom(Hn).

For y ∈ I we set
r(y) = q(y)2 − q′(0)2y2.

Then for z ∈ C−n we have

Rn(z)(Kn − z)χnu = χnu+ inRn(z)rχnu.

This gives

(3.16) Rn(z)χn(Kn − z)u = χnu+ inRn(z)rχnu−Rn(z)χ′′nu+ 2Rn(z)(χ′nu)′.

Since |r(y)χn(y)| . n−3ρ, we have by (3.12)

‖nRn(z)rχn‖L (L2(I)) . n
1−3ρ−1/2 −−−−−→

n→+∞
0.

We also have
‖Rn(z)χ′′n‖L (L2(I)) . n

2ρ−1/2 −−−−−→
n→+∞

0.
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For the last term we observe that for v ∈ L2(R) we have∥∥∂y(H∗n − z)−1v
∥∥2

L2(R)
= Re

〈
v, (H∗n − z)−1v

〉
L2(R)

+ Re(z) ‖(H∗n − z)−1v‖2L2(R)

.
‖v‖2L2(R)√

n
.

Taking the adjoint gives∥∥Rn(z)∂y(χ′nu)
∥∥
L2(I)

6
∥∥(Hn − z)−1∂y(1∗Iχ

′
nu)
∥∥
L2(R)

. n−1/4‖1∗Iχ′nu‖L2(R) . n
ρ−1/4‖u‖L2(I),

and (3.15) follows.
– Then we consider

ρ̃ ∈ ](1 + 2ρ)/6, (1− ρ)/3[.

In particular, ρ̃ > ρ. For n ∈ N∗ we denote by νn the integer part of 1 + (`+ + `−)nρ̃,
and for j ∈ {0, . . . , νn} we set

aj,n = −`− + jδn, δn =
`+ + `−
νn

.

We also consider θ ∈ C∞0 (R) supported in
]
− 2/3, 2/3

[
, equal to 1 on

[
− 1/3, 1/3

]
and such that θ(−y) = 1− θ(1− y) for y ∈ [0, 1]. Then for all y ∈ R we have∑

m∈Z
θ(y −m) = 1.

For n ∈ N∗, j ∈ {0, . . . , νn} and y ∈ I we set

θj,n(y) = θ
(
(y − aj,n)/δn

)
(1− χn)(y).

For n ∈ N∗ large enough and j ∈ {1, . . . , νn − 1} such that θj,n 6= 0 we have
|aj,n| & n−ρ, and in particular aj,n 6= 0. We define Aj,n by

Aj,nu = −∂yyu+ inq(aj,n)2u+ 2inq(aj,n)q′(aj,n)(y − aj,n)u

on the domain
Dom(Aj,n) = {u ∈ H2(R) : yu ∈ L2(R)}.

With the notation (3.14) we have

Aj,n = τaj,nA2n(qq′)(aj,n)τ−aj,n + inq(aj,n)2,

where τ±aj,n is the usual translation operator: (τ±aj,nu)(y) = u(y ∓ aj,n). Thus Aj,n
satisfies the properties of Proposition 3.4 with α = 2n(qq′)(aj,n). We similarly set

A0,n = τ−`−A
+
2n(qq′)(−`−)τ`− + inq(−`−)2

Aνn,n = τ`+A
−
2n(qq′)(`+)τ−`+ + inq(`+)2.and

Notice that A0,n and Aνn,n are operators on L2(−`−,+∞) and L2(−∞, `+), respec-
tively. They satisfy the same properties as the model operators (see Proposition 3.5).
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For j ∈ {1, . . . , νn − 1} we set 1j = 1I . We also denote by 10 the operator which
maps u ∈ L2(−`−,+∞) to its restriction on I, and by 1νn the operator which maps
u ∈ L2(−∞, `+) to its restriction to I. For z ∈ C−n we set

Rj,n(z) = 1j
(
Aj,n − z

)−1
1∗j

Tj,n(z) = Rj,n(z)θj,n(Kn − z)− θj,n.and

We proceed as above. For j ∈ {0, . . . , νn} we have

Rj,n(z)θj,n(Kn− z)u = θj,nu+ inRj,n(z)θj,nrj,nu−Rj,n(z)θ′′j,nu+ 2Rj,n(z)∂y(θ′j,nu),

where
rj,n(y) = q2(y)− q2(aj,n)− 2 (y − aj,n)q′(aj,n)q(aj,n).

Let n ∈ N∗ and j ∈ {0, . . . , νn} such that θj,n 6= 0. Then we have 2nq′(aj,n)|q(aj,n)| &
n1−ρ and hence, for z ∈ C−n (in particular Re(z) 6 γn1/2 � n(2/3)(1−ρ)), Proposi-
tion 3.5 gives

(3.17) ‖Rj,n(z)‖L (L2(I)) . n
−(2/3)(1−ρ).

Then, as above we have |r̃j,n(y)θj,n(y)| . n−2ρ̃ so

n‖Rj,n(z)r̃j,nθj,n‖L (L2(I)) . n
1−2ρ̃−(2/3)(1−ρ) −−−−−→

n→+∞
0.

Moreover,

‖Rj,n(z)θ′′j,nu‖L2(I) . n
2ρ̃−(2/3)(1−ρ)‖u‖L2(I),

‖Rj,n(z)(θ′j,nu)′‖L2(I) . n
ρ̃−(1/3)(1−ρ)‖u‖L2(I).

All these estimates being uniform with respect to j ∈ {0, . . . , νn}, we finally get

(3.18) sup
z∈C−n

sup
06j6νn

‖Tj,n(z)‖L (L2(I)) −−−−−→
n→+∞

0.

– For u ∈ L2(I) we write

u = χnu+

νn∑
j=0

θj,nu,

We want to sum (3.15) and the estimates (3.18), for j ∈ {0, . . . , νn}, to get an ap-
proximate inverse for (Kn − z). We have seen that each contribution goes to 0, but
the number of terms grows with n.

