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UBIQUITY OF CONICAL POINTS IN

TOPOLOGICAL INSULATORS

by Alexis Drouot

Abstract. —We show that generically, the degeneracies of a family of Hermitian matrices
depending on three parameters have a conical structure. Our result applies to the study of
topological phases of matter. It suggests that adiabatic deformations of two-dimensional topo-
logical insulators come generically with Dirac-like propagating currents, whose total conduc-
tivity equals the chiral number of conical points.

Résumé (Omniprésence des points de Dirac dans les isolants topologiques)
Nous montrons que les valeurs propres dégénérées de matrices dépendant de trois paramètres

possèdent généralement une structure conique. Nous appliquons ce résultat à l’étude des phases
topologiques de systèmes quantiques. Nous montrons que les déformations adiabatiques entre
deux isolants topologiques distincts ont une conductivité globale égale au nombre chiral de
points de Dirac.
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1. Introduction

Let E be the space of N × N Hermitian matrices; E∗ ⊂ E consisting of matrices
with simple eigenvalues; and T2 be a two-dimensional torus. Given H0 and H1 in
C∞(T2,E∗), is there a path from H0 to H1, that remains in C∞(T2,E∗)?
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508 A. Drouot

In general, the response is no: there is a topological obstruction, related to the
eigenbundles of H0 and H1. When this obstruction is present, any path from H0

to H1 acquires degenerate eigenvalues. In this paper, we explore the shape of these
crossings. We show that generically, they exhibit a conical structure.

This result has a counterpart in topological phases of matter. When two topologi-
cally distinct insulators are adiabatically connected, it suggests that generically:

– Finitely many channels supporting chiral currents appear;
– Up to large times, these currents follow a Dirac equation and are concentrated

(in phase-space) along conical eigenvalue crossings;
– The chiral number of currents equals the Chern number difference.

This establishes a quantitative link between (a) asymmetric currents; (b) eigenvalue
crossings; and (c) the bulk-edge correspondence.

1.1. Genericity of conical points. — We first state our result in a form that applies
to topological phases of matter. We postpone the general statement to Section 1.4.

Let T2 = R2/(2πZ)2 and H0, H1 be two elements of C∞(T2,E), with eigenvalues
λ1

(
Hj(ξ)

)
6 · · · 6 λN

(
Hj(ξ)

)
, repeated according to multiplicity. We assume that

for some n ∈ [1, N − 1] and all ξ ∈ T2,

(1.1) λn
(
H0(ξ)

)
< λn+1

(
H0(ξ)

)
, λn

(
H1(ξ)

)
< λn+1

(
H1(ξ)

)
.

Let L be the set of smooth homotopies from H0 to H1:

L
def
=
{
H ∈ C∞([0, 1]× T2,E) : H(0, ·) = H0, H(1, ·) = H1

}
.

Definition 1. — If H ∈ L, we say that λn(H) and λn+1(H) cross (or degenerate) at
ζ0 = (s0, ξ0) ∈ [0, 1]× T2 if λn

(
H(ζ0)

)
= λn+1

(
H(ζ0)

)
.

We say that λn(H) and λn+1(H) cross conically if λn
(
H(ζ0)

)
has multiplicity

precisely two; and if there exist a0 ∈ R3 and S0 ∈M3(R) invertible such that

(1.2)
{

λn
(
H(ζ0 + ε)

)
= λn

(
H(ζ0)

)
+ 〈a0, ε〉 − ‖S0ε‖+ o(ε)

λn+1

(
H(ζ0 + ε)

)
= λn

(
H(ζ0)

)
+ 〈a0, ε〉+ ‖S0ε‖+ o(ε)

, ε ∈ R3 small.

Conical degeneracies correspond to tilted cones in the graphs of eigenvalues – see
Figure 1. In particular, conical crossings of λn(H) and λn+1(H) are isolated. At first,
we could think that they are rare among degeneracies: a non-empty intersection of
two surfaces is in general a curve (rather than a point). Nonetheless:

Theorem 1. — If H0 and H1 are elements of C∞(T2,E) satisfying (1.1), then

L =
{
H ∈ L : all crossings of λn(H) and λn+1(H) are conical

}

is a dense open subset of L.

The natural topology on L is that induced by C∞
(
[0, 1]× T2,E

)
, see Section 1.7.

Results at lower regularity are also possible; our techniques typically require C2.
As a simple consequence of Theorem 1, for generic H ∈ L, λn(H) and λn+1(H)

cross at only finitely many points: conical crossings are isolated. Under a topological
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Ubiquity of conical points in topological insulators 509

– Up to large times, these currents follow a Dirac equation and are concentrated15

(in phase-space) along conical eigenvalue crossings;16

– The chiral number of currents equals the Chern number di�erence.17

This establishes a quantitative link between (a) asymmetric currents; (b) eigenvalue18

crossings; and (c) the bulk-edge correspondence.19

1.1. Genericity of conical points. — We first state our result in a form that applies20

to topological phases of matter. We postpone the general statement to §1.4.21

Let T2 = R2/(2⇡Z)2 and H0, H1 be two elements of C1(T2, E ), with eigenvalues22

�1

�
Hj(⇠)

�
6 · · · 6 �N

�
Hj(⇠)

�
, repeated according to multiplicity. We assume that23

for some n 2 [1, N � 1] and all ⇠ 2 T2,24

(1.1) �n

�
H0(⇠)

�
< �n+1

�
H0(⇠)

�
, �n

�
H1(⇠)

�
< �n+1

�
H1(⇠)

�
.25

Let L be the set of smooth homotopies from H0 to H1:26

L
def
=
n

H 2 C1([0, 1] ⇥ T2, E ), H(0, ·) = H0, H(1, ·) = H1

o
.27

Definition 1. — If H 2 L , we say that �n(H) and �n+1(H) cross (or degenerate)28

at ⇣0 = (s0, ⇠0) 2 [0, 1] ⇥ T2 if �n

�
H(⇣0)

�
= �n+1

�
H(⇣0)

�
.29

We say that �n(H) and �n+1(H) cross conically if �n

�
H(⇣0)

�
has multiplicity30

precisely two; and if there exist a0 2 R3 and S0 2 M3(R) invertible such that31

(1.2)
⇢
�n

�
H(⇣0 + ")

�
= �n

�
H(⇣0)

�
+ ha0, "i � kS0"k + o(")

�n+1

�
H(⇣0 + ")

�
= �n

�
H(⇣0)

�
+ ha0, "i + kS0"k + o(")

, " 2 R3 small.32

• •

(a) (b)

(b)

Figure 1. (a) Eigenvalue surfaces of H(s0, ·) near a conical point
(s0, ⇠0) of H. They intersect at the vertex of a (non-isotropic) cone.
(b) Eigenvalue surfaces of H(s, ·) for s 6= s0 near s0. They no longer
touch.

Figure 1. (a) Eigenvalue surfaces of H(s0, ·) near a conical point
(s0, ξ0) of H. They intersect at the vertex of a (non-isotropic) cone.
(b) Eigenvalue surfaces of H(s, ·) for s 6= s0 near s0. They no longer
touch.

condition on H0 and H1, crossings must nonetheless arise. Indeed, (1.1) allows us to
define a rank-n vector bundle V0 over T2: the fibers are

V0(ξ) =
n⊕
j=1

ker
(
H0(ξ)− λj

(
H0(ξ)

))
, ξ ∈ T2.

We can also define V1, associated toH1: only (1.1) is necessary to construct such vector
bundles. Hence, if there is a homotopy between H0 and H1 that maintains (1.1), then
there are smooth vector bundles Vs → T2, s ∈ [0, 1], interpolating between V0 and V1.
In particular, V0 and V1 would be topologically equivalent.

This restriction can be measured via the Chern number – the vector bundle analog
of the Euler characteristic. This number can take any integer value, even in the con-
text of eigenbundles – see the appendix in [Dro19c] – and characterizes the topology
when the basis is a two-torus – see e.g. [Pan07, Mon17]. Thus, V0 and V1 are topolog-
ically equivalent if and only if c1(V0) = c1(V1). In particular, if H0, H1 ∈ C∞(M,E)

satisfy (1.1) and c1(V0) 6= c1(V1), then any homotopy between H0 and H1 admits de-
generacies. These, according to Theorem 1, are generically all conical – see Figure 2.

1.2. Connection with topological phases of matter. — We review tight-binding,
translation-invariant models of insulators at an energy λ0 ∈ R. These systems are
represented by selfadjoint Hamiltonians H0 : `2(Z2,CN )→ `2(Z2,CN ) with:

(1.3) [H0, Tj ] = 0, (Tjψ)m = ψm+ej ; and λ0 /∈ σ(H0).

In (1.3), σ(H0) denotes the `2(Z2,CN )-spectrum of H0. Physically, λ0 /∈ σ(H0) means
that there is no plane-wave propagation at energy λ0.

Thanks to (1.3) and [T1, T2] = 0, we can diagonalize H0, T1 and T2 simultaneously.
The eigenvalues of Tj are eiξj , ξj ∈ T1 = R/(2πZ). Joint eigenspaces of T1 and T2
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•

••
•

•

•

• • •
•

•

c1 = 1

c1 = 2

c1 = 0

H0

H1

C1(T2, E)

Figure 2. For each n 2 [1, N � 1], C1(T2, E) splits in components
distinguished by Chern numbers. If H0 and H1 lie in di�erent compo-
nents, a path joining H0 to H1 (blue) acquire crossings. Non-conical-
type degeneracies (red) are rare in C1(T2, E).

