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ON A TOPOLOGICAL COUNTERPART OF
REGULARIZATION FOR HOLONOMIC 2-MODULES

BY ANDREA D’AcNoLo & Masakr Kasaiwara

AssTracT. — On a complex manifold, the embedding of the category of regular holonomic Z-
modules into that of holonomic #Z-modules has a left quasi-inverse functor .# — #:eg, called
regularization. Recall that .#;cg is reconstructed from the de Rham complex of .# by the
regular Riemann-Hilbert correspondence. Similarly, on a topological space, the embedding of
sheaves into enhanced ind-sheaves has a left quasi-inverse functor, called here sheafification.
Regularization and sheafification are intertwined by the irregular Riemann-Hilbert correspon-
dence. Here, we study some of the properties of the sheafification functor. In particular, we
provide a stalk formula for the sheafification of enhanced specialization and microlocalization.

Résumi (Sur un analogue topologique de la régularisation pour les 2-modules holonomes)

Sur une variété complexe lisse, I'inclusion de la catégorie des Z-modules holonomes régu-
liers dans celle des Z-modules holonomes admet un foncteur quasi-inverse a gauche # — Mreg,
appelé régularisation. Rappelons que .#eg est reconstruit & partir du complexe de de Rham
de 4 par la correspondance de Riemann-Hilbert réguliére. De méme, sur un espace topolo-
gique, l'inclusion des faisceaux dans les ind-faisceaux enrichis admet un foncteur quasi-inverse a
gauche, qu’on appelle ici faisceautisation. La régularisation et la faisceautisation sont échangées
par la correspondance de Riemann-Hilbert irréguliére. Dans ce travail, nous étudions certaines
des propriétés du foncteur de faisceautisation. En particulier, nous fournissons une formule qui
calcule la fibre du faisceautisé de la spécialisation et de la microlocalisation enrichies.

CONTENTS
1. Introduction. .. ...t e 28
2. Notations and complements. ....... ... ... 29
3. Sheafification. ... ... 35
4. Stalk formula. . ... 42
5. Specialization and microlocalization............... ... i 44
Appendix A. Complements on enhanced ind-sheaves............................ 50
Appendix B. Complements on weak constructibility............................. 51
References. .. ... 55

2020 MarnemaTics SuBJECT CLASSIFICATION. 32C38, 14F05.
Keyworbps. Irregular Riemann-Hilbert correspondence, enhanced perverse sheaves, holonomic D-
modules.

The research of A.D’A. was partially supported by GNAMPA /INdAM. He acknowledges the kind
hospitality at RIMS of Kyoto University during the preparation of this paper. The research of
M.K. was supported by Grant-in-Aid for Scientific Research (B) 15H03608, Japan Society for the
Promotion of Science.

e-ISSN: 2270-518X http://jep.centre-mersenne.org/


http://jep.centre-mersenne.org/

28 A. D’Acnoro &« M. Kasnrwara

1. INnTRODUCTION

Let X be a complex manifold. The regular Riemann-Hilbert correspondence
(see [7]) states that the de Rham functor induces an equivalence between the triangu-
lated category of regular holonomic Z-modules and that of C-constructible sheaves.
More precisely, one has a diagram

DEOI (‘@X)
DR

]

DR
D]rah(@X) .~ DE-C(CX)
P
where ¢ is the embedding (i.e. fully faithful functor) of regular holonomic Z-modules
into holonomic Z-modules, the triangle quasi-commutes, 2% is the de Rham functor,
and @ is an (explicit) quasi-inverse to ZZ.

The regularization functor reg: DY (Zx) — DD (Zx) is defined by Myey :=
O(9%(M)). Tt is a left quasi-inverse to ¢, of transcendental nature. Recall that
(¢,reg) is not a pair of adjoint functors.(!) Recall also that reg is conservative.(?)

Let k be a field and M be a good topological space. Consider the natural em-
beddings DP(kys) = DP(Ikys) > EB, (Ikys) of sheaves into ind-sheaves into stable
enhanced ind-sheaves. One has pairs of adjoint functors («,¢) and (e, Ish), and we set

sh := a Ish:

sh: EX (Tkas) —2 D (Tkpr) % DP (kay).

We call Ish and sh the ind-sheafification and sheafification functor, respectively. The
functor sh is a left quasi-inverse of e.

For k = C and M = X, the irregular Riemann-Hilbert correspondence (see [1])
intertwines® the pair (¢, reg) with the pair (e, sh). In particular, the pair (e, sh) is
not a pair of adjoint functors in general.

With the aim of better understanding the rather elusive regularization functor, in
this paper we study some of the properties of the ind-sheafification and sheafification
functors. More precisely, the contents of the paper are as follows.

In Section 2, besides recalling notations, we establish some complementary results
on ind-sheaves on bordered spaces that we need in the following. Further complements
are provided in Appendix A.

Some functorial properties of ind-sheafification and sheafification are obtained in
Section 3. In Section 4, we obtain a stalk formula for the sheafification of a pull-back
by an embedding. (At the level of Z-modules, the interest of such a formula is due to
the lack of commutation between the de Rham functor and the restriction functor.)
Then, these results are used in Section 5 to obtain a stalk formula for the sheafification

(1)By saying that (¢,reg) is a pair of adjoint functors, we mean that ¢ is the left adjoint of reg.
(D1 fact, if Mreg ~ 0 then DR (M) ~ DR (Mreg) ~ 0, and hence A4 ~ 0.
(3)Using formula (3.1) below, this follows from [1, Cor. 9.6.7].

JIEP. — M., 2021, tome 8



ON A TOPOLOGICAL COUNTERPART OF REGULARIZATION 29

of enhanced specialization and microlocalization. In particular, the formula for the
specialization puts in a more geometric perspective what we called multiplicity test
functor in [2, §6.3].

Finally, we provide in Appendix B a formula for the sections of a weakly con-
structible sheaf on a locally closed subanalytic subset, which could be of independent
interest.

2. NOTATIONS AND COMPLEMENTS

We recall here some notions and results, mainly to fix notations, referring to the
literature for details. In particular, we refer to [9] for sheaves, to [13] (see also [5, 3])
for enhanced sheaves, to [10] for ind-sheaves, and to [1] (see also [12, 8, 3]) for bordered
spaces and enhanced ind-sheaves. We also add some complements.

— In this paper, k denotes a base field.

— A good space is a topological space which is Hausdorff, locally compact, countable
at infinity, and with finite soft dimension.

— By subanalytic space we mean a subanalytic space which is also a good space.

2.1. BORDERED SPACES. The category of bordered spaces has for objects the pairs
M = (M, C) with M an open subset of a good space C. Set M:= M and M := C.
A morphism f: M — N is a morphism f: M — N of good spaces such that the
projection I'y — M is proper. Here, 'y denotes the closure in M x N of the graph I'f
of f

Note that M — M is not a functor. The functor M s M is right adjoint to the
embedding M — (M, M) of good spaces into bordered spaces. We will write for short
M= (M,M).

Note that the inclusion kpy : I\O/I — I\v/l factors into
(2.1) o : MMy M M,

By definition, a subset Z of M is a subset of M. We say that Z C M is open
(resp. closed, locally closed) if it is so in M. For a locally closed subset Z of M, we set
Zse = (Z,7) where Z is the closure of Z in M. Note that Uss =~ (U,M) for U ¢ M
open.

We say that Z is a relatively compact subset of M if it is contained in a compact
subset of M. Note that this notion does not depend on the choice of M. This means
that if N is a bordered space with N ~ M and N = I\O/I, then Z is relatively compact
in M if and only if it is so in N.

An open covering {U;},; of a bordered space M is an open covering of M which
satisfies the condition: for any relatively compact subset Z of M there exists a finite
subset I’ of I such that Z C ;. Ui.

