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ON A TOPOLOGICAL COUNTERPART OF

REGULARIZATION FOR HOLONOMIC D-MODULES

by Andrea D’Agnolo & Masaki Kashiwara

Abstract. — On a complex manifold, the embedding of the category of regular holonomic D-
modules into that of holonomic D-modules has a left quasi-inverse functor M → Mreg, called
regularization. Recall that Mreg is reconstructed from the de Rham complex of M by the
regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of
sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification.
Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspon-
dence. Here, we study some of the properties of the sheafification functor. In particular, we
provide a stalk formula for the sheafification of enhanced specialization and microlocalization.

Résumé (Sur un analogue topologique de la régularisation pour les D-modules holonomes)
Sur une variété complexe lisse, l’inclusion de la catégorie des D-modules holonomes régu-

liers dans celle des D-modules holonomes admet un foncteur quasi-inverse à gauche M → Mreg,
appelé régularisation. Rappelons que Mreg est reconstruit à partir du complexe de de Rham
de M par la correspondance de Riemann-Hilbert régulière. De même, sur un espace topolo-
gique, l’inclusion des faisceaux dans les ind-faisceaux enrichis admet un foncteur quasi-inverse à
gauche, qu’on appelle ici faisceautisation. La régularisation et la faisceautisation sont échangées
par la correspondance de Riemann-Hilbert irrégulière. Dans ce travail, nous étudions certaines
des propriétés du foncteur de faisceautisation. En particulier, nous fournissons une formule qui
calcule la fibre du faisceautisé de la spécialisation et de la microlocalisation enrichies.
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28 A. D’Agnolo & M. Kashiwara

1. Introduction

Let X be a complex manifold. The regular Riemann-Hilbert correspondence
(see [7]) states that the de Rham functor induces an equivalence between the triangu-
lated category of regular holonomic D-modules and that of C-constructible sheaves.
More precisely, one has a diagram

Db
hol(DX)

DR

((

Db
rh(DX)

OO
ι

OO

DR
∼ //

Db
C-c(CX)

Φ
oo

where ι is the embedding (i.e. fully faithful functor) of regular holonomic D-modules
into holonomic D-modules, the triangle quasi-commutes, DR is the de Rham functor,
and Φ is an (explicit) quasi-inverse to DR.

The regularization functor reg : Db
hol(DX) → Db

rh(DX) is defined by Mreg :=

Φ(DR(M )). It is a left quasi-inverse to ι, of transcendental nature. Recall that
(ι, reg) is not a pair of adjoint functors.(1) Recall also that reg is conservative.(2)

Let k be a field and M be a good topological space. Consider the natural em-
beddings Db(kM ) //

ι // Db(IkM ) //
e // Eb

st(IkM ) of sheaves into ind-sheaves into stable
enhanced ind-sheaves. One has pairs of adjoint functors (α, ι) and (e, Ish), and we set
sh := α Ish:

sh : Eb
st(IkM )

Ish−−−→ Db(IkM )
α−−→ Db(kM ).

We call Ish and sh the ind-sheafification and sheafification functor, respectively. The
functor sh is a left quasi-inverse of e ι.

For k = C and M = X, the irregular Riemann-Hilbert correspondence (see [1])
intertwines(3) the pair (ι, reg) with the pair (e ι, sh). In particular, the pair (e ι, sh) is
not a pair of adjoint functors in general.

With the aim of better understanding the rather elusive regularization functor, in
this paper we study some of the properties of the ind-sheafification and sheafification
functors. More precisely, the contents of the paper are as follows.

In Section 2, besides recalling notations, we establish some complementary results
on ind-sheaves on bordered spaces that we need in the following. Further complements
are provided in Appendix A.

Some functorial properties of ind-sheafification and sheafification are obtained in
Section 3. In Section 4, we obtain a stalk formula for the sheafification of a pull-back
by an embedding. (At the level of D-modules, the interest of such a formula is due to
the lack of commutation between the de Rham functor and the restriction functor.)
Then, these results are used in Section 5 to obtain a stalk formula for the sheafification

(1)By saying that (ι, reg) is a pair of adjoint functors, we mean that ι is the left adjoint of reg.
(2)In fact, if Mreg ' 0 then DR(M ) ' DR(Mreg) ' 0, and hence M ' 0.
(3)Using formula (3.1) below, this follows from [1, Cor. 9.6.7].
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On a topological counterpart of regularization 29

of enhanced specialization and microlocalization. In particular, the formula for the
specialization puts in a more geometric perspective what we called multiplicity test
functor in [2, §6.3].

Finally, we provide in Appendix B a formula for the sections of a weakly con-
structible sheaf on a locally closed subanalytic subset, which could be of independent
interest.

2. Notations and complements

We recall here some notions and results, mainly to fix notations, referring to the
literature for details. In particular, we refer to [9] for sheaves, to [13] (see also [5, 3])
for enhanced sheaves, to [10] for ind-sheaves, and to [1] (see also [12, 8, 3]) for bordered
spaces and enhanced ind-sheaves. We also add some complements.

– In this paper, k denotes a base field.
– A good space is a topological space which is Hausdorff, locally compact, countable

at infinity, and with finite soft dimension.
– By subanalytic space we mean a subanalytic space which is also a good space.

2.1. Bordered spaces. — The category of bordered spaces has for objects the pairs
M = (M,C) with M an open subset of a good space C. Set

◦
M := M and

∨
M := C.

A morphism f : M → N is a morphism
◦
f :

◦
M →

◦
N of good spaces such that the

projection Γf →
∨
M is proper. Here, Γf denotes the closure in

∨
M×

∨
N of the graph Γf

of
◦
f .
Note that M 7→

∨
M is not a functor. The functor M 7→

◦
M is right adjoint to the

embedding M 7→ (M,M) of good spaces into bordered spaces. We will write for short
M = (M,M).

Note that the inclusion kM :
◦
M→

∨
M factors into

(2.1) kM :
◦
M

iM−−−→ M
jM−−−→

∨
M.

By definition, a subset Z of M is a subset of
◦
M. We say that Z ⊂ M is open

(resp. closed, locally closed) if it is so in
◦
M. For a locally closed subset Z of M, we set

Z∞ = (Z,Z) where Z is the closure of Z in
∨
M. Note that U∞ ' (U,

∨
M) for U ⊂ M

open.
We say that Z is a relatively compact subset of M if it is contained in a compact

subset of
∨
M. Note that this notion does not depend on the choice of

∨
M. This means

that if N is a bordered space with N ' M and
◦
N =

◦
M, then Z is relatively compact

in M if and only if it is so in N.
An open covering {Ui}i∈I of a bordered space M is an open covering of

◦
M which

satisfies the condition: for any relatively compact subset Z of M there exists a finite
subset I ′ of I such that Z ⊂

⋃
i∈I′ Ui.

We say that a morphism f : M→ N is
(i) an open embedding if

◦
f is a homeomorphism from

◦
M onto an open subset of

◦
N,

J.É.P. — M., 2021, tome 8



30 A. D’Agnolo & M. Kashiwara

(ii) borderly submersive if there exists an open covering {Ui}i∈I of M such that for
any i ∈ I there exist a subanalytic space Si and an open embedding gi : (Ui)∞ → Si×N
with a commutative diagram of bordered spaces

(Ui)∞ //

gi
��

M

f
��

Si × N pi
// N

where pi is the projection,
(iii) semiproper if Γf →

∨
N is proper,

(iv) proper if it is semiproper and
◦
f :

◦
M→

◦
N is proper,

(v) self-cartesian if the diagram

◦
M

◦
f
//

iM
��

◦
N

iN
��

M
f
// N

is cartesian.

Recall that, by [1, Lem. 3.3.16], a morphism f : M→ N is proper if and only if it is
semiproper and self-cartesian.

2.2. Ind-sheaves on good spaces. — Let M be a good space.
We denote by Db(kM ) the bounded derived category of sheaves of k-vector spaces

on M . For S ⊂M locally closed, we denote by kS the extension by zero to M of the
constant sheaf on S with stalk k.

For f : M → N a morphism of good spaces, denote by ⊗, f−1, Rf! and RHom,
Rf∗, f ! the six operations. Denote by � the exterior tensor product and by DM the
Verdier duality functor.

We denote by Db(IkM ) the bounded derived category of ind-sheaves of k-vector
spaces on M , and by ⊗, f−1, Rf!! and RIhom, Rf∗, f ! the six operations. Denote
by � the exterior tensor product and by DM the Verdier duality functor.

There is a natural embedding ιM : Db(kM ) → Db(IkM ). It has a left adjoint αM ,
which in turn has a left adjoint βM . The commutativity of these functors with the
operations is as follows

(2.2)

� f−1 Rf∗ f ! Rf!!