Thanks to (1.3) and [T1, T2] = 0, we can diagonalize H0, T1 and T2 simultaneously.71

The eigenvalues of Tj are ei⇠j , ⇠j 2 T1 = R/(2⇡Z). Joint eigenspaces of T1 and T272

canonically identify with CN :73

2T
j=1

ker
�
Tj � ei⇠j

�
=
n�

ei⇠m 0

�
m2Z2 :  0 2 CN

o
, ⇠ = (⇠1, ⇠2) 2 T2.74

Thus, the analysis of H0 reduces to that of its Bloch transform: the T2-parametrized75

family of N ⇥ N Hermitian matrices76

(1.4) H0(⇠) = e�i⇠m · H0 · ei⇠m, ⇠ 2 T2.77

The insulating condition �0 /2 �(H0) and the spectral decomposition of H0 into78

{H0(⇠)}⇠2T2 imply that �0 is never in �
�
H0(⇠)

�
. Thus, H0 satisfies (1.1).79

A standard question in topological phases of matter is whether two materials can80

be deformed to each other while maintaining their electronic properties. If H1 is an-81

other insulator at energy �0, with associated vector bundle V1 of rank n, then H182

also satisfies (1.1). As explained in §1.1, if c1(V0) 6= c1(V1), then there are no path83

{Hs}s2[0,1] connecting H0 and H1 while maintaining (1.3). Physically, two topolog-84

ically distinct insulators cannot be deformed to one another without passing by a85

conductor.86

Theorem 1 explains quantitatively this failure. Generically, conical crossings arise87

as one transitions from H0 to H1. The quantity c1(V1) � c1(V0) is fundamental in88

the analysis of interface e�ects between topological insulators; see e.g. [RH08, B19b,89

D19c]. Below, we express it as the number of conical crossings, counted according to90

chirality.91

Assume that H 2 L and �n(H) and �n+1(H) degenerate conically at ⇣0; and define92

(Jf)j = hf, fji, where (f1, f2) is an orthogonal basis of ker
�
�n(⇣0)�H(⇣0)

�
. We write93

Figure 2. For each n ∈ [1, N − 1], C∞(T2,E) splits in components
distinguished by Chern numbers. If H0 and H1 lie in different compo-
nents, a path joining H0 to H1 (blue) acquire crossings. Non-conical-
type degeneracies (red) are rare in C∞(T2,E).

canonically identify with CN :
2⋂
j=1

ker
(
Tj − eiξj

)
=
{

(eiξmψ0)m∈Z2 : ψ0 ∈ CN
}
, ξ = (ξ1, ξ2) ∈ T2.

Thus, the analysis of H0 reduces to that of its Bloch transform: the T2-parametrized
family of N ×N Hermitian matrices

(1.4) H0(ξ) = e−iξm ·H0 · eiξm, ξ ∈ T2.

The insulating condition λ0 /∈ σ(H0) and the spectral decomposition of H0 into
{H0(ξ)}ξ∈T2 imply that λ0 is never in σ

(
H0(ξ)

)
. Thus, H0 satisfies (1.1).

A standard question in topological phases of matter is whether two materials can
be deformed to each other while maintaining their electronic properties. If H1 is
another insulator at energy λ0, with associated vector bundle V1 of rank n, then H1

also satisfies (1.1). As explained in Section 1.1, if c1(V0) 6= c1(V1), then there are
no path {Hs}s∈[0,1] connecting H0 and H1 while maintaining (1.3). Physically, two
topologically distinct insulators cannot be deformed to one another without passing
by a conductor.

Theorem 1 explains quantitatively this failure. Generically, conical crossings arise
as one transitions from H0 to H1. The quantity c1(V1) − c1(V0) is fundamental in
the analysis of interface effects between topological insulators; see e.g. [RH08, Bal19a,
Dro19c]. Below, we express it as the number of conical crossings, counted according
to chirality.

Assume that H ∈ L and λn(H) and λn+1(H) degenerate conically at ζ0; and define
(Jf)j = 〈f, fj〉, where (f1, f2) is an orthogonal basis of ker

(
λn(ζ0)−H(ζ0)

)
. We write

a Taylor expansion of the 2× 2 matrix JH(ζ0 + ε)J∗ near ε = 0:

(1.5) JH(ζ0 + ε)J∗ = JH(ζ0)J∗ +

3∑

j=1

(A0ε)j · σj +O(ε2),

J.É.P. — M., 2021, tome 8



Ubiquity of conical points in topological insulators 511

where σ1, σ2, σ3 are the standard Pauli matrices and A0 ∈ M3(R). Using the conical
structure, A0 is invertible – see (5.7) below. The quantity sgn

(
det(A0)

)
is called the

chirality of the conical point. For such degeneracies, it coincides with the topological
Weyl charge defined in [MP14].

Theorem 2. — Let H ∈ L, such that λn(H) and λn+1(H) degenerate conically pre-
cisely at ζ1, . . . , ζK . If sgn

(
det(A1)

)
, . . . , sgn

(
det(AK)

)
are the associated chiralities,

then

(1.6) c1(V1)− c1(V0) =

K∑

k=1

sgn
(
det(Ak)

)
.

Theorem 1 guarantees that L 6= ∅ – in fact, that L is a residual set.

1.3. Relation with adiabatic transport and bulk-edge correspondence

In this section, we explain the physical consequences of Theorems 1 and 2 on
transport in adiabatic deformations of topological insulators.

LetH0 andH1 be two Hamiltonians satisfying (1.3). Let {Hs}s∈[0,1] be a homotopy
between H0 and H1; extend Hs by H0 for s 6 0 and by H1 for s > 1. For δ > 0, we
define Hamiltonians Qδ and Hδ on `2

(
Z2,CN

)
by

(1.7)
(
Qδψ

)
m

=
(
Hδm2

ψ
)
m
, m = (m1,m2) ∈ Z2; Hδ =

Qδ + (Qδ)∗

2
.

Both Qδ and Hδ model a (spatial) deformation from H0 to H1 transversely to Re1,
occurring at speed δ. In addition, Hδ is selfadjoint; and for small δ, Hδ − Qδ = O(δ)

as operators on `2
(
Z2,CN

)
.

We are interested in the adiabatic scaling: δ → 0. This regime has an important
place in the mathematical physics literature; see e.g. [Sim83, Ber84, PST03, FT16].
It corresponds to changing H0 to H1 globally (i.e., on a scale δ−1 � 1) while preserv-
ing translation-invariance locally (i.e., on a scale δ−1/2 – note 1� δ−1/2 � δ−1).

Generically, λn(Hδn2
) and λn+1(Hδn2

) do not degenerate for most values of δn2.
For such values, we can define the local Chern number of Hδ at (n1, δn2): it is that
of Hδn2 . The local Chern number is discontinuous at degeneracies, see Figure 3.

In adiabatic domain-wall deformations of honeycomb structures, edge states arise
and are concentrated near Dirac points (isotropic conical points) [FLTW16, LTWZ19,
Dro19b, DW20]. At leading order, they propagate according to an emerging Dirac
operator, in the direction prescribed by chirality.

The analysis of [FLTW16, LTWZ19, Dro19b, DW20] is local in nature and would
extend beyond Dirac points. Theorem 1 shows that degeneracies are generically con-
ical. Hence, the Dirac-type propagation of edge states is universal in the adiabatic
regime. See Section 1.5 and the appendix for more details.

In analogy with [Dro19b, Dro19a, DW20], the total number of edge states, signed
according to propagation, is the sum over chiralities. From Theorem 3, it is the total
Chern number difference. Hence, (1.6) is a form of the bulk edge correspondence,
the left-hand-side playing the role of an edge index – see [Hat93, KRSB02, EGS05,

J.É.P. — M., 2021, tome 8
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•

•

s
1

s2

s1

0 c1(V0) = 1

c1(V1/2) = 4

c1(V1) = 3

��1

��1/2
H0

H1/2

H1

Figure 3. When deforming adiabatically two topological insulators
H0 and H1, one must pass discontinuity channels for Chern numbers
(s = s1, s2). These support a signed number of currents equal to the
jump of Chern numbers.

In analogy with [D19a, D19b, DW19], the total number of edge states, signed130

according to propagation, is the sum over chiralities. From Theorem 3, it is the total131

Chern number di�erence. Hence, (1.6) is a form of the bulk edge correspondence, the132

left-hand-side playing the role of an edge index – see [H93, KRS02, EGS05, ASV13,133

GP13, PS16, BKR17, D19c]. While the interface between H0 and H1 has width ��1,134

the asymmetric transport described above concentrates in finitely many strips of width135

��1/2 (corresponding to jumps of local Chern number). This is a much thinner region.136

This concentration phenomenon – valid only in the adiabatic regime – is not captured137

by the bulk-edge correspondence.138

1.4. General statement. — Theorem 1 will be the consequence of a stronger state-139

ment. Let X be a smooth compact manifold of dimension 3.140

Definition 2. — If H 2 C1(X, E), we say that H has a degeneracy at x0 2 X if141

H(x0) admits repeated eigenvalues.142

We say that this degeneracy is conical if for some n 2 [1, N � 1]:143

(i) �n

�
H(x0)

�
= �n+1

�
H(x0)

�
and all other eigenvalues of H(x0) are simple;144

(ii) There exist ⌦ ⇢ X neighborhood of x0 in X, ` 2 C1(⌦, R) and q 2145

C1�⌦, [0,1)
�

with a non-degenerate critical value zero at x0 such that146

(1.8)
⇢
�n

�
H(x)

�
= `(x) �

p
q(x)

�n+1

�
H(x)

�
= `(x) +

p
q(x)

, x near x0.147

Figure 3. When deforming adiabatically two topological insula-
tors H0 and H1, one must pass discontinuity channels for Chern
numbers (s = s1, s2). These support a signed number of currents
equal to the jump of Chern numbers.