Let θ̃ ∈ C∞0 (R, [0, 1]) be equal to 1 on
[
−2/3, 2/3

]
and supported in ]−1, 1[. Then

for n ∈ N∗, j ∈ {1, . . . , νn} and y ∈ I we set

θ̃j,n(y) = θ̃
(
(y − aj,n)/δn

)
,

and then

(3.19) Qn(z) = Rn(z)χn +

νn∑
j=0

θ̃j,nRj,n(z)θj,n.

For u ∈ Dom(Kn) and z ∈ C−n we have θj,nu = θj,nθ̃j,nu and

θj,n(Kn − z)(1− θ̃j,n)u = 0,
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so

‖Qn(z)(Kn − z)u− u‖L2(I) 6 ‖Tn(z)u‖L2(I) +

∥∥∥∥ νn∑
j=0

θ̃j,nTj,n(z)θ̃j,nu

∥∥∥∥
L2(I)

.

Moreover θ̃j,nθ̃k,n = 0 whenever |j − k| > 2, so by almost orthogonaly (twice) we can
write ∥∥∥∥ νn∑

j=0

θ̃j,nTj,n(z)θ̃j,nu

∥∥∥∥2

L2(I)

.
νn∑
j=0

‖θ̃j,nTj,n(z)θ̃j,nu‖2L2(I)

. sup
06j6νn

‖Tj,n(z)‖2L (L2(I))

νn∑
j=0

‖θ̃j,nu‖2L2(I)

. sup
06j6νn

‖Tj,n(z)‖2L (L2(I)) ‖u‖
2
L2(I).

This proves

(3.20) sup
z∈C−n

sup
u∈Dom(Kn)
‖u‖L2(I)=1

‖Qn(z)(Kn − z)u− u‖L2(I) −−−−−→
n→+∞

0.

Thus for n large enough the operator Kn has no eigenvalue and hence no spectrum
in C−n . Moreover for z ∈ C−n we have

(3.21) (Kn − z)−1 = Bn(z)Qn(z),

where
Bn(z) =

(
1 +

(
Qn(z)(Kn − z)− 1

))−1

is bounded on L2(I) uniformly in z ∈ C−n and n large enough.
– Let u ∈ L2(I) and z ∈ C−n . By (3.17), and using again the almost orthogonality,

we obtain ∥∥∥∥Bn(z)

νn∑
j=0

θ̃j,nRj,n(z)θj,nu

∥∥∥∥2

L2(I)

.
‖u‖2L2(I)

n(4/3)(1−ρ) ,

so

(3.22)
∥∥(Kn − z)−1 −Bn(z)Rn(z)χn

∥∥
L (L2(I))

.
1

n(2/3)(1−ρ) .

With (3.12), this gives the first statement of the proposition.
– We now consider the case z = 0 to prove the second part of the proposition.

By (3.20) we have

‖Bn(0)− 1‖L (L2(I)) =
∥∥(1 + (Qn(0)Kn − 1)

)−1 − 1
∥∥

L (L2(I))
−−−−−→
n→+∞

0,

so (3.22) and (3.12) give

(3.23) ‖K−1
n − 1IH−1

n 1∗Iχn‖L (L2(I)) = o
n→+∞

(1/
√
n).

On supp(1− χn) we have |y| & n−ρ and for v ∈ Dom(H∗n) we have

〈ny2v, v〉 = | Im〈H∗nv, v〉|,
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so for u ∈ L2(I) we can write∥∥(1− χn)1I(H
∗
n)−11∗Iu

∥∥2

L2(I)
. n2ρ

〈
y2(H∗n)−11∗Iu, (H

∗
n)−11∗Iu

〉
L2(R)

. n2ρ−1
∣∣Im〈1∗Iu, (H∗n)−11∗Iu〉L2(R)

∣∣
.
‖u‖2L2(I)

n(3/2)−2ρ
.

Taking the adjoint gives∥∥1IH−1
n 1∗I(1− χn)

∥∥
L (L2(I))

= o
n→+∞

(1/
√
n).

With (3.23), the proof is complete. �

Now we are in position to prove Proposition 2.3. It is a direct consequence of the
following result.

Proposition 3.7. — Let γ < q′(0)/
√

2. There exist n0 ∈ N∗ and C > 0 such that for
n > n0 and t > 0 we have

‖e−tKn‖L (L2(I)) 6 Ce
−tγ
√
n.

Proof. — Let n0 ∈ N∗ and c > 0 by given by Proposition 3.6. For n > n0 we set
K̃n = −Kn + γ

√
n. Then for n > n0 and z ∈ C with Re(z) > 0 we have z ∈ ρ(K̃n)

and ∥∥(K̃n − z)−1
∥∥

L (L2(I))
6

c√
n
.

Moreover for t > 0 we have ∥∥etK̃n
∥∥ 6 etγ√n.

Then we apply [EN00, Th. V.1.11 p. 302] to the operator K̃n. With the notation used
in the proof therein, we have ω0 6 γ

√
n, M 6 c/

√
n and L = 2π. We obtain that the

semigroup (etK̃n)t>0 is bounded uniformly in t > 0 and n > n0, so there exists C > 0

such that for all n > n0 and t > 0 we have

‖e−tKn‖ = e−tγ
√
n
∥∥etK̃n

∥∥ 6 Ce−tγ√n.
We also refer to [HS10] to get bounds on a semigroup from bounds on the resolvent
of the corresponding generator. �

Now we turn to the proof of (2.5). A more general version of the following result
is given in [Kat80, §IV.3.5].