ι ◦ ◦ ◦ ◦ ×
α ◦ ◦ ◦ × ◦
β ◦ ◦ × × ×

where “◦” means that the functors commute, and “×” that they don’t.
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2.3. Ind-sheaves on bordered spaces. — Let M be a bordered space. Setting

Db(kM) := Db(k∨
M

)/Db(k∨
Mr

◦
M

),

one has Db(kM) ' Db(k ◦
M

).
The bounded derived category of ind-sheaves of k-vector spaces on M is defined by

Db(IkM) := Db(Ik∨
M

)/Db(Ik∨
Mr

◦
M

).

There is a natural embedding

ιM : Db(k ◦
M

) ' Db(kM) −→ Db(IkM)

induced by ι∨
M
. It has a left adjoint

αM : Db(IkM) −→ Db(k ◦
M

),

which in turn has a left adjoint βM. One sets RHom := αMRIhom, a functor with
values in Db(k ◦

M
).

For F ∈ Db(k ◦
M

), we often simply write F instead of ιMF in order to make notations
less heavy.

For operations, we use the same notations as in the case of good spaces. Recall (see
[1, Prop. 3.3.19](4)) that

Rf!! ' Rf∗ if f is proper,

f ! ' f !k◦
N
⊗ f−1 if f : M −→ N is borderly submersive.(2.3)

The last statement implies

(2.4) f ! commutes with α if f is borderly submersive.

With notations (2.1), (2.3) implies that

(2.5) i−1
M ' i !M , j−1

M ' j !
M .

The quotient functor Db(Ik∨
M

) → Db(IkM) is isomorphic to j−1
M ' j !

M and has a
left adjoint RjM !! and a right adjoint RjM∗, both fully faithful.

The functors ιM, αM and βM are exact. Moreover, ιM and βM are fully faithful. This
was shown in [10] in the case of good spaces. The general case reduces to the former
by the

Lemma 2.1. — One has
(i) ιM := j−1

M ι∨
M

RkM∗ ' RiM∗ ι ◦M,
(ii) αM ' k−1

M α∨
M

RjM !! ' α ◦M i−1
M ,

(iii) βM ' RiM !! β ◦M.

(4)The statement of this proposition is erroneous. The first isomorphism in loc. cit. may not hold
under the condition that

◦
f is topologically submersive. However, it holds if f is borderly submersive.

The second isomorphism, i.e. (2.3), holds under the condition that
◦
f is topologically submersive.

J.É.P. — M., 2021, tome 8



32 A. D’Agnolo & M. Kashiwara

Proof. — One has

j−1
M ι∨

M
RkM∗ '

(∗)
j−1
M RkM∗ ι ◦M ' j

−1
M RjM∗RiM∗ ι ◦M ' RiM∗ ι ◦M,

where (∗) follows from (2.2).
This proves (i). Then (ii) and (iii) follow by adjunction. �

For bordered spaces, the commutativity of the functor α with the operations is as
follows.

Lemma 2.2. — Let f : M→ N be a morphism of bordered spaces.
(i) There are a natural isomorphism and a natural morphism of functors

◦
f−1 αN ' αM f

−1, αM f
! −→

◦
f ! αN,

and the above morphism is an isomorphism if f is borderly submersive.
(ii) There are natural morphisms of functors

R
◦
f ! αM −→ αN Rf!! , αN Rf∗ −→ R

◦
f∗ αM,

which are isomorphisms if f is self-cartesian.
(iii) For K ∈ Db(IkM) and L ∈ Db(IkN) one has

αM×N(K �L) ' (αMK)� (αNL).

Proof
(i)(a) By Lemma 2.1(ii) and (2.2), one has

◦
f−1 αN '

◦
f−1 α◦

N
i−1
N ' α ◦

M

◦
f−1 i−1

N ' α ◦
M
i−1
M f−1 ' αM f

−1.

(i)(b) By Lemma 2.1(ii), the morphism is given by the composition

α ◦
M
i−1
M f ! (∗)

−−−→∼ α ◦
M

◦
f ! i−1

N

(∗∗)
−−−−→

◦
f ! α◦

N
i−1
N .

Here, (∗) follows from (2.5), and (∗∗) follows by adjunction from
◦
f ! −→

◦
f ! ι◦

N
α◦
N
' ι ◦

M

◦
f ! α◦

N
,

with the isomorphism due to (2.2). If f is borderly submersive, (∗∗) is an isomorphism
by (2.4).

(ii)(a) By Lemma 2.1(ii), the morphism is given by

R
◦
f ! α ◦M i

−1
M ' α◦

N
R
◦
f !! i

−1
M

(∗)
−−−→ α◦

N
i−1
N Rf!! .

Here (∗) follows by adjunction from RiN !! R
◦
f !! i

!
M ' Rf!! RiM !! i

!
M → Rf!! , recall-

ing (2.5). If f is self-cartesian, this is an isomorphism by cartesianity.
(ii)(b) By Lemma 2.1(ii) and (2.2), the morphism is given by the composition

α◦
N
i−1
N Rf∗

(∗)
−−−→ α◦

N
R
◦
f∗ i
−1
M ' R

◦
f∗ α ◦M i

−1
M .

Here (∗) follows from Lemma A.3.
Recall (2.5). If f is self-cartesian, then (∗) is an isomorphism by cartesianity.
(iii) follows from αM ' α ◦M i

−1
M and (2.2). �

J.É.P. — M., 2021, tome 8
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2.4. Enhanced ind-sheaves. — Denote by t ∈ R the coordinate on the affine line,
consider the two-point compactification R := R ∪ {−∞,+∞}, and set R∞ := (R,R).
For M a bordered space, consider the projection

πM : M× R∞ −→ M.

Denote by Eb(IkM) := Db(IkM×R∞)/π−1
M Db(IkM) the bounded derived category of

enhanced ind-sheaves of k-vector spaces onM. Denote by Q: Db(IkM×R∞)→ Eb(IkM)

the quotient functor, and by LE and RE its left and right adjoint, respectively. They
are both fully faithful.

For f : M→ N a morphism of bordered spaces, set

fR := f × idR∞ : M× R∞ −→ N× R∞.

Denote by
+
⊗, Ef−1, Ef!! and RIhom+, Ef∗, Ef ! the six operations for enhanced

ind-sheaves. Recall that
+
⊗ is the additive convolution in the t variable, and that the

external operations are induced via Q by the corresponding operations for ind-sheaves,
with respect to the morphism fR. Denote by

+

� the exterior tensor product and by
DE the Verdier duality functor.

We have

LE Q(F ) ' (k{t>0} ⊕ k{t60})
+
⊗ F

RE Q(F ) ' RIhom+(k{t>0} ⊕ k{t60}, F ).and

The functors RIhomE and RHomE, taking values in Db(IkM) and Db(k ◦
M

), re-
spectively, are defined by

RIhomE(K1,K2) := RπM∗RIhom(F1,R
EK2)(2.6)

' RπM∗RIhom(LEK1, F2),

RHomE(K1,K2) := αMRIhomE(K1,K2),(2.7)

for Ki ∈ Eb(IkM) and Fi ∈ Db(IkM×R∞) such that Ki = QFi (i = 1, 2).
There is a natural decomposition

Eb(IkM) ' Eb
+(IkM)⊕ Eb

−(IkM),

given by

K 7−→ (Qk{t>0}
+
⊗K)⊕ (Qk{t60}

+
⊗K).

Denote by LE
± and RE

± the left and right adjoint, respectively, of the quotient functor
Q: Db(IkM×R∞)→ Eb

±(IkM).
There are embeddings

ε±M : Db(IkM) // // Eb
±(IkM) , F 7−→ Q(k{±t>0} ⊗ π−1

M F ),

and one sets εM(F ):=ε+M(F )⊕ε−M(F ) ∈ Eb(IkM). Note that εM(F ) ' Q(k{t=0}⊗π−1
M F ).

J.É.P. — M., 2021, tome 8



34 A. D’Agnolo & M. Kashiwara

2.5. Stable objects. — Let M be a bordered space. Set

k{t�0} := “lim−→”
a→+∞

k{t>a} ∈ Db(IkM×R∞),

kE
M := Qk{t�0} ∈ Eb

+(IkM).

An object K ∈ Eb
+(IkM) is called stable if kE

M

+
⊗K ∼−−→ K. We denote by Eb

st(IkM) the
full subcategory of Eb

+(IkM) of stable objects. The embedding Eb
st(IkM)� Eb

+(IkM)

has a left adjoint kE
M

+
⊗ ∗, as well as a right adjoint RIhom+(kE

M, ∗).
There is an embedding

eM : Db(IkM) // // Eb
st(IkM) , F 7−→ kE

M

+
⊗ εM(F ) ' Q(k{t�0} ⊗ π−1

M F ).

Notation 2.3. — Let S ⊂ T be locally closed subsets of M.