We say that a morphism f: M — N is

(i) an open embedding if J? is a homeomorphism from M onto an open subset of KI,

J.E.P.— M., 2021, tome 8



30 A. D’Acnoro &« M. Kasnrwara

(ii) borderly submersive if there exists an open covering {U;},.; of M such that for
any ¢ € I there exist a subanalytic space S; and an open embedding g;: (U;)eo — SixN
with a commutative diagram of bordered spaces

S

SixNT)N

where p; is the projection,
(iii) semiproper if ff — Kl is proper,
(iv) proper if it is semiproper and fO: M — N is proper,
(v) self-cartesian if the diagram

M

fﬁ J\o
=2 <T =Zo
=

=

is cartesian.

Recall that, by [1, Lem. 3.3.16], a morphism f: M — N is proper if and only if it is
semiproper and self-cartesian.

2.2, IND-SHEAVES ON GOOD SPACES. Let M be a good space.

We denote by DP(k,;) the bounded derived category of sheaves of k-vector spaces
on M. For S C M locally closed, we denote by kg the extension by zero to M of the
constant sheaf on S with stalk k.

For f: M — N a morphism of good spaces, denote by ®, f~!, Rfi and R %om,
Rf., f' the six operations. Denote by X the exterior tensor product and by D, the
Verdier duality functor.

We denote by DP(Ik,,) the bounded derived category of ind-sheaves of k-vector
spaces on M, and by ®, f~!, Rfy and R.#hom, Rf., f' the six operations. Denote
by X the exterior tensor product and by Dj; the Verdier duality functor.

There is a natural embedding ¢57: D(kys) — DP(Ikys). It has a left adjoint ayy,
which in turn has a left adjoint 83;. The commutativity of these functors with the
operations is as follows

[ ®| [ RE| f] R

L o o o o X
(2.2)
a |l o o o X o
Bl o o X X X

[Pl

where “o” means that the functors commute, and “x” that they don’t.

JIEP. — M., 2021, tome 8



ON A TOPOLOGICAL COUNTERPART OF REGULARIZATION 31

2.3. IND-SHEAVES ON BORDERED SPACES. Let M be a bordered space. Setting

D" (ku) := D"(ky)/D"(ky o),

one has DP(kw) ~ D" (kg ).
The bounded derived category of ind-sheaves of k-vector spaces on M is defined by
b .—1b b
D”(Ikm):=D (Ik’\v/l)/D <Ikl\v/|\|\7|)'
There is a natural embedding
wm: DP(kg ) ~ DP(km) — D(Tkwm)
induced by L It has a left adjoint
. b b
apm: D (IkM) — D (k'@l),
which in turn has a left adjoint Sy. One sets R#om := amR Lhom, a functor with
values in Db(k'\o/l).
For F € Db(kl\c}l), we often simply write F' instead of ¢y F' in order to make notations
less heavy.
For operations, we use the same notations as in the case of good spaces. Recall (see
[1, Prop. 3.3.19]() that
Rfu ~Rf, if f is proper,
(2.3) e~ f!kﬁ ® f~' if f: M — N is borderly submersive.
The last statement implies

(2.4) f' commutes with a if f is borderly submersive.

With notations (2.1), (2.3) implies that
(2.5) it i, -

The quotient functor Db(Ik'\vA) — DP(Ikw) is isomorphic to jy,' ~ ji, and has a
left adjoint Rjm, and a right adjoint Rjm,, both fully faithful.

The functors ¢y, am and By are exact. Moreover, vy and Sy are fully faithful. This

was shown in [10] in the case of good spaces. The general case reduces to the former
by the

Lemma 2.1. — One has

. -1 T

(i) wm=Jn 1L’\v/| Rkm, =~ Rim. Ll\o/ll’
(i) am =~ ky oy Rjmy > ag iy,

(iii) ﬁM >~ RiM!! BI\O/I

(4)The statement of this proposition is erroneous. The first isomorphism in loc. cit. may not hold
o
under the condition that f is topologically submersive. However, it holds if f is borderly submersive.
o
The second isomorphism, i.e. (2.3), holds under the condition that f is topologically submersive.

J.E.P. — M., 2021, tome 8



39 A. D’Acnoro &« M. Kasnrwara

Proof. — One has
jM LV Rkm, =~ (—) .7|\/| RkM* LO —.7|\/| R]M* Rimy L" =~ Rim, Loa

where (x) follows from (2.2).
This proves (i). Then (ii) and (iii) follow by adjunction. O

For bordered spaces, the commutativity of the functor a with the operations is as
follows.

Lemva 2.2, — Let f: M — N be a morphism of bordered spaces.

(i) There are a natural isomorphism and a natural morphism of functors

flan~am f71, am fH — [ an,
and the above morphism is an isomorphism if f is borderly submersive.
(ii) There are natural morphisms of functors

Rf! ap — N Rf!!, aN Rf* — R]?* amM,

which are isomorphisms if [ is self-cartesian.
(iii) For K € DP(Iky) and L € DP(1ky) one has

OzMxN(K&L) ~ (O[MK) g(OéNL)

Proof
(i)(a) By Lemma 2.1(ii) and (2.2), one has
flay~ f! o i,gl ~ o ft i,gl ~ o zﬂl fteanft
(i)(b) By Lemma 2.1(ii), the morphism is given by the composition

(%) (x) 1

a’\o/lzﬂlf! — g f"_1—>f aozN .

Here, (x) follows from (2.5), and () follows by adjunction from

7! 7! ~ e e
f—7f Lﬁaﬁ_LMf g,
with the isomorphism due to (2.2). If f is borderly submersive, (xx) is an isomorphism
by (2.4).
(ii)(a) By Lemma 2.1(ii), the morphism is given by
Rf. o ZM ~ o Rf., ZM Q ag iy 'Rfy.
Here (x) follows by adjunction from Riny Rfu ity =~ RfuRimniy, — Rfu, recall-
ing (2.5). If f is self-cartesian, this is an isomorphism by cartesianity.
(ii)(b) By Lemma 2.1(ii) and (2.2), the morphism is given by the composition
* o )
ag iy’ Rf. ), ag Rf iy =R, ag iy’
Here (x) follows from Lemma A.3.
Recall (2.5). If f is self-cartesian, then (x) is an isomorphism by cartesianity.
(iii) follows from apn ~ g iy and (2.2). O

JIEP. — M., 2021, tome 8



ON A TOPOLOGICAL COUNTERPART OF REGULARIZATION 33

2.4. ENHANCED IND-SHEAVES. Denote by t € R the coordinate on the affine line,
consider the two-point compactification R := R U {—o0, +oc}, and set R, := (R, R).
For M a bordered space, consider the projection

m™: M x Ry — M.

Denote by EP(Ikwm) := DP(Tkuxr..)/Ty DP(Ikm) the bounded derived category of
enhanced ind-sheaves of k-vector spaces on M. Denote by Q: D (Ikyxr. ) — EP(Iky)
the quotient functor, and by LF and RF its left and right adjoint, respectively. They
are both fully faithful.

For f: M — N a morphism of bordered spaces, set

fri=fxidr_: M xR — N x R.

+
Denote by ®, Ef~!, Efy and R.#hom™, Ef,, Ef' the six operations for enhanced

+
ind-sheaves. Recall that & is the additive convolution in the ¢ variable, and that the

external operations are induced via Q by the corresponding operations for ind-sheaves,
with respect to the morphism fgr. Denote by % the exterior tensor product and by
DF the Verdier duality functor.
We have
LPQ(F) ~ (kge=01 @ k<o) Qg F
and RE Q(F) ~ R Zhom™ (k{01 © k<o, F).