Proposition 3.8. — Let T be a closed operator on a Hilbert space H . Let λ ∈ C. As-
sume that λ is an isolated eigenvalue of T . Let (Bm)m∈N be a sequence of bounded oper-
ators on H such that ‖Bm‖L (H ) → 0 as m→ +∞. For m ∈ N we set Tm = T +Bm.
Let ε > 0. Then for m large enough the operator Tm has an isolated eigenvalue λm
such that |λm − λ| 6 ε.
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Proof. — We set C = {ζ ∈ C : |ζ − λ| = ε}. Without loss of generality, we can
assume that ε > 0 is so small that λ is the only point of Sp(T ) in the disk D(λ, 2ε).
We set M = supζ∈C ‖(T − ζ)−1‖. Since

Tm − ζ = (T − ζ)
(
1 + (T − ζ)−1Bm

)
,

we see that C ∩ Sp(Tm) = ∅ as soon as M‖Bm‖ < 1/2. Moreover, in this case, we
have for ζ ∈ C ,

‖(Tm − ζ)−1‖ 6 2M.

We set
P =

1

2iπ

∫
C

(T − ζ)−1 dζ.

We similarly define Pm by replacing T by Tm. Then we have by the resolvent identity

‖Pm − P‖ =

∥∥∥∥ 1

2iπ

∫
C

(T − z)−1Bm(Tm − ζ)−1 dζ

∥∥∥∥ 6 2εM2‖Bm‖.

Thus for m large enough we have ‖Pm − P‖ < 1. By [Kat80, §I.4.6] this implies that

dim(Ran(Pm)) = dim(Ran(P )) ∈ N∗.

This proves that Tm has an eigenvalue λm such that |λ− λm| < ε. �

Proposition 3.9. — For n ∈ N∗ large enough there exists an eigenvalue λn of Kn

such that
|λn − eiπ/4q′(0)

√
n| = o

n→+∞

(√
n
)
.

Proof. — We consider on L2(R) the unitary operator Θn which maps u to

Θnu : x 7−→ n1/8u(n1/4x).

Then we have Θ−1
n HnΘn =

√
nH1. By Proposition 3.6,∥∥√nΘ−1

n 1∗IK
−1
n 1IΘn −H−1

1

∥∥
L (L2(R))

−−−−−→
n→+∞

0.

We set λ = eiπ/4q′(0). Then µ = λ−1 is an eigenvalue of H−1
1 . By Proposition 3.8,

there exists an eigenvalue µn of
√
nΘ−1

n 1∗IK
−1
n 1IΘn such that µn goes to µ as n goes

to +∞. Then n−1/2µn is an eigenvalue of 1∗IK−1
n 1I , and hence an eigenvalue of K−1

n .
We conclude the proof by setting λn =

√
nµ−1

n . �

3.4. Agmon estimates. — To conclude the proof of Proposition 2.8, it remains to
prove the estimate (2.6) for an eigenfunction ψn of Kn corresponding to the eigen-
value λn.

This estimate is given by an Agmon estimate. The Agmon estimates measure how
the eigenfunctions corresponding to the smallest eigenvalues of a Schrödinger operator
concentrate near the minimum of the potential. Exponential decay of eigenfunctions
and precise Agmon estimates are classical results for real-valued potentials (see for
instance [Agm85, Hel88]). We refer to [KRRS17] for Agmon estimates for a general
non-selfadjoint Laplacian.
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Here, it is expected that for large n an eigenfunction corresponding to the first
eigenvalue λn of Kn will concentrate near 0, where the potential q2 reaches its min-
imum. In particular, such an eigenfunction will be small at the boundary, so it is
indeed a good candidate to break an observability estimate like (2.4) when T < Tmin.

Proposition 3.10. — Let E > 0 and ε ∈ ]0, 1[. For n ∈ N and y ∈ I we set

(3.24) Wn,ε(y) =
1− ε√

2

∣∣∣∣∫ y

0

√(
nq(s)2 −

√
n(E + ε)

)
+
ds

∣∣∣∣,
where for σ ∈ R we write σ+ for max(0, σ). There exists C > 0 such that for n ∈ N,
u ∈ Dom(Kn) and λ ∈ C with

(3.25) |Re(λ)|+ | Im(λ)| 6 E
√
n,

we have∥∥eWn,εu′
∥∥2

L2(I)
+
√
n
∥∥eWn,εu

∥∥2

L2(I)
6 C

√
n ‖u‖2L2(I) +

C√
n

∥∥eWn,ε(Kn − λ)u
∥∥2

L2(I)
.

This result is proved with more generality in [KRRS17]. For the reader convenience
we recall a proof in our 1-dimensional setting.

Proof. — We denote by Qn the quadratic form corresponding to Kn. It is defined for
f, g ∈ H1

0 (I) by

Qn(f, g) =

∫
I

f ′g′ + in

∫
I

q2fg.

– Let u ∈ Dom(Kn). For ζ ∈W 1,∞(I,R), we have〈
u′, (ζ2u)′

〉
L2(I)

=
〈
ζu′, 2ζ ′u+ ζu′

〉
L2(I)

=
〈
(ζu)′ − ζ ′u, (ζu)′ + ζ ′u

〉
L2(I)

,

so
Re〈u′, (ζ2u)′〉L2(I) = ‖(ζu)′‖2L2(I) − ‖ζ

′u‖2L2(I).

– Let W ∈W 1,∞(I,R). Applied with ζ = eW , this equality gives

Re
(
Qn(u, e2Wu)

)
= Re

〈
u′, (e2Wu)′

〉
L2(I)

= ‖(eWu)′‖2L2(I) − ‖W
′eWu‖2L2(I).

On the other hand, a direct computation shows that

Im
(
Qn(u, e2Wu)

)
= Im

〈
u′, 2W ′e2Wu

〉
L2(I)

+ n‖qeWu‖2L2(I).

Let α ∈ ]0, 1[. Since

| Im〈u′, 2W ′e2Wu〉L2(I)| = 2| Im〈(eWu)′,W ′eWu〉L2(I)|

6 α‖(eWu)′‖2L2(I) + α−1‖W ′eWu‖2L2(I),

we have

Im
(
Qn(u, e2Wu)

)
> n‖qeWu‖2L2(I) − α‖(e

Wu)′‖2L2(I) − α
−1‖W ′eWu‖2L2(I),
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and hence

Re
(
Qn(u, e2Wu)

)
+ Im

(
Qn(u, e2Wu)

)
> (1− α)‖(eWu)′‖2L2(I) +

∫
I

(
nq2 − (1 + α−1)W ′2

)
|eWu|2.