(i) For continuous maps ϕ± : T → R such that −∞ 6 ϕ− 6 ϕ+ < +∞, set

E
ϕ+Bϕ−
S|M := Qk{x∈S, −ϕ+(x)6t<−ϕ−(x)} ∈ Eb

+(IkM),

Eϕ+Bϕ−
S|M := kE

M

+
⊗ E

ϕ+Bϕ−
S|M ∈ Eb

st(IkM),

where we write for short

{x ∈ S, −ϕ+(x) 6 t < −ϕ−(x)} := {(x, t) ∈
◦
M× R ; x ∈ S, −ϕ+(x) 6 t < −ϕ−(x)},

with < the total order on R. If S = T , we also write for short

{−ϕ+(x) 6 t < −ϕ−(x)} := {x ∈ T, −ϕ+(x) 6 t < −ϕ−(x)}.

(ii) For a continuous map ϕ : T → R, consider the object of Eb
+(IkM)

EϕS|M := Qk{x∈S, t+ϕ(x)>0} ∈ Eb
+(IkM),

EϕS|M := kE
M

+
⊗ EϕS|M ∈ Eb

st(IkM),

where we write for short

{x ∈ S, t+ ϕ(x) > 0} = {(x, t) ∈
◦
M× R ; x ∈ S, t+ ϕ(x) > 0}.

If S = T , we also write for short

{t+ ϕ(x) > 0} := {x ∈ T, t+ ϕ(x) > 0}.

Note that one has EϕS|M ' EϕB−∞S|M , and that there is a short exact sequence

0 −→ E
ϕ+Bϕ−
S|M −→ E

ϕ+

S|M −→ E
ϕ−
S|M −→ 0

in the heart of Eb(IkM) for the natural t-structure.

J.É.P. — M., 2021, tome 8
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2.6. Constructible objects. — A subanalytic bordered space is a bordered space M

such that
◦
M is an open subanalytic subset of the subanalytic space

∨
M. A morphism

f : M → N of subanalytic bordered spaces is a morphism of bordered spaces such
that Γf is subanalytic in

∨
M×

∨
N. By definition, a subset Z of M is subanalytic if it is

subanalytic in
∨
M.

Let M be a subanalytic bordered space. Denote by Db
w-R-c(kM) the full subcategory

of Db(k ◦
M

) whose objects F are such that RkM∗F (or equivalently, RkM !F ) is weakly
R-constructible, for kM :

◦
M →

∨
M the embedding. We similarly define the category

Db
R-c(kM) of R-constructible sheaves. Denote by Eb

w-R-c(IkM) the strictly full subcat-
egory of Eb(IkM) whose objects K are such that for any relatively compact open
subanalytic subset U of M, one has

π−1
M kU ⊗K ' kE

M

+
⊗QF

for some F ∈ Db
w-R-c(kM×R∞). In particular, K belongs to Eb

st(IkM). We similarly
define the category Eb

R-c(IkM) of R-constructible enhanced ind-sheaves.

3. Sheafification

In this section, we discuss what we call here ind-sheafification and sheafification
functor, and prove some of their functorial properties. Concerning constructibility, we
use a fundamental result from [12, §6].

3.1. Associated ind-sheaf. — Let M be a bordered space. Let i0 : M→ M× R∞ be
the embedding x 7→ (x, 0).

Definition 3.1. — Let K ∈ Eb(IkM) and take F ∈ Db(IkM×R∞) such that K ' QF .
We set

IshM(K) := RIhomE(Qk{t=0},K)

' RπM∗RIhom(k{t>0} ⊕ k{t60}, F )

' RπM∗RIhom(k{t=0},R
EK)

' RπM !!RIhom(k{t=0},R
EK)

' i !0 REK ∈ Db(IkM)

(see [1, Lem. 4.5.16]), and call it the associated ind-sheaf (in the derived sense) to K
on M. We will write for short Ish = IshM, if there is no fear of confusion.

Note that one has

Ish(K) ' RIhomE(Qk{t>0},K) for K ∈ Eb
+(IkM),

Ish(K) ' RIhomE(kE
M,K) for K ∈ Eb

st(IkM).

Lemma 3.2. — The following are pairs of adjoint functors

(i) (ε, Ish) : Db(IkM)
ε // Eb(IkM)

Ish
oo ,
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(ii) (ε+, Ish) : Db(IkM) //
ε+ // Eb

+(IkM)
Ish
oo ,

(iii) (e, Ish) : Db(IkM) //
e // Eb

st(IkM)
Ish
oo .

Proof
(i) For F ∈ Db(IkM) and K ∈ Eb(IkM) one has

HomEb(IkM)(ε(F ),K) ' HomDb(IkM×R∞ )(π
−1F ⊗k{t=0},R

EK)

' HomDb(IkM)(F,Rπ∗RIhom(k{t=0},R
EK))

' HomDb(IkM)(F, Ish(K)).

(ii) and (iii) follow from (i), noticing that there are pairs of adjoint functors
(∗

+
⊗Qk{t>0}, ι) and (∗

+
⊗ kE

M, ι):

Eb(IkM)
∗

+
⊗Qk{t>0}

//
Eb

+(IkM)oo
ι

oo

∗
+
⊗ kE

M //
Eb

st(IkM).oo
ι

oo

Here we denote by ι the natural embeddings. �

Lemma 3.3. — Let f : M→ N be a morphism of bordered spaces.
(i) There are a natural morphism and a natural isomorphism of functors

f−1 IshN −→ IshM Ef−1, f ! IshN ' IshM Ef !,

and the above morphism is an isomorphism if f is borderly submersive.
(ii) There are a natural morphism and a natural isomorphism of functors

Rf!! IshM −→ IshN Ef!!, Rf∗ IshM ' IshN Ef∗,

and the above morphism is an isomorphism if f is proper.
(iii) For K ∈ Eb(IkM) and L ∈ Eb(IkN), there is a natural morphism

Ish(K)� Ish(L) −→ Ish(K
+
� L).

Proof. — Recall that one sets fR := f × idR∞ : M× R∞ → N× R∞.
(i) Let L ∈ Eb(IkN) and set G := RE L ∈ Db(IkN×R∞).
(i)(a) One has

f−1IshN(L) ' f−1 RπN !!RIhom(k{t=0}, G)

' RπM !! f
−1
R RIhom(k{t=0}, G)

−→
(∗)

RπM∗RIhom(k{t=0}, f
−1
R G)

−→
(∗∗)

RπM∗RIhom(k{t=0},R
E Ef−1L)

' IshM(Ef−1L).

Here, (∗) follows from [1, Prop. 3.3.13], and (∗∗) from Lemma A.4.
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If f is borderly submersive, then (∗) is an isomorphism by [1, Prop. 3.3.19] and
(∗∗) is an isomorphism by Lemma A.4.

(i)(b) Recall that f !
RG ' RE(Ef !L). One has

f ! IshN(L) = f ! RπN∗RIhom(k{t=0}, G)

' RπM∗ f
!
R RIhom(k{t=0}, G)

' RπM∗RIhom(k{t=0}, f
!
RG)

' RπM∗RIhom(k{t=0},R
E(Ef !L))

' IshM(Ef !L).

(ii) Let K ∈ Eb(IkM) and set F := REK ∈ Db(IkM×R∞).
(ii)(a) One has

IshN(Ef!!K) = RπN !!RIhom(k{t=0},R
E Ef!!K)

←− RπN !!RIhom(k{t=0},RfR !!F )

'
(∗)

RπN !! RfR !!RIhom(k{t=0}, F )

∼←−− Rf!! RπM !!RIhom(k{t=0}, F )

= Rf!!(IshM(K)).

Here (∗) follows from [10, Lem. 5.2.8].
(ii)(b) Since RE(Ef∗K) ' RfR∗F , one has

IshN(Ef∗K) ' RπN∗RIhom(k{t=0},RfR∗F )

' RπM∗RfR∗RIhom(k{t=0}, F )

' Rf∗RπM∗RIhom(k{t=0}, F ).

If f is proper, f! ' f∗.
(iii) Set F := REK ∈ Db(IkM×R∞) and G := RE L ∈ Db(IkN×R∞). Recall that

F
+

�G := Rm!!(F �G), where

m : M× R∞ × N× R∞ −→ M× N× R∞ (x, t1, y, t2) 7−→ (x, y, t1 + t2).

Then, one has

Ish(K)� Ish(L) ' RπM∗RIhom(k{t1=0}, F )�RπN∗RIhom(k{t2=0}, G)

−→ R(πM × πN)∗
(
RIhom(k{t1=0}, F )�RIhom(k{t2=0}, G)

)
−→ RπM×N∗Rm∗RIhom(k{t1=0} �k{t2=0}, F �G)

−→ RπM×N∗RIhom
(
Rm!!(k{t1=0} �k{t2=0}),Rm!!(F �G)

)
' RπM×N∗RIhom(k{t=0}, F

+

�G).

One concludes using the natural morphism F
+
�G→ RE(K

+
� L). �
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3.2. Associated sheaf. — Let M be a bordered space.