The functors R.#hom" and R.#Zom", taking values in D" (Iky) and Db(kl\c;l)7 re-
spectively, are defined by

(2.6) R .Zhom" (K, K3) := Rrm,. R Fhom(F1, RE K»)
~ Ram. R Fhom(LE K1, Fy),
(2.7) R.tom" (K1, Ks) := ayR Jhom" (K1, K»),

for K; € EP(Iky) and F; € DP(Ikmxr..) such that K; = QF; (i = 1,2).
There is a natural decomposition

EP(Ikw) ~ E® (Tkm) @ E® (Tkw),
given by
+ +
K +— (Qkpzo0y ® K) @ (Qkg<oy ® K).

Denote by Li and RE the left and right adjoint, respectively, of the quotient functor
Q: Db(IkMxRoo) — Ei(IkM)
There are embeddings

i DP(Ikm) —— E2 (Ikm) ,  F+— Q(k{xiz0) ® ' F),

and one sets em(F):=€3,(F)@ ey, (F) € EP(Ikwm). Note that ey (F) ~ Q(k{t:0}®7r,\7|1F).

J.E.P.— M., 2021, tome 8



34 A. D’Acnoro &« M. Kasnrwara

2.5. STABLE OBJECTS. Let M be a bordered space. Set

k{r0) = “lm” kyisay € DY (Tkmxk.. ),

a——+oo

ki := Qkyis0y € EY (Ikwm).

+
An object K € E® (Ikw) is called stable if kfj @ K =2 K. We denote by EP (Ikw) the
full subcategory of E} (Ikwm) of stable objects. The embedding E (Ikm) — E& (Tkwm)

+
has a left adjoint kf; @ *, as well as a right adjoint R Zhom™ (kg *).
There is an embedding

JF
em: DP(Ikm) = EB(Ikm) , Fr— ky @ em(F) ~ Q(ksoy @y F).

Norarion 2.3. — Let S C T be locally closed subsets of M.
(i) For continuous maps ¢ : T — R such that —co < p_ <, < 400, set

ESi ™ = Qkpues, —p,@y<t<—o (@)} € B} (Ikm),

]EETMD% =k ® E?TMDW € E (Tku),
where we write for short
{res, —pi(e) <t<—¢-(0)}={@) EMxR; €S, ~p(2) <t < —p_(a)},
with < the total order on R. If S = T, we also write for short
{—pr (@) <t<—p (@)} = {o €T, —p, (1) <t < —p_(2)}.
(ii) For a continuous map ¢: T — R, consider the object of E} (Ikw)
ESm = QKpucs, tro@>0y € EY (Ikm),
Em = ki ® ESm € Eq(kwm),
where we write for short
(eS8, t+p)>0}={(z,t) EMxR;z €S, t+epx) >0}
If S =T, we also write for short

{t+¢(x)=20}:={zeT, t+ p(x) =0}

Note that one has E?\M ~ Egﬁ\[m, and that there is a short exact sequence

P+Bp— P+ $—
0— ES|M ? ES\M ’ ES|M >0

in the heart of EP(Iky) for the natural t-structure.

JIEP. — M., 2021, tome 8



ON A TOPOLOGICAL COUNTERPART OF REGULARIZATION 35

2.6. CONSTRUCTIBLE OBJECTS. A subanalytic bordered space is a bordered space M
such that M is an open subanalytic subset of the subanalytic space M. A morphism
f: M — N of subanalytic bordered spaces is a morphism of bordered spaces such
that I'y is subanalytic in M x N. By definition, a subset Z of M is subanalytic if it is

subanalytic in M.
Let M be a subanalytic bordered space. Denote by DEV_R_C(kM) the full subcategory
of Db(kl\c;l) whose objects F are such that Rkm, F (or equivalently, Rk, F') is weakly

R-constructible, for ky: M — M the embedding. We similarly define the category
Dﬁ_c(kM) of R-constructible sheaves. Denote by EEV_R_C(I km) the strictly full subcat-
egory of EP(Iky) whose objects K are such that for any relatively compact open
subanalytic subset U of M, one has

+
Tk @ K ~ ki @ QF

for some F € D® , (kmxr., ). In particular, K belongs to Eb (Iky). We similarly
define the category EB__(Ikm) of R-constructible enhanced ind-sheaves.

3. SHE/\FI FICATION

In this section, we discuss what we call here ind-sheafification and sheafification
functor, and prove some of their functorial properties. Concerning constructibility, we
use a fundamental result from [12, §6].

3.1. ASSOCIATED IND-SHEAF. Let M be a bordered space. Let ig: M — M x R, be
the embedding z — (z,0).

Derintrion 3.1. Let K € EP(Iky) and take F' € DP(Tkmyr_ ) such that K ~ QF.
We set
Ishy(K) := R Shom"™(Qk—oy, K)

~ Rrm. R Fhom (k=03 @ kir<oy, F)

~ Rrm. R Shom(kgi—oy, R” K)

~ Rmwy R Shom(kg—oy, R® K)

~i{ REK € DP(Iky)
(see [1, Lem. 4.5.16]), and call it the associated ind-sheaf (in the derived sense) to K
on M. We will write for short Ish = Ishy, if there is no fear of confusion.

Note that one has

Ish(K) ~ R Shom™ (Qky>0y, K) for K € E (Ikm),
Ish(K) ~ R.#hom" (k& K) for K € Eb (Tky).
Levmwva 3.2, The following are pairs of adjoint functors

(i) (e,Ish): DP(Iky) %Eb(IkM),
S

J.E.P. — M., 2021, tome 8



36 A. D’Acnoro &« M. Kasnrwara

+
(ii) (eF,Ish): DP(Tky) o= E? (Tky),
Ish

(iii) (e, Ish): D" (Iky) &h EP. (Tky).
Is

Proof
(i) For F € DP(Iky) and K € EP(Iky) one has

Hom gy, gy, (€(F), K) ~ Home(IkMX]ROC)(Wle ®k{t:0},RE K)
=~ Hom 1y, (F, R R Fhom(k -0}, R® K))
~ Hompy, gy, (F, Ish(K)).
(ii) and (iii) follow from (i), noticing that there are pairs of adjoint functors

+ +
(* ® Qkyz0y,¢) and (x @ kg, 0):

+ +
* ® Qkr>o0) * 2 kiy
EP(Tkw) <—L< Elj_(IkM) (_Li Eb (Tkm).

Here we denote by ¢ the natural embeddings. O
Lemma 3.3, — Let f: M — N be a morphism of bordered spaces.
(i) There are a natural morphism and a natural isomorphism of functors
[~ shy — Ishy Ef ™Y, f'Ishy ~Ishy Ef',

and the above morphism is an isomorphism if f is borderly submersive.
(ii) There are a natural morphism and a natural isomorphism of functors

Rf[! IShM — IShN Ef”, Rf* IShM ~ IShN Ef*7
and the above morphism is an isomorphism if f is proper.
(iii) For K € EP(Ikwm) and L € EP(Iky), there is a natural morphism
+
Ish(K) X Ish(L) — Ish(K X L).

Proof. — Recall that one sets fr:= f x idg__: M X Ryo = N X R.
(i) Let L € EP(Iky) and set G :=RF L € DP(Iknxr_ ).
(i)(a) One has

f7Hshn(L) = f~ Rany R Shom (kyi=oy, G)
~ Ramn fnglthom(k{t:O}a G)
ﬁ Rrm. R Fhom(k—oy, fuglG)

(—)> Rmm, R Fhom(k (=0, R Ef'L)

~ Ishy(Ef~'L).
Here, (%) follows from [1, Prop.3.3.13], and (**) from Lemma A.4.