Finally,

‖(eWu)′‖2L2(I) > ‖e
Wu′‖2L2(I) + ‖W ′eWu‖2L2(I) − 2‖eWu′‖L2(I) ‖W ′eWu‖L2(I)

>
1

2
‖eWu′‖2L2(I) − ‖W

′eWu‖2L2(I),

so if we set β = 2 + α−1 − α and ε1 = (1− α)/2, we get

(3.26) Re
(
Qn(u, e2Wu)

)
+ Im

(
Qn(u, e2Wu)

)
> ε1‖eWu′‖2L2(I) +

∫
I

(
nq2 − βW ′2

)
|eWu|2.

– On the other hand, for λ ∈ C we have

Qn(u, e2Wu) = λ‖eWu‖2L2(I) + 〈(Kn − λ)u, e2Wu〉L2(I).

We take the real and imaginary parts of this equality. With (3.26) this gives

(3.27) ε1‖eWu′‖2L2(I) +

∫
I

(
nq2 − βW ′2 − Re(λ)− Im(λ)

)
|eWu|2

6 2‖eW (Kn − λ)u‖L2(I)‖eWu‖L2(I).

– Now assume that (3.25) holds. Let δ±n ∈ ]0, `±] be such that

[−δ−n , δ+
n ] = {y ∈ I : nq(y)2 6

√
n (E + ε)}.

Let Wn,ε be given by (3.24). We choose α ∈ ]0, 1[ in such a way that

β =
2

(1− ε)2
.

On [−δ−n , δ+
n ], Wn,ε and hence W ′n,ε vanish, so

βW ′n,ε(y)2 + Re(λ) + Im(λ)− nq(y)2 6 E
√
n,

while on I r [−δ−n , δ+
n ] we have

βW ′n,ε(y)2 = nq(y)2 −
√
n(E + ε),

so

nq(y)2 − βW ′n,ε(y)2 − Re(λ)− Im(λ) > ε
√
n.
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Then, by (3.27),

ε1

∥∥eWn,εu′
∥∥2

L2(I)
+ ε
√
n

∫
Ir[−δ−n ,δ+n ]

|eWn,εu|2

6 2
∥∥eWn,ε(Kn − λ)u

∥∥
L2(I)

∥∥eWn,εu
∥∥
L2(I)

+ E
√
n

∫ δ+n

−δ−n
|u|2

6
ε
√
n

2

∥∥eWn,εu
∥∥2

L2(I)
+

2

ε
√
n

∥∥eWn,ε(Kn − λ)u
∥∥2

L2(I)
+ E
√
n

∫ δ+n

−δ−n
|u|2,

and finally,

ε1

∥∥eWn,εu′
∥∥2

L2(I)
+ ε
√
n
∥∥eWn,εu

∥∥2

L2(I)

6
ε
√
n

2

∥∥eWn,εu
∥∥2

L2(I)
+

2

ε
√
n

∥∥eWn,ε(Kn − λ)u
∥∥2

L2(I)
+ (E + ε)

√
n

∫ δ+n

−δ−n
|u|2.

The proposition is proved. �

For ε ∈ ]0, 1] and y ∈ I we set

κε(y) =
(1− ε)√

2

∫ y

0

q(s) ds.

Proposition 3.11. — Let E > 0 and ε ∈ ]0, 1]. There exists Cε > 0 such that for
n ∈ N and y ∈ I we have

(3.28)
√
nκε(y)− Cε 6Wn,ε/2(y) 6

√
nκε/2(y).

Proof. — The second inequality is clear. It is enough to prove the first for n large.
Let α > 1 to be fixed large enough later. For n large enough we consider η±n ∈ ]0, `±]

such that
q(±η±n )2 =

α√
n

(E + ε/2).

We have
η±n = O

n→+∞
(n−1/4),

and hence √
nκε(±η±n ) = O

n→+∞
(1).

In particular, for n large enough the first inequality in (3.28) holds for y ∈ [−η−n , η+
n ]

if Cε is chosen large enough, since then the left-hand side is negative. On the other
hand, for y > η+

n we have∫ y

η+n

√
nq(s)2 − (E + ε/2)

√
nds >

√
1− α−1

√
n

∫ y

η+n

q(s) ds.

Then
Wn,ε/2(y) >

1− ε/2
1− ε

√
1− α−1

√
nκε(y) + O

n→+∞
(1).

For α large enough this gives (3.28). We proceed similarly for y 6 −η−n . �
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Combining Propositions 3.10 and 3.11 we obtain the following version of the Agmon
estimates:

Proposition 3.12. — Let E > 0 and ε ∈ ]0, 1]. There exists C > 0 such that for
n ∈ N, u ∈ Dom(Kn) and λ ∈ C with |Re(λ)|+ | Im(λ)| 6 E

√
n we have∥∥e√nκεu′

∥∥2

L2(I)
+
√
n
∥∥e√nκεu

∥∥2

L2(I)
6 C
√
n ‖u‖2L2(I) +

C√
n

∥∥e√nκε/2(Kn−λ)u
∥∥2

L2(I)
.

Proof. — If we denote by C̃ > 0 the constant given by Proposition 3.10, then by
Proposition 3.11 we obtain the estimate of Proposition 3.12 with C = eCεC̃. �

From Proposition 3.12 we deduce the pointwise estimate (2.6).

Proposition 3.13. — Let E > 0 and ε ∈ ]0, 1[. There exists C > 0 such that for n ∈ N,
an eigenvalue µn of Kn with Re(µn) + Im(µn) 6 E

√
n and ψn ∈ ker(Kn − µn), we

have ∥∥e√nκεψ′n
∥∥2

L∞(I)
6 Cn‖ψn‖2L2(I).