ASBVB13, GP13, PSB16, BKR17, Dro19c]. While the interface between H0 and H1

has width δ−1, the asymmetric transport described above concentrates in finitely
many strips of width δ−1/2 (corresponding to jumps of local Chern number). This is
a much thinner region. This concentration phenomenon – valid only in the adiabatic
regime – is not captured by the bulk-edge correspondence.

1.4. General statement. — Theorem 1 will be the consequence of a stronger state-
ment. Let X be a smooth compact manifold of dimension 3.

Definition 2. — If H ∈ C∞(X,E), we say that H has a degeneracy at x0 ∈ X if
H(x0) admits repeated eigenvalues.

We say that this degeneracy is conical if for some n ∈ [1, N − 1]:
(i) λn

(
H(x0)

)
= λn+1

(
H(x0)

)
and all other eigenvalues of H(x0) are simple;

(ii) There exist Ω ⊂ X neighborhood of x0 in X, ` ∈ C∞(Ω,R) and q ∈
C∞

(
Ω, [0,∞)

)
with a non-degenerate critical value zero at x0 such that

(1.8)
{

λn
(
H(x)

)
= `(x)−

√
q(x)

λn+1

(
H(x)

)
= `(x) +

√
q(x)

, x near x0.

For degeneracies of precisely double multiplicity, the mere estimate (1.2) is equiv-
alent to the smooth identity (1.8); see Section 2.1. In other words, Definition 2 corre-
sponds to Definition 1, with the additional requirement (i).

Theorem 3. — When dim(X) = 3, the set

(1.9) M =
{
H ∈ C∞(X,E) : all degeneracies of M in X are conical

}

is dense and open in C∞(X,E).

J.É.P. — M., 2021, tome 8



Ubiquity of conical points in topological insulators 513

According to the von Neumann–Wigner theorem [vNW29], E r E∗ has codimen-
sion 3 in E. Since dim(X) = 3, the range H(X) of H has Hausdorff dimension at
most 3. Thus, generically, H(X) ∩ (Er E∗) has Hausdorff dimension 0; see Figure 4.
This result is closely related to various work about rarity of degenerate eigenvalues
in mathematical physics; see e.g. [Col91, Arn95, Tey99]. It is worth mentioning that
Theorem 2 applies to non-topologically trivial manifolds – as required in applications
to solid state physics. This is the technical part of the proof, see Section 3.4. For
related results valid when X is a simply connected regions, we refer to [DP12, §4].

Theorem 3 completes [vNW29]: it shows that the degeneracies of a 3-dimensional
family of matrices are conical. In particular, generic elements in C∞(X,E) have finitely
many degeneracies. As an immediate corollary with X = T3:

Corollary 1. — The degeneracies of Bloch eigenvalues of a generic Z3-invariant
Hamiltonian on `2(Z3,CN ) are all conical.

•
••

•
•

H(X)
E r E⇤

Figure 4. The range H(X) ⇢ E of H has (typical) dimension 3, while
E r E⇤ has codimension 3. Generically, H(X) and E r E⇤ intersect
tranversely, along a set of dimension 0.

For degeneracies of precisely double multiplicity, the mere estimate (1.2) is equiv-148
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to Definition 1, with the additional requirement (i).150
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3. Thus, generically, H(X) \ (E r E⇤) has Hausdor� dimension 0; see Figure 4. This156

result is closely related to various work about rarity of degenerate eigenvalues in157
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when X is a simply connected regions, we refer to [DP12, §4].161

Theorem 3 completes [NW29]: it shows that the degeneracies of a 3-dimensional162

family of matrices are conical. In particular, generic elements in C1(X, E) have finitely163

many degeneracies. As an immediate corollary with X = T3:164

Corollary 1. — The degeneracies of Bloch eigenvalues of a generic Z3-invariant165

Hamiltonian on `2(Z3, CN ) are all conical.166

1.5. Relation with existing work and perspectives. — The present work contrasts167

with earlier results in tight-binding, quantum graphs, and continuous graphene models168

[W47, C91, KP07, FW12, AFL18, FLW18, L18]. These papers use the symmetries of169

the hexagonal lattice to show existence of Dirac points.170

Figure 4. The range H(X) ⊂ E of H has (typical) dimension 3, while
E r E∗ has codimension 3. Generically, H(X) and E r E∗ intersect
transversely, along a set of dimension 0.

1.5. Relation with existing work and perspectives. — The present work contrasts
with earlier results in tight-binding, quantum graphs, and continuous graphene mod-
els [Wal47, Col91, KP07, FW12, AFH+18, FLTW18, Lee16]. These papers use the
symmetries of the hexagonal lattice to show existence of Dirac points.

The present paper is not symmetry-driven. It is instead topology-driven: conical
points arise generically when trying to connect two topologically distinct Hamiltonian,
and no other type of degeneracies may form.

When connecting two topologically distinct Hamiltonians, asymmetric currents
appear along the interface: the celebrated edge states. Theorems 1 implies that generic
edge states of adiabatic systems on Z2 have amplitudes that, after rescaling, evolve
according to a universal Dirac-like equation:
(1.10)

(
Dt − /D(x2, Dx)

)
β = 0, Dx = −i∂x,

where /D(x2, ξ) is a family of 2 × 2 matrices which depends linearly in x2 and ξ.
We refer to the appendix for a formal derivation of (1.10). A full proof would somewhat
be transverse to this work; see [FLTW16, Dro19b, ADHY19, DW20, ADH20] for
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derivations in slightly different context. See also [FKG03, FK04, Bal19b, Bal19c] for
direct work on (1.10).

This Dirac-type propagation should also appear universally in continuous systems
– see e.g. [RH08, FLTW16, Dro19b, DW20] for honeycombs. This would require to
extend Theorem 3 to differential operators. After some relatively standard reductions,
the techniques developed here can treat systems on L2(R2) (corresponding toN =∞).
However they would yield a physically moot genericity result: it would hold within
a class much larger than differential operators. We refer to [Col91, Kuc16] for some
interesting related conjectures, and formulate our own:

Conjecture 1. — The set
{
V ∈ C∞(R3/Z3) : all degeneracies of Bloch eigenvalues of−∆R3 + V are conical

}

is dense and open in C∞(R3/Z3).

1.6. Organization. — We start with the proof of Theorem 3. In Section 2, we prove
that M is open. This relies on the fact that conical points correspond precisely to
critical values zero of the matrix discriminant. In Section 3, we prove that M is dense.
When N = 2, this boils down to an algebraic identity combined with Sard’s theorem.
For N > 3, it relies on a reduction to the case N = 2.

Theorem 1 follows from Theorem 3, as explained in Section 4. The proof of The-
orem 2 is independent of the rest of the paper. It relies on arguments from [Dro19a]
– see Section 5. In the appendix, we explain the origin of the effective Dirac equa-
tion (1.10).

1.7. Notations

– Given N ∈ N, E denotes the space of N × N Hermitian matrices , E∗ ⊂ E

denotes matrices with simple eigenvalues; and F ⊂ E consists of matrices with at
most N − 2 distinct eigenvalues. We provide these spaces with the (Hilbertien) norm
‖A‖2 = TrCN (A2).

– Given a smooth compact manifold X, M is the space C∞(X,E); and M ⊂ M

consists of elements in M with only conical degeneracies – see Section 1.4. We fix a
Riemannian structure on X, with Levi–Civita connection ∇. The space Ck(X,E) is
the closure of C∞(X,E) in C0(X,E), for the norm

‖H‖Ck = sup
{
‖H(x)‖+ ‖∇kH(x)‖ : x ∈ X

}
, H ∈M = C∞(X,E).

It has a structure of Banach algebra. The space M inherits a structure of complete
metric space, with distance

(1.11) d(H, H̃) =

∞∑

k=0

2−k
‖H − H̃‖Ck

1 + ‖H − H̃‖Ck

, H, H̃ ∈M.

– The space C∞([0, 1]×T2,E) consists of Hermitian-valued smooth functions func-
tions on (0, 1)×T2, whose derivatives extend continuously to [0, 1]×T2 – also provided
with the norm (1.11).
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– Given H0, H1 ∈ C∞(T2,E) satisfying (1.1), the space L ⊂ C∞([0, 1] × T2,E)

consists of smooth paths connecting H0 to H1. The space L ⊂ L consists of paths
whose n-th and n+ 1-th eigenvalues degenerate conically – see Section 1.1.

– The Hausdorff dimension of a set S is denoted dimH(S).
– The Pauli matrices are

σ0 =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]
, σ3 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
.

The matrices σ1, σ2, σ3 form a basis of the space E0 of traceless Hermitian 2 × 2

matrices.
– If x ∈ R3 and r > 0, B(x, r) is the ball centered at x of radius r.

2. M is open

We recall that M = C∞(X,E). In this section, we show that the set M defined
in (1.9) is open in M. In Section 2.1 we review the discriminant D(A) of a matrix A.
This is a quantity depending smoothly on the entries, whose zero set corresponds to
matrices with degeneracies.

We then identify conical degeneracies of elements of M with non-degenerate crit-
ical points of D(H). Because of the stability of such points, M is open in M – see
Section 2.2.