JIEP. — M., 2021, tome 8
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If f is borderly submersive, then (x) is an isomorphism by [1, Prop. 3.3.19] and
(%) is an isomorphism by Lemma A.4.
(i)(b) Recall that f G ~ RE(Ef'L). One has
f'Ish(L) = 'Ry, R Shom(k(i—oy, G)
~ Rm, fg R Ihom(kyi—oy, G)
~ Ram, R Lhom(kii—oy, f& G)
~ Ram, R Shom(k—oy, RE(Ef'L))
~ Ishy(Ef'L).
(ii) Let K € EP(Ikm) and set F :=REF K € D*(Ikmxr_ )-
(ii)(a) One has
IShN(Ef![K) = R?TN”thom(k{t:O}, RE Equ)
— RWN!!thOm(k{t:0}7 Rf]R”F)
(’:) R7T|\|” RfR”thom(k{t:O}, F)
<= Rfu Romn R Fhom(kg—oy, F)
= ngg (IShM(K)).
Here (x) follows from [10, Lem. 5.2.8].
(ii)(b) Since RE(Ef.K) ~ Rfr,F, one has
Ishy(Ef. K) ~ Rn, R Shom(kp—oy, Rfr, F)
~ RWM* RfR*R/hom(k{tzo}, F)
~ Rf* R’/TM*thom(k{t:O}, F)
If f is proper, fi ~ f,.
(iii) Set F :=REK € DP(Ikmxr.. ) and G := REL € DP(Ikyxg. ). Recall that
FMG:=Rmy(FRG), where

m: M xR X NXxRy — MxNxXRy (z,t1,y,t2) — (2,9, t1 + t2).
Then, one has

Ish(K') ®Ish(L) ~ Ry, R Shom(K, o}, F) B Ry, R Shom (K, oy, G)
— R(mm % 7n)« (R Fhom (ks —oy, F) IR Fhom(k4,—0}, G))
— Rmxn, RmaR Fhom (ki —oy Rkyy,—oy, F X G)
— RWMxN*RJhom(Rmu (kg =0y Wkyr,—0y), Rmy (F X G))

+
~ Rrmun, R Fhom(kp—oy, F X G).
+ +
One concludes using the natural morphism F X G — RE(K X L). O
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3.2. ASSOCIATED SHEAF. Let M be a bordered space.

Dervition 3.4. — Let K € EP(Tkw).
(i) We set
shy(K) := R#om" (Qky—oy, K)
= amIshu(K) € D°(kg),
and call it the associated sheaf (in the derived sense) to K on M. We will write for
short sh = shy, if there is no fear of confusion.
(ii) We say that K is of sheaf type (in the derived sense) if it is in the essential

image of
emum: DP(ke ) — EP(Tky).

One has
shy(K) ~ R#om" (Qkyi0y, K), for K € E} (Ikm),
(3.1) shm(K) ~ RA#om" (k, K), for K € EP (Tkp).
Levmva 3.5. — One has shy >~ sh'\o/I Ezﬁl,

Proof. — Recall that iy ~ i},. Using Lemma 2.1(ii), one has
am IShM ~ Ot’\C}I Zl'\/l RﬂhomE(Q k{t:0}7 K)
=ag im Rrma R Fhom(k(i—oy, RF K)
~ Ot’\C}I Rﬂ.l\c}l* Z.l!\/lxRoo thom(k{tzo}, RE K)
~ a Re R Ihom(kpi—oy, ipxr.. R K)
~ag RW&*RJhom(k{t:O}, RE Ei,K)
~ag R .Zhom®(Q Kii—oy, Eij K). O

Let M be a bordered space, and consider the natural morphisms of good spaces
M xR —F5 M x R -2 M.
We write ¢ for points of R := R U {—o0, +00}.
An important tool in this framework is given by

Prorosition 3.6 ([12, Cor. 6.6.6])
Let M be a bordered space. Then, for F € Db(k,@lxk) one has

+
shi(ky © Q F) ~ R (K _ o ctc s o0y @ RELF).

Consider the natural morphism j: M x Ry — M x R, and the embeddings
itoo: M — M x R, x — (x,400). Using the above proposition and [1, Prop.4.3.10,
Lem. 4.3.13], we get
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CoroLrARry 3.7. Let M be a bordered space. Then, for F € DP(k one has

I\c}IxR)
JF
shu(kyy ® QF) ~i L Rj. LY QF
~ i L Rj.REQF[-1]

~Rm, LY QF
~Rm RY QF.
Consider the functors
EM M
(3.2) Db(k,\o/l) <—>h> Eb(IkM).
snm

As explained in the Introduction, (emtm, shm) is not an adjoint pair of functors in
general.

Prorosition 3.8. — Consider the functors (3.2).

(i) shwm is a left quasi-inverse to em im.
(ii) The property of being of sheaf type is local® on M, and K € EP(Iky) is of
sheaf type if and only if K ~ em tm (shM(K)).

Proof
(i) By Proposition 3.6, for L € DP (kg ), one has
+
ShM em LM(L) ~ ShM (k}a & Q(k{tzo} & 7T_1LML))
~ R, (k{—oo<f<+oo} ® k{f:O} ®ﬁ_1L)
~ R (kj—gy @7 'L)
(ii) follows from (i). O
By Lemmas 2.2 and 3.3, one gets
Lemma 3.9. Let f: M — N be a morphism of bordered spaces.
(i) There are natural morphisms of functors
flshy —s shwEf™', shwEf' — f' shy,

which are isomorphisms if f is borderly submersive.
(ii) There are natural morphisms of functors

Rf, shy — shyEfy, shyEf. — Rf, shy.

The first morphism is an isomorphism if f is proper. The second morphism is an
isomorphism if f is self-cartesian, and in particular if f is proper.

(5)Saying that a property (M) is local on M means the following. For any open covering {U;},;
of M, 2(M) is true if and only if & ((U;)o) is true for any i € I.
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(ili) For K € EP(Ikm) and L € EP(Iky), there is a natural morphism
+
sh(K)Xsh(L) — sh(K X L).

Exawrere 3.10. — Let M =R, U = {z > 0}. By Corollary 3.7 one has

RE E[1]/|g]c\4 = k{;c>0, xt<—1}[1}, RE E;\l]\//[ac =~ k{x}O, rt<1} [1]7
1/x —1/x
Sh(EU/UM) ~ k{w>0}, Sh(]EU\]CI ) ~ k{zgo}.

Note that, denoting by ¢: {0} — M the embedding, one has
i' (sh(By/3,) # sh(Bi' (Byfy,), i (sh(Ey [47) % sh(Bi (B [47)-

n act, on one hand one nas 2" (s ~ — an 1
In f hand one has i' (sh(E,/|3,)) ~ k[-1] and Ei'(E
0.

other hand one has i_l(sh(E;‘lﬂ/;)) ~ k and Ez_l(Ez,‘lj\/;) ~

Note also that sh is not conservative, since sh(IE?J/lg;{N/I) ~ 0.

1/x

U‘M) ~ 0, and on the

Exavrere 3.11. — Let X C C, be an open neighborhood of the origin, and set X =
X ~ {0}. The real oriented blow-up p: X{> — X with center the origin is defined by
XP:={(r,w) € Ryo x C; |w| =1, rw € X}, p(r,w) = rw. Denote by SoX = {r =0}
the exceptional divisor.

Let f € Ox(x0) be a meromorphic function with pole order d > 0 at the origin.
With the identification X ~ {r > 0} C X{?, the set I:=S5,X ~ {z € X ; Re f(z) > 0}
is the disjoint union of d open non-empty intervals. Here {-} is the closure in XrP.
Then,® recalling Notation 2.3,

Refy Re fopy Re fopy . .
Sh(E)'(\X) o~ sh(Ep*IE).(‘X(bi )~ Rp*Sh(]E).QX{)b )~Rpk, ;.