Definition 3.4. — Let K ∈ Eb(IkM).
(i) We set

shM(K) := RHomE(Qk{t=0},K)

= αM IshM(K) ∈ Db(k ◦
M

),

and call it the associated sheaf (in the derived sense) to K on
◦
M. We will write for

short sh = shM, if there is no fear of confusion.
(ii) We say that K is of sheaf type (in the derived sense) if it is in the essential

image of
eM ιM : Db(k ◦

M
)� Eb(IkM).

One has

shM(K) ' RHomE(Qk{t>0},K), for K ∈ Eb
+(IkM),

shM(K) ' RHomE(kE
M,K), for K ∈ Eb

st(IkM).(3.1)

Lemma 3.5. — One has shM ' sh ◦
M

Ei−1
M .

Proof. — Recall that i−1
M ' i !M . Using Lemma 2.1(ii), one has

αM IshM ' α ◦M i
!
M RIhomE(Qk{t=0},K)

= α ◦
M
i !M RπM∗RIhom(k{t=0},R

EK)

' α ◦
M

Rπ ◦
M∗

i !M×R∞RIhom(k{t=0},R
EK)

' α ◦
M

Rπ ◦
M∗

RIhom(k{t=0}, i
!
M×R∞ REK)

' α ◦
M

Rπ ◦
M∗

RIhom(k{t=0},R
E Ei !MK)

' α ◦
M

RIhomE(Qk{t=0},Ei
!
MK). �

Let M be a bordered space, and consider the natural morphisms of good spaces
◦
M× R k−−→

◦
M× R π−−→

◦
M.

We write t for points of R := R ∪ {−∞,+∞}.
An important tool in this framework is given by

Proposition 3.6 ([12, Cor. 6.6.6])
Let M be a bordered space. Then, for F ∈ Db(k ◦

M×R
) one has

shM(kE
M

+
⊗QF ) ' Rπ∗(k{−∞<t6+∞} ⊗Rk∗F ).

Consider the natural morphism j : M × R∞ → M × R, and the embeddings
i±∞ : M → M × R, x 7→ (x,±∞). Using the above proposition and [1, Prop. 4.3.10,
Lem. 4.3.13], we get
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Corollary 3.7. — Let M be a bordered space. Then, for F ∈ Db(k ◦
M×R

) one has

shM(kE
M

+
⊗QF ) ' i−1

+∞Rj∗ LE
+ QF

' i−1
−∞Rj∗RE

+ QF [−1]

' Rπ∗ LE
+ QF

' Rπ! RE
+ QF.

Consider the functors

(3.2) Db(k ◦
M

)
//
eM ιM //

Eb(IkM).
shM

oo

As explained in the Introduction, (eM ιM, shM) is not an adjoint pair of functors in
general.

Proposition 3.8. — Consider the functors (3.2).
(i) shM is a left quasi-inverse to eM ιM.
(ii) The property of being of sheaf type is local(5) on M, and K ∈ Eb(IkM) is of

sheaf type if and only if K ' eM ιM
(
shM(K)

)
.

Proof
(i) By Proposition 3.6, for L ∈ Db(k ◦

M
), one has

shM eM ιM(L) ' shM
(
kE
M

+
⊗Q(k{t=0} ⊗ π−1ιML)

)
' Rπ∗

(
k{−∞<t6+∞} ⊗k{t=0} ⊗ π−1L

)
' Rπ!

(
k{t=0} ⊗ π−1L

)
'
(
Rπ!k{t=0}

)
⊗L ' L.

(ii) follows from (i). �

By Lemmas 2.2 and 3.3, one gets

Lemma 3.9. — Let f : M→ N be a morphism of bordered spaces.
(i) There are natural morphisms of functors

◦
f−1 shN −→ shM Ef−1, shM Ef ! −→

◦
f ! shN,

which are isomorphisms if f is borderly submersive.
(ii) There are natural morphisms of functors

R
◦
f ! shM −→ shN Ef!!, shN Ef∗ −→ R

◦
f∗ shM.

The first morphism is an isomorphism if f is proper. The second morphism is an
isomorphism if f is self-cartesian, and in particular if f is proper.

(5)Saying that a property P(M) is local on M means the following. For any open covering {Ui}i∈I

of M, P(M) is true if and only if P
(
(Ui)∞

)
is true for any i ∈ I.
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(iii) For K ∈ Eb(IkM) and L ∈ Eb(IkN), there is a natural morphism

sh(K)� sh(L) −→ sh(K
+
� L).

Example 3.10. — Let M = Rx, U = {x > 0}. By Corollary 3.7 one has

RE E
1/x
U |M ' k{x>0, xt<−1}[1], RE E

−1/x
U |M ' k{x>0, xt<1}[1],

sh(E1/x
U |M ) ' k{x>0}, sh(E−1/x

U |M ) ' k{x>0}.

Note that, denoting by i : {0} →M the embedding, one has

i ! (sh(E1/x
U |M )) 6' sh(Ei !(E1/x

U |M )), i−1(sh(E−1/x
U |M )) 6' sh(Ei−1(E−1/x

U |M )).

In fact, on one hand one has i ! (sh(E1/x
U |M )) ' k[−1] and Ei !(E1/x

U |M ) ' 0, and on the
other hand one has i−1(sh(E−1/x

U |M )) ' k and Ei−1(E−1/x
U |M ) ' 0.

Note also that sh is not conservative, since sh(E2/xB1/x
U |X ) ' 0.

Example 3.11. — Let X ⊂ Cz be an open neighborhood of the origin, and set
•

X =

X r {0}. The real oriented blow-up p : X rb
0 → X with center the origin is defined by

X rb
0 :={(r, w) ∈ R>0 × C ; |w| = 1, rw ∈ X}, p(r, w) = rw. Denote by S0X = {r = 0}

the exceptional divisor.
Let f ∈ OX(∗0) be a meromorphic function with pole order d > 0 at the origin.

With the identification
•

X ' {r > 0} ⊂ X rb
0 , the set I :=S0Xr{z ∈

•

X ; Re f(z) > 0}
is the disjoint union of d open non-empty intervals. Here {·} is the closure in X rb

0 .
Then,(6) recalling Notation 2.3,

sh(ERe f
•

X|X
) ' sh(Ep∗ERe f◦p

•

X|Xrb
0

) ' Rp∗sh(ERe f◦p
•

X|Xrb
0

) ' Rp!kIt
•

X
.

Recall that, for k = C, the Riemann-Hilbert correspondence of [1] associates the
meromorphic connection d− df with ERe f

•

X|X
by the functor DRE

X .

3.3. (Weak-) constructibility. — An important consequence of Proposition 3.6 is

Proposition 3.12 ([12, Th. 6.6.4]). — Let M be a subanalytic bordered space. The
functor shM induces functors

shM : Eb
w-R-c(IkM) −→ Db

w-R-c(kM),

shM : Eb
R-c(IkM) −→ Db

R-c(kM).

Proposition 3.13. — Let M be a subanalytic bordered space. For K ∈ Eb
R-c(IkM) there

is a natural isomorphism

shM(DE
MK) ∼−−→ D ◦

M
(shMK).

(6)The analogue result for ind-sheaves was obtained in [11, Prop. 7.3] and [6, Prop. 3.14], at the
level of cohomology groups.
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Proof. — Recall that shM ' sh ◦
M

Ei−1
M and Ei−1

M ' Ei !M. Since Ei−1
M DE

M ' DE
◦
M

Ei−1
M ,

we may assume that M =
◦
M = M is a subanalytic space.

(i) Let us construct a natural morphism

sh(DEK) −→ D(shK).

By adjunction, it is enough to construct a natural morphism

sh(DEK)⊗ sh(K) −→ ωM .

Note that we have a morphism

DEK
+
⊗K −→ ωE

M .

Let δ : M →M×M be the diagonal embedding, so that DEK
+
⊗K ' Eδ−1(DEK

+
�K).

There are natural morphisms

sh(DEK)⊗ sh(K) ' δ−1
(
sh(DEK)� sh(K)

)
−→
(∗)

δ−1
(
sh(DEK

+

�K)
)

−→
(∗∗)

sh
(
Eδ−1(DEK

+

�K)
)

−→ sh(ωE
M ) ' ωM ,

where (∗) is due to Lemma 3.9(iii), and (∗∗) is due to Lemma 3.9(i).
(ii) By (i), the problem is local on M . Hence, we may assume that K ' kE

M

+
⊗QF

for F ∈ Db
R-c(kM×R∞). Consider the morphisms

k : M × R∞
i±−−−→M × (R ∪ {±∞},R)

j±−−−→M × R.

Since
k{−∞<t6+∞} ⊗Rk∗F ' Rj+

! Ri+∗ F ' Rj−∗ Ri−! F,

Proposition 3.6 gives

shM (K) ' Rπ∗Rj+
! Ri+∗ F

' Rπ∗Rj−∗ Ri−! F.