2.1. Discriminant and conical points. — The discriminant of a matrix is the (square
of the) Vandermonde determinant of the eigenvalues:

(2.1) D(A) =
∏

j 6=k

(
λj(A)− λk(A)

)
=
∏

j<k

(
λj(A)− λk(A)

)2
, A ∈ E.

It is a symmetric polynomial in λ1(A), . . . , λN (A). Thus, by the fundamental theorem
of linear algebra, it is a polynomial in the quantities

∑m
j=1 λj(A)m = Tr[Am] – see

e.g. [Mac15, §I.2]. In particular, D(A) depends smoothly on A.
The discriminant detects degenerate eigenvalues: D(A) = 0 if and only if A ∈ E∗.

In fact, it even identifies conical degeneracies.

Lemma 2.1. — H ∈ M has a conical degeneracy at x0 if and only if D ◦ H – i.e.,
D ◦H(x) = D

(
H(x)

)
– has a non-degenerate critical value, zero, at x0.

Remark 2.1. — No structure – but that of a smooth manifold – is required to define
non-degenerate critical points of u ∈ C∞(X,R). A Riemannian structure on X allows
us to consider the covariant Hessian ∇2u; it is a symmetric endomorphism on TX

– see e.g. [Pet16, §2.1]. Non-degenerate critical points correspond to du(x) = 0 and
∇2u(x) non-singular – see e.g. [Pet16, §5.12].
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Proof
(1) We assume first that H has a conical degeneracy at x0. Let λn

(
H(x0)

)
=

λn+1

(
H(x0)

)
be the unique degenerate eigenvalue of H(x0). We write

D ◦H =
(
λn+1(H)− λn(H)

)2 · F, F
def
=

∏

j<k
(j,k)6=(n,n+1)

(
λj(H)− λk(H)

)2
.

Using (1.8), D ◦H = q · F , where q ∈ C∞(X,R) has a non-degenerate critical value
zero at x0. From general theory, the eigenvalues of Hermitian matrices are Lipschitz in
the entries – see [Ser10, Prop. 6.2] – hence a fortiori continuous. Thus F is continuous.
Moreover, since all eigenvalues of H(x0) are simple but λn

(
H(x0)

)
= λn+1

(
H(x0)

)
,

F (x0) > 0. We deduce that D ◦H has a non-degenerate critical value zero at x0.
(2) Now we assume that D ◦ H has the non-degenerate critical value zero at x0.

Then there exists Ω neighborhood of x0 such that
x ∈ Ω r {x0} =⇒ D ◦H(x) 6= 0.

In particular, for x ∈ Ωr {x0}, the eigenvalues λj
(
H(x)

)
of H(x) are simple – hence

smooth functions of x.
(3) Since D ◦H(x0) = 0, H(x0) has at least one degenerate eigenvalue. Define

S =
{
j ∈ [1, N − 1] : λj

(
H(x0)

)
= λj+1

(
H(x0)

)}
.

Since eigenvalues of Hermitian matrices are Lipschitz functions of the entries, there
exists C > 0 such that (after possibly shrinking Ω):
(2.2) x ∈ Ω, j ∈ S =⇒

∣∣λj
(
H(x)

)
− λj+1

(
H(x)

)∣∣ 6 C
∥∥H(x)−H(x0)

∥∥.
Let J be the cardinal of S. From (2.1) and (2.2), we deduce that for some C ′ > 0,

x ∈ Ω =⇒
∣∣D ◦H(x)

∣∣ 6 C ′
∥∥H(x)−H(x0)

∥∥2J
.

Since H depends smoothly on x and D has a non-degenerate minimum at x0, we de-
duce that J 6 1. This implies that H(x0) has exactly N − 1 distinct eigenvalues.
Thus, if n ∈ [1, N − 1] is the unique integer such that λn

(
H(x0)

)
= λn+1

(
H(x0)

)
,

then for j 6= n, n+ 1, λj(H) are smooth in Ω.
(4) Let us fix a contour γ ⊂ C enclosing λn

(
H(x0)

)
= λn+1

(
H(x0)

)
but no other

eigenvalue of H(x0). After possibly shrinking Ω, for x ∈ Ω, γ enclose λn
(
H(x)

)
and

λn+1

(
H(x)

)
but no other eigenvalue of H(x). Thus,

F1(x)
def
= Tr

[∫

γ

z
(
z −H(x)

)−1 dz

2πi

]
= λn

(
H(x)

)
+ λn+1

(
H(x)

)

and F2(x)
def
= Tr

[∫

γ

z2
(
z −H(x)

)−1 dz

2πi

]
= λn

(
H(x)

)2
+ λn+1

(
H(x)

)2
(2.3)

are both smooth functions on Ω. It follows that both

`
def
=
λn(H) + λn+1(H)

2
=
F1

2

and q =

(
λn+1(H)− λn(H)

)2

4
=

2F2 − 2F 2
1

4

(2.4)

are smooth functions on Ω.
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(5) The equation (2.4) imply that λn(H) = `−√q and λn+1(H) = `+
√
q. Thus,

it remains to show that q has a non-degenerate critical point at x0. Again, we write

D ◦H = q · F, F
def
=

∏

j<k
(j,k) 6=(n,n+1)

(
λj(H)− λk(H)

)2
.

We observe that F is Lipschitz, with F (0) 6= 0. Hence, we have

D ◦H(x) = q(x)
(
1 + o(1)

)
near x0;

this implies
q(x) = D ◦H(x) ·

(
1 + o(1)

)
.

Since D ◦H(x) has a non-degenerate critical point at x0, so does q. This completes
the proof. �

2.2. M is open. — Here we prove that M – defined in (1.9) – is open in M. We fix
a Riemannian structure on X and consider Hessians of smooth functions on X as
symmetric endomorphisms of TX – see Remark 2.1. Define f : M×X → R by

(2.5) f(A, x)
def
= Det

[(
∇2(D ◦A)

)
(x)
]2

+D ◦A(x).

Fix x ∈ X and H ∈M. If H(x) ∈ E∗, then f(H,x) > D ◦H(x) > 0. If H(x) /∈ E∗,
then H(x) has a conical degeneracy at x. Because of Lemma 2.1, D ◦H has a non-
degenerate critical point at x, thus

f(H,x) > Det
[(
∇2(D ◦H)

)
(x)
]2
> 0.

We deduce that f(H, ·) is positive on X; since X is compact, infx∈X f(H,x) > 0.
Since X is compact and f(A, ·) depends only on the first two derivatives of A, there

exists a constant C depending only on ‖H‖C2 such that

(2.6) ‖B‖C2 6 1 =⇒
∣∣f(H +B, x)− f(H,x)

∣∣ 6 C‖B‖C2 .

Since infx∈X f(H,x) > 0, there exists ε0 > 0 such that whenever ‖B‖C2 6 ε0, for
every x ∈ X, f(H +B, x) > 0.

Hence, if ‖B‖ 6 ε0 and x ∈ X, then either:
– D

(
H(x) +B(x)

)
> 0, that is H(x) +B(x) ∈ E∗;

– or D
(
H(x) +B(x)

)
> 0 and Det

[(
∇2D(H +B)

)
(x)
]2
> 0.

In the latter, x is a non-degenerate critical point of D(H + B). Thus x is a conical
degeneracy of H +B. This shows that H +B ∈M, hence M is open in M.

3. M is dense

In this section we show that M is dense in M. When N = 2, this follows from
Sard’s theorem and the fact that D(A) is the sum of 3 = dim(X) squares depending
smoothly on A; see Section 3.1.

Two new problems arise for N > 3. Degeneracies can be more intricate: triple
eigenvalues or pairs of double eigenvalues may arise. In Section 3.2, we show that
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these are too rare to be significant in our problem. This will allow us to focus on
N ×N families of matrices with at least N − 1 distinct eigenvalues.

The other obstacle is more serious: for N > 3, D(A) is the sum of at least 5 squares
– see [Dom11]. Since 5 > dim(X), the arguments of Section 3.1 do not naively extend.
The key mechanism is that degeneracies of a N ×N family H ∈ L with at least N −1

distinct eigenvalues reduce locally to those of a 2× 2 family. This enables us to apply
the theory of Section 3.1 in simply connected subsets of X – see [DP12, §4] for a
related analysis. Passing from these local reductions to a global result on X is the the
technical part of the proof, see Section 3.3-3.4. We recall that in solid state physics
applications, X is generally not simply connected.

3.1. The case N = 2. — In this section only, we assume that N = 2. This consider-
ably simplifies that proof that M is dense – and it will serve in the general situation.

Proof that M is dense when N = 2. — When N = 2, the Pauli matrices σ0 = Id2, σ1,
σ2, σ3 form a basis of E. If A =

∑3
j=0 aj · σj , then

(3.1) σ(A) = a0 ± |a|, D(A) = ‖a‖2, where a = [a1, a2, a3]>.

Let H ∈M; we write H(x) =
∑3
j=0 hj(x) · σj . Let h = [h1, h2, h3]> and

C
def
=
{
t ∈ R3 : ∃x ∈ X, h(x) = t and rk

(
h′(x)

)
6 2
}

=
{
h(x) : x ∈ X, rk

(
h′(x)

)
6 2
}
.

According to Sard’s theorem, the set R3 r C is dense in R3: given ε > 0, there exists
b ∈ R3 r C with ‖b‖ 6 ε; see e.g. [GP74, §1.7]. Set B =

∑3
j=1 bjσj ; we claim that all

degeneracies of H −B are conical. Indeed from (3.1):

D
(
H(x)−B

)
=
∥∥h(x)− b

∥∥2
=

3∑

j=1

(
hj(x)− bj

)2
.