Proof. — By Proposition 3.12 we have

(3.29)
∥∥e√nκεψn

∥∥2

L2(I)
. ‖ψn‖2L2(I),

∥∥e√nκεψ′n
∥∥2

L2(I)
.
√
n ‖ψn‖2L2(I).

– We prove

(3.30)
∥∥e√nκεψ′′n

∥∥2

L2(I)
. n3/2‖ψn‖2L2(I).

We have ψ′′n = inq2ψn − µnψn. With (3.29) we get∥∥e√nκεµnψn
∥∥2

L2(I)
. |µn|2‖ψn‖2L2(I) . n‖ψn‖

2
L2(I).

For the other term we have by an integration by parts
√

2 (1− ε)
∥∥e√nκεnq2ψn

∥∥2

L2(I)
=

∫
I

2
√
nκ′εe

2
√
nκεn3/2q3|ψn|2 dy

= −
∫
I

e2
√
nκεn3/2

(
3q2q′|ψn|2 + 2q3 Re(ψnψ

′
n)
)
dy.

On the one hand we have∣∣∣∣∫
I

e2
√
nκεn3/23q2q′|ψn|2 dy

∣∣∣∣ . n3/2
∥∥e√nκεψn

∥∥2

L2(I)
. n3/2‖ψn‖2L2(I).

On the other hand,∣∣∣∣∫
I

e2
√
nκεn3/22q3 Re(ψnψ

′
n)
)
dy

∣∣∣∣ 6 2
∥∥e√nκεnq2ψn

∥∥
L2(I)

∥∥qe√nκε
√
nψ′n

∥∥
L2(I)

6 (1− ε)
∥∥e√nκεnq2ψn

∥∥2

L2(I)
+
‖q‖2∞
1− ε

∥∥e√nκε
√
nψ′n

∥∥2

L2(I)
.

This gives (3.30).
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– For u ∈ H1(I) we have

‖u‖2L∞(I) 6
1

`+ + `−
‖u‖2L2(I) + 2‖u‖L2(I)‖u′‖L2(I)

so, by (3.29) and (3.30), ∥∥e√nκεψ′n
∥∥2

L∞(I)
. n‖ψn‖2L2(I).

This completes the proof. �

Notice that (3.30) is better than the naive estimate obtained from (3.29) and the
expression of ψ′′n. In fact we do not have to be optimal here, since the power of n
in the right-hand side of (2.6) is not important for the proof of the second part of
Theorem 1.5.

4. The observability estimate in small time

In this section we prove Propositions 2.6 (see Section 4.2) and 2.7 (see Section 4.4).
The proofs rely on some Carleman estimates and the construction of a suitable weight
function.

In this section we will not use an index n for a solution u of (2.1). No confusion
will be possible since we will never consider a solution of the initial x-dependent
problem (1.1). Moreover, we use an index for the partial derivatives, so ut stands for
∂tu, uyy for ∂yyu, etc.

4.1. A generic Carleman estimate. — We begin our analysis with a generic Carle-
man estimate. In the following statement, φ is a Carleman weight function. It will be
applied to w = e−φu, where u is a solution of a problem of the form (2.1), possibly
with a source term (see (4.12) below). We also impose that w vanishes at initial and
final times.

Proposition 4.1. — Let n ∈ N, τ1, τ2 > 0 with τ1 < τ2, a, b ∈ R with a < b, and
g ∈ L2(]τ1, τ2[×]a, b[). Let φ ∈ C4(]τ1, τ2[× [a, b],R+). We consider

w ∈ C0([τ1, τ2], H2(a, b)) ∩ C1([τ1, τ2], L2(a, b))

such that

(4.1) wt − wyy + inq(y)2w + φtw − 2φywy − φ2
yw − φyyw = g.

We assume that w also satisfies the Dirichlet boundary condition

(4.2) ∀t ∈ ]τ1, τ2[, w(t, a) = w(t, b) = 0,

and the initial and final conditions

(4.3) ∀y ∈ ]a, b[, w(τ1, y) = w(τ2, y) = 0, wy(τ1, y) = wy(τ2, y) = 0.

Then we have∫ τ2

τ1

∫ b

a

(
Φ0|w|2 + Φ1|wy|2

)
dy dt 6 −

∫ τ2

τ1

[
φy|wy|2

]b
a
dt+

1

2

∫ τ2

τ1

∫ b

a

|g|2 dy dt,
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where

(4.4) Φ0 = −2φ2
yφyy −

φtt
2

+
φyyyy

2
+ 2φtyφy −

n3/2q2q′√
2

and

(4.5) Φ1 = −2φyy −
√

2n q′.

Proof. — We can rewrite (4.1) as(
−wyy + Φw

)
+
(
wt − 2φywy − φyyw + inq2w

)
= g,

where Φ = φt − φ2
y. The identity 2Re(αβ) 6 |α+ β|2 then gives, after integration,

(4.6) Re

∫ τ2

τ1

∫ b

a

(
−wyy + Φw

)(
wt − 2φywy − φyyw − inq2w

)
dy dt

6
1

2

∫ τ2

τ1

∫ b

a

|g|2 dy dt.

We estimate the left-hand side with integrations by parts, using (4.2) and (4.3). The
terms involving wt give

Re

∫ τ2

τ1

∫ b

a

(−wyy)wt dy dt = 0

and

Re

∫ τ2

τ1

∫ b

a

(Φw)wt dy dt = −1

2

∫ τ2

τ1

∫ b

a

Φt|w|2 dy dt.

On the other hand, for all t ∈ ]τ1, τ2[ we have

Re

∫ b

a

(−wyy)(−2φywy) dy =
[
φy|wy|2

]b
a
−
∫ b

a

φyy|wy|2 dy,

Re

∫ b

a

(−wyy)(−φyyw) dy = −
∫ b

a

φyy|wy|2 dy +
1

2

∫ b

a

φyyyy|w|2 dy,

Re

∫ b

a

(−wyy)(−inq2w) dy = 2n

∫ b

a

qq′ Im(wyw) dy,

and

Re

∫ b

a

(Φw)(−2φywy − φyyw) dy =

∫ b

a

Φyφy|w|2 dy,

Re

∫ b

a

(Φw)(−inq2w) dy = 0.