Recall that, for k = C, the Riemann-Hilbert correspondence of [1] associates the
meromorphic connection d — df with ]E)R(T )J; by the functor 9%’%.

3.3. (WEak-) consTrUCTIBILITY. — An important consequence of Proposition 3.6 is
Prorosition 3.12 ([12, Th.6.6.4]). — Let M be a subanalytic bordered space. The
functor shy induces functors

ShM : E\I?V—R—c (IkM) — D‘E)V—]R—C(kM)’

shy: BB (Ikym) — DB (kw).

Prorosition 3.13. — Let M be a subanalytic bordered space. For K € ER_(Ikwm) there
18 a natural isomorphism

E ~
shw (D) = De (shu K).

(6)The analogue result for ind-sheaves was obtained in [11, Prop. 7.3] and [6, Prop. 3.14], at the
level of cohomology groups.
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Proof. — Recall that shy ~ she Eiy,' and Eiy,' ~ Ei},. Since Ei,,' D ~ D:\?}l Eiy',
we may assume that M = M = M is a subanalytic space.
(i) Let us construct a natural morphism
sh(DEK) — D(shK).
By adjunction, it is enough to construct a natural morphism
sh(DFK) ®@ sh(K) — way.
Note that we have a morphism
DK & K —s Wb
Let 6: M — M x M be the diagonal embedding, so that DEKéK ~ E(S_l(DEK%K).
There are natural morphisms

sh(D¥K) @sh(K) ~ ! (sh(D"K) Ksh(K))

07 (DK % K))

—rsh(E5H(DPK X K))

— sh(wh)) ~ war,
where (x) is due to Lemma 3.9(iii), and (xx) is due to Lemma 3.9(i).

+
(ii) By (i), the problem is local on M. Hence, we may assume that K ~ k¥, @ Q F/
for F € Dﬁ_c(kMme). Consider the morphisms

k:MxRooiMx (RU{ioo},@)LMxR
Since
K{_ocictoo) @ REF ~Rj" Rif F ~ Rj; Riy F,
Proposition 3.6 gives
sha(K) ~ R, Ry Rif F
~ R7. Rj, Ri; F.
By [1, Prop. 4.8.3] one has
DE, (K5, & Q F) ~ k& ® Qa~'Dysxr F,
where a: M x Ry, = M x Ry, is given by a(z,t) = (x,—t). Then, one has
shar(DE,K) = shyr (k& © Q a~ ' Dysoz F)
~ R7, Ry, Rif a ' Dysr F
~ R7. Rj;” Ri; Dasun, F
~ Dy (R, Rj; Rij F)
~ Dy (shp (K)). O
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Lemma 3.14. Let M and N be bordered spaces. Let F € DY _(km) and L € EP(Iky).
Then

sh(e(F) X L) ~ F Rsh(L).
Proof. — For G:=RF L € D*(Tknyr_ ), one has

+
Sh(G(F) X L) ~ M xN RWMXN* thom(k{t:()},F @G)

& amxn R, (F BIR Fhom (Ko, G))

(%’) OzMXN(F&RWN*R,ﬂhom(k{tzo}7G>)

~ F'Man Ran, R Fhom(k—oy, G),

where (a) follows from [1, Cor. 2.3.5] and (b) follows from Proposition A.2 in Appen-
dix A. 0

4. STALK FORMULA

As we saw in Example 3.10, sheafification does not commute with the pull-back by
a closed embedding, in general. We provide here a stalk formula for the sheafification
of such a pull-back, using results from Appendix B.

4.1. RESTRICTION AND STALK FORMULA. — Let M be a subanalytic bordered space. Re-
call Notation 2.3.

Let N C M be a closed subanalytic subset, denote by i: Ny, — M the embedding.
To illustrate the difference between shEi~! and i~!sh note that on one hand, by
[2, Lem. 2.4.1], for K € E% (Iky) and yo € N one has(7

(rlsh(K))yo ~ sh(K),,

= 11&1 RHOHIE(E([)”M,K),
U3yo

where U runs over the open neighborhoods of yg in M. On the other hand,

Prorosition 4.1. — Let ¢: M — Ry, be a morphism of subanalytic bordered spaces,
set N :=¢~1(0) C M, and denote by i: Ny — M the embedding. For yo € N and
K ¢ Eb  _(Ikw) one has

w-R-c

Sh(Ei ' K)y, =~ lim RHom®(EY "9 f),

0 UM ’
U3yo
0,e—0+
where U runs over the open neighborhoods of yo in M. Here, we set —0|p(z)| 7 = —o0

for ¢(z) = 0.

(M Recall from (2, §2.1] that, for any ¢,d € Z, small filtrant inductive limits exist in D[C*d](k), the
full subcategory of Db(k) whose objects V satisfy HI (V) =0 for j < c or j > d. That is, uniformly
bounded small filtrant inductive limits exist in DP (k).
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More generally, for T C N a compact subset one has

(4.1) RI(T;sh(Bi ' K)) ~ lim RHom®(Eg, 71" i),

UD>T
5,e—0+

where U runs over the open neighborhoods of T' in M.

Proof. — Let us prove the isomorphism (4.1). Since T C N C M is compact, we may
assume that M = M =: M is a subanalytic space.

(i) On the right hand side of (4.1), we may assume that U runs over the open
subanalytic neighborhoods of T in M. Up to shrinking M around 7', we can assume

+
: b ~ IE
X - . I
that there exists F' € D (karxr,, ) such that K ~ ky; @ QF. For c € R, and U an

w-R-c
open relatively compact subanalytic subset of M containing T, set

Uese :i={(x,t) e U X R; t+ ¢ < d|p(z)| "%}

Note that LEES¢0le@I™ L)

UM ®@k{>_cy- Then, one has

c,8,e

— x)|~¢ . + — x)|”¢
RHom®™ (Egy, 71" K) ~ iy RHom®(Qkys—o) ® By *@1, QF)

UM
c——+o0
~ lim Hom (LE EZ‘TJCW_(S“D(@VE,F)
c——+4o00
~ lim Hom (ky,,. ®kps_c}, F)

c——+o00
~ lim Hom (ky,, . Ki>—c} ®F)
() c—+00
~ lim RI'(Uese; Kits—cy ®F)
c——+oo

~ h_H)l RF(UC,(;’E N{t>—ck Kis>—oy ®F).

c——+oo

Here (x) follows from the same argument used in the proof of the second isomorphism
n [12, (6.6.2)].
(ii) Let us deal with the left hand side of (4.1). Consider the natural maps

N xRy —B 5 M xR,
ml Jm
N—Y M
and set, for S = M, N,

ka{t>*} = “lig” kSX{t>—c} € Db(IkaJRoo)-

c——+o00
Noticing that Ei 'K ~ k% & Qiz'F, by [12, Prop. 6.6.5] one has
sh(Bi 1K) ~ anRIN . (KN {155 ®in§1F)
~ anRrn g (Karxqessg @ F).
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Hence
RI(T;sh(Ei 1K)) ~ lim RI(V; sh(Ei ' K))
\4

~ I RI(V; R (K 15—y © F))
c,V

~ I RI(V X Ryig ! (K gis—c) @ F))
c,V

~mRI(V x {t > —c}ig' Karxqis—c) ®F))
c,V
~ lim RI'(W; Ky qts—c} @ F),
c, VW
where ¢ — 400, V runs over the system of open relatively compact subanalytic
neighborhoods of 7" in IV, and W = W,y runs over the system of open subanalytic
subsets of M x { € R; +00 >t > —c}, such that W D V x {t € R; t > —c}. Here,
the last isomorphism follows from Corollary B.3.