From Lemma 2.1, H − B can have a non-conical degeneracy at a point x ∈ X only
if h(x) = b and rk

(
h′(x)

)
6 2. This is always excluded because b /∈ C. Since ε was

arbitrary, we conclude that M is dense in M when N = 2. �

3.2. Removing high-multiplicity degeneracies. — We go back to N 6= 2. In this
section, we explain why we can focus our attention on family of matrices that always
have at least N − 1 distinct eigenvalues.

Lemma 3.1. — The set

F
def
=
{
A ∈ E : A has at most N − 2 distinct eigenvalues

}

has Hausdorff dimension at most N2 − 6.

See [AS78, §2] and [DE99, §3] for related results – but a different approach. Before
giving the proof of Lemma 3.1, we discuss its consequences. We aim to prove that M
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is dense in M: given H ∈M and ε > 0, there exists Hε ∈M such that d(H,Hε) 6 2ε.
Since dimX = 3 and dimH F 6 N2 − 6, the set

S =
{
H(x)− F : x ∈ X, F ∈ F

}

has Hausdorff dimension at most N2 − 3; thus Er S has full measure. In particular,
there exists B ∈ ErS such that ‖B‖ 6 ε; and H(x)+B /∈ F for every x ∈ X. That is,
H +B ∈ C∞(X,Er F).

Thus, to prove that M is dense in M, we just need to show that for every H ∈
C∞(X,Er F), there exists Hε ∈M with d(H,Hε) 6 ε.

Proof of Lemma 3.1
(1) We observe that F = F1 ∪ F2, where

F1 =
{
A ∈ E : A has a triple eigenvalue

}
, F2 = F r F1.

Therefore, it suffices to show that F1 and F2 have Hausdorff dimension at most N2−6.
(2) We observe that F1 = Φ(G1,R), where G1 consists of Hermitian N×N matrices

of rank at most N − 3; and Φ(B, λ) = B + λ. We write

(3.2) G1 =
N−3⋃
j=0

{
B ∈ E : rk(B) = j

}
;

and we recall that the sets in the RHS of (3.2) are smooth submanifolds of E, of
dimension N2 − (N − j)2 – see e.g. [GP74, §1.4]. Therefore, G1 is a finite union of
manifolds of dimensions up to N2 − 9. We deduce that dimH G1 = N2 − 9 and
dimH F1 = N2 − 8.

(3) The set F2 consists of matrices that have two distinct eigenvalues of multiplicity
two but no triple eigenvalues. We show that it has Hausdorff dimension at mostN2−6.
For A0 ∈ F2, there exists a unitary N ×N matrix U such that

U∗A0U =



λ1 Id2 0 0

0 Λ 0

0 0 λ2 Id2


 ,

where λ1 6= λ2 and Λ is a diagonal matrix of size N − 4, with no diagonal coefficients
equal to λ1 or λ2. In particular, both

[
Λ 0

0 λ2 Id2

]
− λ1 and

[
λ1 Id2 0

0 Λ

]
− λ2

are invertible (N − 2) × (N − 2) matrices. Therefore, there exists a neighborhood
Ω ⊂ E of A0 such that for any C ∈ Ω, we can write

U∗AU =

[
C1 C2

C∗2 C3

]
=

[
D3 D2

D∗2 D1

]
,

where C3 − λ1 and D3 − λ2 are (N − 2)× (N − 2) invertible matrices.
(4) If R1, R2, R3 are consistently-sized matrices, with R1 invertible,

rk

([
R1 R2

R∗2 R3

])
= rk(R1) + rk

(
R3 −R∗2R−1

1 R2

)
.
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This can be seen for instance from Schur’s complement formula:

(3.3)
[
R1 R2

R∗2 R3

] [
IdN−2 −R−1

1 R2

0 Id2

]
=

[
R1 0

R∗2 R3 −R∗2R−1
1 R2

]
.

Let Ω1,Ω2 ⊂ R be sufficiently small disjoint neighborhood of λ1, λ2 such that if
µ1 ∈ Ω1 and µ2 ∈ Ω2,

Φµ1,µ2
(A) =

(
C1 − µ1 − C∗2 (C3 − µ1)−1C2, D1 − µ2 −D∗2(D3 − µ2)−1D2

)
,

from Ω to pairs of 2×2 Hermitian matrices, is well-defined. By (3.3), Φµ1,µ2
(A) = (0, 0)

if and only if A − µ1 and A − µ2 are of rank N − 2; equivalently, if and only if µ1

and µ2 are two double eigenvalues of A.
(5) The map Φµ1,µ2

is a local submersion at A0. Indeed, we have

dΦµ1,µ2
(A0) · U



ε1 0 0

0 0 0

0 0 ε2


U∗ = (ε1, ε2).

We note that Φµ1,µ2
has range in pairs of 2×2 Hermitian matrices, which has dimen-

sion 8. Thus, by the local submersion theorem [GP74, §4], Φ−1
µ1,µ2

(0, 0) is a submanifold
of E of dimension N2 − 8.

Using continuity of eigenvalues, after potentially shrinking Ω, we have

F2 ∩ Ω =
⋃

(µ1,µ2)∈Ω1×Ω2

Φ−1
µ1,µ2

(0, 0).

Since Ω1×Ω2 has dimension 2, dimH(F2∩Ω) 6 N2−6. Since Ω ⊂ E is a neighborhood
of an arbitrary element A0 ∈ F2, F2 is a countable union of sets of dimension at most
N2 − 6, thus it has dimension at most N2 − 6. �

3.3. Removing bad points: preparatory lemmas. — Because of Section 3.2, we focus
(without loss of generalities) on H ∈ C∞(X,E r F): H has, at all points of X, at
least N−1 distinct eigenvalues. We will show in Section 3.4 that H is arbitrarily close
to M.

A naive generalization of Section 3.1 to N > 3 requires to write D(A) as a sum of
three squares depending smoothly on A ∈ E – see (3.1). This is not possible: according
to [Dom11],‘ at least 5 squares are necessary; see also [Ily92, Lax98, Par02, Dom11].
In Section 3.4, we will get around by writing D(H) locally – instead of globally – as
a sum of 3 squares. The present section lays out preparatory lemmas.

Fix x? ∈ X. According to the assumption, there exists n? ∈ [1, N − 1] such that

λ1

(
H(x?)

)
< · · · < λn?

(
H(x?)

)
6 λn?+1

(
H(x?)

)
< · · · < λN

(
H(x?)

)
.

Since eigenvalues are continuous functions of the entries, there exists an open neigh-
borhood X? ⊂ X of x? such that

(3.4) x ∈ X? =⇒ λ1

(
H(x)

)
< · · ·<λn?

(
H(x)

)
6λn?+1

(
H(x)

)
< · · ·<λN

(
H(x)

)
.

After potentially shrinking X?, there exists a ball B(0, 2r?) ⊂ R3, and a smooth
diffeomorphism φ? : B(0, 2r?)→ X? with φ?(0) = x?. We set Y? = φ

(
B(0, r?)

)
⊂ X?.
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We observe that x? ∈ Y?. Thus, the collection of open sets {Y?}x?∈X covers X and
we can pass to a finite collection, associated to points x1, . . . , xP .

Lemma 3.2. — There exists δ0 ∈ (0, 1) such that for all B ∈M with ‖H−B‖C0 6 δ0,
for every p ∈ [1, P ],

x ∈ Xp =⇒ λ1

(
B(x)

)
< · · · < λnp

(
B(x)

)
6 λnp+1

(
B(x)

)
< · · · < λN

(
B(x)

)
.

This result is a direct consequence of (3.4) with continuity of eigenvalues in the
entries of the matrix – [Ser10, Prop. 6.2].

Given A ∈ M, we say that x ∈ X is a bad point of A if A has a non-conical
degeneracy at x. We let B(A) be the set of bad points of A; in particular, A ∈ M if
and only if B(A) = ∅. Bad points are stable:

Lemma 3.3. — Let A ∈ M and Z ⊂ X be an open set such that B(A) ⊂ Z. Then
there exists η0 ∈ (0, 1) such that for all B ∈M with ‖B‖C2 6 η0, B(A+B) ⊂ Z.

Proof. — Recall (2.5) and (2.6): there exists C > 0 (depending on ‖A‖C2) such that
∥∥B
∥∥
C2 6 1 =⇒

∣∣f(A+B, x)− f(A, x)
∣∣ 6 C‖B‖C2 ,

where f(A, x)
def
= Det

[(
∇2(D ◦A)

)
(x)
]2

+D ◦A(x).
(3.5)

Moreover, f(A+B, x) = 0 if and only if x ∈ B(A+B).
On the compact set X r Z, f(A, ·) > 0. From (3.5), if ‖B‖C2 is sufficiently small,

f(A+B, ·) > 0 on X r Z. Thus B(A+B) ⊂ Z. This completes the proof. �

3.4. Proof of Theorem 3. — We refer to Figure 5 for a step-by-step pictorial expla-
nation of the proof.

Proof that M is dense in M

(1) As explained in Section 3.2, to prove density of M in M, it suffices to prove
density of M in C∞(X,ErF). Let H ∈ C∞(X,ErF). Fix 0 < ε < δ0/4, where δ0 is
given by Lemma 3.2. For each p ∈ [0, P ], we construct recursively Hp ∈M such that

d(H,Hp) 6
(
1− 2−p

)
ε; and B(Hp) ⊂ Zp, Zp

def
= Yp+1 ∪ · · · ∪ YP .