By [1, Prop. 4.8.3] one has

DE
M (kE

M

+
⊗QF ) ' kE

M

+
⊗Q a−1DM×R∞F,

where a : M × R∞ →M × R∞ is given by a(x, t) = (x,−t). Then, one has

shM (DE
MK) ' shM (kE

M

+
⊗Q a−1 DM×R∞F )

' Rπ∗Rj+
! Ri+∗ a

−1 DM×R∞F

' Rπ∗Rj−! Ri−∗ DM×R∞F

' DM (Rπ∗Rj−∗ Ri−! F )

' DM (shM (K)). �
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Lemma 3.14. — Let M and N be bordered spaces. Let F ∈ Db
R-c(kM) and L ∈ Eb(IkN).

Then
sh(ε(F )

+
� L) ' F � sh(L).

Proof. — For G := RE L ∈ Db(IkN×R∞), one has

sh(ε(F )
+

� L) ' αM×N RπM×N∗RIhom(k{t=0}, F �G)

'
(a)
αM×N RπM×N∗

(
F �RIhom(k{t=0}, G)

)
'
(b)

αM×N
(
F �RπN∗RIhom(k{t=0}, G)

)
' F �αN RπN∗RIhom(k{t=0}, G),

where (a) follows from [1, Cor. 2.3.5] and (b) follows from Proposition A.2 in Appen-
dix A. �

4. Stalk formula

As we saw in Example 3.10, sheafification does not commute with the pull-back by
a closed embedding, in general. We provide here a stalk formula for the sheafification
of such a pull-back, using results from Appendix B.

4.1. Restriction and stalk formula. — Let M be a subanalytic bordered space. Re-
call Notation 2.3.

Let N ⊂ M be a closed subanalytic subset, denote by i : N∞ → M the embedding.
To illustrate the difference between shEi−1 and i−1 sh note that on one hand, by
[2, Lem. 2.4.1], for K ∈ Eb

+(IkM) and y0 ∈ N one has(7)(
i−1sh(K)

)
y0
' sh(K)y0

' lim−→
U3y0

RHomE(E0
U |M,K),

where U runs over the open neighborhoods of y0 in
◦
M. On the other hand,

Proposition 4.1. — Let ϕ : M → R∞ be a morphism of subanalytic bordered spaces,
set N :=

◦
ϕ−1(0) ⊂ M, and denote by i : N∞ → M the embedding. For y0 ∈ N and

K ∈ Eb
w-R-c(IkM) one has

sh(Ei−1K)y0
' lim−→

U3y0
δ,ε→0+

RHomE(E
0B−δ| ◦ϕ(x)|−ε
U |M ,K),

where U runs over the open neighborhoods of y0 in
◦
M. Here, we set −δ| ◦ϕ(x)|−ε = −∞

for ◦
ϕ(x) = 0.

(7)Recall from [2, §2.1] that, for any c, d ∈ Z, small filtrant inductive limits exist in D[c,d](k), the
full subcategory of Db(k) whose objects V satisfy Hj(V ) = 0 for j < c or j > d. That is, uniformly
bounded small filtrant inductive limits exist in Db(k).
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More generally, for T ⊂ N a compact subset one has

(4.1) RΓ (T ; sh(Ei−1K)) ' lim−→
U⊃T
δ,ε→0+

RHomE(E
0B−δ| ◦ϕ(x)|−ε
U |M ,K),

where U runs over the open neighborhoods of T in
◦
M.

Proof. — Let us prove the isomorphism (4.1). Since T ⊂ N ⊂
◦
M is compact, we may

assume that M =
◦
M =:M is a subanalytic space.

(i) On the right hand side of (4.1), we may assume that U runs over the open
subanalytic neighborhoods of T in M . Up to shrinking M around T , we can assume
that there exists F ∈ Db

w-R-c(kM×R∞) such that K ' kE
M

+
⊗QF . For c ∈ R, and U an

open relatively compact subanalytic subset of M containing T , set

Uc,δ,ε := {(x, t) ∈ U × R ; t+ c < δ|ϕ(x)|−ε}.

Note that LE E
cBc−δ|ϕ(x)|−ε
U |M ' kUc,δ,ε ⊗k{t>−c}. Then, one has

RHomE(E
0B−δ|ϕ(x)|−ε
U |M ,K) ' lim−→

c→+∞
RHomE(Qk{t>−c}

+
⊗ E

0B−δ|ϕ(x)|−ε
U |M ,QF )

' lim−→
c→+∞

Hom (LE E
cBc−δ|ϕ(x)|−ε
U |M , F )

' lim−→
c→+∞

Hom (kUc,δ,ε ⊗k{t>−c}, F )

'
(∗)

lim−→
c→+∞

Hom (kUc,δ,ε ,k{t>−c} ⊗F )

' lim−→
c→+∞

RΓ
(
Uc,δ,ε; k{t>−c} ⊗F )

' lim−→
c→+∞

RΓ
(
Uc,δ,ε ∩ {t > −c}; k{t>−c} ⊗F ).

Here (∗) follows from the same argument used in the proof of the second isomorphism
in [12, (6.6.2)].

(ii) Let us deal with the left hand side of (4.1). Consider the natural maps

N × R∞
iR //

πN
��

M × R∞
πM
��

N
i // M

and set, for S = M,N ,

kS×{t>∗} := “lim−→”
c→+∞

kS×{t>−c} ∈ Db(IkS×R∞).

Noticing that Ei−1K ' kE
N

+
⊗Q i−1

R F , by [12, Prop. 6.6.5] one has

sh(Ei−1K) ' αNRπN ∗
(
kN×{t>∗} ⊗ i−1

R F
)

' αNRπN ∗i
−1
R
(
kM×{t>∗} ⊗F

)
.
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Hence

RΓ (T ; sh(Ei−1K)) ' lim−→
V

RΓ (V ; sh(Ei−1K)
)

' lim−→
c,V

RΓ (V ; RπN ∗i
−1
R (kM×{t>−c} ⊗F )

)
' lim−→

c,V

RΓ
(
V × R; i−1

R (kM×{t>−c} ⊗F )
)

' lim−→
c,V

RΓ
(
V × {t > −c}; i−1

R (kM×{t>−c} ⊗F )
)

' lim−→
c,V,W

RΓ
(
W ; kM×{t>−c} ⊗F

)
,

where c → +∞, V runs over the system of open relatively compact subanalytic
neighborhoods of T in N , and W = Wc,V runs over the system of open subanalytic
subsets of M × {t ∈ R; +∞ > t > −c}, such that W ⊃ V × {t ∈ R; t > −c}. Here,
the last isomorphism follows from Corollary B.3.

(iii) For c ∈ R consider the following inductive systems: Ic is the set of tuples
(U, δ, ε) as in (i); Jc is the set of tuples (V,W ) as in (ii). We are left to show the
cofinality of the functor φ : Ic → Jc, (U, δ, ε) 7→ (U ∩N,Uc,δ,ε ∩ {t > −c}).

Given (V,W ) ∈ Jc, we look for (U, δ, ε) ∈ Ic such that

U ∩N ⊂ V and Uc,δ,ε ∩ {t > −c} ⊂W.

Let U be a subanalytic relatively compact open neighborhood of T in M such that
U ∩N ⊂ V . With notations as in Lemma B.1, set

X = M × {t ∈ R ; t > −c}, W = W, T = U × {t ∈ R ; t > −c}, f(x, t) = ϕ(x)

g(x, t) = (t+ c+ 1)−1.and

Note that g(x,+∞) = 0. Since (B.1) is satisfied, Lemma B.1(ii) provides C > 0 and
n ∈ Z>0 such that

{(x, t) ∈ U × R ; t > −c, Cg(x, t)n > |ϕ(x)|} ⊂W.

Then

{(x, t) ∈ U × R ; t > −c, C(t+ c+ 1)−n > |ϕ(x)|} ⊂W.

One concludes by noticing that the set on the left hand side contains Uc,δ,ε∩{t > −c}
for δ = C1/n and ε = 1/n. �

5. Specialization and microlocalization

Using results from the previous section, we establish here a stalk formula for the
natural enhancement of Sato’s specialization and microlocalization functors, as intro-
duced in [4].
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5.1. Real oriented blow-up transforms. — Let M be a real analytic manifold and
N ⊂ M a closed submanifold. Denote by SNM the sphere normal bundle. Consider
the real oriented blow-up M rb

N of M with center N , which enters the commutative
diagram with cartesian square

SNM
� � i //

σ
��

M rb
N

p
��

(M rN)∞
K k

jNyy

? _
j
oo

N �
�

iN
//

�

M

Note that (M rN)∞ := (M rN,M) ' (M rN,M rb
N ).

Recall the blow-up transform of [4, §4.4]

Eνrb : Eb(IkM ) −→ Eb(IkSNM ), K 7−→ Ei−1Ej∗Ej
−1
N K.