We integrate these five equalities over t ∈ ]τ1, τ2[, and then (4.6) gives∫ τ2

τ1

[
φy|wy|2

]b
a
dt+

∫ τ2

τ1

∫ b

a

(
−Φt

2
+
φyyyy

2
+ Φyφy

)
|w|2 dy dt

− 2

∫ τ2

τ1

∫ b

a

φyy|wy|2 dy dt+ 2n

∫ τ2

τ1

∫ b

a

qq′ Im(wyw) dy dt 6
1

2

∫ τ2

τ1

∫ b

a

|g|2 dy dt.
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Since
2nqq′ Im(wyw) > −

√
2
√
n q′|wy|2 −

n3/2q2q′|w|2√
2

,

the conclusion follows. �

4.2. Observability inequality for a fixed Fourier parameter. — In this paragraph
we prove Proposition 2.6 about observability for a fixed Fourier parameter n ∈ N.
As already said, this is nothing but the observability inequality for a heat equation
with a (complex) potential. Nevertheless, we recall a proof of this well-known result
to enlighten the construction of the refined weight function in the next paragraphs.

The proof of Proposition 2.6 relies on Proposition 4.1. For the time dependence of
the weight φ, we will use the function θ given in the following lemma.

Lemma 4.2. — Let τ1, τ2 > 0 with τ1 < τ2. There exists θ in C∞(]τ1, τ2[) such that
(i) θ > 1 on ]τ1, τ2[, θ ≡ 1 on

[
(2τ1 + τ2)/3, (τ1 + 2τ2)/3

]
,

(ii) limt→τ1 θ(t) = limt→τ2 θ(t) = +∞,
(iii) there exists a constant C > 0 such that for all t ∈ ]τ1, τ2[,

|θ′(t)| 6 Cθ(t)2, |θ′′(t)| 6 Cθ(t)3.

Proof. — Let χ ∈ C∞0
(
]τ1, τ2[, [0, 1]

)
be equal to 1 on

[
(2τ1 + τ2)/3, (τ1 + 2τ2)/3

]
. For

t ∈ ]τ1, τ2[ we set

θ(t) = 1 +
1− χ(t)

(t− τ1)(τ2 − t)
.

Then θ satisfies all the required properties. �

Now we can prove Proposition 2.6:

Proof of Proposition 2.6. — For y ∈ I we set

ψ(y) = ψ1

(2y + `− − `+
`− + `+

)
, where ψ1(η) = −η

2

2
± 2η + 3, η ∈ [−1, 1]

(the sign in front of 2η is not important here, but it has to be chosen carefully if we
only observe from one side of the boundary, as will be the case in Proposition 4.4
below). In particular, for some c0 > 0 we have on I

(4.7) ψ′′ 6 −c0, |ψ′| > c0, ψ > c0.

Let u be a solution of (2.1). Let s > 1 to be chosen large enough later. For t ∈ ]τ1, τ2[

and y ∈ I we set
φ(t, y) = s θ(t)ψ(y),

where θ is given by Lemma 4.2, and

w(t, y) = u(t, y)e−φ(t,y).

Then w satisfies (4.1)-(4.3) with a = −`−, b = `+ and g ≡ 0. Therefore, Proposi-
tion 4.1 gives ∫ τ2

τ1

∫
I

(
Φ0|w|2 + Φ1|wy|2

)
dy dt 6 −

∫ τ2

τ1

[
φy|wy|2

]`+
−`−

dt,
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with

(4.8) Φ0 = s3
(
−2θ3(ψ′)2ψ′′ − θ′′ψ

2 s2
+
θ ψ(4)

2 s2
+

2θ′θ(ψ′)2

s
− n3/2q2q′

s3
√

2

)
and

(4.9) Φ1 = s
(
−2θψ′′ −

√
2n q′

s

)
.

Thus, by Lemma 4.2 and (4.7) we can fix s so large that Φ0 > 1 and Φ1 > 1 on
]τ1, τ2[× I. This gives∫ τ2

τ1

∫
I

|w(t, y)|2 dy dt .
∫ τ2

τ1

(
|wy(t,−`−)|2 + |wy(t, `+)|2

)
dt,

and then, since θ ≡ 1 on
[
(2τ1 + τ2)/3, (τ1 + 2τ2)/3

]
and ψ is bounded away from 0,∫ (τ1+2τ2)/3

(2τ1+τ2)/3

∫
I

|u(t, y)|2 dy dt .
∫ τ2

τ1

(
|uy(t,−`−)|2 + |uy(t, `+)|2

)
dt.

We have ‖u(T )‖2L2(I) 6 ‖u(t)‖2L2(I) for all t ∈
[
(2τ1 + τ2)/3, (τ1 + 2τ2)/3

]
. After inte-

gration this gives

‖u(T )‖2L2(I) 6
3

τ2 − τ1

∫ (τ1+2τ2)/3

(2τ1+τ2)/3

‖u(t)‖2L2(I) dt .
∫ τ2

τ1

(
|uy(t,−`−)|2+|uy(t, `+)|2

)
dt,

which ends the proof. �

Notice that in this rough proof we have not tried to control the dependence of Cn
with respect to n. It is the purpose of the next paragraph to get a precise estimate
of the cost of observability for (2.1). The interest of Proposition 2.6 is that it is now
enough to consider only large values of n.

To obtain estimates in the high frequency regime, we will use the same strategy,
but we will choose more carefully the parameter s and the phase function ψ (both
should be chosen as small as possible).

From (4.8), we see that s3 has to be at least of order n3/2, while in (4.9), s has to
be of order

√
n. From these observations, we deduce that the correct scaling should

be s ∼
√
n.