In particular, HP will satisfy d(H,HP ) 6 ε and B(HP ) = ∅.
For p = 0, we simply take H0 = H. For p > 1, we proceed by induction: we assume

that Hp−1 is constructed and we want to construct Hp.
(2) For x ∈ Xp, let V(x) be the eigenspace of Hp−1(x) associated to the eigenvalues

λnp

(
Hp−1(x)

)
and λnp+1

(
Hp−1(x)

)
. Since d(H,Hp−1) 6 ε, ‖H−Hp−1‖C0 6 δ0. Thus

Lemma 3.2 implies that for every x ∈ Xp,

(3.6) λ1

(
Hp−1(x)

)
< · · ·<λnp

(
Hp−1(x)

)
6λnp+1

(
Hp−1(x)

)
< · · ·<λN

(
Hp−1(x)

)
.

Because of (3.6), V(x) induces a rank-two vector bundle over Xp; and so does V(x)⊥.
Since Xp is diffeomorphic to a ball in R3, V and V⊥ are trivial vector bundles – see
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Y1Y2

Y3 X

B(H)

Y1Y2

Y3 X

B(H1)

Y1Y2

Y3 X

B(H2)

Y1Y2

Y3 X

B(H3) = ?

Figure 5. The proof that M is dense
goes as follows.

(a) We first cover X by topologically
trivial open sets (here Y1, Y2, Y3) on
which the degeneracies of H reduce
to those of a 2 ⇥ 2 system.

(b) In Y1, the degenerate part of H

reduces to that of a 2⇥2 system. Via
the procedure of §3.1, we can pro-
duce H1, arbitrarily close to H, with
no bad points in Y1. By Lemma 3.3,
B(H1) is a small perturbation of
B(H) r Y1.

(c) We repeat the procedure and
produce H2, arbitrarily close to H1,
with no bad points in Y2. As bad
points are stable, B(H2) is close
to B(H1). In particular passing
from H1 to H2 does not generate
bad points back in Y1 r (Y2 [ Y3),
and removes bad points in Y2.

(d) We get new systems H1, H2, H3,
recursively constructed, arbitrarily
close to H, with no bad points in
Y1, Y1[Y2rY3, Y1[Y2[Y3, respec-
tively. Since Y1 [ Y2 [ Y3 cover X,
H3 is in M and is arbitrarily close
to H.
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e.g. [Moo01, §1.3]. Therefore, they both admit unitary frames. This means that there
exists U ∈ C∞

(
Xp, U(N)

)
such that for all x ∈ Xp,

(3.7) Hp−1(x) = U(x)

[
J(x) 0

0 J(x)⊥

]
U(x)∗,

where
– J(x) is a 2 × 2 Hermitian matrix depending smoothly on x ∈ Xp, with

eigenvalues λnp

(
Hp−1(x)

)
and λnp+1

(
Hp−1(x)

)
;

– J(x)⊥ is a (N − 2) × (N − 2) Hermitian matrix depending smoothly on
x ∈ Xp, with simple eigenvalues λj

(
Hp−1(x)

)
, j /∈ {np, np + 1}.

(3) Let χ ∈ C∞(X,R) be equal to 1 on a neighborhood of Yp, with support con-
tained in Xp. Let B be a Hermitian 2× 2 matrix and define

Hp(x)
def
= Hp−1(x) + χ(x)2 · U(x)

[
B 0

0 0

]
U(x)∗.

We note that Hp ∈M: χ = 0 when U is not well-defined. As Ck(X,R) is an algebra,

‖Hp −Hp−1‖Ck 6 αk‖B‖, αk
def
= Ck‖χU‖Ck‖χU∗‖Ck .

Using that s 7→ s(1 + s)−1 increases on [0,∞),

(3.8) d(Hp, Hp−1) =

∞∑

k=0

2−k
‖Hp −Hp−1‖Ck

1 + ‖Hp −Hp−1‖Ck

6
∞∑

k=0

2−k
αk‖B‖

1 + αk‖B‖
.

We split the sum in the RHS in two parts, depending whether αk is larger than
‖B‖−1/2. Since s(1 + s)−1 6 min(1, s), we deduce that

∑

αk6‖B‖−1/2

2−k
αk‖B‖

1 + αk‖B‖
6 2‖B‖1/2,

∑

αk>‖B‖−1/2

2−k
αk‖B‖

1 + αk‖B‖
6 2−kB+1,

where kB is the smallest integer such that αk > ‖B‖−1/2 (with kB = ∞ if no such
integer exist). In particular, kB → ∞ as ‖B‖ → 0. Going back to (3.8), we deduce
that

(3.9) d(Hp, Hp−1) 6 2
(
‖B‖1/2 + 2−kB

)
−→ 0 as ‖B‖ −→ 0.

(4) Let η0 be associated to Hp−1 and Zp−1 by Lemma 3.3. Thanks to Section 3.1
and (3.9), we can find a Hermitian 2× 2 matrix B with the two following conditions:

– All degeneracies of J(x) +B in Xp are conical;
– d(Hp, Hp−1) 6 min (2−pε, η0/8).

The recursion assumption d(H,Hp−1) 6 (1−2−p−1)ε and d(Hp, Hp−1) 6 2−pε yield
d(H,Hp) 6

(
1− 2−p

)
ε. Moreover, d(Hp, Hp−1) 6 η0/8 implies ‖Hp −Hp−1‖C2 6 η0.

From Lemma 3.3 and the recursion assumption B(Hp−1) ⊂ Zp−1, B(Hp) ⊂ Zp−1.
(5) To complete the recursion, it remains to show that B(Hp) ⊂ Zp; equivalently,

that Hp has no bad degeneracies in Yp. When χ(x) = 1 (i.e., on a neighborhood of Yp),

(3.10) Hp(x) = U(x)

[
J(x) +B 0

0 J(x)⊥

]
U(x)∗.
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Using (3.7), the identity (3.10) implies that when χ(x) = 1, the eigenvalues of Hp(x)

are: λj
(
Hp−1(x)

)
for j 6= np, np + 1; and λj

(
J(x) +B

)
, j = 1, 2.

From (3.6), the only possible degeneracies of Hp in {χ = 1} arise from λ1

(
J +B

)

and λ2

(
J + B

)
. By definition of B, all such degeneracies are conical. Since Yp ⊂

{χ = 1}, we get B(Hp) ∩ Yp = ∅. This completes the recursion and the proof of
Theorem 3. �

4. Proof of Theorem 1

Proof that L is open in L. — The proof is similar to Section 2. Fix H ∈ L; let
{ζ1, . . . , ζJ} be the (finite) set of points of [0, 1]× T2, such that λn(H) and λn+1(H)

degenerate.
For each j ∈ [1, J ], let γj be a contour enclosing λn

(
H(ζj)

)
= λn+1

(
H(ζj)

)
, but no

other eigenvalue of H(ζj). Using continuity of eigenvalues, there exist ε0 and r0 > 0

such that for B ∈ L with ‖B‖C2 6 ε0 and ζ ∈ B(ζj , r0), γj encloses λn
(
H(ζ) +B(ζ)

)

and λn+1

(
H(ζ) +B(ζ)

)
but no other eigenvalues of H(ζ) +B(ζ).

Without loss of generality, the balls B(ζj , r0) are disjoints. For ζ ∈ B(ζj , r0), intro-
duce, similarly to (2.3),

G1(ζ,B)
def
= Tr

[∫

γj

z
(
z −H(ζ)−B(ζ)

)−1 dz

2πi

]
=

n+1∑

j=n

λj
(
H(ζ) +B(ζ)

)
,

G2(ζ,B)
def
= Tr

[∫

γj

z2
(
z −H(ζ)−B(ζ)

)−1 dz

2πi

]
=

n+1∑

j=n

λj
(
H(ζ) +B(ζ)

)2
,

G(ζ,B)
def
= 2G2(ζ,B)−G1(ζ,B)2 =

(
λn+1

(
H(ζ) +B(ζ)

)
− λn

(
H(ζ) +B(ζ)

))2

.

We note that G(ζj , 0) = 0 hence ∇2
ζG(ζj , 0) > 0, because λn(H) and λn+1(H) may

only degenerate conically. The identity G = 2G2−G2
1 and the Cauchy representation

of G1 and G2 imply that for some C > 0 and all ζ ∈ Ω,
∣∣∇2

ζG(ζ,B)−∇2
ζG(ζ, 0)

∣∣ 6 C‖B‖C2 .

Therefore, after possibly shrinking ε0 and Ω,

‖B‖C2 6 ε0, ζ ∈ Ω =⇒ ∇2
ζG(ζ,B) > 0.

Thus, if λn
(
H(ζ) + B(ζ)

)
= λn+1

(
H(ζ) + B(ζ)

)
for ζ ∈ Ω, then this degeneracy is

conical. Finally, after shrinking ε0, λn
(
H +B

)
and λn+1

(
H +B

)
cannot degenerate

outside Ω. This shows that H +B ∈ L: L is open in L. �

Proof that L is dense in L

(1) We show that L is dense in L. Since eigenvalues are Lipschitz functions of the
matrix entries, we deduce from (1.1) that there exists η0 ∈ (0, 1) such that for every
T ∈ E,

(4.1) ‖T‖ 6 4η0, ξ ∈ T2 =⇒
{
λn+1

(
H0(ξ) + T

)
> λn

(
H0(ξ) + T

)

λn+1

(
H1(ξ) + T

)
> λn

(
H1(ξ) + T

) .
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(2) LetH∈L:H is smooth on (0, 1)×T2, with bounded derivatives; and connectsH0

toH1. Seeley’s operator [See64] extendsH as an element of C∞0 ((−π, π)× T2,E), thus
as an element of C∞(T3,E) (still denoted H).