(iii) For ¢ € R consider the following inductive systems: I. is the set of tuples
(U,6,¢) as in (i); J. is the set of tuples (V,W) as in (ii). We are left to show the
cofinality of the functor ¢: I, — J., (U,d,e) = (UNN,U.s. N{t = —c}).

Given (V,W) € J., we look for (U, d,¢) € I. such that

UNNCV and UcseN{t>—c}CW.

Let U be a subanalytic relatively compact open neighborhood of T" in M such that
U NN C V. With notations as in Lemma B.1, set

X=Mx{teR;t>-c}, W=W, T=Ux{teR;t>—c}, f(z,1) =)
and g(z,t) = (T+c+1)""

Note that g(x,4+o00) = 0. Since (B.1) is satisfied, Lemma B.1(ii) provides C' > 0 and
n € Z~o such that

{(,7) €U xR; t = —¢, Cg(z, 1) > |p(z)|} C W.
Then
{(z,t) eUXR;t=>—¢c, Clt+c+1)"" > |p(x)|} C W.

One concludes by noticing that the set on the left hand side contains U, 5. N{t > —c}
for § = CY/" and € = 1/n. O

5. SPECIALIZATION AND MICROLOCALIZATION

Using results from the previous section, we establish here a stalk formula for the
natural enhancement of Sato’s specialization and microlocalization functors, as intro-

duced in [4].
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5.1. REAL ORIENTED BLOW-UP TRANSFORMS. Let M be a real analytic manifold and
N C M a closed submanifold. Denote by Sy M the sphere normal bundle. Consider
the real oriented blow-up MR of M with center N, which enters the commutative
diagram with cartesian square

SwM i M e O (M N

| o]

NC—— M
N

Note that (M ~ N)y := (M ~ N, M) ~ (M ~ N, M?®).
Recall the blow-up transform of [4, §4.4]

Ev®: E°(Iky) — EP(Tksyar), K +— Ei'EjLEj ' K.

A sectorial neighborhood of 8 € SyM is an open subset U C M ~ N such that
SyM U §(U) is a neighborhood of § in M. We write U 3 0 to indicate that U is a
sectorial neighborhood of . We say that U C M ~ N is a sectorial neighborhood of
Z C SyM, and we write U O Z, if U is a sectorial neighborhood of each 6 € Z.

Lemma 5.1, — Leto: M — R be a subanalytic continuous map such that N = ¢~1(0).
Let K € EP o (Ikys). For 0y € SxM, one has
v . o>—48|p(x)|~°
sh(EvR(K)),, ~ lim RHom® (€7} """ k),
d,e,U

where 8, — 0+ and U 3 0y. More generally, if Z C SyM is a closed subset one has
v . o>—48|p(x)|~°
RI(Z;sh(Bv(K))) ~ lim RHom® (€, * " k),
4,e,U
where 6,6 — 0+ and U D Z.

Proof. — Let us prove the last statement. Note that in MQP one has SyM =
(¢ o p)~1(0). Hence, by Proposition 4.1,
" . 0> —=8le(P@)]™° s i
RI(Z;sh(Evi(K))) = lim Rifom®( ;lw'*”(”( M BjLENVK),
8,e,U

where U C M2 runs over the neighborhoods of i(Z). Then

r . , 10> —8|p(p(@))] "¢
RF(Z;Sh(EVJ\?(K))) =~ 61% RHom" (Ejx Ej 1E[7TM;3|¢(I)(£))‘ ,K)
787

0>—6|p(x)|~° K)

T E (s
=~ lim RHom (E]N!!Ej—l(ﬁ)|(M\N)oo7

6,6,(7

ST E /0> —6|o(z)|
- ;ﬂﬁRHom (EjN(j‘l(ﬁ))\M’K)'
767

One concludes by noticing that U 5 Z if and only if U = jy(j1(U)) for some
neighborhood U of i(Z) in M. O
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5.2. SHEAFIFICATION ON VECTOR BUNDLES. Recall from [4, §2.2] that any morphism
p: M — S, from a good space to a bordered space, admits a bordered compactifica-
tion poo: Mo — S such that (M )° = M and ps is semiproper. Moreover, such a
bordered compactification is unique up to isomorphism.

Let 7: V — N be a vector bundle. Denote by V,, its bordered compactification,
and by o: N — V the zero section.

The natural action of Rso on V extends to an action of the bordered group(®

(RZ ) := (R0, R) on Vi. Denote by EP (Tky..) the category of conic enhanced

(RZg)oo
ind-sheaves on Vi, (see [4, §4.1]).

Lemma 5.2. For K ¢ E . = (Iky.), one has
(RS 0)eo o

0 'sh(K) ~sh(Eo 'K), o'sh(K) ~sh(Eo'K).

Proof. — We shall prove only the first isomorphism since the proof of the second is
similar.

With the identification N ~ o(N) C V, set V =V~ N. Consider the commutative
diagram, associated with the real oriented blow-up of V' with center N,

SNV s (Vi)oo — 5 SNV

| o P

NC¢ Ve

Here (V)Oo denotes the bordered compactification of V = V.
Consider the distinguished triangle

EjuEj 'K — K — Bo,Bo~ 'K —1 |

One has
0 'sh(Eo,Eo ' K) ~ o to,sh(Eo ' K) ~ sh(Eo ' K),

*

—~
N

where (*) holds since o is proper. Hence, we can assume
K ~EjEj 'K
and, since Eo~!K ~ 0, we have to show
o 'sh(K) ~0.
Recall that Ej 71K ~ Ey 1K for K" := Ev,Ej ! K. Then one has
K ~ EjyEy~tKh
~ Ep,EjnEj 'Ey LK
~ Ep, (kvﬁ\sNV ® Eﬁ_le"h).

(8)4 group object in the category of bordered spaces
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Thus, recalling that o~ !sh(K) ~ Rr,sh(K) since sh(K) is conic,
0~ 'sh(K) ~ Rr.sh(Ep. (kyge. s,y © 7 KP"))
= R7.Rp.sh(kyp s, v @ E7 1K)

~ Ro,R7,sh (kvﬁ\st ® Eﬁ*leph),
where (*) holds since p is proper. It is then enough to show

RAush(kyp gy @ By K" > 0.

SN

Since 7 is borderly submersive and 5'kg, 1 ~ kyn._ gyv[1], one has by (2.3)
kye sy @By TP ~ B KN -1].
Hence one obtain
RA.sh(ky g sy ©E7 LK) ~ RF,sh(EF K1)
& REA'sh(K (1)

o~ R%Rﬁfom(kv&b, 7'sh(KP"[—1]))
~ RAom (Ryikyg, sh(K*"[-1])),
where (x) follows from Lemma 3.9(i). Then the desired result follows from

5.3. SPECIALIZATION AND MICROLOCALIZATION. — Let us recall from [4] the natural en-
hancement of Sato’s specialization and microlocalization functors.

Let M be a real analytic manifold and N C M a closed submanifold. Consider the
normal and conormal bundles

TwM 15 N & T M,

and denote by (TnM)s and (T3 M) the bordered compactification of 7 and w,
respectively.

Denote by (p,s): MY — M x R the normal deformation of M along N (see
[9, §4.1]). Setting Q := s7!(Rx(), one has morphisms

(5.1) (T M) s (M) 20 00 P20

where (M)o is the bordered compactification of p, and po = plo. The enhanced
Sato’s specialization functor is defined by

Buy: B (Tkay) — B ) (Tkryan), K Bim ' EjEpg K.