Finally, with s =
√
n, it is then the choice of ψ that will make Φ0 and Φ1 positive

for n large enough. We see from (4.8)-(4.9) that ψ should satisfy

(4.10) − 2(ψ′)2ψ′′ − q2q′√
2
> 0 and − 2ψ′′ −

√
2 q′ > 0.

This leads to the construction of the weight function given in the next paragraph.

Remark 4.3. — The strategy we develop in the following sections shares certain sim-
ilarities with the strategy developped in [Bak12] to obtain a sharp upper bound on
the vanishing order of solutions to Schrödinger equations with smooth potentials. The
correct scaling s ∼

√
n is natural in view of the main result of this work.
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4.3. A refined Carleman estimate. — In this paragraph we prove a refined version
of Proposition 4.1 for n large and a suitable choice for ψ. As discussed at the end of
Section 4.2, we will choose φ proportional to

√
n. The choice of ψ satisfying (4.10)

will be discussed in Proposition 4.5.

Proposition 4.4. — Let a, b ∈ I with a < b and ψ ∈ C4([a, b],R). We assume that for
some ε > 0 we have on [a, b]:

ψ > ε, −2(ψ′)2ψ′′ − q2q′√
2
> ε, −2ψ′′ −

√
2 q′ > ε.

Let τ1, τ2 ∈ ]0, T ] with τ1 < τ2. For t ∈ ]τ1, τ2[ and y ∈ [a, b] we set ϕ(t, y) = θ(t)ψ(y),
where θ is given by Lemma 4.2. Let n ∈ N and u in

(4.11) C0
(
[τ1, τ2], H2(a, b) ∩H1

0 (a, b)
)
∩ C1

(
[τ1, τ2], L2(a, b)

)
.

We set

(4.12) f = ut − uyy + inq(y)2u,

and
w = ue−

√
nϕ, g = fe−

√
nϕ.

Then there exist N ∈ N and C > 0 such that the following statements hold if n > N .
(i) If ψ′ > 0,∫ τ2

τ1

∫ b

a

(
n3/2θ3|w|2 +

√
n θ|wy|2

)
dy dt 6 C

√
n

∫ τ2

τ1

|wy(t, a)|2 dt+ C

∫ τ2

τ1

∫ b

a

|g|2 dy dt.

(ii) If ψ′ < 0,∫ τ2

τ1

∫ b

a

(
n3/2θ3|w|2 +

√
n θ|wy|2

)
dy dt 6 C

√
n

∫ τ2

τ1

|wy(t, b)|2 dt+ C

∫ τ2

τ1

∫ b

a

|g|2 dy dt.

Proof. — We observe that ϕ belongs to C4(]τ1, τ2[× [a, b]), the functions f and g are
in C0([τ1, τ2], L2(a, b)), w extends to a function in (4.11) and we have

wt − wyy + inq(y)2w +
√
nϕtw − 2

√
nϕywy − nϕ2

yw −
√
nϕyyw = g.

Moreover, w satisfies the boundary conditions (4.2) and the initial and final condi-
tions (4.3). Then, by Proposition 4.1 applied with φ =

√
nϕ, we have∫ τ2

τ1

∫ b

a

(
n3/2Φ0|w|2+

√
nΦ1|wy|2

)
dy dt 6 −

√
n

∫ τ2

τ1

[
ϕy|wy|2

]b
a
dt+

1

2

∫ τ2

τ1

∫ b

a

|g|2 dy dt,

where
Φ0 = −2ϕ2

yϕyy −
q2q′√

2
− ϕtt

2n
+
ϕyyyy

2n
+

2ϕtyϕy√
n

and
Φ1 = −2ϕyy −

√
2q′.

The properties of θ and the boundedness of the derivatives of ψ give, for n large
enough,

Φ0(t, y) >
εθ3

2
and Φ1(t, y) > εθ.
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Thus,

ε

2

∫ τ2

τ1

∫ b

a

(
n3/2θ3|w|2+

√
n θ|wy|2

)
dy dt 6 −

√
n

∫ τ2

τ1

[
ϕy|wy|2

]b
a
dt+

1

2

∫ τ2

τ1

∫ b

a

|g|2 dy dt.

Notice that the assumptions on ψ imply that ψ′ does not vanish. If ψ′ takes positive
values then we have

−
√
n

∫ τ2

τ1

ϕy(t, b)|wy(t, b)|2 dt 6 0,

which gives the first inequality. Otherwise ψ′ < 0 and we similarly get the second
estimate. �

4.4. Precise estimate of the cost of observation in small time for n large

In this paragraph we finish the proof of Proposition 2.7. We could apply directly
Proposition 4.4 and observe from one side of I only. However, we can reduce the cost
of observability if we observe from both sides.

More precisely, the part of u in [0, `+] will be controled by the values of uy at `+,
and the part of u in [−`−, 0] will be controled by the values of uy at −`−. Thus, with
the notation of the previous paragraph, we have to choose ψ such that ψ′ < 0 on the
right and ψ′ > 0 on the left. Since ψ′ does not vanish, we have to apply Proposition 4.4
separately on the right and on the left.

Proposition 4.5. — Let τ1, τ2 and κ be as given by Proposition 2.7. There exist
N ∈ N∗, ϕ ∈ C0

(
]τ1, τ2[× I,R

)
and C > 0 such that

(4.13) ∀t ∈
[
(2τ1 + τ2)/3, (τ1 + 2τ2)/3

]
, ∀y ∈ I, 0 6 ϕ(t, y) 6 κ,

and for any n > N and any solution u of (2.1) we have∫ τ2

τ1

∫
I

(
n3/2|u|2 +

√
n |uy|2

)
e−2
√
nϕ dy dt 6 C

√
n

∫ τ2

τ1

(
|uy(t,−`−)|2 + |uy(t, `+)|2

)
dt.

Proof

– Let β > 1/
√

2 and ε0 > 0 be such that

(4.14) ε0 + βmax

(∫ `+

0

(
q(s) + 3ε0

)
ds,

∫ 0

−`−

(
|q(s)|+ 3ε0

)
ds

)
< κ.