A sectorial neighborhood of θ ∈ SNM is an open subset U ⊂ M r N such that
SNM ∪ j(U) is a neighborhood of θ in M rb

N . We write U •

3 θ to indicate that U is a
sectorial neighborhood of θ. We say that U ⊂ M rN is a sectorial neighborhood of
Z ⊂ SNM , and we write U •

⊃ Z, if U is a sectorial neighborhood of each θ ∈ Z.

Lemma 5.1. — Let ϕ : M → R be a subanalytic continuous map such that N = ϕ−1(0).
Let K ∈ Eb

w-R-c(IkM ). For θ0 ∈ SNM , one has

sh
(
EνrbN (K)

)
θ0
' lim−→
δ,ε,U

RHomE(E
0B−δ|ϕ(x)|−ε
U |M ,K),

where δ, ε→ 0+ and U •

3 θ0. More generally, if Z ⊂ SNM is a closed subset one has

RΓ
(
Z; sh(EνrbN (K))

)
' lim−→
δ,ε,U

RHomE(E
0B−δ|ϕ(x)|−ε
U |M ,K),

where δ, ε→ 0+ and U •

⊃ Z.

Proof. — Let us prove the last statement. Note that in M rb
N one has SNM =

(ϕ ◦ p)−1(0). Hence, by Proposition 4.1,

RΓ
(
Z; sh(EνrbN (K))

)
' lim−→
δ,ε,Ũ

RHomE(E
0B−δ|ϕ(p(x̃))|−ε

Ũ |M rb
N

,Ej∗Ej
−1
N K),

where Ũ ⊂M rb
N runs over the neighborhoods of i(Z). Then

RΓ
(
Z; sh(EνrbN (K))

)
' lim−→
δ,ε,Ũ

RHomE(EjN !!Ej
−1E

0B−δ|ϕ(p(x̃))|−ε

Ũ |M rb
N

,K)

' lim−→
δ,ε,Ũ

RHomE(EjN !!E
0B−δ|ϕ(x)|−ε

j−1(Ũ)|(MrN)∞
,K)

' lim−→
δ,ε,Ũ

RHomE(E
0B−δ|ϕ(x)|−ε

jN (j−1(Ũ))|M
,K).

One concludes by noticing that U •

⊃ Z if and only if U = jN (j−1(Ũ)) for some
neighborhood Ũ of i(Z) in M rb

N . �
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5.2. Sheafification on vector bundles. — Recall from [4, §2.2] that any morphism
p : M → S, from a good space to a bordered space, admits a bordered compactifica-
tion p∞ : M∞ → S such that (M∞)◦ = M and p∞ is semiproper. Moreover, such a
bordered compactification is unique up to isomorphism.

Let τ : V → N be a vector bundle. Denote by V∞ its bordered compactification,
and by o : N → V the zero section.

The natural action of R>0 on V extends to an action of the bordered group(8)

(R×>0)∞ :=(R>0,R) on V∞. Denote by Eb
(R×>0)∞

(IkV∞) the category of conic enhanced
ind-sheaves on V∞ (see [4, §4.1]).

Lemma 5.2. — For K ∈ Eb
(R×>0)∞

(IkV∞), one has

o−1sh(K) ' sh(Eo−1K), o ! sh(K) ' sh(Eo !K).

Proof. — We shall prove only the first isomorphism since the proof of the second is
similar.

With the identification N ' o(N) ⊂ V , set
•

V = V rN . Consider the commutative
diagram, associated with the real oriented blow-up of V with center N ,

SNV

��

� � // (V rb
N )∞

p
��

γ̃
// SNV

σ

$$

N

�

� � o // V∞

τ

44(
•

V )∞? _
j

oo

γ

OO

•
τ //

̃
ee

N.

Here (
•

V )∞ denotes the bordered compactification of
•

V → V∞.
Consider the distinguished triangle

Ej!!Ej
−1K −→ K −→ Eo∗Eo

−1K
+1−−−→ .

One has
o−1sh(Eo∗Eo

−1K) '
(∗)

o−1o∗sh(Eo−1K) ' sh(Eo−1K),

where (∗) holds since o is proper. Hence, we can assume

K ' Ej!!Ej
−1K

and, since Eo−1K ' 0, we have to show

o−1sh(K) ' 0.

Recall that Ej−1K ' Eγ−1Ksph for Ksph := Eγ∗Ej
−1K. Then one has

K ' Ej!!Eγ
−1Ksph

' Ep∗E̃!!E̃
−1Eγ̃−1Ksph

' Ep∗
(
kV rb

NrSNV ⊗Eγ̃−1Ksph
)
.

(8)a group object in the category of bordered spaces
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Thus, recalling that o−1sh(K) ' Rτ∗sh(K) since sh(K) is conic,

o−1sh(K) ' Rτ∗sh
(
Ep∗(kV rb

NrSNV ⊗Eγ̃−1Ksph)
)

'
(∗)

Rτ∗Rp∗sh
(
kV rb

NrSNV ⊗Eγ̃−1Ksph
)

' Rσ∗Rγ̃∗sh
(
kV rb

NrSNV ⊗Eγ̃−1Ksph
)
,

where (∗) holds since p is proper. It is then enough to show

Rγ̃∗sh(kV rb
NrSNV ⊗Eγ̃−1Ksph) ' 0.

Since γ̃ is borderly submersive and γ̃ !kSNV ' kV rb
NrSNV [1], one has by (2.3)

kV rb
NrSNV ⊗Eγ̃−1Ksph ' Eγ̃ !Ksph[−1].

Hence one obtain

Rγ̃∗sh(kV rb
NrSNV ⊗Eγ̃−1Ksph) ' Rγ̃∗sh(Eγ̃ !Ksph[−1])

'
(∗)

Rγ̃∗γ̃
! sh(Ksph[−1])

' Rγ̃∗RHom
(
kV rb

N
, γ̃ ! sh(Ksph[−1])

)
' RHom

(
Rγ̃!kV rb

N
, sh(Ksph[−1])

)
,

where (∗) follows from Lemma 3.9(i). Then the desired result follows from

Rγ̃!kV rb
N
' 0. �

5.3. Specialization and microlocalization. — Let us recall from [4] the natural en-
hancement of Sato’s specialization and microlocalization functors.

Let M be a real analytic manifold and N ⊂M a closed submanifold. Consider the
normal and conormal bundles

TNM
τ−−→ N

$←−−− T ∗NM,

and denote by (TNM)∞ and (T ∗NM)∞ the bordered compactification of τ and $,
respectively.

Denote by (p, s) : Mnd
N → M × R the normal deformation of M along N (see

[9, §4.1]). Setting Ω := s−1(R>0), one has morphisms

(5.1) (TNM)∞
� � i // (Mnd

N )∞ Ω∞?
_j

oo
pΩ
// M,

where (Mnd
N )∞ is the bordered compactification of p, and pΩ = p|Ω. The enhanced

Sato’s specialization functor is defined by

EνN : Eb(IkM ) −→ Eb
(R×>0)∞

(Ik(TNM)∞), K 7−→ Ei−1Ej∗Ep
−1
Ω K.

Sato’s Fourier transform have natural enhancements (see e.g. [4, §5.2])

(·)∧ : Eb
+(Ik(TNM)∞) −→ Eb

+(Ik(T∗NM)∞),

L(·) : Eb
+(Ik(TNM)∞) −→ Eb

+(Ik(T∗NM)∞),
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and we denote by (·)∨ and L(·) their respective quasi-inverses. Recall that (·)∧ and (·)∨
take values in conic objects, and that L(·) and L(·) send conic objects to conic objects.

Finally, Sato’s microlocalization functor have a natural enhancement

EµN : Eb
+(IkM ) −→ Eb

+(Ik(T∗NM)∞) ∩ Eb
(R×>0)∞

(Ik(T∗NM)∞),

defined by EµN (K) := LEνN (K). Recall that EµN (K) ' EνN (K)∧ by [4, Prop. 5.3].
Consider the natural morphisms

SNM
γ←−− (

•

TNM)∞
u−−→ (TNM)∞

o←−− N,

where
•

TNM is the complement of the zero-section, and o is the embedding of the zero-
section. Here (

•

TNM)∞ denotes the bordered compactification of
•

TNM → (TNM)∞.
Recall that one has

Eγ−1 ◦ EνrbN ' Eu−1 ◦ EνN .

Recall from [9, §4.1] that the normal cone CN (S) ⊂ TNM to S ⊂ M along N is
defined by CN (S) := TNM ∩ p−1

Ω (S), where (·) denotes the closure in Mnd
N .