Let χ0, χ1 ∈ C∞0 (T1, [0, 1]) with χ0(0) = χ1(1) = 1 and

supp(χ0) ⊂ (−δ0, δ0)/(2πZ), supp(χ0) ⊂ (1− r0, 1 + r0)/(2πZ), r0
def
=

η0

1 + ‖H‖C1

.

For H ∈ C∞(T3,E), we introduce

(4.2) H(s, ξ) = H(s, ξ) + χ0(s)
(
H0(ξ)−H(0, ξ)

)
+ χ1(s)

(
H1(ξ)−H(1, ξ)

)
.

We observe that H restricts to [0, 1]× T2 as an element of L: it varies smoothly with
(s, ξ) and connects H0 to H1.

(3) Fix ε > 0. Using (4.2) and that Ck(T3,E) is an algebra, we have ‖H −H‖Ck 6
Ck‖H −H‖Ck for some Ck > 0. As in Step 3 in Section 3.4 there exists η1 ∈ (0, η0)

with
d(H,H) 6 η1 =⇒ d(H,H) 6 ε.

We now demand that H ∈M, and d(H,H) 6 η1; such H exist by Theorem 3. Under
these conditions, H defined by (4.2) satisfies d(H,H) 6 ε; we claim that λn(H) and
λn+1(H) can only degenerate conically in [0, 1]× T2.

(4) For (s, ξ) ∈ (r0, 1−r0)×T2, we have H(s, ξ) = H(s, ξ). Since H ∈M, we deduce
that λn(H) and λn+1(H) can only degenerate conically in (r0, 1− r0)× T2.

For (s, ξ) ∈ [0, r0]× T2, we have
∥∥H(s, ξ)−H0(ξ)

∥∥ 6 ‖H(s, ξ)−H0‖+ ‖H0(ξ)−H(0, ξ)‖
6 ‖H(s, ξ)−H(0, ξ)‖+ 2‖H0(ξ)−H(0, ξ)‖
6 r0‖H‖C1 + 2δ 6 r0(δ + ‖H‖C1) + 2δ 6 3η0.

In the last line, we used the definition of r0 and the inequality δ < η0 < 1. Thanks
to (4.1), we deduce that λn(H) and λn+1(H) cannot cross in [0, r0] × T2. A similar
argument shows that they cannot cross in [1− r0, 1]× T2.

Hence, the restriction of H to [0, 1] × T2 is in L; and d(H,H) 6 ε. Since ε was
arbitrary, L is dense in L. This completes the proof of Theorem 1. �

5. Chern number difference

Proof of Theorem 2

(1) We start with a few notations and definitions. Let H ∈ L. Let R be the set of
points ζ = (s, ξ) ∈ [0, 1]× T2 such that λn

(
H(ζ)

)
< λn+1

(
H(ζ)

)
. For ζ ∈ R, we can

represent the projector Πn(ζ) to the first n eigenspaces of H(ζ) as a Cauchy integral:

(5.1) Πn(ζ) =
1

2πi

∮

γn(ζ)

(
z −H(ζ)

)−1
dz,

where γn(ζ) ⊂ C encloses λ1

(
H(ζ)

)
, . . . , λn

(
H(ζ)

)
but no other eigenvalue of H(ζ).

If {s} × T2 ⊂ R, then Πn(s, ·) induces a vector bundle over T2: the fiber at ξ ∈ T2 is
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Range
(
Πn(s, ξ)

)
. We let S be the set of s ∈ [0, 1] such that Vs is not well-defined –

equivalently, S = {s ∈ [0, 1] : ∃ ξ ∈ T2, (s, ξ) /∈ R}.
For ζ ∈ R, we define

(5.2) Bn(ζ) = TrCN

(
Πn(ζ)

[
∂ξ1Πn(ζ), ∂ξ2Πn(ζ)

)
.

This is a smoothly varying function on R, that interprets as the Berry curvature. In
particular, Bn(ξ)dξ is a two-form; and Bn(ξ) is additive: if ζ ∈ R and λn−1

(
H(ζ)

)
<

λn
(
H(ζ)

)
, then Bn(ζ) = Bn−1(ζ) + b(ζ), where:

– Bn−1(ζ) is associated with the projector Πn−1(ζ) to the first n − 1

eigenspaces of H(ζ) – see (5.1), (5.2) with n replaced by n− 1;
– b(ζ) is associated to the rank-one projector π(ζ) to ker

(
λn
(
H(ζ)

)
−H(ζ)

)
:

b(ζ) = TrCN

(
π(ζ)

[
∂ξ1π(ζ), ∂ξ2π(ζ)

])
.

For s ∈ [0, 1] r S, the Chern number of Vs is the integer

c1(Vs) =
1

2πi

∫

T2

Bn(s, ξ)dξ.

In Step 6, we will use the space of 2×2 traceless Hermitian matrices E0. This space
is equipped with the Hermitian inner product 〈T1, T2〉 = Tr(T1T2); the Pauli matrices
σ1, σ2, σ3 form an orthonormal basis. If σ̃1, σ̃2, σ̃3 is another orthonormal basis, then
there exists U ∈ SU(2) (unique up to multiplication by ± Id2) and ε ∈ {±1} such
that

(5.3) σ̃k = ε · UσkU∗, 1 6 k 6 3.

This is precisely the content of the isomorphism between SU(2)/{± Id2} and SO(3);
see e.g. [Sin05, §4.2]. The number ε ∈ {±1} reads as the determinant of the (orthog-
onal) matrix of the basis (σ̃1, σ̃2, σ̃3) in the basis (σ1, σ2, σ3).

(2) Since H ∈ L, the sets [0, 1] r R and S are finite. The map s 7→ c1(Vs) is well–
defined on [0, 1]rS. Since it is integer-valued, it is locally constant on each sub-interval
of [0, 1] r S. We deduce that

c1(V1)− c1(V0) = lim
δ→0+

∑

s?∈S
c1(Vs?+δ)− c1(Vs?−δ)

=
1

2πi

∑

s?∈S
lim
δ→0+

∫

T2

(
Bn(s? + δ, ξ)−Bn(s? − δ, ξ)

)
dξ.

(5.4)

It remains to compute each individual summand in the RHS of (5.4). For that, we use
the techniques developed in [Dro19a, §2] – and we refer to that paper for full details.

(3) Fix s? ∈ S; let Z be the set of points ξ ∈ T2 such that (s?, ξ) /∈ R. Using that
B(ζ) depends smoothly on ζ ∈ R, we deduce that for r sufficiently small,

(5.5)
∫

T2

(
Bn(s? + δ, ξ)−Bn(s? − δ, ξ)

)
dξ

=
∑

ξ?∈Z

∫

|ξ−ξ?|6r

(
Bn(s? + δ, ξ)−Bn(s? − δ, ξ)

)
dξ +O(δ).

J.É.P. — M., 2021, tome 8



Ubiquity of conical points in topological insulators 527

We refer to the proof of [Dro19a, Lem. 2.1] for details. Hence, it suffices to estimate
each summand in the RHS of (5.5).

(4) Fix ζ? = (s?, ξ?) ∈ Z. Since H ∈ L, λn(H) and λn+1(H) degenerate conically
at ζ?. In particular, λn

(
H(ζ?)

)
> λn−1

(
H(ζ?)

)
. Therefore, Πn−1(ζ) – hence B(ζ) –

depend smoothly on ζ near ζ?. Using the additivity of the Berry curvature, we get

(5.6) Bn(ζ? + ε) = b(ζ? + ε) +O(1),

for ε sufficiently small. We refer to the proof of [Dro19a, (2.21)] for details. It remains
to understand b(ζ) near ζ?, hence π(ζ) and its derivatives near ζ?.

(5) Let {f1, f2} be an orthonormal basis of ker
(
H(ζ?)− λn

(
H(ζ?)

)
. We define

J : CN −→ C2, Jf =

[〈f, f1〉
〈f, f2〉

]
.

We write a Taylor development of the 2× 2 matrix JH(ζ)J∗ near ζ?:

JH(ζ? + ε)J∗ = JH(ζ?)J
∗ +

3∑

j=1

Bjεj +O(ε2).

We note that JH(ζ?)J
∗ = λn

(
H(ζ?)

)
· Id2 by definition of J . We write Bj in the basis

of Pauli matrices: Bj =
∑3
k=0 ajkσk. This yields

JH(ζ? + ε)J∗ =

(
λn
(
H(ζ?)

)
+

3∑

j=1

aj0εj

)
· Id2 +

3∑

j,k=1

ajkσkεj +O(ε2).

Let A? be the 3 × 3 matrix with entries ajk, 1 6 j, k 6 3. From Section 3.1, the
eigenvalues of JH(ζ? + ε)J∗ are

(5.7) λn
(
H(ζ?)

)
+ 〈a0, ε〉 ± |A?ε|+O(ε2).

On the other hand, the eigenvalues of JH(ζ? + ε)J∗ are λn
(
H(ζ? + ε)

)
+ O(ε2) and

λn+1

(
H(ζ? + ε)

)
+ O(ε2) – for details, see the proof of [Dro19a, (2.19)]. Since these

intersect conically, A? must be invertible.
For ε 6= 0, the matrix

∑3
j,k=1 ajkσkεj has two opposite, distinct eigenvalues. Let

π0(ε) be the projector to the negative eigenvalue. Then

π(ζ? + ε) = π0(ε) +O(|ε|), ∇π(ζ? + ε) = ∇π0(ε) +O(1),

∇π(ζ? + ε) = O(|ε|−1), ∇π0(ζ? + ε) = O(|ε|−1).