Let δ ∈ ]0,min(`−, `+)] be such that max(|q(−δ)|, q(δ)) 6 ε0. For y ∈ [−δ, `+] we set

ψ+(y) = ε0 + β

∫ `+

y

(
q(s) + 3ε0

)
ds+ c+,

with c+ > 0 to be chosen later. Then we have

ψ+ > ε0, ψ′+ = −β(q + 3ε0) 6 −2βε0, ψ′′+ = −βq′,

so

−2ψ′2+ψ
′′
+ −

q2q′√
2

= 2β3(q + 3ε0)2q′ − q2q′√
2
>

q′√
2

(
(q + 3ε0)2 − q2

)
> ε2

0 min(q′)
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and
−2ψ′′+ −

√
2q′ > 2

(
β − 1√

2

)
q′ > 2

(
β − 1√

2

)
min(q′).

Thus ψ+ satisfies the assumptions of Proposition 4.4 on [−δ, `+]. Then, for t ∈ ]τ1, τ2[

we set

(4.15) ϕ+(t, y) = θ(t)ψ+(y),

where θ is given by Lemma 4.2.
– We consider χ+ ∈ C∞(I, [0, 1]) such that χ+ = 1 on [0, `+] and χ+ = 0 on

[−`−,−δ]. Then we set u+ = χ+u. It satisfies

∀t ∈ ]τ1, τ2[, u+(t,−δ) = u+(t, `+) = 0

and
∀t ∈ ]τ1, τ2[,∀y ∈ [−δ, `+],

(
∂t − ∂yy + inq2

)
u+(t, y) = f+(t, y),

where
f+ = −χ′′+u− 2χ′+uy.

In particular, f+(t, ·) is supported in [−δ, 0]. We set

w+ = u+e
−
√
nϕ+ and g+ = f+e

−
√
nϕ.

We have
√
n |∂yu+|2e−2

√
nϕ+ .

√
n |∂yw+|2 + n3/2|w+|2θ(t)2.

Then, by the second case in Proposition 4.4, we obtain

(4.16)
∫ τ2

τ1

∫ `+

0

(
n3/2|u+|2 +

√
n |∂yu+|2

)
e−2
√
nϕ+ dy dt

.
∫ τ2

τ1

∫ `+

0

(
n3/2θ2|w+|2 +

√
n |∂yw+|2

)
dy dt

.
√
n

∫ τ2

τ1

|∂yw+(t, `+)|2 dt+

∫ τ2

τ1

∫ 0

−δ
|g+|2 dy dt

.
√
n

∫ τ2

τ1

|∂yu+(t, `+)|2 dt+

∫ τ2

τ1

∫ 0

−δ
|f+|2e−2

√
nϕ+ dy dt.

– For y ∈ [−`−, δ] we set

ψ−(y) = ε0 + β

∫ y

−`−
(|q(s)|+ 3ε0) ds+ c−,

with c− > 0 to be chosen later, and for t ∈ ]0, T [,

ϕ−(t, y) = θ(t)ψ−(y).

Let χ− ∈ C∞([−`−, `+], [0, 1]) such that χ− = 1 on [−`−, 0] and χ− = 0 on y ∈ [δ, `+].
We set u− = χ−u and f− = −χ′′−u − 2χ′−uy. Then, as above, but using the first
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statement in Proposition 4.4, we obtain

(4.17)
∫ τ2

τ1

∫ 0

−`−

(
n3/2|u−|2 +

√
n |∂yu−|2

)
e−2
√
nϕ− dy dt

.
√
n

∫ τ2

τ1

|∂yu−(t,−`−)|2 dt+

∫ τ2

τ1

∫ δ

0

|f−|2e−2
√
nϕ− dy dt.

– We set c+ = max(0, c) and c− = max(0,−c) where

c = β

(∫ 0

−`−
(|q(s)|+ 3ε0) ds−

∫ `+

0

(q(s) + 3 ε0) ds

)
,

so that ψ+(0) = ψ−(0). Then for t ∈ ]τ1, τ2[ and y ∈ I we set

ϕ(t, y) =

{
ϕ−(t, y) if y 6 0,

ϕ+(t, y) if y > 0.

In particular, by construction, ϕ is continuous on ]τ1, τ2[×I and satisfies (4.13). More-
over, ϕ+ > ϕ on [−δ, 0], ϕ− > ϕ on [0, δ] and, on [−δ, δ],

|f+|+ |f−| . |u|+ |uy|.

Then, by summing (4.16) and (4.17),∫ τ2

τ1

∫
I

(
n3/2|u|2 +

√
n |uy|2

)
e−2
√
nϕ dy dt

.
√
n

∫ τ2

τ1

(
|uy(t,−`−)|2 + |uy(t, `+)|2

)
dt+

∫ τ2

τ1

∫ δ

−δ

(
|u|2 + |uy|2

)
e−2
√
nϕ dy dt.

For n large enough, the last term is smaller than one half of the left-hand side, and
the conclusion follows. �

We can now prove Proposition 2.7.

Proof of Proposition 2.7. — Let N be given by Proposition 4.5 and n > N . Let u be a
solution of (2.1). Let ϕ be given by Proposition 4.5. By (4.13) we have in particular∫ (τ1+2τ2)/3

(2τ1+τ2)/3

∫
I

|u|2 dy dt 6 Ce2κ
√
n

n

∫ τ2

τ1

(
|uy(t,−`−)|2 + |uy(t, `+)|2

)
dt.

By (3.7) we have ‖u(τ2)‖2L2(I) 6 ‖u(t)‖2L2(I) for all t ∈ ](2τ1 + τ2)/3, (τ1 + 2τ2)/3[, so

‖u(τ2)‖2L2(I) 6
3Ce2κ

√
n

(τ2 − τ1)n

∫ τ2

τ1

(
|uy(t,−`−)|2 + |uy(t, `+)|2

)
dt,

and Proposition 2.7 is proved. �
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