Proposition 5.3. — Let ϕ : M → R be a continuous subanalytic function such that
N = ϕ−1(0). For v0 ∈ TNM , ξ0 ∈ T ∗NM , and K ∈ Eb

w-R-c(IkM ), one has

(i) sh
(
EνN (K)

)
v0
' lim−→
δ,ε,U

RHomE(E
0B−δ|ϕ(x)|−ε
U |M ,K),

(ii) sh
(
EµN (K)

)
ξ0
' lim−→
δ,ε,W,Z

RHomE(E
0B−δ|ϕ(x)|−ε
W∩Z|M ,K),

where δ, ε→ 0+, U runs over the open subsets of M such that v0 /∈ CN (M r U), W
runs over the open neighborhoods of $(ξ0) in M , and Z runs over the closed subsets
of M such that

CN (Z)$(ξ0) ⊂ {v ∈ (TNM)$(ξ0) ; 〈v, ξ0〉 > 0} ∪ {0}.

Proof
(i)(a) Assume that v0 ∈

•

TNM , and set θ0 = γ(v0). Then, one has

sh
(
EνN (K)

)
v0
'
(∗)

sh
(
Eu−1EνN (K)

)
v0

' sh
(
Eγ−1EνrbN (K)

)
v0

'
(∗∗)

sh
(
EνrbN (K)

)
θ0
,

where (∗) and (∗∗) follow from Lemma 3.9(i). Then, the statement follows from
Lemma 5.1, by noticing that U •

3 θ0 if and only if v0 /∈ CN (M r U).
(i)(b) Assume that v0 = o(y0) for y0 ∈ N , where o : N → TNM is the embedding

of the zero section. Then, Lemma 5.2 gives

sh
(
EνN (K)

)
o(y0)

'
(
o−1sh(EνN (K))

)
y0

'
(
sh(Eo−1EνN (K))

)
y0

'
(∗)

(
sh(Ei−1

N K)
)
y0
,
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where (∗) follows from [4, Lem. 4.8(i)], with iN : N → M denoting the embedding.
Then the statement follows from Proposition 4.1.

(ii) For F ∈ Db
R×>0

(kT∗NM ) one has

RHomE(ε(F ),EµN (K)) = RHomE(ε(F ), LEνN (K))

' RHomE( Lε(F ),EνN (K))

' RHomE(ε(F∨),EνN (K)).

Hence

sh
(
EµN (K)

)
ξ0
' lim−→
V 3ξ0

RHomE(ε(kV ),EµN (K))

' lim−→
V 3ξ0

RHomE(ε(k∨V ),EνN (K))

'
(∗)

lim−→
V 3ξ0

RHomE(ε(kV ◦),EνN (K)),

where V runs over the conic open neighborhoods of ξ0 in T ∗NM , and

V ◦ := {v ∈ TNM ; 〈v, ξ〉 > 0, ∀ξ ∈ V }

denotes the polar cone. Here (∗) follows by noticing that ξ0 has a fundamental system
of open conic neighborhoods V ⊂ T ∗NM such that $|V has convex fibers.

We are left with computing

lim−→
V 3ξ0

RHomE(ε(F ),EνN (K))

for F = kV ◦ . For this, setting D = $(V ), and considering the distinguished triangle

kτ−1(D)rV ◦ −→ kτ−1(D) −→ kV ◦
+1−−−→,

we will instead compute the cases where F = kτ−1(D) or F = kτ−1(D)rV ◦ .
(ii)(a) On one hand, one has

RHomE(ε(kτ−1(D)),EνN (K)) ' RHomE(Eτ−1ε(kD),EνN (K))

' RHomE(ε(kD),Eτ∗EνN (K))

' RHomE(ε(kD),Ei−1
N K),

where we recall that iN : N → M denotes the embedding. Thus, noticing that D =

$(V ) is a system of neighborhoods of $(ξ0),

lim−→
V 3ξ0

RHomE(ε(kτ−1(D)),EνN (K)) ' lim−→
D3$(ξ0)

RHomE(ε(kD),Ei−1
N K)

' sh
(
Ei−1
N K

)
$(ξ0)

'
(∗)

lim−→
δ,ε,W

RHomE(E
0B−δ|ϕ(x)|−ε
W |M ,K),

where (∗) follows from Proposition 4.1, and δ, ε,W are as in the statement of the
present proposition.
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(ii)(b) On the other hand, setting Ṽ = γ(τ−1(D) r V ◦) ⊂ SNM , one has

kτ−1(D)rV ◦ ' Ru! γ
−1kṼ .

Hence, since u : (
•

TNM)∞ → (TNM)∞ is semiproper, one has

RHomE(ε(kτ−1(D)rV ◦),EνN (K)) ' RHomE(Eu!!Eγ
−1ε(kṼ ),EνN (K))

' RHomE(ε(kṼ ),Eγ∗Eu
−1EνN (K))

' RHomE(ε(kṼ ),EνrbN (K)).

Note that when V runs over the neighborhoods of ξ0, Ṽ runs over the neighborhoods
of S = γ({ξ0}◦a). Here a denotes the antipodal map. Thus

lim−→
V 3ξ0

RHomE(ε(kτ−1(D)rV ◦),EνN (K)) ' lim−→
V 3ξ0

RHomE(ε(kṼ ),EνrbN (K))

' lim−→
V 3ξ0

RHom (kṼ , sh
(
EνrbN (K)

)
)

' RΓ
(
S; sh(EνrbN (K))

)
'
(∗)

lim−→
δ,ε,Ω

RHomE(E
0B−δ|ϕ(x)|−ε
Ω|M ,K),

where δ, ε→ 0+, and Ω
•

⊃ S. Here, (∗) follows from Lemma 5.1. �

Appendix A. Complements on enhanced ind-sheaves

We provide here some complementary results on (enhanced ind-)sheaves that we
need in this paper.

Proposition A.1. — Let M be a subanalytic bordered space, and N a bordered space.
Then, for any F ∈ Db

R-c(kM) and K ∈ Db(IkN) we have

(A.1) DMF �K ' RIhom(p−1F, q !K).

Here, p : M× N→ M and q : M× N→ N are the projections.

Proof. — By [1, Prop. 2.3.4], one has

D∨
M

RjM !F �RjN !!K ' RIhom(
∨
p−1RjM !F,

∨
q !RjN !!K),

where ∨
p and ∨

q are the projections from
∨
M ×

∨
N, and jM : M →

∨
M is the natural

morphism.
Applying j−1

M×N, (A.1) follows. �

Proposition A.2. — Let M, N, F , K be as in the preceding proposition. Let f : N→ S

be a morphism of bordered spaces, and let f ′ = idM×f : M × N → M × S. Then, we
have

Rf ′∗(F �K) ' F �Rf∗K.
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Proof. — Let pN : M × N → M and qN : M × N → N be the projections. We define
similarly pS and qS. Then, the preceding proposition implies

Rf ′∗ (F �K) ' Rf ′∗ RIhom
(
p−1
N DMF, q

!
NK

)
' Rf ′∗ RIhom

(
f ′−1p−1

S DMF, q
!
NK

)
' RIhom

(
p−1
S DMF,Rf

′
∗q

!
NK

)
' RIhom

(
p−1
S DMF, q

!
S Rf∗K

)
' F �Rf∗K. �

Lemma A.3. — Let us consider a commutative square of bordered spaces

M′
g′

//

f ′

��

M

f
��

N′
g
// N.

For any F ∈ Db(IkM), one has a canonical morphism in Db(IkN′)

g−1Rf∗F −→ Rf ′∗g
′−1F.

If the square is cartesian and g is borderly submersive, then the above morphism is
an isomorphism.

Proof. — The morphism is induced by adjunction from

Rf∗F −→ Rf∗Rg
′
∗g
′−1F ∼−−→ Rg∗Rf

′
∗g
′−1F.

Assume that the square is cartesian and g is borderly submersive. Then we may
assume that N′ = S×N and M′ = S×M for a subanalytic space S, and that g and g′
are the second projections. Hence the assertion follows from

Rf ′∗g
′ −1F ' Rf ′∗(kS �F ) ' kS �Rf∗F ' g−1Rf∗F,

which is a consequence of Proposition A.2. �

Lemma A.4. — For f : M→ N a morphism of bordered spaces and K ∈ Eb(IkN) there
is a natural morphism f−1

R (REK) → RE(Ef−1K). If f is borderly submersive, then
the previous morphism is an isomorphism.

Proof. — The morphism in the statement follows by adjunction from the isomorphism
QM(f−1

R REK) ' Ef−1K. If f is borderly submersive, we have

RπM∗f
−1
R REK '

(∗)
f−1RπN∗REK ' 0,

where (∗) follows from Lemma A.3. Hence, the fact that the morphism in the state-
ment is an isomorphism follows from [1, Prop. 4.4.4(ii-b)]. �

Appendix B. Complements on weak constructibility

In this appendix we obtain a formula for the sections, on a locally closed subanalytic
subset, of a weakly constructible sheaf. This result might be of independent interest.
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B.1. Lojasiewicz’s inequalities. — Let M be a subanalytic space.

Lemma B.1. — Let T ⊂ M be a compact subanalytic subset, and let f, g : M → R be
continuous subanalytic functions.