We refer to the proof of [Dro19a, Lem. 2.4] for such estimates. It follows that

b(ζ? + ε) = b0(ε) +O(|ε|−1), where b0(ε) = TrCN

(
π0(ε)

[
∂ξ1π0(ε), ∂ξ2π0(ε)

])
.

Grouping with (5.6), we obtain Bn(ζ? + ε) = b0(ε) +O(|ε|−1). In particular,
∫

|ξ−ξ?|6r
Bn(s? ± δ, ξ)dξ =

∫

|ξ−ξ?|6r
b0(±δ, ξ − ξ?)dξ +O

(∫

|ξ−ξ?|6r

1

|ξ − ξ?|
dξ

)

=

∫

|ξ|6r
b0(±δ, ξ)dξ +O(r).

(5.8)
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(6) Since A? is invertible, the three matrices Aj =
∑3
k=1 ajkσk, 1 6 j 6 3,

form a basis of E0. We apply the Gran–Schmidt process to (A1, A2, A3): there ex-
ists (σ̃1, σ̃2, σ̃3) orthonormal basis of E0 and (tjk) ∈ M3(R) upper triangular with
positive elements on the diagonal such that Aj =

∑3
k=1 tjkσ̃k.

We write σ̃k = ε? ·UσkU∗, where ε? is the determinant of (σ̃1, σ̃2, σ̃3) with respect
to (σ1, σ2, σ3) – see (5.3). In particular, ε? = sgn

(
det(A?)

)
. It follows that

Aj = ε? · U
( 3∑

k=1

tjkσk

)
U∗,

3∑

j,k=1

ajkσkεj = ε? · U
( 3∑

j,k=1

tjkσkεj

)
U∗.

Hence, π0(ε) is, up to conjugation, the projector associated to the negative eigenvalue
of ε? ·

∑3
j,k=1 tjkσkεj .

We define more appropriate coordinates

(5.9) ξ̃1 =
t12δ + t22ξ1

t11δ
, ξ̃2 =

t13δ + t23ξ1 + t33ξ2
t11δ

.

Using invariance of two-forms under change of coordinates, b0(ξ)dξ = b̃0(ξ̃)dξ̃, where
b̃0(±δ, ξ̃)dξ is the two-form associated to the negative eigenspace of

ε?δ · t11

(
σ1 + σ2ξ̃1 + σ3ξ̃2

)
.

This setup allows us to apply [FC13, (23)], which gives:

b̃0(±δ, ξ̃) =
iε3?(±δ)3

2δ3
(
ξ̃2
1 + ξ̃2

2 + 1
)3/2




1

ξ̃1
ξ̃2


 ·




0

1

0


 ∧




0

0

1


 =

±ε?
2
(
ξ̃2
1 + ξ̃2

2 + 1
)3/2 .

Under the change of coordinates (5.9), the disk |ξ| 6 r gets mapped to an ellipse
centered at distance O(1) from the origin, of dimensions ∼ δ−1. Thus,

(5.10)
∫

|ξ|6r
b0(±δ, ξ)dξ =

∫

R2

b0(±δ, ξ)dξ +O(δ) = ±ε?π +O(δ).

We refer to the proof of [Dro19a, Lem. 2.5] for details.
(7) Grouping (5.4), (5.5), (5.8) and (5.10), we end up with

c1(V1)− c1(V0) =
∑

ζ?∈R
ε? +O(r + δ) =

∑

ζ?∈R
sgn
(
det(A?)

)
+O(r + δ).

Making δ → 0, we end up with

(5.11) c1(V1)− c1(V0) =
∑

ζ?∈R
sgn
(
det(A?)

)
+O(r).

Taking r sufficiently small, the term O(r) is at most 1/2. Since both sides of (5.11)
are integers, we end up with

c1(V1)− c1(V0) =
∑

ζ?∈R
sgn
(
det(A?)

)
.

This completes the proof. �
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Appendix. Continuous approximation

Let H ∈ L with a conical degeneracy at (s0, ξ0) ∈ (0, 1) × T2 and Hδ defined
as in (1.7). In this appendix, we derive formally the effective Dirac equation (1.10).
It describes the evolution of amplitudes to solutions of (Dt − Hδ)ψ = 0 that are
initially concentrated (in phase-space) near (Re1 + s0e2, ξ0).

A.1. Reduction to (s0, ξ0) = (0, 0). — We show that Hδ is unitarily equivalent to
an operator with a conical degeneracy at (0, 0). Define

H̃s(ξ) = Hs0+s(ξ + ξ0), H̃s−s0(ξ − ξ0) = Hs(ξ),

and H̃s, Q̃δ, H̃δ relative to H̃, according to (1.4) and (1.7).
For m ∈ Z2, set ` = m −

[
δ−1s0

]
e2, where

[
δ−1s0

]
stands for the integer part of

δ−1s0. For φ ∈ `2(Z2,CN ), we have:

eiξ0` ·
(
Q̃δφ

)
(`) = eiξ0` ·

(
Q̃δn2−s0φ

)
(`)

=

∫

T2

ei(ξ+ξ0)` · H̃δn2−s0(ξ)φ̂(ξ) · dξ

(2π)2

=

∫

T2

eiξ` · H̃δn2−s0(ξ − ξ0)φ̂(ξ − ξ0) · dξ

(2π)2

=

∫

T2

eiξ` ·Hδn2
(ξ)êiξ0·φ(ξ) · dξ

(2π)2
=
(
Qδeiξ0·φ

)
(`).

This means that U Q̃δU∗ = Qδ, where

Uφ(m) =
(
eiξ0·φ

) (
m− [δ−1s0]e2

)
, U∗φ(m) = eiξ0m · φ

(
m+ [δ−1s0]e2

)
.

This implies UH̃δU∗ = Hδ: H̃δ and Hδ are unitarily equivalent.

A.2. Effective equation. — Since Hs(ξ) has a conical degeneracy at (s0, ξ0), there
exists f1, f2 ∈ CN satisfying (1.5). As δ → 0, we derive (formally) the leading asymp-
totics of Hδφ = Qδφ+O(δ), where

(A.1) φ(m) = eiξ0m ·
2∑

j=1

αj(s0e2 + δ1/2m)fj ∈ `2(Z2,CN ), α ∈ C∞0 (R2,CN ).

After rescaling, φ is semiclassically (scale δ) localized near (Re1+s0e2, ξ0). We write
(A.1) as φ ' U∗ϕ, where ϕ(m) =

∑2
j=1 αj(δ

1/2m)fj = J∗α(δ1/2m), and J : CN → C2

is the operator of (1.5). Using a Riemann sum argument, we observe that as δ → 0,

δ · ϕ̂(δ1/2ξ) = J∗
(
δ
∑

m∈Z2

e−iδ
1/2ξmα(δ1/2m)

)

' J∗
(∫

R2

e−iξxα(x)dx

)
= J∗α̂(ξ).

(A.2)
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Thanks to Section A.1, we have Hδφ = HδU∗ϕ = U∗H̃δϕ. Now, we compute H̃δϕ:
(
H̃δϕ

)
(m) '

(
Q̃δϕ

)
(m) =

(
H̃δm2

ϕ
)

(m) =

∫

T2

eiξm · H̃δm2
(ξ)ϕ̂(ξ) · dξ

(2π)2

=

∫

δ−1T2

eiδ
1/2ξm ·Hδm2

(δ1/2ξ)ϕ̂(δ1/2ξ) · δdξ
(2π)2

,

(A.3)

where we made the substitution ξ 7→ δ1/2ξ. Since ϕ is spectrally concentrated near 0,
it is reasonable to replace the integration domain in (A.3) to R2. Using (A.2), we get

(A.4)
(
H̃δϕ

)
(m) '

∫

R2

eiδ
1/2ξm ·Hδm2(δ1/2ξ)J∗α̂(ξ) · dξ

(2π)2
.

The identity (1.5) allows us to expand Hδm2
(δ1/2ξ)J∗ as

(A.5) Hδm2
(δ1/2ξ)J∗ ' J∗

(
E0 + δ1/2 · /D(δ1/2m2, ξ)

)
,

where /D(s, ξ) is a family of 2× 2 matrices depending linearly on (s, ξ), and E0 is the
energy of the conical crossing. Plugging (A.5) into (A.4), we obtain

(
H̃δϕ

)
(m) ' J∗

∫

R2

eiδ
1/2ξm ·

(
E0 + δ1/2 /D(δ1/2m2, ξ)

)
α̂(ξ) · dξ

(2π)2

= J∗
(
E0 + δ1/2 /D

)
α(δ1/2m),

where /D = /D(x2, Dx) is a Dirac operator. Since ϕ(m) = J∗α(δ1/2m), this means
that J∗ approximately intertwines between H̃δ and E0 + δ1/2 /D, for adiabatic data.

Up to a phase and a time-rescaling, the equations Dt − E0 − δ1/2 /D and Dt − /D

are equivalent. Using the above intertwining, we conclude that (Dt −Hδ)ψ = 0 has
approximate solutions whose asymptotics are slow linear combinations of f1 and f2:

ei(E0t+ξ0m) ·
2∑

j=1

βj
(
δ1/2t, s0e2 + δ1/2m

)
fj ,

with amplitudes βj(t, x) solving the Dirac equation (1.10): (Dt − /D)β = 0.
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