Sato’s Fourier transform have natural enhancements (see e.g. [4, §5.2])
()" EY (Ik(ryany.) — BY (kg any. ),
H(): B (keryan.) — BL (Ikerg an.),
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and we denote by () and () their respective quasi-inverses. Recall that (-)" and (-)V
take values in conic objects, and that “(-) and “(-) send conic objects to conic objects.
Finally, Sato’s microlocalization functor have a natural enhancement

Epun: BY (Ikyr) — ER (Ik(re an. )mE'gRX) (Tk(ry 000 )

defined by Euy (K) :="Evy(K). Recall that Euy (K) ~ Evy (K)" by [4, Prop. 5.3].
Consider the natural morphisms

SyM L (TyM)oo —5 (Ty M) ¢2 N,

where T ~M is the complement of the zero-section, and o is the embeddmg of the zero-
section. Here (TNM )oo denotes the bordered compactification of TNM = (TN M) oo
Recall that one has
Ev~lo Ey]'\t,’ ~ Eu~! o Evy.
Recall from [9, §4.1] that the normal cone Cn(S) C Ty M to S C M along N is
defined by Cn(S) := Ty M N pgy'(S), where (-) denotes the closure in MR¢

Prorosition 53.3. — Let p: M — R be a continuous subanalytic function such that
N == Y0). Forvg € TnM, & € T M, and K € E® » (Ikys), one has

(i) sh(Buy (K)),, ~ lim RHom®(Ep;, " k),

4,e,U
(i) sh(Buy (K)),, ~ lm RHom®(EY 2l k),
6,e,W,Z

where 6,6 — 0+, U runs over the open subsets of M such that vg ¢ Cy(M \U), W
runs over the open neighborhoods of w(&y) in M, and Z runs over the closed subsets
of M such that

CN(Z)W(&)) C {U € (TNM)W(EQ)7 <’U,£0> > 0} U {0}

Proof
(i)(a) Assume that vy € Ty M, and set 6y = v(vg). Then, one has

Sh(EVN(K))vo (_’:) Sh(EU_lEVN(K))UO
~ sh (E7_1EVE\?(K))
(:) sh(EvR(K))

Vo
6o’
where (%) and (x*) follow from Lemma 3.9(i). Then, the statement follows from
Lemma 5.1, by noticing that U 3 6y if and only if vg ¢ Cnx (M \ U).
(i)(b) Assume that vy = o(yg) for yo € N, where o: N — Ty M is the embedding
of the zero section. Then, Lemma 5.2 gives
Sh(EVN(K))o(yO) >~ (0_1Sh(El/N(K)))yO
~ (sh(Eo 'Evy(K)))
~ (sh(Eiy'K)), .

*

Yo

—
~
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where (x) follows from [4, Lem. 4.8(i)], with ix: N — M denoting the embedding.
Then the statement follows from Proposition 4.1.
(ii) For F € Dgio(kTX’M) one has

RHom" (¢(F), Eun (K)) = RHom" (¢(F), "Evy (K))
~ RHom" (Y¢(F), Evy (K))
~ RHom" (¢(F"), Bvy (K)).
Hence

sh(Epn (K)),, ~ lim RHom"(e(ky), Epn (K))
V3&o

lim RHom" (¢(ky), v (K))
V3&o

~ lim RHom®(e(kyo), Evy(K)),
o] (e(kve), Evn (K))

12

where V' runs over the conic open neighborhoods of &y in TR M, and
Vei={veTnM; (v,&) >0, V¢ €V}

denotes the polar cone. Here () follows by noticing that &y has a fundamental system
of open conic neighborhoods V' C T3 M such that w|y has convex fibers.
We are left with computing

limy RFom® (¢(F), Evi (K))
V3&o
for F = kyo.. For this, setting D = w(V'), and considering the distinguished triangle

1
kT—l(D)\VO — k.,.—l(D) — kyo +—>,

we will instead compute the cases where F' =k, -1(py or F' =k,-1(p)_ye.
(ii)(a) On one hand, one has

RHom" (e(k,-1(p)), Evn (K)) ~ RHom"(Er'e(kp), Evy (K))
~ RHom"(¢(kp), Er,Evy (K))
~ RHom" (e(kp), Eiy' K),
where we recall that iy : N — M denotes the embedding. Thus, noticing that D =
w(V) is a system of neighborhoods of @ (&),

lim RHom"(e(k,1(p)), Bvn(K)) ~ lim  RHom®(e(kp), Eiy' K)
V>&o D>w(&o)

~ sh (EiJ_\’lK)w(so)

~ T E(p0>—dlp(z)|~*

= 6thRHom <EW|M ,K),
567

where (x) follows from Proposition 4.1, and §,¢, W are as in the statement of the

present proposition.
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(ii)(b) On the other hand, setting V = v(r~ (D) ~ V°) C Sy M, one has
K, -1(pywve ~ Ruiy ™ kg
Hence, since u: (TNM)OO — (Tn M) is semiproper, one has
RHom" (e(k,-1(p)vo), Evn (K)) ~ RHom" (EuyEye(ky ), Evn (K))
~ RHom" (e(ky ), Ev.Eu"Evy (K))
~ RHom" (e(k), Evip (K)).

Note that when V' runs over the neighborhoods of &, V runs over the neighborhoods
of S =~({&}°*). Here a denotes the antipodal map. Thus

lim RHom® (¢(ky—1(p)wve), Evn (K)) =~ lim RHom® (e(ky), EvR(K))

V3&o V3&o
~ lim RHom (ky,sh (EvR(K)))
V3§

~ RF(S; sh(EVzr\t;(K)))

~ lim RHomE(EgTA}éW(M_E,K),
™) 5.0

where 0,¢ — 0+, and Q D S. Here, () follows from Lemma 5.1. O

AI’I’ENI)IX A CO\’]PLEWENTS ON ENHANCED IND-SHEAVES

We provide here some complementary results on (enhanced ind-)sheaves that we
need in this paper.

Prorosition A.1. — Let M be a subanalytic bordered space, and N a bordered space.
Then, for any F € DY _(km) and K € DP(Iky) we have

(A1) DmF XK ~ R.Zhom(p ' F,¢' K).
Here, p: M X N — M and g: M x N — N are the projections.
Proof. — By [1, Prop. 2.3.4], one has

Dy Rjw F ®Rjny K =~ R Shom(p " Rijm F, ¢ Rijni K),

where p and ¢ are the projections from M x KI, and ju: M — M is the natural
morphism.
Applying jyLy, (A1) follows. O

Prorosition A.2. — Let M, N, F', K be as in the preceding proposition. Let f: N — S
be a morphism of bordered spaces, and let f' = idy xf: M x N = M x S. Then, we
have

Rf.(FRK)~FRRf.K.
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Proof. Let pn: M X N — M and gy: M X N — N be the projections. We define
similarly ps and ¢s. Then, the preceding proposition implies

Rf, (FRK) ~Rf. RIhom(py'DuF, qy K)
~Rf! RIhom(f'~'ps 'DuF, ¢ K)
~ Rﬂhom(ps_lDMERf;q;\J K)
~ R]hom(pngMF, qéRf*K)
~ FRRf.K. O

Lemva A.3. — Let us consider a commutative square of bordered spaces

/

M—2 oM

A
;9
N ——— N.
For any F € DP(Iky), one has a canonical morphism in DP(Iky/)
g 'Rf.F — Rflg™'F.

If the square is cartesian and g is borderly submersive, then the above morphism is
an isomorphism.

Proof. The morphism is induced by adjunction from
Rf.F — Rf.Rg.g'F =% Rg,Rf.¢'F.

Assume that the square is cartesian and g is borderly submersive. Then we may
assume that N’ = S x N and M’ = S x M for a subanalytic space S, and that g and ¢’
are the second projections. Hence the assertion follows from

Rflg 'F~Rfl(ks X F) ~ ks ®MRf,F ~ g 'Rf.F,
which is a consequence of Proposition A.2. O

Levmva A4, — For f: M — N a morphism of bordered spaces and K € EP(Iky) there
is a natural morphism fz '(R® K) — RE(Ef~'K). If f is borderly submersive, then
the previous morphism is an isomorphism.