(i) Assume that T ∩ f−1(0) ⊂ g−1(0). Then there exist ε > 0 and n ∈ Z>0 such
that

ε|g(x)|n 6 |f(x)| for x ∈ T.

(ii) Let W ⊂M be an open subanalytic subset, and assume that

(B.1) {x ∈ T ; g(x) > 0, f(x) = 0} ⊂W.

Then there exist ε > 0 and n ∈ Z>0 such that

{x ∈ T ; g(x) > 0, εg(x)n > |f(x)|} ⊂W.

Proof. — Consider the subanalytic map (f, g) : M → R2
(t,u).

(i) The set Z = (f, g)(T ) is a compact subanalytic subset of R2, and we have

Z ∩ {(t, u) ; t = 0} ⊂ {(t, u) ; u = 0}.

Hence, there exist ε > 0 and n ∈ Z>0 such that

Z ⊂ {(t, u) ∈ R2 ; ε|u|n 6 |t|}.

This gives the statement.
(ii) Let T ′ = T ∩ g−1(R>0) rW . Since T ′ ∩ f−1(0) ⊂ g−1(0), (i) gives

T ′ ⊂ {x ∈M ; ε|g(x)|n 6 |f(x)|},

which implies the desired result. �

Theorem B.2. — Let M be a subanalytic space, and F ∈ Db
w-R-c(kM ). Then, for any

locally closed subanalytic subset Z of M , and any open subanalytic subset W of M
such that Z ⊂W , there exists U ⊂W open subanalytic in M , such that Z is a closed
subset of U and

RΓ (U ;F ) ∼−−→ RΓ (Z;F ).

The proof is given in Section B.3 after the preparation of the next subsection.

Corollary B.3. — Let M be a subanalytic bordered space, Z a locally closed subana-
lytic subset of M, and let F ∈ Db

w-R-c(kM). Then, there is an isomorphism

RΓ (Z;F ) ∼←−− “lim−→”
U

RΓ (U ;F ),

where U runs over the open subanalytic subsets of M such that Z ⊂ U .
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B.2. Barycentric decomposition. — We will use here the language of simplicial com-
plexes, for which we refer to [9, §8.1].

Let Σ = (S,∆) be a simplicial complex, with S the set of vertices, and ∆ the set
of simplexes (i.e., finite subsets of S). Recall that one sets |Σ| :=

⋃
σ∈∆ |σ|, where

|σ| := {x ∈ RS ;
∑
p x(p) = 1, x(p) = 0 for p /∈ σ, x(p) > 0 for p ∈ σ}.

Here, RS denote the set of maps S → R equipped with the product topology.
For a subset Z of |Σ|, we set

∆Z := {σ ∈ ∆; |σ| ⊂ Z}.

A subset Z of |Σ| is called Σ-constructible if Z is a union of simplexes.

Lemma B.4. — Let Z be a Σ-constructible subset of |Σ|.
(i) the following conditions are equivalent.

(a) Z is closed,
(b) if τ, σ ∈ ∆ satisfy σ ∈ ∆Z and τ ⊂ σ, then τ ∈ ∆Z .

(ii) the following conditions are equivalent.
(a) Z is open
(b) if τ, σ ∈ ∆ satisfy σ ∈ ∆Z and σ ⊂ τ , then τ ∈ ∆Z .

(iii) the following conditions are equivalent.
(a) Z is locally closed,
(b) if σ1, σ2, σ3 ∈ ∆ satisfy σ1, σ3 ∈ ∆Z and σ1 ⊂ σ2 ⊂ σ3, then σ2 ∈ ∆Z .

Proof. — (i) follows from |σ| =
⋃
τ∈∆,τ⊂σ |τ |. (ii) and (iii) follow from (i). �

For σ ∈ ∆, we set

U(σ) =
⋃

σ⊂τ∈∆

|τ | = {x ∈ |Σ| ; x(s) > 0 for any s ∈ σ}.

It is the smallest open Σ-constructible subset containing |σ|.
Let us denote by Db

w-Σ−c(k|Σ|) the full subcategory of Db(k|Σ|) whose objects are
weakly |Σ|-constructible. By [9, Prop. 8.1.4], we have

Lemma B.5. — Let F ∈ Db
w-Σ−c(k|Σ|) and σ ∈ ∆. Then, one has

RΓ (U(σ);F ) ∼−−→ RΓ (|σ|;F ).

Let B(Σ) = (SB(Σ),∆B(Σ)) be the barycentric decomposition of Σ defined as follows:

SB(Σ) = ∆,

∆B(Σ) = {σ̃ ; σ̃ is a finite totally ordered subset of ∆}.

Here, ∆B(Σ) is ordered by the inclusion relation. Then there is a homeomorphism
f : |B(Σ)| ∼−−→ |Σ| defined as follows. For σ ∈ ∆ = SB(Σ), let eσ ∈ |Σ| be given by

eσ(s) =


1

#σ
if s ∈ σ,

0 otherwise.
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Then, we define
f(x) =

∑
σ∈SB(Σ)

x(σ)eσ for any x ∈ |B(Σ)| ⊂ RSB(Σ) .

That is, f(x) ∈ RS is given by(
f(x)

)
(s) =

∑
σ3s, σ∈SB(Σ)

x(σ)

#σ
for any s ∈ S.

Note that we have
(B.2) f(|σ̃|) ⊂ |max(σ̃)| for any σ̃ ∈ ∆B(Σ),

where max(σ̃) ∈ ∆ is the largest member of σ̃ in ∆. Conversely, for y ∈ |Σ| one has
y ∈ f(|σ̃|),

where σ̃ ∈ ∆B(Σ) is given by

σ̃ := {σ ∈ ∆; σ = {s ∈ S ; y(s) > a} for some a ∈ R>0}.

Lemma B.6. — Let Z ⊂ |Σ| be a locally closed Σ-constructible subset. Then for
any σ̃1, σ̃2 ∈ ∆B(Σ) such that σ̃1 ∪ σ̃2 ∈ ∆B(Σ) and f(|σ̃1|), f(|σ̃2|) ⊂ Z, we have
f(|σ̃1 ∪ σ̃2|) ⊂ Z.

Proof. — Set τ̃ = σ̃1 ∪ σ̃2. We have |max(σ̃1)|, |max(σ̃2)| ⊂ Z. Then the desired
result follows from the fact that max(τ̃) is equal to either max(σ̃1) or max(σ̃2). Hence
|τ̃ | ⊂ |max(τ̃)| ⊂ Z. �

B.3. Proof of Theorem B.2

Lemma B.7. — Let Σ = (S,∆) be a simplicial complex. Let Z ⊂ |Σ| be a
Σ-constructible locally closed subset such that

(B.3) for any σ1, σ2 ∈ ∆Z such that σ1 ∪ σ2 ∈ ∆, one has σ1 ∪ σ2 ∈ ∆Z .

Set
U :=

⋃
σ∈∆Z

U(σ).

Then, for F ∈ Db
w-Σ−c(k|Σ|) one has

RΓ (U ;F ) ∼−−→ RΓ (Z;F ).

Proof. — Let us remark that U is an open subset and Z is a closed subset of U . Hence
it is enough to how that

RΓ (U ;F ⊗kUrZ) ' 0.

Thus, we reduce the problem to prove that RΓ (U ;F ) ' 0 under the condition that
F ∈ Db

w-Σ−c(k|Σ|) satisfies F |Z ' 0.
Let us take the open covering U := {U(σ)}σ∈∆Z

of U . For σ1, . . . , σ` ∈ ∆Z ,
if
⋂

16k6` U(σk) 6= ∅, then σ :=
⋃

16k6` σk ∈ ∆Z by condition (B.3) and⋂
16k6` U(σk) = U(σ).
Hence, one has by Lemma B.5

RΓ (
⋂

16k6` U(σk);F ) ∼−−→ RΓ (|σ|;F ) ' 0.
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Thus, we have RΓ (
⋂

16k6` U(σk);F ) ' 0 for any σ1, . . . , σ` ∈ ∆Z . We conclude that
RΓ (U ;F ) ' RΓ (U;F ) ' 0. �

Proof of Theorem B.2. — There exists a simplicial complex Σ = (S,∆) and a suban-
alytic isomorphism M ' |Σ| such that Z and W are Σ-constructible and F is weakly
Σ-constructible (after identifying M and |Σ|). Let Σ̃ = (S̃, ∆̃) be the barycentric
decomposition of Σ, and identify |Σ̃|, |Σ| and M . Then F is weakly Σ̃-constructible
and Z andW are Σ̃-constructible. Set U =

⋃
σ̃∈∆̃Z

U(σ̃). Then U ⊂W by Lemma B.4.
Moreover, condition (B.3) is satisfied by Lemma B.6. Hence, Lemma B.7 implies that
RΓ (U ;F )→ RΓ (Z;F ) is an isomorphism. �
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