Proof. — The morphism in the statement follows by adjunction from the isomorphism
QM(fR_l RF K) ~Ef~'K. If f is borderly submersive, we have

R, fr ' REK = f 'Ry, REP K ~ 0,

where () follows from Lemma A.3. Hence, the fact that the morphism in the state-
ment is an isomorphism follows from [1, Prop. 4.4.4(ii-b)]. O

ArpreEnDIX B. COMPLEMENTS ON WEAK CONSTRUCTIBILITY

In this appendix we obtain a formula for the sections, on a locally closed subanalytic
subset, of a weakly constructible sheaf. This result might be of independent interest.
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B.1. LoOJASIEWICZ'S INEQUALITIES. Let M be a subanalytic space.

Lemvia Bl — Let T C M be a compact subanalytic subset, and let f,g: M — R be
continuous subanalytic functions.

(i) Assume that T N f=1(0) C g=1(0). Then there exist € > 0 and n € Zq such
that

elg(@)[" <|f(z)| forzeT.
(ii) Let W C M be an open subanalytic subset, and assume that
(B.1) {zeT;g(x)>0, f(x) =0} CW.
Then there exist € > 0 and n € Z~q such that

{zeT;g(x) >0, eg(z)" > [f(x)[} W

Proof. — Consider the subanalytic map (f,g): M — R%t,u)'

(i) The set Z = (f,g)(T) is a compact subanalytic subset of R?, and we have
ZNn{(t,u);t =0} C{(t,u); u=0}.
Hence, there exist € > 0 and n € Z~( such that
Z C {(t,u) € R?; elu|™ < |t}

This gives the statement.
(ii) Let 7" =T N g~ (Rxp) ~ W. Since 7" N f~1(0) C g=1(0), (i) gives

T' C{z € M;elg(@)]" < |f()]},

which implies the desired result. O

Thureorem B.2. — Let M be a subanalytic space, and F € D® 5 (k). Then, for any
locally closed subanalytic subset Z of M, and any open subanalytic subset W of M
such that Z C W, there exists U C W open subanalytic in M, such that Z is a closed
subset of U and

RI(U;F) =5 RI(Z; F).

The proof is given in Section B.3 after the preparation of the next subsection.

Cororrary B.3. — Let M be a subanalytic bordered space, Z a locally closed subana-
lytic subset of M, and let F' € DSI_R_C(kM). Then, there is an isomorphism

RI(Z; F) «~ “lig” RI(U; F),
U
where U runs over the open subanalytic subsets of M such that Z C U.
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B.2. BARYCENTRIC DECOMPOSITION. We will use here the language of simplicial com-
plexes, for which we refer to [9, §8.1].
Let ¥ = (S, A) be a simplicial complex, with S the set of vertices, and A the set

of simplexes (i.e., finite subsets of S). Recall that one sets |X| :=J |o|, where

ocEA
lo| ;== {z € RY; pr(p) =1, z(p) =0for p ¢ o, z(p) >0 for p € }.
Here, R® denote the set of maps S — R equipped with the product topology.
For a subset Z of |X|, we set
Ag:={o € A;|o| C Z}.

A subset Z of |X| is called X-constructible if Z is a union of simplexes.

Lemma B.4. Let Z be a X-constructible subset of |2|.
(i) the following conditions are equivalent.

(a) Z is closed,

(b) if T,0 € A satisfy o € Ay and 7 C o, then T € Ag.
(ii) the following conditions are equivalent.

(a) Z is open

(b) if 7,0 € A satisfy o € Ay and o C T, then T € Ay.
(iii) the following conditions are equivalent.

(a) Z is locally closed,
(b) if 01,092,053 € A satisfy 01,03 € Az and 01 C 09 C 03, then o9 € Ayg.

Proof. — (i) follows from |o| = Urearco |7l (i) and (iii) follow from (i). O

For o € A, we set
Uo)= U Irl={z€|%|; z(s) >0 for any s € o}.
ocCTEA
It is the smallest open -constructible subset containing |o|.
Let us denote by DE-Z—c(k\ZI) the full subcategory of DP (kjz|) whose objects are
weakly |X|-constructible. By [9, Prop. 8.1.4], we have

Lemma B5. — Let F € DP (kjg|) and o € A. Then, one has

w-X—c
RI(U(0); F) = RI'(Jo|; F).
Let B(X) = (Sg(x), Ag(x)) be the barycentric decomposition of ¥ defined as follows:

Se(x) = 4,

Ag(x) = {0; 0 is a finite totally ordered subset of A}.
Here, Ap(x) is ordered by the inclusion relation. Then there is a homeomorphism
f+|B(X)| == |X]| defined as follows. For 0 € A = Sg(x)), let e, € |X] be given by

1
— ifseo,
eo(s) = #o

0 otherwise.
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Then, we define
f(z) = Z z(0)e, for any z € |B(X)| € RS,
oESp(m)
That is, f(x) € RY is given by
(f(@)(s) = Z zlo) for any s € S.
035, 0ES(x) #o
Note that we have
(B.2) f(la]) € |max(a)| for any 7 € Agy),
where max (o) € A is the largest member of o in A. Conversely, for y € |X| one has
y € f(lo)),
where ¢ € Ag(y) is given by
cg:={ceA; oc={seS;y(s) >a} for some a € Ry}
Lemva B.6. — Let Z C |X| be a locally closed Y-constructible subset. Then for

any 71,02 € Ay such that 1 U oy € Agy and f(|o1]), f(|oe]) C Z, we have
f(lerUos]) C Z.

Proof. — Set T = 01 U 2. We have | max(a1)|, | max(c2)] C Z. Then the desired
result follows from the fact that max(7) is equal to either max (1) or max(a2). Hence
|7] C | max(T)| C Z. O

B.3. Proor or Tueorem B.2

Lemma B.7. Let ¥ = (S,A) be a simplicial complex. Let Z C |X| be a
Y-constructible locally closed subset such that

(B.3) for any 01,09 € Az such that o1 Uos € A, one has o1 Uos € Ag.
Set
U:= | U(o).
ogEAy

Then, for F € DY, . (Ks|) one has
RI(U;F) = RI(Z; F).

Proof. — Let us remark that U is an open subset and Z is a closed subset of U. Hence
it is enough to how that

RI'U; F @ky-z) ~ 0.
Thus, we reduce the problem to prove that RI'(U; F)) ~ 0 under the condition that
F e D! s (k) satisfies F|z ~ 0.

Let us take the open covering $ := {U(0)}sen, of U. For o1,...,00 € Ag,
if MicpcrUlor) # @, then o := U;cpep0r € Az by condition (B.3) and
Mi<k<e Ulow) =U(o).

Hence, one has by Lemma B.5

Rr(ﬂ1<k<e Ulog); F') == RI(|o]; F) ~ 0.
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Thus, we have RI'((N, <<, U(ox); F) =~ 0 for any o1,...,00 € Az. We conclude that
RIU; F) ~RI'(M; F) ~ 0. O

Proofof Theorem B.2. — There exists a simplicial complex 3 = (S, A) and a suban-
alytic isomorphism M ~ |3| such that Z and W are X-constructible and F is weakly
S-constructible (after identifying M and |2|). Let & = (S,A) be the barycentric
decomposition of ¥, and identify ||, |S| and M. Then F is weakly S-constructible
and Z and W are S-constructible. Set U = Usez, U(0). Then U C W by Lemma B.4.
Moreover, condition (B.3) is satisfied by Lemma B.6. Hence, Lemma B.7 implies that

RI'(U; F) — RI'(Z; F) is an isomorphism. O
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